K iXdZddlZddlZddlZddlZddlmZmZddl m Z gdZ dZ ddZ ddZd Zd Zd Zd Zd ZdZdZdZdZdZdZdZddZdZdZddZy)an Utility classes and functions for the polynomial modules. This module provides: error and warning objects; a polynomial base class; and some routines used in both the `polynomial` and `chebyshev` modules. Functions --------- .. autosummary:: :toctree: generated/ as_series convert list of array_likes into 1-D arrays of common type. trimseq remove trailing zeros. trimcoef remove small trailing coefficients. getdomain return the domain appropriate for a given set of abscissae. mapdomain maps points between domains. mapparms parameters of the linear map between domains. N)dragon4_positionaldragon4_scientific) RankWarning) as_seriestrimseqtrimcoef getdomain mapdomainmapparms format_floatct|dk(s|ddk7r|Stt|dz ddD] }||dk7s n|ddzS)aRemove small Poly series coefficients. Parameters ---------- seq : sequence Sequence of Poly series coefficients. Returns ------- series : sequence Subsequence with trailing zeros removed. If the resulting sequence would be empty, return the first element. The returned sequence may or may not be a view. Notes ----- Do not lose the type info if the sequence contains unknown objects. rN)lenrange)seqis `/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.pyrr$s^( 3x1}B1  s3x!|R, A1v{ 6AE{c|Dcgc]}tj|dd}}|D]6}|jdk(r td|jdk7s-td|r|Dcgc] }t |}} tj |}|Dcgc]}tj|d|}}|Scc}wcc}wcc}w#t$r}tjj}d }g}|D]l}|j|k7r:tjt|| } |dd| dd|j| Ld}|j|jn|s td |Yd}~|Sd}~wwxYw) a- Return argument as a list of 1-d arrays. The returned list contains array(s) of dtype double, complex double, or object. A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array raises a Value Error if it is not first reshaped into either a 1-d or 2-d array. Parameters ---------- alist : array_like A 1- or 2-d array_like trim : boolean, optional When True, trailing zeros are removed from the inputs. When False, the inputs are passed through intact. Returns ------- [a1, a2,...] : list of 1-D arrays A copy of the input data as a list of 1-d arrays. Raises ------ ValueError Raised when `as_series` cannot convert its input to 1-d arrays, or at least one of the resulting arrays is empty. Examples -------- >>> import numpy as np >>> from numpy.polynomial import polyutils as pu >>> a = np.arange(4) >>> pu.as_series(a) [array([0.]), array([1.]), array([2.]), array([3.])] >>> b = np.arange(6).reshape((2,3)) >>> pu.as_series(b) [array([0., 1., 2.]), array([3., 4., 5.])] >>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16))) [array([1.]), array([0., 1., 2.]), array([0., 1.])] >>> pu.as_series([2, [1.1, 0.]]) [array([2.]), array([1.1])] >>> pu.as_series([2, [1.1, 0.]], trim=False) [array([2.]), array([1.1, 0. ])] rN)ndmincopyrzCoefficient array is emptyzCoefficient array is not 1-dT)rdtypeFrz&Coefficient arrays have no common type)nparraysize ValueErrorndimr common_type Exceptiondtypes ObjectDTyperemptyrappendr) alisttrimaarraysrrete object_dtypehas_one_object_typetmps rrrAsyf8= =!bhhq- =F = = 66Q;9: : 66Q;;< < =  &,-'!*--D' =CCqrxxE2CC J7>.&D  Nyy,,. # %Aww,&hhs1v\:1A 3&*# 1668$ %#EFA M# J! Ns*B5'B:<CB? E9 B!E44E9c|dkr tdt|g\}tjtj||kD\}t |dk(r|dddzS|d|ddzj S)a  Remove "small" "trailing" coefficients from a polynomial. "Small" means "small in absolute value" and is controlled by the parameter `tol`; "trailing" means highest order coefficient(s), e.g., in ``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``) both the 3-rd and 4-th order coefficients would be "trimmed." Parameters ---------- c : array_like 1-d array of coefficients, ordered from lowest order to highest. tol : number, optional Trailing (i.e., highest order) elements with absolute value less than or equal to `tol` (default value is zero) are removed. Returns ------- trimmed : ndarray 1-d array with trailing zeros removed. If the resulting series would be empty, a series containing a single zero is returned. Raises ------ ValueError If `tol` < 0 Examples -------- >>> from numpy.polynomial import polyutils as pu >>> pu.trimcoef((0,0,3,0,5,0,0)) array([0., 0., 3., 0., 5.]) >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed array([0.]) >>> i = complex(0,1) # works for complex >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3) array([0.0003+0.j , 0.001 -0.001j]) rztol must be non-negativeNrr)rrrnonzeroabsrr)ctolinds rrrsyP Qw344 QC.CQ JJrvvay3 'ES 3x1}!uqy#b'A+##%%rct|gd\}|jjtjdvr|j j |j j}}|jj |jj}}tjt||t||fStj|j |jfS)aV Return a domain suitable for given abscissae. Find a domain suitable for a polynomial or Chebyshev series defined at the values supplied. Parameters ---------- x : array_like 1-d array of abscissae whose domain will be determined. Returns ------- domain : ndarray 1-d array containing two values. If the inputs are complex, then the two returned points are the lower left and upper right corners of the smallest rectangle (aligned with the axes) in the complex plane containing the points `x`. If the inputs are real, then the two points are the ends of the smallest interval containing the points `x`. See Also -------- mapparms, mapdomain Examples -------- >>> import numpy as np >>> from numpy.polynomial import polyutils as pu >>> points = np.arange(4)**2 - 5; points array([-5, -4, -1, 4]) >>> pu.getdomain(points) array([-5., 4.]) >>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle >>> pu.getdomain(c) array([-1.-1.j, 1.+1.j]) Fr'Complex) rrcharr typecodesrealminmaximagrcomplex)xrminrmaximinimaxs rr r sN QCe $CQww||r||I..VVZZ\166:: new[i]``, ``i = 0, 1``. Parameters ---------- old, new : array_like Domains. Each domain must (successfully) convert to a 1-d array containing precisely two values. Returns ------- offset, scale : scalars The map ``L(x) = offset + scale*x`` maps the first domain to the second. See Also -------- getdomain, mapdomain Notes ----- Also works for complex numbers, and thus can be used to calculate the parameters required to map any line in the complex plane to any other line therein. Examples -------- >>> from numpy.polynomial import polyutils as pu >>> pu.mapparms((-1,1),(-1,1)) (0.0, 1.0) >>> pu.mapparms((1,-1),(-1,1)) (-0.0, -1.0) >>> i = complex(0,1) >>> pu.mapparms((-i,-1),(1,i)) ((1+1j), (1-0j)) rr)oldnewoldlennewlenoffscls rr r s`RVc!f_F Vc!f_F q6CF?SVc!f_ , 6C 6/C 8Orct|tttfvr/t |t j st j|}t||\}}|||zzS)aN Apply linear map to input points. The linear map ``offset + scale*x`` that maps the domain `old` to the domain `new` is applied to the points `x`. Parameters ---------- x : array_like Points to be mapped. If `x` is a subtype of ndarray the subtype will be preserved. old, new : array_like The two domains that determine the map. Each must (successfully) convert to 1-d arrays containing precisely two values. Returns ------- x_out : ndarray Array of points of the same shape as `x`, after application of the linear map between the two domains. See Also -------- getdomain, mapparms Notes ----- Effectively, this implements: .. math:: x\_out = new[0] + m(x - old[0]) where .. math:: m = \frac{new[1]-new[0]}{old[1]-old[0]} Examples -------- >>> import numpy as np >>> from numpy.polynomial import polyutils as pu >>> old_domain = (-1,1) >>> new_domain = (0,2*np.pi) >>> x = np.linspace(-1,1,6); x array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ]) >>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825, # may vary 6.28318531]) >>> x - pu.mapdomain(x_out, new_domain, old_domain) array([0., 0., 0., 0., 0., 0.]) Also works for complex numbers (and thus can be used to map any line in the complex plane to any other line therein). >>> i = complex(0,1) >>> old = (-1 - i, 1 + i) >>> new = (-1 + i, 1 - i) >>> z = np.linspace(old[0], old[1], 6); z array([-1. -1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1. +1.j ]) >>> new_z = pu.mapdomain(z, old, new); new_z array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ]) # may vary ) typeintfloatr> isinstancergeneric asanyarrayr )r?rFrGrJrKs rr r "sQ@ AwsE7++Jq"**4M MM! S!HC q=rc\tjg|z}td||<t|SN)rnewaxisslicetuple)rrsls r _nth_slicerYhs) ** B $KBqE 9rcttk7rtddttk7rtddtdk(r tdttjtdzfdt D}t jtj|S)am A generalization of the Vandermonde matrix for N dimensions The result is built by combining the results of 1d Vandermonde matrices, .. math:: W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]} where .. math:: N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\ M &= \texttt{points[k].ndim} \\ V_k &= \texttt{vander\_fs[k]} \\ x_k &= \texttt{points[k]} \\ 0 \le j_k &\le \texttt{degrees[k]} Expanding the one-dimensional :math:`V_k` functions gives: .. math:: W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])} where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`. Parameters ---------- vander_fs : Sequence[function(array_like, int) -> ndarray] The 1d vander function to use for each axis, such as ``polyvander`` points : Sequence[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to either float64 or complex128 depending on whether any of the elements are complex. Scalars are converted to 1-D arrays. This must be the same length as `vander_fs`. degrees : Sequence[int] The maximum degree (inclusive) to use for each axis. This must be the same length as `vander_fs`. Returns ------- vander_nd : ndarray An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``. z Expected z" dimensions of sample points, got z dimensions of degrees, got rz9Unable to guess a dtype or shape when no points are givenc3bK|]&}|||dt|z(yw)).N)rY).0rdegreesn_dimspoints vander_fss r z_vander_nd..s?   ! VAY +FZ65J,JKs,/) rrrWrasarrayr functoolsreduceoperatormul)rar`r^ vander_arraysr_s``` @r _vander_ndrinsZ^F VxA#f+ OQ Q Wx;CL> JL L {TUU2::eFm,s2 3FvM   HLL- 88rcrt|||}|j|jdt| dzS)z Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis Used to implement the public ``vanderd`` functions. N)r)rireshapeshaper)rar`r^vs r_vander_nd_flatrns7 9fg.A 99QWW^s7|m,u4 55rc t|dk(rtjdSt|gd\}|j |Dcgc] }|| d}}t|}|dkDrUt |d\}}t |Dcgc]}||||||z}}|r||d|d|d<|}|}|dkDrU|dScc}wcc}w)a Helper function used to implement the ``fromroots`` functions. Parameters ---------- line_f : function(float, float) -> ndarray The ``line`` function, such as ``polyline`` mul_f : function(array_like, array_like) -> ndarray The ``mul`` function, such as ``polymul`` roots See the ``fromroots`` functions for more detail rrFr6r)rronesrsortdivmodr) line_fmul_frootsrpnmrr.s r _fromrootsr{s 5zQwwqzUG%0 $) *qVQB] * * F!e!Qvald`` functions. Parameters ---------- val_f : function(array_like, array_like, tensor: bool) -> array_like The ``val`` function, such as ``polyval`` c, args See the ``vald`` functions for more detail rc3<K|]}|jk(ywrT)rl)r]r(shape0s rrbz_valnd..s3Qqww& 3srNzx, y, z are incompatiblerpzx, y are incompatiblezordinates are incompatibleF)tensor)rrRrlallrriternext)val_fr2argsr(itx0xir~s @r_valndrs'+ +BMM!  +D + !W]]F 3$qr(3 3 t9>78 8 Y!^45 59: : dB bB b! A' "a &' H! ,sB:c&|D] }|||} |S)a6 Helper function used to implement the ``gridd`` functions. Parameters ---------- val_f : function(array_like, array_like, tensor: bool) -> array_like The ``val`` function, such as ``polyval`` c, args See the ``gridd`` functions for more detail rE)rr2rrs r_gridndrs# "aL Hrct||g\}}|ddk(rtt|}t|}||kr |dddz|fS|dk(r||dz |dddzfStj||z dz|j }|}t ||z ddD]1}|dg|zdgz|}|d|dz } |dd| |ddzz }| ||<3|t|fS)a Helper function used to implement the ``div`` functions. Implementation uses repeated subtraction of c2 multiplied by the nth basis. For some polynomial types, a more efficient approach may be possible. Parameters ---------- mul_f : function(array_like, array_like) -> array_like The ``mul`` function, such as ``polymul`` c1, c2 See the ``div`` functions for more detail rrNrr)rZeroDivisionErrorrrr$rrr) ruc1c2lc1lc2quoremrrxqs r_divr s"b"HR "v{ b'C b'C Sy"1vz2~ BrF{BrFQJ&&hhsSy1}BHH5sSy#r* AqcAgmR(AB!B%Acr(Q3BZ'CCF   GCL  rct||g\}}t|t|kDr%|d|jxxx|z ccc|}t|S|d|jxxx|z ccc|}t|S)z@ Helper function used to implement the ``add`` functions. Nrrrrrrr*s r_addr-sp"b"HR 2wR 8BGG   3< 8BGG   3<rct||g\}}t|t|kDr%|d|jxxx|zccc|}t|S| }|d|jxxx|z ccc|}t|S)z@ Helper function used to implement the ``sub`` functions. Nrrs r_subr:sw"b"HR 2wR 8BGG   3<S 8BGG   3<rctj|dz}tj|dz}tj|}|jdkDs'|jjdvs|j dk(r t d|jdkr td|jdk7r t d|j dk(r t d|jdks|jd kDr t d t|t|k7r t d |jdk(r|}|dz}|||} n5tj|}|d }t|}|||d d |f} | j} |j} |^tj|dz}|jdk7r t dt|t|k7r t d| |z} | |z} |5t|tj|jjz}t| jjtj rbtj"tj$| j&tj$| j(zj+d} n7tj"tj$| j+d} d| | dk(<tj,j/| j| z | j|\} }}}| j| z j} |jdkDrn| jd k(r4tj0|dz| j2df| j}n$tj0|dz| j}| ||<|} ||k7r |sd}t5j6|t8d |r| ||||gfS| S)a Helper function used to implement the ``fit`` functions. Parameters ---------- vander_f : function(array_like, int) -> ndarray The 1d vander function, such as ``polyvander`` c1, c2 See the ``fit`` functions for more detail r[riurz0deg must be an int or non-empty 1-D array of intzexpected deg >= 0zexpected 1D vector for xzexpected non-empty vector for xrpzexpected 1D or 2D array for yz$expected x and y to have same lengthrNzexpected 1D vector for wz$expected x and w to have same lengthrz!The fit may be poorly conditioned) stacklevel)rrcrrkindr TypeErrorr;rrrrTfinfoeps issubclassrMcomplexfloatingsqrtsquarer:r=sumlinalglstsqzerosrlwarningswarnr)vander_fr?ydegrcondfullwlmaxordervanlhsrhsrKr2residsranksccmsgs r_fitrHs; 1 A 1 A **S/C xx!|syy~~T1SXX]JKK wwy1},--vv{233vv{9::vvzQVVaZ788 1vQ>?? xx1}qq$ggcl2wCq$3' %%C ##C} JJqMC  66Q;67 7 q6SV BC CAgAg }A!''*...#))..""4"45ggryy*RYYsxx-@@EEaHIggbiin((+,CqMceeUCAvtQ s A xx!| 66Q;4!8QWWQZ0@B$(!''2B3  u}T1 c;15 64E***rc t|g\}t|}||k7s|dkr td|||kDr td|dk(r"tjdg|j S|dk(r|S|}t d|dzD] }|||} |S)af Helper function used to implement the ``pow`` functions. Parameters ---------- mul_f : function(array_like, array_like) -> ndarray The ``mul`` function, such as ``polymul`` c : array_like 1-D array of array of series coefficients pow, maxpower See the ``pow`` functions for more detail rz%Power must be a non-negative integer.zPower is too largerrrp)rrNrrrrr)rur2powmaxpowerpowerprdrs r_powrs QC.CQ HE |uqy@AA  %("2-.. !xx177++ !q%!)$ AQ-C  rcr tj|S#t$r}t|d||d}~wwxYw)aA Like `operator.index`, but emits a custom exception when passed an incorrect type Parameters ---------- x : int-like Value to interpret as an integer desc : str description to include in any error message Raises ------ TypeError : if x is a float or non-numeric z must be an integer, received N)rfindexr)r?descr+s r_as_intrsB K~~a  K4& >qcBCJKs 616c *tjt|tjs t |Stj }tj |r|dStj|r|dSd}|dk7r8tj|}|dk\s|dtd|ddz d zzkrd }d \}}|d d k(rd\}}|r%t||d|||ddk(}|rd|zdz}|St||dd |||ddk(}|S)NnanstrinfstrFrgחA precisionrrpT)0T floatmodefixed)kFsign+)runiquer'r())r fractionalrr'r) r issubdtyperMfloatingstrget_printoptionsisnanisinfr1r;rr)r?parensopts exp_formatr(r'rrs rr r s2 ==a"++ .1v   D xx{H~ !H~JAv FF1I 9BAk):Q)>'?1'D EEEJLD& KG#! f qD,=&,4$(LC$7 9 a# A H qD,=*.&,4$(LC$7 9 Hr)T)r)NFN)F)__doc__rdrfrnumpyrnumpy._core.multiarrayrrnumpy.exceptionsr__all__rrrr r r rYrirnr{rrrrrrrrr rErrrs(I( :Nb0&d-,^-^CL B9J6< <  !!H  UpBK,  r