ELF>@HQ @8 @((EE,,py p p -Ih{ h h 888$$PtdP P P L L QtdRtdpy p p GNU,1 36+n p" #@012a@AT% $@     !"#$%&'()*+,-./}vRPeߗ`c75kΑ7 q3`%ۃ1 ` h @x  3   *  p  Ȭ  ج ` _ p      ( 8 @ H .X ` 0h x   @W `  p    p @  p   ( @W8 `@ 0H X ` h .x        _Ȯ pخ      `  p  ( 8 * @ H @X  3 ` h x  >    H  ` X ȯ 1د h .  r    `| =( 8  @ GH X ` ` Ph 0x  W P   " ` Ȱ (ذ @  / ` 3 `  ( 68  @ VH `X @ ` <h x ` G =  {   ȱ `ر * ( PO 9   D  ( 8 P @ H 0XX _ ` h sx i   s  "  'Ȳ ز  f   o P!  Q( 8  @ H eX  ` h 0x @    P ȳ p< ? `  `+ Y( 0 `+8 YP X +` p\x  + p\  # [ȴ    #@ H #h p #  #  $   $  , ]0 $8 ,@ ]X 1` fh \ @ &  Z P 8 @ H  P X  ` )h p x     &  *  (  ȍ &Ѝ <؍ > A G H J L M    ( 0 .8  @ H P tX u` #h wp yx  ~        Ȏ Ў ؎           ( ,0 8 @ +H P X ` *h p x      -   % ȏ д 0 0ش       ( 0 8  @  H P  X ` h p x          Ȑ А ؐ  ! " # $ % ' ( ) +( ,0 8 @ -H .P /X 0` 1h 2p 3x 4 5 6  7 8 & 9 : ;ȑ =Б ?ؑ @ B C D E F I  K N( O0 P8 Q@ RH SP TX U` h Vp Wx  X Y Z [ \ ] ^ _ `Ȓ aВ bؒ c d e f g h i j " k( l0 m8 n@ oH pP qX r` sh p vx w x z  { | }   ȓ Г ؓ          ( 0 8 @ H P X ` h p x           Ȕ Д ؔ     ,     ( 0 8 @ H P X ` h p x          ȕ Е ؕ     /     ( 0 8 @ H P X ` h p x      HHI HtH5 % @% h% h% h% h% h% h% h% hp% h`% h P%z h @%r h 0%j h %b h %Z h%R h%J h%B h%: h%2 h%* h%" h% h% hp% h`% hP% h@% h0% h % h% h% h% h % h!% h"% h#% h$% h%% h&% h'p% h(`% h)P%z h*@%r h+0%j h, %b h-%Z h.%R h/%J h0%B h1%: h2%2 h3%* h4%" h5% h6% h7p% h8`% h9P% h:@% h;0% h< % h=% h>% h?% h@% hA% hB% hC% hD% hE% hF% hGp% hH`% hIP%z hJ@%r hK0%j hL %b hM%Z hN%R hO%J hP%B hQ%: hR%2 hS%* hT%" hU% hV% hWp% hX`% hYP% hZ@% h[0% h\ % h]% h^% h_% h`% ha% hb% hc% hd% he% hf% hgp% hh`% hiP%z hj@%r hk0%j hl %b hm%Z hn%R ho%J hp%B hq%: hr%2 hs%* ht%" hu% hv% hwp% hx`% hyP% hz@% h{0% h| % h}% h~% h% h% h% h% h% h% h% h% hp% h`% hP%z h@%r h0%j h %b h%Z h%R h%J h%B h%: h%2 h%* h%" h% h% hp% h`% hP% h@% h0% h % h% h% h% h% h% h% h% h% h% h% hp% h`% hP%z h@%r h0%j h %b h%Z h%R h%J h%B h%: h%2 h%* h%" h% h% hp% h`% hP% h@% h0% h % h% h% h% h% h% h% h% h% h% h% hp% h`% hP%z h@%r h0%j h %b h%Z h%R h%J h%B h%: h%2 h%* hQHGuHk HH5aH81(1Ht$H;W tHA HH5oH81ZATHUSHHtHPuHH[]A\HPHtwH HqH9~bHDuHPH H5H81/jHu,H t"HHHSH5H H819HHHA\HEt []A\AUIATIUHSQHÅuVLH5H. Ht;H55. HE1LL1HHtHxHHu vZ[]A\A]AWIAVIAUIMATDA?IU?LLSH(H4$HT$D$HHKH4$1L9}H ƋtHHTHHHHH$Hu E11Mu L-y E1FIE1HhHHHHl$FIHtHHHHL$1HLH-$ MMH D\$LLMH ULDAUI DQHAAWHDAWt$@PPt$@PPAPE1 H`HHt1LNHyHHHuHH(H[]A\A]A^A_UH1HS1Q\HHt7HH5>+ HxHy1HHuHoHŐZ[]AWIAVAUIATIH5 AUHSHLD$HHLHIHu0LHL$MH5HH H81tAHLu@LLIyIMH5HPH AWHT$H81`ZYJHLaIHt7HxHHuHbIy1(HIuLGE1H蚏L蒏H[]A\A]A^A_AVEAUIATIHUSwHt=H; Hu1AtHLLHx/HHu'HHf H8tz1[]A\A]A^AUATUHSQHxeHt^H Hu H{ H9tH H5H8~+L-/ Mu&H5,GHIHu#L聎1AEtAELHHI$xHI$uLHtHIHt#AH >HHH>yIyAH x>LHHt>cxAH e>LHHd>@xE1H X>LHHT> xZH[]A\A]AWH5AVAUATUSH H|$ H=0>H]L5&>HL6IHHH_HH:H=GmIHu&HEHHEHH1H1 Ll$ IIxHIuLQHExHHEuH8I$xHI$uLHx^HHuVHLH LH5H81L>H8HH,HMIF 1L% E1HD$Hc1ҋl HD$J<8H|HD$HvHt H|$_HD$Ht=IHIHvuHcËl HD$J<8HIIHu LpsHHuL1XI HD$H# HD$ HV HD$(H HHH! IHLh% H  H H1lH$H HD$Hy HD$H! HD$tH HHL! IHL$ H ( H H0H$H! HD$H`! HD$Hg HH IHL$ H s! H H1 H$H! HD$H+ HD$HW HD$H HD$ H HD$(H HHn IHL# H  H; HF2CH$H HD$H HD$Hv HD$H HD$ H HD$(H HD$0Hn HD$8H HD$@HQ H\H IHL" H  H H0H$H HD$H HD$H HHl IHH9H$Hq HD$H HD$H HD$H HD$ H  HD$(HM HD$0H HD$8H HD$@H HD$HH= HD$PH HD$XH HD$`H HD$hH HD$pH HD$xH] H$H H$HO H$HP H$Hq H$H* H$H H$H H$H H$HF H$Hw H$H H$H H$H  H$H# H$H H$H L H ' H$H Hq H$H H$H# H$Hd H$ H H$(QH HH) IHLt H  H H3H$HI HD$H HD$H1 HD$HE HD$ H1 HD$(H HD$0HQ HD$8H HD$@Hq HD$HHU HD$PH HD$XH HH` IHL; H  H- HD1_H$H HD$H HD$Hh HD$H HD$ H H~H IHL. H o H H1H$H HD$H HD$H HD$H2 HH IHL H  HO H1H$H HD$H HD$H HD$H~ HD$ H HD$(H HD$0H HH IHL H i H H1lH$H HD$H HD$H HD$HL HH IHL H p HY H1H$H HD$Hx HD$H HD$KH HH# IHL H  H HE1!H$H# HD$H HD$H[ HD$H HD$ H~ HAH IHLI H  H{ H0lH$H HD$H HD$yH) HHQ IHL H  H H1H$HA HD$H HD$HY HD$H H{H IHL H d H H0 H$H HD$H H*H IHL H 3 Hd H0LH$H HD$H HD$bH* HH: IHL  H 6 H H1H$H HD$H HD$HB HD$H HdH IHL< H 5 H H0 H$H HD$H HD$Ht HHt IHL/ H  HA H0VH$Hd HD$H HD$?H HH IHL2 H  H H0H$H HD$H+ HD$H HMH IHLe H  H H1 H$H HD$Hf HD$H HD$yHi H HQ IHL H  H H1s H$HA HD$H HD$HY HD$H H{ H IHL H  H H1 H$H HD$H HD$H HD$H H H IHL H  HL H1= H$H HD$H HD$H HD$>HF H H IHL H Z H H0 H$H HD$H* HD$H HL H IHL, H  H H1 H$H) HD$He HD$H HD$xH H HP IHL H  H H37 H$H HD$H HD$H HD$HL HD$ H` HD$(H  HD$0H HD$8H, HD$@H HD$HH HD$PH HD$XH H H IHL H HT H3 H$Hg HD$H HD$H HD$H HD$ H? HD$(H HD$0H HD$8H HD$@H7 HD$HH3 HD$PH HD$XH3 HD$`H HD$hH H9 H IHLQ H  Hs H28 H$H HD$H HD$H HD$H HD$ H HD$(H HD$0H~ HD$8H HD$@H. HD$HH HD$PHA H| H IHL H  H H0 H$H HD$H HD$H H H IHL/ H  HY H0 H$H| HD$H HD$WH HH/ IHL H H H0` H$HW HD$HC HD$HB HeH IHL H H HE3 H$H HD$H HD$HB HD$H HD$ H: HD$(H HD$0H HD$8Hn HD$@Hr HD$HHF HD$PH2 HD$XH6 HD$`%Hu HH IHL H 1 H H02H$H% HD$H HD$H H3H IHH4H$H% HD$Hi HD$H HD$H HD$ H HD$(H HD$0Hm HD$8H9 HD$@He HD$HH! HD$PH HD$XH HD$`H HD$hHy HD$pHm HD$xH L H H$H H H$H H$H H Hz IHH6vH$Ho HD$HK HD$H HD$HK HD$ H HD$(H; HD$0H HD$8H HD$@H HD$HH HD$PH HD$XH HD$`H HD$hH HD$pHw HD$xH# L H H$H. Ho H$H H$HA H$HZ H$H{ H$Hl H$H H$1H HH IHH4jH$H HD$H HD$H& HD$Hz HD$ Hn HD$(Hr HD$0H HD$8Hb HD$@H HD$HHJ HD$PHv HD$XH HD$`H HD$hH HD$pH> HD$xL2 H 3 H 8H HH IHH4AH$He HD$H9 HD$H HD$H9 HD$ H HD$(Hy HD$0H% HD$8H HD$@H HD$HH HD$PH  HD$XH HD$`HM HD$hH HD$pH HD$xH L H { H$HT H H$HN H$H H}H IHL H n H Hb3H$H HD$H HD$H HD$Hv HD$ Hz HD$(Hv HD$0H* HD$8H HD$@H HD$HH HD$PH HD$XHN HD$`=H HH IHLx H 9 H H2H$H% HD$H HD$H HD$H HD$ H HD$(H HD$0HU HD$8H HD$@H HD$HH HD$PH HHX IHL H  H% H15H$Hh HD$H HD$H HD$H HD$ H` HD$(H HtnH IHH LG H  H0}H$H; HD$HJ HHty10HBHHuHHxHHuHH8[]AWAAVIAUMATIULSHH= HT$H1E1MDxxHx(HT$HLpH@L@ht A$tA$1Lc Hs@t1HSHHKPHK8LkXAEtAEHt EtE1W1Hk`HCpHAF%tYt[H0tZ=tJH=tCHM H58H8Hx4HHu,H"HN` 1HHS0Hu1HH[]A\A]A^A_AWH=AVAUATUSHHHuHO H- 1L|$ fHnHE HT$hM~] fHnHA Lm fHnHA HyMflfHnH )D$ ~% HD$`HD$flH$)D$0~ fl)D$@~ fl)D$PMMt^H$LHHLLT$LT$HD$HII%LHlLxLhtMHxHHuHH=KSHH6H H- ~Y fHnH flfHnHm )D$ fHnLm ~/ Hh H&MflfHnH~ )D$0fHn~ Hm HD$p1flHD$xHD$)D$@~ H$fl)D$P~ fl)D$`M<$MtPH$LHHLRuNHD$HIILHlLxLhtMHxHHuH1 HiHĈ[]A\A]A^A_AVIHAUEATIUHSHHH@u H HLH5CH81!qLK(HC Mt I9LLIM9s#Hg MHLH5'H81-Au2I9s-RL1MPIH11Y^y H14hH[]A\A]A^AWIAVAUATIUSHL6.H|$L/HtLpLNHHH=HHuE1tEHeH$HtH<$HIHuwSHu|H|$LLHIHtaH<$HHIHtGtAEM9uHIEyYH=gHxHHuHL^tBAEL}1I9~ H;\tHE1M9JtH9tHuIHStd@t[sU@tLHXHt HJ1H9~^H;lRHHtHH9u7H;- *)HHFHx HHuZL[]A\A]A^A_USHQH5 mHHu 誾1H޺HfÅxHZZ[]AWAVAUATUHSHH5 L% HuH5 LHHu6H5 LHH9t1E1E1E1HD$E11H55 H=SHD$HH9H5 LGIHuE1E1E1E1~H5 HRIHtI9uH5 HIIHu%tH5 HÅuE1E1E1aH5 HHHH5f Åu H;+AAM9WH1H5 HIHtH5 H uh˼H5 HrIHt=H5 HHx^HH5p KÅu H荽x9Mt2载Hu(E1HmV1E1E1E1HT$E1E1E1苽Ht,Hz HUH5H81E1E1E1E11LWH|$WL{WLsWLkWH[]A\A]A^A_AWE1AVAUATUSHH_ LT$0LT$8Ht)1H9(GH޲ H5H8߸ GH|$(tH= H H18tH=HttH H8H=ѶHttH H7H H= H5wʶ7H H0HH u1=H~ Hui7HHH\$@AQHHA L 4RHPHP1H 1HB7H1HH H61H=H H66ZE=| uHH@E$H H5 H=b ݺEH-^ HH聻HtH= HDH HHsDH= H HDH= Hz HDH= HDH= HA HgD~p HI fHnH(fHnH(flfHn (flfl )  DCH- EH-D tEH-) tEH- tEH- tEH- tEH- tEH=G H= SjCH H5 H= HCHj H= Hd HHN H=o CH5; H=T BH=@ BH=, BH=p H= 蜾BH= BH H=z ~ʫ H HTfHnHH= flfHnH): fHn~ Hf]fHnfl)& ~v fl)# ~k fl) AH5 H=M AH=9 AH=% AHY H5 ~ HH HfHnH\H=_ HP H flH= H?  +BAH5\ H= *'AH= AH=u @@H=IHL% H E1Lt$@fHnHq LD$X~ Ml$ HD$PI1L,$flLt$)D$@IHtIH $HLLLſtRLILMdLxLhtL,$IxHIuLܰx@$L11APL5A^?$Ld$HE1IHD$8H$HD$0I}hHD$H $HD$(HT$HHD$GY1H LH|$@H=o HD$HŦIHH5 H:IIHIxHIuLH5 LIIHtgIxHIuLٯH=r L=k Hx HHu路H|$( OH|$0OH|$81HL$0N1Ht$8cLNLN1I}`IU`NEtEH= H- Hx HHu>I}hHL$8HT$0Ht$(&w衭HL$HT$HxhH4$HWH5h H= HIHH5I H=r HIExHIEuL豮H5R H=C GIHthH57 H= H藺xQIExHIEuLcH|$8MH|$01HD$8MH|$(1HD$0M1HD$(2E1LM1H}`HE`tMH}hHL$(HT$0Ht$8u1H= LHD$@H$ HD$HZHHu1L5A3Am<H=I HB Hx HHu薭H H=( E1LL|$@HD$HHHu1L5VA4A<H= H Hx HHu/Hp H= E1LLt$@HD$H茣HHu1L5A5A;H=k Hd Hx HHuȬH H=Z E1LLl$@HD$H%HHu1L5A8A8;H= H Hx HHuaH" H= 1LHl$@HD$H迢HHu1L5"A9A:H= H Hx HHuE1H- DZ EHn 9Hj -Hf !Hb H^ HZ HV HH= HC H $HT$HxhHt$H:TH5 H= WDIHH5 H= H<I$xHI$uLH5 H= DIHtcH5 H= HxLI$xHI$uL趪H|$( JH|$0JH|$8E1LL$0IE1LT$83E1LIE1H}`LE`IH}hHL$8HT$0Ht$(SrΨHL$HT$HxhH4$HSH= H;=V H;= uH;= t 1L- AEtAEH= Ht$fIn1t H)D$@LIIMI$xHI$uL胩L- AEtAEH=q Ht$fIn1 H)D$@蒰LIHMtNI$xHI$uLH|$8oHH|$01HL$8^HH|$(1Ht$0MH1H|$('1H}`HU`5HH}hHL$(HT$0Ht$8pHF 11H= 趩HHf)H53 H= H褰b)HExHHEuHcH5 H= HD$(HH=)H5 H= HI9)HExHHEuHH5 H= 腻HD$(HH)H5 H=f H)HExHHEuH譧H& H / E11Ht$H= HD$@$HD$(HHu1L5;AA6L- HLIH(H= HLM(I$xHI$uL HExHHEuHH5| H== pHD$(HHf(H5 H=Q Hٮb(HExHHEuH蘦H Ll$@E11H  H= LHD$@ HD$(HHu1L5#AA4L5f HLIH'H= HL5'I$xHI$uLHExHHEuHۥH< ALH T H= H= HD$@LHD$(HHu1L5cAA:4L5 HLCIHe'H= HLue'I$xHI$uL4HExHHEuHHt ALH Hu H=^ HD$@茿HD$(HHu1L5AAz3L- HL胞IH&H=0 HL赬&I$xHI$uLtHExHHEuH[&HW nHH&H5s H= H3&HExHHEuHL L} H= H J H HHv&H5 H=D Hïr&HExHHEuH苣L L L H=a H HC HH8&H5 H= HS4&HExHHEuHL L H= H j H &HH%H5 H=d H%HExHHEuH諢L | L- H=A H Hs HH%H5k H= Hs%HExHHEuH;H=d HHu1L5A-A0H5 H;IHn%HUxHHUuH١H= L% FIHtH5w H:HH9%I$xHI$uL芡L- H1LLΫIH%HExHHEuHIL " L H= H H THH$LA$tA$I$xHI$uLH5 H=f H$HExHHEuH譠L L/ H= H Hu HHr$H HtH5 H= H_X$HExHHEuH'L  L H=] H v H 2HH$Hw HtH5I H=Z H٫$HExHHEuH衟H= HHu1L5QA A(.H5, Ht8IH#HUxHHUuH?H=h L%i IHtH5 H%8HH#I$xHI$uLH MHL14IH_#HExHHEuH诞L L1 H=ž H H HH'#LA$tA$I$xHI$uLJH5c H= HK"HExHHEuHH=< HHu1L5ACA,H5 H6IH"HUxHHUuH豝H= L% IHtH5O H6HHy"I$xHI$uLbL-[ H1L LL蟧IHL"HExHHEuHL  L H= H i HB %HH"LA$tA$I$xHI$uL赜H5~ H=7 H趨!HExHHEuH~L  L H=T H HV HH!H5 H= HF!HExHHEuHL  L H=Ļ H ] H HHm!Hf HtH5 H=A HS!HExHHEuH舛L L H= H H HH!H HtH5Z H= H: HExHHEuHH=+ vHHu1L5A_A)H5 H3IH HUxHHUuH蠚H= L% IHtH5> H3HH I$xHI$uLQLHL1蜤IHa HExHHEuHL 0 L H= H f H "HH) LA$tA$I$xHI$uL貙H5 H=4 H賥HExHHEuH{L L H=Ѹ H H HHH HtH5E H= H-HExHHEuHH= iHHu1L5AA|'H5 H1IH\HUxHHUuH蓘H= L%տ IHtH51 Hy1HH'I$xHI$uLDH5= H1H苢IHHExHHEuHL / L H=< H U H HHLA$tA$I$xHI$uL街H5 H=# H袣HExHHEuHjL L H= H Hr uHHcH HtH5$ H= HIHExHHEuHL  Lf H=ڵ H 3 H HHH, HtH5 H= H薢HExHHEuH^L L H=4 H H iHHH HtH5 H= HHExHHEuHؕL ! LZ H= H ' H HHgH HtH5 H= H芡MHExHHEuHRL LԺ H= H H ]HHH HtH5 H= HHExHHEuH̔L % LN H=B H  H HHH HtH5 H= H~HExHHEuHFL Lȹ H= H H6 QHHkH HtH5( H=y HQHExHHEuHL ) LB H= H  H HHH HtH5 H= HrHExHHEuH:L L H=P H H EHHH HtH5 H=m HHExHHEuH贒L - L6 H= H  H HHoH HtH5 H= HfUHExHHEuH.L L H= H } H 9HHHv HtH5@ H=a HHExHHEuH訑L 1 L* H=^ H H HHH HtH5 H=۷ HZHExHHEuH"L L H= H q H: -HHsH HtH5 H=U HԜYHExHHEuH蜐L 5 L H= H H HHH HtH5 H=϶ HNHExHHEuHL L H=l H e HV !HHHv HtH5 H=I HțHExHHEuH萏L 9 L H=Ƭ H HH HHwH HtH5 H=õ HB]HExHHEuH L L H= H Y H HH#HR HtH5T H== H輚 HExHHEuH脎L = L H=z H H| HHH̵ HtH5& H= H6HExHHEuHL L H=Ԫ H M Hν HH{HF HtH5H H=1 H谙aHExHHEuHxL A L H=. H H 胿HH'H HtH5 H= H* HExHHEuHL õ Lt H= H A H HHHB HtH5 H=% H褘HExHHEuHlL E L H= H H wHHH HtH5 H= HeHExHHEuHL Ǵ Lh H=< H 5 H HH+H. HtH5 H= H蘗HExHHEuH`L I L H= H H kHHH HtH5r H= HHExHHEuHڊL ˳ L\ H= H ) H" HHH" HtH5T H= H茖iHExHHEuHTHHWH H5m HMSL  L H= H t H 0IH2H HtI$EtEHExHHEuH諉H54 H=- L謕I$xHI$uLtL u L H=J H HĹ HHH HtH5 H= H&HExHHEuHL Lp H= H = HF HHiH^ HtH5 H=! H蠔OHExHHEuHhL y L H= H HX sHHH HtH5 H= HHExHHEuH譎HHL%ʃ H53 HL؏yHL5w1AALH5h LH襏L L H= H ̿ H 船IHtHEtEHExHHEuHH57 H= LYI$xHI$uLL  Li H== H 6 H HH"H_ HtH5Q H= H虒HExHHEuHaL L H= H H lHHH٭ HtH5# H= HHExHHEuHۅL L] 1H= H - HV HH}H& HtH5( H= H虍cHExHHEuHXH= HHJH H5 HjFHExHHEuH -诎HH:H H5 HyL5AAvH H5c HˌH H5] H譌xNH H5s H蓌x4H H59 HyxH H5o H_yL5AAH H5 H-SH H5߭ HJH` H5ٮ HAH H5 HӋ8HԱ H5 H赋/H H5_ H藋Hx H5i HyxHR H5C H[ZHT H5 H=H H5 H! H H5 HH H5ݪ HH H5Ϫ HLjH8 H5٪ H詈Hj H5Ӫ H苈H< H5 HmlH& H5 HONH H5 H10Hʮ H5 HH H5 HH H5O HׇHP H5 H蹇H5R H= H蛇HEHHEHR11L5E1A 1L5AA L5AA 1L5AA L5AA 1L5AAk L5|AAS 1L5bAA9 LL5GAA 1L5-A A L5A A 1L5AA LL5AA 1L5AA LL5AA 1L5AAh LL5vAAM 1L5\A,A3 1L5BAA L5*AA 1L5AA L5AA 1L5AA L5AA 1L5AA L5AAk 1L5zAAQ L5bAA9 1L5HA-A LL5-A-A 1L5A-A LL5A-A L5A-A 1L5AlA L5AlA 1L5AAk L5|AAS 1L5bA A9 LL5GA A 1L5-A A LL5A A L5A A 1L5ACA LL5ACA 1L5ACA LL5ACAg L5xACAO 1L5^AA5 L5FAA 1L5,AA L5AA1L5AAL5AA1L5A_ALL5A_A1L5A_AjLL5xA_AOL5`A_A71L5FAAL5.AA1L5AALL5AA1L5AALL5AAL5AA1L5AlAiL5zAlAQ1L5`AA7L5HAA1L5.A!AL5A!A1L5AlAL5AlA1L5AAL5AA1L5A AoL5A AW1L5fALA=L5NALA%1L54AA L5AA1L5A AL5A A1L5AVAL5AVA1L5AAuL5AA]1L5lA ACL5TA A+1L5:As AL5"As A1L5A AL5A A1L5A= AL5A= A1L5A A{L5A Ac1L5rA AIL5ZA A11L5@A7 AL5(A7 A1L5A AL5A A1L5A8 AL5A8 A1L5A AL5A Ai1L5xA AOL5`A A71L5FA` AL5.A` A1L5A AL5A A1L5A2AL5A2A1L5AAL5AAo1L5~AAUL1L5aAA81L5GAvAHL5,1AvA1L5AjAHL51AjA1L5AAAHL51AAA1L5AAyHL51AA\LL5jAAA1L5PAA'L58AA1L5A5AL5A5A1L5A}AL5A}A1L5AAL5AA|L5AAgL5xAARL5cAA=L5NAA(L59AAL5$AAHHH= tLH= tEtLDH=H= Ht?1H{ Hx/HHu'p vHuHtm H5ZH8qH== 11AAL5oRH[]A\A]A^A_H=v of.DH= H H9tHk Ht H= H5z H)HH?HHHtHl HtfD=E u+UH=l Ht H=f yd ]wHG8HWd1~HGpHff.@ATIUHSHHHt HՅu!H1Ht[LH]A\[]A\ff.HHHHt 1DHWHtHWHHff.HWXtHWXHff.Hj tHff.HG`HttDHj ff.@1Ht H9t\HOHVH9t\Ht91~\Ht1ATUS^\f9_\tB\Ht,1~\Ht$[]A\1H9f1H9fDDGXD;FXuEH^H9_uAt~H_ H9^ uAtnHF(H9G(AtZHF0H9G0AtFHF8H9G8At2HF@H9G@AtHFHH9GHAt HFPH9GPu\S^`19_`LgHnMt\HI<$1Ht0HtHt7HDI9Du+HI<Hu1H|11Hff.HGHHtfDqHHtt f.HH|$:sHtH|$HtHff.HGxLOH?t(IHupHIu6H6IAHfHt{HH>LBHDH)g IH H5H81t1HHytHf IH H5H81WtDHf IH rH5}H81.t@Hy[ff.AWAVMAUATUSHHGHHHIIIHuIDIGIHt7H8HntnuٸH[]A\A]A^A_DHI9HEHH8?ntۃuHe HLH5rH81HsfDI)IM}H[]A\A]A^A_fDHe LH5H81sW1UfUHHSHHHGLH@t~$uFHHH[]Au+HLFI$HvHH[]A@H1d H5H8jH1[]fHLF1MtHCH иH5HHd H81r@HtHL $HT$*gL $Ht$H`)fDHL $HT$fL $Ht$H#HCH H5HH!d H81q0fHL $HT$fL $Ht$H&HCH ɷH5ݷHHc H81Bqff.fAUIATUHSHHHGLMt=H=^fuGHHLAHmHt$HH[]A\A]fDH[]A\A]p mHt1fHib H51H8hfDAUATUSH^HH9=IHLjH1E11LiHLHDHHHTHI9uH[]A\A]DH=o@SHGPHHttHCP[@HGHxHtnHCPHu[H c t̉[ff.HGHHtfDcpSHG@HHttHC@[@HGH8nHC@Hu[fHwHH1H=.cff.SHGHHHt+Ha HH81>pu%H[DHya HH5H81nHx HHt 1H[fDH1eff.HHtt f.SHHHtXHtHHHHtHH HtHx HHt)Ht[HIa H8efDSHH HGH&HoHT$Ht$H|$lHxHHH=` H9{[H9{HH{0H. Hߣ H94HΣ H9t~H H9tiH H9tTH H9t?H H9t*H H9tH H9UnHxHHH|$HT$Ht$3bH{HtHCHx HHH{ HtHC Hx HHHCHH@H [@H{@b1Ƀע 9ZH5 HcH4*  ff.SHGHHuNHlH{HtHCHx HHtHCH[H@@bfhuHSHH9B0uHdt[UHHSHdHtRHHEHHH@pPHx HHtH[]HHD$aHD$H[]1@SHGHHu~HkH{HtHCHx HHtEHHtHǃHx HHtHCH[H@D``fguHSHXH9B0`HcP[ff.HtHx HHt f.{`ff.ATIUHSHHHt HՅu1H{ Ht LՅuH{H1Ht[LH]A\[]A\ff.H9t+HXHt/HJH~F1 fHH9t7H9tuf.HH9tHu1H;5\ f1ff.fHt `fDtHAUIATIUHSHHhHtHAԉÅH} HtLAԉÅLLH^ÅH}PHtLAԅH}XHt LAԅuyH}8Ht LAԅufHHt LAԅuPHHt LAԅu:HHt LAԅu$H}pHtHLL[]A\A]fH[]A\A]ÐHZ H9Gu#HGHƒHwKH)ЋWHSHgHHHaHx HHtBH[@HH)HHt:Ht waGWHH fHHD$]HD$@GWHH HH돐HHHx HHt)HX H5s~H81AfHHt$V]HT$ff.@H9tKHGH;Y uFHOHtu HHtHщȃ1fD1DH;W tgSH]HH~H;X H;SX u,H;X t#HbHx HHt3H[Df1H*f.GE@H߉D$ L\D$ 뻸ff.@ATUHSHHLgLVbHtAHPHHtHLHH[]A\fDtH[]A\fDHqX HHD$H:[HD$H[]A\ff.SHH$H$H$L$L$t@)$ )$0)$@)$P)$`)$p)$)$H\$ H$D$HD$HH$HL$H~}D$ 0HD$$ZHH=Zge]DAUATIUSHH=ʙ HIHc5 HcH;l1 f~.S9})HcHD9}9|99LcIIA;m: 9tx9}3H)؍PHHHHHHLHHHH#aAmMe A$tA$H[]A\A]@1;oËƘ 9Dh@IcH[HHtD- LcHc5 IH ILfD@NcHtHj H[ HL hL A$VU@HcHL,%II}MeA$tA$HHHH[]A\A]X;o tϗ tI1۾1SHHH HFHD$t_H@h1PHD$HHt0HS HH5{H81aH|$Hx HHt H [+XH [DHD$Ht$XtH|$1HT$Ht$_HL$wqHL$`ff.G<4wH[HcHfDHHR @H5jzH81P`1Hff.f.f.f.f.LS SHDHL9tHu#HHuHHH;[HtHHHtH,XHH;[@UHSHHtJHtH}Hx HHtH]H1[]DkVH]H1[]fDHQR uHHHubH+R tHDHaQ HE1L "H ^H5yH8R1HR^XZ1Hf.HyxtHH='1@Hpt HpHDHWtHWHff.HWtHWHff.HWtHWHff.AWAVAUATIUHSHHhLG0MGxt!HwHhHL[]A\A]A^A_@HVLoZIH1LVHHtaLHHIUHÅx HIUt~HhH[]A\A]A^A_@HVHvHukHhH1[]A\A]A^A_ADIExHIEiHO HSHH5wH81\1f.LTuLMMtI<LD$HHT$LL$]IHVHT$LL$LD$HtUHBHID$ I9H1HHAoDAHH9uHHt ILI LLD$HT$LL$WLL$HT$HLD$HH|$PE1HD$XL|$0H|$H|$HM$AH\$8ILIHD$HH|$HT$LD$ LL$(?HT$PtHT$XtHT$XHD$PHHL#IDIHHT$Ht$LHYtHT$LD$ LLL$(L|$0H\$8MLL$HLLt$ALL$HL$HHx HHtg1MM7ff.@HI9tIIAHLHHF IH 6H5AH81S1Hff.GxH?IHHWtHGH8LJHHHAfDHtHHHfDHHF HH H5H81jS1HAWAVIAUATAUHLSH9FTHDP HÉAHC8D$ID$ H$E1E1-|$Hr89tfM1LH4NMIIJTLjMtLL)I9J  tHz(Hr8@HE|$9uD$ LLHH $HωH.N@AvoD$ID$ uoHC8H$M9(HD H5mH8ZJHx HHtZ1HH[]A\A]A^A_fDD$I?D$ tHC(L{8@IDH$f.HHfD@u'HC8D$IH$D$ lHC(D$IH$D$ Eff.fAWAVIAUATIULSH9FhRHEP HÉHC8D$HD$ H$Mf(E1-|$Hr89tcM1LHKMIM9ILjMtHL)I9J  tHz(Hr8@HE|$9uD$ LLHH $HωHKvpD$HD$ upHC8H$L9'HB H5jH8HHx HHtZ1HH[]A\A]A^A_fDD$H?D$ tHC(L{8@IDH$f.HxFfD@u'HC8D$HH$D$ jHC(D$HH$D$ Cff.fHu+10HtH A HHtHDH1B H5rk 18AWIAVIAUATIUSHHLoLD$IIHL#ff.HEHHHL9huLHM;Oux EG D@@8u@ "Hx8A Iw8IHuH)ݸHI,$H[]A\A]A^A_ÐI9ufDHI9HHL9huHpI;wuDH EG DD@@8uA Hx8A IG8HHGuH? HT$LH56bH81 MD1H[]A\A]A^A_IG(Iw8A@HEHp(H8@HHDHx(H8A@HDWOJIH/MO(IG8A@IELBՐH; IH H5H81I1HHytHr; IH 9H5&H81HDHI; IH H5H81H@Hycff.Hu;10Ht#H ; HHHփtE1HfDH; H5e 18UHHSHoBHtRHHEHHH@pPHx HHtH[]HHD$ ?HD$H[]1@AH=} HD } D΃x~HcHD;Dpt^1~*H9})HcHTA9}߉9|A9:A9~/HHHNjGA9uH?tHËGA9~fD1HÃDUSHH9_H; H9GH9FHGH9FHWHNH9AHAt HDO DF DD8uwA  H8A Hv8ʃDA9uH<$L$LD$LL$0* A1ۉ$MLILI׃|$IWMj HH $LIE1H+H$MH$H$H$H|$IpMr HLM1HL$ML$H$H$HIW|$MbHT$hd L$E1H$L$MMMH$MH$ H$(IC |$HD$PI@ HD$H1H|$HLL$L$MMIE(|$MS(HD$LE1MH\$XMMIHl$`|$Ly0Mc0MML1MLLMMHQ8|$MS8H$M|$ La@Ms@H1MLyHHt$8HT$@H|$pL$H$H$L$L|$(M{HL|$ MLl$xMH$HH$1LL$0LD$HH$HT$(LHt$ 3L9uHT$@Ht$8MML<$L$HH|$pH$H$Ll$xLL$H$H$L9t%Ms@La@ML<$HLL9HLL9IHD$IIIM9t+Mc0Ly0L1MgHD$IIM9DH\$XHl$`IHD$PHHHD$HH9HD$hMML$L$IH$II9t@IC 1LHD$PI@ HD$HH|$HbHD$hIIH$I94L$MMH$H$ H$(HIH9L$L$MH$H$III9t&IjIwM1HIII9H$H$MH$H$H$HH $H9WH8[]A\A]A^A_fHLL9MIIHD$IIM9HD$PH\$XHl$`HHD$HHH9t3HA(MS(E1HD$MDHD$PHHHD$HH9L$L$MIHD$hIIH$I9H$MML$H$(H$ HIH9t7ISE1HT$hIPH$H$HIH9L$L$MH$H$III9EH$H$MH$H$HHH9iIBIPIE1HHHH9=HLHD$ HHHLIME1MHMIHL1MHt$(HT$@Lt$8MILIHT$Ht$0L$L$L$HL$xLD$p(HD$(HT$8HHD$@LD$pHL$xL$HHD$(L$L$H9uH$ILILMII9t1Mr@HP@L1M8H4$III9LHMHMHHMHD$ LL9RMMIMMIHE1M~@HT$Ht$0LD$pHL$@L\$8LL$(LT$ 'LT$ LD$pHH$LL$(IL\$8HL$@HM9uHLL9HA8MC8HE1H$MHLL9fiHD$XLML|$0MLHMHD$8HD$`HD$@HE1M~lL\$ LT$(H$LIfDHT$LH&HLL9uH$HD$HLLT$(L\$ HL9t)Mk0Mt$0HE1MHD$HHL9tL|$0H\$8IHl$@"MLd$MLl$H$IMHD$ H$HD$(HH\$0H1M~cH$LD$L\$fHLHH%HLL9uHT$PH$ILD$L\$HHT$HI9t,Mp(Mk(H1MHT$PIHHT$HI9yLl$ L|$(Ld$H\$0AHLLt$0Ll$H$Ld$PMLH$H$H$HD$H$ HD$ H$(H1H~xHT$LT$0H|$8Ht$@L|$(IHLLH$HLH9uLL|$(HT$HL$hHt$@ILT$0H|$8HI9t'Ij Lg H1HHL$hIHI9iLt$0H\$IL4$Hl$ Ll$IH$MHH$MHMH$H$HT$H$L1MLT$8ILD$@HL$HLd$ IH\$(HHHT$Ht$0H#HLL9uH\$(LLd$ LLT$8LD$@HHHL$HIL9t&MzMhL1MyHIH9[L,$Ld$MH1HT$Ht$0HH`#HLI9ulH$LIIH$H$H$LIH$H1MHL$HD$(Ld$ ILl$8IL|$@ILHT$Ht$0LT$HH"LT$HHHL9uLLd$ LLL|$@Ll$8IHL$HD$(LM9t&MrL@H1MoILM9QHHIkMIH,$IIM~]HE1HT$HL$IHt$0LD$L\$!"LD$L$HL\$LM9uHLI9MCMjHLI9uff.fHWDW@GDHtWH H1H6H9t)HRLIHL~4JD$UH &uD$PPsD$OOeH H5g;H81M!D$HCs@SD8H H52;H81!CF1<@AF\I9vt?H8CF1<@xf{DHt$HHwLK 1Ht$LHHt II)LK H{81{DHt$蝾Ht$HC8HHHHHHffDfDHHH HHHHHH{DI~HSHEHrHBHsINHJHSHB?@HSHBHCHjH9HS0HCH+CD1C@H([]A\A]A^A_fDHI~p:yXLC0@@{GHH HqI9uYAfDfDH  H5<H811ÃC@|$hH HLH5;H81JVH DH5;H81(4AWAVAUATIUHSHHEHcHAD$E=EHL@H5931HI^1HH yH LWIIL9FH=W I96IXHtrLFM~11ff.@HTH9H9HI9uAIB8IH1LLHDLDHH9t4HuH H9t#LHH9tHuH9uf.IQBqATM#US1Hj uIYH=& u|HLH HtDH[]A\1ɺLL fDIQBuL9IA0  HuH H53&H8 1ff.AUATUHSHHHa H8 u-HF HH5MEuMHx,HHHt$IIM9I>HyH|$IIM9u@t!HT$IIM9I>uH|$IIM9uH$IH$L9$H$L$ML$H$HIL9L$H$H$IHL9$MsIJ@Lt$hE1Ld$pMIL|$xIMIMHH@L1IrHHL$$H$HL\$`HD$XHLT$PLL$HDD$@Ht$8HD$L\$`Ht$8DD$@HL9LL$HLT$PHD$XuIMM9tMZ@MqIMM9XMLt$hLd$pL|$x<@DD$PHD$HLT$@HL$8Ht$Ht$HL$8LT$@HD$HHHDD$PH9@L$H}IEuRHx-HHHD$0HHI9H}HyHD$0HHI9H}EttۉDD$(HD$ LL$LL$HD$DD$(IIHD$ M9$DD$HHD$0DD$HI9dmL$H$MI}EuXHx0HH:H$HII9I}HyH$HII9mI}Ett؉H$HII9)MH$H$ L$(H$0L$8L$H;EuOHx'HHNIHM9H;HyIHM9uHIL9itIHM9DH;uIHM9uHIL9%DD$HH$DD$IL9BH$L$HEHD$H$HD$H$HD$ I}EHx$HHHIL9tI}HyHII9uLEL|$H\$ Ld$ILL9DD$(IL\$ HL$HT$$HT$HL$L\$ DD$(HM9HIL9wHII9jQHII9FHMH9YI<$uHL\$(IL9L\$(I}ILL91IMHIsHIzL$E1L$H$ILISHH$IJI1L$L$L$MsM4IBH$ME1H$H$HLL$IH$IS HL$IJ M1L$H$L$Ms(MNL|$pIB(1HT$xD$H$H$Lt$PMIS0HH\$`E1Mb0MHD$hLt$XMMk8MLt$IJ8L1HT$LLMMs@M~\Mz@H;EHIE1x$HHIMM9t&I<$HyIMM9uff.@HHH9uLt$HT$IMIML9FLt$XH\$`HD$hIHH9\$PL|$pHT$xH$H$HIH9L$L$H$L$IML9/H$H$H$L$H$HIH9H$L$L$L$ILL9IL$H$L$HMI9@IE1tIMM9I}uIMM9uDIDL$HMLT$@L\$8HL$0LD$(HT$ Ht$M9Ht$HT$ LD$(HL$0L\$8LT$@DL$H AWAVAUATUSHH8HGHHT$(Ht$ H|$ HxHHHC`HH{H{8HxHHH|$HT$(Ht$ ]H{PHtHCPHx HHt|H{XHtHCXHx HHtSHCHH@H8[]A\A]A^A_DSheHkHXClu)HqD@s릐kzfDHS8L2M~HK@s0E1L!t^HAD~H$HBHD$H$Ht$HE1DILM9uHkxff.ILM9tH}HxHHufD@u7H(H9P0AHv1H8[]A\A]A^A_cHCDAUIATUHSHH1A.HHHHHtRH1HIHMt{x HHt[L#HHI$x HI$tHH[]A\A]LHH[]A\A]f.HfDHx HHtx1HH[]A\A]Hu1IHtE11HLHHWfDSHI$Ht7xHI$uL1DH1{fxHI$xLkATUHSHHH; H9FHFHƒH-CH)HHtHEH; H;4 HXpHtMH{tFHnIHHHSI$xHI$#H[]A\f.HXhHHCHH%HH[]A\HxkHEHH9soHEHЋtH[]A\DHHEHHH9s8HDe@HfHEH0fDHxHHHHHHHHHD$HD$f+HjHEH; qH; Hwff.fHEH 0H#H8IHtH8HI$ HI$LHt$~Ht$@HH)HHtzHuDVFHH HGH;T HH; HGH}f.HHrLHD$HD$fvCHH H=HHHt$HHt$HxhHHC@HQ HH2u 1XHCHX;H H5HH81 1&HGlH Ht$H8\tHCHt$(DAUATUSHHHttHH[]A\A]HGxuGL%p A$A$HHI$xHI$H떿L%t ?HHtA$tA$HCE1H11L H= IHx HHMt:IELLHHIIEx HIEtpM8L% A$HHff.LLA$tA$H]LfDLxITfDAWEAVIAUIATIUHSHHHDHdHHMt+I4$HGHH[]A\A]A^A_D1A.HHHHtHFH1lHHH0x HH|HHHHHEmHHE_HfR{Ht1@HHtMuJE1HLLzHDHwHx HHtpHHtHHUH@I$HtHEHLLHIąx HHtRLf.HfDHHHH1^JfHHfD[HHEHt%HHEH1x HHEtHH1Hf.SHHHWtHCHHv)HH)HHtkHtUHSH)HHx HHt H[HHD$3HD$H[CSHH 븐CSHH HfDHB`HtWHHtKHHtAHPH;N HP{HHt*HPHBHt H9H H5*4H8f.HGtkHGHHv#HH)HHt-HtbfWH)HËGWHH fGWHH HAUIIHATI?USHHH HM!ItCH9HG8HHHHH1[L]A\A]DH9LP L9LXMIkH~1fL9tHH9|ILH9uHKAcM)La1 uHkH=uDLHAHSHHu HI H5H8f.1fH9Lx L9LXMMZM~.1ff.ILH9L9 HI9utHG8HHHL% HH= K1HLHYHHH[]A\A]fHC0H/HH1L[L]A\A])fHff.ff.HH9t4HuH H9t#HHL9tHuI9fDHKALa1 uHkH=4_1HAHoHH8Ha H51H8HKAuH9tHC0H|fHKA|HfHH9LHuH H97Hff.ff.fHL9 HuI9pDHLH1[]A\A]AWAVAUATUHSHHIL)Ht$H6HL$L$LD$D$H$HH$A AqE1䉴$HL$MHt$HD$$HvH@H$pHt$H$PHVH$X H5H$`IIHDŽ$xL$Ht$HD$$HVHt$H@H$hHVH$ H$(HL$`H$E1LLMMHt$HD$$HvH@H$Ht$H$HvH$HH$E1HL$L$L$IH$LHD$$Lh HD$H@ HD$pHD$H@ HD$hM(H$01IL$8L$H$@LHD$Ht$$HP(HD$Hv(H@(HHl$HLD$@HDŽ$LD$xH$H$H$H$H$LHT$HD$$Hr0HT$H@0Ht$ Hr0HD$(Ht$8HLl$HLt$@1HD$$L`8HD$Lx8HD$H@8H$M[HD$0LIMLd$PLIL|$XHD$$ L`@HD$Lx@HD$L@@MHD$L$H$HHH$HD$`HD$L$IHHL$H$HD$L$MHHH$1IHLHMSD$$LILD$pH$H$XZL9$uL$L$L$H$H$HD$XHD$0HH$HHD$0H9D$PLLMIHD$ HIHD$8IH9l$(PH$H$H$H$Ht$@HT$HH9$ILD$xH$H$HD$pHIHD$hHH9$H$0L$8H$@H$HHH$IH9$tL$H$H$L$L$H$hIHH$(HL9$ H$MH$XH$pH$xIH$`H$xH9$PL$LH$LH$HH$H9$HTH[]A\A]A^A_M~M~ I9 HHE1MLt$`HMLH$MLIMfLIIH$L$H$H$L$HH$LL9uMH$Lt$`HefDH<$~M~ I9LE1MlLl$0MHl$PL@HHIL^HH$HM9uLl$0Hl$P(L9LHHLT$`H LT$`HHD$ H~H|$8~ H9E1H|$(Lt$@HL$HMLt$8LHHIHHD$ LIL9l$(uH9LLLHlH~H~ L9HE1HL$IIHl$ LIH\$(LDHHLH.LHLI9uL$Hl$ H\$(eH9 HT$(Ht$@H|$HHHD$pH~H|$h~ L9L1MPH4$IH\$pHl$(Hl$hLd$ ILHLIIHHM9uH4$Ld$ Hl$(I9ILHL$QL$H$H~H$~ L9}1IHH$LD$ H,$HHHLHHH$HH$HH9$uH,$LD$ LHD$hI9LLH4$IH4$&H$hH~H$(~ L9T1L$`LH$ lLHLHEHH$hIH$(HH9$ u2H$pH~H$X~ L9E1IHH$P>LHLIHH$pIH$XHL9$PuI9zH$HHLD$ H $IH $LD$ UH~M~ L9E1H$HHHLL=H$IHL9$HuI9H$ H$`LI I9H$PHHI*L9gH$HHHHH[]A\A]A^A_ff.@AWAVAUIATAUSHGDH̑HHtlH= H1HpHH$D`(H(Hx HHDHExHHEH[]A\A]A^A_L}`HE`MIOtMw(MAHL$ADLH="cHL$HH"M9w(HH}`L}`HtHx HHHx HHMtIx HIHDtf.HHHHHH[]A\A]A^A_:f.H(DLHL$H=!yHL$HHHHHjIx HIMeIZHLIJVDLH=`!HH$H}`HE`HHHHPDLH=!HL$HHCH-ILHI?L)DLH8HL$HL$ @HIHILLLHL$HL$HnIHIJff.AUH ATIUHSH(LnHD$HD$HHHIHMIH- H1H#L AH H8AUH51yXZHtHx HHFH= H([]A\A]IzI\$ƒt tH}Hx HH H]HCHH5 HHIML-LLLLIH,AoEEAoEE(IE HE8HCH5U HHHIM$HHx HHt]L1I$x HI$tRHHHH2H([]A\A]DfD fLfDID$tHD$HL$HMHT$L%!H1ATH\$_AXHtNfMuH HH H5L ALH8j1&Y^1_H=JDI HI Ht$HD$HD$H/ H8gHHt$H1HExHHEuHH=7HH謱I.@L AtAL\$XK@HI H5 18HfD$L踭'諭8fD蛭FfD苭TfD{bfDkpfDHAHHBAILD$(LL\$8Ll$Ix%HIuLL\$ LD$L\$ LD$H5 LLD$ L\$nL\$LD$ H tH}PHx HHHj HM@HU8HEPE0pHcƅxLLHyD$LE LEhH5 HHxH;] H;ç L9H|$5H|$Hx HHD$]lLe EhL蟱HEHH8t{HuHHYHlLHHH1H?HH!H)H~DHHA7L$|$0ff.σL:HH9uA7fD1ffD =fDKfDYfD۪gfDHȪL\$LL$1LL$L\$HHt_HL\$LL$LL$L\$IHHHHL\$LD$VL\$LD$LL$fL\$LL$QLL$L\$IHfH5'LAH|$@HtHx HHH|$HHtHx HHMtIExHIEH|$XHtHx HH\H@H5HH(HcfDH HnH5{H81 3@DcCII AD@H{8HHDH5 LLD$ L\$jL\$H LD$ tH}PHx HHHcU0H_ Hu@HM8HHEPH1 LLHH9uHH;SfD+fDLi AfDH=CKILLl$HH IIH;HcHHVHLL$裧LL$?fHH)HHHDGGII fH H5H8jAyHa H5 AH8,yQHLL$LL$fH H5B AH8x LL\$(ILD$ LL$螦HSL\$(LD$ LL$nfDA>LL$貯LL$HH7@[H H5AH8dyLLL$LL$HLL$qfDLLL$fDLإL\$(LD$ LL$@H H5* AH8wL\$LL$ LL$L\$I DGGII IIHItuHAdH{(H)IHIt9HyAB11LD$LD$NLAѤHALD$謤LD$HAHHH|AH@|$0H)уt L:HH9tL:HLzH9u|$0 fHHHHAJICH;͠ ?AtAMH=" LLL$LL$HIH0x HIH HH8uHx HHAH H5 H8uH=MAJHN H5H8_LLMH̞ H5H8-HlL9H* HJH5HAH81舫MoH;) u9H LPXIMA=ILLl$H;' u LPXIH5 L苠IfDHHGHt H@H=<HD$HD$HATIUSH [HHAD$lH-k EtEH=a Ld$H\$Hl$HGH; H$thH@8HHt[Ht$1HIHx HHtUHEx HHEtSMt^H L[]A\fH-Y Y@Ht$1ɺ蟦If.HfDHfDH=E1H L[]A\HG07ATUSHHGIHH5 HHtnHHtIHLHHx%x HHt1[]A\ÐHHfDx HHt+H="裩HfDHHGH5HPH H81讨ff.AUATIUSHHH~MHnUtUI|$Hx HHIl$H{!Hz tH[]A\A]fDHCH߾H@hPHHHi1LNHHHc H9EHHHAąx HHoHUxHHUIA>jf.諞Il$H{6fDHHHHp1聡IHt)HHΟHIEx HIEt)H H=H1[]A\A]fLfDH=I H1H,$HH\$,HHHx HHHx HHtpHEHHEH芝DHxHhHx HHt H>HE11HUNH[_Hx HHtHExHHEuHHלHU{AfAWAVAUATLcUHSH8HGt1EIIDIHhJ41M~eff.ff.ff.ff.ff.fH IEH i H HH9uH;- EtEH}YH]tE1H9 $AD$ff.@H H9CHGLMI;UtIEHH8HHx HH^HEII9}tJTIHx HHHH9 W|$HEHHLD$H)$III9|HExHHE$M))L5– AtALߘIHɞIH*LpLx HEHHEH3fDIEH HH9 fDI$LMrIUI;UnLHHt1HLHD$`Ht$Hx HH*QHExHHE@H=E1aHUxHHUE1IUxHIUHtHx HHH8L[]A\A]A^A_HHT$HT$fۘfD&HUtUHhHfD$Z@LcID$H;X A$tA$LcMHa fIn̺~ HD$ AD$ fl)D$@u tEID$H|$HplMIHI$xHI$(H# LH8iIx HInHEvHHEf.fDH4$u4$HD$aD$HH*L8H(fDH=GHExgHHEu]HSH) H51H8H=HURIExHIEDE1oHExHHE 1L舙IHff.L>HEH=i!HUIUE1HcHExHHEuHٕI$=HI$/L跕"L誕H=H臕H; LPXIH1]IHIL8Ix HIt7IHILL\LH; `H5 LIUff.UHSHHHGHtYHHCHHP0HHtaHx HHt!Hj tH[]f.KfH=T/H1[]fDfATUSH3H- IHEHntEt AD$`%HC0b1HC81HC@1tID$hHC(ID$@HHAD$dC$ID$XHCID$PHCAD$`C A$tA$H{Hx HHt=LcI9t [1]A\DI$xHI$uLHC@LcI9uID$pHC0ID$xHC8I$*H H5H8[]A\H H5* H8dH= H{HtHx HHtHCfD[ID$xff.@HHGP8HtH3H=ԿHD$HD$HAUATUSH1H謏HLkpIHcCdIlI9sYI}HHID$I;D$ }utIT$HHID$Hx HHII9rL͏I$HxhHI$u^LHD$EHD$JfDHLtI$x HI$twHx HHtW:H=۾1H[]A\A]fHؐUI$xHI$uL趐@H訐fDL蘐|xHI$zff.@AUATUSHHxkH1IHLkxHcCdIlI9sYI}JHHID$I;D$ tIT$HHID$Hx HHtKII9rL2I$HHI$LHD$袏HD${H萏fDI$xMHI$uCLn9@HLMbI$x HI$t3Hx HHt3BH=7"1H[]A\A]DLfDHfDH) H5R H8`@륅xHI$uJAUATUSHHH1^IH[LHcCdIlI9sYI}蔑HHID$I;D$ tIT$HHID$Hx HHtEII9rL|I$HyxjHI$u`LHD$HD$LDHfDH9 HcwdHCH@hHH@HHHH[]A\A]fDI$xQHI$uGLv=@HLU I$xHI$Hx HHt'IH=k&H1[]A\A]fHfDHHHtPHHUHU/HHU!HHD$辌HD$ @L訌\GdWHI$Iff.HHcdӏHtHfMH=HD$:HD$HHHXCHtHfQH=HD$HD$HATH5 UHSHGHHHHtwH}XێHHHHIHMt)x HHtlHEx HHEtJL[]A\fx HHHEx HHEtmE1UH=9L[]A\ÐH(L[]A\HfD蛔H:HxHHuHfDH؊fDHȊdAWAVIAUATUSHHG H; .H_ LopHcGdHC M|M9I}脍IH LH譓HHYHx HHIM9`I}7HI$x HI$tlHI@LopHcWdE1M|M9jHx HHI^ H؃tyIF qfDH蘉fLHD$H耉Ld$fDtHG H[]A\A]A^A_@H\H=9<1HtHx HHtEMtI$xHI$uLHD$HD$H[]A\A]A^A_D]뙐HHD$ӈHD$HE1fDEtEIF HH衈ff.ATUSH0HGH5 HH HHWHEH5t HHHHHEHxHHE5HCH5ڿ HHHHHHx HHHL% NHH:H H9CHExHHEH$ fHn˺~ڲ HD$ C fl)D$@u tEHCH|$HpP1LH5XZMERHi{ H5zH8JfEH;lHbH6{ H5eH8DH{ H5:H8H{ 1H5`H81~kH9y2=fDHz 1H5H81F3Hz 1H5yH81'fAVfH˸ AUfHnHATUSHH@)$~v HD$flHD$0HD$8)D$ HLIHMHHHHtH$HHT$ HH-1H4IU:Ld$AZA[LH5H<HCHt H<HHt H<xHl$JfDHNL&A$tA$HnL$$EtEHVHl$tHT$HEcHEHHv3HH)HH HHHfEH)HHwLl$HCx I9Et L;-ny HH75*Hu H1 gH-ܣ fInԋEfHnflƒtEH= Ht$ 1H)D$ QHHExHHEHL;-x t,LHHHHxHHEjtHHx HH*H<$HtHx HHH|$HtHx HHH|$HtHx HHH@H[]A\A]A^Ð]EHH fDHHT$ H-E1HUL8ZYtPH<$tL$$kHHw HHL AH H8SH51iAXAYH<$HtHx HHH|$HtHx HHzH|$HtHx HHlH=1)H@H[]A\A]A^fHu*HVtHT$HVtHT$H)v HL AH #HIH8S ]EHH H zH@H[]A\A]A^{z fDkzfDHXzHHz[H8zNHuHru H5H8C{+HmLl$Ht I9Et L;-u HH= HHH5sH%yIHExHHEuHyMtSHLA1 HHoA75*PH512I$^_xHI$uLFyfDH=1-H5LQoLiH1_LWfxnfDx|fDxfDH=41譹 H=菹f.H@`H@HH0HIHH@Ht H9uqfIEHHvoHH)HHHtaL;}HIE[HIEMLw@LYIHH@tAEH)HIEA]Eux HIEt#HL A]AEHH HmL]wH@`HHHtzLIHtmH9Xu0LtHI!HILwHIHuIEHIELv{HuHr H5fH8wfDHHcHdIHI?H?JHʃHL)H?H!H)HHDH4 DHy9HHH9HH@HWPHOPHHP@HWHOHHxATHLq USH L wŋtHLHH=ԶHx HHt7swH=襶s[]A\@1HuAVAUIATUHS;wAċEtEHcxHHtiH;-Fq H@t H;r HH~IHMt`x HHLLGIx HItTH=ӵHEx HHEtQ[D]A\A]A^rxHHuHtfLtfDHxttHht[D]A\A]A^rHHyI%ff.fHH7HurHko H5, H8,FH=1H@H9o HE1L H 6H5ݖH8R1H|XZ1HfHyxtHH=fDHH7HurHn H5 H8EH=[1H@Hn HE1L ZH H5=H8R1H{XZ1HfHyxtHH=XfDHH7HurH+n H5 H8DH=8軳1H@Hm HE1L H H5H8R1HpK{XZ1HfHyxtHH=MfDUHSHHGH5l HHHHtwHEHCHHHHtqHHt9x HHt H[]DHHD$qHD$H[]x HHt;H=?蚲H1[]ÐHH{ {HLHhqfDAWAVIAUIATAUSHoDHI2HHtiH H1HoHH!D`(HsHx HHAHExHHE H[]A\A]A^A_@HM`HE`HLAAtALy(MALD$H $ADLLzH $LD$HH$L9y(RH}`HM`HtHx HHIx HIMtIx HIHD)@H HHHHH[]A\A]A^A_of.HoDLLLD$H $yH $LD$HHIHI~Hx HHMdIYHLIIRDLLzyHH#H}`HE`HHHHnDLL"yH $LD$HHAI)HHHH;Hrn%DLLXn6L$GnL$ fDIHHHH nHLLD$H $ lLD$H $LH $mH $mHHH2ff.AWAVAUATUSHL$ T$IFXHD$[)HcH0HvW-HcH0X W,.HcH0: WV.HcH0 Wt`HcH0 WtFHcH0 Wt,HcH0 WtHcH0 H$0e)H$8f-H$@-1H$HV.m.H$P..H$X..H$`>/e/H$h/HAF99G 9LL$0L$M9 Io/H$HDŽ$p3L$(1 H$8H$H9tH}3HDŽ$xH$ H$@H$H9tH%4HDŽ$H$-`H$HH$H9tHu4HDŽ$H$-H$PH$ H9tH5HDŽ$H$1H$XH$(H9tHj6HDŽ$H$-2H$`H$0H9tH6HDŽ$H$2tDH$hH$8H9tHm6HDŽ$H$< L$(H$pM 2IWLHLH$ iH$8H$xH #HHH Hƒ3H$@H$H"HHH!HƒH$HH$H"HHH!HƒH$PH$Hh"HHHg"HƒH$XH$H2"HHHQ"Hƒt_H$`H$H"HHH?"Hƒt-H$hH$H!HHH#HHD$HH$H$@M ILJ&H HHHiH$L$HHm HIM< H3H$L$PH7 HIM HH$L$XH HIM HH$ L$`HHIM HH$(L$hHHIM Ht_H$0L$pHcHIM Ht-H$8L$xH1HIM!HH|$HH9s H9OE1Do$ DcDo$0Do$@Do$PDo$`o$pD)$o$o$D)$ o$o$D)$0H$ )$`o$o$o$D)$@HPX)$pD)$P)$)$)$)$)$)$IcH̠Z H;`L H HƒYsHcH" H;` H $sHcH H;` H sHcH H;` H sHcH H;`u H sHcHN H;`@ H tTsHcH H;` H t#sHcH H9` o$H$)$H@Xo$)$ o$)$0o$ )$@o$0)$Po$@)$`o$P)$po$`)$o$p)$o$)$o$)$o$)$o$)$H̠V H;`H H YKHcH̠! H9` H $KHcH̠ H9` H KHcH̠ H;` H KHcH̠ H9`t H KHcH̠M H9`? H tTKHcH̠ H;` H t#KHcH̠ H9` DL$E H$0HcH H9P/HHHHHHHFH9s9Ht"HHFH9s'ff.f.HHHPH9rH$(H$9eDD$E L$>bH$H~qH$@-1H$D$DL|$MIAHl$L$HHHHt$LDLAII`L9uL|$D$^ @HpHHHHH$0"H$8 -H$@ *H?.AFS^f.ff.HZ H5 H8aH= I]H[]A\A]A^A_fH$a&1jUHpHHHHH$0!H-AFDcDf)؃HcH$HcAHHL9LL9@AAoL1LD1@H9H1AAoAoAAoCABAoAA@oGAAtDAoCABAoAA@oGAAtAoCABAoAA@oGAЉكt;)ʍ HcHHcHH@HԀH@H̀HDŽ$HDŽ$HDŽ$HDŽ$$HDŽ$ %HDŽ$('HDŽ$0(HcH$@HHDŽ$8H@H9+~$@ƒ$@$P$`$pt Hcf֌@QH$H`^9L݅qBfDHLDHAC93ډ)HcHcAHHo4 A o4` `o4 Ao4 o4P Po4 Atlo4 o4@ @o4 At3o4 o40 0o4p p@t=) HH0HcH0HpHİHpH̰HDŽ$0HDŽ$8)"HDŽ$@#HDŽ$H?%HDŽ$P&HDŽ$X&HDŽ$` 'HcH$pBHDŽ$hHpH9)~$p$p$$$tHcf֌pPH$H[ffDfH~D)$D)$ D)$0D)$@D)$P)$`)$p)$)$)$)$)$)$HH;$`H$ Hƒ+H$H;$hH$(H$H;$pH$0H$eH;$xWH$8H$6H;$(H$@tsH$ H;$H$HtHH$H;$H$PtH$H9$o$H$)$H@Xo$)$ o$)$0o$ )$@o$0)$Po$@)$`o$P)$po$`)$o$p)$o$fH~)$o$)$o$)$o$)$HH;$`H$ H$H;$huwH$(H$yZH;$puPH$0aH$y3H;$xu)H$8:H$xAF |$L$BH$@H$pHLt$H$8AL$xXZLS1fDo$ MNX)$o$0)$ o$@)$0o$P)$@o$`)$Po$p)$`o$)$po$)$o$)$o$)$o$)$o$)$o$)$AF`DcIcHĠL;`H IHȃ$SHcHԠtH;`fH SHcHԠ?H;`1H SHcHԠ H;`H SHcHԠH;`H PSHcHԠH;`H SHcHԠyoH;`ueH SHcHԠyBH;`u8H SHcHԠyH9`McJDc#DcMcJiDc!McJJCoHH>CtuHH%Ct\HH CtCHHCt*HHCtHHH$p H$1H$5 H$H$ ) H$(? H$01 1tH$89 AFH9U HcH$0HHH9iHL&HHMHHH$8H9sDHt-L H$@H9s.ff.ff.fDL HL`H9rLHt$0HL$(LT$ LL$VfInLL$LT$ fHnHHL$(IHt$0fl' HL$ LL$)D$@G LD$PLT$8HLLD$(HT$0+UHT$0H$tRAFLD$(LT$8LL$HL$ Ht HL IHH HD @HD xHD 8aHD pHD 0t8HD hHD (t(HD `HD tHD XHD tH$H|$P:H|$XFH|$`rH|$hu HDŽ$t]H|$pu HDŽ$tDH|$xu HDŽ$t+H$u HDŽ$tH$o$ IFX)$o$0)$ o$@)$0o$P)$@o$`)$Po$p)$`o$)$po$)$o$)$o$)$o$)$o$)$o$)$AFSHcHԠH9`H SHcHԠwH;`iH qSHcHԠBH;`4H <SHcHԠ H;`H SHcHԠH;`H SHcHԠH;`H SHcHԠyrH;`uhH pSHcHԠyEH;`u;H CSHcHԠyH9`$f.H$H$pHLAQHT$XAZoAZA[foD$@$ foD$P$0foD$`$@foD$p$Pfo$$`fo$$pfo$$fo$$fo$$fo$$fo$$fo$$fo$$QAF,AAMcJ:ClHH CHH CHH CHH CHH CHH H$T1H$ZH$ H$m H$ U H$(= H$01҃tH$8H9H$ 14H$|0sHu HDŽ$o$ IFX)$o$0)$ o$@)$0o$P)$@o$`)$Po$p)$`o$)$po$)$o$)$o$)$o$)$o$)$o$)$DH$1H;$`#H$ +H$H;$hH$(H$H;$pH$0H$H;$xH$8H$uH;$gH$@tsH$JH;$H$ H$0HPXHcH H9@H$(H$DAC);fDH@HHHHH$&H$ c1H$0 AC)'HcHHH@HԀH@H̀H$UHcHH$@H@H$HԀf1ҿ@H$0H$8ACSDc1ҿ@H$0H$8H$@1E1J@HHHH1H$JH$&tH$m 811Ҹff.H@HHHHuffDEH/ AFSfD18H AFSo^fDH$@H$HfDfDH AFAS1J@HHHHH$' 1fDffD1fHu AFSoH@HHHHH$106fD1ff.=HHÍD-Hf$HEHH LIHLHD$HHfHnHg HUfIn~ h fHn~g H$@ID$~h flflH|.Hy)$ flH)$0)$EIHy@ MG8L$E1\$H$HHl$ LLMLd$I2f.Hr8<tcM1HL(?LHL9HULbMtHL)H99J  tHz(Hr8@HE<uI<L9?H5a^H26 \$Ld$Hl$ H8;Ix HIHEHHE>I$xHI$FHL$HxHHuH9ff.H=wz8fDHl$ \$Ld$HExHHEI$xHI$~HL$Hx HHtyH4 LH8 IlHI_LG9RfIW(I8@HDIf.H9oL9uH8zH8I$HI$uL8H|$fL8[FfD19fH$pH$xfDHEdHHEVH>8IfH$@H$HH$PH$XfDMfDIIǽHEHHEkI$HI$H$pH$xH$fDLL{DH$@H$HH$PH$XH$`H$hH$pH$xIIǽfDHExHHEI$HI$L6{Hu HDŽ$H|$Xu HDŽ$@@IIǽH|$Pu HDŽ$o$ IFX)$o$0)$ o$@)$0o$P)$@o$`)$Po$p)$`o$)$po$)$o$)$o$)$o$)$o$)$o$)$fDH$pH$xH$H$BfDH$@fDH$-H$1H$lIIǽxAC/UH|$Pu HDŽ$H|$XNHDŽ$=H$pH$xH$H$H$OH$>H$-H$ H$@AC)jIIǽAC'H$pQH|$PH|$X-H|$`]HDŽ$LIIǽ(ACj$IIǽH$pAC4DcACD,I$HI$L2H$11H@HHHH1II>H7x HH7HII9u 1MAtAHIH9u[HC2I$[BH$gH$1XHAF H|$XHDŽ$Dl 11H$(H$B6YO1ACYyH$@HHHH1`H$G1҃HL$D$0HL$D$XAC#1 H$@H$HH$PH$XH$`kX20H=ekq./2H=eLqu. H$pH$xH$H$H$AWAVAUIATUHSHH8H5U H=ck vCHEIHCA$tA$I}h4IHWH=h Ht$1HH\$ Ld$HD$6HI$xHI$:IExHIE H;HCH;(* L-1+ tL9Ho* H5ȃH8;0ff.H=doI$xHI$ff.H1H8[]A\A]A^A_fDL9tHK tH{HL9IL9 HGHHqHH)HHH1Hff.ff.DoDHH9uH1HH9H)IHHvH 1HL5LHHHAtm LHJL9s]JLHJL9sLJLHJL9s;JLHJL9s*JLHJL9sJLHJL9sRTHx HHAE[AEI$xHI$[LHx HHRH8[]A\A]A^A_Hx HHH=bmI$xHI$1뛐ID$H5e LHH8IMSI}h1IH"0IH1LxH5' H9COtHL+IHeIExHIEHx HH`IFHHH=&J*V1LLH_1HIx HI0Ix HIHCH;& L-' L9gHHH& HRH5~H81:4HxHHu HR+f1D@L8+H%DL +H+fDI$HI$L*HHD$*HD$H8[]A\A]A^A_H*;H=`k11ff.HDH9uf.MIHIL1&*!L*DHL2HHIxHI,ff.IEHIEvL)iH)L)rL)L)H11|3IIHILL)IHIt6IHIt/M.fIL(Iy@L(IHItHI߅y-HuH:# H5FH8)Ix HI51LL1HHfHHH# H%H5r{H81 1Hx HHtc1!IHIL(HHHH'L'CH'L'HHHHt%HHхtAH# tH@cHHt;HxHHuV'@H= ]?h1HfSH M HLGL9tHIHH; H52> 1 HHLd$H I LKH$L9H= I9IXHLFM~"1HTH9"H9HI9uAzIA8HHiHt$1HHHHHH=HH H{`H0tH{`HC`Yf HEHPH, H5@1H81HH[]A\A]LDHH9t4HuH H9t#LHH9tHuH9fDHSBLj1 uHkH=t'HLAHHtrHUHHHH HH[]A\A]Ht$1ɺHtHHSBhL9@HC0M HuH6 H5&H8 1`HJff.HWHBpHtH@Ht HBhHtHxtkATUHSHHGH5J? HHRHHHSHBpHH@HHHHHt~x HHtH[]A\HHD$HD$H[]A\D HHH4 HH2Hff.x HHH=k>.HH1[]A\HBhHtHxtxH H9EHEHƒHEH)HHBHCHH\HHMHIHH HI$yHI$kLHt$:Ht$THH)HHtHu'uEHH 0uEHH HHu HHEHh H H50HH81OAWAVAUATUHSHHIIՃtE`udLhHHCH;^ HPHLxAtALs AtAHx HHI$xHI$"L;=+ L;= uBL;= t9L Åy.H='<EIE1HELHPIHtHEL;%y HPpHphH*HBHLHHHHEHLHPHHHx HHHExHHE{Ix HI1I$xHI$uLff.Ix HIH[]A\A]A^A_LLHP IHRHxHI$+IxHIuLS두HH5:0H8jHxHHuH"H=v:DMD@HI$LHHBHLHHHH;ujHELHHPHHHtex HHHEjHHE\HOOf.L8H5( HuHxHHuHH=\9BIHIOM @LHH5*+ H8H=8B{@HHHSH PHDHH58H81 H  HHHH=o8 BIxHItjf.fDLH H5!H81 HuH"LHxIHIvLSifDH@*HH~LHIHH=d7@I,@HHtWH~tPLHHHGH5>,HPH.H81\LHkInHL$,M~PE1I~D$ff.HhAHEHHEHcHHHu?dH1HH5CH8UATIUHS10HHtaHH[1 HCHSHS tEȉ HCHLHHht H[]A\Hx HHt81H[]A\fDHH5" 18Hlf.H1V@AWAVAUATUSH(H;Ld$`Ht$HT$I9AL=AtA\HHtH]H. t H. HU H1L}(H=h IHgH0 IpIEtIDžHExHHE;oD$`AoD$pAo$Ao$Ao$Ao$Ao$Ao$Ao$A o$A0o$A@o$APo$ A`MtAD$8ID$LP8IHtIpHx HH9MpI$fAnII$AoD$PfAnT$`Aod$hAo\$xIHD$hfofbI]HfsAEPIE@foAehA]xfAU`tA$IcI0MHMepH .IDžAIIExH9s HDHH9s H8xIM<,fAMPM9I[HHI}PFHHHHoIHEMxHHE%HfI9F-IFHHH)ANHHHIx HI7IImPM9I<$HH1Hx HH H&DL=y3@xHHEADH=^$E1-fDIExHIEHtHx HHH(L[]A\A]A^A_HH9I9FL'HHHD$!H|$HHHHlLXHHA DH(H2 fDHH;fDLHH)HHmHL4H@H]A$A$fIx HIH="K+E1bHExHHEu1AfDHDH=N"E1+MH=$"*IExHIE~Lq@A$*A$!AFANHH HL}1HD$IxHD$IAEtAEM9AFANHH HHzLAMIx HIH==!E1)p:H=i 1:f.AWfHnAVAUATUSHHDgdHwpG@LxL)$E~@EH|$ILM!H|$PLLH$LLHADH$HH8A8PLCXN9ZYHfo$H HC)$fo$)D$fo$)D$ fo$)D$0fo$)D$@fo$ )D$Pfo$0)D$`fo$@)D$pfo$P)$fo$`)$fo$p)$fo$)$fo$)$H9t>HXH:Hq1Hf.HH9CH;TuHxHH{dHfo$$fo$D$fo$D$ fo$D$0fo$D$@fo$ D$Pfo$0D$`fo$@D$pfo$P$fo$`$fo$p$fo$$fo$$HHHĨ[]A\A]A^A_HH9Hu1H;211[H|$PLLKH$L3H= o&1fNH=W&1[fHHHuRHYfHiHE1L *4H f5H5 H8R1H9XZ1HfHyxtHH=9(fDAVfHnAUATUSHHDodHwpG@LwxH)$E~@H0EH|$ILH|$PLL H$LHH HCH9t=HXHHq1H fHH9H;TuHxHHHDfo$$fo$D$fo$D$ fo$D$0fo$D$@fo$ D$Pfo$0D$`fo$@D$pfo$P$fo$`$fo$p$fo$$fo$$HHHH;,HFltHHx HHHH[]A\A]A^ff.ff.@HH9Hu1H;~k11iDH|$HHH|$PHLH$H'fHFNH=\1"=H="-H=" Ho HHxH9HXHHqH~$1ff.H;THH9uHHJH5"HWH81Hx HHt7-H=1)"g.H=1";1HHH5J2H8HHH9HuH;$MfAWfHnAVAUATUSHHxDgdHwpG@LxL)$E~@EH|$ILMH|$PLLH$LLHADH$HH4AXPLCX.ZYHfo$H HC)$fo$)$fo$)$fo$)$fo$)$fo$)$ fo$)$0fo$)$@fo$ )$Pfo$0)$`fo$@)$pfo$P)$fo$`)$H9t5HXHAHq1HHH9SH;TuHxHH{dHfo$$fo$D$fo$D$ fo$D$0fo$D$@fo$D$Pfo$D$`fo$D$pfo$ $fo$0$fo$@$fo$P$fo$`$HHHx[]A\A]A^A_ff.DHH9Hu1H;11H|$PLL H$LVH=4/1VNH=1KfHHHuRH9fH)HE1L +H &-H5H8R1H1{XZ1HfHyxtHH=u1fDAUIATIUSH10HHH-HH HCEHkHk t EЉUHCHLLHtgHh HpHCEtEHǃHH[]A\A]ÐH)H5j 18HH_1f.HxHHuH1@AWH AVAUATUSHHhH|$HD$PHD$XHLIHMHHiHrH1H 0L \-AH c+H8SH51XZHtHExHHE* H=E1 fHuH.EtEHEK HEHHUH)HHcЉH91 IH.HD$LhAEtAEHcfInfHnHflHnHD$PH= 1)D$PHHHD$0,HIExHIEHx HHH HBH;t H;Z tHD$ IE1Hx HHPL1H|$ MHl$(MIIFH5NI9v|L9 IFJ,EtEIHtHx HH#HL$HYtHYH~H9C<HD$PH  Hl$XHSH9BH=H92LXM:M{M~11ff.@ItH9H9HI9uHt$XE1IfCHB8HH2L\$L1HL\$IMtIx HI"Hx HH~MID$I;D$ AtAIT$LLD$Ht$HHpHt$LD$HD$$H|$LD$HHt$L H6HH)Ht$LD$THt$LD$L [fDHH9&HIEf.HL|HHfHnH|$ H~EHD$0HCflHp&)D$ *IHM xHPHHHLH8襜IExHIE|ff.@fDH@HIfHt$LD$ILD$Ht$HL -WHLL$:H5H ףp= ףLLLHHLH?LHH)HIHHH)Ǎ?HfHu1 AHI)MIIMcLHT$L)LLL$HL$IH@ HL$LL$LD$ I}8HHʾ LL$LD$HL$MHL$LD$LL$HA8LL1L)HHoHH9uII9LH)HpHv H4M)HJ4:HHIШBJI@I9~rBTHI@BTI9~[BTI@BTI9~GBTI@BTI9~3BTI@BTI9~BTI@BTI9~ BTBTfInͺH|$ H~MHD$0IEflHp&)D$ 2}IUHHxHIU0HHH8讙HxHHuHvfDH=_I$xHI$H=E15HExHHEHHL[]A\A]A^A_DHH)HHHtXHHt$LD$fLD$Ht$L HDHH5RH8-]EHH NfD@I}8H8MfZDHIHH@HHLHHE1E1HH9EHEHƒHuH)HHqAUdI}XHIEPHHIHI1I?HI!L)HH9HIIMLt$LLD$H7HUxHHU}HHH9E)HLD$LD$HHLD$HD$H|$LD$HHHHHt$Ht$LD$fD@HIU2L%DHdHHkHbH$H5-H8L;H=E1*H7HHH2H9HI$xHI$H]EHH HI$lHI$^Q@;IHLhH=E1O+f.IEpIJu,1ҹH%H H[]A\A]A^A_DHHLHuIH޳I|$`H(HLoL9 HEH!IUA@@IXHHJH~R1ff.HH9t7H;luI|$`ID$`HtHxHHu h{Ht1H!HH52 H811ML9tMuH;-nu1ID$`苿HL SLuM~1 HI9t L;lu/E1M9SJtI9LIff.@SHHWHH=ɺHtt[fH[fAWAVAUATUSHHIHsHHIT$tIT$HSH5HFID$HH;}o1L`HHL=L9L5L-&L9L9tH=L9L9u L9L5H=IVL胹IHtAEbIH>IT$tIT$IVHt HAIV tAM~( HLhLp tHX(Hx HHHUxHHUH[]A\A]A^A_@覷IHEtEImLH@IUIHhxHIUHx HHLfH`tfDmͷHg Hf.L5)H=IVLַIHtAE赶IHIT$tIT$IVHt HIV tI^(`HtLhLp HbjIxHIuLȱIExHIEH=Hx HHU1fDHHD$kHD$H[]A\A]A^A_LHHH豯HHϭH}`H0tH}`HE`fPfDHL=AtAL5 L-rLbf.HHD$賰HD$0fHHE1L H H5H8R1H`;XZ1H[]A\A]A^A_Hyx&HH=)W1ɾH=41L蠹HH`IHI}`H0ɡI}`IE`0OLIExYHIEuOfDL蘯 H=H1&D;LIHK H=[FH1@H(1fHLI-HIt$IE8HIE*DL谮fDxHIUt[LIHH=q\H1HHuH>H1fD賷HLtH=Hy1ff.@AWAVAUIATIUSHHAEHvKAEHXH9HXHtKHqH~b1ff.HH9tGH9TuAEMff.fHH9tHuH;tfD諫HXhI@H+Ht H;-H[HuE11A$@f@ϘHcUIHiA$L AtAH=XLl$(LD$0LL$8HGHD$ H;wJH@8HH9LL$Ht$(1HLD$LD$LL$IIx HIIx HIgMIExHIExHtHx HHHtHExHHEMtIx HIA$tA$MI$xHI$HHL[]A\A]A^A_HH9MEtEH]tH訬I3Ht$(1ɺLL$LD$襰LL$LD$IL 2@HLت(HȪL踪.L訪LLL$蓪LL$^fLx{HL IF`HHxI9cIT$H&HOK@>2A$@#HXHHJH1f.HH9L;duIF`IF`HtHx HHWHtIVhH:H*HtHx HH1HtHx HH)MtIx HIMIMqHG0HI9;HuL;%Ku!IF`1@L IFhH8H(HtHx HHHtHx HHMtIx HIH=ME1\LMLL-EH8.H'HHIT$H81ff.HH9t0I;|u֧,Hɧ8L輧D1ItH9HL$HT$H|$uHL$HT$H|$HH9uff.AUATUHSHHHGH5HHHHHCH5?HHH|IHM{x HHID$H5LHHsII$MqxHI$_LL%UHHlH]H9CIExHIE-LHl$HD$H IMJL94H=-I9$IXHLFM~#1HTH92H9)HI9uAIA8IHHt$1LHIM+ff.@Hx HH\k:DxHHuHkHExHHEu HQjH=?1HH[]A\A]fLff.ff.HH9t4HuHXH9t#LHH9tHuH9fDIRBLjE1 uMbH=fLHAI M H5EL赢HI$HxHI$~fHnfHn~ H2flflHD$0)L$)D$ C @/E @uʃt DHKHEH|$Hta[HH%x HHHUKHHU=HHD$mHD$HH[]A\A]DHPaL@L0Ht$1ɺL褨IT@IRB8L9IB0 @LhHHD$諢HD$ +H`I|(HHHcfDIHI$L*DIEHIELf@LH IHxHHuH財MtL*DHI$L股D|HHߛH5H8pHH(AWHAVAUIATUSHXHD$ HD$@HD$HHLqHMHtHIHtHT$ HUJLL$@M<ML$1L\$ H|Mf.LL)ff.ff.fHPHHH9:uIL)L؋ t HHI9dH|IHtH\$ H>H5H8qH=[HtHx HHuHX1[]A\A]A^A_@L\$HL$8LLHaH9GLT$LHD$8LL$H<$8YH<$LL$LT$L\$tjt%HHHBH5HH11H|$ HuHtHxHHH=l%HD$8IHL tHHI9+H\$ HMHHH8jf.HəHH8AUH}L 1AH H5\XZ&H8~.2L\$LT$LL$H<$HL $萞I1L $MHHD$u0ftLHL)HD II$I9Ht/H0HL $CL $HuL $豢L $HtiI9HD$(Ll$0Ld$(HD$01LLHL $j(Ht$H|$0LL $HHt+ff.ff.H98tHBHHuL $HL$8LLHH9GLuCWL $kH HL$0HH5WH81m~S1L $(@AWHAVAUIATUSHXHD$ HD$@HD$HHLqHMHtHIHtHT$ HUJLL$@M<ML$1L\$ H|Mf.LL)ff.ff.fHPHHH9:uIL)L؋ t HHI9dH|IHtH\$ HH5_H8_mH=.HtHx HHuHX1[]A\A]A^A_@L\$HL$8LLHH9GLT$LHD$8LL$H<$8TH<$LL$LT$L\$tjt%HHHH57HH1J1H|$ HuHtHxHHH=?%HD$8IHL tHHI9+H\$ HMHEHH8jf.H)HH8AUHL 1AH H5wXZ&H蘙~莙D.L\$LT$LL$H<$HL $I1L $MHHD$u0ftLHL)HD II$I9Ht/H0HL $裣L $HuL $L $HtiI9HD$(Ll$0Ld$(HD$01LLHL $ʟ(Ht$H|$0LL $HHt+ff.ff.H98tHBHHuL $HL$8LLH H9GLQuCvRL $kHjHL$0H"H5H81͠~,L $(@AWHgAVAUIATUSHXHD$ HD$@HD$HHLqHMHtHIHtHT$ HUJLL$@M<ML$1L\$ H|Mf.LL)ff.ff.fHPHHH9:uIL)L؋ t HHI9dH|IHtH\$ HH5H8hH=HtHx HHuHX1[]A\A]A^A_@L\$HL$8LLH!H9GLT$LMHD$8LL$H<$8\PH<$LL$LT$L\$tjt%HHHHH5HH1語1H|$ HuHtHxHHH=%HD$8IHL tHHI9+H\$ HMHHH8jf.HHH8AUH=L p1AH uH5םXZ&H~)L\$LT$LL$H<$HL $PI1L $MHHD$u0ftLHL)HD II$I9Ht/H0HL $L $HuL $qL $HtiI9HD$(Ll$0Ld$(HD$01LLHL $*(Ht$H|$0LL $HHt+ff.ff.H98tHBHHuL $HL$8LLHH9GLuCML $kHʎHL$0HH5H81-~(L $(@AWHAVAUATUSHXHD$ HD$@HD$HHLiHMHtHHtHL$ HEHL|$@M4ML$1LT$ H|MqLLHPHHOH9:uIL)LЋ t HHI9H|HHMHtH\$ H5 HFHCHH;H߹1蝑HHHx HHHCH5HHH[HHZH5H蒕AHExHHEuHuA,E_H=Ht$HH\$HHD$@ÇHH 1H|$ HHHHHf.H E1L H~HHH5ԳH8R1H肙XZ1H|$ Hu$HtHxHHu 腐}H=1荿HXH[]A\A]A^A_HH4HH`輎HHڌH}`H0tH}`HE`q/,HHHCH9t3HXHtWHqH~h1f.HH9tQH;Tu~wff.ff.HH9tHuH;؋tL%H=IT$L軔HHBtEHEH5HHHIHUMxHHUXID$H5oLHHtHI$H?xHI$"HHHUAăxHHUH=ENL%IT$LϓHHUtEHEH5HHHIHEMxHHEuHA$tA$HCH5HHHHHH=Ht$@1HLd$@Hl$HHI$AHI$>HExHHE;I$xHI$HtHHH H8LT$HL$8LLHH9GLL$L1HD$8H<$1GH<$LL$LT$t3%HHHH5mHH1耕HD$8IHL tHHI9H\$ HJHo1.H TAL i:hL%IT$L聑HHtEHH9E Ht$HHH\$HHHHD$@IHxHHuH跋MtEH=;Ht$HLd$HHD$@HI$xHI$uLvH6FHH5xH8而H=_ZH DH=12؎LPHHxHI$x&HPI$HHxHI$H裊L薊xHHUuH{Hq'LT$LL$H<$qߓHHŊ}IM1H$Hu?tLHL)HD ID$IHI9YH0HrHuHtL趉L詉I$+IqHI$Lu|HHELJH=I9HD$(Ll$0Ld$(HD$01LLH#KH $H|$0LHHt)ff.ff.H;8tHBHHuHHL$8LLLH9G[BzH΃HL$0HH5H811@LPHHEH-v賑I覑HًLQHH>LmfHnH]AEfInfltAEtHEx HHEt_Ht$@H)D$@軦IIEHIELvI1LL$pI\MqfLLHPHHGH9uIH)Lȋ t HHI9 I\HHMt$AtAL$Il$EtEI$Hl$xtH\$pM H L(hHE11HA1AHH tEHExHHEj H DeL(hHE11HA1AHHz tHx HH H=NE}KrL{LeAvA$H=Ta@A$ A\^ff.f([QH8Y@XYf/E1HD$HtHt$HE1LjH=~A5H5Xj5Uj5OSHL$XkHPHL$HIHx HH0 HExHHE ff.Hx HHLMtI$xHI$H|$pHtHx HHH|$xHtHx HH|H$HH HHĂLL$@HL$hLHHyH9CHD$hLLT$ Ht$8 fHH H5H H=H IH7 HHRII$Mb xHI$^L%ٸH=2IT$LHH tHBHT$HH5uHH HT$IM Hx HH!HzI9D$d HLH$HDŽ$H$LHHx HHHQ HJH; H|H= HB" HHH BHT$HHHHEHHH1Hd$@AFAI)LEfAFII wEfAFII I`L芁IPmiH{H_H5H8^e`fAWfHAVfHnAUATIUHSH)$~[H|$ HDŽ$fl)$HLIIMHH~H6IJHL$IIL$1L*Hl$0LLMIMIK\Mff.LL)ff.ff.fHPHHOH9uJTH)L؋ t IHM9K\HHT Mt$AtAI$L$tH$HDŽ$HHDŽ$HDŽ$+hHHBHע L(hHE1AHƹAH$HH)H$tHx HH L% H=bHDŽ$HDŽ$IT$L gIHtAIAL $LH5HH L $HH$HIx HIL%pH=ɆH $IT$LfH $HItAEIEH $LH5HHH $IMIExHIEjHd[I9D$HbLH $MH$H$HHDŽ$H$H $IIx HIMzHZH9AH$HHHDŽ$L$H $&L<$H$IHDŽ$IExHIEsIx HIlHDŽ$ML;%[L;%;[ L;%[ LeAŅ:!I$xHI$qHDŽ$EH>[LkHD$I9]HD$0LxhHD$fM'Mt I9w MMuHD$(E1H H=lHQHHL$@+dHL$@HH$HD$@tH<$H5FHGHHHH$H]H4$Hx HHHXH9AH$HHHDŽ$L$H $9}L$HD$@H$HDŽ$Ix HIgH|$@HDŽ$H8aH$HHHD$HbHL$HHH$H$Ht$@HH HDŽ$HpMtIxHIuLU]MtI$xHI$uL6]Ht$(HtHx HH+L5AH=HDŽ$IVLRbHH#tH$HAHL$(HH5HH"HL$(IM.Hx HHOL5H= LT$(IVLaLT$(HHtH$HALT$0HHL$(H5HH&HL$(LT$0IM%Hx HHHDŽ$HVI9BH$H$LLT$(HL$HDŽ$H$zL|$(H$IHDŽ$Ix HIUIx HIMA$tA$ID$At$HDŽ$I|$ HD$0HHD$(HtH=1L$HLH$HDŽ$bH$HHx HH HH5.1HHL$@7[IHHL$@HxHHuHLT$@YZLT$@L;}VHDŽ$L;U6 Ht$I9( LLT$@A`LT$@A*Ix HIoEhH= XIHH5HHD$@L\$@HH$HVIx HIIH,TH$E1HH9AHHL$@L$LL$HH$cxH|$HIHL$@HDŽ$Hx HHHDŽ$MTHD$I9HEMNfHD$@ff.fAXDAHsfLL$Hf/HD$ H5HbHHD$HD$ H5HH89H$IHH17I$xHI$IHDŽ$!HMHH@HLBSFLH$IHHf.LHL$(ILvBE1E1E1E1E1佼ZLT$(FL薊LT$(HH$HE1E1E1E1佼HD$@JKHwKLT$0HL$(IE1E1E1E1佼IHT$H$LMM9oL$IMHDŽ$HDŽ$H$1LHLHQH$HLHtff.H98tHBHHuH>LvLLH$H9GSHK<H$H2H5cH81IfDLLIfInL$AfInLAflǃtAAtAL$Hx HHhLǺLL$HH$L$)$r_LL$HL$HD$@H$I)HIL@L$ IJH$fHnMz$tAtAIx HIH$LHL$(L$)$^HL$(H$IHHHHx?LL\$@f?L\$@LT?HG?1LHL$@5?HL$@H#?H$RL ?HL$@HD$HHL$>HL$E1E1E1E1E1E1E1>XHx HHE1H$HHE1E1E1nHL$`>HL$LN>E1E1E1&LὯE1E1E1E1E1E1H$LHL$(L$)D$=HL$(foD$L$CH=HLD$)$=LD$fo$L=E1+E1E1E1E1E1E1併E1E1E1E1۽\LILqAL$tAAtAL$Hx HHYLLHx HHLhE1E1E1۽L<$H5bLME1E1E1E1E1E1۽IH$E1HE1E1E1E1RLHL$HLL$P$L;-$M9u L;-$IDIUxHIUEH$LAEtAEH4$ILLH=$HhHIEHx HIEuL'ff.Hx HHH|$@HtHx HHH|$HHtHx HHH|$PHHHHu'Lff.ff.HH9t4HuH#H9t#LHH9tHuH9vfDIQBaLrE1 uMyH=E%u:HLAHQ,H+HuHG!H5DH8'dH= c1UL-^H=LIUL+IHtAIGH5 [LHHIIMwx HILH&IIEMxHIEqL;="M9TL;=!GL+AƅIx HI2E-H$LAtAH4$ILLH= H=eHIHV^HIQL9%DL\+ADžIE eHIEL$H- EtEH LHl$@tH\$HIEtEHl$P1I\$tM$$H\$HA$tA$Ld$@HbH-v HKtH\$H1H-S EtEHl$@IHIl$EtEHl$PhHHNtHL$PIL$tHL$HjL##H##DIQBL9IA0L#DLq# H hvAHHL lrH5VFH:PHx1,XZ?H 1vE1&LdkIHeH=g_1Rl,IeIxHIuL""""",IML"]Lu"Lh"L\$LT$H|$)H"LIM1HHu=jDtLHL)HD@ID$IH2I9H0HHL$},HL$HuHL$&HL$Htg{%LiIH7gfp{g^H=%MH;=^HCt H;vH+HHt`HwHt$hHl$hHD$`H8IHExHHEMt 1LI$xHI$jI9vHD$(Lt$0Ld$(HD$01LLH'H|$0HLHtH98tHBHHuH/HL$8LLLuH9Guczt?HvHL$0HzuH5BH81(@h'HL藴/@H$HAWfHHTAVfHnAUATIUSHH)D$`~MH|$flHD$pH$HDŽ$)$HLiHMHX 6 HtH I $tHL$`HUHL$M4aMI1L\$`H|MLLHPHHH9:uIL)L؋ t HHI9H|H T H H M$$A$tA$L-\Ld$`AEtAELl$hL5AtALt$pH^ H(hE111HALHHtHx HH H9^ H(hE111HALHH tEHExHHE E;CL%sUH=BIT$L"IHtAEIEH5XLHHAIIEMxHIEuLHsI9D$H$LHHDŽ$H$H$;LIHxHHuHlM(AEtAEH\L0IHW tA$I$xHI$a H BTH=AHQHHL$Z!HL$HHtHGH5MH|$HHAH|$HImHx HH H SH=AHQHHL$ HL$HH4tHBHT$HH5MQHHMHT$HH: Hx HH HH9AEH$HHHDŽ$L$HL$9LL$IIx HI MuH5NI9wH$LHL$LD$HDŽ$9LD$LHIx HI Hx HH H(H;VH;u H;Hx HH HD$HtHt$HLIHE5AH=jHP5.Xj5FATjPHL$XNYHL$XHPIHMx HH` Hx HH3 HEHHEH'fL\$ HL$XLLHH9GHD$XL\nLT$H|$Q H|$LT$L\$ t%H HHnH5[;HH1n!H|$`HtHx HH=H|$hHtHx HH)H|$pHtHx HHH=TE1PGHĨL[]A\A]A^A_HD$XIHL`tHHI9%Ld$`MLl$hMLt$pMDnLf.AD$z Lf.AzL%O\D$H=<IT$LfI~HH( tHGH5Lt$t$LHT$ HL$iHT$ HL$HHT$MHT$>4*HHT$HHT$HHAVH" DOUH=wM?MD$fInIL$AfInflătAtI$xHI$g HLD$ H$HL$)$/LD$ HL$HIHILHT$ 2HT$ HL$H6HHEHIx HIHx HHt V.HLHOL\$ LT$H|$HIM1HD$HuH|$HIJHx HH^E1AGE1NfH׉L$$ L$*MD$fHnIL$AfInflŃtAtI$xHI$`HϺLD$H$HL$H$)$+LD$HL$IIHIL} HL$E1AGHtHHgM ]I$xHI$:E1GHL$H|$aTHH%VH=H;6H09H$HDŽ$H$HH8=IHt H1I$xHI$HH=)H: H|$HIHx HH|AV_f.AVHL$H|$qSHHI>HI1L ${HT$HHx HHNLLQfInLIAfInflƃtAAtAHx HHLϺLT$H$LL$)$y)LT$LL$IIwHIjLLD$' LD$LL$NI9HD$HLl$PLd$HHD$P1LLH=H\$H|$PLHHt(ff.ff.H98tHBHHuHoHL$XLLL^H9G6zHHL$PH^H5+H81@IaHITLHT$ HT$(H4H$HDŽ$H$HH8RIHtH1Ix HIWH=@E7MOfInIOAfInflǃtAtIx HIHLL$ H$LD$HL$)$L'LL$ HL$HLD$IHILHT$ HL$LD$HT$ HL$LD$yAXHHHLHMHHZE1E1AGLHL$LD$)D$ bfoD$ HL$LD$tHHHE1E1AK9LHL$ LD$)D$0 foD$0HL$ LD$mLHLL$LT$)D$ foD$ LL$LT$?LLHL$ LL$LD$)D$0foD$0HL$ LL$LD$$HtHE1AKE1[kE1AKE1ZDfHE1AGE1,L^@E11E1H=B5KE1AGAVHff.AWfIHx@AVfHnHHAUfHnATUSHH)D$P)D$`~HDŽ$fl)D$p~+fl)$Ht*LQIM~IH JcH@IIh1E1H WAL +WILhAUtAUL0Ll$XAtALt$PHEMLi*Hl$xHD$pH |CMPL9 H=`I9 IXH`LNM~&1@HTH9H9HI9uAIB8IHHt$x1LHHHL=<H=a)IWL% HH tHAHL$HH5]8HH HL$IHM x HH_LHHIH x HIH; _H; "H; HHL$0 HL$A Hx HHE%HtH.HHsMH:AATAjH=RPjRLPj5@=HL$XEBHL$XHPHHHB xHH@HExHHE@H|$PHtHx HH/H|$XHtHx HHH|$`HtHx HHH|$hH/H$HH HNtHL$hHHtHL$`HHtHL$XHtHL$PIKJHt$pL,#H\$ L$Mu1L|$(LL$PMMI\Mtnff.LL%ff.ff.fHPHHt3H9uIH)Lȋ t HHI9I\@LL$HL$HLHHqH9CHD$HLULT$Ht$!谺Ht$LT$LL$jt%HHHUH5"HH1H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH|$hHtHx HHH=z<1.HĨH[]A\A]A^A_L0AAHuLt$PtHD$XE1IH-&EtEHl$`E1HhUtUHl$`Qd 2 @DLff.ff.fDHH9t4HuHH9t#LHH9tHuH9vfDIPBaHrE1Ht$ uMxH=!u>HHD$LHH`ZHuHH5oH8O^H=:1,-H QAL APM~H PAL LH#HH8AWH5 H+S1^_H 5H=0#HQHHL$HL$HI1tAIGH5!2LHHEHIHJx HIHκHHL$HL$IHMx HHL;=#L;=u L;=Ix HI\LAtAATHsLLjL G7MH=7<ZYHIH"HI LQITL`A$tA$Ld$hHt$x1ɺLH#HtHD$hIVHD$HIHLPtHHI9H\$ L|$(Ll$XMXHl$`H.Ld$hMLt$PMJ|PtMIGMH|PIGIH|PIIJ|PHyHL lMAH NH8AW=HHIPB8L9I@0LHL$HL$ZHtHD$hIH-!EtEHl$`HPtHD$XIH2QLpBHHd_'L5…)eIx HItH=61(Lx_HHuH6HL$IIa_HLt$PHD$XIE1HYLL$LT$Ht$LHL$.HL$LHt$LT$L\$ImE1L\$MLT$Ht$HHHl$LLl$MMIH\$L2tLIL)HDPIFIHXL98H0H#HuHtAHghLT$VT$HL$H|$@IHe=`X+He9H=#H;=HEt H;HHHt^HHt$xH\$xHD$pH8IHx HHnMt 1LI$xHI$jiH+IMILl$H\$Hl$LM9^Ld$@H\$8MIHD$8HD$@1LHL H|$@HLHtH98tHBHHuHHL$HLLLLH9Gujڰt_HHL$@HKH5#H8196@HD$XH\$fLL:.DHHTHAWAVAUATUSHHAL5HHAALvtAAHEHHE HCC$1HC0HC8HC@HEHC HC1AtHE(HC(EtEH{Hx HH"HkL9EH1[]A\A]A^A_@H5 (LmPL9L=M9}L9~„/'IEH;FIUHNH9@H@t HEE ~ D‰8A  IM8@ Hv8$D>A9LHtHH/fDAHEHHE HCAhE0C$HE8HC0HE@bfHExHHEuHHCfM9H5(I9t{L9~wLLIHH;L;-M9LAIExHIEiEJEfDL9H5'L9tM9}L9~„IEH;FIUHNH9@H@t HEE ~ D‰8fA aIM8@ ?Hv8mzD>A9'HHH+fDLIHH;0L;-M9L IUxHIUetLmPHH5H8H[]A\A]A^A_fDHH5H8H=^.Q2H{HtHx HHtpHCfDIU]HIUOLD$ D$ :fDM9uL91$D뉐DIEoHIEaLTDLF(H8@IE@MM(IM8A@IED>D>LF(H8@IEMM(IM8A@IELD$ D$ ?D>D>L@AWfH3*AVfHnHhAUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LL)ff.ff.fHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIuAHWH=Yj55k,j5C(QHj5$-HHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHH6LL$HL$HLHHH9CHD$HLBLT$Ht$0Ht$LT$LL$at"HHH@BH5kH81H|$PHtHx HHH|$XHtHx HHH|$`HtHx HH H={)1dHĘH[]A\A]A^A_1HH ?AHRHL ;H8RHjAH51XZ&vN&HuHNtHL$`IL$tHL$XOH >AnHD$HIHLPtHHI9dLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH=HH6HL 9AH =H8RtH|$`HHH=tH|$`HMv,LL$LT$Ht$wx HH2 H=k'VLHt$ HT$LT$L\$\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0L&HuHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHL<cH|$@HLHt&ff.fH98tHBHHuHHL$HLLLC>H9Gu[tHHL$@H>H5C H81Y@Ll$HT$+Hi}*@AWfHAVfHnHAUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LL)ff.ff.fHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIuAHWH=j55$j5QHj5 &HHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHHLL$HL$HLHHqH9CHD$HL;LT$Ht$谟Ht$LT$LL$at"HHH:H5H81H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH=#"1HĘH[]A\A]A^A_1HH 7AHHL 3H8RH9H5u1.XZ&RvHN>&HuHNtHL$`IL$tHL$XQH 7AnHD$HIHLPtHHI9fLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH=uHHHL z2AH Y6H8RtH|$`HH'H=tH|$`HMwLL$LT$Ht$wx HHH= LHt$ HT$LT$L\$%\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0LHuHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHLcH|$@HLHt&ff.fH98tHBHHuH/HL$HLLL6H9Gu[ztHvHL$@H6H5H81@Ll$HT$+Hu*@AWfHAVfHnHAUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LL)ff.ff.fHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIuAHWH=aj5 5kj5QHj5oHHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHH6LL$HL$HLHHH9CHD$HL3LT$Ht$0Ht$LT$LL$at"HHHN3H5kH81H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH=1d HĘH[]A\A]A^A_1HH 0AHRHL ,H8RHx2H51XZ&vN&HuHNtHL$`IL$tHL$XQH /AnHD$HIHLPtHHI9fLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH=HH6HL *AH .H8RtH|$`HHH=tH|$`HMv,pLL$LT$Ht$wx HHH=V LHt$ HT$LT$L\$\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0L&HuHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHL<cH|$@HLHt&ff.fH98tHBHHuHHL$HLLLQ/H9Gu[tHHL$@H&/H5CH81Y@Ll$HT$+Hin*@AWfH AVfHnH(AUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LL)ff.ff.fHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIuAHWH=j55j5 QHj5  HHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHHLL$HL$HLHHqH9CHD$HL[,LT$Ht$谐Ht$LT$LL$at"HHH,H5H81H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH=1HĘH[]A\A]A^A_1HH (AHHL $H8RHB+H5u1.XZ&RvHN>&HuHNtHL$`IL$tHL$XQH (AnHD$HIHLPtHHI9fLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH=uHHHL z#AH Y'H8RtH|$`HH'H=tH|$`HMhLL$LT$Ht$wx HHH={LHt$ HT$LT$L\$%\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0LHuHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHLcH|$@HLHt&ff.fH98tHBHHuH/HL$HLLL(H9Gu[ztHvHL$@H'H5H81@Ll$HT$+Hf*@AWfHKAVfHnHPAUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LL)ff.ff.fHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIuAHWH=j55kj5[QHj5oHHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHH6LL$HL$HLHHH9CHD$HL$LT$Ht$0Ht$LT$LL$at"HHHc$H5kH81H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHlH=3 1dHĘH[]A\A]A^A_1HH !AHRHL H8RH#H51XZ&vN&HuHNtHL$`IL$tHL$XQH AnHD$HIHLPtHHI9fLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH=HH6HL AH H8RtH|$`HHH=tH|$`HMv,aLL$LT$Ht$wx HHH=# VLHt$ HT$LT$L\$\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0L&HuHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHL<cH|$@HLHt&ff.fH98tHBHHuHHL$HLLLf H9Gu[tHHL$@H; H5CH81Y@Ll$HT$+Hi_*@AWHAVAUATIUSHXHD$ HD$@HD$HHLqHMHtHHtHL$ HEHLL$@M<cML,1L\$ H|Mff.LLHPHHH9:uITL)L؋ t HHI95H|HXHL.AE[AEHLl$ I$EtEHIt$E1HH L uRLjH=PAQjPAQjPHHEHPHxHHEIEHIELf.H tE1L ~HVHHH5TH8R1HXZ1H|$ Hu$HtHxHHu  H=1 HXH[]A\A]A^A_L\$HL$8LLHH9GLT$LWHD$8LL$H<$ԁH<$LL$LT$L\$t3CHHHH5 HH1HD$8ITHL tHHI9eLl$ HM*f.H AL :HtHT$ ILl$ HH xHHEIH=?[L\$LT$LL$H<$HL $#I1L $MHHD$u3itLHL)HD IEIHt8I9H0HL $L $HuL $ L $HtI9HD$(Ll$0Ld$(HD$01LLHL $jHt$H|$0LL $HHt#ff.fDH98tHBHHuL $HL$8LLH H9GLuXvL $sHjHL$0HH5H81HIYL $ff.@AWfHHAVfHnHAUfHnIATUSH)D$@)D$P~KH|$HDŽ$fl)D$`~ifl)D$pHt+LqIM~H H HcHDH HHcHHNtHL$XIMtHL$PIMtHL$HIMtHL$@IT$HHl$`L| MI1L\$@I|MtWLLHPHHt3H9:uITH)L؋ t HHI9RI|L\$HL$8LHHH9GLT$LHD$8H<$2 1}H<$LT$L\$t%HHHzH5mHH1H|$@HtHx HHr H|$HHtHx HH^ H|$PHtHx HHJ H|$XHtHx HH6 H=t1EHĘH[]A\A]A^A_HD$8ITHL@tHHI9WLl$@MH\$HHLt$PMHD$XH$H9L}H\$hHD$`L MPM9H5tI9IXHHyH~*1HTI9RH9IHH9uAt.IB8IHt!Ht$h1LHHfDHt$h1ɺLtHHPL=H=ZIWLIHRtA$ID$H5[LHHKII$MxHI$6LHIIMx HIeH-]I9L;%u L;% DI$xHI$9EyH5L蕁Ht$LA$rtA4$Ht$L$LLH=%HkHHc I$xHI$Hx HH4H|$@HtHx HH#H|$HHtHx HHH|$PHtHx HHH|$XHHHHоL-ĺAEtAEHLl$@tH\$HH$L5nAtALt$PH<$L%lA$tA$Ld$XL$$Lff.ff.HI9t4HuHxI9t#LHH9tHuH9fDIPBLzE1 uM`H=膼u:HLAH1HHuH'H5H8踾4H=1L=H=IWLIH%tA$ID$H5LHH(II$MxHI$LH蜽IIMx HII9L;%_L;%LADžeI$xHI$EH5NL!~Ht$LA$rtA4$Ht$L$LLH= HHI$H<L(ADž5I$xHI$H=1TMmAEH$E1I]tMmH\$HAEtAELl$@MfDH$MuAtALt$PI]H$D$tH$HD$XʅtA4$Ht$L$LLH=lHHI$Ho7HtH\$HL%A$tA$Ld$@ML5~AtALt$PH AHy H { E1HHL z H5dH:PH1XZL3\L&HfDIPBM9I@0LǹD%L豹L褹6tA4$Ht$L$LLH=HNHH>x+LIH5kI5M;ILLָLɸFML\$LT$H<$L4IM1H$Hu=WfDtLHH)HD@IEIHI9fH0LHuYHt:=LhIH:06&:H=H;=HCt H;zHHHvHHt$hHl$hHD$`H8 IHExHHEMt 1L肉I$xHI$@p;fI9GHD$(Ll$0H\$(HD$01LHL#KH4$H|$0LHHt)ff.ff.H98tHBHHuHHL$8LHL[ H9Gusp~HұHL$0H, H5H815HXLKHHAZJ 닽9*fAWfHAVfHnH(AUfHnIATIUSH)D$P)D$`~̭HDŽ$fl)D$p~ǭfl)$Ht.LQIM~"HH %HcHHH\ID$tHD$hI|$tIL$H|$`tM $HL$XAtALL$PLHaIUtUHIuHAPAj5WjH=P5rQHj5nxHHEHPHyxHHEH|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH|$hHHHHH AHHH2HL H8RH H51莼XZH|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH|$hHtHx HH!H=1QHĨH[]A\A]A^A_HNtHL$hIL$tHL$`IL$tHL$XI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mt\ff.LLHPHHt3H9uIH)Lȋ t HHI9I\@LL$HL$HLHHH9CHD$HLLT$Ht$0lHt$LT$LL$tuHHHH5kH81聺@1XH A花耱v-lHD$HIHLPtHHI9Ll$ HT$(HD$hHLL$PH>H|PtOHJHt,H|Pt:HJHtH|Pt(HHtH|PtHL$XH|$`LάHHHL AH H8RAtALD$hLH~LrAtALD$hL2UKA DLL$LT$Ht$BxHHEgH= qLHt$ HT$LT$L\$oIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$0tLIH)HDPID$IHt(L9H0LHulHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHL (H|$@HLHt@H98tHBHHuHHL$HLLLpH9Gu[htH֩HL$@HEH5#H819@Ll$HT$HI3B:@AW1IAVAUATUHSHlH$0HHHHEH9t:HXHHqH)1DHH9H;TuEtEH;-oHIIGH;)$0t H;.AtAHC$E11HD$ D$D$,Ld$8Hl$@IGH 3I9OL9IGJ,EtEHtHx HHH蔮L%ŨL9,HEH5HHH HH HL-"H9L9@@u L9Hx HH HD$0HEH5HHH HH H9L9@@L9HHT$HHT$H^Hx HH HD$PHEH5HHH HHY H9L9@@L9HHT$H荱HT$H+kHx HH E1HEH5fHHH HH Hx HHy HEH5FHHH HH Hx HHY HEHT$HHH5HHHT$HHH0x HH0Z HL$ LHy@H1L9~MIML9EMHFIHD$0LH9cHHE1HILHPHIHHIHL9HD=ff.HH9HuH;ff.fHnŋEdHupE@LexL)D$`~MH)$H|$pHM H$HLH$HLfo$E1H\$`fHH9E HEHƒH EH)HHHL$ HHq@HHH9L$!HcT$HHHx$H$8HH$8D$,IHHD$ @fDHHT$0胮HT$0HLd$8Ix HIHHHH׉4$4$f. HH\$ HHs@HHHHHT$,3H5Ld$8H82cH=:AD誥IHIL4$R4$f.cHHT$HHHT$HHHD$P&HTHHGH:HHT$H`HHT$HHI HHHuH螦hfHc$HDŽ@HHDŽĀHDŽ$f.KjfDHH9BHBHƃHH)rHHD$0H|$0HHHHۥfDH9H9 HD$01HIHIE1Hc$LĀH@LD$>HcD$L$\$MI؃$\$DL9 KlE>cIfHƸHHHD$0H)7LHT$4$74$HT$HH5H: ID$@I$HI$H*H_H9BHBHƃH'H)rHHD$ H|$ }H)HHH聖HLd$81HHT$0ݟHT$0HHtJHT$PHD$HљH|$HHT$PHD$0H HHHT$HHT$HHT$0HT$0HHD$0Ld$8Hl$@HfHH2H9@耙QHHT$H.7HT$HHHD$P=HHHHjL]HH)HHHBrHH HD$0"I9L9HD$ 1HIHIE1HT$HHT$HHLd$8HUHHT$HL6HT$HHHH?HH2H芔%H HHt$0H\$0E1HLILL$0H9LIAHH$8L(HD$ IE1ɽHD$PHGH9HOHD$ H)LHؓ]L˓HHT$H蹓HT$HL觓H蚓HD$ HH$8HHT$XHD$HmHD$HHT$XLd$8HܜHbILd$8H躜HH|$ HL$ H9gH9HL$ HIH)HHHIH|$ HD$ H9H HFHD$ HIL9\HHT$HHT$HHD$0uBrHH HHD$0[HHқIH,HΕHIEHIELLd$8H蒛H:H肛ILd$8Ld$8HIx HIJHH)HHHaHH Ld$8Ld$8HHeHHT$HHT$HHD$ E1L9"Ht$ HL$ 1HHIHD$ HD$ ILL9H)HHHHHH0T$,vH58Ld$8H8K.1EHƸHHHD$ H)`IIHt$ 1LL9cnHHeH5@1H81, H=(K H=1)HT$ :HT$ HHD$ ]HHT$ qHT$ HHtHT$PHD$HeH|$HHT$PHD$ HHHHT$H褏HT$HHH)HHHsHHT$HHT$HHD$ Ld$8HhHT$HHkCI$I$HH ID$@kCHH HH=1HT$HH(LŎLd$8HHT$,H5NH8i9H==诌H\Ht$ HL$ E1HLILL$ H97LIIIL1HHHBrHH HD$ KBrHH HHD$ %Ld$8Ld$8ff.H;5AVAUATUSHHsdHHL5zL9HPHL`A$tA$Lm AEtAEHExHHEL;%TL;%u M9HCLHHHHCHP(HHI$xHI$IExHIEH[]A\A]A^fH=1}Hp@L萒QH=Y1BlDHLHHPf.`H[]A\A]A^LH[]A\A]A^@LЋHH5H8HEHHEH1莋H=}>HxHHH vHDHH5H81 fHiH5H81\fDfDff.AWHgIAVAUATUSHhHD$0HD$PHD$XHLYIMHtHH>tH|$0I}HLT$PM4oLD$ LL$0M>1HT$(L$LMI\MZf.LLHPHH/H9uIH)LЋ t HHI9MI\HHƒH\$0tHCH;cH-uzH9t~HLIHM}x HHI$xHI$EtEHHx HHHh[]A\A]A^A_H9HXH59H8)Hx HHH=Y1LT$HL$HLHHH9CHD$HLL\$Ht$BHt$L\$LT$t"HHHvH5 H81!1H|$0HuHtHxHHH=Hh1[]A\A]A^A_DH\$0PfDH9HH8RHL !1AH &H5ͪ舐XZ`HD$HIHL0tHHI9RLD$ HT$(H\$0Ht\HdLWHHD$EHD$Hh[]A\A]A^A_,H5HuH^HH8jLT$L\$Ht$fLLT$ HT$LD$L\$[rIE1L\$LLD$HT$HLT$ HH\$MLLD$HT$1tHIH)HD0HHEM97HtJH0LHu]HtHHHxH'H5EH81HILD$HT$H\$M9mLd$@Hl$8MHD$8HD$@1LHLތeH|$@HLHt(ff.ff.H98tHBHHuHOHL$HLLLyH9GuN?HHL$@HJH5ߧH81LD$HT$5밐AWfH˿AVfHnAUIATIUSH)D$P~|HD$pfl)D$`HLQIMHHHIKHHt$`L4XHT$(M>I1Ll$ LL$PMI\Mf.LL)ff.ff.fHPHHH9uIH)Lȋ t HHI9I\H^HID$tI $HD$XtHL$PIUtUH5HIE1HjAVH=\~RjVLRHj5)QHHHEHPHxHHEH|$PHtHx HHH|$XHHHHЂH AL HoH}HH8RHH51WXZH|$PHtHx HHNH|$XHtHx HH&2H=1VHĈH[]A\A]A^A_ÐLL$HL$HLHH~H9CHD$HLLT$Ht$ I1Ll$ LL$PMI\M f.LLHPHHH9uIH)Lȋ t HHI9I\H^HID$tI $HD$XtHL$PIUtUH5ިHIE1H<jAVH=yRjVLRHj5iQH?HHEHPHxHHEH|$PHtHx HHH|$XHHHH|H AL BHoH4wHH8RHH5ޞ1藄XZH|$PHtHx HHNH|$XHtHx HH&` H=]1薪HĈH[]A\A]A^A_ÐLL$HL$HLHH!xH9CHD$HLqLT$Ht$`5Ht$LT$LL$:HHvHH*H5H81譃HNtHL$XI $tHL$PI $tHvHL$PtHD$XH xAL x^zTzHD$HIHLPtHHI9Ll$ HT$(HD$XHtoHL$PH/H|PtHHH|P H-uHL AH H8RHyVyjHutHD$XwxHHE H=M舨 LL$LT$Ht$9LHt$ HT$LT$L\$yaIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$/tLIH)HDPID$IHt(L9H0LFHu}HtIMH\$Ll$HT$MHM9PLd$@Hl$8MIHD$8HD$@1LHL\oH|$@HLHt&ff.fH98tHBHHuHtHL$HLLL!H9Gu[2tHsHL$@HH5cH81y@Ll$HT$sHw ? *@AWfH;AVfHnAUIATIUSH)D$P~DoHD$pfl)D$`HLQIMHHHIKHHt$`L4HHT$(M>I1Ll$ LL$PMI\M f.LLHPHHH9uIH)Lȋ t HHI9I\H^HID$tI $HD$XtHL$PIUtUH5HIE1H|jAVH=qRjVLRHj5qQHHHEHPHxHHEH|$PHtHx HHH|$XHHHHPuH LAL HoHtpHH8RH+H51}XZH|$PHtHx HHNH|$XHtHx HH& H=ʹ1֣HĈH[]A\A]A^A_ÐLL$HL$HLHHaqH9CHD$HLLT$Ht$.Ht$LT$LL$:HoHHDH5זH81|HNtHL$XI $tHL$PI $tHoHL$PtHD$XH AL xssHD$HIHLPtHHI9Ll$ HT$(HD$XHtoHL$PH/H|PtHHH|P HmnHL `AH H8RHrVrjHntHD$XwxHHE[ H=ȡ ^LL$LT$Ht$9LHt$ HT$LT$L\$raIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$/tLIH)HDPID$IHt(L9H0L|HuvHtIMH\$Ll$HT$MHM9PLd$@Hl$8MIHD$8HD$@1LHLxoH|$@HLHt&ff.fH98tHBHHuHnHL$HLLL;H9Gu[Z+tHVlHL$@HH5H81y@Ll$HT$sHp *@AWfH{AVfHnAUIATIUSH)D$P~hHD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH NkIEtEHUHHIQH=jAHjRPjRHLPj5HHEHPHxHHEH|$PHtHx HHH|$XHHHHnDH AL H|HiHH8RHhH5V1wXZH|$PHtHx HH[H|$XHtHx HH3H=-1HĈH[]A\A]A^A_fLL$HL$HLHHjH9CHD$HLLT$Ht$'Ht$LT$LL$2HhHHyH5H81v HNtHL$XI $tHL$PM $AtAH iLL$PtHL$XHH AL kllHD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PHgHL AH ;H8RHlGl[H htHL$XHtxHHE H= LL$LT$Ht$1LHt$ HT$LT$L\$&lQIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0LuHupHtIMH\$Ll$HT$MHM9ELd$@Hl$8MIHD$8HD$@1LHLqWH|$@HLHt&ff.fH98tHBHHuH/gHL$HLLL`H9Gu[z$tHveHL$@H5H5ÌH81r@Ll$HT$hHi*@AWfHAVfHnAUIATIUSH)D$P~aHD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH ndIEtEHuHަHIQH=bAHjRPjRHLPj5ǙHHEHPHxHHEH|$PHtHx HHH|$XHHHHgDH AL ڹH|HbHH8RHH5v1/pXZH|$PHtHx HH[H|$XHtHx HH3VH=u1.HĈH[]A\A]A^A_fLL$HL$HLHHcH9CHD$HLLT$Ht$ Ht$LT$LL$2HaHHH5'H81=o HNtHL$XI $tHL$PM $AtAH "bLL$PtHL$XHH AL keeHD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PH`HL AH [H8RH?eG5e[H )atHL$XHtxHHEH=ULL$LT$Ht$1LHt$ HT$LT$L\$FeQIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0LnHuI1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH ]IEtEHHHIQH=V]AHjRPjRHLPj5HHEHPHxHHEH|$PHtHx HHH|$XHHHH`DH ijAL H|H[HH8RHH51OiXZH|$PHtHx HH[H|$XHtHx HH3 H=Š1NHĈH[]A\A]A^A_fLL$HL$HLHH\H9CHD$HLLT$Ht$Ht$LT$LL$2HZHHǵH5GH81]h HNtHL$XI $tHL$PM $AtAH B[LL$PtHL$XHH #AL 2k _^HD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PHYHL ˰AH {H8RH_^GU^[H IZtHL$XHtxHHEQH=0LL$LT$Ht$1LHt$ HT$LT$L\$f^QIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0LgHu\bHtIMH\$Ll$HT$MHM9ELd$@Hl$8MIHD$8HD$@1LHLcWH|$@HLHt&ff.fH98tHBHHuHoYHL$HLLLH9Gu[tHWHL$@HH5H81e@Ll$HT$hH)\*@AWfHۖAVfHnAUIATIUSH)D$P~SHD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH VIEtEHHFHIQH=VAHjRPjRHLPj5!HHEHPHxHHEH|$PHtHx HHH|$XHHHHYDH AL H|H UHH8RHݯH5|1obXZH|$PHtHx HH[H|$XHtHx HH3LH=1nHĈH[]A\A]A^A_fLL$HL$HLHHUH9CHD$HL5LT$Ht$0Ht$LT$LL$2HTHHH5g{H81}a HNtHL$XI $tHL$PM $AtAH bTLL$PtHL$XHH CAL Rk)XXHD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PHRHL AH H8RHWGuW[H iStHL$XHtxHHEH=PLL$LT$Ht$1LHt$ HT$LT$L\$WQIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0LaHu|[HtIMH\$Ll$HT$MHM9ELd$@Hl$8MIHD$8HD$@1LHL]WH|$@HLHt&ff.fH98tHBHHuHRHL$HLLLիH9Gu[tHPHL$@HH5#xH819^@Ll$HT$hHIU*@AWfHAVfHnAUIATIUSH)D$P~LHD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH OIEtEHH>HIQH=OAHjRPjRHLPj5'AHHEHPHxHHEH|$PHtHx HHH|$XHHHH SDH AL :H|H,NHH8RHdH5u1[XZH|$PHtHx HH[H|$XHtHx HH3lH=e1莁HĈH[]A\A]A^A_fLL$HL$HLHHOH9CHD$HLLT$Ht$P Ht$LT$LL$2H8MHHuH5tH81Z HNtHL$XI $tHL$PM $AtAH MLL$PtHL$XHH cAL rkIQ?QHD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PHLHL AH H8RHPGP[H LtHL$XHtxHHEH=EpLL$LT$Ht$1LHt$ HT$LT$L\$PQIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0L&ZHuTHtIMH\$Ll$HT$MHM9ELd$@Hl$8MIHD$8HD$@1LHLCLD$ HHD$HIxHIuLKH54HD$HDŽ$H9HH@H9ZJHAHD$ \$ HD$H;.G HPHD$8H!LH=:HDŽ$yH$HLH5HHD$ LD$ HH$HPIx HIGH=ЂHDŽ$HHRH5HHD$ HT$ HHHHx HH*H=s辔HHHH5~HHD$(.HT$(HHD$ THx HH/-HDH$HE1HH9EVHD$ HL$@H$HhLH$HD$(HT$ LD$(HDŽ$Hx HH,HExHHE_,MBVH5}LLD$ RLD$ HHVIxHIuLIHDŽ$E1HCH$HHH9CWHL$@H$HgLHD$ "HEHDŽ$xHHEuHHHxHHuHHH|$ HDŽ$4JHD$H5PnHxG+H؈ H(h1H|$E1HA1HD$(HH_H$D$@tHT$(Hx HH8QHL$Hx HHQHD$(H;CHDŽ$aH|$(H5uH_H$IHaH5AHHD$'LT$cIx HISHDŽ$2eH5H|$(/H$IHpHt$HHD$GLT$HIpsIx HI<]HBH aBHDŽ$I9HD$@I9H$GL; BGLLL$LLL$Ix HI\uHHt$8)H=j~D$诐H$HHD~H5|HH$IHyHx HH]_D$ IHD$HH$H={Hd@1HI9D$i}Hl$HH$@LH$@HH$H$HdHHD$8HELL$8HDŽ$xHHE`HDŽ$I$xHI$`HDŽ$M.}HD$@H$I9I9NL; @tNLLL$8JLL$8Ix HIdH=|H$HHH50{HH$IHHx HHBsA$L$tA$H5H|$(1DHD$HHH$HH$1H=}HL$@H$H'KLHD$8*HLL$8HDŽ$x HHuHDŽ$I$xHI$luHDŽ$MHD$@H$I9I9]LLT$HLT$Ix HI-~HD$(HDŽ$HD$= 1H$HH$@HmH$HH9=H8q8HD$HH$HH\$H1HHx HHbHD$(1E1E1L$E111L$E1E1HD$Ƅ$D$@~H\$XH\$xH\$pH\$hH\$`H$H$H$H\$8H\$PH\$0H\$HH\$(s f.I$xHI$:>HDŽ$y?H$H$HxhH$HH=yIH$HHe H5VvHH$IHE HxHHuHz@AtAH=v1H$@HL$@HDŽ$HH$GLHH$H H:H$H1HI9D$Q LH$@HL$ H$H^H|$ HD$H$HxHHuH?HDŽ$I$xHI$uL?H|$H$HDŽ$L$H$HDŽ$LHDŽ$HHDŽ$vH|$H5}HDŽ$?H$IH ?H ;H5r:I9HD$@I9H$A L;:4 LLD$ DLD$ FIx HID(HDŽ$&H=vԈH$IH@JH5wHAHH%JI$xHI$uL >HDŽ$1H8H$HHH9C LHH$@L$H\HH$HD$ HLD$ HDŽ$xHHu H=LD$ MDH5'|I9V&I@H;9:DIXHӃIx HIoFHDŽ$HTiH$HHDŽ$@H$HH98H8q3HD$ H$HHH1Hx HHs{Ƅ$E11E1D$@`1E1HDŽ$HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ BfH;YH;L;XH;y6$LVH\$XHtHx HH0Ix HI,MtIx HI#H|$Hx HHHD$@H[]A\A]A^A_LL$H$L$L$L$h0L$H$L$L$L$RLL$H$L$L$0L$H$L$L$HL$H$L$L$/L$H$L$L$LL$H$L$x/L$H$L$HL$L$@/L$L$HL$L$/L$L$LL$.L$L.L.H.H.H.H.Hp.H`.+S.H=_qH$IHYH5\HHD$@2LT$@HI|YIx HIAH1HDŽ$HD$`H!HD$hH9E9^HD$8LL$@HDŽ$PH$@H$H*LL$@HH$I3OHvZHPtHt$hHT$`LHH$L$PLL$pHL,HHD$@H$LL$pHDŽ$Ix HIBI$xHI$xBHDŽ$HExHHEcBH|$@mNHT$8Hx HHEHDŽ$Ƅ$HDŽ$HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$$H\$@H5KH{ D$8tH\$@H$1HH=[fHnc)$@,HH HDŽ$H#nH|$@Hx HHK_Hl$@ff.fH5Q\L聽HHQH5c1HDÅQSHExHHE;<D$E&H5[H|$@HHbH5b1HÅQdHExHHE|Zm&H5[LƼHHrbH5kbHÅcHExHHEk&H=[HDŽ$mH$IHHwH5[WHCH$HHuxI$xHI$_kH5WL H$HHyHE1HH9CxfInLD$8UHH$HT$XHDŽ$P)$@&LD$8HIwH oVHT$XH$HHtH$LHLD$8H$PHH?(H|$8HD$XHEHDŽ$xHHEjoHDŽ$I$xHI$UoHx HHNoH|$XHDŽ$!~Ht$@L3HHH58GH|$XH3HExHHE^uH|$XD$8nHD$@H|$@HD$8*IHD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ HD$Ƅ$D$@Xf.H& Ƅ$E11E1D$@1E1HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0fDHYIL$IT$ttI$H$xHI$j6IH$`E11fDHL$PD$0tH=WWiH$IH0RH5THHD$8 LT$8HHD$0SIx HI9fHD$$X~D$PH$P`])$@"H$HHFHXYHPtHD$HHgRH$XHS tHl$0H$@H=THHHH$H$`i%H|$PHD$@H$bHExHHE\:Hx HHW:H|$@HDŽ$EHDŽ$Ƅ$HDŽ$HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$PHD$0H8,H|$ &LL$(@H)D$ foD$zHLD$ LD$ fHLD$(YfDHH=T,gHHWH5RH衵H$IH9SHExHHE9H5`PH|$fHH8VH 1HI9L$WH HBH$@H$@H4H$LH$PH$H ;HHD$(?HELL$(HDŽ$xHHEDI$xHI$DHDŽ$MVHH5I9HD$@I9H$)'L; W'LLL$(t!LL$(>mIx HIGH=BSeHHlnH5VHH$HHmHExHHE cH=RIExHIErH$H$Hx HHqH$Ld$pH$L$HD$h3fD[H=H6H$H$HH$H$tMMIAH;x&AtAMMM{&H=2LLL$LL$HH$HAIx HIHH$HHT$H$HHDŽ$@H8HT$IHx HHHDŽ$MIQH@!A@{1LL$ LL$H{1LHLL$HD$ 7HL$ LL$IHx HHDM:IJML@XJH;O+7HCHt @;@K;tHLLD$0LL$ HT$(LT$ Ht$H|$((LD$0LL$ LLL$1LL$Ix HIID$@]E1LL$#H|$I1ID$hHDŽ$LHM L;dW MJAtAMB(Mt AtAH$(H$ LLD$(H$LL$ LT$HLT$LL$ LD$(x HHI|$hLLLH$(H$ LH$VL$L$HD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ HD$Ƅ$D$@c+fL,LHDŽ$HD$XE111HD$xE11E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ Ƅ$D$@cfHt$HӵHHƵH鹵HDŽ$E1E1HD$XE1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ Ƅ$D$@k/H;mHϺHD$ HHt=H;H;\ H;=w II$xHI$D:Ƅ$E11E1D$@d1E1HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ HD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ Ƅ$D$@_T镸Ƅ$E11E1D$@i1E1HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ Ƅ$E11E1D$@k1E1HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ I;HI.L`!AL$tAH=n5HDŽ$GH$H0H5U/HHD$8LD$8HH$I3AIx HI/H=5LT$8JGLT$8HH$/H52HHD$8L$訕LD$8L$HHDIx HI3HDŽ$E1HHHD$8I9B@FHD$@L$H$HDŽ$PL$@H$H]L$HH$H?FH5/H$HptHt$8H$LHL$HH$PLHD$8HEHDŽ$L\$8L$xHHE{4Hx HH)4HDŽ$Ix HI04HDŽ$MDL$HL\$8HDŽ$PL$@JL\$8HH$HRFH:-HPtHD$XH$HHH=L6L$H$PLHD$8ڙL$LL$8HDŽ$Ix HI8Hx HH8HDŽ$MJHD$XHD$@LL$@HD$8Ix HIuLff.@E1E1E1fHDŽ$E11HD$XE11E1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ Ƅ$D$@k2H;3LǺLD$(LD$(HHD$ H2RHD$@H9H$H9,H;5t,HLD$(HLD$(HExHHEV8Ƅ$E111D$@_E11E1HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ fME1_DHDŽ$E11f.HHD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ Ƅ$D$@dL鄹HH黮HLD$(fDLxLh頱HD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(Ƅ$D$@dLE11E1L|$HE11E1Ƅ$E11HDŽ$D$@L_HR(HD$XE1E1E1HDŽ$HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(Ƅ$D$@kHXL`H$tA$tA$HD$ L$HxH|$ HH&Ld$ H$@qL:Ht$ HبHH˨H龨Ƅ$E11E1D$@_1E11HDŽ$E1HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ BH>LD$(LL$ LT$ApiH=1tE11E11HDŽ$[LeHUA$L$tA$tHExHHE(HH$@רLHDŽ$E1HH$E11E1HD$X1E1HDŽ$HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0L|$HƄ$D$@HD$(HkLcEH$tEA$tA$Hx HH)H$L飳LHT$pHT$HLL$YLL$CLcHSA$L$tA$tHH$x HH+HH$@H$E11E1HD$X1E1HDŽ$HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0L|$HƄ$D$@HD$(|LHD$hHe<H|$HD$`H%$PW"H.HD$xD$0tH|$xH.HD$xH\$`H'H|$h7IHHHHD$0LL$0HHHHt$xHPLL$0HH$I NHExHHE=LLϺLT$8LL$0LL$0LT$8HHtPIx HI?Ix HI=HD$@HDŽ$H9H$H9-H;--HÅ\HExHHE=H(/fɿGH*L$`fHD$8HEHl$PH5"HXHHD$0H$HEHH5h"HH<HH9GJLgHoA$L$tA$EtEHx HHv:H$@HL$@HDŽ$H LHD$@HEHT$@HDŽ$xHHE#:H<Hx HH:+HL$`Ht$hHHH)HHNHT$PHHHhH9MH|$@IHLl$PI1L1E1H.K4IHH0K IL9uH|$@Ll$PtH\$0H501HNHHxHt$0HHg9HDŽ$HoPHExHHE:H|$LzH$HOHD$0E1E11H$H1jH|$HBHH$HAXAYLT$04OIx HI@HDŽ$EtEH$@1H=!HHH$@HDŽ$HH$HHD$@HExHHE?H|$@HDŽ$NH|$8Hx HH?1H$HT$HH5%H|$@g~H$HH;5 ш$gHD$@1E11D$@E11E1HD$8Ht$XHt$pHt$hHt$`H$H$H$Ht$PHt$0fH;Y<LLL$(1LL$(HHD$ H<H;H;H;HHLL$(HbLL$(HExHHE?ɰ1Ƅ$E11H$1E11D$@dHD$XHD$xHD$pHD$hHD$`H$H$H$HD$8HD$PHD$0HD$HHD$(HD$ ܵLLL$LL$魢LtLgLR8I<$H5LL$hLL$E1MD$@]qHLLHT$ HL$HL$HT$ uH$HD$(HD$XE1E11HDŽ$E1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0Ƅ$D$@zHD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HƄ$D$@p׳ML$I\$AtAtI$H$xHI$&Iܺ1酰Ht$@D$8s Ht$8HD$XHl$0E11E1HDŽ$1HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PƄ$D$@вH閠HD$(1E11HDŽ$E1HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$HD$(Ƅ$D$@tH5 HxHD$(E11E1H$E111HD$E1Ƅ$D$@rLd$XLd$xLd$pLd$hLd$`L$L$L$Ld$8Ld$PLd$0Ld$HLd$(vL%MLLL$@LL$@ Hl$0E11E1HDŽ$1HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PƄ$D$@鿰H|$HdLL$8LLL$8MLL$8)HD$(1E11Ƅ$E1HD$HDŽ$D$@tHD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(ٯH|$0HyLl{H_鐽LRKHEHD$XE111HD$xE1E11HDŽ$E1HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ Ƅ$D$@X邮HD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8Ƅ$D$@GHH$HHDŽ$@H$HHH8LHD$HH$H<HH1ɳHx HH'HD$(E11E1Ƅ$1E1HDŽ$HD$HDŽ$D$@uHD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0Ƅ$D$@邬H;T6LPXI|D$@^dL ]HRHH$P%HHD$xD$0H=HDŽ$(*IH@H5HHD$0xLL$0HH$IO@Ix HI7H=LT$0)LT$0HITLH5HLT$8HD$00xLL$0LT$8HH$HKIx HIX7H1HI9BEGLT$0HT$@Ht$8HDŽ$PH$@L$HLT$0HI@H Ht$8HT$@HHtH$@LLLT$0HH$PH$MHHD$8}HELT$0HDŽ$xHHE@HDŽ$I$xHI$@Ix HI.>HD$8HDŽ$H@f H@H*D$hYHD$@f/,H,HH=HH HHH HHH HHH HHH HH H H$HX'IH"NH5HHD$0#vLL$0HH$IMIx HIN=H>IHLHHD$0$LL$0HH$HNH='LL$0HIMH5HHD$pL$uL\$pL$HHD$0H$MIx HILH51ɸI9t$OH$HƺH$@H$H)HL$0H?H H4LL$HLL$pH$XH$PH$H{LL$p1H$Ix HIMHx HHzMHL$01H$Hx HHdM1H$I$xHI$QM1H$HXMH$14H;-DŽ$ KH$HH$0H$VH$@L$HH$QMH$NHExHHELH\$PH5HV~H$H;5wHD$0H$$HSNHH5~H$HHIHH9CNLCHkAL$tAEtEHH$x HHCH1HH1HH?HH$HH H$LD$pL$@H4H|$pHxH1H$x HHB1H$HHHExHHEmH%Ht$hH$HD$`HH)H9HkD$`H|$hL$IHT$@H$HHHD$pHD$PHXLE111HHDH9HH!I4HHuHHT$pJIL9l$`uL$$P>H$)H\$0H51HpH$HHx HH=1H$HXTHExHHE=1H$HD$8HD$@HD$PHD$0Hl$PLL$0E1E1Ƅ$1HDŽ$D$@HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0隣11E1Ƅ$E1E11HDŽ$D$@HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HLL$(LLL$(LL$(LT$0Ƅ$1E11HDŽ$E1D$@HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8fHD$(1E11HDŽ$E1HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$HD$(Ƅ$D$@v鳡HbƄ$E11E1D$@e1E1HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$ LH1H$HHDŽ$HDŽ$@H$HHH8H$HHR0H1dHExHHEƄ$E11E1D$@1E1HDŽ$HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0џE1LxRHD$(1E11HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$HD$(Ƅ$D$@v HD$@E1E11HD$XH$E1HD$8D$@H鶾HD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0Ƅ$D$@2H铖HHD$X1E11HDŽ$E1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$Ƅ$D$@霝H|$ HHHLL$()LL$(ۗLHDŽ$̅H鱌HD$@E1E11D$@H$E1HD$8HD$XHH$HHDŽ$@H$HHH8HH|H1螢HgHHRHD$(E11E1Ƅ$1E1HD$HDŽ$D$@wHD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(HD$XE11E1HDŽ$HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$Ƅ$D$@H7H$HHDŽ$HDŽ$@H$HH@H8xH$HH .H1HExHHEGƄ$E11E1D$@1E1HDŽ$HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0g1LLL$8 LL$8}H|$HLL$8GLJZLLT$8LT$8]H t H HT$xƄ$E11E1HDŽ$D$@HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$dH۹E1HD$@L1E1HD$X1E1HD$8D$@Hl$PE11E1HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0Ƅ$D$@鍘Ht$ HHHَHLD$(LD$(ŽHD$(E11E1HD$X1E1HDŽ$HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$HD$(Ƅ$D$@y釗1ffA.AEHl$PE11E1HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PƄ$D$@HHT$(HT$(LvHD$(E11E1HD$X1E11HDŽ$E1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HD$(Ƅ$D$@yЕI<$H5 LD$ LL$LL$LD$ 1HLD$0LT$(HT$ LL$LL$HT$ HLT$(LD$0HZLLT$8[LT$8HIwHD$XE1E11HDŽ$E1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(Ƅ$D$@mHH]LeH$tA$tA$HExHHE3HD$hLHD$`qI\$Il$H$tEtEI$H$xHI$HI1DHEHD$(E11E1Ƅ$1E1HD$HDŽ$D$@yHD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(jHL$LT$8 L$LT$8LL\$8L\$8HL$LT$8L$LT$8^Ht$8HD$X銓HD$XE111HDŽ$E1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0Ƅ$D$@[HD$XE111HD$xE1E1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(Ƅ$D$@m_1ffA.@EB髠HHT$ 0HT$ I\$IT$H$ttI$H$xHI$I1鮨Ƅ$E11E1D$@m1E1HDŽ$HD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(rLLT$LT$L ƁHD$XE1E11HDŽ$HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0Ƅ$D$@鹏LLT$cLT$鼀HD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(Ƅ$D$@dH.H$HHDŽ$@H$HHýH8HHYH1腔HDHH/HD$(1E11Ƅ$E11E1HD$1H$D$@zHL$XHL$xHL$pHL$hHL$`H$H$H$HL$8HL$PHL$0HL$HHL$(HL!IH:tHH!IH:uL*LhLLL$8-HLL$8mLL$8*HLT$ VLT$ LL$ѻH|$ =~HD$@E1E11HD$XH$E1HD$8D$@5HD$XE1E11HDŽ$E1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PƄ$D$@鿌LLL$(iLL$( HD$(E11E1HD$X1E1HDŽ$HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$HD$(Ƅ$D$@{ًLLT$蜿LT$HD$@E1E11D$@H$E1HD$8HD$X鏋H]LeH$tA$tA$HExHHEL1ȪH HD$(E11E1Ƅ$1E1HD$HDŽ$D$@wHD$XHD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HHD$(韊HD$XE111HD$xE1E1HDŽ$HD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0Ƅ$D$@1Ƅ$E11H$1E1E1HD$X1E1HD$xHD$pHD$hHD$`H$H$H$HD$8HD$PHD$0D$@GƄ$E11E1HDŽ$1D$@HD$XE11E1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0騈钤L蜼H菼LT$龫HLT$xLT$ǫHD$(M1E1HD$X1E11HDŽ$E1HD$xHD$pHD$hHD$`HDŽ$HDŽ$HDŽ$HD$8HD$PHD$0HD$HD$(Ƅ$D$@{鸇L1HD$@E11E1HD$XHD$8D$@馇H|$ 腻HD$(1E11Ƅ$E11E1HD$1H$D$@{HL$XHL$xHL$pHL$hHL$`H$H$H$HL$8HL$PHL$0HL$HHL$(GI<$H51LL$LT$ LL$LD$ 1E1E1HD$8HE11Ƅ$HD$1H$D$@uHS1H$HH$@H$HHH8HHH1tHHH1E1Ƅ$E1L$1E11D$@E1H\$XH\$xH\$pH\$hH\$`H$H$H$H\$8H\$PH\$0H|$Hù)HD$(1E1E1Ƅ$1E11HD$L$D$@vH\$XH\$xH\$pH\$hH\$`H$H$H$H\$8H\$PH\$0H\$HH\$(釅1Ƅ$E11H$E11D$@1H$HH$@H|H$HH-H8eHH H1H HH HD$(E11E1Ƅ$1E1HD$1H$1D$@|HD$XHD$xHD$pHD$hHD$`H$H$H$HD$8HD$PHD$0HD$HHD$(~L-1Ƅ$E11H$1E11HD$XE1HD$xHD$pHD$hHD$`H$H$H$HD$PHD$0D$@H跷LL袷锔H蕷H舷UHD$(1E1E1L$E11E1H\$X1H\$xH\$pH\$hH\$`H$H$H$H\$8H\$PH\$0H\$HHD$Ld$(Ƅ$D$@}IHD$811E1H$E11E1H|$X1H|$xH|$pH|$hH|$`H$H$H$H|$PH|$0HD$LD$8Ƅ$D$@т1L$E1E1HD$XHD$@1E1D$@H$HD$8L$CHt$ D$(tH\$ QE1E1HD$@LE11D$@1E1HD$8HD$XMbIZA$L$tA$tIH$x HI1IںHt$8jIu11Ƅ$1H$1E11HD$XHD$xHD$pHD$hHD$`H$H$H$HD$PHD$0HD$8D$@HD$HL$8oLLT$(LT$(頚 LT$H@LG1Ƅ$1E1H$11HD$XHD$xHD$pHD$hHD$`H$H$H$HD$PHD$0HD$8D$@HD$1HD$8ȀLMHD$@E11E1D$@1HD$8HD$XHD$(11E1H$1E11H|$XH|$xH|$pH|$hH|$`H$H$H$H|$8H|$PH|$0H|$HHD$LD$(Ƅ$D$@}H1Ƅ$E11H$1E11D$@E1HD$XHD$xHD$pHD$hHD$`H$H$H$HD$8HD$PHD$0OHBHT$@H0H#HHD$(11E1Ƅ$1E11HD$E1H$D$@zH|$XH|$xH|$pH|$hH|$`H$H$H$H|$8H|$PH|$0H|$HH|$(~H茲鉐L鞐Hr饐HD$@HD$8HD$XHD$@5LL難HLL$(:LL$(r1Ƅ$E11H$1E11HD$XE1HD$xHD$pHD$hHD$`H$H$H$HD$8HD$PHD$0HD$HHD$(D$@`~L谱靣HLL$8LT$0虱LL$8LT$0)H肱HuHhL[MHD$0HH|$0HL$H11Ƅ$1H$E11E1D$@HL$XHL$pHL$hHL$`H$H$H$HL$PHL$0}H|$(LL$Hٗ\H,H?H蜰;HD$81E1E1L$E11H\$XH\$xH\$pH\$hH\$`H$H$H$H\$PH\$0HD$Ld$8Ƅ$D$@l|1HD$(11E1Ƅ$1E11HD$H$D$@yH|$XH|$xH|$pH|$hH|$`H$H$H$H|$8H|$PH|$0H|$HH|$({MbIZA$L$tA$tIH$x HII1LLT$0?LT$0H-HD$(E11E1Ƅ$1E1HD$1H$1D$@|HD$XHD$xHD$pHD$hHD$`H$H$H$HD$8HD$PHD$0HD$HHD$(zL裮虮BL茮HLLL$(mLL$(gHD$81E1E1L$E11E1H\$X1E1H\$xH\$pH\$hH\$`H$H\$PH\$0HD$Ld$8Ƅ$D$@@zE11Ƅ$E1H$E111D$@mLd$XLd$xLd$pLd$hLd$`L$L$L$Ld$8Ld$PLd$0Ld$HLd$(y1Ƅ$E11H$1E11HD$XHD$xHD$pHD$hHD$`H$H$H$HD$8HD$PHD$0HD$HHD$(D$@dUyE11Ƅ$E1H$E11E1LD$XLD$xLD$pLD$hLD$`L$L$L$LD$8LD$PLD$0LD$HLD$(D$@nx1E1Ƅ$E1L$E11E1H\$XH\$xH\$pH\$hH\$`H$H$H$H\$8H\$PH\$0H\$HH\$(D$@ngxHLL$@LL$@H镊H$E111E11E1HD$XHD$@D$@HD$8wH迫B赫iH訫1Ƅ$E11H$1E11D$@E1HD$XHD$xHD$pHD$hHD$`H$H$H$HD$8HD$PHD$0wL2tH|$0I}HLT$PM4SLD$ LL$0M>1HT$(L$LMI\M:f.LLHPHHH9uIH)LЋ t HHI9>I\HHtH\$0HC u8H!~tHx HHHh[]A\A]A^A_DI@H5LHH)HHHEH5HHHHHUeHHUWHwJfLT$HL$HLHH1~H9CHD$HLL\$Ht$p;Ht$L\$LT$t"H\|HHHH5H811H|$0HuHtHxHHH=k֯Hh1[]A\A]A^A_DH{HH8RHL 1AH H5}8XZpHHD$THD$Hh[]A\A]A^A_HD$HIHL0tHHI9aLD$ HT$(H\$0HHHA{HH8jRy"H=1HHUuH4HWLT$L\$Ht$bLLT$ HT$LD$L\$nIE1L\$LLD$HT$HLT$ HH\$MLLD$HT$5tHIH)HD0HEHHt2M9 H0LHuHtƃ ILD$HT$H\$M9Ld$@Hl$8MHD$8HD$@1LHL藅~H|$@HLHt!ff.@H98tHBHHuH{HL$HLLLkH9GuNZ8tHVyHL$@H@H5H81蹆@LD$HT$<묐AWfHHAVfHnAUIATUSHx)D$@~uHD$`fl)D$PHLqHMHJH.HHUHLL$PM<ML$1L\$@H|M%ff.fLLHPHHH9:uIL)L؋ t HHI9H|HYHHH AHHwHL H5tH:PH1"XZH|$@HtHxHHu1|H|$HHtHxHHu| H=1HxH[]A\A]A^A_L\$HL$8LLHxH9GLT$LHD$8LL$H<$O5H<$LL$LT$L\$t33HvHHH5HH1. HD$8IHL@tHHI9HL$@HIHT$HHIEtEH5HIE1H{jAVH=uPjVLPj 53QHHHEHPH+xHHEH|$@HtHx HHH|$HHrHgHHZRzPHtHL$@H5vtHT$H HNtHL$HHtHL$@H uH E1^H ttHL$@HyHVtHHT$HtHL$@vyxHHE H=DL\$LT$LL$H<$HL $yI1L $MHHD$u2htLHL)HD@ID$IHt8I9H0HL $rL $HuL $}L $HtbI9wHD$(Ll$0Ld$(HD$01LLHL $!H\$H|$0LL $HHtH98tHBHHuL $HL$8LLHuH9GLpuXV2L $|HJsHL$0HAH5H81譀HwS~ L $$ff.@AWfHHhAVfHnAUIATUSHx)D$@~oHD$`fl)D$PHLqHMHSH7HHUHLL$PM<ML$1L\$@H|M%ff.fLLHPHHH9:uIL)L؋ t HHI9H|H]HHH oAHHqHL jH5TH:PH1XZH|$@HtHxHHuvH|$HHtHxHHuu H=1HxH[]A\A]A^A_L\$HL$8LLHrH9GLT$LHD$8LL$H<$d/H<$LL$LT$L\$t33HpHHH5HH1~ HD$8IHL@tHHI9LL$@MSH|$HH pHIEtEHH_HIuQAHjRPjRHH=oPj5eHHEHPH<xHHEH|$@HtHx HHH|$HHnHcHHV.tLLAtALL$@H ptHL$HH HNtHL$HHtHL$@L jAuH E1TL JAtALL$@HsH~tLH|$HAtALL$@H \ohRsxHHE H=?JL\$LT$LL$H<$HL $sI1L $MHHD$u5k@tLHL)HD@ID$IHt8I9H0HL $:}L $HuL $wL $HtJI9_HD$(Ll$0Ld$(HD$01LLHL $ay Ht$H|$0LL $HHt"ff.DH98tHBHHuL $HL$8LLHnH9GL8uX,L $tH mHL$0H H5WH81mzhHqH>L $ff.@AWfHH(AVfHnAUIATUSHx)D$@~_iHD$`fl)D$PHLqHMHSH7HHUHLL$PM<ML$1L\$@H|M%ff.fLLHPHHH9:uIL)L؋ t HHI9H|H]HHH /AHHfkHL *H5H:PH1xXZH|$@HtHxHHuoH|$HHtHxHHuoH=1轞HxH[]A\A]A^A_L\$HL$8LLHIlH9GLT$L HD$8LL$H<$d)H<$LL$LT$L\$t33HljHHH5HH1w HD$8IHL@tHHI9LL$@MSH|$HH jHIEtEHHHIuQAHjRPjRHH=jPj5Ө%HHEHPH<xHHEH|$@HtHx HHH|$HHnHcHHVmLLAtALL$@H itHL$HH HNtHL$HHtHL$@L *AuH E1TL AtALL$@HMmH~tLH|$HAtALL$@H ihmxHHEH=/ L\$LT$LL$H<$HL $LmI1L $MHHD$u5k@tLHL)HD@ID$IHt8I9H0HL $vL $HuL $hqL $HtJI9_HD$(Ll$0Ld$(HD$01LLHL $!s Ht$H|$0LL $HHt"ff.DH98tHBHHuL $HL$8LLHhH9GL\uX%L $tHfHL$0H-H5H81-thHHkHL $ff.@AWAVAUIATIUSHHHH-fH9H$LCHo)$o@)$o@ )$o@0)$o@@)$o@P)$o@`)$o@p)$o)$ o)$0o)$@o)$Po)$`H9=HHBHIoH5֡L)$po@)$o@ )$o@0)$o@@)$o@P)$o@`)$o@p)$o)$o)$o)$o)$ oIEH)$0HIMLIEIEHHAUH)HHcAH9AIExHIEHCH5HHH<IMIE IEHHAUH)HHcЉH9IExHIEHA$Dfo$$fo$ $fo$0$fo$@$fo$P$fo$`$ fo$p$0fo$$@fo$$Pfo$$`fo$$pfo$$fo$$fo$@$fo$PD$fo$`D$ fo$pD$0fo$D$@fo$D$Pfo$D$`fo$D$pfo$$fo$$fo$$fo$$fo$$HĠEtEHHH[]A\A]A^A_f.HH)HHHLTkHcAH9#HukHuDHaH5H8 gjHAHH)HHHLjHcЉH93HujHufDH)aH5H8fujHu`fDAEAUHH HcAH9J-DAEAUHH HHcЉH9fDIExHIEbH=>ɥ1ffLdLdoAEAUHH HHcAH9f.HHI}H9]HXHHqH~1H;T/HH9uHe_HJH5҉HWH81lff.fDH5H/ffDAEAUHH HcЉH9IfDmILLpclIH]H5H8rdMHf.HH9*HuH;t_fH@`HHHLIHHK_I9Gu5DLaAIHILbLIHuH@`HHHLIHtH^I9Gu0LaIHILbLIHu@gHH3]H5H8cfHgH ]H5iH8bLfDAWfHAVfHnHAUfHnATIUHSH)D$`)D$p~YH|$HDŽ$fl)$~wYfl)$Ht&LIIM~HHlHcHH H|Ml$AEtAELl$xIL$H $D$tH$M|$HD$pAtAM4$L|$hAtALt$`MpH  H(hE111HALHHtEHExHHE4H H(hE111HALHHtHx HH H\ L(hH<$E11HA1AIHTtA$I$xHI$ C;E L5H=IVLdIH.tAIGH5OLHH~IIMbx HIL=#H=|IWL@dIHCtAIBL$LH5HH(L$IMFIx HI-H#YI9AH$LHHDŽ$H$H$L $W}L<$IIx HIMHXI9FH$LL$HL$HDŽ$|L$MIIx HIIx HIML;=YL;=$Yu L;=vY DIx HIJ EnL5xH=тIVLbIHtAIGH54LHHIIMx HI H=L$OL$HIH@H5HHTLL$IIM x#HIuLLT$L $n\LT$L $HWI9A-H$LHLT$HDŽ$H$L$L $5{L<$LT$IIxHIuLL$[L$M"HVI9B H$LHHDŽ$L$L$zL$IIx HIIx HIML;=WAL;=VD L;=@W LbaAƅIx HIEH=3~IHBH5 HIIMx HIH=7HvH5HH$L $HIIx HIjHUH$E1HI9GLL$LD$H$L$LyH|$H$~IL$x HIMHTH$E1HI9FLL$L$L$LD$xH|$I L$Ix HIIx HIML;=UAL;=UD?L;=OU2Lq_AƅIx HI3EHD$LAtAL LILHt$HH=ZTjAQHATjAQSj{IH@HIx HIHE HHE Hx HHL&H tAHaHSHL fH8UHH5E{1`XZH|$`HtHx HH2H|$hHtHx HH H|$pHtHx HH H|$xHtHx HH7 H=P1HĸH[]A\A]A^A_HVtHT$xIT$tHT$pIT$tHT$hI$tHT$`IRHH$L, IL|$`1MuHl$0MLMIK\Mtd@LL%ff.ff.fHPHHt3H9uJTH)L؋ t IHM9$K\L\$ HL$XLHHQSH9CLL$LͬHD$XH4$H4$LL$L\$ HzQHHH5xHH1^E1#H AUUUUIA xHI@DH=>豄HtHExHHEHt!HE1HHLMtI$xHI$H|$`HtHx HHH|$hHtHx HHHH|$pHtHx HH4H|$xH,H!HHT LTHD$XJTHL`tIHM9xHl$0Ll$xMLt$`H>H|`tLHEHt,H|`t7HEHtH|`t%HHtH|`tHD$pL|$hH$HHMOHL AH H8UA;D$g_LYf.}fI~zGH<$Yf.}$zBLYf.}f(z?fInf/Uf/ $vf.4$zHD$LAtAfInL$TVL$HIf(LL$4VLL$HIc$VLL$HIHt$HLLH~5NAHH=#NjPARLT$0jPAVjPLL$PVHPL $LT$HI~ Ix HIIx HIIx HIIHIzLRmL- NAEtAELl$xrHQHQ L-MAEtAELl$x[LQ;QQLQ[Qo1/HwQHjQE11A{ L}WAƅA MIHI{LQnLQLL$PL$ MJfInMBAfInflƃtAAtAIx HI` LǺLL$H$L$)$oLL$L$IIHILZPL$E1A| A} L\$ LL$H4$LPLHt$ LL$L$PI]E1L$MLL$Ht$ HHL,$MMIH\$HL:tLIH)HD`ID$IHL9~H0LZHuTHt2E.LL $IOL $LL$4OL$LL $OL $dRLYIHA RLNGHaHHTHLNrHNHG,LNLT$L $.LL$NL$-LL$nNL$,SHA gSHA D$HSL$HA nH{H$HDŽ$H$H$IH8\DIHt H1IExHIEA A k)WIz\QLԕIHIpHIcLXMVHzH$HDŽ$H$HiHH8CIHt,H1/IxHA IULLA BHzH$HDŽ$H$HGH80CIHt,H1IxHA IL|LA IHLMH\$L,$MM9Ld$PHl$HMIHD$HHD$P1LHL>SH|$PHLHt(ff.ff.H98tHBHHuHHHL$XLLL)H9Gt}HFHL$PHH5?nH81UTT UL$IIx HIA Ix HIA fDMIkwELKIA x HItIIx HIt'MtIxHIuLL$JL$LL$JL$LL$JL$IE1A yLL$rJL$LaJMVfInMNAfInflƃtAAtAIx HILϺLT$ H$LD$L $)$iLT$ L $ILD$IHILLL$L$ILL$L$HI#MQfHnMyAfInflƃtAAtAIx HIH$LL$H$)$ShL$IIHILL$IL$LIA HZvH$HDŽ$H$HCH8/?IHt,H1IxHA IL{HA ;LL賐IH8A A QI8L,HdMAfHnMyAfInflƃtAAtAIx HIqH$LL$LT$L$)$fL$LT$IIHILL$GL$wx HII A fLL$PL$IIA HIzLGmLGLFL$LFLFDLFKLFA }A IA x HIMIHILbFLL$A KFL$LL$)D$1FfoD$L$HsH$HDŽ$H$H8AH8pI1Ll$ LL$PMI\Mf.LL)ff.ff.fHPHHwH9uIH)Lȋ t HHI9sI\H?HHiM $AtAH\LL$PtHD$XH =tHL$`HΐItHIHH=F=QAHLj5ym5j5{Pj5{HHHPHx HH+H|$PHtHx HH$H|$XHtHx HHH|$`HHHH@@LL$HL$HLHHi=H9CHD$HLLT$Ht$Ht$LT$LL$t"H;HHH5bH81HH|$PHtHx HHH|$XHtHx HHH|$`HtHx HHlH=1nHĘH[]A\A]A^A_1ID$tM $HD$XAtALL$PHH n;H mAL H~H LAL [H:HH8RHH5/b1GXZ ?8?>HuHNtHL$`IL$tHL$X It$tHt$`HD$HIHLPtHHI9Ll$ HT$(HD$XHHt$`HLL$PHH|Pt3HJHH|PHHH|PH^9HL QAH H8RH===H 91t1HL$`HQHH|tHD$X)x HHH=PlV)LL$LT$Ht$LHt$ HT$LT$L\$=IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$2tLIH)HDPID$IHt0L9H0LNGHuAHtqH}IMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHL\C H|$@HLHt&ff.fH98tHBHHuH8HL$HLLL]H9Gu[tH7HL$@H2H5c^H81yD{@Ll$HT$H;?*@AWfHmAVfHnAUIATIUSH)$~3H|$HDŽ$fl)$HLIIMH H H IKJL$I."IL$L21Ld$(LMMIMI\M ff.@LLHPHH H9uIH)LЋ t HHI9 I\IF I MuAtAM}L$ABAL$HD$`HD$hHD$pHD$xHDŽ$HDŽ$HDŽ$HDŽ$tAAtALK?HD$ HpHU_IH9t@HXH) HqH_ 1ff.HH9C H;TuHH5mLH %ILl$`M$IEH5uLHH&HD$HHt$hIEH%xHIE!HD$`HL$H; 4H; $4u H; v4HL$Hx HH HD$h%H=dp跂HH#H=Tp蟂IH#H5oHHD$H$H(IExHIEvHy2HL$1H$HHD$8H9A)Ld$H$L$LVHHD$pII$HD$xxHI$HDŽ$M"HD$8H$1HH9E*HH$L$L$%VHHD$HD$hSIEHD$`xHIEuL6HD$pHExHHEuH6H|$Q"IxHIuL6IHn\HD$hH98H5=nLmHD$hIH&H5 uH(IE&xHIEHD$hH[IH9t;HXH HqH 1fDHH9 H9TuH5pLHD$`IHK&H5MtH9R!H@H;2+(A]IExHIEt!HD$`HD$hH=mmH$HH+H5pH%HD$xIH{+Hx HH<%H/1HDŽ$H$HHD$8I9E1HksLH$L$H$HD$H$SHHD$`HIEHD$hxHIE$HD$xH*Ix HI"%HD$`H=Ql~HD$hIH0H5,hH H$HH0IExHIE}'H5K[HS+HD$hIH2.HD$8H$E1HH9E,.HL$L$RLHD$HD$`IEHD$xxHIE%HD$hHExHHEn%H|$HDŽ$-L|$H5rgHD$`IHH1IH5gHD$hHH,HD$8H9G1LwLgAL$tAA$tA$HLd$hx HH,H$LL$HDŽ$dQLHD$`II$HDŽ$xHI$&HD$hM#,IExHIEP)HD$`\0H$H$HxhH$HD$(H~7H1HHHt$Hl$HHHNHL$ H|$ H8IH9^H4HD$`IH05HD$hIH(L% -LhA$tA$Mf LH(HD$`IHl(Ix HI*H|$LLHD$h|./IExHIE*H4HD$`IHU/4HD$hIH[*LhA$tA$Mf LH'HD$`IH**Ix HI/L3HD$hIH)r4H$IH/LpA$tA$Mg LLHHD$h-/Ix HIG/HDŽ$IExHIE,H2HD$`IHs03H$IHn0LhA$tA$Mg HT$LHHD$`,/Ix HI,HDŽ$HHHl$H$E1E1BH$L$-H$L$H5)V1HGH$IHExHHE.M.I${'HI$m'L[.`'fDH TAL MH|)HH8ATHH5%Q16_AXH$HtHx HHjH$HtHx HH?H=pE1\HL[]A\A]A^A_Hq*LT$ LHH9CLL$H$LHDŽ$Ht$Ht$LL$LT$ .H(HHH5OH815HVtH$IUtH$M}AAL5~kL$AtAAL$H AL {W,{,H$IHĠtHHI9Ld$(L$Mt^L$M JtIIt JtAHK'HL >~AH ~H8ATL5jAtAL$놸L$HD$`HD$hHD$pHD$xHDŽ$HDŽ$HDŽ$HDŽ$HH9HuH;'tH=\uHD$hHHNHLH,ÃHExHHEHD$hHD$`H=vgAuHD$HH$HL'H5IgHHD$xIH'Hx HHIH51btH$HH&H@H;'x&tH\$pH\$Hx HHHt$HX~YH$fHnF fl)$@u tEHD$H$H@HHD$( H$HH%HL$Hx HHH$E1HD$pII9E''Hl$HDŽ$L$HH$H$k-HD$HD$pH&HdH gHPtH$HL$LLH,.LHD$hH HHD$`x HHHt$HDŽ$Hx HHHD$pIExHIEHD$xH%HExHHEHD$hH5fHL$H9t+HAH;$`HAHHD$HӃHD$H5C\HHD$H HD$H5[HD$xHhHD$pHHBH("H9G"LwLoALt$xtAAEtAEHLl$px HH@H$LL$HDŽ$/FLHD$hH_IEHD$xxHIEHD$pHHx HHHD$h,%H$H$HxhH$IhHl$ HD$HHHD$ HzLt$H|$ H-11LHIdHD$hIH_11HLDHD$pHH- IGL- #L9HHpH5 HyHL$(% H(HH HL$(LHD$0LQHt$0Hx HHH! Ix HIoHD$hIGL9jLppM I~ Lp(IH$HHLAVAIExHIEEl$Hx HHVHD$pHH$AH$HDŽ$(H$HDŽ$H\$H5L1H9H$HHxHt$HH&Hl&HE>&HHE&H K HL$(D$tLt$Ll$(4H5^L+HD$hIHH;3 H; L;-v L *Å(IExHIEHD$hHHD$(I9;IGH5^HD$0IGHHLILl$hM111LkHHD$IExHIE HD$hH|$AHD$HH HD$HxHt$HHb IGH5VLHH5HHH5XH輻HD$hIHHExHHE* LAHD$@HIExHIE HD$hH=xZlHD$pHH0H5KVH3HD$`HHHx HH> H|$@d%HD$pHHH= ZWlH$IHH5WHĺHD$xIHsI$xHI$ HD$8AE1HDŽ$HH9E"L$L\$HT$PHDŽ$H$%L\$HH$I8H5UHT$PHptL$LHL\$XK4"LT$PL$&H|$XHD$HD$h HLT$Px HHHD$pIx HIHD$xIExHIEHDŽ$HExHHEtHD$`HD$HHD$hHL$(H91HD$H5TLLT$PLpLT$PHHD$hHH51UHLT$PHD$`IHHELT$PxHHEfHD$hL;-L;-. HD$(I9LLT$P%LT$PIExHIEHl$LT$PHD$`H5SHgIHHH5;SH$HHHD$8H9GLgH_LT$PA$Ld$htA$tHH$x HHLֺHL$HDŽ$=LHD$`H軽HHD$hx HH]HDŽ$HHUxHHU?HD$`HD$HH|$@HD$HD$ HXH|$ HD$HHt$0L|$8Ld$@Ll$ IHHHHH|$L$Ht$0LLHL<L:"HLL,"HLL"H)IuLl$ L|$8H5D1LH$HIExHIE;HHExHHEJLt$Ht$(D$tLl$(H#Åj1Ht$Hx HHHT$E1ff.@H|$pHtHx HHeH|$xHtHx HHQMtIExHIE@H$HtHx HHH=_E17KH|$tHL$Hx HHIx HIIx HIH$HtHx HHt\H$HHHHLvYH|$gLZ}PHFKL9RL,Y"LHD$E1FMLt$H$1H|$`'LHD$`H3H=]IHL$xHT$hLHt$pHD$pLl$hHL$xHD$ HL1HL$$H$HH Ld$1HLձHI$xHI$U HExHHE HDŽ$Hy H;H;H;HHAąx HHE( H$H$H$EH|$ HL$иLȸH|$辸I~hHHHL$JHCHD$(D$HL$(Hff.DHH9HuH;Tff.Lt$葭LT$ LL$Ht$rH@hH H@(H LHLLLT$(HT$ LL$L\$dHT$ E1L\$LL$LT$(HHHHLH\$MMHT$MLI=tHIH)HHHEM9HH0L"HuHtH@hH H@(H LHLALH1H}LpDHSLFAtAIGHH8L0HHHv ltIGJH8HHHHHH~IHHD$H5JHZHD$hHH4HD$8H9GLgH_LT$PA$L$tA$tHH\$hx HHLֺHL$HDŽ$"5LHD$`HRHHDŽ$x HHAHD$hH{HUxHHU&HD$`|HD$8HD$HH|$@HD$HD$ HXjH|$ HD$HHt$0L|$HLd$@Ll$ IHHHHH|$LrHL$0LLHL<LHLLHLLH)IuLl$ L|$HH|$8H5O<1LmH$HIExHIEHE1Lt$HD$HHEHHEHUHD$E1HxHIE*HD$`LHD$WILHD.HH!HLxHIELt$E1HD$Lt$E1LIH5A9L HD$1Ll$hLt$MIEx HIEtE1}Lt$1L1IEx HIEtLl$hLHHD$HHHH>H$E1HDŽ$H$H H8HD$HD$hHHH1MHx HHMHD$hE1HD$ZHHl$HD$Lt$E1ULMIHT$H\$MIM9fL$IMHDŽ$HDŽ$H$M1LHLVH$HLHt0ff.ff.H98tHBHHuH LgLLH$H9G3qH+ H$H;gH5u3H81fD+HL$Ht$ LHE13HD$pHD$hHD$xI~hH$0H$H$R1Lt$1Ht$M$fDLt$IHD$3H LT$P\LLT$PLT$PbLLT$PLT$PjHLT$PLT$PuHIExHIE 1Lt$E1HL$L^M Ll$hH:LT$PLLT$P#LT$PLzL2Ll$`MDHD$Lt$#Ll$`M8HD$Lt$#H#IExHIEZ1Lt$E1HT$fLt$E1HD$HD$Ll$`HxHL$HH HD$Lt$01M$ L H Lt$I1L sH HYLiH\$xtAEtAEHt$L$Hx HH Ll$H$H; ~ L HHtQH;W H;hH;- [H-HExHHE| i1Lt$HD$H|$ HHLHLHD$(D HL$(HHHHωD$(k D$(HZ OLM vH]LeH\$`tA$tA$HExHHE{ LH$H H|$ jILt$LݻHD$H LIH HHLA AIEV_Lu ^Hh L[ 8ff.AzfH4H$HD$xHDŽ$H$HH8Ll$`HD$hHHt'H1Hx HH HD$hM E1Lt$.1LT$Ll$`Lt$10H;R6HϺ/ HD$H H;HH;H;5KLt$LhIx HIz 3E1Ll$`Lt$1Ld$-Lt$E1JH5/HLT$PLT$PLt$E11sLt$E1HD$HD$Lt$Hi H\ LO HB L]LeAtAA$tA$HELd$`xHHELE1HLd$HHD$0LHHH|$HHt$0IHHIHUHIHEL)Hu?LHL$Hl$ALϧLǧL迧H|$p赧DH=KKHD$p]7H|$(HL$hHT$`H$1Ll$`HL$hH$LHL$HD$ H1SHD$xIHb1HHuIHExHHEIx HIbHD$xML;%L;%%L;%sL I$ŅxHI$L$L$L$tnH|$ LwH|$mHD$(LLLHxhHLt$IHD$(I$xHI$uLv6 HL$Ht$ LHE1>HDŽ$HD$`HD$hHD$(I1H$H$H$HxhPLt$9L>L1GH$cHL$Hl$ALIHD$Lt$1HEHHEI1=HEۅ'HHEH ILt$E1HD$LuLeALt$xtAA$tA$HEL$xHHELH$|HLd$HHD$0LHHH|$H HL$0IHHIHUHIHEL)HuLLT$8LT$8kHH|IH$E1H/HD$(ND$(IEHIELHT$Lt$Hl$+LLHHH;@HPXHD$HD$pHuLt$E1&Lt$&E1HD$HD$Lt$%Lt$E1%IEH IEE1Lt$ oI߻ImI]EHl$htEtIEH\$xx HIEtsIH$LT$8LT$8LLtHH$E1HLHD$%&LOHH$E1HLt$M1%MeMuA$Ld$`tA$AtAIELt$xxHIEtM1AH|$HIHLt$HxHL$HHHH_s]HE1Hl$L$AHE1Hl$L$AILt$E1OIH$E1HrH1ffA.EE5Lt$E1LBHLt$hHl$AL$LgHAHl$LG H:H-NHL\$L\$E1E1E1AHjILl$`Lt$1HE1Hl$AJ1Lt$E1.Hl$H|$wHExHHEuH1Lt$#HD$HawHE1Hl$E1A ILt$E1H&E1Lt$1LL$HE1Hl$E1A xHE1Hl$A bLl$1HT$H;H5l$HHD$Lt$E1 Ll$`Lt$1-mLt$E1L`Lt$qHIHBHD$(D$Ht$(H5Ht$(D$E1Ll$`Lt$0L\$HbAWfIH 3AVfHnHIAUHXATfHnH8USH)D$`)D$p~\H|$flHDŽ$)$~/H$HDŽ$fl)$Mt*MJM~!HH5Hc HIH5Jc HHp tH$HptHt$xHptHt$pHptHt$hH0tHt$`IzJ H$L$H,L|$`1M,$Lt$(MIMHI\Mt[ff.LLHPHHt3H9uIH)L؋ t HHI9S I\@L\$ HL$XLHHH9CHD$XLH|$`HtHx HHAH|$hHtHx HHKH|$pHtHx HH#H|$xHtHx HHH$HtHx HHCH==E1)HL[]A\A]A^A_HtL%H\$`A$ A$Ld$hLE1E1A$tA$Ld$pLd$MMtEtEL9`H$H=HDŽ$HL$HD$(HD$H L52H=sIVL7IH tAIBLT$ LH5f/HH LT$ IIMh x HI@ H|$LIHv Ix HI H L;gI9HL$ IM9@LLT$0;LT$0AIx HI E Ht$ L;=I9IM9@LAuHD$LAtAH1HHARHD$(HT$LHLT$@8IXZMLT$0BIx HI0 L9d$AJ AHD$HxHt$HH MIx HIMHtHx HHHExHHEH|$`HtHx HHo H|$hHtHx HH[ H|$pHtHx HH H|$xHtHx HH H$HtHiHH\RE1E1HpHt$ʉL$tHt$Ht$pHhUtUHHl$htH|$H\$`L%>MUL-AEtAELl$xMH|`tBIFIt,H|`t0IFItH|`tIItJ|`tL%IHDHL 7CAH CH8AVH5(H=THVHt$0Ht$0HItAIFH5P&LHHIMIx HIUH|$LֺLT$0LT$0IIMx HIH|$ L;5CI9u M9DIx HIK'H|$ L;=I9HM9?LA HD$LAtAHH1HAWHD$(HT$LH/_AXIHR IHILH9GvvHnHL$PH>H5 H81@DAoI_Ht$0H|$00IHA-IHr H5H{IHL Ix HI\ H|$LֺLT$0gLT$0IIMx HIH|$ L;5I9M9LvIx HIHD$ L;=dAI9DuM9tzLHAƃtRHD$LAtAPE1HAWHD$(HHT$LH'"IXZMmAHtAE16EH=,HH5HHD$0zLT$0IIMdx HIzH|$LIHIx HI H|$ L;DI9M9LLT$0LT$0AIx HIEHt$ L;=I9M9LAǃt]HD$LAtAVE1HARHD$(HHT$LHLT$@ _AXHLT$0IAHHtAE1DH=8*IHH5HxIHjIx HIzH|$LֺLT$0aLT$0IIMx HI H|$ L;5I9M9LIx HIHD$ L;=^AI9DM9t}L>AƃtUHD$LAtAAQE1HAWHD$(HHT$LH AZA[IH`AzHtAE1)EH=)HH57HHD$0zwLT$0IIM{x HIH|$LIH*Ix HI!Ht$ L;7I9M9LLT$0LT$0AIx HIEH|$ L;=I9M9LAǃt\HD$LAtAP1EHARHD$(HHT$LHLT$@wZYHLT$0IAAAE14LLT$0ALT$0oDQL&XALLT$0 LT$0AE1AvAE1LygLD$0D$0fALAbAAE1XLLT$0eLT$0vHAE1AE1LHAE1ILD?LFALLT$0LT$0AE1ALAE1LgAWfH AVfHnHhIAUATUSH)$~H|$0flHDŽ$H$HDŽ$)$HHiIHHtH HtH$IKH$JH|$8L$L,1M<$Lt$8L$MHMIHI\M3 ff.LL)ff.ff.fHPHH H9uIH)Lȋ t HHI9t I\I L&A$tA$HL$H$ƒtEЉH$H\$H\$ A$tA$HL$D$tHH=?HSHHH tEHEH5HHHsIMrHExHHE= HI9G H$LHHDŽ$L$L)HD$Hx HH H|$7 I$xHI$ HH9\$ HD$H5H9pIHH)H5,$IGH50LHHIM}H|$H5HGHH*HHHLIIMFx HIHExHHEL; L;r I9 LLT$8LT$8A !Ix HIyEL% H=IT$LIHtAIFH5LHHHIHx HI HAE1IH9EHD$LT$8L$H$HD$HDŽ$H$LT$8HI)H H5 HHtLLHLT$@H$H$J48HD$8jLT$@IMtIx HIIx HIHExHHEMIx HI H9\$ s L= H=iIWL-IHtAH= +HHH@H5l HHHIMHExHHEHI9GHD$H$LMHHDŽ$H$6HIExHIEHFHI9F7HD$ H$LMHH$HDŽ$H$IHExHHE Ix HI MLGAǃIExHIE H5~H|$D$I*HcI HcI 9Ht$0D$ tHL$D$ tHD$f$H$譽HH%HH HPtHt$8H=H$HHPH|$HD$ QXHLT$ x HHMH\$0Ht$81LT$0H=wL$HH$HHWLT$0Ix HIHHEbHHETHIBHtHT$HvL AtALL$@PHI|$tH|$PlHIL$tHL$PIL$tHL$HH5g?H E1H6HL H5H:PH"1蒲XZH A뿅xHHEuH薩 H={qg>L\$LT$LL$H<$HHEHPH6xHHEH|$@HtHx HHH|$HHtHx HHH|$PHHHH@L\$HL$8LLHH9GLT$L`HD$8LL$H<$IH<$LL$LT$L\$t%HĊHHH5HH1&H|$@HtHx HH8H|$HHtHx HH$H|$PHtHx HH H=@1 HĈH[]A\A]A^A_HD$8IHL@tHHI9LL$@MHT$HHtpHt$PH HL Age1IT$tM $HT$HAtALL$@HMH *YHtHT$HvL AtALL$@PHIt$tHt$PlHIL$tHL$PIL$tHL$HH萍;膍m|EH {E1HHL zH5dH:PH1XZH 7A뿅xHHEuHn H=Z%!L\$LT$LL$H<$OH^>34* H HHH~H AH~ H AHzHL H8UHeH51xXZHuHp Ht$xډ$tHt$xH$HH\$x$tHD$xH$H5Ht$p$tHD$pH$NH zH$$tH$H$IH$JTHtIHM9NHl$0L$MpH$HD$pH0H$HD$xHH$HL$HsHtxHEHt^Ht`HEHtJHtLHEHt5Ht7HEHt Ht"HHt HtL$0HH"xHL AH H8UD&H1tH$!H=,H|$x$tHD$xH$H HL$p$tHD$pH$H0xH$$tH$H$I]L{tH{L{L{OH{L{H_H$HDŽ$H$HvH8rHHtH1MHx HHL$$$HD$@1E11HD$`E1E1E1HD$PHD$hHD$XHD$0HD$ H$HD$HHD$ff.MtIx HIFMtIx HI\MtIx HIrHtHx HHxH=萩HL$HtHx HHcHt1HExHHESHH|$HtHt$HHx HH<H4$HtHx HH,HL$ HtHx HHHt$0HtHx HH H\$XHtHx HHHL$hHtHx HHHt$PHtHx HHH\$`HtHx HHH|$@HtHx HHMtIx HIH$Hx HHI$xHI$H$HtHx HHH$HtHx HHmH$HtHx HHVH$HtHx HH?H$HtHx HHH$HlHaHHTxJDLLD$wLD$LwwH|$wLD$ OL$$H"HD$@1E11HD$`E1E1E1HD$PE1HD$hHD$XHD$0HD$ H$HD$HHD$HtHx HHtaMGIH$HHHL$0D$@tH$Hp Ht$ D$@tH$HxH $HHXE1LT$`LT$PLT$XL$1HT<H|$ qT1L $1E1HD$@E1KHD$`MHD$PHD$hHD$XHD$0HD$ 1H$H1L $1E1HD$@E1KHD$`MHD$PHD$hHD$XHD$01H$ LpLhAtAAEtAEHt$hHx HHt1LSYH|$hS1HS}S1H$1E1HT$@E1E1E1HT$`E1PHT$PHT$XHT$0HT$ H$11E1E1HD$@E1E1PHD$`HD$PHD$hHD$XHD$0HD$ H H$E11H$wmH$HH<$H5ׅLHD$PHHD$@tH|$PHx HH5H $Hx HHAH|$P$tHD$PH=LH9xLl$PE1HLL$H)H?L$H H$H4!qLH$UIExHIEH<$teH$E1L\$hHD$`L\$XL\$0L\$ L$KLpLhAtAAEtAEHt$PHx HHt?1<11E1E1H\$@E1E1UH\$`H\$hH\$XH\$0H\$ [H|$P1Q1H"QLQ1E11E1E1Ll$@E1E1TLl$`Ll$PLl$hLl$XLl$0Ll$ O11E1E1H|$@E1E1H|$`H|$PH|$hH|$XH|$0H|$ H<$1H$1E1HD$@E1E1E1HD$`E1THD$hHD$XHD$0HD$ H$IP11L$$1HD$@E1E1E1HD$`E1:HD$PHD$hHD$XHD$0HD$ HD$HH$L$$H11E1E1E1L$$E1HD$@/HD$`HD$PHD$hHD$XHD$0HD$ HD$HH$K1E1E1=IH^OHQOIt1L$$1E1HD$@E1E1E1HD$`18HD$PHD$hHD$XHD$0HD$ 1H$1L$$1E1HD$@E1E1E1HD$`:HD$PHD$hHD$XHD$0HD$ 1H$11L$$1HD$@E1E1MHD$`E1:HD$PHD$hHD$XHD$0HD$HH$11L$$1Ht$@E1E1MHt$`E1Ht$PHt$hHt$XHt$0Ht$ Ht$H:H<$HNIDHt$H?HHt%H\$HMHE1H\$HH|$MH4$HVH:H|$0D$@tHVHJHL$ D$@tHx,H HuH HHH5H81V1H$R1HD$@E1E1E1HD$`E1E1HD$PHD$XHD$0HD$ H$HEHH5mH81U11E1E1HD$@E1E1RHD$`HD$PHD$XHD$0HD$ L<$LyTIHNIx HI IAL $LLAL $HILHD$@AL $LD$@HHD$ LD$0LLL$@ALL$@LD$0HH$LL$0LD$@uDLLD$@LL$0tGIx HI E1LD$0LL$`LL$PLL$XmH$LL$0LD$@L|$ R1E11E1HD$@HD$`HD$PHD$XHD$0HD$ H$O1HD$0Ix HIL$KL$uyH|$0H euH HT$0LD$pE1E1HfFH5H81S1LD$p1HD$@RE1E1HD$`HD$PHD$XHD$0HD$ H$R1E1E1E1H\$Hs1E1E1H\$H1E1E1sJ^LJ1E1E1E1ɾr;LcJ1E1E1rlLLD$p?JLD$pH>GH5E1E1H^H81R1E1E1ɾiH5~H 9H|$ pH=DIHH5HIHyIx HIH|$0H\$0HEH9CHCD$ptLt$0HCE1I9XHLLD$pH$H?H)L$H L$H4hLHJILD$px HIIx HIt?Ht{H|$ HIIHt/HHHHHLzH1E1E1E1E1nHiEHH5#H81Q1E1E1E1E1nIMhIXAEtAEtIx HII111E1E1H\$@E1E1NH\$`H\$PH\$hH\$XH\$0L|$ LxOIHIx HI/IELLAIHeHD$@LALL$@HI5LL$ LHD$@ALD$@LL$ HILL$0LALD$@LL$0HHD$ LL$0LD$@gGLD$@LL$0t;IExHIE1L|$XHt$`Ht$PHt$hLD$0LL$ I11E1E1H\$@NH\$`H\$PH\$hH\$XH\$0HLL$xE1LD$p1LD$p1H|$@LL$xNE1H|$`H|$PH|$hH|$XH|$0H|$ HD$0IExHIELL$ LD$@eFLD$@LL$ H|$0H uH HT$0LL$xE1E1H@H57}LD$pH81pN1LD$p1HT$@LL$xNE1HT$`HT$PHT$hHT$XHT$0HT$ 2E1۾N1E1L\$@E1E1L\$`L\$PL\$hL\$XL\$0L\$ LLL$ LD$@ELL$ LD$@1E1HL$0LLL$ LD$@DLD$@LL$ Hx,H HuH H?H51|H81oME1H\$ N1L\$@E1E1E1L\$`E1E1L\$PL\$hL\$XL\$0L\$ H|$ ODLpLhAtAAEtAEH4$Hx HHt1LDH<$CE1H\$ 1E1Ll$@E1E1E1Ll$`E1MLl$PLl$hLl$XLl$0Ll$ fE11E1E1Ll$@E1E1MLl$`Ll$PLl$hLl$XLl$0L,$HgC]CHPC1L$$1E1HD$@E1E1E1HD$`KHD$PHD$hHD$XHD$0HD$ 1H$$1E1E1L H<$LL$@BLL$@LLLD$@BLD$@LL$BL$Ej1E1E1E1E1LLD$pBLD$phϾY11E1E1HD$@E1E1tH|$ HGL(AUtAUHGHH1HL$0t$@t HD$ H@HpHt$XD$@jcH0=H5bH81J6H|$ AKLt$pH5b~Lm t"H5T{LO{  H5 }H-8 H=y ӋIH H5 sHHIH Ix HIH=AyLL$@臋LL$@HIMH5tHHD$@L$LT$@L$HHIx HIJ H|$Xg H5"rH|$XHL$@L$HL$@L$HI H|$0 Ht$0HL$H$H$@L$H$HHD$@L$ Ix HI H5:E1H9q HƺH|$XL|$@H)H?L$H H$H$HH$H4L$L$^LIIH$L$x HI: Hx HH M H9E1AI9A, fL$L$LD$@L$L$$MCLD$@L$HI H%yHPtHD$xHqH$IU tHD$xLLL)LL$xH$ LH?L$H H$J4lDH$HD$@ILL$xx HI IExHIE Ix HI H|$@Ht$@H;5:H;59H$H9H|$@C|H5PzH|$pYLH=4zHqH5zHHD$prLD$pHIIx HI H57E1I9vH9H$HfInH?iHH4L)$H$H)H [LI-Ix HIGMIEHIE}LqH~HL$pH81L$;1LT$xL$HL$@^HL$pEH|$@2L$H$HL$1L$fAWfHAVAUATUHHjSfHnHH)$~b)H|$flHDŽ$H$HDŽ$)$HLIIMH e HtH HtH$IJHH$L,L$1MuHl$ L$LIMMK\MWff.@LLHPHH'H9uJTH)L؋ t IHM9 K\HH L`A$tA$L$LpAtAL(L$AEtAEL$M* Hp HDŽ$HDŽ$HD$pH(HD$xHDŽ$HDŽ$hE111HALHHHD$ptHx HH HoD{H(hE111HALHD$pHHtEHExHHEd HD$pEu DEE H5gHn6H5ZfHnaH*HD$I9vL-fH=TIUL3HHotHAHL$HH5tbHHHL$IL|$xM{!Hx HHL-AfH=SIUL^3HHtHAHL$HH5cHH6HL$IM!Hx HH$L-@(M9o2H$LHL$L$MLD$HDŽ$pLLD$IHD$pIx HII$xHI$HD$xMALt$xtAIx HIE1HemAvLD$HD$xI~ HHLL 9mIĿ1ALD$HIHD$pHD$I9~MtIx HIIIGH5gLHHHHL$pHHL$HLkHL$HHD$xHHix HHHD$pHx HHHD$H56`HD$xHHD$HHD$H5_H[H$HHL9h.LHHHALL$ptAtHH$x HHEHH$L$LL$0HL$HDŽ$JLL$0HL$HD$xIIx HI[HD$pHx HHHDŽ$MIExHIEHD$xE1^2Ht$HN@H~MKHD$H\$HHl$0LILt$ MI0HLL0I@H0H0I8H02IA~IF D qjI01Qff.ff.ff.ff.fH(H0HH@(HA;v}LHH@HHtˀ8H(HI8AHI(H0HA;v|HI9MH\$HD$Hl$0Lt$ H'Ll$H5P1LH$IIExHt$HH MI$xHI$AtAIx HIIHIM1 @HI%L\$0LHH9CLL$H$L}HDŽ$Ht$rHt$LL$L\$0t%H^#HHA}H5JHH10H$HtHx HHH$HtHx HHH$HtHx HH H=9lE1VHL[]A\A]A^A_@E1HH BzAH"HL FvH8UHY|H5%J1/XZ'p&E&fu;HH0H;0HHH0HH0^HcI RyRff.ff.ff.fDH@(HH(H)0HHcHL@(L;(}IL@(HH(H0}H@0HH@(HH(H+0H0IHHNtH$HHtH$qH xA_H$JTHĠtIHM9Hl$ L$ML$H5Ht:HEHt HĠt"HHt HtL$HHJ HL tAH wH8UH5 Ht$D$tHD$H$IH$9H$H H\$D$tHD$H$IL{*f.{ND$zfLBHD$ HH=]D$dfH=[H*D$ cHHD$I91HD$pH=[=nHD$xIHdH5WH譼HH^Ix HIH=[HL$mHL$HHD$xIH5YHWHL$HIIx HIHD$xE1L-H$HL9iOHHL$L$LD$0L$L$AH|$0H$IIHL$HD$px HI|Hx HHzM-AtAIx HIHbAwHDŽ$I H5VMwIHD$HHD$HrHD$H5L\LL$0HL$LL$0HL$HLLI8HxHMHMJLtHL$I HA L-^IjDHwHlHH_HRIx HItbA Ix HIt8E1L-]H|$xHtHxHHuHL$HL$tLHL$HL$LHL$HL$E1E1A L-1]/L\$0LL$Ht$8HS6LHt$0LL$LT$?I]E1LT$MLL$Ht$0HHH\$MLLl$MIH=tLIH)HID$IH L9LH0LG"HuHtA E1E1L-8\HLD$nLD$L\BLOA E1E1L-[rH*SHHT$HT$L"LD_IHz E1A L-[Ht$Hx HHH|$xHHv1A L-J[ HL$IAA L-&[LD$HjH=5mA HD$pL|$L-ZlLo^HH*A H|$xE1E1L-ZH5;LLD$LD$aIx HI, MA L-iZ@LIHLMH\$Ll$MM9L$MIHDŽ$HDŽ$H$1LHL[CH$HLHt"ff.DH98tHBHHuHL-jLLH$H9GH H$HiH5U7H81kfDHL$I H9E1A L-YIOfInMgfHnHL$pflÃtA$tA$ILd$xx HI H$LHL$0L$LD$)$3HL$0LD$IHHHvHLD$dE1A L-TXHA L-6XHHm1LLV0HILD$fH$HD$H)$72HL$HD$xI.L LLD$LD$LHL$HL$MLLD$0HL$Ht$HxHHuHMA1 L->WE1LvH5R8H"n1A @DE1A- L-VsA- L HL$LHL$rHyA' E1E1L-VHA$ E1E1L-vV1A L-bVHf H=ZhE1*A L-5VA& E1E1L-V{H$A% E1E1L-UzE1A L-UHL$IuH IOHAA IL-ULHL$HL$HHHL$0HL$0LHD$0UL4MHMpAtAAtAILt$px HIMMH$L0A L-TYL-T1A* E1E1H8LLD$0HL$)D$ foD$ LD$0HL$HE1A- L-aTdLALyALD$ptAAtAHx HHLH$eLPFAL9IH$E1H$HD$0HxHHt$0HL-SH!A* E1E1!HD$0HxHt$0HHL-tSL-kS+ L=H$HT$pLHt$xHD$xL|$pH$HD$XHL1HL$PHH|$01HHD$`Ht$0HL$`HHx HHHx HHHH;, H; IHD$H9;HHT$HT$Hx HH.xKrH|$XLH|$P1I~hHT$@H$Ht$HHL$8gI~hHL$8HT$@Ht$HJMI$HIL! ס?fLLL$0HL$ HL$LL$0IH$1H0A L-nQqIA 1E1HɅHHH׉L$w L$HHHT$hY HT$hHL$`*HHT$0= HT$0'HL$PHt$XLH1I~hHL$8Ht$xHT$@Ht$pH$Ht$HHLD$ LD$dH|$0L-}P L|$xMtiIx@HIL LLD$A L-8P{ L|$1H$HA* E1E1H$HE1A* {ff.AWHBAVAUATIUHSHXLvHD$ HD$@HD$HHHHIHMtI;HUtHT$ HCLL$@O<M1L\$ H|MLL)ff.ff.fHPHHOH9:uHL)L؋ t HHI9H|@I~H]ƒtQH\$ tI|$Hx HHI\$Hx HHt#HX1[]A\A]A^A_fH\$ fH fDHHH8AVH~`L [1AH YH5\,XZ1H|$ HuHtHxHH.H=` JHX[]A\A]A^A_fDL\$HL$8LLHH9GLT$L_HD$8LL$H<$bH<$LL$LT$L\$t3FHHH_H5#+HH16HD$8HHL tHHI9H\$ Ht;fNMuHZHH8jHL $vI1L $LHHD$u6tHHL)HD HAHHtiI9\H0HLL$H $H $LL$HuLL$H $ H $LL$Ht L\$LT$LL$H<$I9HD$(Ll$0Ld$(HD$01LLHL $Ht$H|$0LL $HHtH98tHBHHuL $HL$8LLHH9GL]uCL $|Ht$p1HH\$xL|$p HIx HIHHExHHE tHx HH L$$H4$Hx HH H|$`HtHx HH H|$hHHHHH UAL THHHH8UH{YH5f%1 XZH|$`HtHx HHH|$hHtHx HH5H=F11HĘH[]A\A]A^A_fLL$ HL$XLHHH9CLT$LXHD$XH4$ H4$LT$LL$ 4HHHXH5$HH1, HNtHL$hHtHL$`sL(AEtAEL%?Ll$`A$ƒ A$Ld$h0ff.ff.fDHH9dHuH;RH8H=0&HSHIHr tAIBL$LH52HH L$HIH x HI HH9E| Ht$xHLl$xIHHD$pHIx HIW H H-7H=_%HUH#IH tAHCH5z7HHH HH H"I9G Ht$xLHHD$pLd$xH$cLH$HExHHE Hx HHH<$ I$xHI$ HCH56HHH HH H5=H9 HEH;*gHUHE HH}xHHEAH=6HIHH@LT$LH5^5HHwLT$HIHOx HIgHH9EHt$xHH\$xIHL$HD$pII$xHI$c ML;-@L;-2@gL;-ZLŅ3IExHIE LL$p$ H|$0D$tLt$01LH\$xH=7E1HLt$pULArHTH;HExHHE tHHHHH OAL KlxDxHHEH=4FHHH@H5f.HHH IHEM xHHEt H56HHH H4$HpIHEMxHHEA H=3L\$-FL\$HHH5m1H蝔L\$IHEM(xHHE, HI9G2AE1HLT$pLT$ L\$xL\$HDŽ$xL\$LT$ HIUH.HPtLL$pHLLK41L\$8LL$LT$ L$H|$ HL\$8LL$Ix HI< IExHIEd I$xHI$e Ix HIh HH|$0D$tLt$01LHl$xH=4HLt$p`LIeMI$xHI$ H51HIHIH2 H!t H IWLLHIH Ix HI6 IExHIE- H4$HL LIH HHIIM x HI Hx HH HExHHE LI$HI$LHD$XJTHL`tIHM9 Hl$8Ld$hMtXLl$`HH|`tHHtH|`t A$HHL ~JAH .KH8UL%6A$tA$Ld$hH L(Ld$hAEH`E1AvDH=<&HtHx HH}H HE1ۅxHHEM[fHExHHEAvE11Ix HIt_E1MtIx HIt=MNIEBHIE4L'HcLE1LL\$0L\$0HLLLz?HL\$0Av1`E1L\$0$HKDH>Ld$h{H'HHL$HL$Hv蹊LL$ LT$H4$SLLLL$ LT$L$SnIE1L$MLT$LL$ HHH\$MLH,$L7@tLIH)HD`ID$IH[L9H0LHuXHtH|$0$@HY=IHL$$AiE1117H*=HHL$$AeE111AiIx HI HL$$E1E11kf. L$HHXx HHL$$1E1AeLufInLmAfInflƒtAAEtAEHExHHEqHt$pL)D$pHI#HIL HE7@HMfInL}fHnflÃtAtAHExHHELL$pLH $L)D$pkH $HH?HH2H$%L$$AfE1]HP;IHGL$$AkE110kHIE1AkIL$$1@MWfInIOAfInflătAtIx HI-LL$pHϺLT$ LHL$H$)D$pnLT$ HL$H$IHIL HL$E1AnXH-IIH\$H,$MM9dLd$PHl$HMMHD$HHD$P1LHLYH|$PHLHtfDH98tHBHHuHOHL$XLLLHH9G薫tHHL$PHTHH5H81H=I);IHH59#H HIHWx HIuHzH9EAE1HLL$pHLl$pK41LL$H\$xLIHELL$xHHEMHx HHGLLBH;aHIHH;@L;=L;=LAIx HIE_HExHHEE>AfLHH,$HL\$pL\$L^LQLL$H?eH2L\$H LLL$LL$LLL$LL$LLL$LL$LL$$HApBLT$HApE11H7H)$|fo$yHH $)D$afoD$H $xHHEE11AvIL$$E1AvGL}fHnLeAfInflŃtAA$tA$HExHHE"LL$pLL$L)D$p IIHILAxIEx HIEtMhE1E1(LOLHL$L$)D$ 7foD$ HL$L$MWIoAtAEtEIx HIIL$$E1LAv1f.EDAM]IEHAvIRLL\$01rML\$05@DIHI}L;pL.L!LHLHEAz5HI(E1苀lDHkH)D$foD$x HIE1AqAqE11L\~AzAyH9^1ApE1E1AxfAw[HLL$LL$LmLeAEtAEA$tA$HEx HHEtLHLL$2HL$$HE1E1E11E1E1E1AqIAn1E11AvL$$LAvkLL\$ LT$#LT$L\$ #L 8HJE1BfAWfHAVAUATUHH"SfHnHfHnH)$)$~H|$ HDŽ$fl)$~Pfl)$Ht'LIIM~Hw3H jHcHDHHH H &<AHH\HL 8H8UH @H5 1XZH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHdjH=n-E1nHL[]A\A]A^A_HNtH$HHtH$HHtH$HtH$IrH L$I|L$1L*Hl$@L$LLIMIMK\Mt_ff.@LLHPHHt3H9uJTH)L؋ t IHM9aK\HL\$(LHH9CLL$H$L0>HDŽ$Ht$*Ht$LL$L\$(HHH=H5a HH1t1HpHt$ʉL$tHt$H$LpAtAL(L$AEtAEH|$L$HHD$xHDŽ$AEHD$hHD$pHDŽ$tAEtH5LHH\$`蒧jDHx HHHD$`"HD$(L`hfM<$Mt L;=Md$Mu1E1H $H= HQHHL$HL$HHtHGH5H|$HHH|$HH$HHx HHtHH9AH$HHHDŽ$L$HL$LT$HD$`HD$hIx HIHDŽ$H6Hx HH HD$`MtI$xHI$HD$pMtIx HIHD$xHtHExHHEH5"1LHDŽ$xHD$hIHSH;L;=FL;=LŅ%Ix HI1HD$hHHD$hHX'HLHD$HL$HH$HQHx HHCHD$hH;-H;-~v H;-i HADž&HExHHEHDŽ$EL HD$@HHL$pHT$xHxhH$HD$(,H=u,HD$hIH*H@H5dLHHILd$`MIx HIHD$hHI9D$?"H$LHHDŽ$L$MHD$H$Ix HI HD$`H|$cIExHIEH|$H5HGHHI"HH$HK*H5H9gHEH;"HUHE HH }xHHEk$H5H|$yH$HH)H5LH7HD$`HH`'HExHHE"H;HDŽ$AH;DH;/HHT$0LHT$0A)Hx HH!HD$`EH=Z*IH()H5HxHD$hIH%I$xHI$%H5H|$xIH$H E1HI9O)H YHLL$L$H$ILHD$`HD$0w~I$HT$0HDŽ$xHI$$Ix HI|$HD$hHf(H;AH;XD!H;!HHT$0HT$0AM(Hx HH#HD$`EHD$hH=|(IH'H5THcL\$(LL$Ht$RHD$`HD$hLLYfInLQAfInL\$hflÃtAAtAHL$x HHLL\$@H$LT$)$L\$@LT$HD$`IHILHD$@aHD$@LT$H\$`E1LHT$(LL$LT$@HT$(E1LT$LL$HHH HH\$MLHT$HMI<tHIL)HHEHH$ L9 H0L@HuHtH\$`H,1ALiE1E11ALIE/HtH$HDŽ$H$HQH8HD$hIHfH1Ix HIAE1E1E1HD$h1aAE1E11E17HEHHD$`IHH=H5HIH x HIOH~H$HD$`HDŽ$H8H$H$HHExHHEHt*1HHx HHHDŽ$AE1E1E11QH,AE1E1E11-InLl$111E1AHHt$ LT$iHHD$`iH|$HDŽ$iH|$ iL{iLHD$hjiHCHHD$(Hx`HNLgL9HCH IT$A$@@uI$XHHJH1 HH9H;\uHD$(Hx`Lt$(IF`hIFhHT$xL$H\$pH8HHtHx HH MtI$xHI$ HcHXHHKH>M$L9VMuH;MHD$(HT$xL$H\$pH@hH8HHtHx HH MtI$xHI$ HtHx HH Ll$E1E1E11HL2jLl$E111A1E1E1HL$0HH5H胉/tH|$0ɚ;(H5 HVtHH9|$0HL$0H9L$@6HL$H9L$H=IHH5PHHD$P;`LL$PHIIx HIH51HI9wUHL$I4LH$H$HH$HD$PfILL$PHD$`x HI M)L; @L; @Y HD$I9K LLL$PzLL$PbIx HIHDŽ$Ht$HH9FuD$PtL|$H|$(aH$IH5HD$HD$`HHLL$HLLHH$IHIx HIHExHHELHD$`H=xHDŽ$IHdH5H,^IHIx HIH=%LL$kLL$HIH5HLL$P]LL$PHHD$HD$hIx HISH;AE1HI9AOLL$XHT$PHDŽ$L$H$LL$XHHH5.HT$PHptHt$LHL$XLL$PH$K4& LH$IFcHt$LL$PHD$`HL$XHx HHHD$hHx HHIx HIMH|$(HDŽ$H59Li\HH$HD$H|$(IHH|$HHD$PLL$PHIpHT$Hx HHSHDŽ$Ix HIBL9HD$HIx HIHD$I9'ID$H5HHD$:L|$ H5I$fHD$pHHAIH5ufH$IHHI9GMGIWAtAtIH$x HII1HH1L$H?HLD$PH H$I4LH|$PI`Ix HI1H$MPIx HI-H|$ IPt$LL$HLD$PHL$XHT$8Ht$@辿LAÿH51HXZYIHx HH1HD$pMIx HI{AA$tA$HExHHE LIHT$H\$LMM9HD$xHl$xIMHDŽ$L$1LHL\NH$HLHt#ff.fDH98tHBHHuHϼLLLH$H9G ztHH$HH5YH81of.Il$fInMt$EfHnflătEAtAI$Lt$`xHI$kH$L)$JHD$H$HEHHErHeLtHHԾHǾ-LLLL$譾LL$~L蛾7H莾@L聾SLAHLL$(aLL$(EHFHHT$04HT$0H"%H;ָH賾IH&H; AH;D L;5ҹLAIx HIEHExHHEuH芽HDŽ$ELhr^MTLGH:L-LL _HEHLT$@L\$)D$0foD$0LT$@L\$LkM,1 HI9L;duSLsM1 HI9H;|u9L}vAILl$E11E1Ʌ-NHMH\$`E11AL+LH$Hx HH8Ll$E11ALl$E1AAE1E1E11rIEHI L註H5LTA E1E1E11fDHIHPE1L|$`HD$I9uIEHD$HE1E11AE11AE111E1ALHt$0Ht$0VHٺf1L|$IHLd$ IHItH9LLd$ L|$P111E1A"1E11AHL$hLl$IE1fDLHT$0SHT$0mLAHT$0GLAE1E11ALt@H)LHL)D$ϹfoD$}E1JtI9WLGIM9uDMgIoA$Ld$htA$EtEIx HIhIE13H$Hx HHSLl$E11AE11E1E1AHHT$0HT$0AHLԸHT$0 LHt$HLT$0踸Ht$HLT$0RHLT$0蜸LT$0OE1E11A%H5hH+zHD$0E1 f.EADEE1E1AE11AA E1E1E11L+LLL$(LL$(Ll$E11AE11A1E1E1ELmLuAELl$htAEAtAHEL$xHHE L19LQ%ALE1I1H|$(謷H$IH, HD$XiIH^ Ht$LL$XD$PtHD$MO LIGyE11A1E1E1SE1E11A LE111A1E1E1&AE1E1E11E111AE111E1E1AE1111E1AE11A1E1E1E1A(LLL$LL$JDHLL$ӵLL$ZL~MoMwAEL$tAEAtAILt$hx HIM1LdLL$PE1E11A$H|$(轵HD$`IH肹H$HHpLxAE1E1E11LLA'H̴lE1E1A(\H讴E1E1A'>E11A'.H|$込IHE1E11A'LWAL?LL$PLA(MyMaAL|$`tAA$tA$Ix HItME1lLڳA1LóCHHI9LLd$ L|$IoMgEHl$`tEA$tA$Ix HItM1gLCE11A$HzE1H$L$H$HHH8耩HD$`IHt8H1 Ix HIt1E1AE1E1LD$`E11aE1E11ANL蠲A#ME1E11A#&IHH=HH0H$IHIx HI>Hq1H$L$LL$H8H$芨LL$HD$`IIx HIt~E1L$Mt81LIx HItaE1AE1E1LT$`E11KE1E11A8E11A(E1E11ALguLZE1A2LBxL5H(:E1HHx HHA2E1E1LHT$XLD$P߰LD$PHT$XLȰJ޵HA.E1ML蟰A.5L臰A1E1E1H5ZL"|A/E1E1THD$pHHHD$ H5gHSH$HHHH9AkLyHQAL|$htAtHH$x HHH1HHHE1H?HHL$PH I4L$L$LINHL$PE1L\$hHx HHKE1L$MIx HI0H|$ VIt$LL$HLD$PHL$XHT$8Ht$@gL蟭H5`H1~FH$IH_AXx HH1HL$pMtXIHIL萮E1HxQHHL$hHt/A;E1E1A;E1E1H?8HHL$-HL$HL$hHHT$PHT$POHLH%H|$0GIHH=HHD$臷LL$HHD$hIIx HI:1H$L$H$HH8HIx HItQE1Lt$hHt1HZHx HHt4A7E1E1A9E1A9LHE1E11A%A$E1E1E11iL軬 HLT$0詬LT$07E1E11A%2Ll$HcE1H$L$H$HH8ѢHD$`IHt7H1Z~Ix HItG1AE1E1Hl$`E11E1E11ALLL$LL$L۫HѫHL$XLL$PHLL$赫LL$L裫HLL$葫LL$E1A.E1E1A.Ll$E11A(LKfDAWfHAVfHnHAUfHnATIUHSH)D$`)D$p~dH|$HDŽ$fl)$~Gfl)$Ht&LIIM~HHѶHcHH H|IL$HL$D$tHD$HD$xM|$AtAMt$L|$pAtAM,$Lt$hAEtAEH|$Ll$`HH(hE111HALHH0tEHExHHEtHNH(hE111HALHHotHx HH*HL(hE111HALAIH$tA$I$xHI$ C;E L5/H=IVLLIHtAEIEH5LHHVIIEMQxHIEw%LT$0f(d$觫LT$0HI HHLT$0IIEMAxHIEHТI9BH$LHL$LD$ HDŽ$LT$0Lt$0LD$ IIx HIIx HIbMdL;-ѣL;-7u L;- DIExHIEEtL5H=IVL覬IHtAEIEH5DLHHIIEMxHIEuLD$IHHHrIIM] x HIHCI9FH$LLT$0HL$MHDŽ${LT$0IIx HIIx HIML;-KAL;-DL;-LAƅQ IExHIEKE H=9IHH5H>IIMx HISH=IH~H5HHD$b>LD$HHIx HIcH=VHL$HL$HIpH5H >HL$HIKIx HIH5xE1HI9pL$LHL$ I4LD$L$LL$0H$H$H|$0ICLD$HL$ Ix HIMH5E1HH9qHI4HL$0L$LL$ L$L$H|$ HD$ECILD$HL$0x HIGHx HH0MH KE1HI9MI4LL$LD$L$LIBLD$Ix HIIExHIEMjL;5LAL;5DL;5L AŅIx HIEJHD$LAEtAEHt$HILL H=Zj5HATj5LSjHT$HHH@HIExHIE;HEHHE# Hx HH H7fH AHgHBHL H8UHH51螪XZH|$`HtHx HH8H|$hHtHx HHH|$pHtHx HHH|$xHtHx HH H=1aHĸH[]A\A]A^A_HVtHT$xIT$tHT$pIT$tHT$hI$tHT$`IJHL$IIL|$`1L*Hl$ LLMIIMK\Mt_ff.@LLHPHHt3H9uJTH)L؋ t IHM9'K\L\$0HL$XLHHH9CHD$XL<LL$Ht$0ZHt$LL$L\$0HHHH5gHH1zDHD$'H A{qg]Ix HIz&ff.@H=DHtHExHHEGHt$H1HHHMtI$xHI$H|$`HtHx HHH|$hHtHx HHH|$pHtHx HH`H|$xHHHH@HD$XJTHL`tIHM9zHl$ HD$xHD$HLl$`H>H|`tHHEHt,H|`t3HEHtH|`t!HHtH|`tLt$hL|$pHHHL AH H8UA;D$g_LIHLIHLӻHD$0HfXI*\$f/fI*f/D$KD5H9D$0HD$LAtAL/IHLLT$LT$HInH|$0LT$HI7 Ht$HE1LjH=*A5HPj5AUj57ARHT$XLT$`HPLT$HH7 Ix HIVIx HIIExHIEIHIzHT$L赛HEHT$hHHHrHHT$H\$DHitHD$xHD$2HIHH GHcHHN(tHL$xIL$ tHL$pIL$tHL$hIL$tHL$`IL$tHL$XI $tHL$PIMHH$L4L\$ M>I1HT$(LL$PI\Mt`LL%ff.ff.fHPHHt3H9uIH)Lȋ t HHI9I\@LL$HL$HLHHH9CHD$HLLT$Ht$CHt$LT$LL$t"HHHH5 H81!H|$PHt"HxHHu-ff.fH|$XHtHxHHuH|$`HtHxHHuH|$hHtHxHHuH|$pHtHxHHu衈H|$xHtHxHHu聈H=1萷HH[]A\A]A^A_M$$A$tA$LCLd$PAWALD$XM1E1E1HHtH\$`MMH;H;=H;=~H;=̃L\$LD$LL$LL$LD$L\$HHLLUL29H|$`YH^HtHx HHH|$XHtHx HHH|$`HtHx HHH|$hHtHx HHH|$pHtHx HHH|$xHiH^HHQ輆G11E1E1Mt$AtAM$$Lt$XA$tA$Ld$PHZMoLiAtALD$hMXL AtALL$p<1E1E1I\$tH\$`g1E1MD$AtALD$h1ML$ AtALL$pI|$(tH|$xf. H AL H~H AL HԀHH8RHH5~17XZHD$HIHLPtHHI9L\$ HT$(Lt$XMNH\$`H&LD$hMLL$pMLd$PHaH|PtfHBHtPH|PtRHBHt>H|Pt@HBHt,H|Pt.HBHtH|PtHHtH|Pt H|$xHHHL AH kH8RRHH\>4*L AtALL$pLAtALD$hHtH\$`LAtALD$XMeLL$LT$Ht$LHt$ HT$L\$LT$IE1LT$LL\$HT$HHt$ HH\$MHL\$HT$3DtHIH)HDPHEHHtYM9:H0L菍HuHtLD$XLL$LD$HL\$^HL\$HT$H\$M9`Ld$@Hl$8IHD$8HD$@1LHL耉H|$@HLHt*ff.ff.fH98tHBHHuH~HL$HLLLKH9GuN:<tH6}HL$@H H5H81虊s@L\$HT$l3묐AWfHAVfHnHXAUIATUHSH()$~#yH|$8flHDŽ$H$HDŽ$)$HLIIMH  HtH IUtH$IJHL$I(IL$1L2Hl$LLMIIMK\Mff.LLHPHHH9uJTH)L؋ t IHM9K\HHI]H$D$tH$H$MeA$tA$I]L$tH$H$HD$HD$pHD$xHDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$tH $HԿH(h1E11HAHHD$HH$D$tHt$Hx HHHo H(hE111HALIH%tAIx HIIcGD$nIW HDHD$@HWH5LB&IGAwI HD$HHIHCHD$@E1Ld$H\$ Ld$HLMHhIfLI9IIx HIh<IHtH$HD$xHDŽ$H8L$oHHt H1"KHExHHEHD$1E11E1)E1E1HD$(E1HD$ HD$; HyuL\$LHLL$H$LHDŽ$H9CH4$" 2H4$LL$L\$l t%HsHHH5ߚHH1H$HtHx HHH$HtHx HHH$HtHx HHvH=CE1˦H(L[]A\A]A^A_fDH$HH rAHrHL vH8UHH5U1XZ2wn(wCwHH9HuH;]sL-rL9ILDBAtAfInLD$x~H flH$)$A@ @u tEI@H$LD$Hp+LD$HI#$IHIL1vHHVtH$IUtH$H AxH\$ HD$@ |$ H$H;q+tH$H$HxhH$IgH=@HD$HHHH5kH$IH&HExHHEN#HoH$E1HI9F'H$LL$H$LHD$pH?IHDŽ$x HIm"H$H$HDŽ$L$HD$Ht$ HH|$@wH$IH'xHD$H$HHhH|$Lp HD$pH|$ HDŽ$yLHDŽ$eHDŽ$H="HDŽ$aH$HH#H5HHD$ HT$HHD$xI/#Hx HH&!H=LD$LD$HH$H#H5HLD$ HD$\ HT$LD$ HIu#Hx HH HmE1HHDŽ$HD$PHL$I9@$HD$LD$ HDŽ$L$H$wLD$ HH$H#HHPtHT$L$LHL$ I4,LD$L$qxLHD$pHIELD$HDŽ$HL$ xHIE Hx HH !HDŽ$Ix HI!HD$xHW%EtEHEuHD$pH} HD$ HDHHD$(AIH$fH=!I*q~%HD$8H5ԥH(HD$H$H HD$8H5vHH$HHHD$PH9Gg&LwH_ALt$xtAtHH$x HH LHL$HDŽ$ƏLHD$pIHHD$xx HHY HDŽ$MI$xHI$!HD$p xHHD$(HH|$@H~yHt$8H\$@H|$8Lt$ Hl$(HV@L|$ H 1HT$0LLfIIHLL$0LD$@HLHL$HLILgqL9uL|$ Hl$(H|$8^nLt$H51L8H$HIxH|$HH@HDŽ$H Hx HHx"E6EIx HI HExHHEyHD$I1E1HD$ HD$(]f.H$JTHİtIHM9Hl$H$H$HH$H5HtGHEHt Hİt/HHt HtH$L$D$HHiHL EAH $H8UHH$HDŽ$H$H&iH8^dHHtH1?Hx HHi1E1E1 HD$E1E1E1HD$(E111HD$ HD$MtIx HIMtIx HIMtIx HIMtIx HIHtHx HHMtIExHIEH=aMtIx HIE1HtHExHHEH|$tHt$Hx HH HL$HtHx HHHt$ HtHx HHHtHx HHMtI$xHI$HL$(HtHx HHHt$HtHx HHHL$HtHx HHHtHExHHEH4$Hx HHH$HtHx HHoH$HtHx HHXH$HyHnHHakWL-fAUЃtAEBL$L,$)HjLj0L-fAEtAEL$L,$HD$I1E1HD$ HD$(HnjHajHTjHGj H:jL-j$H j5HjFHjWHieHipiiLljt$HHT$@L\$8LT$0it$HHT$@L\$8LT$0IL׉t$@HT$8L\$0it$@HT$8L\$09Lt$@HT$8L\$0ait$@HT$8L\$0)L߉t$8HT$0=it$8HT$0#H׉t$0#it$0'Lt$0it$0-LhEH5H|$ѨXH=LIHH5HHD$LT$HH$IIx HIpHAwI HkIHeH|$@HD$kLT$HIbH=_HD$ 襲LT$L\$ HH$H5H5؝HL\$(LT$ HD$HT$LT$ HL\$(HQHx HHH[bAE1HDŽ$HHD$PI9FKH6L$LL$(L$LT$ L$L\$HT$0HDŽ$H$kL\$LT$ HH$LL$(HH HT$0HHtL$HLL\$ K4,LT$LL$(H$lH|$(HD$0HD$pLT$L\$ Ix HIIx HIHExHHEHx HHHDŽ$Ix HI{H\$0HDŽ$HPH\$xD$tH5LH$IHht$HE1E1j11HǃHc_HH$A]XHIx HIH\$01LH=HH$HDŽ$H$lHHD$(HEHD$xxHHEUH\$0HDŽ$Hx HHHD$pH|$(H\$(H\$pD$tH\$(Hx HHHD$pL-`L9,$H=ۜ&H$HHH5HHD$HT$HHD$xIHx HHfH=}LD$îLD$HH$HH5HLD$HD$!HT$LD$HH$HBHx HHeHD$PAE1HDŽ$II9@ !H$LD$L$LL$LT$ HDŽ$H$gLL$LD$HH$HHSLT$ HPtLK44HLLD$LL$ H$-iH|$ HD$HD$piHELD$xHHE/HDŽ$Hx HH!HDŽ$Ix HIHD$xH\$H4D$tLHL$1HT$(Ht$AHD$ HJ HD$pL9HD$p`H$H$HxhH$HD$ H=Ϛ芬H$HHzH5HH$HHWHx HH6H\$PE1HDŽ$HH9]%H$I4HL$H$蒀LHD$pHHEHD$xxHHE HDŽ$HeH$HHHXH$HD$pHx HHH$HDŽ$2H$HDŽ$H$HDŽ$H,$HDŽ$H5AH|$ HD$xIH"H4$HHD$aLD$HHD$0HD$pj#Ix HIHD$xHL$0H; G\H; ["L9H!fÅoH|$0Hx HHHD$pnH5nH|$ HD$0HD$pHH|$@bH$HH"HD$cHT$HHD$xI"H\$0HPHHD$XH^LD$XHHD$H$"Hx HHHD$pIx HIHD$xH=HDŽ$PHD$0HHD$pHH5HIHHx HHH=LL$XLL$XHHD$0IHD$pH5H`LL$XHH$HIx HIFHD$PE1HD$pII9AHD$LL$XL$LD$0HDŽ$H$$bLD$0LL$XHHD$pIO!HHPtLI4,LLLL$0LD$XH$cH|$XH$HHLL$0HD$xx HH!HDŽ$IExHIE HD$pIx HI H EtEHEH5LHDŽ$HD$0HD$ H@HD$XHD$8H|H$HHF!HD$8H5̐HPHD$pIH HD$PI9F MnIVAEtAEtIHT$px HIbILLL$HDŽ$"{LH$IOIx HI+HD$pM3 I$xHI$bHDŽ$cH|$XHnHD$@LT$0E1Ll$ LHD$8H|$8HH@L`LIHL$0LHILI8HL$HHL\$`LL$0LD$@H|$PH0HH I0H0H0\EUIE H|$PL\$`EDnI01'H(H0HHB(HA;urHHBHJtǀ8H(HI8AHI(H0HD$1E11E1E1E1E1E11E1HD$(HD$ HD$H|$@]H$HH?HD$]^HT$HHD$HD$pHPHD$pHY1HD$E111E1E1E10HD$(HD$ HD$HD$1E11E1E1E1E1HD$(HD$ HD$f.HL$0HHHHHωt$XHT$PL\$HLT$@LD$8Xt$XHT$PL\$HLT$@LD$8mHD$1E11E1E1E1E1HD$(E11HD$ HD$'H؁HāHJ0H;0HHJ0HH0L\$LL$H4$LHT$LL$L$XHT$E1L$LL$HHHHH$MLHT$HMI8tHIL)HHEHHfL9H0L0bHu\HtZ1E1E1HD$E1E1E1EoHGWIHL9t$XH|$8LLUH5~1HH$IHx HHHDŽ$MI$xHI$EuEIx HIHEI1E1HHEHcI HD$1E1H|$L1HXH=ěOLHL$pH$H$"%H<$HPH9GD$tL $H|$@LL$MYLL$HHD$xILL$HD$ZLD$LL$HIhL@LHLL$TLL$HHD$HD$xIx HIIExHIEH$HD$xH$H|$pzI|$hH$HD$pH$H$y\ff.ff.ff.ff.DHB(HN(L)0HLcJLJ(L;(}ILJ(HJ(H0H|$0LD$HTLD$8IHT$H$LMM9vL$IMHDŽ$HDŽ$H$1LHL[H$HLHt,ff.ff.@H98tHBHHuHoPLݪLLH$H9G u@HNH$HH5uH81 \fDHLL$LD$SLL$LD$LSELDHD$1E11E1E1E1E1HD$(E1HD$ HD$=LLL$RLL$VHB0HHB(HH(H+0H0HLD$\RLD$LJRHLD$8RLD$ HD$1E11E1E1E1Ҿ(HD$(HD$ HD$LQH|$Q1E1E1HD$E111HD$(1HD$ HD$'LQHL$ LD$[1E1E1-HD$E1E1E1H\$HxHHuH?Q1E1E1cE1E1E1E1HD$(1HD$ HD$HLD$PLD$LPHL\$ LT$PL\$ LT$LPxLL\$PL\$LP HPHyPE1HD$(E111E1E1E1\HD$ HD$E1E1/P%PVHP1E1EIHILIE11OHD$(HD$ HD$E1\E1E1E1LOH 'HT$(1Ht$HD$ H H$HD$pH9M HD$HJO4 L5OHD$1E1E1E1E1E1HD$(HD$ HD$1E1E1E1HNLI1Ҿ\ 1ZLLD$NLD$HAH9gD$tH<$H$H$HH5{H|$ H$HHH@H9ptHHx HH6~nfHnfHn~ #lHlflflH$)$)$E @C @l HMLHCHtDH$IHHExHHEj1H$Hx HHH;E1H$L$L$H8$6HD$pHI$xHI$E1L$Ht&1HHx HHE1Ld$p11E1E1Hl$AE1E1E1E1111IL$1HD$01E1E1HD$E1E111BH>L>RH>s{H>4H>Hz>H;:urHT$HPXHT$HHw1L$E1E1HD$E1E1E11C1L$E1E1HD$E1E1E111CH;8tH5cHHT$E1E1KE1E1E1E111E1E1KE1E1E1E11HHT$8E1E1;E1HT$8E1KE1E11HD$pH$HD$0{H:L: 111E1HD$01E1E1HD$E1E1E1HD$("HL$ HL$wH:f.f.HHH?Pf*YHff.HHGH@H~CAUIATIUHS1HfDH}UADHI9uH[]A\A]fDH~SAUIATIUHS1HfDI}AUf*YAHH9uH[]A\A]ATL%yUH-߁SHH H;SfHH HH*AY H;DHCH;HqL$HcT$\$L$D$f(fW%bf((8T$L$f($YD$Xf/HH f([]A\ffWbA; bH []\A\f(H~CAUIATIUHS1HfDL8ADHH9uH[]A\A]DAUATL%hUH-}lSHHH;Sfɉ *AY ;DHCH;H1dL$HcT$ \D$L$A(W-aA(}6T$ L$(fA*YͫYD$X/EH([]A\A]@f*YWa4 H[]\A\A](ff.fH~CAUIATIUHS1HfDLL$HcT$\$L$%_D$Yf(Ym4T$L$f($YD$Xf/wAI>AVfII LH!H*AYLtfW ^I;4?H(f([]A\A]A^A_@I>IFfW^:7 ^I>Y $AVfWZ^7 $fWH^f(XYf/vX ^AzfW ^m@H~CAUIATIUHS1HfDLx;ADHH9uH[]A\A]DAWAVIAUATL%.UH-&SHHDIFI> HcL$ \D$%]fAnfZAYAf(Y2L$ f(fA*YYD$XZf/wDI>AVfAA A*AYfA~t W\fA~D;l/HfAn[]A\A]A^A_I>IFf*Y W\ 0 I>YL$AVf*YԦW]\/L$WK\(XY/vX AfA~RW \fA~AH~CAUIATIUHS1HfDLx8ADHH9uH[]A\A]DSHH0f. \D$zB|$ff.zty%[f/d$ff.H;SHD$1 [t$T$\f/r. [D$f(^s3\$f/rH0[ÐD$r[L$ \^D$M3|$L$ D$f(Y\f( 3[^ 3T$\$\f/0H0[f.f(d$\%ZZYd$(Q^|$ff.H7ff(D$YXZf/sf(L$H;YYD$SL$Zf(YYYTZ\f/wbL$ /2D$D$2%&Z\d$f(L$ f(X&ZYD$(YYXf/D$(D$YD$(H0[fDH0[/fDSHH .D$ zK|$ f.z%/d$ ff.H;SfH*YTT$4 Qt$ T$\/r, 4D$(^5\$/rH [ÐD$L$\^D$ 1|$ L$D$(Y\( Ţ^,5T$\$\/#H [D(d$ \%Yd$Q^|$ Hh4f(D$ YX?/s(L$H;YYD$SL$f(*YYYY\/w_L$0D$D$0%\d$(L$(XYD$YYX/D$D$YD$H [H [2ff.HHH?PHHff.HHH?PHff.HHH?PHHff.HHGH@f.VE„f.Vf(D„USH(-Vf/Kf1XqV V\$^T$YYX VY\ VYX VY\ }VYX yVY\ uVYX qVY\ mVYf(L$-L$X TVT$f(5U\$^f(\Uf/YX $VX\vHHtCH@\xUL$Hf(T$O-L$H9T$\uH(f([]f(f\H,H*Dff(ff.@H$L$1YD$X$Hff.HD$*YD$HfDHHH?$L$PYD$X$HHL$)YD$HfDHL$ Q,YD$ HfDSHH0=0TD$ f/L$(:f/0f(Tf/vf/@H;SH;D$S S^L$ D$D$+ S^L$(D$D$+T$5SXf/rL$XL$ff/vf(|$f/v f/D$=+D$D$,+L$^D$(^L$ \ff/~RfWf('>+~vRH0[fW'D$ HB(HD$D$(.(L$X^H0f([fD^H0[f(f(fDf(L$Y'*L$H0[\f(<'H?S|$ L$(XY=5RfT|ff.HY4R'HXfDSHH $D$8. $Hf(Yf($.\$$H[Y^f(ff.fSHH.HD$.L$H[^f(ÐHD$'^D$H+fff.zu fH ,Q^L$M'L$H(ff.H P^L$'~]PfW$+~LPL$HfW(fSHH$L$ ff/wFH;Sf/Pr P\\f(U(L$Y$H[\@X/(YD$X$H[ff.AVfI~SHHL$ff.H;SOf(O\f/v'fWOO'L$H[YfInA^\ff.@SHH$L$ff.fH;Sff/v hO\^K'YD$X$H[f.Hw+H$ff.HD$A%fXf.wQYD$H.ff.fSHHD$+L$HY N$f(L$$L$f(ff.w%QY $ff.w-Q^H[f(f(T$-T$f(f( $v- $f(ff.AWf(AVATUSHH@f/MD$ff.zuH@H[]A\A^A_D$fWRM1" MD$HL$H;SL$Yf/L$wH@H[]A\A^A_fDk%D$0D$QYMXMf(D$ YMf(\ M\-]Mf(M\5M^ Mf(t$8XfI~XMfI~M^\fI~H;SH;f(\LT$ST$ LD$f(fTL\fIn^L$XD$ YXD$XWM*L$f/ LMH,\$fInf/LH[f(L$($D$fIn $L$(t$8D$D$ Y^X#|$HEX|$f(f(\fH*YL$0\L$D$fH*L$h&L$\f/L$DH-gLf/2f/(~ff.HKSH\^f(%H[!f.AVfAUH*IATIUHSHD$xt H9r  Jt$xImAEf(Auf(\L$]Y\f(t$Hf(f|$@AEX\$AU(f($(\$$Y\$@H,fL$I]0f.f(\$` Qf(Y K\$@YK%I-K\f(fTf.f(f=JH*f(X|$ XfD(f(l$XJf(DXf$\Ae8d$HDt$pYf(t$0fAA]HJ^f(\XvJfD(\$8A]Xf(\^f(YXYfA(\T$@AY\$XA]`^Yf(XYfA(AXXT$hAUhYf(D$AEpfA(^D^Xf(D$PAExfA(XD$Aff.fI<$AT$L$I<$Y $AT$ $f/L$f(f/L$t$f(l$8fH*%H\Yd$(^XXD$0\XL$ fT _G^\f/$X%$d$(L,MI)LHIHH~#D$`YD$ fH*\f/ZHEfl$H^l$@H*YI9<f(f/L)d$xf/d$ LGH[]LA\A]A^f.ff.ADEf/L$Pwkf(L$($^D$XXD$0$L,MPEGL$(\L$$%FYYT$Xf(L$($t\$p^D$h\f($L,L9E$L$(\L$P%;FYYT$hi@HCI9IUf(ff.ff.ff.ff.ff(H*H^\YH9u_fIEH9IHSff.ff.ff.ff.ff.ff(H*H^\^H9uff(^ LFHfX EFHd$`Hf(YXX ,F^H*^^f(XL$ YL$($$L$(f(f(\f/T$Xf/ IEfEfL*HCfH*HEfH)H*HL)fE(D$f(Hf($A^H*EYfD(\$(YDYf($$YD$$D$$$D$(^$t$@$D$Y\$H$AYf(^z-D%DHDDfD(H)$D$DY$D$fA(D$$^D$$f(f(\f(f(^\DDfD(f(^D\D^ -Df(A\fEL*DXl$ DY$f($^5CEXfD(fA(fEM*D^EYfD(AXfE(E^AXfD(E\fD(E^E\fD(E^E\E^fD(E\D^L$(D^AXfE(E^D^E\fD(E^A\^E\fD(E^\^E\fD(E^\^E\E^\^ $^D^DXDXfA/1$YT$\XL, f.H,ffUH*f(fT\fVf(,f.B,&r8bz HZ0t$r@Yd$H%@$rH|$@t$0rPYd$ t$prXt$8r`t$Xrh\$`t$hrpt$rxt$Pt$f(D$`L$$qL$$AUIATIUHSH8D$t H9rgT$=?fImH*AE\AUA} f(d$|$d$YT$d$L$f(AEfYYAUXX z?f. QY ?Xf/6H,I]0\$I<$AT$\$1f/f(HH9}.\$I<$AT$\$f/1f(HH9|Hf\H)HH*YT$YfH*YT$^f/wH8[]A\A]@f.Bj ZHZ0l$)fDH81[]A\A]f(T$(\$ L$xL$f(iY=T$(\$ XАH,fDHff.Eur >fSHH*f/rY;?f/rM[o=\?Yf/f(r&AHH[H)fD1D[fHH[H)f.Sf(fHHf.z2=f/v\\HL$f(fH$L$f(ff.w~QXf(YX$H[f.Y <H$f(f$HHHH*[XDHf([f=f(T$T$f(hfSHH $f(D$4$$Hf(Yf($f\$$H[Y^f(fSHH $D$\$ $Y E=f(YY;^Xf(ff.wRQ ;H;X^\Y$S\$$f(f(X^f/rYHf([$o7;$f(N;H;X\$^\Y$S\$$YH[^f(f(@SH0f.D$(L$E<Hf(f/<<f/D$0<f/;=v:Y<$YXQXf(XQ\f(X^f(YXX^L$ /Df(^f(X$L$f\f/szH;SYx;Sd$ H;f(YXX $f(L$^\l$YL$SL$9f\Y\f/\H;S$D$V $y9f(fW8:fTfU\$(fVXf(fT8X:$$u\$T$f.\y:ff(fWT8fTfUfVH0[f58f(4$^XD$ @H?SX\8Y:H0[h8^D$Q$dY$ 9XD$(f/wf/9e\9XX9H0[f9; 9$\$;\$T$f.SHH0D$ fW:7D$(H;Sf/D$ H;D$SYD$(T$f(fW6Y\$f/rtf(T$ED$D$4L$^27XIH,HiT$ff.EMH0H[f/T$r吺fH6HH?D$\$PL$$f/v(f(ff.YHXf/wHfHD$ ~5T$$fWf(q~5 $f(fW7f(^t5f(fTf.v3H,ff(%5fUH*fTXfVf(f/5HsH,HDf/5r+ ff.f/07rAVSHH(\^5f(D$t5' L$fW 4D$4 D$H;SL$ 5H;Y\X $S%4^d$f(fI~$ 55f(04fTf.v;H,f54H*f(fT\ 3fUf(fVf/;4M-e4f/;f(L$$^X $fIn|$f(\#4Y^Yf(\ 4^f/H(H,[A^f(f(H8H\\T$H?L$D$(f(d$^l$ 4$P4$d$L$T$f/r;l$ \$(YYff.w\Qf(XH8f(f(\f(<3Y\Yf(ff.w*Q\H8f(f($3$f($$1HHATHUHH SHHHH HHH HHH HHH II I HH uH;SD!H9r[]A\DH;SL!H9sH;SL!H9rf.ff.@AWAVAUATUSHHHtuIֺIHH?IL9rqID$I9#DEEnID9s*D1AA9sDI<$AT$ID9rH HHH[]A\A]A^A_ID$IEuuMnHD$IL,$IIL9s6L1HIHI9s#I<$AT$IH$IIH9rLH\sI<$ID$L!I9rH\NI<$ID$D!9rH\/@ЉH@HfDAWAVAUATUSHtdHGIAH?AEucJL$ Dl$ ID9s%D1AA9sfI>AVID9rH H[]A\A]A^A_IFI>D!A9r\ff.AWAVAUATUSHt$H\$PfA։IAMfAEAEEF]DD$ H?AUDD$ A<$3EAfD9AAƙAAf9rVyff.ff.ff.ff.f3A$xA<$3AfD9s%uI}AUA$3AfD9rD$H[]A\A]A^A_+A$PA$D!f9s!uI}AUA$D!f9rfD$H[]A\A]A^A_fuf(f(Y^Y^\Y&XHXY\XHHShared Cython type %.200s is not a type objectShared Cython type %.200s has the wrong size, try recompiling%.200s() keywords must be strings%s() got multiple values for keyword argument '%U' while calling a Python objectNULL result without error in PyObject_Callbase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base type__int__ returned non-int (type %.200s). The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__int__ returned non-int (type %.200s)%.200s does not export expected C %.8s %.200sC %.8s %.200s.%.200s has wrong signature (expected %.500s, got %.500s)Interpreter change detected - this module can only be loaded into one interpreter per process.too many values to unpack (expected %zd)Failed to import '%.20s.decompress' - cannot initialise module strings. String compression was configured with the C macro 'CYTHON_COMPRESS_STRINGS=%d'.numpy.random._bounded_integers%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectAcquisition count is %d (line %d)%s() got an unexpected keyword argument '%U'Unexpected format string character: '%c'%.200s() takes %.8s %zd positional argument%.1s (%zd given)invalid vtable found for imported typemultiple bases have vtable conflict: '%.200s' and '%.200s'unbound method %.200S() needs an argumentjoin() result is too long for a Python string__annotations__ must be set to a dict object__qualname__ must be set to a string object__name__ must be set to a string object__kwdefaults__ must be set to a dict objectchanges to cyfunction.__kwdefaults__ will not currently affect the values used in function calls__defaults__ must be set to a tuple objectchanges to cyfunction.__defaults__ will not currently affect the values used in function callsCannot convert %.200s to %.200sinstance exception may not have a separate valuecalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringDoes not understand character buffer dtype format string ('%c')Expected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Argument '%.200s' has incorrect type (expected %.200s, got %.200s)'%.200s' object is unsliceablecan't convert negative value to size_tvalue too large to convert to intcannot fit '%.200s' into an index-sized integernumpy.random._generator.Generator.__init__numpy.random._generator.Generator.__str__numpy.random._generator.Generator.__reduce__View.MemoryView.array.__cinit__Argument '%.200s' must not be Noneobject of type 'NoneType' has no len()expected bytes, NoneType foundinteger division or modulo by zerovalue too large to perform divisionView.MemoryView._allocate_bufferView.MemoryView.array.memview.__get__View.MemoryView.array.get_memviewView.MemoryView.array.__setitem__Subscript deletion not supported by %.200sView.MemoryView.__pyx_unpickle_Enum__set_state'NoneType' object is not iterableView.MemoryView.memoryview.setitem_indexedPyObject_GetBuffer: view==NULL argument is obsoleteView.MemoryView.memoryview.__getbuffer__View.MemoryView.memoryview.base.__get__View.MemoryView.memoryview.shape.__get__View.MemoryView.memoryview.strides.__get__View.MemoryView.memoryview.suboffsets.__get__View.MemoryView.memoryview.ndim.__get__View.MemoryView.memoryview.itemsize.__get__View.MemoryView.memoryview.nbytes.__get__View.MemoryView.memoryview.size.__get__View.MemoryView.memoryview.__str__View.MemoryView.memoryview_cwrapperBuffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)Buffer exposes suboffsets but no stridesC-contiguous buffer is not indirect in dimension %dBuffer and memoryview are not contiguous in the same dimension.Buffer is not indirectly contiguous in dimension %d.Buffer is not indirectly accessible in dimension %d.Buffer not compatible with direct access in dimension %d.memviewslice is already initialized!View.MemoryView.__pyx_unpickle_EnumIncompatible checksums (0x%x vs (0x%x, 0x%x, 0x%x) = (%s))View.MemoryView.transpose_memsliceView.MemoryView._memoryviewslice.__reduce_cython__View.MemoryView.memoryview.__reduce_cython__View.MemoryView.array.__reduce_cython__View.MemoryView.array.__getattr___ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule was compiled against NumPy C-API version 0x%x (NumPy 1.23) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimeView.MemoryView._err_no_memoryView.MemoryView.copy_data_to_tempView.MemoryView.memoryview_copy_contentsView.MemoryView.memoryview.assign_item_from_objectView.MemoryView._memoryviewslice.assign_item_from_objectView.MemoryView.get_slice_from_memviewView.MemoryView.memoryview.is_f_contigView.MemoryView.memoryview.is_c_contignumpy.random._generator.Generator.__repr__Cannot copy memoryview slice with indirect dimensions (axis %d)View.MemoryView.array_cwrapper'%.200s' object is not subscriptableView.MemoryView.array.__getitem__View.MemoryView.memoryview.__setitem__need more than %zd value%.1s to unpackView.MemoryView.assert_direct_dimensionsView.MemoryView.memoryview.setitem_slice_assign_scalarView.MemoryView.memoryview.__cinit__View.MemoryView.memoryview_fromsliceView.MemoryView.memoryview_copy_from_sliceView.MemoryView.memoryview.copyView.MemoryView.memoryview_copyView.MemoryView.memoryview.T.__get__View.MemoryView.memoryview.copy_fortrannumpy.random._generator.Generator.spawnView.MemoryView.memoryview.get_item_pointerView.MemoryView.pybuffer_indexView.MemoryView.memoryview.convert_item_to_objectView.MemoryView._memoryviewslice.convert_item_to_objectView.MemoryView.Enum.__reduce_cython__View.MemoryView.memoryview.is_sliceView.MemoryView.memoryview.__repr__View.MemoryView._memoryviewslice.__setstate_cython__View.MemoryView.memoryview.__setstate_cython__View.MemoryView.array.__setstate_cython__hasattr(): attribute name must be stringnumpy.random._generator._check_bit_generatornumpy.random._generator.default_rngnumpy.random._generator.Generator.negative_binomialnumpy.random._generator.Generator.bytesnumpy.random._generator.Generator.dirichletnumpy.random._generator.Generator.standard_normalnumpy.random._generator.Generator.randomnumpy.random._generator.Generator.uniformnumpy.random._generator.Generator.standard_gammaView.MemoryView.array.__getbuffer__numpy.random._generator.Generator.waldnumpy.random._generator.Generator.vonmisesnumpy.random._generator.Generator.noncentral_chisquarenumpy.random._generator.Generator.fnumpy.random._generator.Generator.betanumpy.random._generator.Generator.standard_cauchynumpy.random._generator.Generator.standard_exponentialnumpy.random._generator.Generator.noncentral_fView.MemoryView.slice_memviewslicelocal variable '%s' referenced before assignmentView.MemoryView.memoryview.__getitem__cannot pass None into a C function argument that is declared 'not None'View.MemoryView.Enum.__setstate_cython__numpy.random._generator.Generator.logseriesnumpy.random._generator.Generator.geometricnumpy.random._generator.Generator.zipfnumpy.random._generator.Generator.powernumpy.random._generator.Generator.weibullnumpy.random._generator.Generator.paretonumpy.random._generator.Generator.standard_tnumpy.random._generator.Generator.chisquarenumpy.random._generator.Generator.choiceexception causes must derive from BaseException'%.200s' object does not support slice %.10snumpy.random._generator.Generator.__setstate__numpy.random._generator.Generator.poissonnumpy.random._generator.Generator.rayleighnumpy.random._generator.Generator.exponentialView.MemoryView.memoryview.setitem_slice_assignmentnumpy.random._generator.Generator.triangularnumpy.random._generator.Generator.gammanumpy.random._generator.Generator.shufflenumpy.random._generator.Generator.integersnumpy.random._generator.Generator.permutednumpy.random._generator.Generator.normalnumpy.random._generator.Generator.lognormalnumpy.random._generator.Generator.logisticnumpy.random._generator.Generator.gumbelnumpy.random._generator.Generator.laplacenumpy.random._generator.Generator.multivariate_normalnumpy.random._generator.Generator.binomialnumpy.random._generator.Generator.permutationnumpy.random._generator.Generator.multivariate_hypergeometricnumpy.random._generator.Generator.hypergeometricnumpy.random._generator.Generator.multinomialUnable to initialize pickling for %.200sModule '_generator' has already been imported. Re-initialisation is not supported.compile time Python version %d.%d of module '%.100s' %s runtime version %d.%d_cython_3_2_1.cython_function_or_method_cython_3_2_1._common_types_metatypenumpy.random._generator._memoryviewsliceInternal class for passing memoryview slices to Pythonnumpy.random._generator.memoryviewnumpy.random._generator.Generator Generator(bit_generator) Container for the BitGenerators. `Generator` exposes a number of methods for generating random numbers drawn from a variety of probability distributions. In addition to the distribution-specific arguments, each method takes a keyword argument `size` that defaults to ``None``. If `size` is ``None``, then a single value is generated and returned. If `size` is an integer, then a 1-D array filled with generated values is returned. If `size` is a tuple, then an array with that shape is filled and returned. The function :func:`numpy.random.default_rng` will instantiate a `Generator` with numpy's default `BitGenerator`. **No Compatibility Guarantee** `Generator` does not provide a version compatibility guarantee. In particular, as better algorithms evolve the bit stream may change. Parameters ---------- bit_generator : BitGenerator BitGenerator to use as the core generator. Notes ----- The Python stdlib module :external+python:mod:`random` contains pseudo-random number generator with a number of methods that are similar to the ones available in `Generator`. It uses Mersenne Twister, and this bit generator can be accessed using `MT19937`. `Generator`, besides being NumPy-aware, has the advantage that it provides a much larger number of probability distributions to choose from. Examples -------- >>> from numpy.random import Generator, PCG64 >>> rng = Generator(PCG64()) >>> rng.standard_normal() -0.203 # random See Also -------- default_rng : Recommended constructor for `Generator`. Gets the bit generator instance used by the generator Returns ------- bit_generator : BitGenerator The bit generator instance used by the generator needs an argument%.200s() %stakes no keyword argumentstakes exactly one argument%.200s() %s (%zd given)takes no argumentsBad call flags for CyFunction_cython_3_2_1__pyx_capi____loader__loader__file__origin__package__parent__path__submodule_search_locationsdecompresszlibfunctionnumpy.random._common__debug__exactly__getstate__builtinsboolcomplexnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorBitGeneratorSeedSequenceSeedlessSequencekeywords must be stringsMissing type objectend'bool''char''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''complex float''float''complex double''double''complex long double''long double'a structPython objecta pointera stringunparsable format stringcannot import name %San integer is requirednumpy/random/_generator.pyx__reduce__at mostat least__cinit__shapeformatExpected %s, got %.200sView.MemoryView._unellipsifybuffer dtypeuint64_tBuffer not C contiguous.__pyx_unpickle_Enum__pyx_statepicklePickleErrorView.MemoryView._errView.MemoryView._err_dim__reduce_cython__numpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy/__init__.cython-30.pxdnumpy.import_arrayView.MemoryView._err_extents'NoneType' is not iterableis_f_contigis_c_contigcopycopy_fortranspawnname '%U' is not defined__setstate_cython__default_rngnegative_binomialdirichletstandard_normalrandomuniformstandard_gammawaldvonmisesnoncentral_chisquarebetastandard_cauchystandard_exponentialnoncentral_fView.MemoryView.memview_slicememviewsliceobjtuplelogserieszipfpowerweibullparetostandard_tassignment__setstate__poissonrayleightriangularshuffleintegerspermutedoutlognormallogisticgumbellaplacemultivariate_normalvhunumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3View.MemoryView.Enum.__init__permutationmultivariate_hypergeometricchoicemultinomialcython_runtime__builtins__does not matchvariableinit numpy.random._generator__module____vectorcalloffset____weaklistoffset__func_doc__doc__func_name__name____qualname__func_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutineTbasestridessuboffsetsndimitemsizenbytesnumpy.random._generator.Enumnumpy.random._generator.arraymemview__getattr___bit_generatorxzF.WQ#!sܝ8ޱ;ز m{湒BRN;;'I5WZ㻎w߻Q$&<03Hq0 YD̗Y.FIpLOD"BxU ?-D.sG"[.IPG<Կ`gOi0$Ȩjd4S?ziň g>52N<-e`.ª, g'-&K4QS4+K!.L׋@sl@W3DZX$e8gA /"H^Q R?h6h2ɍz ~E $=; $(O¼xxt<獟 ҌGut"w-i{v∷e%-G}0H8~DZyG bh8tū84]2M< Ǽ#dq v0,Bmb߿`Cp(TW5 alއ/h X8[q0վu\thN)i(NL+aݓX5y5U|=ѵÛR/L^]TZuALcxe &E~:4:X*IyNv&Zv8}/o"f0N>ЇCüM) ]5.H/@G]4]c"#p؟!Q}%#6ŒSuQL@OaNO) (>ΙTd 5ZЗihpJ@&0cE-lʊx9G*#@wv.H\יe;6ȠjU f{ǓhF Wpihi 4. [M-OϏp=z$9^ C>B?Z1rYרu~SH4A޶URP+*m׶wv{@WZ_ӌ]i-ff͘/8m"hҊxmOGp~YId5툳pvv qTx?pD'{'RAON5"S߅Y<9/0-dxʎ|{wLgFݦ9_~?h؇AIq(08]|}*|t:~_?<tO`]ц .02o3 3R`*o']p`P%z#)Dր=a|೯Li|3|"):_"7Ƙĥ.#k&q? }E# m6q2G>v;kx2%Jz#U`, rSjK:nk>Lfaz;4F^DwmY@kkj^Z.٫q:ΪVϺYOK{ |- V6~_^zY변z>`eA\Ef.څ vTJ(=u [;&;[N.¿>+<_Ϯ<X_EuuV:]\h`؋~<[Fƃ}sqܺ*\$<\O/h+2G 'u~ jQ7_*ńd*@\'О*?OaYi#zg8DՑ$hr>%1՝-q%i<3 Ryr*\ZpI~2[JϓIj G`w.t55h|Y;ΏIXcB# O%k#bPiY7ߴz=ɗ 9"NV{"#3#:Y<ɂ0)A.eNtO8HF%Cj){kaR AV^Z 7)0 :Hf7U"H_&*sKb7E`$T'PEH MIUGo$3,and9VBZض(j#cJGE'pdBnNַy U6;}& \y@s ągխ+Qû_fjw{D9IG'_f<|>YASSR*3Yvݩ) NfçõWI"w"1˘j:׍bd!m,ˤtD*i3~8 7cYSUծ  J?컬(7q' z-$T 갱AD% l`|xpAN%}|:͎{͠A8Q0Dpé.~LҐN,'@$WZ@;b$qR 1"/rOߟHFK",%_964n_= ^8cX%V+e[hjWhR(M_mׅώĴq;&?no4>p歸x?nM!m? *jBm$EaeN-XE_>D|QZ@*ԍylGOu9 V5R'utÈk˷IXɌZJ֓ mqćζ6*3kLy4ii-O42G %dpciڃ9ğ i# tO=.io(GY4D- <1ZC,M3E+Up M8>#94}9kacfsun]zfq@v/ܭc|ccu_v>Egvo ~{?8 '@J/ t<ˑBClbVI$ꘑZ4aF-E##8v:Ŏ_=4mXQ[GX_YpNm9*k/=n:_e&n3WӁU>v.*2{{{wЩ⑇Ȭ^x-1*]PU_'0״'`$3%/5bWH5؋(Anu 5؋(.6xoc# F-(_Nt8YdlwG~۬%0谼^{D`ܩp;N8Ev*&lafS\9[T\Aߖ/() &+l@ TD@Ғɖ >P !F<:"˂ҿjZo;މ+1mYQ"/'_b+S`'m4ܖE FfR:8P@Cu bh A% 謽p4PCb J w؊۠&_{H0<xB<_OXw̝??>SLN IUzO5;m(z`+H5jmn0ZH_6J/Pw ѵWQ ى9LMw/U|Y8DX*s޼]||Z I|D%aS*XlGЯshwBk+kL)s "}TډJ,c Ĥkhk+(]EIz~=@ ,>b0՗;ٺ19'"/6B}![o_&?_p%4"H )AC tEg>:Iq_=OÌ?$f?Z" %kYF(=XBf}``Q-g~4a8 JB߲ {]Z{ U-p~ ȟXnw\Ήxq9 +vޤ᜗IzG|7~ 4 \_Ssk{" <|!< kxg2->Ifҵ&ucut)R `+aQX D3/$&rs?%y,c,S"ĊK.掓jj,GV%nm;JV+k2st_CCsR6. Kʱӫw8˖sTÔ/j&' $@ϒ$oIOY]o8th˥:#Wwڗf'}$JEg-i+p1CmMЂh \"gߒA*cㅩd@V !{r4r $K2:*J E-y]_Do^M2#2}o}'ӭt:4`?)|)v49zdҁ7v|R-:'z27wl{s2هka n'w啜q ŦUZp?lgQ@$#t"MVḥ!#.& j,Ӛ:@ 4|z{o>y~3ފ~윆3_Hg_0I} p.>@QzSڢ&Eix{ǛCi׉+z$7+(JE5j}u}2:nZa_ߢwUp^rJw 3]+$9Y%^^^a1pg$88<;'}; P"~/e˺ɝ9[.v` K^—;t~YMTȤ3v~`;oN6YJê(5Ex> ܵ콡 bCA^FVnuńnVK\E*=Yi(4|sT4.anҥ^QR%}x١r:qTMJь?'jd(v݈8]YQ!RU_y( ?sP&bs6~ư%8 L,'۱K-D2Nְ2 3r4Ef dкvV2PRsW- Xcic) 20|=vо(H x.a60SөW{xh^UkQ\ Y4]F0>1{fQ\ +չ g5pû!-"sh* Zr_i/χNFG$-4\md=X\(9Li$tRbb\ $z$pȞK/Ӳ|P 7![A]`A%0-q0LW۩"G+&2IWV,IgB,NwZS;t.ܿރ5[ZrBյ O qtyr(4Rc4ۅ|@!]H +i綛XjרR}T1<1E|e؋뚟z8NW*K_ 2"Mݽw2\`uIMWC-fD9 |:]-ġc,=ge ryGAc[^d(͗c-f[]-7Wywy ,b񭅇?ЅF/ΔªiJ:EB/W_HXN;=TWc\bH[!8"$2ȟ&>^{܈k]WRh'dV>cQD/ W"[-j=0tQ|WI HqϏR ԐGh- 1Ȼ!J0%̤Ydqrnnk*@0 $3NIO 2A@(MA7uRfWN\xglf?Yo+cYڪCz}Y̻yJ\ 2`pKUV.<&rNt)9cnϒ3\GWWs +yұA؇SهSn}g+ 6=6 p8U^LLN_ O -M2;5K1,*bERwmV#VY3u}֝`l3Eq Ç|}'E;q*wm% 1qSo)Z%?*g[K9["1`dR&9bN{#fa(۶,~*=͖6isȴ19NgcŶ0 "%SryIgCv1΢OͣrJn`ZPWbYMyҀq'L79aN? k +us)@!"cUn tkT+l,u 16BX)d>IG'1ʗ֜{ÉL(J`[4Y.t /GW\ԏC!2,]EǺ1j_ 4AM>¹u=TF@yȳڈ˳E67b9ꊗf=Ӟ|][oho [Q^>Ko%zo<\,DokB;y L-}&( f3[T;?HxO<_HQܳh9Ƭ{~P*̨|p|LKFڣ`WtM $`8}CZ'3vc͊!Nؒ u:_flő ˗YS̟Nʄݬ4[Q]k))(k3+;p۞#Pr׬JJ%92i+)'#lg U(kAk^4c< vMyUSDUҗ;884cZAU%v/֠Zݛ{oBD)o,(:hDs(A;F $\t _>oD}?g&_ywj:ā;tEMYu`H-|X+'"7>LQr EZFϭ[ ɴl Gvkl8í?[*⨮hôaNi`DkH0o6` R]lx;vx.UUKV `boR}lxڨ Ř#IΩU^n+s!;Qn*/rk#cx ĎA`6U*ϚaUTv6|㬴:J ,2u2g mĂF*+D完)_p41}>#e.3YIV ƓJד4ٵGoA]+Bti*#=@tPMΙ7JVmf LÞ +p{j]+ixXC-FL`I/b{_ qE " _w 3@pq WuɃE:~gѩBD$>,ۛ-=#ogoCr2]:GiA/uMJ*b?a?g. Y2?n: ͞!;B55Gc&(0&5CzIt$Os<@#dlA"y Wz=E߅p+%x.;cCIDK0 .+ *~ߨ]^E(҉lM}-Fղ~:HpǼ]eqm68*φ/7!cV6amKə& *7oQFs@).|&G ,=AAaIU^m,襷נ)fßa{H>U/gpvEewt%g!МjEJP&[)6U*}cURR燢q_?8]+Q" aS#s Cgr&NP`2*xjE!$ΰ&o]ov~`/ # ZW@,ÇDɻ>O|r6{^Y+EeD=IuJɮ2zGZ65t R7 KPíkxcjm%ސҕ^!d|( 2-fAr8dzZH?n?4OKpB_T˥N aFW&6k25V~ĭ+R[`fCQ0^ q(aAYQ})GL^6)_ XQϩ\9l/?0/xLbTZ(bOT?s[X"6kf1UI 1 !P7šD+@\\کɢv>hz:1i몫,f" 16]8aK+(j!SSRA%{jel52$ebԣb O*`{'b}i 2F=a&j\bgLP* ٰKNeUpW'C%@U#ϱ[6:TQu1+eqL0ٱf*(syǸt;81}?݃^%5W۶^CvU0b%#\ygDHLrdRMEL(@O S-FU~زpwർC/E9[eU**1E^Uީ QWR11uַ6#49neR#c h`]H+r dJFp 5)d2hĿOe Y:BHnR/fb=t`S;,{tu{ K?~}տYSF{\%;y^d#QrK31t?dxys0 5]*}ĊTyLb0Mr1y1ELa"8.˩C1VC]h벤i|\HcBI)g`z?V]=xL }-¬>6L(]3JWS'U1i5Sa΄U׊Y\+v|- ))=9jbI=\$1uGݨԶ%JfDQV#wY#hP&'yaJ$kbw$Eoy-^UTe}?a"f~FՋh1UכutlNnHjH')iFJj$P% :1ܲI*3ÙQPRwC%GjZ+%-')a* ^FÁ"D4gv:h ~3gF!*30N$06z*OG7%1N,FR"aNcOd5v%DyyY{+o[Ԫ#DOXW5sfBj2V~epf5WIE\}bB]=rWvve@nZAdN"Ijm-pWw@YЏK+8wu]Q j>uu޿}4LT+09tW֚|Ur}u2aF6ÝT3@P_IZ#gN@z%or;TsJ/ ENDa*}ΥKtP4Ju^Gٞw^g:X)}!"Zm  CqNIi#$O[IľԳ5q!Efȅvű,iRUe]uIM\|fVsfPa?E208sBA%ht[Y ?UiY=@0f@i:i3ktdoAyN;.N׿"N̵p'?A-lM 2r:wysΉN}rZ Q:b?:QSv7)py0RV엸\8ɮc79H DsNWXdI}QTuI+[4E9\tsui*s 8QӺHSA4^ݍ|V7xsS>)Aش}L}*o0m_r"l8:!^e8enB5/F N ij_W1wJlѺ*{f`>GYZ&1$Qn3eS|JR&zm*QCJӯg/j`w7R EWZh՘ {*`of)$Q@$)tGYH#+! mHY1$a_9P)'/i"ƕߐ 0=%$T08])gd6˝#($\OdXZ8QJ0m%8 I汑j(`VQH\pxWcwd!/E\}ThH|L#Tzt>,5٦PIXWcvh*E3>|j5WYի)'80ʆ_;#eGD̑e-߄QF 2$lxFw> I%5qwO;ZGz;\\amS/Xp,} uEW6Y4 Ty޿8g[Z# n^?I,~I,ۊ/~1}FX=,煠Z|<9@f\Uc s]ps)f ѵLDa,F*#])wVw$SE>ac 5yXl`؉:t',%OSE<]FT6`E$4UrYWY,ggJR,U_1U=yW?>w-~x~j͊GD PbpimaBdfԧ,u͕O'^f]I=r8xRBʷc6!BTd1|,M^i1' u W<]1ak\f!̓03Y/[5 δlrZ˦2fi”#>tZ<|x8(ylAJbg [aY+'U6Ey]O,j80NI vq ޔQpEUWDn"W3%|is.sLtZdv~: l-%!ovpv]LYz<*PGv1\0J)ט5$Žr/['k:@VC3/"|dשTP ! {I`S \҈xV@.6^b !wHMT!(y ?O={'(vLX)E#5:y)p=F1FjX2ܖP]K4FH#TnS-k%ѧqsxnЉik@ؽ<ӱsr.@mTr-1O9tc+xtL#Ýx*̎[^vmD(>z%L XKS*2ռCT9xC.FVm :W)OTا-FI}֝Ryc$t (Zk87FuGj~}k(b a[\3l ~ˊ!9U+*5l7߷~np.-*k8W3a2b@2rrDc4i/k5=UEM}Js7 Vr6gntʸ>(%$=˃.R$!}`Tؼk(xjeS*?fC[}//{i yo&Ձ y ܓQ O Q ?cٓ9NcѲaFΑ1D7j@L:#]? Ft+!b/#'/~d2 5.YY4wKC졞PӳӱR@(UOXˣ:ҩn 05.BBo|f!_" }~ g!\f&Ý1b2[KXl$X>@$$rMY.3V,";>RnXE*R}OD)yqok!(6[m+x|Cwp^^a>y`:VT  8@T 2:X^& +$M; ׺ŶPBqiǽcEO;x ]'5s#jDFm0áPâ M<)pp@T21ptfi0 )i[sxEoo0dj H ssY_*o9srIO`>L;까&N h#LuL͈`[JaJ6g9x?E7&N:i¹g MP1{;a@Ȏj|:B6(lH H/ZF`B8_u!lM^L &!Elv mGW#`ë߼+oN=bIqU?8! qc 6A#Z8CELxHRGCHNYÚL! rQ9xWSw0{<(ջR9H±;)"̴g M5PoQ8*0Y`&̶#I}dn#*!gqSy2UGxJ[%i'yuQtT:I9+WhTcxO1 JX9rCVyZ 8$%Dq B9I+EkZY҆_:ȢNndOxވɕzT$&Z X)XXL/zÓbGrc{νG08BVR NYIӢq-{N',=|tZ( nWP}_$>뇕`)Z͡D3" _lkNfb(Qq.L, ,{fOX]74AH_V/Uo2V(V@E9IzsG̵~8t2 2:VUrςKy=R?Zd#* afLSܺU =-YmUeptzڗ XZ+Ѽc3i4 9$]i~>+^+ wC.O?5wPr^z /#Vjoa2VhޣwBN.B< SUr%(vnfPGhiD|04.!փi[\$8:d%7:Fa@:OZrOFknBeM8ɆM~Sdhaĝ^*6}]V<}HH(^/H-um'Lɚ\&9g֩r,ޣc ű ޠz DZ*LQASLJ^(nTt}g}RIԭR+FaiӛvjzTguc{b'ͻm ^V>Y0>?ǻ~')y{A CG+9[XyhwQ*6~Q ThJ-/ E:7D,߃t87 ~ɵab+SQ!mP̈a͇%dYJW/``3A-n0Ā엥*BUPT԰ 0k=3C|]ymu>]xDZ;ː׎xm_OKQ\a'Rʮ +;ꨀV́sfZb!0- xȮtK ZPUz ÒUV|笛D|]1s>I66رO80bQrwR]v^[L)'v*$i4Zͦe9!IM0 vY2]ϕ3..($TDR?%Su^kd*1e988mcLk7\ykg9ui}H$1{B[i-Yz,o} TjwhSyͺY44դzvr:^}( 9nF1)J"NI2gi!4 NB ʧH*| PϏ)=`Pu>A{ d݈~S;_>D"a?'S:Qqکz} zqwHIѮwޥߡKRFN-Xx",a LCid@%3FofX+Xx IyͥO}13JRftRDGglBPs4fCvhI}da1duȌB ]e cb'Id12|7~ 7a0(>ܫ?[N|Co|D{l8=HUʢ;4TtN\O,k-hiy',;nN6#N TWm+nHoxđKB.V-VPM6=.vz[ۃ{ zYݮOG3[3NK˷.Qhuqu[!r¼Y]- IUX*כ8(d m Tn@n2B.q*t CL,RLmulj*l/j~o/f=u/]jyf: ;)6&c̿#CXL*_p+J)X˥ g0fm =O88ims?HQXD^r$N=܇ ;AtOx])ΓwCmϪL,.lI2~б!'h,Uu54K`5h؁ҩNZַ|lPGKޟq L#ޫ#F2ﺻN8ppfi :jQjZJF9aS [`k* as ;0V"a\V CU"pG28 Wf(4{Al"6cG/>_2>C5AG+N _NC,"Dz|<;6\K/PlXԫ؜% N+^%v:݇|7^7oo^ _o[xzenP"C뉗.ݩG1n}OASu~+poTZkєo"w]!kE_҈9b>eZHn__\<~m ~y\쏣CM.W[zH.)>?6WCzO ԨE,wQ-ydG⫷~i!Bsn} v: ݑJ3h,8ޱuZ âJ&xG$Jz'ZC|z rɒnwz:FCi"M8LcA3` u84 ( ~ 6Oq5Z0nxҀSVBKݪf&)&SIIe_BateyŧUV L&% @6?|i~}{zo K)RZc%{xބug oNof2WUzx/_ȿ,O: [ԉ m Yd[i*Z7p$RԷ n[hlkKb^!vglK*_b9[ qJt]E n5 4Zfȥi{Sن+Qo|q:^Y]ٰ6(qWPo3*}Ғ|Ʀde-x$Er Xfe_V`w  D;96^0Be1{ŶƯTٰr%.1&; xƲ>k4*B*J!p~] fydڄ:h{3B`lqj5w .dKZO|"3mf"ȐHg&3t<6 R];anN EY 1+cU3eXtT c9}XuA56Rd'1h*}QIϮNR/+B8%!m+) exJ=rujVJ2/1HS|nh$~Jg_ԻbU[kl-Rw*i͎~튶E^͗kǭ̐4V:q~YHGW2g2@LG?l`vY*U6peU4 v'-|aqkk˨:*¬Xn.1p,O:,M ThB(6B+Kës$ǧ4¯_ڐdKLՁrUۢ{ͽ@;A3+D[_[ړiۈ'Jh Zt%S_/*VNQV/5i>9S|nktxS|tOpDQ[':|#"l)n$mE@3`&K5(3 ͥA=e? 9c Y|h+:"4gQFQC"#eW a<sfhC1q e:"lS)q˲DSqz`n%(@cӑytXl˫[q&xcr|94K3.-%uIhKa鿕Ww{,#>,BP>v BFd>ϗM,$n:[^=P=CV/o_IOꍕ2bW3tLgkQAKCߛ:T '*`zC&3ى6jYn6ާhLoB8ҳS+ E?M!R=B!aMN^DfOM1bҿ<֡ ^*Nk㪤Ũ7A@QK1~ -iQ徔ioaَ#z@)*a>EwYcKG:SxufSVdjeKtӽ?Z cݡA>H)Y>I2=6Y?|mmPt Xw|B\FV".yHzMp^  W {ÎT U ߛb!c )Emv爖x^`xnp߃ y2{AG zA1aҗ^VRJ_󗟘p3SvHy<,!c k* g|m7x y? +5t{0#l+QѮ#m 5c<8ݷx/b-ӈmƯ|89cQ [e$ m{#4AF$Lb Cy^UaP Hf]-tе3hL1;*!^,Mcj9eme;9քS5FR,UFK,cWW:wKŖ,&y茪>,.ECwywQf[CQo ~6Qۛۏ7>}+q%>^!\hex[B !=urt?"&4au G|GN-9>6',op4;qU9GW4O$_mÝ_f>vEf?π;m ߾s(4T*{ :#-159YA?rw$LP[t3 IItnHϖ&k$WWDB&OKk2ֶKYP15M`A N/ِ)$DЌ4,]Ž#"Dǻz͕8Z 􉮗At=NM WQ8o\0n·UY}-F9]/{AغZH)]$(U=z>ሐ9w)26&-OxUp[TB 9ŽD6" sg6mU KLedK 53? L(E~%i3h$RssyUέtƘêpXWL|-_DdwA(r( h64 QCU +g2*5LwxyRGR$L8söI)iX2, "E\IS2IL2grدWtMSGF ( R=!mqIԒf%NDFU4c\aɣ@݋ H>B*#@ &cmAFD#(!hFN*Ic7躹`OkPƙ%%J0OI2*wQA[n"GqÕm Tk~>WVn; }ۣبayUK(iZD外J49:6z SoSZ*PPP&~X׏֒noo붨GWM4f ZUa\ {GV%QFzL? 6 Nh€}EGӉ"㥨SAyI)Ӻc`լ?NkLA$2KN97 ɦ [[İ^~_  _ww,>egn: :*J*|TՄv]E=Z}wA8r* Z%2bd=\#XV2 "͎<.|q pLdOkn AJ27#)$t+Np.Meݮj.e?q_NVL2#|CFPl%GVC hF q4N}g~0ف;uTY5{~5 BY#Pws-FM>Wo|mAp.Ky:CHlЯT>_T-"EMOܿ NXE%Tt: _-`2 B0kMb/=qʆ 7%\xJg~Ux9UL%ǝ#mhhp*{)D2ą9`mTW.I*5n#[Ai6JL仳bo^e47K) /`tNb2u/Dg [}hxWWNY ܪ"r[n 3ŀEAcWN]sm=w guKH;w7 UA+ڨ*0?CFqLzK;gxJ2nh #D#bЫ`1΢8i+YqzOnZ O$>Y5;KLCҰS B0 (Z5GBP{=F.#-rQN6Umh<1y~SFY K GGveH-rkm/]2x c^2px' *ޕW bp8Pn_Oߺϖ dʾO I'AZ* l%>=/v.& w6LFJcT)ߢyfvY#J'5P 8$cvYI2.ɚYЂmzzf }Hh,c?jW͞OPm:[qHjm \BWm*"cAxÃyK7*:0]GYtڽn݃|Ŷ ~+ |;zvA绳40Җa;\-GjlRw6Nі])b[@w?20A]Dta>>o;^W]Y}v`dA]g7fQK !A)Sj&,;Ǥ$50&v,vv ~zRrI@>tZ}B] cb ώ%<$k0%F )WУnsO@*ݶ[eA4ucd /^^1]כrEi^C0`HK˅nԢ(8`|&%Luyj>(I^AݒlTD5LE(rVc[=gGʵy.rpCR@` M'3ȟ(1]y^d(K9*ݪnE뭨CT)Paw]▁n5nXF8䢅©i\XX>ڢyt7fX-@:iĘZ$ZK3MЛB֬Ⳝ!H$-jcᚓI(1R+$N{ Z (s9ɦr9|WM ;NʻEF _S:Qw$3HzJj$ U]Y~$l_,C` 2ٱL< bsp`{`DF:꼘R*/N;bFv63EjI| 6fPDEH)mHLwW7Y??s ^ytucէ*8n<ڽ`<tA0{~RVO1j$3޳QDc0#=ԟ;%gB)ib[I>(QO8g\&JV8\F٢v_ ڶ;A{~${~z[o=ͲTOacU /Iꥺ{^'Yyܵ 31%:ݖ%|#iT k3CSBhQr.7 NJu,͠VA:ؼ84vcjӈvZeo'XHqYI&bsI=Las$' P Dg^MwP''\@bǜʺؖ=x3u4Џti)fRHE4✓і0k\9AXqK 15("Es)R |Emp5L R2ɢ#U$*MJO*kIp<4[V7#ӝa *WM8\@rعzY82פWi>9pP,y4x}:bu@P+fpP.i| =nGcџWԈrEW1Gpj*H۔< 6WIVonVY%zcU$omG>Ϧ*+E`l;Ѣ'u-3 {ӯ Sˤ!PHu0L%[l걹Q*շ:VэZla Z K}rQGg/IѬ5;9%oAK)F_j_vK7$P 'cM ulg~~%`T מkXPu%9AWWZ;jcrH U1 AV8*!qВNc;vpǶD%ʈkeW.ypMu)?'ǟ0Zr' Җ)7^[ Jq%Pqj%7[7N*ōr_rw+V(Ld4,K U+PeϦ]j'q#I\/RǙ2?d]Di~P=9bщ7T.3OjSmNv3p ) (nrwjaZ6N=y\rlyH `(FҢ jXNp1>784$~,,n~ܵ" I}V]A>m?D77hI`C\Tp.='6 e]w\!rž<}ܖZ+k5IV_^oV]8/LLlҢ._רxz2~ kbZ~] u;zW^KP;90]~aKuk`m;GWǃ3ӓdp:lYȦfWWn陱SSCn0]NKƒj"eQ5oר qW2>*vB&K @1 HҪFDɢ!K84n.Nʻ-U0̋6Nn{]3կ"Ѷ|:7 |kGsG=ev'j8IǕ^7K4OO5ω^bq7pYFCM\ջefgFM/)BDҲ6L8@X'FmKUj]v*aB,K2o.7>tNJ;]2؇ P^V e`s+5:OuPɌ9+٨qd⚾)]6P(jeSV:4K.(.*^xd Jq3nGnS,Ghf4%׹ a슈'w =H2)$=#$J4J b.E7J:dm$Lt_Ǻ"l$4|tnr1VM4U$Z5*Kd f~m&wOsrOO#S>%~e"~u͐0WUkF0=T(PtV-qD;k&4aSUluзDt:M{DhoF׭#=Ll xJ5R۰❚]}w01h8r z| jӗ%"4za=~B5@vlXk ,kSB+L0ŽܹQUpҝԆVw'4q2W{Ê{/] h˹=zGP*mkeS!:NԴG4ƣJ.HhxoYO'4[ə_YF:E#j#n+M~\:tCJ8 aK>&{f n%;r Qjm% ;8GXUּ|٢ȆXzdUWcf%M\y?0PV8"򀙌>H"v_ W [ln@6:ȮDlaVn5ď)*t,Th,6M.xzȆ(]@Cg% ki6zv"z8B}pzf=Ev%ToD)*E"nmKy$"Մؤ*A̩FiQgFplf :G% G)L&ޙHlZgr݊"8!jB1f5kM>?c?}%-wJ$q[)ٍڰa簾%^GjK70ZskJwILQ[o5NpiW҈M9ĀӥLzո#I,qas%m5.$J260*4Θo/V-D:$O:#w7nxuIv]ޢF%ZE]0 6Fo>VM2J[J8pEIkvx+ұVb$P(!M}gz+aoJ>.aQXKio#R4AqYNfD՚~(X2 [mms5ۖPM7,i=SV\sܠqaE:7j>CoPk,c5g0m4y][&K;&]2_\86F^sn|b]&HiE O:lQpg1Rΐf@i^ /SHHY7Ѻa3bk6KpTFg1r5KlS'+i"zؕ$4gf w!<%5LaV jc#>W  Ȝ$[ T&1hJ)W/u [Rm0puffU͠VlO:` |KA6̍~~$`j΢&kh#ۏ'~w+u*E?!Vpz7]b76TnKihtxr5s4u RDd<x WVW[[Hm13]L̍֫FaFghKؾ c~|gޝݣիǷMMB77w[ gB? E5 />Gj2I?%dVJ8D" mǿp<N:3a=Zv@|n"_~y+&h8Y%TɸAUoP6%jL$_2ĒL_KdP*f6,T.e8 /L$-bQGv #P(2B]pHK@BauI p2ZQ@[ԍp2I$ %h[8 S?3h4P~"Q)MaAY/CP\-2dj(r!J.Q$8C>#6(]jJ=5NՍ0.mhtMlPT!!IBl0ƕLoE)ňp KD?OTd &ĝsAC!Rg)]+,zr`YїI[!Dni-qy4%0  ? L#8 |̘b) :$.` ,DZCAPA||T^ԳK<# GW"eO;%%OP:xB x[!i"LfI3K/fnQ_ чJG0lj̑ț7`LjJh4h:}[V3VBp:g @T&ԓxZ"wB[#k4R"։T\RAil$]2U]~ %R<r"VБ;6c u$f &d.>$aC@D1$#){LhHR8e3-`nBg: Ǧ&)SZ(Ԕ!MH%S"5CU")= Bd3g1K12lB0t'asĦĦb%/F QxpP7hPeqM hᇳb&=!KOCUyR8^ֹċ8)q)tD·)}l;"(]㢙 Vj!0Th{Mu,zDKWFj]uM֟p],3KM)_p*W7}]I)6C9dH4dYfRpm-e~-x@96}HM~T:*>C\=dS +E$L:6IY6uBוt%u4:OZVbxGT!}8}9K5d #ax}{ZmHY/ESnR7:48H89Ö8$3_FPp88i(J=>ʗy>є9 U/D )+Yvqxj>YYY,WB=߹7{,,CYvJywρCg/?l;@nά cr_<J7slI?0_(vnsCO j¬u*ߝQ0_.v>:s?jgO…\X_abΓ{qxn(?>ԓ{Q8Z+*۸m2/;VN ' k/k]}|p}+7w --W _ l0K=z\^(&ѧbNמwD|~x֪'] qܒ)L֪‘B?`t0X)՞SLG4@;Ogw =.;z +\ESo*ճ ySJt~zg_Q)KKR9-t3BudY~u2ߛn@G`={yQUp+@] yS>_`@7l+K%]ޚk~];Úgd) V.VbxLNLxn1O0ijz2+&B'O}' wL ({z,O΍1% 2g_n _Y+%0,sC` 3" )^+=+߂|4X4fݬ]-'}?}.P$$A@bWw kB;7[=ڋv($2X BqNV0؃YzP`YXJ s඘SSu @o,&oqa<]P|J6Yṕ̫]F]4IBu&_lwy 3 l  Lz] Ԭ]b]-{H$~q3#iH| XN8IƵYH`.v+uXl5%ߝ݌5 OrYoX{7h7/ -Mu8E 2Mwu:^A8 m>y<̭1"yֹř7Ʒ?l);a'srIg]#8<`ٓ%f7d95FfοeJ$Il.K$|o?Ν!Tt_9]$ct"?[5mRҠOqҿm H+A(c[bT`jO?T $'}*f"i$SF*cd$s8v_DHu !Ԣ$YƕJ yبRx^>d}nsp.r<5iD?‰]tC].}L>`}OB .OgKs0 =zOe K\iJMl@!) ,K sx%}Z%7ٌ'O n|p eYlwy8bmہwDg+Y(q> ;^Mp/HmXStL5^1üj>AVQ5{ øxRn۾Ib6ۍLKO;L"M-7s-3Aw^u<XQ0]REu* E !C~RX2Kl*`O R)~HwR˄ xa#Ǟf].yhg<2rocMlel5Os2)gVe[YD#~S+jD-aRw:ە/*kMjO{[=(|-?/9$ iy. ϋk;K}|sMi?Y{MDPBUvp2^"s=WnEş[ Co :7C 0;Z>(g e1-*T㡭,khz ҍ}V^ª$ėx-lԛ D2#6%<A4 "% $!1)'*"!%)$% !Z>-% "S !-('6E-8(  (f3 S$2: h 8 W# % 7    " $&1 n3A=#2O '" !< ! T \    d M n %  Y    %                                                  ?Y8':`88Tf::4];[u=8":=<88<=9;=89s=9s99h((h(((((x((X((XXX((((((((((((((((hhX(xx((X(((hX(htttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttLXttdttptttttttttttttttt2|ttttttz~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>JV~~b~~~~~~~~~~~~~n~2~~~~~~LLtddTTTLL~tddLTLp p ` ``` pp ` p` p>rR?@?.?? ?>/ 0000~05889.9AxAeARA@AΜweS>p =r)rrqqq RRRRRNi>> import numpy as np >>> rng = np.random.default_rng(12345) >>> print(rng) Generator(PCG64) >>> rfloat = rng.random() >>> rfloat 0.22733602246716966 >>> type(rfloat) Here we use `default_rng` to generate 3 random integers between 0 (inclusive) and 10 (exclusive): >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> rints = rng.integers(low=0, high=10, size=3) >>> rints array([6, 2, 7]) >>> type(rints[0]) Here we specify a seed so that we have reproducible results: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> print(rng) Generator(PCG64) >>> arr1 = rng.random((3, 3)) >>> arr1 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) If we exit and restart our Python interpreter, we'll see that we generate the same random numbers again: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> arr2 = rng.random((3, 3)) >>> arr2 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) permutation(x, axis=0) Randomly permute a sequence, or return a permuted range. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. axis : int, optional The axis which `x` is shuffled along. Default is 0. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0 >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr, axis=1) array([[0, 2, 1], # random [3, 5, 4], [6, 8, 7]]) shuffle(x, axis=0) Modify an array or sequence in-place by shuffling its contents. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. axis : int, optional The axis which `x` is shuffled along. Default is 0. It is only supported on `ndarray` objects. Returns ------- None See Also -------- permuted permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> arr array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> rng.shuffle(arr) >>> arr array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr, axis=1) >>> arr array([[2, 0, 1], # random [5, 3, 4], [8, 6, 7]]) permuted(x, axis=None, out=None) Randomly permute `x` along axis `axis`. Unlike `shuffle`, each slice along the given axis is shuffled independently of the others. Parameters ---------- x : array_like, at least one-dimensional Array to be shuffled. axis : int, optional Slices of `x` in this axis are shuffled. Each slice is shuffled independently of the others. If `axis` is None, the flattened array is shuffled. out : ndarray, optional If given, this is the destination of the shuffled array. If `out` is None, a shuffled copy of the array is returned. Returns ------- ndarray If `out` is None, a shuffled copy of `x` is returned. Otherwise, the shuffled array is stored in `out`, and `out` is returned See Also -------- shuffle permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- Create a `numpy.random.Generator` instance: >>> rng = np.random.default_rng() Create a test array: >>> x = np.arange(24).reshape(3, 8) >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) Shuffle the rows of `x`: >>> y = rng.permuted(x, axis=1) >>> y array([[ 4, 3, 6, 7, 1, 2, 5, 0], # random [15, 10, 14, 9, 12, 11, 8, 13], [17, 16, 20, 21, 18, 22, 23, 19]]) `x` has not been modified: >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) To shuffle the rows of `x` in-place, pass `x` as the `out` parameter: >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 3, 0, 4, 7, 1, 6, 2, 5], # random [ 8, 14, 13, 9, 12, 11, 15, 10], [17, 18, 16, 22, 19, 23, 20, 21]]) Note that when the ``out`` parameter is given, the return value is ``out``: >>> y is x True dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------ ValueError If any value in ``alpha`` is less than zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, https://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> rng = np.random.default_rng() >>> s = rng.dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") multivariate_hypergeometric(colors, nsample, size=None, method='marginals') Generate variates from a multivariate hypergeometric distribution. The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution. Choose ``nsample`` items at random without replacement from a collection with ``N`` distinct types. ``N`` is the length of ``colors``, and the values in ``colors`` are the number of occurrences of that type in the collection. The total number of items in the collection is ``sum(colors)``. Each random variate generated by this function is a vector of length ``N`` holding the counts of the different types that occurred in the ``nsample`` items. The name ``colors`` comes from a common description of the distribution: it is the probability distribution of the number of marbles of each color selected without replacement from an urn containing marbles of different colors; ``colors[i]`` is the number of marbles in the urn with color ``i``. Parameters ---------- colors : sequence of integers The number of each type of item in the collection from which a sample is drawn. The values in ``colors`` must be nonnegative. To avoid loss of precision in the algorithm, ``sum(colors)`` must be less than ``10**9`` when `method` is "marginals". nsample : int The number of items selected. ``nsample`` must not be greater than ``sum(colors)``. size : int or tuple of ints, optional The number of variates to generate, either an integer or a tuple holding the shape of the array of variates. If the given size is, e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one variate is a vector of length ``len(colors)``, and the return value has shape ``(k, m, len(colors))``. If `size` is an integer, the output has shape ``(size, len(colors))``. Default is None, in which case a single variate is returned as an array with shape ``(len(colors),)``. method : string, optional Specify the algorithm that is used to generate the variates. Must be 'count' or 'marginals' (the default). See the Notes for a description of the methods. Returns ------- variates : ndarray Array of variates drawn from the multivariate hypergeometric distribution. See Also -------- hypergeometric : Draw samples from the (univariate) hypergeometric distribution. Notes ----- The two methods do not return the same sequence of variates. The "count" algorithm is roughly equivalent to the following numpy code:: choices = np.repeat(np.arange(len(colors)), colors) selection = np.random.choice(choices, nsample, replace=False) variate = np.bincount(selection, minlength=len(colors)) The "count" algorithm uses a temporary array of integers with length ``sum(colors)``. The "marginals" algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It is roughly equivalent to:: variate = np.zeros(len(colors), dtype=np.int64) # `remaining` is the cumulative sum of `colors` from the last # element to the first; e.g. if `colors` is [3, 1, 5], then # `remaining` is [9, 6, 5]. remaining = np.cumsum(colors[::-1])[::-1] for i in range(len(colors)-1): if nsample < 1: break variate[i] = hypergeometric(colors[i], remaining[i+1], nsample) nsample -= variate[i] variate[-1] = nsample The default method is "marginals". For some cases (e.g. when `colors` contains relatively small integers), the "count" method can be significantly faster than the "marginals" method. If performance of the algorithm is important, test the two methods with typical inputs to decide which works best. Examples -------- >>> colors = [16, 8, 4] >>> seed = 4861946401452 >>> gen = np.random.Generator(np.random.PCG64(seed)) >>> gen.multivariate_hypergeometric(colors, 6) array([5, 0, 1]) >>> gen.multivariate_hypergeometric(colors, 6, size=3) array([[5, 0, 1], [2, 2, 2], [3, 3, 0]]) >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2)) array([[[3, 2, 1], [3, 2, 1]], [[4, 1, 1], [3, 2, 1]]]) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : array-like of floats Probabilities of each of the ``p`` different outcomes with shape ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1 dimension where pvals.shape[-1] > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn each with ``p`` elements. Default is None where the output size is determined by the broadcast shape of ``n`` and all by the final dimension of ``pvals``, which is denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it must be compatible with the broadcast shape ``b``. Specifically, size must have ``q`` or more elements and size[-(q-j):] must equal ``bj``. Returns ------- out : ndarray The drawn samples, of shape size, if provided. When size is provided, the output shape is size + (p,) If not specified, the shape is determined by the broadcast shape of ``n`` and ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of the multinomial, ``p``, so that that output shape is ``(b0, b1, ..., bq, p)``. Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2)) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6]) array([[2, 1, 4, 3, 0, 0], [3, 3, 3, 6, 1, 4]], dtype=int64) # random Generate categorical random variates from two categories where the first has 3 outcomes and the second has 2. >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]]) array([[0, 0, 1], [0, 1, 0]], dtype=int64) # random ``argmax(axis=-1)`` is then used to return the categories. >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]] >>> rvs = rng.multinomial(1, pvals, size=(4,2)) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The same output dimension can be produced using broadcasting. >>> rvs = rng.multinomial([[1]] * 4, pvals) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8, *, method='svd') Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (the squared standard deviation, or "width") of the one-dimensional normal distribution. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. cov is cast to double before the check. method : { 'svd', 'eigh', 'cholesky'}, optional The cov input is used to compute a factor matrix A such that ``A @ A.T = cov``. This argument is used to select the method used to compute the factor matrix A. The default method 'svd' is the slowest, while 'cholesky' is the fastest but less robust than the slowest method. The method `eigh` uses eigen decomposition to compute A and is faster than svd but slower than cholesky. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> x, y = rng.multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. This function internally uses linear algebra routines, and thus results may not be identical (even up to precision) across architectures, OSes, or even builds. For example, this is likely if ``cov`` has multiple equal singular values and ``method`` is ``'svd'`` (default). In this case, ``method='cholesky'`` may be more robust. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> rng = np.random.default_rng() >>> x = rng.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) We can use a different method other than the default to factorize cov: >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky') >>> y.shape (3, 3, 2) Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively, and the expected correlation coefficient is -3/sqrt(6*3.5) ≈ -0.65465. >>> cov = np.array([[6, -3], [-3, 3.5]]) >>> pts = rng.multivariate_normal([0, 0], cov, size=800) Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values: >>> pts.mean(axis=0) array([ 0.0326911 , -0.01280782]) # may vary >>> np.cov(pts.T) array([[ 5.96202397, -2.85602287], [-2.85602287, 3.47613949]]) # may vary >>> np.corrcoef(pts.T)[0, 1] -0.6273591314603949 # may vary We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation of the components of this sample. >>> import matplotlib.pyplot as plt >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5) >>> plt.axis('equal') >>> plt.grid() >>> plt.show() logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 <= ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range [0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> rng = np.random.default_rng() >>> s = rng.logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> bins = np.arange(-.5, max(s) + .5 ) >>> count, bins, _ = plt.hist(s, bins=bins, label='Sample count') # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> centres = np.arange(1, max(s) + 1) >>> plt.plot(centres, logseries(centres, a) * s.size, 'r', label='logseries PMF') >>> plt.legend() >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- multivariate_hypergeometric : Draw samples from the multivariate hypergeometric distribution. scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function (PMF) for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. References ---------- .. [1] Wikipedia, "Geometric distribution", https://en.wikipedia.org/wiki/Geometric_distribution Examples -------- Draw 10,000 values from the geometric distribution, with the probability of an individual success equal to ``p = 0.35``: >>> p, size = 0.35, 10000 >>> rng = np.random.default_rng() >>> sample = rng.geometric(p=p, size=size) What proportion of trials succeeded after a single run? >>> (sample == 1).sum()/size 0.34889999999999999 # may vary The geometric distribution with ``p=0.35`` looks as follows: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(sample, bins=30, density=True) >>> plt.plot(bins, (1-p)**(bins-1)*p) >>> plt.xlim([0, 25]) >>> plt.show() zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability mass function (PMF) for the Zipf distribution is .. math:: p(k) = \frac{k^{-a}}{\zeta(a)}, for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 4.0 >>> n = 20000 >>> rng = np.random.default_rng() >>> s = rng.zipf(a, size=n) Display the histogram of the samples, along with the expected histogram based on the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import zeta # doctest: +SKIP `bincount` provides a fast histogram for small integers. >>> count = np.bincount(s) >>> k = np.arange(1, s.max() + 1) >>> plt.bar(k, count[1:], alpha=0.5, label='sample count') >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5, ... label='expected count') # doctest: +SKIP >>> plt.semilogy() >>> plt.grid(alpha=0.4) >>> plt.legend() >>> plt.title(f'Zipf sample, a={a}, size={n}') >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expected number of events occurring in a fixed-time interval, must be >= 0. A sequence must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The probability mass function (PMF) of Poisson distribution is .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> lam, size = 5, 10000 >>> s = rng.poisson(lam=lam, size=size) Verify the mean and variance, which should be approximately ``lam``: >>> s.mean(), s.var() (4.9917 5.1088311) # may vary Display the histogram and probability mass function: >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> x = np.arange(0, 21) >>> pmf = stats.poisson.pmf(x, mu=lam) >>> plt.hist(s, bins=x, density=True, width=0.5) >>> plt.stem(x, pmf, 'C1-') >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval (0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution. Must satisfy 0 < p <= 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. Because this method internally calls ``Generator.poisson`` with an intermediate random value, a ValueError is raised when the choice of :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled intermediate distribution exceeding the max acceptable value of the ``Generator.poisson`` method. This happens when :math:`p` is too low (a lot of failures happen for every success) and :math:`n` is too big ( a lot of successes are allowed). Therefore, the :math:`n` and :math:`p` values must satisfy the constraint: .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1}, Where the left side of the equation is the derived mean + 10 sigma of a sample from the gamma distribution internally used as the :math:`lam` parameter of a poisson sample, and the right side of the equation is the constraint for maximum value of :math:`lam` in ``Generator.poisson``. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> rng = np.random.default_rng() >>> s = rng.negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> rng = np.random.default_rng() >>> n, p, size = 10, .5, 10000 >>> s = rng.binomial(n, p, 10000) Assume a company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of ``p=0.1``. All nine wells fail. What is the probability of that happening? Over ``size = 20,000`` trials the probability of this happening is on average: >>> n, p, size = 9, 0.1, 20000 >>> np.sum(rng.binomial(n=n, p=p, size=size) == 0)/size 0.39015 # may vary The following can be used to visualize a sample with ``n=100``, ``p=0.4`` and the corresponding probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.stats import binom >>> n, p, size = 100, 0.4, 10000 >>> sample = rng.binomial(n, p, size=size) >>> count, bins, _ = plt.hist(sample, 30, density=True) >>> x = np.arange(n) >>> y = binom.pmf(x, n, p) >>> plt.plot(x, y, linewidth=2, color='r') triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> h = plt.hist(rng.triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> h = plt.hist(rng.wald(3, 2, 100000), bins=200, density=True) >>> plt.show() rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.prod(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, _ = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> rng = np.random.default_rng() >>> s = rng.logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, bins=50, label='Sampled data') # plot sampled data against the exact distribution >>> def logistic(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> logistic_values = logistic(bins, loc, scale) >>> bin_spacing = np.mean(np.diff(bins)) >>> plt.plot(bins, logistic_values * bin_spacing * s.size, label='Logistic PDF') >>> plt.legend() >>> plt.show() gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, _ = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> rng = np.random.default_rng() >>> s = rng.laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a <= 0. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> def weibull(x, n, a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, _ = plt.hist(rng.weibull(5., 1000)) >>> x = np.linspace(0, 2, 1000) >>> bin_spacing = np.mean(np.diff(bins)) >>> plt.plot(x, weibull(x, 1., 5.) * bin_spacing * s.size, label='Weibull PDF') >>> plt.legend() >>> plt.show() pareto(a, size=None) Draw samples from a Pareto II (AKA Lomax) distribution with specified shape. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the Pareto II distribution. See Also -------- scipy.stats.pareto : Pareto I distribution scipy.stats.lomax : Lomax (Pareto II) distribution scipy.stats.genpareto : Generalized Pareto distribution Notes ----- The probability density for the Pareto II distribution is .. math:: p(x) = \frac{a}{{x+1}^{a+1}} , x \ge 0 where :math:`a > 0` is the shape. The Pareto II distribution is a shifted and scaled version of the Pareto I distribution, which can be found in `scipy.stats.pareto`. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a = 3. >>> rng = np.random.default_rng() >>> s = rng.pareto(a, 10000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.linspace(0, 3, 50) >>> pdf = a / (x+1)**(a+1) >>> plt.hist(s, bins=x, density=True, label='histogram') >>> plt.plot(x, pdf, linewidth=2, color='r', label='pdf') >>> plt.xlim(x.min(), x.max()) >>> plt.legend() >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and concentration (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Concentration of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the concentration, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and concentration >>> rng = np.random.default_rng() >>> s = rng.vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either positive or negative, hence making our test 2-tailed. Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom. We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square root). >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> t -2.8207540608310198 We draw 1000000 samples from Student's t distribution with the adequate degrees of freedom. >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> s = rng.standard_t(10, size=1000000) >>> h = plt.hist(s, bins=100, density=True) Does our t statistic land in one of the two critical regions found at both tails of the distribution? >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s)) 0.018318 #random < 0.05, statistic is in critical region The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance threshold. Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being true is too low, and we reject the null hypothesis of no deviation. standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> s = rng.standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : float or array_like of floats Number of degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=1}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> rng = np.random.default_rng() >>> rng.chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random The distribution of a chi-square random variable with 20 degrees of freedom looks as follows: >>> import matplotlib.pyplot as plt >>> import scipy.stats as stats >>> s = rng.chisquare(20, 10000) >>> count, bins, _ = plt.hist(s, 30, density=True) >>> x = np.linspace(0, 60, 1000) >>> plt.plot(x, stats.chi2.pdf(x, df=20)) >>> plt.xlim([0, 60]) >>> plt.show() noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> rng = np.random.default_rng() >>> s = rng.f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. The corresponding probability density function for ``n = 20`` and ``m = 20`` is: >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> dfnum, dfden, size = 20, 20, 10000 >>> s = rng.f(dfnum=dfnum, dfden=dfden, size=size) >>> bins, density, _ = plt.hist(s, 30, density=True) >>> x = np.linspace(0, 5, 1000) >>> plt.plot(x, stats.f.pdf(x, dfnum, dfden)) >>> plt.xlim([0, 5]) >>> plt.show() gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> rng = np.random.default_rng() >>> s = rng.gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, _ = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_gamma(shape, size=None, dtype=np.float64, out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> rng = np.random.default_rng() >>> s = rng.standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, _ = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> rng = np.random.default_rng() >>> s = rng.normal(mu, sigma, 1000) Verify the mean and the standard deviation: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.0 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> rng = np.random.default_rng() >>> rng.normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random standard_normal(size=None, dtype=np.float64, out=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Notes ----- For random samples from the normal distribution with mean ``mu`` and standard deviation ``sigma``, use one of:: mu + sigma * rng.standard_normal(size=...) rng.normal(mu, sigma, size=...) Examples -------- >>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 # random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The high limit may be included in the returned array of floats due to floating-point rounding in the equation ``low + (high-low) * random_sample()``. high - low must be non-negative. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> s = rng.uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() choice(a, size=None, replace=True, p=None, axis=0, shuffle=True) Generates a random sample from a given array Parameters ---------- a : {array_like, int} If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated from np.arange(a). size : {int, tuple[int]}, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : bool, optional Whether the sample is with or without replacement. Default is True, meaning that a value of ``a`` can be selected multiple times. p : 1-D array_like, optional The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribution over all entries in ``a``. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : bool, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Notes ----- Setting user-specified probabilities through ``p`` uses a more general but less efficient sampler than the default. The general sampler produces a different sample than the optimized sampler even if each element of ``p`` is 1 / len(a). ``p`` must sum to 1 when cast to ``float64``. To ensure this, you may wish to normalize using ``p = p / np.sum(p, dtype=float)``. When passing ``a`` as an integer type and ``size`` is not specified, the return type is a native Python ``int``. Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a uniform random sample from a 2-D array along the first axis (the default), without replacement: >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False) array([[3, 4, 5], # random [0, 1, 2]]) Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype='>> rng = np.random.default_rng() >>> rng.bytes(10) b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random integers(low, high=None, size=None, dtype=np.int64, endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is np.int64. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, https://arxiv.org/abs/1805.10941. standard_exponential(size=None, dtype=np.float64, method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> rng = np.random.default_rng() >>> n = rng.standard_exponential((3, 8000)) exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. Examples -------- Assume a company has 10000 customer support agents and the time between customer calls is exponentially distributed and that the average time between customer calls is 4 minutes. >>> scale, size = 4, 10000 >>> rng = np.random.default_rng() >>> time_between_calls = rng.exponential(scale=scale, size=size) What is the probability that a customer will call in the next 4 to 5 minutes? >>> x = ((time_between_calls < 5).sum())/size >>> y = ((time_between_calls < 4).sum())/size >>> x - y 0.08 # may vary The corresponding distribution can be visualized as follows: >>> import matplotlib.pyplot as plt >>> scale, size = 4, 10000 >>> rng = np.random.default_rng() >>> sample = rng.exponential(scale=scale, size=size) >>> count, bins, _ = plt.hist(sample, 30, density=True) >>> plt.plot(bins, scale**(-1)*np.exp(-scale**-1*bins), linewidth=2, color='r') >>> plt.show() References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalization, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. Examples -------- The beta distribution has mean a/(a+b). If ``a == b`` and both are > 1, the distribution is symmetric with mean 0.5. >>> rng = np.random.default_rng() >>> a, b, size = 2.0, 2.0, 10000 >>> sample = rng.beta(a=a, b=b, size=size) >>> np.mean(sample) 0.5047328775385895 # may vary Otherwise the distribution is skewed left or right according to whether ``a`` or ``b`` is greater. The distribution is mirror symmetric. See for example: >>> a, b, size = 2, 7, 10000 >>> sample_left = rng.beta(a=a, b=b, size=size) >>> sample_right = rng.beta(a=b, b=a, size=size) >>> m_left, m_right = np.mean(sample_left), np.mean(sample_right) >>> print(m_left, m_right) 0.2238596793678923 0.7774613834041182 # may vary >>> print(m_left - a/(a+b)) 0.001637457145670096 # may vary >>> print(m_right - b/(a+b)) -0.0003163943736596009 # may vary Display the histogram of the two samples: >>> import matplotlib.pyplot as plt >>> plt.hist([sample_left, sample_right], ... 50, density=True, histtype='bar') >>> plt.show() References ---------- .. [1] Wikipedia, "Beta distribution", https://en.wikipedia.org/wiki/Beta_distribution random(size=None, dtype=np.float64, out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` use `uniform` or multiply the output of `random` by ``(b - a)`` and add ``a``:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). See Also -------- uniform : Draw samples from the parameterized uniform distribution. Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) spawn(n_children) Create new independent child generators. See :ref:`seedsequence-spawn` for additional notes on spawning children. .. versionadded:: 1.25.0 Parameters ---------- n_children : int Returns ------- child_generators : list of Generators Raises ------ TypeError When the underlying SeedSequence does not implement spawning. See Also -------- random.BitGenerator.spawn, random.SeedSequence.spawn : Equivalent method on the bit generator and seed sequence. bit_generator : The bit generator instance used by the generator. Examples -------- Starting from a seeded default generator: >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}" >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501 >>> rng = np.random.default_rng(entropy) Create two new generators for example for parallel execution: >>> child_rng1, child_rng2 = rng.spawn(2) Drawn numbers from each are independent but derived from the initial seeding entropy: >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform() (0.19029263503854454, 0.9475673279178444, 0.4702687338396767) It is safe to spawn additional children from the original ``rng`` or the children: >>> more_child_rngs = rng.spawn(20) >>> nested_spawn = child_rng1.spawn(20) ??:0yE>qh?@$@333333?CeA?~)@ lѿ3 ; @?UUUUUU?"@m{??@@5gG8?SˆB?AAz?<ٰj_?$+K?88C?J?llf?UUUUUU?dg?̶e*= ףp=@n?[ m?h|?5?333333 @r?$~?B>٬ @r鷯?Q?Q?9v?(\@ffffff@0C.@4@x&?@?UUUUUU?a@X@`@|@@MA>@@:0yE>-DT! @h㈵>.A-DT! -DT!@@3?r?q?0@v@dg??/*p?3f?(_?xY?յS?N?J?F?DB?Qt??u+ ?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x >b>x>>!>^}>;z>Хw>@t>wr>byl>i>g>Sd>3a>^>]\>&Y>z)W>T>P R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>= >T>T>4>>y >ϣ > >>L>>l>=+==0 =C==8==hp==0== =n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W= C=4=M,=4*=D.=y8=H=~=x=3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k 33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44 4` 4M 47 44?4nB44L4 i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84 C4P4_4q474{4w4>ԕ44s4<4d444$4 (4a44lߢ4$4l44x 4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó 5 5]5^555q5v 5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i ~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`  i   6  H  A!B+m 5XttW3 `wK\ L   s   G {V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~ }}} }}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~ n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u? !?z}k? ~?@?`x?*?8? Qi?oTC?_(4?ָ?@je?!u v?7Zi?{ ?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹? Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+ j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~ /? {^?Z? ?ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8? [B/?I䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T ξ?x.BTv?Imb.??6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#? V#?_?S?Q| z? Y&?$?htQz? 3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%? RD?lj?W'n?-BU؊?h?t4? n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%> T+Y? O?K 2=?]d<A]X`<+M[Ij<[5q&<.8eG< h#ឪV <;LC%K<ꆭh NVeΙVn6nvK zicp%E tQ)2U1WQ9Lin?23F:L"3\LQ V f[_rWDdx h+*k2=Ko:qr Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cx AFẙi&zqVYםΡag6 X83:뇡koɣj_ۤ| Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!X ɦ֬ ᆴX7(. Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B < EOvpc/F<Ң"Ae އ0~ Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+ E>ҙ02yΩ4A (Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF 3n bH޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄ /0 wپ}2}K D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ @樫(afoeW-|&aY +M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<> ~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J> >:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[> Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*> > >Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\= s==d= =yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4 t4u4v4Cw4x4 z42{40S|4u}4~44v4@ 4L4>4ق4v444lV44R4F44p4 I44"4_44Ќ4l4L4`4ԏ4坐4y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/ {ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6 < :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR T=UdVWXYZ[\]^~__`;abbcod.eefLggh~~7~~/~7~~ ~ ~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1? OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g? U7?e&$ ?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?PF9 ?ߓ^??ۮY?3???i?Z8o? O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O? Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8 ? Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~& ~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l ?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n? R=?Kr?*}T#?,"k>?R) ?K{o?vaӽ?命8? t;I_? h?3xk?3Ӻ?b3?vZ9S?LJisk?M$a.?ftW?+ ?"@|?&#?p>_?1fҲ? DE?} ?/?%,?0?5nl+,&?QG?b. ?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u? ̓0?"NR? y? ڥ?d֔?^8 ?0`4I?IrO*?O'?x A?B?/)?7h`|?] ٨v?p?gC_e?T?yx;I< <[,L< Ŀk<4xV<=A[<'?}y<NG<~;[xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8) YfHqն&|s f2,2Ztզޗ .n ZR'ӯB)[l@u Pҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs) 4<=>)G'QA@Y.(5bX jz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ: Aޓ=?9B.? * ?,|l @yD@:5/?@@R2B@96SC@wz*E@r4dF@OOfq]@Ob^@+NT_@ݭC#`@~{`@kbba@YSȐa@n b@1Ib@5ca c@c@ͦ3 d@\>d@nz e@s9Je@FGGʪ f@yyuf@IJC g@Y&g@oFh@·h@aQL i@ai@ F~x*j@&Pj@7k@!+k@VFl@ l@tVm@pZNm@k9ihn@HQOUn@a,~|o@b4nʼnp@+e Ip@cp@)Vp@*q@6Gaq@q@>m#FJq@FK.5r@b)C|r@Wrr@V] s@rRs@GIqs@ >6qs@jB*t@ A=rt@fIw|t@d'-u@X+{ Mu@# u@ZGDu@;#(v@b%rv@iv{Իv@w@Ow@\&әw@}6-#w@h͙.x@k?7yx@–'x@_*y@Yy@1*y@^TTy@,{L>h?@@0AATBPB0LCCD`D0 HEExFGp$GP+@H02H9pII J KK@$L%|LDBEB E(K0D8DPXI`PXAPc8A0A(B BBB8(BEE G(A0e(C BBB8olBBA D(A0X(D ABB4<`UBDD s GBJ AABtcHBED D(D0 (G ABBK F(C ABB,qD mAEx XQ TQD t H H4 BNB B(A0A8G8A0A(B BBBfA(]KAAG?AAH|iBEE E(D0D8DP>8D0A(B BBBHBIB B(A0A8G8A0A(B BBBD`BHE D(D08I@T8A0R(A BBB,$bI N AF H` LBAD G0e  JABH M  AABG ` AAB( DAGLD (BBD C(D0 (A ABBE  (A ABBE ( AJ0` AD I AF  dbH lwBEB B(D0A8DPU8D0A(B BBB($ ?AAA 9AAP lHp H k4p hADD m CAF M CAG ( $D^ F K\ OAF K     $$ ֫nAAA hAA(L AHD AAHx ?BBB B(D0C8D`!8A0A(B BBBx BBB B(D0D8G` 8G0A(B BBBI V 8D0A(B BBBE Q 8F0A(B BBBH @ T @h BAA G0  AABG d  DABE , P!jI J AB H` ` 0"nBLB B(A0A8Qp 8D0A(B BBBE ` 8A0A(B BBBE @ <$uLhX $}ThHp %3BBJ B(D0G8DP] 8D0A(B BBBG H '3BBE B(I0F8DP^ 8D0A(B BBBG (PDn F `$()BEE B(D0A8GP 8A0A(B BBBB  8A0A(B BBBH d*BEE E(D0E8D 8C0A(B BBBG z 8F0A(B BBBA l-Do E @ H 8.`D} G 40|.lAGD0r AAH V AAH h.8|P/AAF0 AAB l AAB 41eBDD Q ABB AAB<1,2AG0 DM V AI 43CtNL3SDNd4DM G 44AGG K AAD D DAG 44AAG a CAB i CAC \5xD~ F o5xD~ F o(06ADD ^ AAG (\6ADD ^ AAG D7DE G \ D @8BED G0\  ABBE D  DBBL 48AAG  CAC i CAC (49`<9HBEE E(A0A8DP 8A0A(B BBBI D 8D0A(B BBBO (:AAG  CAC p`<BDA  HBI F DBL H HBN q ABD A DBI Y DBI |AB@=i_ H L`|>BBB B(A0A8G 8A0A(B BBBC Ae J Ix-TQBBB B(A0A8DP 8A0A(B BBBE  8A0A(B BBBH X\`OXAPF 8A0A(B BBBI L.(rBBB E(D0A8DK 8D0A(B BBBD LT.X=BBA D(Dp (A ABBC  (A ABBF h.HBIB E(A0A8DW 8C0A(B BBBE  EL KEjAh/|BIB E(A0A8DW 8C0A(B BBBE  EL KEjAh|/BIB E(A0A8DW 8C0A(B BBBE  EL KEjA\/ BIB B(A0A8D`KOAG 8D0A(B BBBA H0RBMM B(D0A8G HSJBFABFAO 8D0A(B BBBE rKVAq XE 0l BIB E(A0A8GpExaOxApp 8C0A(B BBBC  8A0A(B BBBD _xPKxBpfxcHxAp 8A0A(B BBBH h1d)BMG B(D0D8GDVA] 8D0A(B BBBC  XE \1h BPG B(D0A8Nx 8D0A(B BBBA ROA\T2X BPG B(D0A8Nh 8D0A(B BBBA ROA2*BPG B(D0A8NSOEFBFBBATT 8D0A(B BBBA mSOEFBFBBATROAp3CBPQ G(A0A8JPHHABADBFT 8D0A(B BBBA EVALXAX YE d4R,BBB B(A0A8DP 8C0A(B BBBE  8F0A(B BBBG 4X|BMK E(D0A8GNIFFBFAEFPz 8D0A(B BBBH jKVA XE 5_|BMM E(D0A8GNIFFBFAEFPz 8D0A(B BBBH jKVA XE 5f|BMM E(D0A8GNIFFBFAEFPz 8D0A(B BBBH jKVA XE L6pm|BMM E(D0A8GNIFFBFAEFPz 8D0A(B BBBH jKVA XE 6Xt|BMM E(D0A8GNIFFBFAEFPz 8D0A(B BBBH jKVA XE |7@{BIB B(D0A8D:ZEHBBABBAQqKOAG 8D0A(B BBBD \8DBPN J(A0A8Go 8D0A(B BBBA ROAh8BMM J(D0A8GIHFABMAEFQKVA 8D0A(B BBBA a XE `9ܕr BLB B(A0D8G 8D0A(B BBBB 4x`d9IBB A(A0 (A BBBJ  (A BBBH L (A BBBE 9dBLB B(A0A8D 8A0A(B BBBD  8C0A(B BBBF [DjAz 8A0A(B BBBA g EE d:BMG E(D0A8G_PGHBADEFATDVAV 8D0A(B BBBB  XE :BMG E(D0A8GOPGHBADEFATDVAV 8D0A(B BBBB  XE ;BMG E(D0A8GOPGHBADEFATDVAV 8D0A(B BBBB  XE ,<0BMG E(D0A8G_ERAABAGBFQDVAV 8D0A(B BBBJ  XE <xBMG E(D0A8G_ERAABAGBFQDVAV 8D0A(B BBBJ  XE \=BMG E(D0A8G_ERAABAGBFQDVAV 8D0A(B BBBJ  XE =BMG E(D0A8G_ERAABAGBFQDVAV 8D0A(B BBBJ  XE >PBMG E(D0A8G_ERAABAGBFQDVAV 8D0A(B BBBJ  XE p$?BEB E(A0A8G 8A0A(B BBBD "GWB!DZB?BLB B(A0A8DH 8A0A(B BBBF > 8C0A(B BBBF KDjA[ 8A0A(B BBBA S EE 4@BPG E(A0A8D*ROAW 8D0A(B BBBD PGHBADBFAT@1BPG E(A0A8D*ROAW 8D0A(B BBBD EKAABAKBFQLA`1BPG E(A0A8D*ROAW 8D0A(B BBBD EKAABAKBFQTAz BBB E(D0A8J ^ 8A0A(B BBBK 0B<2BMM G(D0D8GIBFBBABMvKVA 8D0A(B BBBA  XE  SSABGABBAOBBMK E(D0A8GONFFBFABFP} 8D0A(B BBBA vDVA  XE hC=BMG E(D0A8G! EVB] 8D0A(B BBBA  YE CD;/%BPM I(J0A8G 8D0A(B BBBA #J]A*EVA+ YE IJUBJ^DJXAJ^B3J[A`J]B\JYBcJ]AhEd_)BMP B(A0A8G 8D0A(B BBBF KEkB EE tEBPG E(H0A8GKEAFBFAEHQ 8D0A(B BBBA rROAFHBPG E(H0A8G|REFFBFAHFQ 8D0A(B BBBA rROAFؕBPG E(H0A8G|REFFBFAHFQ 8D0A(B BBBA rROA$GhBPG E(H0A8G|REFFBFAHFQ 8D0A(B BBBA rROAGBPG E(H0A8G|REFFBFAHFQ 8D0A(B BBBA rROAhDHWYBIB B(A0K8aV 8D0A(B BBBA KVA XE hH|&BIB B(A0K8S@ 8D0A(B BBBE rKVA XE I(BIB B(D0D8DV 8C0A(B BBBC kEjA 8F0A(B BBBG  EE hI,-NBIB B(A0K8LDVAV 8D0A(B BBBJ  XE JI>BIB B(A0K8XKVA 8D0A(B BBBA  XE DAGJBJ0~BMM G(D0D8GhVFFBFABRyKVA 8D0A(B BBBA  XE HSEBFBBFBTx\K BPM M(I0A8G 8D0A(B BBBA JNDDVA XE xKGBMM E(A0D8G 8D0A(B BBBG rKVA XE -H_AHTLvBBB B(A0D8DP8C0A(B BBB\LrxoGBEB B(A0A8G(bHHKE8A0A(B BBBM M%G],M 8@MIGED D(F0a(A ABBG8|MYGED D(F0t(A ABBD<MBHH G@  EABC [ AAF8MIGED D(F0b(A ABBFH4N#BBH H(G@ (D ABBE m(A AFB8NIGED D(F0b(A ABBF8NaGED D(F0v(A ABBJ<NyGED D(G0O(A ABBHH8O$BBE I(H0K8K` 8E0A(B BBBE 8OhIGED D(F0b(A ABBFHO|BBE B(H0H8KP 8F0A(B BBBD 8 PIGED D(F0b(A ABBF<HPjAG@ AB t AK ( AG DA<P4rAG0 AB q AF + AD DAPtGJP|GJPGJQ 0$QvAD@O EAH `XQ$$D _pQ<D UQD(D cQ\D UQdD U<QlAG@F AQ t EG H AO ^ AM RLDQ(RTSAG }AHR/AG ]AhRD URB\ aRGD z(RAG V AI XA$RqBFG0QAKSVAG LA$SDI @ 3 * p  ` _p .0@W`p p@p @W`0._p  ` p * @ 3  >  H `X 1h .r `| = G` P0 WP "` (@ /` 3` 6 V`@ <` G= { `* (PO9 D P 0X_ si s " ' f oP! Q e 0@ Pp<?``+Y`+Y+p\+p\#[####$ $,]$,]1f\@& ZPGCC: (GNU) 14.2.1 20250110 (Red Hat 14.2.1-7)GA$3a11"1"GA$3a1GA$3a18@GA$3a1@""GA$3a177GA$3a177GA$3a1GA$3a1@E #& #? 0#Ew # # # # $! 0$ %- &UN Xe p& p' ( P* *[ P+ & `+R? +Y +7s , ؝ @, , -  @: @0P 0ld @1 Ǟ@  2% I ` R> / lB Y0 a @2U~ 2c 3 03 @4 5Q   = Ka i R G} Gu Q7 n    L xh X p  2 c  p5 6 7 0 7(#  :8  :`  w  _?      ;l  <hO  p<  =  =  @=  `=&  n=  h  ?{  =  A  A  A  C;  Dnn  `}  H3  `J3  LP  L  O  R`>  PSlW  S{  pT  `Ve  V  W  pYC YS+ ZL Zi @[ [x p\x \ ] p^# P_; `U a~ aH c d f g u2 xP `~(i K  ) 9 0  # K4 ЌPX Eo p  v   @  ? PY fy P} P} б    pK    P(  p8) IA ^ }     p8 & @M Ew @@ @ - $  & ; pj h `  0C $ Q y `  P! -@ 8  %= b]8 kf kt r| tz uD wza @xy Py  }  p @= 0 R  `0   `v  U pzk   z 0 0 L  n  O 6 G ! 0>0 pQ^ rx P=  0  p Q R  "  .): 0Xh |  eX  s x ?    ,  |  `|! |O! `|! |! `! C" " r " " " # [# @# "# ($ /=$ 6z$ =$ `D$ % PW% % 1% P!1 & 'z 4& 12q&` & PO& @W=' /%O' ' ' ' *( )e( ( ( ) 0N) P) pWY) `& * ?* Z* pN* >* p~'+  `+ G+ + oG+ +P ,H  ,@ ,8 ',0 ,( 2, c, v, , , @, , @, - F-@ @S- - - . H.` .@ . . 6/ / / / 10` m0@ 0 0 /1 i1 1 1 2` g2@ 2 2 '3 b3 3 3 4` O4@ 4 4 5 @5 5 5 6` >6@ w6 6 6 67 ~7 7 8` L8@ 8 8 9 99 hI9 d9 @}9 9 9 9 P9 : 0: `5: PU: t: : : :@ `: P:P  ;@ %;@ 9; PM; ;` x; @ ; (< `< i < < #= g\= s = i = _  > P N> D > 9  > * 9>  >?  {? ` P ? @  @ eD@  @ ` = @ @ @ ` .A iA A `  A B `|  XB r Z B h o B X  C H >OC > U C 3 C * XC  AD ` ~D 4D E oSE ; E  E `F "FF @ xF FF @"F p"F "F Fx G "%Gp DGTG ^G hG rG {G G G G G G G G GGG HH ` F!H(q /H ^H 8dH qHh zHP H H H HHHHI I plI,IAIVIgIsI PI III kBII kSJ J3J@JMJ]JkJzJJJJ JJJKK)KDK q&]K k/tKKKKKKKKL L2LEL_L [ILLLLL `jL r L MM-MEMUMeMwM PMMM n3MM 0YM N ph(N(N n7NJNaN ^|NNNNNNN OO.O?OXOhOyOOO OOOOOPP mV/P?PLP_PmP XYPP zPP fPP `crQ 0 Q p6QDQWQhQzQQQ lGQ RQQ ЀWQR)R \yPRcRvRRRRRRR S S S,S?SMS_SmSySSS hSS S PhSS TT2TAT WTiT{TTTT hTTTT @X%UU Pf%U %" 7UEU[UuUUUU hU UUVV V.VAV Z#_V kmVVVVVVVVW(W=W eSWjW PgWW @nW @W p1W ^W fW pX X#X5X h$CX kTX_XpXXXXXXXXX Y#Y @ZIDY @TY 0 `YzYY YY ]YYY \aZ&Z2Z mCZXZ 0wZZZZZ ZZ [[ @f &[7[L[ mqZ[ XIw[[[[[[[ `I\\"\0\K\X\ 0q\\\\\\ |\ ]]-]>]W] ]]]] ]]]^^'^4^E^"`^r^ ^I^^^^^^^ _$_<_P_\__generator.pyx.c__pyx_array___len____pyx_memoryview___len____pyx_tp_traverse_5numpy_6random_10_generator_Generator__pyx_tp_traverse_Enum__Pyx_CyFunction_get_qualname__Pyx_CyFunction_get_globals__Pyx_CyFunction_get_closure__Pyx_CyFunction_get_code__pyx_typeinfo_cmp__Pyx_PyObject_SetAttrStr__Pyx_CyFunction_get_annotations__Pyx_VerifyCachedType__Pyx_CyFunction_Vectorcall_O__Pyx_MatchKeywordArg_nostr__Pyx_CyFunction_CallMethod__Pyx_PyObject_Call__pyx_f_5numpy_6random_10_generator__shuffle_int__pyx_CommonTypesMetaclass_get_module__Pyx_CyFunction_get_doc__Pyx_PyObject_GetAttrStr__Pyx_CyFunction_get_name__Pyx_CyFunction_repr__Pyx_PyType_Ready__Pyx_PyNumber_LongWrongResultType__Pyx_CyFunction_get_defaults__pyx_tp_dealloc_memoryview__pyx_memoryview_thread_locks_used__pyx_memoryview_thread_locks__pyx_tp_dealloc_Enum__pyx_sq_item_array__pyx_tp_dealloc_5numpy_6random_10_generator_Generator__Pyx__SetItemOnTypeDict__pyx_mstate_global_staticPy_XDECREF__Pyx_PyCode_New__Pyx_SetVtable__Pyx_ImportFromPxd_3_2_1__Pyx_copy_spec_to_module__pyx_pymod_createmain_interpreter_id.48__pyx_m__pyx_tp_traverse_memoryview__Pyx_IsSubtype__Pyx_PyMethod_New__Pyx_CyFunction_traverse__Pyx_PyIndex_AsSsize_t__Pyx_IternextUnpackEndCheck.part.0__Pyx_InitConstants.constprop.0__Pyx_InitCachedConstants.constprop.0__Pyx_CreateCodeObjects.constprop.0__Pyx_CyFunction_New.constprop.0__Pyx_CyFunction_Vectorcall_NOARGS__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS__Pyx_modinit_function_import_code.constprop.0__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_f_5numpy_6random_7_common_double_fill__pyx_f_5numpy_6random_7_common_cont_f__pyx_f_5numpy_6random_7_common_discrete_broadcast_iii__pyx_f_5numpy_6random_7_common_disc__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_f_5numpy_6random_7_common_check_constraint__Pyx_ImportType_3_2_1.constprop.0__Pyx_PyLong_BoolNeObjC.constprop.0__Pyx__PyObject_LookupSpecial.constprop.0__pyx_fatalerror.constprop.0__func__.49__pyx__insert_code_object.constprop.0__Pyx_RejectKeywords__Pyx_BufFmt_TypeCharToAlignment.isra.0__Pyx_FetchCommonTypeFromSpec.isra.0__Pyx_InitGlobals__pyx_assertions_enabled_flag__pyx_CommonTypesMetaclass_spec__pyx_CyFunctionType_spec__Pyx__ExceptionSave.isra.0__pyx_setprop_5numpy_6random_10_generator_9Generator__bit_generator__pyx_pw_5numpy_6random_10_generator_9Generator_7__getstate____pyx_memoryviewslice__get_base__pyx_memoryview__get_base__pyx_MemviewEnum___repr____pyx_getprop_5numpy_6random_10_generator_9Generator_bit_generator__Pyx_GetVtable.isra.0__Pyx_modinit_type_import_code.constprop.0__Pyx_MergeVtables__Pyx_CyFunction_CallAsMethod__Pyx_CyFunction_reduce__pyx_getprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx_GetItemInt_Fast.constprop.0__Pyx_PyLong_BoolEqObjC.constprop.0__Pyx____Pyx_PyUnicode_From_Py_ssize_t.constprop.0DIGIT_PAIRS_10__Pyx_PyUnicode_Join.constprop.0__Pyx_PyUnicode_Join.constprop.1__pyx_tp_new_Enum__Pyx_MatchKeywordArg_str__Pyx_ParseKeywords.constprop.0__pyx_tp_new_5numpy_6random_10_generator_Generator__pyx_sq_item_memoryview__pyx__find_code_object.constprop.0__Pyx_PyUnicode_Equals__pyx_tp_traverse__memoryviewslice__Pyx_PyErr_GivenExceptionMatchesTuple__pyx_tp_dealloc__memoryviewslice__pyx_tp_clear_Enum__Pyx_CyFunction_set_doc__Pyx_CyFunction_set_annotations__Pyx__ExceptionReset.isra.0__pyx_tp_clear_5numpy_6random_10_generator_Generator__Pyx_CyFunction_set_qualname__Pyx_CyFunction_set_name__Pyx_CyFunction_set_kwdefaults__Pyx_CyFunction_set_defaults__Pyx_TypeTest__Pyx_ErrRestoreInState__pyx_tp_clear_memoryview__Pyx_PyErr_GivenExceptionMatches.part.0__Pyx__GetException.isra.0__pyx_tp_clear__memoryviewslice__Pyx_Raise.constprop.0__Pyx_CyFunction_get_kwdefaults__pyx_memoryview__slice_assign_scalar__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx_PyErr_ExceptionMatchesInState.isra.0__Pyx_CyFunction_clear__Pyx_CyFunction_dealloc__Pyx__ArgTypeTest.constprop.0__Pyx_PyObject_FastCallDict.constprop.0__Pyx_ImportFrom.part.0__Pyx_ImportFrom__Pyx_PyObject_GetSlice.constprop.0__Pyx_PyLong_As_size_t__Pyx_PyLong_As_long__Pyx_PyLong_As_int__Pyx_IterFinish__pyx_memoryview_refcount_objects_in_slice__pyx_tp_dealloc_array__Pyx__Import.constprop.0__Pyx_PyObject_GetIndex__Pyx_CyFunction_get_is_coroutine__Pyx__Import.constprop.1__Pyx_PyLong_As_npy_intp.part.0__Pyx_PyLong_As_npy_intp__Pyx_PyLong_As_int64_t__Pyx_PyObject_FastCallDict.constprop.1_copy_strided_to_strided.isra.0__Pyx_AddTraceback.constprop.0__pyx_pw_5numpy_6random_10_generator_9Generator_1__init____pyx_pw_5numpy_6random_10_generator_9Generator_5__str____pyx_pw_5numpy_6random_10_generator_9Generator_11__reduce____Pyx_AddTraceback.constprop.1__pyx_tp_new_array__pyx_vtabptr_array__pyx_getprop___pyx_array_memview__pyx_array_get_memview__pyx_mp_ass_subscript_array__pyx_unpickle_Enum__set_state_unellipsify__pyx_builtin_Ellipsis__pyx_memoryview_setitem_indexed__pyx_memoryview_getbuffer__pyx_getprop___pyx_memoryview_base__pyx_getprop___pyx_memoryview_shape__pyx_getprop___pyx_memoryview_strides__pyx_getprop___pyx_memoryview_suboffsets__pyx_getprop___pyx_memoryview_ndim__pyx_getprop___pyx_memoryview_itemsize__pyx_getprop___pyx_memoryview_nbytes__pyx_getprop___pyx_memoryview_size__pyx_memoryview___str____pyx_memoryview_new__Pyx_ValidateAndInit_memviewslice.constprop.0__Pyx_TypeInfo_nn_uint64_t__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_memslice_transpose__pyx_memoryview_err_dim.isra.0__pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_pw___pyx_memoryview_1__reduce_cython____pyx_pw___pyx_array_1__reduce_cython____pyx_array___getattr____Pyx_AddTraceback.constprop.2__pyx_f_5numpy_import_arrayPyArray_APIPyArray_RUNTIME_VERSION__pyx_memoryview_copy_contents__pyx_memoryview_assign_item_from_object__pyx_memoryviewslice_assign_item_from_object__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_memoryview_is_f_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_memoryview_is_c_contig__pyx_tp_getattro_array__pyx_pw_5numpy_6random_10_generator_9Generator_3__repr____pyx_builtin_id__pyx_memoryview_copy_new_contig__Pyx_PyObject_GetItem_Slow__Pyx_PyObject_GetItem__pyx_array___getitem____pyx_mp_ass_subscript_memoryview__pyx_memoryview_setitem_slice_assign_scalar__pyx_memoryview___cinit__.constprop.0__pyx_tp_new_memoryview__pyx_vtabptr_memoryview__pyx_memoryview_fromslice__pyx_vtabptr__memoryviewslice__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy__pyx_memoryview_copy__pyx_getprop___pyx_memoryview_T__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__pyx_memoryview_copy_fortran__pyx_tp_new__memoryviewslice__pyx_pw_5numpy_6random_10_generator_9Generator_13spawn__pyx_memoryview_get_item_pointer__pyx_memoryview_convert_item_to_object__pyx_memoryviewslice_convert_item_to_object__Pyx_PyObject_GetAttrStrNoError__Pyx_setup_reduce_is_named__Pyx_GetBuiltinName__Pyx__GetModuleGlobalName__pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_memoryview_is_slice__pyx_memoryview___repr____pyx_pw___pyx_memoryviewslice_3__setstate_cython____pyx_pw___pyx_memoryview_3__setstate_cython____pyx_pw___pyx_array_3__setstate_cython____pyx_pw_5numpy_6random_10_generator_1default_rng__pyx_pw_5numpy_6random_10_generator_9Generator_75negative_binomial__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_pw_5numpy_6random_10_generator_9Generator_25bytes__pyx_pw_5numpy_6random_10_generator_9Generator_93dirichlet__pyx_pw_5numpy_6random_10_generator_9Generator_31standard_normal__pyx_f_5numpy_6random_7_common_float_fill__pyx_pw_5numpy_6random_10_generator_9Generator_15random__pyx_pw_5numpy_6random_10_generator_9Generator_29uniform__pyx_f_5numpy_6random_7_common_cont__pyx_pw_5numpy_6random_10_generator_9Generator_35standard_gamma__pyx_array_getbuffer__pyx_pw_5numpy_6random_10_generator_9Generator_69wald__pyx_pw_5numpy_6random_10_generator_9Generator_51vonmises__pyx_pw_5numpy_6random_10_generator_9Generator_45noncentral_chisquare__pyx_pw_5numpy_6random_10_generator_9Generator_39f__pyx_pw_5numpy_6random_10_generator_9Generator_17beta__pyx_pw_5numpy_6random_10_generator_9Generator_47standard_cauchy__pyx_pw_5numpy_6random_10_generator_9Generator_21standard_exponential__pyx_pw_5numpy_6random_10_generator_9Generator_41noncentral_f__pyx_memview_slice__pyx_memoryview___getitem____pyx_pw___pyx_MemviewEnum_3__setstate_cython____pyx_pw_5numpy_6random_10_generator_9Generator_85logseries__pyx_pw_5numpy_6random_10_generator_9Generator_81geometric__pyx_pw_5numpy_6random_10_generator_9Generator_79zipf__pyx_pw_5numpy_6random_10_generator_9Generator_57power__pyx_pw_5numpy_6random_10_generator_9Generator_55weibull__pyx_pw_5numpy_6random_10_generator_9Generator_53pareto__pyx_pw_5numpy_6random_10_generator_9Generator_49standard_t__pyx_pw_5numpy_6random_10_generator_9Generator_43chisquare__pyx_pf_5numpy_6random_10_generator_9Generator_26choice__pyx_f_5numpy_6random_7_common_kahan_sum__pyx_pw_5numpy_6random_10_generator_9Generator_9__setstate____pyx_pw_5numpy_6random_10_generator_9Generator_77poisson__pyx_pw_5numpy_6random_10_generator_9Generator_67rayleigh__pyx_pw_5numpy_6random_10_generator_9Generator_19exponential__pyx_memoryview_setitem_slice_assignment__pyx_pw_5numpy_6random_10_generator_9Generator_71triangular__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_pw_5numpy_6random_10_generator_9Generator_37gamma__pyx_pw_5numpy_6random_10_generator_9Generator_97shuffle__pyx_pw_5numpy_6random_10_generator_9Generator_23integers__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_pw_5numpy_6random_10_generator_9Generator_95permuted__pyx_pw_5numpy_6random_10_generator_9Generator_33normal__pyx_pw_5numpy_6random_10_generator_9Generator_65lognormal__pyx_pw_5numpy_6random_10_generator_9Generator_63logistic__pyx_pw_5numpy_6random_10_generator_9Generator_61gumbel__pyx_pw_5numpy_6random_10_generator_9Generator_59laplace__pyx_pw_5numpy_6random_10_generator_9Generator_87multivariate_normal__pyx_pw_5numpy_6random_10_generator_9Generator_73binomial__pyx_f_5numpy_6random_7_common_validate_output_shape__pyx_MemviewEnum___init____pyx_pw_5numpy_6random_10_generator_9Generator_99permutation__pyx_pw_5numpy_6random_10_generator_9Generator_91multivariate_hypergeometric__pyx_pw_5numpy_6random_10_generator_9Generator_83hypergeometric__pyx_pw_5numpy_6random_10_generator_9Generator_27choice__pyx_pw_5numpy_6random_10_generator_9Generator_89multinomial__Pyx_setup_reduce__pyx_pymod_exec__generator__pyx_builtin___import____pyx_collections_abc_Sequencegenericstridedindirectindirect_contiguous__pyx_type_5numpy_6random_10_generator_Generator__pyx_vtable_array__pyx_type___pyx_array__pyx_type___pyx_MemviewEnum__pyx_vtable_memoryview__pyx_type___pyx_memoryview__pyx_vtable__memoryviewslice__pyx_type___pyx_memoryviewslice__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_t_7.50__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_mdef_5numpy_6random_10_generator_9Generator_7__getstate____pyx_mdef_5numpy_6random_10_generator_9Generator_9__setstate____pyx_mdef_5numpy_6random_10_generator_9Generator_11__reduce____pyx_mdef_5numpy_6random_10_generator_9Generator_13spawn__pyx_mdef_5numpy_6random_10_generator_9Generator_15random__pyx_mdef_5numpy_6random_10_generator_9Generator_17beta__pyx_mdef_5numpy_6random_10_generator_9Generator_19exponential__pyx_mdef_5numpy_6random_10_generator_9Generator_21standard_exponential__pyx_mdef_5numpy_6random_10_generator_9Generator_23integers__pyx_mdef_5numpy_6random_10_generator_9Generator_25bytes__pyx_mdef_5numpy_6random_10_generator_9Generator_27choice__pyx_mdef_5numpy_6random_10_generator_9Generator_29uniform__pyx_mdef_5numpy_6random_10_generator_9Generator_31standard_normal__pyx_mdef_5numpy_6random_10_generator_9Generator_33normal__pyx_mdef_5numpy_6random_10_generator_9Generator_35standard_gamma__pyx_mdef_5numpy_6random_10_generator_9Generator_37gamma__pyx_mdef_5numpy_6random_10_generator_9Generator_39f__pyx_mdef_5numpy_6random_10_generator_9Generator_41noncentral_f__pyx_mdef_5numpy_6random_10_generator_9Generator_43chisquare__pyx_mdef_5numpy_6random_10_generator_9Generator_45noncentral_chisquare__pyx_mdef_5numpy_6random_10_generator_9Generator_47standard_cauchy__pyx_mdef_5numpy_6random_10_generator_9Generator_49standard_t__pyx_mdef_5numpy_6random_10_generator_9Generator_51vonmises__pyx_mdef_5numpy_6random_10_generator_9Generator_53pareto__pyx_mdef_5numpy_6random_10_generator_9Generator_55weibull__pyx_mdef_5numpy_6random_10_generator_9Generator_57power__pyx_mdef_5numpy_6random_10_generator_9Generator_59laplace__pyx_mdef_5numpy_6random_10_generator_9Generator_61gumbel__pyx_mdef_5numpy_6random_10_generator_9Generator_63logistic__pyx_mdef_5numpy_6random_10_generator_9Generator_65lognormal__pyx_mdef_5numpy_6random_10_generator_9Generator_67rayleigh__pyx_mdef_5numpy_6random_10_generator_9Generator_69wald__pyx_mdef_5numpy_6random_10_generator_9Generator_71triangular__pyx_mdef_5numpy_6random_10_generator_9Generator_73binomial__pyx_mdef_5numpy_6random_10_generator_9Generator_75negative_binomial__pyx_mdef_5numpy_6random_10_generator_9Generator_77poisson__pyx_mdef_5numpy_6random_10_generator_9Generator_79zipf__pyx_mdef_5numpy_6random_10_generator_9Generator_81geometric__pyx_mdef_5numpy_6random_10_generator_9Generator_83hypergeometric__pyx_mdef_5numpy_6random_10_generator_9Generator_85logseries__pyx_mdef_5numpy_6random_10_generator_9Generator_87multivariate_normal__pyx_mdef_5numpy_6random_10_generator_9Generator_89multinomial__pyx_mdef_5numpy_6random_10_generator_9Generator_91multivariate_hypergeometric__pyx_mdef_5numpy_6random_10_generator_9Generator_93dirichlet__pyx_mdef_5numpy_6random_10_generator_9Generator_95permuted__pyx_mdef_5numpy_6random_10_generator_9Generator_97shuffle__pyx_mdef_5numpy_6random_10_generator_9Generator_99permutation__pyx_mdef_5numpy_6random_10_generator_1default_rng__pyx_moduledef__pyx_CyFunctionType_slots__pyx_CyFunction_methods__pyx_CyFunction_members__pyx_CyFunction_getsets__pyx_CommonTypesMetaclass_slots__pyx_CommonTypesMetaclass_getset__pyx_methods__pyx_moduledef_slots__pyx_methods__memoryviewslice__pyx_tp_as_sequence_memoryview__pyx_tp_as_mapping_memoryview__pyx_tp_as_buffer_memoryview__pyx_methods_memoryview__pyx_getsets_memoryview__pyx_methods_Enum__pyx_tp_as_sequence_array__pyx_tp_as_mapping_array__pyx_tp_as_buffer_array__pyx_methods_array__pyx_getsets_array__pyx_methods_5numpy_6random_10_generator_Generator__pyx_getsets_5numpy_6random_10_generator_Generator__pyx_doc_5numpy_6random_10_generator_9Generator_12spawn__pyx_doc_5numpy_6random_10_generator_9Generator_14random__pyx_doc_5numpy_6random_10_generator_9Generator_16beta__pyx_doc_5numpy_6random_10_generator_9Generator_18exponential__pyx_doc_5numpy_6random_10_generator_9Generator_20standard_exponential__pyx_doc_5numpy_6random_10_generator_9Generator_22integers__pyx_doc_5numpy_6random_10_generator_9Generator_24bytes__pyx_doc_5numpy_6random_10_generator_9Generator_26choice__pyx_doc_5numpy_6random_10_generator_9Generator_28uniform__pyx_doc_5numpy_6random_10_generator_9Generator_30standard_normal__pyx_doc_5numpy_6random_10_generator_9Generator_32normal__pyx_doc_5numpy_6random_10_generator_9Generator_34standard_gamma__pyx_doc_5numpy_6random_10_generator_9Generator_36gamma__pyx_doc_5numpy_6random_10_generator_9Generator_38f__pyx_doc_5numpy_6random_10_generator_9Generator_40noncentral_f__pyx_doc_5numpy_6random_10_generator_9Generator_42chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_44noncentral_chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_46standard_cauchy__pyx_doc_5numpy_6random_10_generator_9Generator_48standard_t__pyx_doc_5numpy_6random_10_generator_9Generator_50vonmises__pyx_doc_5numpy_6random_10_generator_9Generator_52pareto__pyx_doc_5numpy_6random_10_generator_9Generator_54weibull__pyx_doc_5numpy_6random_10_generator_9Generator_56power__pyx_doc_5numpy_6random_10_generator_9Generator_58laplace__pyx_doc_5numpy_6random_10_generator_9Generator_60gumbel__pyx_doc_5numpy_6random_10_generator_9Generator_62logistic__pyx_doc_5numpy_6random_10_generator_9Generator_64lognormal__pyx_doc_5numpy_6random_10_generator_9Generator_66rayleigh__pyx_doc_5numpy_6random_10_generator_9Generator_68wald__pyx_doc_5numpy_6random_10_generator_9Generator_70triangular__pyx_doc_5numpy_6random_10_generator_9Generator_72binomial__pyx_doc_5numpy_6random_10_generator_9Generator_74negative_binomial__pyx_doc_5numpy_6random_10_generator_9Generator_76poisson__pyx_doc_5numpy_6random_10_generator_9Generator_78zipf__pyx_doc_5numpy_6random_10_generator_9Generator_80geometric__pyx_doc_5numpy_6random_10_generator_9Generator_82hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_84logseries__pyx_doc_5numpy_6random_10_generator_9Generator_86multivariate_normal__pyx_doc_5numpy_6random_10_generator_9Generator_88multinomial__pyx_doc_5numpy_6random_10_generator_9Generator_90multivariate_hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_92dirichlet__pyx_doc_5numpy_6random_10_generator_9Generator_94permuted__pyx_doc_5numpy_6random_10_generator_9Generator_96shuffle__pyx_doc_5numpy_6random_10_generator_9Generator_98permutation__pyx_doc_5numpy_6random_10_generator_default_rng__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAXcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrydistributions.cwe_doubleke_doublefe_doublewe_floatke_floatfe_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatrandom_mvhg_count.crandom_mvhg_marginals.crandom_hypergeometric.clogfactorial.clogfact__FRAME_END____pyx_module_is_main_numpy__random___generator_fini__dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE__initPyUnicode_FromFormatlog1pf@GLIBC_2.2.5PyNumber_NegativePyObject_SetItemPyList_Newrandom_laplacePyExc_SystemErrorPyType_FromMetaclassPyDict_SetItemStringfree@GLIBC_2.2.5PyDict_Sizerandom_buffered_bounded_boolrandom_geometric_inversionPyException_SetTracebackPyExc_NotImplementedErrorrandom_weibullPyMethod_Typerandom_f_ITM_deregisterTMCloneTablePyGILState_ReleasePyFloat_TypePyTuple_TypePyObject_FormatPyErr_RestorePyList_AsTuplePyObject_ClearWeakRefs_PyThreadState_UncheckedGetPyModuleDef_Initrandom_multivariate_hypergeometric_countPyEval_RestoreThreadPy_EnterRecursiveCallPyFrame_NewPyMem_Free_PyObject_VisitManagedDictrandom_negative_binomialrandom_standard_cauchyexpf@GLIBC_2.27PyCapsule_GetNamePyNumber_InPlaceAddPyBuffer_Releasevsnprintf@GLIBC_2.2.5exp@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyObject_CallMethodObjArgsPyExc_BufferErrorPyImport_AddModulePyBytes_FromStringAndSizerandom_standard_exponential_fill_f_PyObject_GenericGetAttrWithDictPyBytes_TypePyObject_SetAttrStringPyErr_WarnExrandom_standard_gammarandom_binomial_btpe_Py_DeallocPyModule_NewObjectPyErr_NoMemoryPyObject_GenericGetDictPyErr_SetObjectPyObject_GC_DelPyNumber_Absoluterandom_logseriesPyNumber_MultiplyPyLong_FromSize_trandom_rayleighPyArg_ValidateKeywordArgumentsrandom_standard_exponentialPyObject_RichComparerandom_uniformPyGC_Disablerandom_poissonstrlen@GLIBC_2.2.5PyImport_GetModuleDictrandom_bounded_uint64_fillPyObject_GC_TrackPyExc_RuntimeErrorPyCMethod_NewPyExc_MemoryErrorPyErr_GivenExceptionMatchesPyErr_SetStringrandom_bounded_uint16_fillPyExc_UserWarningPyObject_IsInstance_PyObject_GC_NewPyException_GetTracebackPyExc_ExceptionPyExc_ValueErrorstrrchr@GLIBC_2.2.5PyExc_DeprecationWarningrandom_multinomialPyObject_MallocPyExc_TypeErrorPySlice_TypePyIndex_CheckPyGILState_EnsurePyInterpreterState_GetIDrandom_logisticPyTuple_GetItem_PyLong_Copymemset@GLIBC_2.2.5PyMem_Reallocrandom_standard_uniform_fill_fPyErr_ExceptionMatchesrandom_bounded_uint64pow@GLIBC_2.2.5random_positive_intlog@GLIBC_2.2.5random_standard_gamma_frandom_triangularrandom_buffered_bounded_uint32PyOS_snprintf_Py_FatalErrorFuncPyTraceBack_Herelog1p@GLIBC_2.2.5fmod@GLIBC_2.2.5PyObject_CallFinalizerFromDeallocrandom_powerrandom_bounded_uint8_fillPyObject_Freerandom_noncentral_fPyUnicode_InternInPlacePyNumber_InPlaceTrueDividerandom_standard_exponential_inv_fill_fPyLong_FromSsize_tPyFloat_FromDoublelogf@GLIBC_2.27acos@GLIBC_2.2.5PyLong_FromLongmemcmp@GLIBC_2.2.5PyLong_AsSsize_tPyObject_RichCompareBoolrandom_buffered_bounded_uint8logfactorialPyModule_GetNamePyErr_ClearPyEval_GetBuiltinsPyList_AppendPyCapsule_IsValidPyDict_UpdatePyNumber_OrPyImport_GetModule_PyUnicode_FastCopyCharactersrandom_beta_Py_FalseStruct__gmon_start__random_exponentialPyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyDict_DelItemrandom_hypergeometricmemcpy@GLIBC_2.14expm1@GLIBC_2.2.5PyNumber_RemainderPyType_TypePyType_Modifiedrandom_gammaPyObject_SetAttrPyBytes_FromStringPyErr_Occurredrandom_standard_uniform_f_Py_EllipsisObjectrandom_loggamPyInit__generatorPyLong_AsLongPyImport_ImportModule_PyDict_GetItem_KnownHashPyObject_CallObjectPy_LeaveRecursiveCallPyObject_VectorcallDictrandom_gamma_frandom_zipfPyTuple_GetSlicePyObject_CallFunctionObjArgsPyDict_GetItemStringPy_VersionPyObject_Sizemalloc@GLIBC_2.2.5random_standard_exponential_frandom_paretoPyUnicode_DecodeUTF8_Py_NoneStructPyExc_ModuleNotFoundErrorPyExc_ZeroDivisionErrorPyObject_VectorcallPyFloat_AsDoublePyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectPyExc_AssertionErrorrandom_positive_int64PyThread_allocate_lockrandom_geometric_searchPyObject_Hashrandom_standard_trandom_vonmisesrandom_bounded_uint32_fillrandom_standard_normal_frandom_positive_int32random_standard_uniform_Py_TrueStructPyDict_SetDefaultrandom_normalrandom_chisquarePyDict_NewPyExc_IndexErrorPyObject_GC_IsFinalizedPyBool_Typepowf@GLIBC_2.27PyObject_GetBufferPyLong_AsUnsignedLongPyDict_TypePyDict_NextPyBaseObject_Typememmove@GLIBC_2.2.5PyObject_GenericSetDictrandom_standard_exponential_fillrandom_intervalrandom_waldPyObject_VectorcallMethodPyLong_FromUnsignedLongrandom_noncentral_chisquarePyLong_Typerandom_standard_normalPyCapsule_TypePyGC_Enablerandom_standard_exponential_inv_fillPyException_SetCausePyErr_Fetchrandom_lognormalPyUnicode_FromStringrandom_buffered_bounded_uint16PyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringPyUnstable_Code_NewWithPosOnlyArgsrandom_binomialPyExc_ImportErrorPyDict_SetItemPyObject_HasAttrrandom_uintPySequence_TuplePyExc_AttributeErrorrandom_gumbelrandom_standard_uniform_fillPyBytes_AsStringPyObject_IsSubclassPyExc_StopIterationPySequence_ListPyExc_RuntimeWarningPyObject_Reprrandom_standard_normal_fill_ffloor@GLIBC_2.2.5PyUnicode_TypePyCapsule_New_PyObject_ClearManagedDictPyErr_Formatrandom_bounded_bool_fillPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDictrandom_binomial_inversion_ITM_registerTMCloneTablePyLong_FromLongLongPyUnicode_FromOrdinalPyUnicode_ConcatPyNumber_InPlaceMultiplyrandom_multivariate_hypergeometric_marginalsPyNumber_IndexPyObject_GetAttrsqrt@GLIBC_2.2.5random_geometricPyCFunction_Type_PyDict_NewPresizedPyMemoryView_FromMemoryPyUnicode_FormatPyUnicode_FindCharPyMem_MallocPyErr_WarnFormat__cxa_finalize@GLIBC_2.2.5PyNumber_Subtractrandom_standard_normal_fillPyNumber_MatrixMultiplyPyUnicode_NewPyThread_free_lockPyTuple_PackPyCode_NewEmptyPyNumber_TrueDividePyObject_GC_UnTrackPyExc_UnboundLocalErrorPyDict_GetItemWithErrorPyUnicode_SubstringPyList_TypePyNumber_FloorDivide.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment.gnu.build.attributes88$.o``8 @p"p"Ho88`Uo::`dP;P;7nB0s0sxs ` ~ @88 P[ P P L   [p py x xy  y  h h{ 8 8}    8  H 0 .H ( H xH  q_1P