ELF>@Xl @8 @P_P_```55000\|\|6888$$PtdDZDZDZllQtdRtd  GNUW4}D]8CEj gl u p?5M:    .z  c  &   >"w  E 9JA -d  X   #  w   o    6 ] w H    d Y -  Jd4 fb  U    eu t  l X   4c x Z-% b. O   8 % , ~ I UX  J ( F"Q V ; Ql   __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyObject_SetAttrPyDict_NewPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyErr_OccurredPyExc_SystemErrorPyErr_SetStringPyExc_TypeErrorPyErr_FormatPyDict_SizePyObject_RichCompareBoolmemcpyPyUnicode_FromStringPyObject_GetAttrPyUnicode_InternFromStringPyUnicode_FromFormatPyExc_DeprecationWarningPyErr_WarnFormat_Py_DeallocPyObject_GC_UnTrackPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyDict_SetItemPyType_ModifiedPyObject_HasAttrPyObject_CallMethodObjArgsPyTuple_NewPyDict_SetDefaultPyBytes_FromStringAndSizePyBytes_AsStringPyUnstable_Code_NewWithPosOnlyArgsPyObject_GetAttrStringPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyDict_SetItemStringPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyThreadState_GetPyInterpreterState_GetIDPyModule_NewObjectPyModule_GetDictPyBaseObject_TypePyMethod_New_PyObject_VisitManagedDictPyExc_ValueErrorPyImport_ImportModulePyMemoryView_FromMemoryPyObject_CallFunctionObjArgsPyUnicode_DecodeUTF8PyUnicode_InternInPlacePyObject_HashPyFloat_FromDoublePyLong_FromLongLongPyTuple_PackPySlice_New_Py_EllipsisObject_Py_TrueStruct_PyObject_GC_NewPyObject_GC_TrackPyList_NewstrlenPyList_TypePyLong_FromSsize_tPyObject_SetItemPyLong_TypePyFloat_TypePyObject_RichCompare_Py_FalseStructPyObject_IsTrue_PyType_LookupPyErr_SetObjectPyTuple_TypePyObject_GetItemPyExc_OverflowErrorPyException_GetTracebackPyArg_ValidateKeywordArgumentsPyDict_NextPyExc_RuntimeErrorPyType_ReadyPyCapsule_NewPyMem_MallocPyMem_FreePyGC_DisablePyGC_EnablePyTuple_GetSlicePyTuple_GetItemPyErr_NoMemoryPyDict_GetItemWithErrorPyExc_KeyErrorstrrchrPyImport_AddModulePyType_FromMetaclassPyType_TypePyUnicode_New_PyUnicode_FastCopyCharactersmemcmpPyUnicode_TypememmovePyMem_ReallocPyErr_GivenExceptionMatchesPyExc_RuntimeWarningPyErr_WarnExPyException_SetTracebackPyLong_AsLong_PyObject_ClearManagedDictPyObject_ClearWeakRefsPyObject_GC_DelPyCFunction_TypePyObject_VectorcallDictPyUnicode_ConcatPyImport_GetModulePyImport_ImportModuleLevelObjectPyObject_GenericGetAttr_PyObject_GenericGetAttrWithDict_PyThreadState_UncheckedGetPyExc_NameErrorPyUnicode_FindCharPyUnicode_SubstringPyExc_StopIterationPyFrame_NewPyTraceBack_HerePyCode_NewEmptyPyNumber_AddPyNumber_InPlaceAddPyObject_VectorcallMethodPyObject_FormatPyExc_ModuleNotFoundErrorPyCapsule_TypePyExc_Exception_PyDict_GetItem_KnownHashPyDict_CopyPyMethod_TypePyLong_FromLongPyObject_IsInstancePyDict_TypePyEval_SaveThreadPyEval_RestoreThreadPyFloat_AsDoublePySequence_ContainsPyObject_SizePyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyObject_VectorcallPyNumber_LongPySequence_TuplePyNumber_InPlaceTrueDividePyNumber_SubtractPyObject_GetIterPyBool_TypePyUnicode_FormatPyNumber_RemainderPyNumber_MultiplyPyList_AsTuplePySequence_ListPyList_AppendPyExc_UserWarningPyObject_SetAttrStringPy_VersionPyOS_snprintfPyUnicode_FromStringAndSizePyImport_GetModuleDict_PyDict_NewPresizedPyInit_mtrandPyModuleDef_InitPyObject_GenericGetDictPyObject_GenericSetDictlogexplog1pexpflog1pfpowpowflogfexpm1sqrtflooracosfmodmemsetceillibm.so.6libc.so.6GLIBC_2.14GLIBC_2.2.5GLIBC_2.27 0 ui )  5 ui ) px8  (00H8h@@\HPX`hXpx8XxH@ȼ8мؼXG (;8P HXPh9x0SV(VPWGV hVDn1G0 XSG`/(8W@SV jU(p@SH@X`aVhPx T` -U UE@S_U U(a8`@UHX `Vh`|xU`qmT`UKbUp@Vpe S(g8@RUHYX``Uh`xUi>VtGVhVZVM U(8@D@UHX8`Vhx@.3V U,V@$V`V S(pn8@SHsX``ShwxSP|VptU`U`STt T(8e@TH X[`ThxOVt U(i8@UH`X`RUhYx`SgVpebUp@UKmT` U(`q8@VH`|X`Uhx Ua`US_UE@-U  T(`8 @aVHPX `Sh@XjUpSVW - W -(W  082W@ H0`;Wh@p0HWRW[W`hW`(tW0PWXxWWW 1W 1W 6(1@WHP@.hWpB Ⱦ о ؾ 15;<>?]` a(c0e8i@mHvPyXz`hpxȿпؿ'' (08 @HPX`hpx !"#$%&()* +(,0-8.@/H0P2X3`4h6p7x89:=@ABCDEFGHIJKLMNOP Q(R0S8T@UHVPWXX`YhZp[x\^_bdfghjklnopqrstuwx {(|0}8~@HPX`hpx (08@HPX`hpxHH_HtH5_%_@%_h%_h%_h%_h%_h%_h%_h%_hp%_h`%_h P%z_h @%r_h 0%j_h %b_h %Z_h%R_h%J_h%B_h%:_h%2_h%*_h%"_h%_h%_hp% _h`%_hP%^h@%^h0%^h %^h%^h%^h%^h %^h!%^h"%^h#%^h$%^h%%^h&%^h'p%^h(`%^h)P%z^h*@%r^h+0%j^h, %b^h-%Z^h.%R^h/%J^h0%B^h1%:^h2%2^h3%*^h4%"^h5%^h6%^h7p% ^h8`%^h9P%]h:@%]h;0%]h< %]h=%]h>%]h?%]h@%]hA%]hB%]hC%]hD%]hE%]hF%]hGp%]hH`%]hIP%z]hJ@%r]hK0%j]hL %b]hM%Z]hN%R]hO%J]hP%B]hQ%:]hR%2]hS%*]hT%"]hU%]hV%]hWp% ]hX`%]hYP%\hZ@%\h[0%\h\ %\h]%\h^%\h_%\h`%\ha%\hb%\hc%\hd%\he%\hf%\hgp%\hh`%\hiP%z\hj@%r\hk0%j\hl %b\hm%Z\hn%R\ho%J\hp%B\hq%:\hr%2\hs%*\ht%"\hu%\hv%\hwp% \hx`%\hyP%[hz@%[h{0%[h| %[h}%[h~%[h%[h%[h%[h%[h%[h%[h%[h%[hp%[h`%[hP%z[h@%r[h0%j[h %b[h%Z[h%R[h%J[h%B[h%:[h%2[h%*[h%"[h%[h%[hp% [h`%[hPQHGuHTHH59H81(1Ht$H;W tHTHH5?H81ZAUIATIUHSQH,ÅuVLH5oHt;H5\HE1LL1HHtHxHHu EZ[]A\A]AWIAVIAUIMATDAIULLSH(H4$HT$D$6HHKH4$1L9}H ƋtHHTHHHHwH$Hu E11Mu L-oE1FIE1HhHHHHl$5IHtH5HHHL$1HLH-oMMH D\$LLMHeoULDAUI DQHAAWHDAWt$@PPt$@PPAPE1YH`HHt1L-HyHHHuHH(H[]A\A]A^A_AWIAVAUIATIH5UHSHLD$HHLH{IHu0LHL$MH5HHRH81HtAHLu@LCLIIMH5HPHQAWHT$H81ZYJHLIHt7HxHHuHIy1(HIuLvE1H٠LѠH[]A\A]A^A_AVEAUIATIHUSHt=H;jQHu1AtHLLHx/HHu'HH}QH8t1[]A\A]A^AUATUHSQ HxHt^HwVHu HjVH9tHQH5H8]+L-,Mu&H5HIHu#L1AEtAELH=HI$xHI$uLHtHtIHt#AH mHHHkyIyAH TLHHPcxAH ALHH@@xE1H 4LHH0 xZH[]A\A]AWH5gp9AVAUATUSH H|$ H= pHPL-HLIHHHHHH=IHu&HEHHEHH1H1Lt$ IIxHIuLHExHHEuHgI$xHI$uLNHx^HHuVH7LHNLH5H81EL}H+HHHM IE 1L%mE1HD$Hc1ҋl HD$J<8HHD$HvHt H|$HD$Ht=IHIHuHcËl HD$J<8HIIHu L诜fHH9uL1藜I}1H;iHH޿1H$iHH-K1HHiHH5|Hڿ1wHhHHHH޿1RHhHHs|Hٿ1H5Z|%HhH]HH޿1HhH;H ,|H޿1HyHghHH=|HHHHgZ[]USHHiHLzHwHH sIHOmH! H$HgH HwIHLXzH wH mHB H$HxHD$]HgHHTwIHL'zH vHlHA H$HnHD$ H[gHhHwIHH vLgyHhlHB H$HL$HgHHvIHL H$HcHD$HVkHD$H\HB HjIHL0nH lHB`Hc H$HMcHD$HjHD$H[H HjIHLmH DiH_Hc H$HbHD$HjHD$,Hk[H H#jIHLnmH gfH_H z H$HfHD$HiHD$H3jHD$H [H HiIHLlH dH_H H$H2fHD$HfiHD$HiHD$ZHZH HQiIHLlH eH^H T H$HeHD$HhHD$HaiHD$HHZHM HhIHLlH eHM^H H$HeHD$HhHD$HhHD$HYH HhIHLkH gH]Hc  H$H7hHD$HhHD$+HYH H"hIHLMkH iH]H k H$HdHD$HgHD$H2hHD$H1YH HgIHLiH hH]H H$HcHD$HdHD$H9gHD$HgHD$ H)cHD$(HbHD$0H!bHD$8H%bHD$@HYeHD$HHUeHD$PHqeHD$XHpXHU HfIHLjH 4`HU\H % H$H0dHD$H$eHD$HgHD$H`HD$ HbHD$(HTbHD$0HaHD$8HL`HD$@HeHD$HHeHD$PHHbHD$XHdHD$`HcHD$hHWHtHfIHLBhH cHt[H H$HOcHD$HCdHD$HfHD$H#dHD$ H*WHHeIHL5hH 6dHZH H$HaHD$HeHD$HcHD$:HVHH1eIHLlgH gHZH nH$H]HD$HMeHD$HQcHD$HhVH-HdIHLChH _H-ZH H$HcHD$HdHD$HbHD$hHVHH_dIHLfH _HYH H$HaHD$HaHD$HbHD$HcdHD$ H_HD$(H;bHD$0H'bHD$8H+bHD$@Hg`HD$HHS`HD$PHW`HD$XHbHD$`H:UHHcIHLfH F`HXH H$HaHD$HcHD$HaHD$*HTHH!cIHLleH u`HXH H$H_HD$H\HD$H1cHD$H}\HD$ HcHD$(HcHD$0HbHD$8HM]HD$@HadHD$HHcHD$PHQbHD$XHcHD$`HIaHD$hIHTHH@bIHH$H$H_HD$H aHD$HebHD$H\HD$ H]]HD$(HbHD$0H`HD$8H_HD$@HU`HD$HH^HD$PHU`HD$XH^HD$`H]_HD$hH^HD$pHaHD$xH^LcH ^HVH$AHSHH8aLQcIHH \[H ?H$HYHD$H[aHD$H]HD$HaHD$ HG\HD$(H\HD$0HYHD$8H;bHD$@HYHD$HH+bHD$PH?YHD$XHK\HD$`H`HD$hHZHD$pHUTHRHHK`IHLcH o`HUHB H$HaHD$Hw[HD$H#\HD$Hg]HD$ H`HD$(H[HD$0HaHD$8HOYHD$@H;YHD$HHrQHH_IHL]bH ^HTH QH$H:aHD$HnXHD$HZHD$:HQHH )_IHHtXLbHTHA H $HD$HPHLL`1IHH YHQTH$H HPH HXIHLaH ^H THA H$H^HD$_HNPHH^WIHL`H "^HSH@<H$HfZHD$HPHtnHWIHH|SL}`H N]H@< H$HZHD$HOHHty10HBHHuHHxHHuHH[]AWAAVIAUMATIULSHH=jaHT$H1E1MDxxHx(HT$HLpH@L@ht A$tA$1Lc Hs@t1HSHHKPHK8LkXAEtAEHt EtE1W1Hk`HCpHAF%tYt[HtZ=tJH9=tCHC.H5H8lHx4HHu,Hu"H x 1HoHS0H1HH[]A\A]A^A_HX5HT$0Ht$(HL$8LD$@LL$HfH|$`HT$ D$H|$HT$HtBIѹ1҃/w ΃LHHLA0tA0HpLHHuHXAWH=5AVAUATUSHxdHHXH_H-J]1L|$ fHnH_HT$hM~?*fHnH_Lm fHnH_HyMflfHnH_)D$ ~*HD$`HD$flH$)D$0~)fl)D$@~)fl)D$PMMt^H$LHHLLT$+LT$HD$HII'LHlLxLhtMHxHHuHaH=J%HHHr^H-\~;)fHnH/^flfHnH/^)D$ fHnLm ~)H:^HřMflfHnH(^)D$0~(HD$`1flHD$hHD$)D$@~(H$fl)D$PM<$MtPH$LHHLnuNHD$HIILHlLxLhtMHxHHuH41 HzHx[]A\A]A^A_AVH=AUATUSH HHHK]H-ZI~(fHnH]HD$1Le flHD$H1M)$IUHtDLLHHtFHILHlLxL`tMHxHHuHJ1 HyH []A\A]A^AVIHAUEATIUHSHHH@u H)HLH5H81 qLK(HC Mt I9LLIM9s#H)MHLH5yH81-Au2I9s-RL1MPIHO11Y^y H1xH[]A\A]A^USQH5VsHHtP1HqHHu HuH(H5H8HxHHtH HHZ[]UH-SHQHAHHHùHٻ{HEHdHxHHuHHJHH7A HHHm#HDH HxHHuH*HHHA HHHHbDHHxHHuHH-HHHA HHHɺlH DHUAH HHH?HCH(A0HHH~HCHA`HHH[HCHAHHH6HwCHAHHHHRCHtAHHH^H-CHGAHHH1HCHAHHHHBHAHHHtHBHAHHHVHBHAHHH"}HtBHfAHHHPHOBH9AHHH#H*BH AHHHHBHHxHHuHH-HHHA`HHHHAHA@HHH`jHAHtWH.HtFAHHH30HWAHtHxHHuH;1 1HsZ[]AWH-@AVAUATUSH(HVHi~+!fHnHoH@H,flH@H)?HPHHuH*ÅH=IV11H-@HHt3HH5CPHxHxHHuHP HrL%J@1M$PI$}Ht HHcHcH(HHIEHD$HHD$H9l$IDHyHHuHM$IL9t$tI>u!IHL$CIFHL$IIH9tIHu=HcH5IDHHI$HPHF"H81tH\MxH>H'?H5FH=TH 5,Ht}H=+HqH9~hHDu!HPH!H5cH81rHu/H t%HHH!H5[H*H81HHH *H%*ÅoH([]A\A]A^A_AWIAVAUATIUSHL6.H|$LBHtLpL1HHH=+HHuE1tEH(H$HtH<$HCIHuwFHu|H|$LLHIHtaH<$HH'IHtGtAEM9uHIEyYHoHxHHuH)L^tBAEFHH5'1HPHTQHxHHuH]H=5QtHt-H=Q1H5$%1HQHu H҉[AU1ATUSHHH$HT$HT$HT$HT$ HT$(HL$HT$HHxhIuH=HHu4HH8IH=`HHH5HHHExHHEuHYHSHH9Ct:H H5՚H8 H%HHH 1H?HPHxHHuHHPL,$Hl$H\$HuHH5H8HiPv#H5SHRH81y*PH,H5hH81vGHPuHH5H8HH5H8HI|$`H-/H0mt{HHL$(HT$ LHt$1Ht$8HD$0H?HD$8HH8螙HHtH>HyHHuH`HL$HT$H4$I|$hH|$kH|$ kH|$(kHLkHykHqk1HH[]A\A]AWAVIAUIATIUHSHHLDL$DL$ LHHueHEH51A.LHHHHL1IHM LA\HHu HEI$A"AIHtNHtMMu1H7FIHW@H59@H=/HN@IxHIuL諵L 0L.H=*H z>Hc8IH@HC0HtH5%@H=^/L莽?IxHIuL'L P0LI.H=*H =H7TIH?H/HtH5:H=.L ?IxHIuL裴L /L-H=y)H r=Hc7IHY?H5S?H=l.H蜼P?IxHIuL5L n/LW-H=(H =H6bIH?H.HtH5=H=-L>IxHIuL豳L .L,H=G(H <HI6IH>HI.HtH5c=H=d-L蔻>IxHIuL-L v.LO,H='H ;H4ZIH[>H-HtH56H=,L<>IxHIuL該L -L+H=&H x;H4IH=HQ-HtH57H=\,L茺=IxHIuL%L ~-LG+H=[&H :H4RIH=H,HtH5/=H=+L=IxHIuL衱L -L*H=%H p:H4IHG=H9,HtH5+=H=T+L脹(=IxHIuLH tH5G1H +HaIH<L N,L*H=$H 9Hm3HH<LAtAIxHIuL脰H5u:H=*H趸<HxHHuHOL +Lq)H=%$H 9H2|HHY<H5w4H=*HHQ<HxHHuHL Z+L)H=#H 8H1HH<H*HtH5#4H=)Hķ;HxHHuH]L *L(H="H ,8He2HH;H*HtH5/;H=)H@;HxHHuHٮL b*L'H=O"H 7HY1HHa;H58H=(HҶY;HxHHuHkL )L'H=!H :7H0HH;H5+8H=4(Hd;HxHHuHL )L'H=3!H 6H0*HH:H(HtH57H='H:HxHHuHyL )L&H= H H6Ha0HH:H(HtH58H=,'H\a:HxHHuHL (L&H=H 5HM/"HH%:H'HtH5g5H=&Hش:HxHHuHqL "(L%H=GH @5HQ/HH9H 'HtH57H=$&HT9HxHHuHL 'L%H=H 4H-HHq9H&HtH5o1H=%HгS9HxHHuHiL *'L$H=H 84HI-HH9H&HtH50H=%HL8HxHHuHL &L$H=[H 3H5-HH8H}%HtH5O3H=$HȲ8HxHHuHaL 2&L#H=H 03H!,HHc8H$HtH5.H=$HDE8HxHHuHݩL %L"H=H 2H%, HH 8Hu$HtH5?2H=#H7HxHHuHYL :%L{"H=oH (2H),HH7H#HtH5[4H= #H<7HxHHuHըL $L!H=H 1H+HHU7Hm#HtH53H="H踰77HxHHuHQL B$Ls!H='H 1Ha+~HH6H"HtH5s4H="H46HxHHuHͧL #L H=H 0H-*HH6He"HtH50H=!H谯6HxHHuHIL J#Lk H=H 0Hi*vHHG6H!HtH53H= H,)6HxHHuHŦL "LH=;H /H=)HH5H]!HtH50H=x H訮5HxHHuHAL R"LcH=H /HQ(nHH5H HtH5-H=H$u5HxHHuH轥L !LH=H .H'HH95Hu HtH5+H=pH蠭5HxHHuH9L Z!L[H=OH .HQ'fHH4HHtH5{,H=H4HxHHuH赤L LH=H -H&HH4HmHtH5+H=hH蘬g4HxHHuH1L b LSH=H -H&^HH+4HHtH5+.H=H 4HxHHuH譣L LH=cH |,H&HH3HEHtH5/H=`H萫3HxHHuH)L jLKH=H +H)&VHHw3HHtH5.H=H Y3HxHHuH襢L LH=H t+HU$HH3H=HtH5&H=XH航2HxHHuH!L rLCH=wH *Ha$NHH2HHtH5K*H=H2HxHHuH蝡L LH=H l*H $HHi2HEHtH5*H=PH耩K2HxHHuHL zL;H=/H )HA$FHH2HHtH5-H=H1HxHHuH蕠L LH=H d)H"HH1H-HtH5'&H=HHx1HxHHuHL L3H=H (H">HH[1HHtH5%H=H=1HxHHuH荟L LH=CH \(H!HH1H%HtH5&H=@Hp0HxHHuH L L+H=H 'HA!6HH0HHtH5&H=H0HxHHuH腞L LH= H T'H HHM0HHtH5g&H=8Hh/0HxHHuHL L#H=W H &H.HH/HHtH5"H=H/HxHHuH}L LH= H L&HE HH/H5M(H=FHv/HxHHuHL L1H=% H %HwIH#+HxHHuHH5H=Lk+IxHIuL輔H=`IH*H5=Hu>HH*IxHIuLrH5 H= H*HxHHuH=H=&HH*H5H=IH*HxHHuHH5H= Lm{*IxHIuL输H=bIH_*H5Hw=HHY*IxHIuLtH5H= H7*HxHHuH?H=(HH*H5`H<IH*HxHHuHH5.H= Lo)IxHIuLH=dIH)H5!Hy<HH)IxHIuLvH5H= H)HxHHuHAH=*HH)H5H;IH)HxHHuHH5H= Lqo)IxHIuL‘H=fIHS)H5cH{;HHM)IxHIuLxH51H= H+)HxHHuHCH=,HH)H5H:IH )HxHHuHH5H= Ls(IxHIuLĐH=hIH(H5H}:HH(IxHIuLzH5H= H(HxHHuHEH=.HH(H5H9IH(HxHHuHH5dH= Luc(IxHIuLƏH=jIHG(H5/H9HHA(IxHIuL|H5H=H(HxHHuHGH=0HH(H5H9IH'HxHHuHH5H=Lw'IxHIuLȎH=lIH'H5H8HH'IxHIuL~H5_H=H'HxHHuHIH=2HH~'H5"H8IHy'HxHHuHH5H=!LyW'IxHIuLʍH=nIH;'H5H7HH5'IxHIuL耍H5yH=H'HxHHuHKH=4HH&H54H7IH&HxHHuHH5H=#L{&IxHIuĽH=pIH&H5H6HH&IxHIuL肌H5H=H&HxHHuHMH=6HHr&H5FH6IHm&HxHHuHH5H=%L}K&IxHIuL΋H=rIH/&H5H5HH)&IxHIuL脋H5H=H&HxHHuHOH=8HH%H5 H5IH%HxHHuHH5H='L%IxHIuLЊH=tIH%H5H4HH%IxHIuL膊H5H=H%HxHHuHQH=:HHf%H5H 4IHa%HxHHuHH5XH=)L聏?%IxHIuL҉H=vIH#%H5H3HH%IxHIuL舉H5H=H$HxHHuHSH=<HH$H5H 3IH$HxHHuH H5jH=+L胎$IxHIuLԈH=xIH$H5%H2HH$IxHIuL芈H5H=Hu$HxHHuHUH=>HHZ$H5H2IHU$HxHHuH H5|H=-L腍3$IxHIuLևH=zIH$H5H1HH$IxHIuL茇H5uH=H#HxHHuHWH=@HH#H5`H1IH#HxHHuH H5.H=/L臌#IxHIuL؆H=|IH#H51H0HH#IxHIuL莆H5H=Hi#HxHHuHYH=BHHN#H5H0IHI#HxHHuHH5H=1L艋'#IxHIuLڅH=~IH #H5SH/HH#IxHIuL萅H5!H=H "HxHHuH[H=DHH"H5H/IH"HxHHuHH5H=3L苊"IxHIuL܄L L1H=H H IHg"HwHtH5YH=L H"IxHIuL[L L}1H=4H - H. 英IH"H5 H=GH蟉"IxHIuLL L1H=H H IH!H5H=H4!IxHIuL腃L FL1H=H W H走IH!H5H=qHɈ!IxHIuLL L<1H=H H- JIHE!H5 H=H^ AE1A> A1E1A AE1A A1E1A A}E1A Ai1E1Az ASE1Az A?1E1A A)E1A A1E1AT AE1AT A1E1A AE1A A1E1A AE1A A1E1Ak AE1Ak Am1E1A AWE1A AC1E1A% A-E1A% A1E1A AE1A A1E1AAE1AA1E1AnAE1AnA1E1AAE1AAq1E1A A[E1A AG1E1AA1E1AA1E1AAE1AA 1E1AA E1AA 1E1A?A E1A?A 1E1AA E1AAu 1E1AQA_ E1AQAK E1AA7 1E1AA! 1AA 1AA 11AA 1AA E1AA 1E1AA 1AA 1AA 11AAn 1AA[ E1AAG 1E1AA1 1AA 1AA 11AA 1AA E1AA 1E1AA 1AA 1AA 11AA~ 1AAk E1AAW 1E1AAA 1AA. 1AA 11AA 1AA E1AA 1E1AA 1AA 1AA 11AA 1AA{ E1AAg 1E1AAQ 1AA> 1AA+ 11AA 1AA E1AA 1E1AA 1AA 1AA 11AA 1AA E1AAw 1E1AAa 1AAN 1AA; 11AA& 1AA E1AA1E1AA1AA1AA11AA1AAE1AA1E1AAq1AA^1AAK11AA61AA#E1AA1E1AA1AA1AA11AA1AAE1AA1E1AA1AAn1AA[11AAF1AA3E1AA1E1AA 1AA1AA11AA1AAE1AA1E1AA1AA~1AAk11AAV1AACE1AA/1E1AA1AA1AA11AA1AAE1AA1E1AA1AA1AA{11AAf1AASE1AA?1E1AA)1AA1AA11AA1AAE1AA1E1AA1AA1AA11AAv1AAcE1AAO1E1AA91AA&1AA11AA1AAE1AA1E1AA1AA1AA11AA1AAsE1AA_1E1AAI1AA61AA#11AA1AAE1AA1E1AA1AA1AA11AA1AAE1AAo1E1AAY1AAF1AA311AA1AA 11AA1AA11AA1AA11AA1AA11A A~1A Ak11A'AV1A'AC11A_A.1A_A11A`A1A`A11AaA1AaA11AbA1AbA11AcA1AcA~11AfAl1AfA\1AfALAfA>AfA01AgA 11AA1AALt Hl Hd H=tIH=tEtDH=TLMH=}Ht?1HoHx/HHu'_ LcHuHH5DTH8a`H=1DHxHHuH[_HH55LH8dIxHIuL#_H=ǍHHHxHHuH^H;-H=苍HHt]H H5H}HAi1A1LAgA}1AhAj1AiAWbHbAgA81E1AA"H[]A\A]A^A_H=E\H=HH9tHHt H=H5zH)HH?HHHtHmHtfD=Eu+UH=RHt H=^dd]wHGPHGXtHff.fATIUHSHHHt HՅu!H1Ht[LH]A\[]A\ff.HWHtHWHHff.HWXtHWXHff.HɹtHff.HG`HttDHff.@HGHHtfD_HHtt f.HH|$`HtH|$HtHff.AUIATUHSHHHGLMt=H=)ZuGHHLAHi_Ht$HH[]A\A]fDH[]A\A]Qa^Ht1fHH5J)1H8\fDUHHSHHHGLH@t~$uFHHH[]Au+HLFI$HvHH[]A@HIH5IH8r[H1[]fHLF1MtHCH IH5IHHHH81v`@HtHL $HT$XL $Ht$H`)fDHL $HT$XL $Ht$H#HCH HH5 IHHɶH81_0fHL $HT$/XL $Ht$H&HCH hHH5IHHHtH81_ff.fHGxLOH?t(IHupHIu6H6IAHfHt{HH>LBHDHIH GH5GH81_1HHytHIH GH5GH81^DHIH GH5GH81^@Hy[ff.AWAVMAUATUSHHGHHHIIIHuIDIGIHt7H8HZtnuٸH[]A\A]A^A_DHI9HEHH8ZtۃuHHLH5&H81]fDI)IM}H[]A\A]A^A_fDHaLH5&H81]W1UfAWL~AVAUATUSHL$M~qHLHIHH MHD$LfDH|$LH $HLIL4L9ZHHL+ZHHLZL)IuHtHH[]A\A]A^A_fH=E[@SHGPHHttHCP[@HGHxHt[HCPHu[Hyt̉[ff.HGHHtfD\SHG@HHttHC@[@HGH8D[HC@Hu[fHwHH1H= ESff.SHGHHHt+HtH$H81\u%H[DHQHH5%H81u[Hx HHt 1H[fDH1Uff.HHtt f.SHHHtXHtHHHHtHH HtHx HHt)Ht[HHhTfDSHGHHu~H[H{HtHCHx HHtEHHtHǃHx HHtHCH[H@DSSfXuHSHXH9B0`HUP[ff.HtHx HHt f.kSff.H9t+HXHt?HJH~V1 fHH9tGH9tuff.ff.@HH9tHu1H;5ff1ff.fHt SfDtHAUIATIUHSHHhHtHAԉÅH} HtLAԉÅLLHQÅH}PHtLAԅH}XHt LAԅuyH}8Ht LAԅufHHt LAԅuPHHt LAԅu:HHt LAԅu$H}pHtHLL[]A\A]fH[]A\A]ÐHHHx HHt)HzH5K"H81WHHt$fQHT$ff.@HuC10Ht.H oHHPHHHtE1HHiH5:18AUATUHSHHHGH;L`pMt^I|$tVHRIHHHHAT$IUxHIUuLD$ nPD$ H[]A\A]H@hHtgH@(Ht^HHH[]A\A]@tHCHH8H(Hx HHt1H[]A\A]@O1H0RIHt@HHH NI$THI$FLD$ OD$ 1$ff.H9tKHGH;uFHOHtu HHtHщȃ1fD1DH;tgSHOHH~H;MH;u,H;%t#H[SHx HHt3H[Df1H*f.GE@H߉D$ ND$ 뻸ff.@ATUHSHHLgLRHtAHPHHtHLHH[]A\fDtH[]A\fDHHHD$H:)NHD$H[]A\ff.ATUSHHHGH;H;t[HhpHH}tHOIHKHHUI$xKHI$uALHD$kMHD$-@Ht HyHGtH;Cs}HDtH[]A\fDHhhHtWHEHtNHy HH[]A\Ht HyHGtH;CsHSH‹u@HOHHtpHHMHUjHHU\HHD$LHD$E@HUHcHt$HHt$HxHHEC1 HZHt$H8MtOHEHt$fDLISHDHL9tHuHHu[HtHHHtHLH[SHHH HFHD$t_H@h1PHD$HHt0HjHH5H81QH|$Hx HHt H [;KH [DHD$Ht$}KtH|$1HT$Ht$PHL$wqHL$`ff.UHSHHtJHtH}Hx HHtH]H1[]DJH]H1[]fDHuHWtHWHff.AWAVAUATIUHSHHhLG0MGxt!HwHhHL[]A\A]A^A_@HVLMIH1L9KHHtaLHHIUHÅx HIUt~HhH[]A\A]A^A_@HVHvHukHhH1[]A\A]A^A_ADIExHIEyH;HSHH5H81^O1f.LIuLMMtI<LD$HHT$LL$ PIHfHT$LL$LD$HteHBHID$ I9H1HHff.AoDAHH9uHHt ILI LLD$HT$LL$KLL$HT$HLD$HH|$PE1HD$XL|$0H|$H|$HM$AH\$8ILIHD$HH|$HT$LD$ LL$(?HT$PtHT$XtHT$XHD$PHHL#IDIHHT$Ht$LHLtHT$LD$ LLL$(L|$0H\$8MLL$HLLt$ALL$HL$HHx HHtg1MM7ff.@HI9tItHEH1Hu2ltHHL)IHCHHtIAHLHHIH +H5+H81B1Hff.GxH?IHHWtHGH8LJHHHAfDHtHHHfDHH HH F+H53+H81*B1HUSHH9_HH9GH9FHGH9FHWHNH9AHAt HDO DF DD8uwA  H8A Hv8ʃDA9ufDD#@HO(H8A@HEHN(H8A@HED"f.HGxLOH?t IHu`HMu'IA1HHtsHH>LBՐHIH O(H5[(H81?1HHytHjIH |(H5(H81?DHAIH z(H5g(H81^?@Hycff.LVM1ff.@HI9tH9|uf.E1ff.fJTHB@}H9tHXHt4LAM~c1ff.@HI9tGH;Tu{HDHH9`HuH;Nff.IM9S1AUATIUSHH=HIHc5HcH;l1 f~.S9})HcHD9}9|99LcIIA;mb9tx9}3H)؍PHHHHHHLHHHHC HWH81@;1ff.Ht+tHWPHwPHtHx HHt1fH5 HH41Hff.fHG@HFH@H9t*HXHt>HJH~U1 HH9tGH;tuff.ff.@HH9tHu1H;5ff1D4t@HH;5tKHtFHF tQtHHHtHx HHt1HfD1@Hh3fDHQH5H8*4UHHSHHHHHtHx HHtFHtHEx HHEt?HtHx HHt H[]HH[]2fH2fDH2fDUSHHH-HEHktPEHtHx HHthEHHtEHtHx HHt*H1[]ÐHtHyHH@2H1[]f 2fHHtOHFtBtHWHHwHHtHx HHt 1HDH1fDHH5 H8r2HHHtOHFtBtHW@Hw@HtHx HHt 1HDH01fDHH5H81HUHSHHtrH;5+HuvHH5H80tHHHtHx HHt1H[]fD0fHHF yHPH5H8)1fUHSHHtrH;5kHuvHH5H8/tHHHtHx HHt1H[]fD/fHHFyHH5H8i0fAUIATISHHHt H9J(I}`IU`HtHx HHtRMtI$x HI$tKHtHx HHtH[A\A]@HH[A\A]..fL.fDHHHT$P-HT$WfDAWIAVIAUIATUSHHo`HG`HLeA$tA$HHL$/HL$HHt tA$tA$EtEM&I/HIEhL(H(I$x HI$tcHtHx HHt^MtIEx HIEtH[]A\A]A^A_HL[]A\A]A^A_-f.L-fDH-fDHHHHGhL(HjHGtkHGHHv#HH)HHt-Ht0fWH)HËGWHH fGWHH HSHH@`HtvHHtjHHt`H5H9Cu%HHHx HHt H[HHHuH@HHD$k,HD$0HuHKH5ZH8$-fATUSHHH@@t1H/IHtY1HH1HI$xHI$uL+Ht*HM@tdHH+HEx HHEt7[]A\fH[]A\+@H[H5]A\H8V,fD[H]A\d+@HQHH5?H81u1HHtt f.SHHHtXHtHHHHtHH HtHx HHt)Ht[HH*fDSHHGHGHH)HwGHHcʉH9uAH[HHHtjHtD-HcH9tHu-HuH)H5zH8*WGHH HcʉH9uH[WGHH HHcʉH9uH[H@`HtqHHteHHt[HH9Cu9@HHHHH߉D$ T)D$ HHHu<,H.HH5(H8)ff.fSHHhHtHChHx HHH{ HtHC Hx HHH.H{@HtHC@Hx HHH{HHtHCHHx HHH{PHtHCPHx HHH{XHtHCXHx HH~H{`HtHC`Hx HHiH{8HC8HtHx HHTHHtHǃHx HH9HHtHǃHx HHHHtHǃHx HHHHtHǃHx HHH{pHtHCpHx HHt1[&1[&fD&fD&9fD&NfD&cfD&xfD&fDs&fDc&fDS&fDC&fD3&ff.SH-H{(tH$HH[7&H ѴLWIIL9VH=I9FIXHtrLFM~11ff.@HTH9H9HI9uAIB8IH1LLHDLff.f.HH9t4HuHH9t#LHH9tHuH9vfDIQBaATM#US1Hj uIYH=#u|HLH(HtDH[]A\1ɺLL(fDIQBuL9IA0(HuHH5cH8#%1ff.AUATUHSHHHH8%u-HHH5!H81"*H1[]A\A]D&H&HHt)HHtH5_H?*IHHH(*IHH&IUxHIUuLHD$e#HD$I$x HI$t.HUx HHUt4H&H[]A\A]1fDLHD$#HD$@HHD$"HD$@HEHHEH"fI$xHI$HU1VUHSHHHGHHtHtH[]fD )HuHHH[]DAVAUATIUSHHWDt$@HjpHHEHHMtI0H[]A\A]A^DEHuZEH=HH(I@MtgLHUI$xHI$H[]A\A]A^H=~H1H'I뱐Ha~HRH5H81'1H[]A\A]A^DHHL$#HL$HItHH1HS~L['IIEztf.k#H~fLmM~1 HI9t H;|uBE1M9VJtH9(H|$H|$Iff.SHHHWtHCHHv)HH)HHtkHtUHSH)HHx HHt H[HHD$HD$H[CSHH 븐CSHH HfDHB`HtWHHtKHHtAHPH;xHHHt*HPHBHt H9HwH5 H8f.HGtkHGHHv#HH)HHt-HtRfWH)HËGWHH fGWHH HAWEAVIAUIATIUHSHHHDHDHHMt+I4$HHH[]A\A]A^A_D1A.HH HHtHFH1\!HHH0x HH|HHHHHEmHHE_HVRHt1@ HHtMuJE1HLLHDHwHx HHtpHHt)HHUH@I$HtHEHLLEHIąx HHtRLf.HxfDHHHH1NJfH8fDHHEHt%HHEH1x HHEtHH1Hf.AUIIHATI?USHHHHM!ItCH9HG8HHHHH1[L]A\A]DH9LtL9LXMIkH~1fL9tHH9|ILH9uHKAcM)La1 uHkH=uDLHAHHUHu HAsH5H8jf.1fH9L tL9LXMMZM~.1ff.ILH9L9 HI9utHG8HHHL%0HH=K1HLHHHH[]A\A]fHC0H/HH1L[L]A\A]yfHff.ff.HH9t4HuH rH9t#HHL9tHuI9fDHKALa1 uHkH=_1HAHHqH8HYqH51H8HKAuH9tHC0H|fHKA|HfHH9LHuH qH97Hff.ff.fHL9 HuI9pDHLH1[]A\A]SHH@`Ht HxHu1[ÐHAqIH2H9u"1HC`IxHIuL1HW@HVH@HXHt>Hy1H KHH9tAH;tuIjff.ff.fHH9tHuH;5HptƸ[tL[`HC`M1f.ttf.AWAVAUATUSHH8H=YIHD>DƃHcH;l1D~,H9~)HcHT9}99A9HHHNjG9L/AEtAEH1LLHH%h(HzIExHIEHx HHH[]A\A]A^A_ËG9yfDM|$`ID$`MIOtMw(MAHL$AHH=SzHL$HIM9w(/I|$`M|$`HtHx HHHx HHMtIx HILuIEHLIEH[]A\A]A^A_PHHL$H=HL$HI@HHH{Ix HIMIyHLIiq@HeL/HH=IH#I|$`ID$`HHHH_HH=HL$HIOHI.HI!L  LHNHL$HL$&HIHILfLLHL$0 HL$HxIHIWr@ATH5UHSHGHHHH1HCH5HHHrIHMx HHpH}H5HGHHAHH#HCH5 HHH%HHHx HHH=TH HUHH4xHHUH5H HHHx HHHLx HUHHxHHU6I$xHI$tHHx HHH[]A\Hx HHt`H=TL1 Hx Hh HX HH H8 fDxHHUuH uDx HH1H=lH[]A\@H H[]A\L H [HjKI;H+HHh dATUSH HHH;tfH$D$cHHHPHPtHhH=HHHHD$IHx HHt8HEx HHEtMtEH L[]A\DH fDH fDHx HHH=H E1L[]A\@H9gHE1L lH H5 H8R1HCXZHyxHH=exHH~ff.HUxHHU:H8[]A\A]A^A_HtHD$HL$HT$ HL%IH4AT褋Hl$(_AXHHHR(HH H50L ALH8j1\Y^fDDeEII D1UDeEII If.HPH'H5nH81HxHHuHAUDH=1HHD$HD$H8[]A\A]A^A_LLLZHHff.ATE11Ix HIaIExHIEHtHx HHMCI8HI+L@HTIDATDH|LxhHhqLXzHHHuH*&H59H8HSI#I8HLYL_LATE1mfLHIL{fDHHD$cHD$yfHHH-AT1E1AUfLIEeAUDILHD$HD$LkHHoHP$H5E1ATH8pV1sH@H@`H(HHHHHH@L%$L9uwf.HCHHvsHH)HHHteHIHHHHHqHHH@vfDCAI)LHDcDsx HHt"IM tDcCII IlHLH@`H+HHHIH L9`uyIFIFHHHH)HHHLIIHILHoIHsH^HHQHiD@AFAI)LEfAFII wEfAFII I`LڨIPH{H!H5H8`fAVAUATIUSHtHHAHqZHCHYHHFA$tA$L-iNH==IULFHHtHCH5^NHHHcIHM*x HHyHIH1IEHHIH=ґLLLHHIExHIE+Ix HII$x HI$tMHEx HHEtKH[]A\A]A^#HH1H[]A\A]A^fL(fDHH[]A\A]A^@HuHH5H8Ix HI\IExHIE6%H= 1#fDHzLLpSH=;H mHGH91LHHHeHLH5EH810E:HH-H fD{IH1dfLLLHHLxLhL;kHHHx`HHH01H{`HC`mAVAUATIUSHtHHqHqZHCHHHFA$tA$L-JH=9IULvHHtHCH5JHHHcIHM*x HHyHIH1IEHHIH= LLLHHIExHIE+Ix HII$x HI$tMHEx HHEtKH[]A\A]A^SHH1H[]A\A]A^fLXfDHHH[]A\A]A^@HuHH58H8Ix HI\IExHIE6H=V1SfDHzL谾L蠾H=7H HGH91L5HHHeHLH5uH81`E:HH-H fDIHH1dfLLLHHL訽L蘽LkgHHJHx`HHH01H{`HC`iAUATIUSH8H-EH=U6HUHHHËtHCH5CHHHHHHx HHHmH9EHD$H5KLd$HMH9H=JH9LXMMHM~(1fDITH9bH9YHI9uE1H|$IfsHA8HDHaH1LHHMtIExHIE~HExHHE@HH;H;+H;HŅHx HHL舠HHSHu5u f.x HHsH=+莨1H8[]A\A]ÐH/HUB?Lj1ۨ uH]H=ǹHLAH螾HHEHHEff.HxA$tA$fInĿHD$ YA)D$oHHH>H ]FHPtH=>HL$ Ht$HHI$xHI$Hx HH{HfvfDH1H蓽HI$xHI$uLn@H`LPuH@#H=d2H =HGH91HոHH褼HHHH5H81sHLmfInH]AEfInfltAEtHEx HHEtj)D$H5VGHKHݺH|$AH9.HE0;DHH$4H$pLH$H$DH)$fo$DH$蟻H<$HtHkHuHWH5H8耸HEuHHEg1HDHH9HuHH9Iff.ff.fMI9tnMuH9tdH|$IH`HH踵Hx`HHjH0b1H{`HC`+cHUBE1눺E1H|$I/fDATfHUHSHHAfHnH0)$~HD$ fl)D$HLIHMxH`HDHHHT$HIL%H4AT v_AXHT$HH $H H<HHt H<HtH5@4HH E1HDjAVH=~|PjVHPj5>QHlDHHHPHx HHHHHHExHHEH<$HtHx HHH|$HHHH辴fHHu0HP t HHT$tH $fH AL 6HHDHHئH5"H8S1_XZH<$HtHx HHH|$HtHx HHH=&1_H0H[]A\HNtHL$HtH $fHtHH $tHT$fDH AL KTfD;&fD+=fDH HItHT$&fDHHH rH5L ALH8S1Y^DH訲sxHHuH苲H=1mH=ߟ>f.ATfHUHSHHh=fHnH0)$~{ HD$ fl)D$HLIHMxH`HDHHHT$HIL%H4ATq_AXHT$HH $H H<HHt H<HtH50HH E1H?jAVH=>uPjVHPj5v:QH<@HHHPHx HHHHHHExHHEH<$HtHx HHH|$HHHH莰fHHu0HP t HHT$tH $fH ͡AL HH HH=H5H8S1/XZH<$HtHx HHH|$HtHx HHH=&1/H0H[]A\HNtHL$HtH $fHtH H $tHT$fDH ŠAL eTfD &fD=fDH H tHT$&fDH HH BH5L zALH8S1輴Y^DHxsxHHuH[H=1țm H=诛>f.ATfHUHSHH89fHnH0)$~SHD$ fl)D$HLIHMxH`HDHHHT$HIL%6H4ATm_AXHT$HH $H H<HHt H<HtH5+HH E1H;jAVH=oPjVHPj5v0QH <HHHPHx HHHHHHExHHEH<$HtHx HHH|$HHHH^fHHu0HP t HHT$tH $fH AL ֚HHHHH5‚H8S1XZH<$HtHx HHH|$HtHx HHnH=&1H0H[]A\HNtHL$HtH $fHtHmH $tHT$fDH AL 5TfD۪&fD˪=fDH踪 HtHT$&fDHHH H5_L JALH8S1茰Y^DHHsxHHuH+H=1蘗mH=>f.UfIH5SfHnHHH8)$~-HD$ fl)D$HbLIHMRIRI6MRHHT$J4HH PiHD$Y^HǃjHBHT$HHMtMH5'HH E1H 7jAVH=kQjVHQHj 50P7HHEHPH[xHHEHqHHuHx HHH<$HtHx HHH|$HtHx HHH8H[]@IIdM H MHHL =H5~H:APHI1XZH<$HtHxHHu ǧH|$HtHxHHu衧H=]1H8H[]@HtH$H t HT$"fDHNtHL$HtH $fH5uH 1fH5tH$HئHP t HHT$tH$ufH蘦苦H8H[]Ð{fDx HHEt"gH=1ϓf.H8fDlH=蟓uf.ATfHK/UfHnHHSHH@)$~PHD$flHD$0HD$8)D$ HLIHMHyWHtHHtH$HHT$ HIL%H4ATwe_AXH|$HeH$H5H<HCHt H<HHt H<HL$XHH H~tH|$HNtHHL$tH$HHtHHuHE1Aj5&#53j5-QHj5,RHH=Q\c3HHPHHx HH?HHHHExHHEEH<$HtHx HH8H|$HtHx HH*H|$HHHH藣fH AHtHHL H5KzH8S1舩XZH<$HtHx HHH|$HtHx HHtH|$HtHx HHtU H=1rH@H[]A\fD1fH6H KA1@諢f蛢wfD苢MfDHHnHH H5LyL ALH8S1yY^fHpHVtHT$HVtHT$DH=AtH|$OfDHH=tH|$fDH谡裡fD蓡fDxHHuHsH=W~1^H=<~ǎ/fATH%USHH0HD$ HD$(HLIHMHHDHH1HL AH 8H8SH5w1XZHtHExHHE H=} H01[]A\ÐHH.EtEL%Q*H=IT$L-HHtL%qL9HCHHHHx HHA$tA$LHx HH+HtHUxHHUH0[]A\HtHD$HL$HT$ HL%JIH4AT_Hl$(AXAYHHHIHLH5+vL AH H8j1S^_d@H=4|HD$肌HD$ 1EfH؞HHD$ÞHD$H0[]A\DHHD$裞HD$fH舞kH=H HGH91LHH HHLH5]H81HHHH{H9HXHHqH~1H;THH9uHHJH5qHWH81̣Hx HHtH=z1@HhL>GHHHx`HHH01H{`HK`IHH5H8dHff.fHH9HuH;D fAVHAUATUSHHH x'H0HL$ HD$(H}LOM~tHHH t HT$HL$H4IHT$ LHAR]\Hl$(^_Hu5HatH HtHH.EtELkAEtAEL%kH=IT$L觟IHtALL薜IUAăxHIUIx HIELkfHnAEfInfltAEH="Ht$ 1H)D$ FIIExHIEMZI$xHI$HCHPHHHx HHoHtHUHHUHHD$舚HD$H0[]A\A]A^fDH E1L HyjHKHH50q1H:PH1dXZHtHExHHEu HH=Tw1H0[]A\A]A^H uAL }xHIU~Ix HIJH=v1f1$fLxLhLXjKfDL8&H=\HGHH;*1L͘IH@蜜HIE-HIEL@HHt$(HD$ HD$(HH8rHHtH?lHx HHt<DLXfDL8uH+LHteIMbޖHx`HHH01H{`HK`QDHLH5H81gIfAWHAVAUATIUSHhHD$ HD$@HD$HHLqHMHtHHtHL$ HEHLL$@M< ML,1L\$ H|Mff.LLHPHHH9:uITL)L؋ t HHI9]H|HgHH.Eƒ$UHl$ tEI|$H5!HGHH HHH5uHHH9Cx PIMZ H5I9.HI9GH9FIGM/H;FEIM/L贕H 5E1L ЄH6HHH5dlH8R1HA蚛XZ1H|$ Hu$HtHxHHu =H=rE1褂HhL[]A\A]A^A_fL\$HL$8LLHH9GLT$LHD$8LL$H<$ RH<$LL$LT$L\$t3CHHHlH5fHH1趚HD$8ITHL tHHI9=Hl$ HEL5yM9uuL9Ix HIOL- H;-ML9H;-%HWIIc|$PZIHH5HHܑIlx HIAD$XҕIHH5?HH蔑Ix HI^H I9AL;-)D L;-TЈ$QI9M|$AtAH=vIH HL躓Ix HII$xHI$l<$AƅH5HHH9C.9LIMH5HHH9C LIMH5*H{LI9FKIIMhx HI=H5ZH;HH9CeKHH=HH9BH$HH5D& qKH$IHMc x HHHH9CL$HH5t )KL$HH HH9CHT$HL$H5 JL$HT$HH HT$Ht$L$#L$Ht$HHT$I L`Lx L@(HP0Hp8DHx HHTIExHIEKHEVHHEHHd;H ݁AL H-EƒUHl$ IWHNH9@H@t HEG ~ D‰8A IO8@ Hv8$ p D>A9H= HE1H!AjfDHl$ fDyH@L3I$HI$#A7ff.DH=nlE1n|9H=r荽IHH@H5NLHHTIIM]x HIJH:I9F2HHt$HLMHHD$@HD$HHHHD$PvHIx HIHHx HHAEtAEHE1HHE#HߍIHIL躍L-ML6L}tILʍIHPH;L;-EM9L衑IUAƅxHIU0EM/Ex IM/vE@LЌvHqI*܍IL蜌IUDxHIUuLyM/uHL$eL$LH$PH$L?H2/&A/HILLD$D$OLD$ڋD$$0b3L\$LT$LL$H<$A0yHL $I1L $MHHD$u;!@tLHL)HD IEIHI9H0HL $ǒL $HuL $ŎL $Ht7H=shvxALx HIA1MI$1fDHI$tdHHHHH}xIx HII$DHI$61A7LH4$6H4$[IH Ht$HHD$@HD$HHH8 dIHtH]I$xHI$27LF(H8@IEMO(IO8A@IEŠI`x HIA7虊Ic茊HI9HD$(Ll$0Ld$(HD$01LLHL $H\$H|$0LL $HHtf.H98tHBHHuL $HL$8LLHpH9GL{8FL $v5HHL$0H\{H5ZH81詎 @蛉H$I II+Hx HI+H=eIuk1A7Hx HHtCIHItZMtIx HItaM+I$HHt$L$诇IL$Ht$y1A8LHt$L$脇L$Ht$LH4$mH4$Mt@1QMFM~AtAAtAIx HIHfInLHt$@L$H)D$@HD$P&oL$HIHILH$軆H$sIx HI1A8輇L$H>D>Ll}A8I臇HT$L$HBEvIM/iiD>IA1 A7IHIA*ILЅLA1轅1L讅LA7蛅1LA7膅1-L $>IA*RLIA+AMgI$xHI$,AtAIx HIIEHHIEM fDHL\$0LHH9CLL$H$LgHDŽ$Ht$3Ht$LL$L\$0t%HHHgH5-GHH1{H$HtHx HHH$HtHx HHH$HtHx HH% H=iRE1aHL[]A\A]A^A_@E1]HH eAH HL @cH8UHfH5J1zXZspsEsfu;HH0H;0HHH0HH0^HcI RyRff.ff.ff.fDH@(HH(H)0HHcHL@(L;(}IL@(HH(H0}H@0HH@(HH(H+0H0IHHNtH$HHtH$H dA_H$JTHĠtIHM9Hl$ L$ML$H5Ht:HEHt HĠt"HHt HtL$AHHHL aAH VcH8UL=AtAL$MHqHqL=AtAL$M'Luf.3D$zLeVHD$0H\H=gD$V#fH=B H*D$00L=M9HD$pH=jHD$xIHH5HzHHfIExHIEH=AHL$HL$HHD$xI H5H"HL$HI IExHIEHE1HD$xH$HHD$H9AHHL$ L$L$L$XLH$IIHL$ HD$px HIHx HHMSAEtAEIExHIEHAuHDŽ$I} Lt$M}H5II HD$ HIH5I| HHdHD$H9GHOLGH$tAtAHx HHH$LLD$H$HL$8HDŽ$VH|$8ILD$HDŽ$Ix HIMIx HIrsE1HD$HD$HH`Hx M~MLl$@MLt$0H\$HHl$8HD$HLH*KIM9uH\$Hl$8Ll$@H|$lLt$ H5M1LH$IIxHt$ HHM I$xHI$AEtAEIEHIELm@H HH1IH HD$xL9 HD$xH=wH? H5HHD$HL$HHD$pIHxHHuHLT$wlLT$H5sLLT$>LT$HHEH=HD$LT$HL$HIH5HLT$HL$HH$IQIx HIR HH$E1HHD$I9BeLH$HL$0LT$L$LL$ L$SH|$ HD$xIHL$0LT$Hx HHn I$xHI$ HDŽ$Ix HI HD$pM ALt$ptAIx HI+ M=E1E11A L HfH$HtHx HHDL$XMtIx HIMt&IEE1HIEvMfDHtHx HH%HtHExHHEH$HtHx HHtPH$HtHx HHt:H$HH}HHpifiiHD$H5H)HD$Hi HD$H5HHD$pHH H H9G!HOLwH$tAtAHLt$px HH H$LH$HL$ HDŽ$&QH|$ HD$xIDIHDŽ$x HI HD$pM IUxHIU WgH$H$HxhH$ISHD$Ht$0D$HH`Hx HS%HjIH$HD$8H$HD$HH$HD$@M8 IFhHt$HHD$xH8H0HtHx HH/ Ht$@HtHx HHHt$8HtHx HHLt$H5G1L$L H$IIxHt$HHP M. I$xHI$ HHHHgH g L{TE1Lf}LL$fLL$#Lf:LfHHT$fHT$Hf+HL$fHL$HxfLkfL^fIELHL$0HT$;fHL$0HT$}HxHMHMI HA L CI HHHHHLL$eLL$Ix HItpA Ix HItFE1L CH|$xHtHxHHzLL$HL$KeLL$HL$\LHL$/eHL$LHL$eHL$yE1E1A L C) L\$0LL$Ht$HdA E1E1L BLHt$0LL$LT$eI]E1LT$MLL$Ht$0HH6H\$MLLl$MIH:@tLIH)HID$IHL9H0LkHugHt3E1E1A L ALcLcHLL$cLL$HA E1E1L ALcHcLcHt$Hx HHH|$xHH1A L BAA L 0ASiHL$IA H|$xE1E1L AH=ULL$A 踁Ll$HD$pL @H5?HLL$,LL$VIExHIE MA L @fLhbIHLMH\$Ll$MM9L$MIHDŽ$HDŽ$H$1LHLg+H$HLHt*ff.ff.fH98tHBHHuH_LgTLLH$H9GwHsH$H#TH53H81gfDIMfInMefHnHL$pflÃtA$tA$IELd$xxHIEH$LHL$0L$LL$)$IHL$0LL$IHHHH`LL$IgH-HA L Y>HxHLL$;`LL$1LfH$H|$H)$?HHL$HD$xH>H_LT$LHL$_HL$LL_LLT$_LT$[L_nL_HL$LT$Ht$ HxHHuH__MA L W=E1wH5HX)T1A  H=QE1A }L =*A E1E1L <A E1E1L <ubHA E1E1L <@KbHUA E1E1L <Lr^HL$ H`^LS^1A L G<L2^HL$ A E1A L <8I~HAA IL ; LLL$HL$]HL$LL$DLD$8HL$]HL$LD$8E1A L ;H]Lt];Lg]KLZ] MJMrAtAAtAILt$px HI5MH$OH]LyLiAL|$ptAAEtAEHx HHLH$H\H|$xHtH1A L :A L }:LLL$0HL$)D$ Y\foD$ LL$0HL$@E1A L <:OL'\L #:1A E1E1HL$ [HL$ L[3L[NHD$HxHt$HHtCL 9A E1E1[HD$HxHt$HL 9HuH|$s[L t9Ll$xMIEHIEuLLL$;[LL$xIH$1H A L 9"IH$1HZIL 8 LLL$`7HH$HT$pLHt$x+HD$xHT$pH$HD$XH1HL$PHT$ aLL$`HIH|$1HLL$`Ht$LL$`HHx HHIExHIEvHH;QAH;DpL9gHLL$`HT$O^HT$LL$`AHx HHPExQEzH|$XH|$ H|$P1I~hHT$HH$Ht$@HL$8 &I~hHL$8LL$HT$HHt$@%H|$ LL$Ht$ HHHHLL$YLL$HX0LHL$0LL$XLL$HL$0HX IA 1E1HXLLL$`HT$XLL$`HT$iHEHHHLL$QXLL$HLL$hHT$`5XLL$hHT$`LL$l[HL$PHT$ Ht$XH(1I~hHL$8Ht$xHT$HHt$pH$Ht$@$LL$LLL$A WLl$1L 51H$HA E1E1H$HnE1A AWHAVAUATUSHhH|$HD$0HD$PHD$XHLYIMHtHH>tH|$0I}HLT$PM45 HT$(LL$0M>1L$LMI\M}ff.fLLHPHHOH9uIH)LЋ t HHI9]I\HH.EtEHl$0HEH e L%ٳL9H;*HXpHH{1$XIHt)HHSHIx HI+ HwH=3C,DH5HV H5HVEtEHE1LT$ HL$HLHHH9CHD$HL"HL\$Ht$i Ht$L\$LT$ t"HıHHGH5 'H81Z1H|$0HuHtHxHH7;H=2E1AHhL[]A\A]A^A_ÐHQHH8RHgGL C1AH EH5+XZXZpHD$HIHL0tHHI9?HT$(Hl$0HHHϰHH8jxH}H]tH5BHHAƅx HHE@XHH HEL9H;L`pMtCI|$t;1UIH HHAT$IIx7HIu.LS$H@hHH@H1HIM2 H5LHOXI$xHI$lWIH 1ҾHIHH5yHLWIx HI-1ҾHNIHH5HLWtIx HI/ H5mLHrWI$xHI$PHE1UHY H2HCH5HHH IMIGH5LM, H=GHt$MP1Ht$LAI UMIx HIH̭I9FLjU f.z Ix HIHD$H@XHCH5HHIMIFH5ALMH=jHt$pO1Ht$LAICTMIx HIGIG IGHHAWH)HHcAH9A Ix HIHD$HHxDpPH5=HGHH"ЅL-جAEtAEff.Hx HHMtI$x HI$tHEHHEH3OH@hHEH@H81HHYH}HEH52HNjLNtHN>H}HEL A$A$A{Hx HH4I$x HI$tDMtLIx HIt%E11DH=|,E1;HL&NLNMuDH=E,;AF f.L$QL$HA f(HHt$XHD$PHD$XHH8'HHtHF!Hx HHqH=+:E1fKMH>MHH)HHHLPHcAH9 HZH H5^#H8MPAHIoIALHH^LPH}toLeA$LyLLlLpH=*9AGAWHH HHcAH9>71qNIHvHH:MIILKIAzE1N1%NIH&HHLHIHHt$XHD$PHD$XHH8%HHtH2Hx HHuH=)8H@KLD$-KD$PLKL K]AwE1E1H|`tMHEHt,H|`t8HEHtH|`t&HHtH|`tHD$pL|$hHD$HHԗHL *AH X,H8UA;D$LIHLHD$HYH|$HD$HHD$LH9D$HD$LAtALIx HIAIx HIDIx HIL{IHsL-IAEtAELl$xH8-H8wL-AEtAELl$xwL8E1E11۾sH=&HtHExHHEHtHE1HHLMtI$xHI$MtIExHIEH|$`HtHx HHH|$hHtHx HHtJH|$pHtHx HHt7H|$xH_HTHHG7=77LL7ELx7Sn7gHa7HT71D%LHL$27HL$LL\$HL$7L\$HL$1LL\$6L\$LL\$LD$6L\$LD$H6cLHL$6HL$8E1E1tE1u)L\$ LL$Ht$tHHH HLR6HE6HL-6LHt$ LL$LT$q6I]E1LT$MLL$Ht$ HH*Ll$MMIH\$HL IM. IxHIuLH;{HD$I9E< Ht$XLLd$XMHHD$PHIxHIuL9H HCH5HHHm IMl H5ͬ1LcIIM\x HI?L;{L;zL;zLLT$ "LT$ AoIx HIE HCH5ݥHHH IM H5 L9 IFH;zc IVIuHHex HIRH=KIH H5HIHIxHIuLH5H~IH111HIH|Ix HIlH=-KIHH5բHIHIx HIrHD$I9EH$E1ILT$ LD$PLD$LL$HD$`Ld$X LD$LT$ HIHLL$HPtH4$L|$PLLLLT$`LLT$LD$ H|$ H$I$LT$xHI$ Ix HI Ix HI IExHIE H<$EtEH$H=1LHHl$PHD$XHI4MIx HI| H4$HIHTHx HHC L,$IEHIELNfLL$ HL$HHHHwH9CLT$LO HD$HH4$cH4$LT$LL$ t"HvHH H5H811H|$0HuHtHxHHQH=}E1HxL[]A\A]A^A_HavHH8APH L ,1AH H5$gXZmHD$HKHL0tIHM9Hl$LD$(Ld$0MMHuHH8jsD=LLLLL$x HI E1E1ff.MtIx HIMtIx HIH=HtHx HHfE1M6HHHH1۽MtIExHIEE1E1DA~x HI H=Q,FIH H5AHAIIM x HI!HD$Ht$XE1HI9EX LL|$PH\$XLd$`ILInIExHIEM L;5(tL;5sL;5sL.Aąp Ix HIL|$PEEtEH=1LE1HHl$PH\$XnHoIMIx HIOtHx HH?I<IExHIE E1jfLLL$L$gLsHLLT$ LT$ LuH1۽HE1mff.1E1LL$%L$WLLE1佂HL D>HwLVLL$L$-1E1>LL$ LT$H4$1E11۽LLD$HT$ LT$L$HT$ E1L$LT$LD$HHH_H\$ MLMH,$MHHT$;ftHIL)HD0HEHHL9H0LcHuiHtZHIE1aHIE1L%ILerIE1E1MEfInMuAfInflƒtAAtAIExHIEL|$PLLD$ L)D$PLD$ HI{HInLa]IgPIE16IHHt$XHD$PHD$XHoH8eHHtHHExHHEmE1E1sINfInM~fHnfltAtAIx HI_Ht$PLHL$ LD$`L$)D$PHL$ L$IH.HH!HL$E1%I MtUIxNHItaIEx HIEtEHHHHHIExHIEuLLLsL{AtAAtAHx HHH$LH=oJ?IHH5wH_IIEMPxHIEHD$I9F9H$E1HH4$L|$PLLl$PH\$XL[LI耼Ix HIBM;Hx HH2LVLHf.H;ylLLIHqH;lAH;lDL;-lLAIExHIE%EIx HIE+LL LE1JLZIHT$H\$ MH,$MM9Ld$@Hl$8IMHD$8HD$@1LHLH|$@HLHt!ff.@H98tHBHHuHkHL$HLLL{H9Gi6bHkHL$@HHH5[H8119@L L \H,$ML H L #LLT$ LT$ wL LT$6Lz gLm 0L` 7LL$J L$ME1H0 L# wMֽtLLD$ )D$ foD$LD$ E1E13)E1M}MuAtAAtAIExHIEMHt$PbLLD$ H $)D$l foD$LD$ H $wIEHIEtZE1E1I$x HI$tLMIHILL$ L$L LLT$L$ L$LT$H IEE`HIERL EMEM}AtAAtAIExHIEMAOIܽiL,$E1~L,$pIEI$HI$E1ҽuL MH L ]L H IEXHIEJLLT$L$u L$LT$+E1fA.FADEI$9BMnMfAEtAEA$tA$Ix HIMmE1E1L LLT$ LD$ LD$LT$ $x HIt5L[ %IE1LIL; EL. JL! 1E1ҽff.fAWfHIAVfHnHAUIATUHSH)D$p~KcHDŽ$flH$HDŽ$)$HLQIMHd ? Ht0H AL /HHUtHT$pISJH$L$Ll$0HM4$1L|$ LL$pILLlMhLLHPHH?L9*uIH)Lȋ t HHI9I LlIkI IHmEtEL5dHl$pAtALt$xMAtAL$Lt$ff.EtEA$tA$L=M9IWH=L HHtHCH5MHHH^HD$H|$H3x HHP HEL=(dL9EtEHID$L9 A$tA$Ld$0H"fHn~~ H$C D$0fl)$)$@M  YLD$0H{I@L|@A@ @ L IH D$ AHAF , IF8HD$8L9L$H$E1Ld$@H\$HMLELl$XIH$Hl$P3fHr8D9tbI1HL'HIL9$$G I$HjHtLH)H9J  tHz(Hr8@HED9uD$ HHHHL$8HωHfH!bI9EH4$LLL$H$LLHDŽ$LT$ ;H4$LT$LL$t%HaLHPH5WHH1* H|$pHtHx HH H|$xHtHx HHH$HtHx HHH=E1 HL[]A\A]A^A_H AL :M~H AL H8`HH8AWHrH51R XZ!HD$LeA$tA$HmLd$xEtEH|$Hl$pL5`)Ld$@H\$HHl$PH_H5H8mIx HIs HD$HxHL$HHHL$0Hx HHHtHHH߉4$4$L0IHH@H5{LHH HIH x HIc HEH;[_ EtEI~fInHf~flH$)$AG @u tEIGH$HpAIIMx HI H]H9CS H]H$HL$HL$HDŽ$HH$L$HIIx HI. Hx HH M2Ix HI EtEIx HI Ht H HExHHE IHff.AEtAEL=t]M9|$LIH H@HL9NIFt HHH AFHHHHEHx/HHIx HIAfL$H$H$$IHH^HPtHD$HEH .H$IW tH=H$LH$HIIExHIEHx HHIx HIMHtHExHHEI$xHI$H|$pHtHx HHH|$xHtHx HHmH$HHtHHg]vAXF3HHDIExHIE IxHIuLfxH=E1x HIHx HH?mA$tA$HMfHHVtH$HUtHT$xL4$LIHN4$@ _IF8AD$ HHD$8MH]H\$$tHD$H$fH$IHLptHHI9XLl$0L|$ Ld$xMH$HD$HHl$pM+J|pt2IGMtH|ptIItJ|ptL5$YIHXHL AH QH8AW|H\$HLd$@Hl$PLl$XHx HHHt$0Hx HHHD$HXH9XIH.XH$HLL$HDŽ$HH$EHIx HIBIx HIHFHHHHH*L3GL5WAtAL$Lt$:L5WAtALt$xMH3L&L$tIHtz4$tD$ AH?oLH#L*HNLHHL$H'HHH|$k @7IF8AD$ HHD$8IV(Iv8@HDHT$8L\H L LrH=rHGHH;U81LuHHDH.tLL$LT$H4$IH;Hu H;IDHx HHL EH$LAtAHBjLILH4$H5HAH=>RjPH 5zjPAVjPszIIHPMx HI Hx HHHEjHHEH@L\$ HL$XLLHHH9GHD$XLLT$H|$ 谨H|$LT$L\$ t%HGHHH5˼HH1H|$`HtHx HHH|$hHtHx HHH|$pHtHx HH-H=XE1HĨL[]A\A]A^A_HD$XIHL`tHHI9Ld$`ML|$hMLl$pM4DLf.`D$zLf.Bz\D$H=rD$IHH@H5oLHH IH IxHIuLD$?IH H|EI9FHLH$HDŽ$L$MHI$xHI$Ix HIHH;EH;REH;xEHHT$ HT$ A Hx HH:E H$LAtAD$7IH D$ IHT H]fLMLH4$H5DAH=YNjPH 5vjPAWjPvIIHPMmx HI?I$xHI$Ix HIHx HHHExHHEfDH|$`HtHx HHRH|$hHtHx HH>H|$pHHHHL%uA$E1M|$AtAM$$L|$hA$tA$Ld$`ML=tAtAL|$hdL%tA$tA$Ld$`8x HIIx HII$xHI$E1E1H=Hx HHHEE1xHHEuHkMtIx HIMYI$MHI$?L'2HMl$AEtAELl$pHHNtHL$pIL$tHL$hHHHDIQHIDL.{qH E1HSAHL H51H:PH1gXZH ALIxHIuLM/E1Af.H=$E1E1IHxHHuHIH:L4$E1E14$LHT$ zHT$ LHT$ cHT$ TJ@'HHT$HT$ARHHAHR DPMFfInM~AfInflătAAtAIx HIOH$LLD$ )$LD$ HIHILHT$ iHT$ H=HALH4HELHD$HxHt$HH:Ix HIt 6LL/HLoHL\$ LT$H|$HIM1HHu?tLHL)HD`ID$IHI9qH0HHL$HL$HuHL$HL$HtLLD$LD$eLHL$HL$H\H= E1E1/f.D$ED$H4H=ʿE1E1H=⾟H=HI1IHsIx HIlAE1E1PIx HIE1E1AIHILINfHnM~fHnflŃtAtAIx HIH$LHL$H$)$HL$IHHHyHqlHdH=HD$HIx HIaAH\H$HDŽ$H$H;H8IHtH莱I$xHI$H='-AqHt$HHHHrH]Ix HI~LyfInLIAfInflƃtAAtAHx HHLϺH$LL$)$ LL$II3HI&LLD$ LD$ LL$ I9HD$HLt$PLd$HHD$P1LLHoH|$PHLHtH98tHBHHuH9HL$XLLLwH9GtH8HL$PHHH5?H81rHHt$HHDHH"ZH$HDŽ$H$H8H8菵IHtH/IExHIEH=zLxHHfInAfInflǃtAtHt$Hx HHTHLD$H$HL$)$HL$LD$HIHILHT$ HL$LD$HT$ HL$LD$cA`vE1侟LLD$ )D$0WfoD$0LD$ HHHE1E1ALLHL$)D$foD$HL$,IHIE1E1ALL`HHL$ LD$)D$0foD$0HL$ LD$HLL$)D$ nfoD$ LL$\LV-fDHAE1E1$LAE1E1 AE1E1LE1A1E1E1H=FLAHAWHdAVIAUIATIUSHhHD$0HD$PHD$XHLQIMHtHCHtHT$0IKJHt$PHGIL:Ll$ 1Lt$(LL$0MIMI\MfLLHPHHH9uIH)Lȋ t HHI9UI\II$tH\$0Ht$PAEtAEH=Kb1Ll$PHH\$X`IUxHIUHHx HHMHF4tHtHx HHZHh[]A\A]A^A_DLL$HL$HLHHa4H9CHD$HLLT$Ht$萔Ht$LT$LL$t"Hd3HHH5H811H|$0HuHtHxHHH=Hh1[]A\A]A^A_DH2HH8AVHCL 1AH ?H5XZoHH2LHD$HD$`HHD$}HD$Hh[]A\A]A^A_HD$HIHL0tHHI9RLl$ Lt$(H\$0HMH2HH8jH=nHD$lHD$}|LL$LT$Ht$HLHt$ HT$LT$L\$ THT$E1L\$LT$Ht$ HHHH\$MLHLl$IHT$0ftLIH)HD0IEIHt(L9H0LHuHtIHT$H\$MLl$HM9Ld$@Hl$8IMHD$8IHD$@1LHLdH|$@HLHt'ff.f.H98tHBHHuH1HL$HLLLH9GuLZtH>0HL$@HH5H81Y@Ll$Hz8AWfH#^AVfHnAUATIUSH)$~\-H|$0HDŽ$fl)$HLIIMH]H>HIJHH$L,kHT$8IMu1L$MMMI\MWLLHPHH/H9uIH)L؋ t HHI9 I\HHu@IL$HL$$8I$H$tH$@H AL FH HT.HH8RHH5.1oXZH$HtHx HH H$HtHx HH ?H=1hHH[]A\A]A^A_Hq.H9CH4$LL\$ H$HLHDŽ$LL$-苎H4$LL$L\$ < .H\-HHH5H81yHNtH$I $tH$DI$tL5<-H$AtAL$Lt$HD$xHHDŽ$HDŽ$IHvHg_ L(hE1ɹAHƺHAHD$xIHH$tAIx HI HXH=\HHD$xHDŽ$HSHIH;tAI@L$LH5RHH_L$IL$IMx HIC H=nWIHHBH@H5UHHHXIM5Hx HH H*I9FcH\H$LLHL$HDŽ$H$LD$0H$LHT$LD$0HT$LD$0H$HHT$LD$0HT$LD$0H$E11ҽLHT$0½HT$0sHLD$0諽LD$0HLD$0蔽LD$0LLD$0}H<$LD$0H$HxLQLD$0HLD$0:LD$0[H$E1E11CMƽIx HI M1E11L޼H$E1DH$諿H=5L$HGHH;1ҹHYL$H(IL$IcL\$ LL$H4$H$E1E1M'I$1҅x HI*H$E1vLLHt$8HT$ LL$L$.I]E1L$LLL$HT$ HHt$8HhH\$MMHH$>ftHIH)HHEHHM9H0LHuHtH$E1ILHL$PL$HL$PL$1E1E1InfInI^EfHnflătEtIx HI:HTIH$H)$H$询H$HEgHHEYHILHL$8L$E1LLD$LD$HLD$LD$LHL$HL$Il$Hl$xEfHnI\$$tEtI$H$xHI$H$H)$趡H$IHEHHEHIH$E1HExHHEuHLD$0LD$0H7H$HDŽ$H$HH8ߒH$IHUHsIx HIH$E1HDŽ$)IM潿uLLD$0WLD$0HH$H\$MM9/HD$xHl$xMIHDŽ$L$1LHLH$HLHt$ff.H98tHBHHuH_LLLH$H9GutIHwH$HתH5H81菽f.LL$LD$HLLD$0 LD$0 Il$Hl$xEfHnMt$$tEAtAI$xHI$H$LH$HL$)$HL$H$IHE HHEHLD$ qLD$ HL$LYL$AfInHiD$tAEtEHl$xHx HHH$HL$LT$P)$3L$LT$PH$IIHI LL$軵L$H$HLT$蜵LT$hHL$膵L$>LLT$pHT$PLT$#L)$Ufo$H$E1-1dfH$LLD$ H)$ALD$ LH$IL/LԴ0L)D$ ´foD$ $1L$HHyL$HLD$0WHx`HH H0LD$0t1H}`Hu``LD$0LD$0H$LD$0HHHH5YH81D1E1H $E1HH$LD$0LD$0H$-H$LD$0ѳH$LD$0LH$LD$0貳H$LD$0?[HLT$PL$)D$@zfoD$@LT$PL$MH$E1LHL$ )D$?HL$ foD$]LҹL$Ix HIt"1E1 LE1M1E1LE1E11E1ff.@AWAVAUIATMUSHH|$0H$HL$HDŽ$HDŽ$HDŽ$tL$AtAA$tA$H=;H$IHJ!H@L$LH56HHh&L$HH!Ix HIHDŽ$HH9E=&H$HHHDŽ$L$IԙH$HHDŽ$Ix HIAH&IExHIEBHCH59HHH&IL$M&H5?L9I@H-sH9EhAIx HI6HDŽ$EH529HZH$IHBH5g?H93H@H9(IUIEuHH4xHIE3H%/H$HDŽ$H$H H82H$IHZ2HƃIx HIQD$x11E1HD$ E1E1HDŽ$HD$0HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$(Ix HIBHDŽ$HD$Lhhf.MMMt L; @ MmMu1E1H=8L $L $HH$H1H5%5HLL$ H$XH $LL$ HH$IHx HHs%tH$H=C51LL$(IHLT$ LH$HDŽ$HD$xIHH$H$ZH $LT$ LL$(HnH H$LE1I9BALLL$8H$HL$ L$L$L\$(H|$(H$IZHL$ L$LL$8Hx HH$HDŽ$Ix HIu$HDŽ$E11MLL $HDŽ$YH<$YHYH5;LvH$IHBH; H5 I9HD$(I9H$L;- L.ŅFIExHIE0HDŽ$jH=C5H$IHHH5 6HH$'VL$HHHIxHIuLHDŽ$1HH$HH9EEKfHnfInHH $fl)$ H<$H$I(XHEHDŽ$xHHEuH蒫MDH5B:I9:IEH;UDImHՃIExHIEEHDŽ$$H*H$HDŽ$H$HH8H$H$H@sHH~HExHHEgD$x11E1HDŽ$E1HD$ HD$0HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$@L L)LH;+LǺL$JL$HIQH;AH;D,=L;==LL$L$AIx HIXED$xE1E11ff.@HD$ 1E1E1HD$0E1HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$MtIx HI+MfIEZHIELLH$L$L$L$dH$L$L$L$IExHIEhYHDŽ$ff.fL;%I L;HD$8H?H=0HDŽ$H$IH@H52HQH$IH>IExHIE:H=P0L$HDŽ$L$HH':H5,HLT$H$#QH$LT$HH9Hx HH"H=/L$L$HH9H5,HLT$ HD$PHT$LT$ HH$&DHx HH=(H_H$1HH9EDH$HLT$ H$HL$H$諎H|$H$IRH4$LT$ Hx HH'HExHHE!MDH5s+LL$OL$HH =IExHIEu LݥL$HDŽ$E1HsH$HI9BFLLT$L$H$ʍLH$QHELT$HDŽ$xHHEu HSLT$IxHIuL6H<$HDŽ$x=I|$H5Q H4 H(h1E11HALHD$HHID$ tHt$Hx HH?I$xHI$}?HD$H;JH|$H5,HoDNIHJH5!3HHD$ TL\$ A\KIx HIL; )>LLL$ 8LL$ AomIx HIMEZH=T*/H$HjaH5(HHD$ :KLT$ HI`Ix HITAL$tAH5/H|$1L\$ zL\$ HHD$HIH$^Ht$x1H=6+HL$H$ߥH|$ HD$8 MI$L\$ HDŽ$LL$8xHI$TUHDŽ$Ix HIWUM^HD$(I9H$AI9DBL; qBLLL$ 螤LL$ AfjIx HIUEgfHn\|MfTM7IHfH4$HHD$ %LL$ HIvfIx HI[HD$(I9H$@I9@XGL;KGLL\$ ӣL\$ jIx HIZLd$HE1H$L$H$HH8yHHfsHrHERsHHEhH$D$tHt$(H9$AAtAH=&iH$H=H5Y'HHD$tGLT$HH$I=IxHIuLLD$^LD$H="&LD$LD$HH$IH5#HLD$ HD$FLT$LD$ HHIx HII7HAE1HDŽ$HI9@@fInfIn޿LD$ flLL$HT$8HDŽ$)$LL$LD$ HH$H9H5!HT$8HptLJ,HL$ LD$LL$8H$胠H|$8IHHELD$HL$ xHHE6Hx HH6HDŽ$Ix HI6HDŽ$M8IL$x HI7H$Lt$HME1HD$HL$HD$(H$H9H9H; vH辟%GL;%g0A$tA$H$1H=HHL$HDŽ$HD$xLH=GHDŽ$He=1ɺHHLIH.@HHHD$ƜL\$HHD$8H$BIx HI7HExHHE7HL$0D$tHL$HHD$0HH=,$Ht$xH$1H$H|$0HHD$(H$NFHCHt$8HDŽ$D$tHD$8HDŽ$H$HD$(H$ǜH$HHGH$H $HPtHt$xH=$H$HHRH|$8HD$H$EHExHHE8H|$HDŽ$JH=!HDŽ$IH(LH5HHD$ BLL$ HHKIx HI;H591HH9uLHt$H$HHL$0HL$xH$H4胀H|$0HD$ DHEL\$ xHHE:MLAL$tAH= L\$0L\$0HHD$ MH5HAL\$0HHMHL$ Hx HH&AL$L\$ HDŽ$H$赚L\$ HHMQHH5#HPtH$H=:HHt$xL\$ HL$@IHqYHExHHEjJH5HL\$0[>L\$0HHD$ YHE1HI9CWfIn¿L$t LT$0H$HDŽ$)$FLT$0L$HH$INH H$HHtHD$xHt$ LLL\$xHH$HL$H$HD$0?Ht$ L\$xHDŽ$Hx HHYNIExHIEUNHDŽ$Ix HIMH|$0MHt$HgHH6XH5C H|$0H. _HExHHETHL$0H͉D$ -&fL蘒E11LL$ LT$H $>H<$HDŽ$>H|$HDŽ$>HALL$ HDŽ$L8HD$H@`H HxI9IGH/HW: @- " A@ HXH HJH 1HH9L;|uH=XqL $~H|$H$H$H$bH.H$HDŽ$H$HH83kL $HIt$HL $dIL $x HI;+D$xQfDD$xL11HD$ E1E1E1HD$0HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$ff.MtIx HIMtIx HIMtIx HI%HtHx HH,HtHExHHEaH|$ HtHx HHSt$xH=po1}MtIx HI8IH $HtHx HH(HT$HtHx HHHt$HHtHx HH HL$8HtHx HHHT$(HtHx HHH|$HtHx HHH$HtHx HHHt$hHtHx HHHL$pHtHx HHHT$`HtHx HHH|$@HtHx HHHt$PHtHx HHHL$XHtHx HH}HT$0HtHx HHtSHx HHtSMtIx HItNI$x HI$tLHL[]A\A]A^A_HxfDHhfDLXfDLHfDL8H(HHHHیfDˌ%fDH踌0H訌>H蘌L苌]fDHxhHhvHXKfDLH$L$L$ H$L$L$LH$L$H$L$LH$H$H訋KL$HLEfInL}AfInL$fltAAtAHExHHEH$LL$)$]sL$H$HIzHImL`fHD$ 11E1HD$0E1E1LHD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$D$xfDI HD$ 11E1HD$0E1E1HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$D$xrfHt$(D$tHD$(HD$H5Ht$HD$ tHHD$HH-Et EH-IH$x HI IA@HL$LL$ L$sfDLL $܈L $vHLL$ ÈLL$ L$8LL $yL $D$xHD$H@hH8LHtHx HH)MtIExHIE9HaHE1HL$L$HEL$1HI9tHuL;=dQ]fH;x'L6IH>H;L;="L;="L Ix HI EB?IUxHIUuL$P$HDŽ$fH51H1H$IH 111H9IHIExHIE] L9=HDŽ$H=hH$H(H5XHHD$s0LT$HH$H$)Ix HI H$H E1HDŽ$H$HH9H*fInH<$fInfl)$PnLHD$s2H $LL$HDŽ$Hx HH[ HDŽ$M)H5~L9$IAH92IiHՃIx HIO%rHKH$HDŽ$H$H@H8`_HH#HXHE#HHE#D$x11E1HD$ E1HD$0HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$gHL$肄L$_HLD$)$hLD$fo$HL$ML$!?HLD$1L$'LD$L$LH= 谲HH@H5 H-H$IH9HExHHE/H5LLD$-LD$HH?H5?E1HI9p=H 4H$LLD$ Ht$xHH$L$H$wkLHD$/HELL$HDŽ$LD$ xHHE/Ix HI/HDŽ$M?HH I9HD$(I9H$ L;  LLL$ LL$SIx HI3[H=* HHtTH5 H,H$IHSHExHHEiKH= LT$诰LT$HHD$ HQH5rH+LT$HIQHExHHE#KH5LL\$@LT$ z+LT$ L\$@HHD$QH +E1HI9KUQHt$HL$xLLT$@L\$ H$H4L$oiLH-Ht$L\$ HDŽ$LT$@Hx HHJIx HIJHTH51HLT$ *LT$ HHD$THExHHEaJH D1HI9JTHt$xLl$LLT$@H$HL$hHHD$ ,IELL$ HDŽ$LT$@xHIETIx HIpSHDŽ$MRH4$D$tH$LϺLL$HH$+LL$HH$In[HD$(I9H$@I9@>L;>LLL$ LD$LD$LL$ /[Ix HIRHDŽ$DAtALH $Hx HH?KHDŽ$Ix HI6KEtEHExHHESH$HxH4$HHSH,$HLT$~LT$@HLT$l~LT$E1ffA.@ADEYLt$HE111D$xE1E1HD$ H$HD$0HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HD$ 11E1HD$0E1HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$D$xLH$L$L$L$|H$L$L$L$$HHIEwL|jf.L|/Lx|Lh|A}y@LL|H$IH'HD$(H$I9I9L;<LLD$iLD$g<Ix HIHDŽ$g+H5k 1L|H$IH*HD$(H$I9I9L;LLD$LD$U@Ix HIHDŽ$6-L;%T;H=販IH<H5HHD$$L\$HH<Ix HI.H5v L{HD$8H<H5D1HH9uv=HL$ H$HH$HL$8Ht$xHH$bH|$ H$HD$&HL$8LD$Hx HH-HExHHEI.MB1LLLD$QzLD$HHBIx HI.HD$(HDŽ$H9H$H9H;-H}…JHExHHE%6 ?H H$D$tHH$H$H$A$tA$H=Ht$x1HL$HDŽ$}LHHD$9%H<I$xHI$04H=sNIHHCH5CHHD$8^"L\$8HHD$ FIx HI6H= IHFH5HHD$8 "L\$8HH$HFIx HI<HD$ E1H IH9H2EHD$HLD$8L$LL$PHt$@HDŽ$H$zLD$8HIl;H Ht$@LL$PHHtHD$xH|$ LLLD$8HH${H|$8HD$h#HEHDŽ$xHHE;HDŽ$I$xHI$:Ht$ Hx HH:Ht$hH:D$ tHl$hH=1HHt$xHDŽ$H${HIHD$p"MEHD$X1LHD$PHD$@HD$8D$L$L$H\$ HH$1vIHHHD$(I9H$AI9D.L;5$.LVzAą+SIx HIr9ERHL$0D$`tH$H$|IHnBL|$0Ht$x1HH=FH$L$izLHD$`!Ix HIwBH|$`AH!H5H$kuIHCHD$(I9H$I96L;56L9yÅ~UIx HIAteH$AVE11jH$A11RA_IXMUHH|$LrlUIx HIKUH=֢IHUH5HH$IHVIExHIEFHE1I9^POH\$HLH?H)L$H$H\$xH H4[LHIx HI[FHDŽ$HVH|$81ɺHH_%IHUHHhuHD$8H$H VIx HIEHx HHEH\$8E1L$$tHD$8E1ɿL$H$HD$`H$uHHLHH !HPtHt$xH=0H$HHnwH|$8H$IHx HH6EMKH|$@H=E1L$諠IHMH5 HHHLIx HIKHiE1H9C8L1L$H$L$tIHKHHPtHD$(LHH)H$HH?H HD$xH4uLH$HIExHIEIHx HHIHNFHEH H9t H;FHUHIH9ILmAEtAELe A$tA$HExHHEBJH|$PH|$XA$tA$H=Ht$xE11HL$L$MuLIH$M%OIx HIIAtAH=Ht$x1HL$L$tLHHD$@H$H&OIx HIOH5H|$@_H$HH(NH$HnIHMHExHHEOHD$pE1L$H@LxpMLILHFH$LFu1H\1UHNHT$@H|$pHAWAHx HH ME OIx HINH5H|$@fIH!KH$HmH$HHJIx HIOH$H$Hx HHuCE1H$H$L$H\$`Ld$XLl$PL$L$L${HD$ 11E1HD$0E1E1HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$D$x 1HD$ HD$0E1E1HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$D$xbLlaLL$lL$IEHIzLL$XlL$eMZMzAtAAtAIL$x HI Ht$xM$HD$ 11E1HD$0E1E1HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$D$xEHD$ E111HD$0E1E1HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$D$x&HD$ 11E1HD$0E1HD$XHD$PHD$@HD$`HD$pHD$hHD$HD$(HD$8HD$HHD$H$D$xHL$0D$t~D$0HDŽ$L$)$I1HT$(LL$PI\MthLL%ff.ff.fHPHHt3H9uIH)Lȋ t HHL9I\@LL$HL$HLHHrH9CHD$HLLT$Ht$0Ht$LT$LL$t"HqHHH5KH81!H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH|$hHtHx HHWH=E1HĨH[]A\A]A^A_I<$HypH|$PtHD$XE1HH iptHL$`E1IL$tHL$`^6HhMD$AtALD$hHotHD$hIHD$HIHLPtHHI9|L\$ HT$(Ht$XHQHL$`H)LD$hMH|$PHH|PtMHBHH|P9HBHH|PHHH|PHnHL AH <H8RH'H5~1XZyoH AL 0H~H AL vH.nHH8RHen8t8HD$hIH XntHL$`H.ntHD$XHH eAL HHmH|$PHD$XHE1q,LL$LT$Ht$WLHt$ HT$L\$LT$cIE1LT$LL\$HT$HHt$ HH\$MHL\$HT$2@tHIH)HDPHEHHt(M9 H0LwHu}HtHL\$HT$H\$M9TLd$@Hl$8IHD$8HD$@1LHLyH|$@HLHt#ff.fDH98tHBHHuHlHL$HLLLH9GuXtHkHL$@HH5CH81@HD$X:L\$HT$sb0AWfHAVfHnH(AUfHnATIUHSH)D$`)D$p~ iH|$0HDŽ$fl)$~hfl)$Ht&LIIM~HhH5HcHH HDMl$AEtAELl$xIL$HL$D$tHD$M|$HD$pAtAM4$L|$hAtALt$`M\HS H(hE111HALHHtEHExHHE H H(hE111HALHHtHx HH H L(hH|$E11HA1AIHPtA$I$xHI$ C;E\ H=@;HH H@H5$H|$HHH|$IHMx HHH=:IHH@H5LHHCIM<Ix HI~HihI9A^H$LHHDŽ$H$H$LL$L|$IIx HI-MHgI9FH$LLD$HL$MHDŽ$HLD$HIx HIIx HIHyH; hH; gu H; g3 DHx HHl EH=R-9HHH@H56H|$HHH|$IHMx HH H=8IHH@H5LHH(IIMxHIuLLL$ LL$HmfI9AH$LHHDŽ$H$L$LL$HL$IHxHHuHX MQHeI9G/ H$LHHDŽ$L$PMHIx HIXIx HIeHVH; "fAH; eDp H; ec HHL$! HL$AHx HHEH==7HHyH5%HD$+H|$IHMx HHH=6HH5rHHD$ݱLL$HHIx HIHdH$E1HH9AbHHL$L$LD$H$L$H|$IHL$Hx HH#M'HdH$E1HI9FLL$LD$L$VH|$HD$wIHL$x HIIx HIHH; dAH; cDH; cvHHL$ HL$AHx HHE/HD$0HtHt$0HLIL H=ʗjH AQATjAQSjHL$H.H@HL$HIHx HHHE HHE Hx HH L4H EAHiHbHL H8UHH5e1 XZH|$`HtHx HH:H|$hHtHx HHH|$pHtHx HHH|$xHtHx HH H=x1iHĸH[]A\A]A^A_HVtHT$xIT$tHT$pIT$tHT$hI$tHT$`IRHH$L,?IL|$`1MuHl$8MLMIK\Mtlff.LL%ff.ff.fHPHHt3H9uJTH)L؋ t IHM9$K\L\$ HL$XLHHaaH9CHD$XL6LL$Ht$LHt$LL$L\$ H``HHH5HH1z DE1SH A!  IA xHI@DH=^QHtHExHHE"Ht!HE1HHLMtI$xHI$H|$`HtHx HHH|$hHtHx HHfH|$pHtHx HHRH|$xH$HHH LHD$XJTHL`tIHM9pHl$8Ll$xMLt$`H>H|`tMHEHt,H|`t8HEHtH|`t&HHtH|`tHD$pL|$hHD$HH4^HL jAH H8UA;D$Lpf.fI~zH|$Qf.D$zVL3f.f(zfInf/f/L$f.t$z HD$0HtfInHL$ L$L$HL$ HIf(LL$ HL$HL$LL$ HID$qHL$LL$ HINH~Ht$0HL5"]H=kAjH PAWjPAVjPL$HL$XюHPHL$LL$0HI Hx HHIx HIIx HII[HINL;AL-o\AEtAELl$xHHL-7\AEtAELl$x=LPL=Q1HHE11A HHL$HL$AA HkH`HHSH+FHMOfInMGAfInflƃtAAtAIx HI LǺLL$H$LD$)$LL$LD$HIHIyLLD$HL$qLD$HL$XE1A tA iL\$ LL$Ht$+LHt$ LL$LT$oI]E1LT$MLL$Ht$ HHrLl$MMIH\$HL:tLIH)HD`ID$IHL9'H0L"Hu(HtIxHIuLVA kELLL$5LL$kLLD$LD$LHL$HL$%LHL$HL$HHHHL3HHHLL$LL$ LLz HA |@H_A _H|$ID$L$HdA (HzH$HDŽ$H$HWH8IHtHIExHIEA A HHHH.zH$HDŽ$H$H;WH8[IHt*HIxHA IALA .HyH$HDŽ$H$HVH8IHt*HIxHA ILA JIIHLMH\$Ll$MM9Ld$PHl$HMIHD$HHD$P1LHL>H|$PHLHt(ff.ff.H98tHBHHuHVHL$XLLLvH9GpֶQHUHL$PHCH5H81(@Ix HIA ff.MIkwHx HHJA XEIE1A x HIt@Hx HHt&MtIxHIuLhHLHL$HL$HIA yLLD$HL$LD$HL$LHL$pHL$LHVMQfHnMyAfInflƃtAAtAIx HIH$LLT$H$)$'LT$IIhHI[LLD$LD$DMVfInM~AfInflƃtAAtAIx HIH$LLT$LD$)$LT$LD$HI1HI$LHL$HL$LD$IA HuH$HDŽ$H$HRH8IHt*HpIxHA ILA A A H|$IV+LIHL$QH7IA AHI4L 'LHL$HL$LHL$HL$HWwIMAfHnIIAfInflƃtAtIx HIHϺLD$H$HL$L$)$LD$HL$IIHIL%HL$x HIjI|A @HA HsH$HDŽ$H$HPH8IHt*HVIxHA ILtA A LLT$)D$LfoD$LT$+IA x HIM9I.HI!LrHA L)LHLHL$LD$)D$ foD$ HL$LD$LA &A .MFIVAtAtIx HIgIH$ HqH$HDŽ$H$HNH8IHt*HIxHA ILA LLD$LL$)D$ foD$ LD$LL$LLT$LD$)D$ foD$ LT$LD$A LALyAtAAtAHx HHtXLH$[LLL$LL$A LHT$LD$LD$HT$xHLD$LD$fDAWfHvIAVfHnH-AUfHnATUHSH)D$P)D$`~JH|$HDŽ$fl)D$p~Jfl)$Ht)LIIM~HH LwHcHICI'E1H$H xAL ILeA$tA$HmLd$XEtEH<$Hl$PL-LMTEtEA$tA$M9L;5LH=hHD$pLt$xHD$xHHD$ CHHH@H5uHHH IMX L;DLL;KM9LLT$ILT$AIx HIfEPH=%{@IHH@LD$LH5zHHLD$IMIx HI HJI9GH*kHt$ LHHD$pHD$xHJHH$+MIx HIU H)Hx HHv tH=7vHt$p1HH\$pHD$xIHx HHM Hx HH LH=vIHe H@H5sLHHv IIM x HI LֺHLT$OLT$HI Ix HI L;=JL;=IM9L Ix HI HD$LAtAHE1LARHD$HHT$LH LT$ {Y^HLT$IIx HI L9,$A AHx HHE Mff.Ix HIzMHtHExHHEqI$xHI$hH|$PHtHx HHj H|$XHtHx HHV H|$`HtHx HH$ H|$hH,H!HH HNtHL$hHMtHL$`HMtHL$XHMtHL$PIJJHt$pL$ HLt$P1M,$L|$(MIMHI\Mtkff.LL%ff.ff.fHPHHt3H9uIH)L؋ t HHI9 I\@L\$HL$HLHHGH9CLL$ LeHD$HH4$ 豧H4$LL$ L\$t%HFHH H5ͻHH1H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH|$hHtHx HHH=E1dHĨL[]A\A]A^A_HmEL-EEHl$PAEtAELl$XE1MAEtAELl$`L,$E1HMH $D$ tH$HD$`RUH->4DfH AL H~H AL +HDHH8AWHwH51_AXU8IuLuAtALt$h$HGoHD$xHEtEIExHIEH%vt HvHExHHEIHL5aAtALt$hHD$HIHLPtHHI9L|$(Ld$XM7HD$`H$HLt$hM8Hl$PM=J|PtDIGMt,H|Pt0IGItH|PtIItJ|PtL-CIHYCHL 0AH H8AW]L7LL$&L$qHLL;5\Ct L;5kCH=nIH H@L$LH5iHH L$IIM x HIH6BI9@q Ht$ LHHD$pL|$xL$L $IIx HIlM IBL$LH5%pHH L$IMIx HIH5(^LǺL$?L$HId Ix HIL;AL;Au M9DIx HIEuAtAHt$ HAE1HI9F_ LLl$pL|$xiLH$荐IL$x HI A0MfH+HHHL$L$ L-AAEtAELl$`L,$L-@AEtAELl$XML5^AtALt$hH=3lIH- H@LT$LH5iHH4 LT$HH Ix HIeHHt$fHt$IHMxHHuHL;=@L;=?M9L  Ix HIZ%HD$LAtAHE1LARHD$HHT$LH LT$ qAZA[HLT$IAMIx}HIutLjLLT$LT$LLD$D$2E1A f.DH=>Hu@ME1MAE1Ix HIDH=HxHHuH$IL LL$|L$AgA/LL$L$-LL$L$L1LHt$Ht$HLHD$rHD$L`!HSLFH9}L-m=Hl$PAEAELl$XME1oH+HMH, 肇L\$LL$ H4$,A4HLT$LT$^LUKILHt$LL$ L$I$E1L$LL$ Ht$HHvH$MLHLd$ 3tLIH)HDPID$IHL9!H0LHuHt~AHLT$LT$`LL$L$LL$L$A E1A I8HILnLD$IH= g HKH5dHHD$LT$IIMx HILHiIHIx HIL;";L;:mM9dLLT$'LT$AIx HIEHD$LAtAHE1LARHD$HHT$LH LT$ lIXZMLT$AMOMGAtAAtAIx HIH9fInLYHt$pLL$(HLD$)D$pH$LL$(LD$IHILHD$(pHD$(LD$yAE1AAE11A E1LD$D$A/L$IOILd$ H$MHM9Ll$@Hl$8MIHD$8HD$@1LHL4H|$@HLHt@H98tHBHHuH9HL$HLLLH9GrVtH:8HL$@HH5H81ULl$XA/{MXfInMHAfInflÃtAAtAIx HI LHt$pL\$L $)D$pL\$L $IIHHI;LLT$zLT$L $ MAE1A/DL$I2L.L$ E1AIAE1ALT$HLYMnIVAEtAEtIx HI IHt$p]H=ab<H H5`HHD$OLT$HHM Ix HI HHt$Ht$IHM x HH L;=\6L;= 6M9Lf Ix HI -HD$LAtAHE1LARHD$HHT$LH LT$ gAXAYHLT$IWA AfDLPBLLD$(LL$9LD$(LL$LLLT$LT$:MAE1AE1AYfDMAE1LL\$L $)D$foD$L\$L $H=^`9HH5cHHD$LLT$IIMx HILHIHIx HIL;`4L;4M9LLT$eLT$AIx HIEHD$LAtAAQE1LARHD$HHT$LH LT$ fAZA[HLT$IOA"fDjA!E1D\H=^HH5%bHHD$LT$HHoIx HI)HHt$AHt$IHMx HHL;=2L;=2$M9L(Ix HIt_HD$LAtAQE1LHARHD$HT$LH LT$ d^_HLT$IA$H=]HH5`HHD$~LT$IIMx HItLHIHeIx HIbL;1L;y1vM9mLLT$LT$AfIx HIEEt`HD$LAtAVE1HARHD$LHT$LH LT$ ~c_AXHLT$IA&hH=\kHH5_HHD$~}LT$HHIx HIHHt$Ht$IHM5x HH2L;=0L;=90?M96LCIx HIt`HD$LAtAASE1LARHD$HHT$LH LT$ CbIXZMLT$A(xH=^[9HTH5VHHD$L|LT$IIM!x HILHIHIx HIL;`/L;/M9}LLT$eLT$ARIx HIUEt_HD$LAtAPE1LARHD$HHT$LH LT$ aZYHLT$IVA*H=OL9HCt H;.H+IMtxH.Ht$ E1Ll$xLL$pH8IIExHIEuLL$L$E1A,M;LL$L$Ix HItA,E1 LH I[A)E1DLdMA)E11LLT$ALT$ A)E1A)IA'HE1A'E1A'WLD$D$MA'E1LeE1A!LJAE1$LHt$vHt$"A!LLT$TLT$3MA!E1L1kIAHE1AE1AeLH$H$6MAE1LD$D$LHt$Ht$IA#6HE1A#]E1A#LD$XD$MA#E1!L6MA%E1LLT$LT$A%E1A%`DLA%E1mLHt$Ht$<DAWHXAVAUATIUSHXHD$ HD$@HD$HHLqHMHtHyHtHL$ HEHLL$@M<UML,1L\$ H|Mff.LLHPHHH9:uITL)L؋ t HHI9%H|HHHL.AEMAEL )Ll$ I$EtEHIt$HE1HAQH=vLjAQAQjAQAQjAQQ[HHEHPHxHHEIEHIEL@H mE1L HVH(HH5H8R1HKXZ1H|$ Hu$HtHxHHu u{H=D1ݸHXH[]A\A]A^A_L\$HL$8LLH(H9GLT$LžHD$8LL$H<$H<$LL$LT$L\$t3CH'HHvH5HH1HD$8ITHL tHHI9uLl$ L 'M*f.H AL 6L 'AtALL$ MLl$ L l'HxHHEH=ܪwqL\$LT$LL$H<$HL $)!I1L $MHHD$u9oftLHL)HD IEIHt8I9H0HL $L $HuL $L $HtI9HD$(Ll$0Ld$(HD$01LLHL $ bHt$H|$0LL $HHt+ff.ff.H98tHBHHuL $HL$8LLHP&H9GLAuX薆L $kHr%HL$0HH5H81HH;oL $ff.@AWHGSAVAUATIUSHXHD$ HD$@HD$HHLqHMHtHHtHL$ HEHLL$@M<eML,1L\$ H|Mff.LL)ff.ff.fHPHHH9:uITL)L؋ t HHI9%H|HHHL.AEMAEL $Ll$ I$EtEHIt$HE1HAQH=JqLjAQAQjAQAQjAQUHHEHPHxHHEIEHIELI@H ͷE1L hHVH#HH5H8R1H2XZ1H|$ Hu$HtHxHHu EH=Ԧ1=HXH[]A\A]A^A_L\$HL$8LLH9#H9GLT$L5HD$8LL$H<$dH<$LL$LT$L\$t3CH4"HHH5{HH1NHD$8ITHL tHHI9eLl$ L %"M*f.H UAL L !AtALL$ MLl$ L !HxHHEkH=lױkL\$LT$LL$H<$HL $!I1L $MHHD$u9oftLHL)HD IEIHt8I9H0HL $cL $HuL $aL $HtI9HD$(Ll$0Ld$(HD$01LLHL $jbHt$H|$0LL $HHt+ff.ff.H98tHBHHuL $HL$8LLH H9GLuXL $kHHL$0HH5H81H;>jL $ff.@AWfH3MAVfHnHpAUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LLHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIuHAHWH= uj5Q?5;Oj5SKQHj5gHOHHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHHLL$HL$HLHHH9CHD$HLLT$Ht$}Ht$LT$LL$at"HHHKH5ˑH81H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHk H=S1脬HĘH[]A\A]A^A_1HH [AHHL H8RHuH51XZ&蒾v舾N~&HuHNtHL$`IL$tHL$X_H ֯AnHD$HIHLPtHHI9tLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH=HHHL ԬAH "H8RtH|$`HHgH=tH|$`HM@6dLL$LT$Ht$wx HH H=CvLHt$ HT$LT$L\$5\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0LHuHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHLcH|$@HLHt&ff.fH98tHBHHuH?HL$HLLLNH9Gu[zytH^HL$@H#H5H81y@Ll$HT$+H)b*@AWfH BAVfHnH(AUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LL)ff.ff.fHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIu AHWH=}j575Gj5@QHj5/A!HHHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHHvLL$HL$HLHHH9CHD$HLLT$Ht$0vHt$LT$LL$at"HHHЫH5KH81!H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH=1HĘH[]A\A]A^A_1HH ۨAH:HL pH8RHH5 1NXZ&vN&HuHNtHL$`IL$tHL$XQH VAnHD$HIHLPtHHI9fLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH=uHHHL TAH H8RtH|$`HHH=tH|$`HM趵L]LL$LT$Ht$wx HH9 H=LHt$ HT$LT$L\$赵\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0LfHulHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHL\cH|$@HLHt&ff.fH98tHBHHuHHL$HLLLӧH9Gu[qtHHL$@HH5#H81@Ll$HT$+H詳?[*@AWfH3<AVfHnHAUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LL)ff.ff.fHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIuHAHWH=Y_j5Q05;@j5C:QHj5w6@HHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHHLL$HL$HLHHH9CHD$HLLT$Ht$nHt$LT$LL$at"H HHYH5˂H81衶H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH=1脝HĘH[]A\A]A^A_1HH [AH HL H8RHH51εXZ&蒯v舯N~&HuHNtHL$`IL$tHL$XQH ֠AnHD$HIHLPtHHI9fLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH= HH HL ԝAH "H8RtH|$`HHgH= tH|$`HM@6ULL$LT$Ht$wx HH"H=vLHt$ HT$LT$L\$5\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0LHuHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHLܱcH|$@HLHt&ff.fH98tHBHHuH? HL$HLLL\H9Gu[zjtH^ HL$@H1H5~H81y@Ll$HT$+H)S*@AWfH0AVfHnH8AUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LL)ff.ff.fHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIuHAHWH=ej5(58j5 /QHj5/!9HHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHHvLL$HL$HLHHH9CHD$HLQLT$Ht$0gHt$LT$LL$at"HHHH5K{H81!H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH=c1HĘH[]A\A]A^A_1HH ۙAH:HL pH8RH8H5 1NXZ&vN&HuHNtHL$`IL$tHL$XQH VAnHD$HIHLPtHHI9fLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH=uHHHL TAH H8RtH|$`HHH=tH|$`HM趦LNLL$LT$Ht$wx HH,H=SLHt$ HT$LT$L\$赦\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0LfHulHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHL\cH|$@HLHt&ff.fH98tHBHHuHHL$HLLLH9Gu[btHHL$@HH5#wH81@Ll$HT$+H詤?L*@AWfH(AVfHnHAUIATIUSH)D$P~HD$`flH$HDŽ$)D$pHLQIMHHtHI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mff.LL)ff.ff.fHPHHoH9uIH)Lȋ t HHI9'I\H>H<ID$tHD$`IL$tM $HL$XAtALL$PH=HMItHIuHAHWH=[j5Q!5;1j5&QHj5%1HHHPHVx HHH|$PHtHx HHH|$XHtHx HHH|$`HHHHLL$HL$HLHHH9CHD$HLLT$Ht$_Ht$LT$LL$at"HHHnH5sH81衧H|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH= 1脎HĘH[]A\A]A^A_1HH [AHHL H8RHH5w1ΦXZ&蒠v舠N~&HuHNtHL$`IL$tHL$XQH ֑AnHD$HIHLPtHHI9fLl$ HT$(HD$`HLL$PH,H|Pt8HJHtH|Pt#HHtH|PtHL$XH=HHHL ԎAH "H8RtH|$`HHgH=tH|$`HM@6FLL$LT$Ht$wx HHH=vLHt$ HT$LT$L\$5\IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$6tLIH)HDPID$IHt(L9H0LHuHtIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHLܢcH|$@HLHt&ff.fH98tHBHHuH?HL$HLLLqH9Gu[z[tH^HL$@HFH5oH81y@Ll$HT$+H)D*@AWH7(AVAUATIUSHXHD$ HD$@HD$HHLqHMHtHHtHL$ HEHLL$@M<cML,1L\$ H|Mff.LLHPHHH9:uITL)L؋ t HHI95H|HXHL.AE[AEHLl$ I$EtEHIt$HE1HH\L E*RLjH=8TPAQjPAQjP*HHEHPHxHHEIEHIEL?f.H E1L XHVHHH5qH8R1H"XZ1H|$ Hu$HtHxHHu Ś'H=|1-HXH[]A\A]A^A_L\$HL$8LLH)H9GLT$LbHD$8LL$H<$TXH<$LL$LT$L\$t3CH$HHH5klHH1>HD$8ITHL tHHI9eLl$ HM*f.H EAL HtHT$ ILl$ HHq xHHEoH=v{Ɇ@L\$LT$LL$H<$HL ${#I1L $MHHD$u3itLHL)HD IEIHt8I9H0HL $[L $HuL $YL $HtI9HD$(Ll$0Ld$(HD$01LLHL $bjHt$H|$0LL $HHt#ff.fDH98tHBHHuL $HL$8LLHH9GLuXUL $sHHL$0HH5jH81H託I>?L $ff.@AWfHkAVfHnH8AUfHnIATIUSH)D$P)D$`~HDŽ$fl)D$p~fl)$Ht.LQIM~"HH 5HcHHH\ID$tHD$hI|$tIL$H|$`tM $HL$XAtALL$PLHqIUtUHIuHHAPAj5WjH=xF5*QHj5&@%HHEHPHxHHEH|$PHtHx HH"H|$XHtHx HHH|$`HtHx HHH|$hHHHHuH AHXHJHL H8RH=H5l1^XZH|$PHtHx HH)H|$XHtHx HHH|$`HtHx HHH|$hHtHx HH1H=w1!HĨH[]A\A]A^A_HNtHL$hIL$tHL$`IL$tHL$XI $tHL$PIKHHt$pL4HT$(M>I1Ll$ LL$PMI\Mtlff.LL%ff.ff.fHPHHt3H9uIH)Lȋ t HHI9I\@LL$HL$HLHH!H9CHD$HLfLT$Ht$PQHt$LT$LL$tuH$HH#H5keH81A@1HH A֒̒HD$HIHLPtHHI9Ll$ HT$(HD$hHLL$PH>H|PtOHJHt,H|Pt:HJHtH|Pt(HHtH|PtHL$XH|$`LnHHHL MAH H8RAtALD$hLwHޑLAtALD$hL2赑諑衑79LL$LT$Ht$BxHHEH=s~aLHt$ HT$LT$L\$蟑 IE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$0tLIH)HDPID$IHt(L9H0LVHu\HtvIMH\$Ll$HT$MHM9Ld$@Hl$8MIHD$8HD$@1LHLLH|$@HLHt@H98tHBHHuHHL$HLLLH9Gu[MtHHL$@HۃH5#bH81@Ll$HT$H詏3?7:@AWfHAVfHnAUIATIUSH)D$P~HD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH nIEtEH HHIHQH=~:AHjRPjRHLPj5WHHEHPHxHHEH|$PHtHx HHH|$XHHHHjDH ~AL &|H|H4HH8RH;H5d1OXZH|$PHtHx HH[H|$XHtHx HH3 H=]o1NzHĈH[]A\A]A^A_fLL$HL$HLHHAH9CHD$HLLT$Ht$pJHt$LT$LL$2H@HHLH5^H81] HNtHL$XI $tHL$PM $AtAH "LL$PtHL$XHH L}AL zk詋蟋HD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PH HL yAH |H8RHG[H )tHL$XHtxHHEu H==m0xF2LL$LT$Ht$1LHt$ HT$LT$L\$֊QIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0L膑Hu茍HtIMH\$Ll$HT$MHM9ELd$@Hl$8MIHD$8HD$@1LHL|WH|$@HLHt&ff.fH98tHBHHuHHL$HLLL3}H9Gu[GtHHL$@H}H5C[H81@Ll$HT$hHɈ_0*@AWfHAVfHnAUIATIUSH)D$P~HD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH IEtEHHHIHQH=.3AHjRPjRHLPj5w HHEHPHxHHEH|$PHtHx HHH|$XHHHH芆DH xAL FuH|HTHH8RHazH5.]1oXZH|$PHtHx HH[H|$XHtHx HH3 H=h1nsHĈH[]A\A]A^A_fLL$HL$HLHHaH9CHD$HLyLT$Ht$CHt$LT$LL$2H`HHryH5WH81} HNtHL$XI $tHL$PM $AtAH BLL$PtHL$XHH lvAL tkɄ迄HD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PH@HL sAH uH8RHG[H ItHL$XHtxHHE H=fPqf+LL$LT$Ht$1LHt$ HT$LT$L\$QIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0L覊Hu謆HtIMH\$Ll$HT$MHM9ELd$@Hl$8MIHD$8HD$@1LHL蜇WH|$@HLHt&ff.fH98tHBHHuHHL$HLLLYvH9Gu[:@tHHL$@H.vH5cTH819@Ll$HT$hH)*@AWfH AVfHnAUIATIUSH)D$P~HD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH IEtEHHHIHQH=+AHjRPjRHLPj59HHEHPHxHHEH|$PHtHx HHH|$XHHHHDH -qAL fnH|HtHH8RHsH5NV1菅XZH|$PHtHx HH[H|$XHtHx HH3> H=a1lHĈH[]A\A]A^A_fLL$HL$HLHHH9CHD$HLrLT$Ht$HL$@HVoH5MH81Y@Ll$HT$hH {"*@AWfHAVfHnAUIATIUSH)D$P~|HD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH IEtEH%H.HIHQH=/AHjRPjRHLPj5/YHHEHPHxHHEH|$PHtHx HHH|$XHHHHxDH MjAL gH|HHH8RHlH5nO1~XZH|$PHtHx HH[H|$XHtHx HH3rH=5[1eHĈH[]A\A]A^A_fLL$HL$HLHHH9CHD$HLlLT$Ht$5Ht$LT$LL$2HHHkH5IH81} HNtHL$XI $tHL$PM $AtAH LL$PtHL$XHH hAL Lfk wvHD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PHHL WeAH hH8RH_vGUv[H tHL$XHtxHHEH=YcLL$LT$Ht$1LHt$ HT$LT$L\$6vQIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0L|HuxHtIMH\$Ll$HT$MHM9ELd$@Hl$8MIHD$8HD$@1LHLyWH|$@HLHt&ff.fH98tHBHHuH?HL$HLLLhH9Gu[z2tH^HL$@H}hH5FH81yz@Ll$HT$hH)t*@AWfH3AVfHnAUIATIUSH)D$P~HD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH IEtEHEH.HIHQH=^AHjRPjRHLPj5OyHHEHPHxHHEH|$PHtHx HHH|$XHHHHqDH mcAL `H|HHH8RHeH5H1wXZH|$PHtHx HH[H|$XHtHx HH3H=T1^HĈH[]A\A]A^A_fLL$HL$HLHHH9CHD$HLdLT$Ht$.Ht$LT$LL$2HHHdH5CH81v HNtHL$XI $tHL$PM $AtAH LL$PtHL$XHH aAL l_k)ppHD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PHHL w^AH $aH8RHoGuo[H tHL$XHtxHHEH=eR\LL$LT$Ht$1LHt$ HT$LT$L\$VoQIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0LvHu rHtIMH\$Ll$HT$MHM9ELd$@Hl$8MIHD$8HD$@1LHLrWH|$@HLHt&ff.fH98tHBHHuH_HL$HLLLaH9Gu[+tH~HL$@H\aH5?H81s@Ll$HT$hHIm*@AWfHSAVfHnAUIATIUSH)D$P~LHD$pfl)D$`HLQIMHHHIKHHt$`L4`HT$(M>I1Ll$ LL$PMI\Mf.LLHPHHH9uIH)Lȋ t HHI9I\HnHIt$tM $Ht$XAtALL$PH IEtEHeHNHIHQH=nAHjRPjRHLPj5HHEHPHxHHEH|$PHtHx HHH|$XHHHH kDH \AL YH|HHH8RH^H5A1pXZH|$PHtHx HH[H|$XHtHx HH3-H=M1WHĈH[]A\A]A^A_fLL$HL$HLHHH9CHD$HLS^LT$Ht$(Ht$LT$LL$2HHH ^H5'<H81o HNtHL$XI $tHL$PM $AtAH LL$PtHL$XHH ZAL XkIi?iHD$HIHLPtHHI9Ll$ HT$(Ht$XHtoLL$PHH|PtHHH|PHHL WAH DZH8RHhGh[H tHL$XHtxHHEyH=KULL$LT$Ht$1LHt$ HT$LT$L\$vhQIE1L\$LT$HT$HHt$ HH\$MLHLl$MMHT$7tLIH)HDPID$IHt(L9H0L&oHu,kHtIMH\$Ll$HT$MHM9ELd$@Hl$8MIHD$8HD$@1LHLlWH|$@HLHt&ff.fH98tHBHHuHHL$HLLLZH9Gu[$tHHL$@HZH58H81l@Ll$HT$hHif *@AWHAVAUATUSHXHD$ HD$@HD$HHLiHMHtHHtHL$ HEHL|$@M4\ ML$1LT$ H|MLL)ff.ff.fHPHHH9:uIL)LЋ t HHI9KH|HIHH.EgEHl$ L%H=HIT$LhHHtHCH5+HHHyIHM?x HH~L-?H=IUL|hHH>tHLleAŃpI$xHI$<Hx HHL%/EVLޒHHH@H5HHHGIHJHx HH%HI9D$)Ht$HLHl$HLHHD$@KHx HHHHUHHUHH$ecH$HX[]A\A]A^A_fH TE1L xRHVH'HH5 :H8R1HhWBiXZ1H|$ Hu$HtHxHHu bH=WOP1HX[]A\A]A^A_fDLT$HL$8LLHIH9GLL$LVHD$8H<$y H<$LL$LT$t3MHNHHVH54HH1hh#HD$8IHL tHHI9MHl$ HH7tHD$ HIT$H=LeHHtHCH5HHHIHMx HHMl$AEt AEMl$I$xHI$Ht$HLHl$HHD$@?;IHH@H5LHHHIHx HIMH=臏IHH@H5LHHIM#Ix HIID$H5HLHHiHsx HHI$xHI$HntDMIUHIUrLH$_H$]H eQAL NHl$ hfIHHxHHuH_H=SM1HxHHuHd_Ix HItCADH=SL1H0_uH#_L_L _aH=3H HGH91L^HHsbHuGHgLH5OH81dH=RL1x HHH=RK1 eI=aH=~HGHH;L1L]HHaHE1AI$HI$L]`H=HGHH;ϺP1Lr]HHAaHH=QJ1Lh].H[] LH6HH\Hx`HHH0豉1H{`Hs`z DHE1AHHH\HH$\H$)H\L\YH\L\$LT$LL$H<$H\QIM1H$Hu;tLHL)HD ID$IHMI9 H0HcHu_HtL[^AFHH9H[,_bIMl$fHnI\$AEfInfltAEtI$xHI$Ht$@H)D$@CIUHIULH$&[H$uaHHHHHZHZgaI)I9HD$(Ll$0Ld$(HD$01LLH_H $H|$0LHHt"ff.DH;8tHBHHuHHL$8LLLNH9G6tHHL$0HgNH5_,H815`]LHHXHx`HH_H0WE1H{`LC`L)$Yfo$1/PH*LH5JH81_\LHtrHHXHx`HHȶH01H{`HK`~_HHLH51JH81___Hff.fAWfHAVfHnHPAUfHnHPATIUHSH)$)$~ʲH|$(flHDŽ$)$~ H$HDŽ$fl)$Ht(LIIM~HHsHcHfH_ H5HD$@H zIAHD$XHM|$AtAL$Ml$AEtAEM4$L$AtAL$MH|$@H$H|$XHD$0AtAAEtAEHH `E11Ht$0H=H$HD$8Hx HHH|$8Ix HI H=cIH|H@H5LHH_HHIx HI HH9EyH$HHHDŽ$L$He=H$Hx HH H<$IExHIEs H%HD$`I9 IG SHH$AtAHEL8H|$8H5HGHHrHHHXIHHx HHIH<$H5:HGHHC HH(HHXIH- Hx HHI HH$HDŽ$H$HH8-HHtH['Hx HH0)L,$~HD$PE111HD$HE1E1E1H$HD$(HD$ HV tH$IT$tH$IT$tH$IT$tH$I$tH$IRH$HHt$0L<IL$1M/Hl$8MLMIK\Mtlff.LL%ff.ff.fHPHHt3H;uJTH)L؋ t IHM9K\HH9CH4$LL\$ H$HL=FHDŽ$LL$H4$LL$L\$ {t%HHHEH5#HH1WH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHtsH=m41V>HH[]A\A]A^A_HD$XE1HD$@HD$XIL$HL$@$tHD$@H$qPjP_`P4VP LPH AAH~ H AAHHL N?H8UH`DH5&1,VXZkHuI|$ H|$X$tHD$XH$)HHH\$@$tHD$@H$.H5֬Ht$`$tHD$`H$IH HL$X$tHD$XH$H$HD$0H$JTHĠtIHM9Hl$8L$MH$HD$@HyH$HD$XH9L$H^HtcHEHtIHĠtKHEHt5HĠt7HEHt HĠt"HHt HtL$HH>HL t=AH ?H8UHNpHNwHH95HXHt6HqH~1@H;THH9uAtALHH9HuH; ufDH 9HL$X$tHD$XH$HH\$@$tHD$@H$]H5uHt$`$tHD$`H$ILMHLHD$PE111H$E1E11Lt$8E1rHD$HHD$(HD$ ff.fMtIx HIMtIx HIHtHx HH0HtHx HH@MtIx HIFH=/9HL$HtHx HHHt1HExHHEHH|$ tHD$ HxH|$ HHH|$(tH|$(Hx HHH<$tH4$Hx HHHt$HHtHx HHHL$PHtHx HHMtIx HI|Ht$8Hx HHIExHIEH$HtHx HH'H$HtHx HHH$HtHx HHH$HtHx HHH$HHyHHl=JbH0J&L#J/HJHE$HHE$H\$(HI I(Hl$(HI7HIIHIZHIkLIwLljt$hLT$`HL$XHT$@LL$0uIt$hLT$`HL$XHT$@LL$0Lωt$`LT$XHL$@HT$0=It$`LT$XHL$@HT$0H׉t$XLT$@HL$0It$XLT$@HL$0Hωt$@LT$0Ht$@LT$0L׉t$0Ht$0LHH%HGLHD$(Hx HHI$xHI$H|$(LH $D$HtH=npIHH5HHD$P~LL$PHHD$HIx HIL4$H\$H1HHt$0H=VL$H$aFLIHx HHMH4$Hx HHH|$$tHD$H=H9x HIE1HL$0LL$L$H4(LH I$xHI$*HVHCH 7H9t H;3HSHH9HsH4$D$HtHs Ht$HD$PtH{(H|$PD$htHx HHoH\$@H5=HH5KHt"H5HKH=S.nIHH5HCIHrI$xHI$H= LD$hmLD$hHHH50HLD$pHD$hHT$hLD$pHHGHx HHH55H|$PHL$pLD$hLD$hHL$pHHHt$HHHL$xLD$pHD$h>HT$hLD$pHHL$xHHx HHH5 E1HH9qH|$PHt$0LD$pHL$hHH$HL$H$F&LIkHHL$hLD$px HH}Hx HHMHiAE1II9@PfLD$pL$LL$hL$L$$@LL$hLD$pHHcHHPtHD$XH>H$HS tHD$XLLHLD$XH$HD$0LL$hJ4 KAH|$hINILD$Xx HIHx HHgIx HIjML;=ݙL;=H\$`I9L@OH=jIHH5KHHD$@LD$@HHIx HIyH=HL$@jHL$@HIH5HHL$XHD$@LT$@HL$XHHIx HI=H=EE1HH9{Ht$0HL$XHHL$HL$HH$#LHD$@HLD$@HL$Xx HHfMH5ܵLHL$XLD$@LD$@HL$XHI{Ix HI1Ht$PLHL$@;HL$@HH#Ix HI'H=JE1HH9yHt$(HL$H$H$Ht$0HL$0H"LIHHL$0x HHHx HHM H|$(Hx HHHt$8LE9HD$(HIx HIH|$ i8HHkH5H|$(HY5Hx HHnHD$(D$0H\$(Ht$H HHH\$(IH09DHD$PE111HD$HE1E1E1H$rHD$(HD$ Lt$8G?Hq17HHL,$E111HD$PE1E1E1HD$HuHD$(HD$ H$LefInH]A$fInflÃtA$tHExHHE!Ht$0H)$Q HD$8I$ HI$L7L\$ LL$H4$LLL$L$8*IE1L$MLL$HHH\$MLH,$Hl$06tLIH)HID$IHL9H0L>Hu:HtHD$PE111H$E1E11HD$HE1sHD$(HD$ CH6HD$PE111HD$HE1E1E1H$E1sHD$(HD$ MIHILt$pLT$hHL$`HT$XLL$@LD$0L6t$pLT$hHL$`HT$XLL$@LD$0Ht$H|$PtHCHxL,$E111E1E1E1HD$PHD$HH$-LpL`AtAA$tA$H\$Hx HH1Hx,H HuH CHJH5[ H8111E11HD$P1E1E1HD$HE1E1H$rHD$PE111E1E1E1HD$HH$PL$E111H$E1HD$PM$L$E111H$E1HD$PMHD$HL,$E111E1E1E1HD$PHD$HH$HO*L,$E111HD$PE1E1E1HD$HHD$(HD$ H$`%DL,$EE111E1E1E1 LLD$h)LD$hhE1E1E1E11E1E1HHL$pLD$ho)HL$pLD$hHHL$pLD$hN)HL$pLD$hb1H$H$HFH$HH8HHtHHx HHt\E111E1E1>HHL$pLD$h(HL$pLD$hE111E1E1E1H(H-IH$Hx HHIFLHIHH$LL$HILL$HHD$PLD$HLLD$HLL$PHH$ufLL$PLD$HLD$HLL$Pt'Ix HIKLL$PL$Ld$HE1E111L\$PE1L\$HHLL$@E1LD$01LD$0E1HD$PLL$@11HD$HH$AIx HIL$ZL$u`H TIuH HLLD$0E1H5H81-1LD$0E1HD$P11HD$HE1H$21E11H|$P1E1E1H|$HH<$ LL$&L$SE1E14LLL$HL$j&L$LL$HE111E1E1E1E111E1E1Lt$(E111E1E1oH&H%%E111E1E14L%HL$HHHeH|$%VLcLsA$tA$AtAHx HHtL1HHL$@O%HL$@HExHHEt Hl$([H$%HD$ Hx"H\$ HHt Hl$(SH$H\$(Hx HHHl$(FLaLqA$tA$AtAHx HHtKL1E11E1E1E1侪Lr$HL$@H`$HL$0.HN$MHIXAtAtIx HILIE1AoE111E1E1TE1E1E1ME111E1DL#LD$XHH5oH81)OH|$#H#E111E1ɾH5H|$@`YH=˯QHH,H5HHD$@HL$@HHHx HHH E1H9KHqHfInHH?H)$H$H)H HL$0H4 LIHx HHMI HILG"LcLsA$tA$AtAHx HHt L10H"E11E1E1I1H$H$HH$H~H8HHtHiHx HHt H!H}!E111E1E1QHO!YHLD$X=!LD$XL+!LaLqA$tA$AtAHx HHtTL1E111E1E10LLL$h LL$hHLD$h LD$hHLD$h LD$hff.AWAVAUATUHSHH|$HHD$PHD$XHD$`HD$hHD$pHD$xHDŽ$HDŽ$Q$HD$HHH}H9t6HXHHqH1HH9yH;TuHH5FHHqIMpI@LD$LH5!HHLD$ILd$PIMTx HIe L=|L-?|M9M9u L;%`| I$xHI$1 HD$PH}HuH9HH5FHHILD$PMH5xL9'I@H; |IPIuHHx HIHD$PHH}H9t>HXHzHqH1fHH9H;TuHH5.HHIL|$`MH5L9; IGH;<{ EgAIx HIHD$`E H5HaHD$`IHH59HLÅ$Ix HIHD$`$ HD$pH=KHD$`IH%H5HHHD$hIHw&IxHIuLH5HHD$`IH&HXyH$E1HHD$8I9E{LL$L$LHD$PHD$ILD$HD$pxHIu L4LD$HD$`IExHIEuLLD$LD$HD$hE1.M HD$H5LLD$ HD$PHRLD$ HHD$#HD$H5LD$ H"LD$ HHD$`#H\$8H9X&LhL`AULl$htAUA$tA$HLd$`x HH`#H$LLD$ L$HDŽ$BLHD$PIbI$LD$ HD$hxHI$l"HD$`M"Ix HI"LD$(HD$PeHL$xH$HxhH$HD$ bLd$LD$(IMHD$MLp LLHL911HHIHD$PIHH5AwHLFIExHIE;11LHHD$PIHHHHnIExHIEKLLHHD$P#I$MH$LD$H$HDŽ$H|$xHDŽ$H\$H5ۓ1HYLD$HD$xIHxH\$HH*&Mh&Ix HI$&HvHD$(DHff.fHH9HuH;vff.H=ћ$GHD$hIHHHHÃIExHIEHD$hH=FHD$PIHH5HHD$LD$HHD$pI] IxHIuLH}H5$HD$PIHK!H@H;CuD!AtALD$XMIx HIHǗfIn̺~՘H$AD$ fl)$@u tEID$H$HHD$PIH I$xHI$HsAE1HD$XHI9FB!H{sL$LD$HL$HDŽ$H$LD$HHD$XI=!H H=HHtH$LHLJ,LD$ yLHD$hHD$wLD$ LT$HD$`Ix HIHD$PI$xHI$HD$XIx HIHD$pM Ix HI.HD$hHD$H5ٚHIHHD$HD$HD$pH5HLD$HHD$XHbHqH9GFLLoAL|$ptAAEtAEHLl$Xx HHxH$LLD$L$HDŽ$LHD$hIIELD$HD$pxHIEHD$XMI$xHI$LD$ HD$hH$Ht$xHxhH$HD$Ll$HD$LD$ ILp MLD$LLv11HHHHD$hIH11LHHD$XIHLLHsI$xHI$PLHHHD$hp>Ix HIHD$XI@LD$H|$xLD$}H$HD$xgH$HDŽ$NH5H|$1 LD$H$IIx HIMIHIL~HoHD$H\$D$tfHD$v@LÅ'ME1IHIME1E1E1E1ff.LLD$t$LD$t$T@LLLT$PE1E1E19E1Mt3Ix HItMtI$xHI$ MtIx HI Mt7IEx/HIEu%LLD$t$4LD$t$ff.MtIx HIt[H=LD$zLD$1MtIx HItH[]A\A]A^A_@LHD$HD$@LLD$t$LD$t$IxHIfHD$`HmH\$D$E1E1 Hff.fHH9dHuH;mMH52HڹHD$`IHIH5ڛH躹HD$hIHIx HIH=~Y>HD$`IHrH5HiHD$PIHIx HISHD$`IExHIEKHD$hIx HIEHD$PM9H==HD$`IHFH5zHʸHD$pIHIx HIHnkAE1HD$`II9@ fInſLD$HZkHDŽ$H)$H$LD$HHD$`I HH5HPtLLLLD$H$J4cLHD$PIcILD$HD$hx HIHD$`Ix HIHD$pMhI$xHI$HD$PQfDIx HIH5H5HD$PIHL9L9L;ijLLT$LT$kIx HI HD$PHjHD$H9: HEH5RHD$ HEHH HILD$PM 111LLD$(蠾LD$(HI Ix HIHD$PLzHD$0H Ix HIHEH5LHHH IM I@LD$(LH5ؒHH LD$(HHl$PIH x HIaHHD$(H HExHHEAHD$PH=?:HD$XIH H5H*HD$`IH< I$xHI$H|$( HD$XIH; H=ѓ9HD$hIHXH5lH輴HD$pIHHIExHIE H^gE1HD$hHHD$8I9G)HT$@HDŽ$L$L$ HD$hIHH qHT$@HHtH$LLLD$@H4(L$HD$HfLHD$PHfI$LD$@xHI$A HD$XIx HI6 HD$pIx HI0 HD$hIx HI HD$`H]HD$PHD$H9HD$H5H]HϺHD$@HT HD$H5}H詺HD$hH HL$8H9H]LhL`AULl$`tAUA$tA$HLd$hx HH Ht$HLL$HDŽ$LHD$PII$HD$`xHI$ HD$hM_ Ix HIf HD$PH$Ht$xHxhH$HD$H|$(L`x H|$L|$0HD$ Hl$Hl$(MMIHD$Lp Lt$MDH|$LSHL$ HHIL$L LHL LHH M)IuHl$HD$D$tH\$H\$HH\$Px HHOHD$PH|$x薳H$HD$x耳H$HDŽ$gLt$@H51L!H$HIxHL$@HHHHx HHIH\$D$tHD$AxfLXLD$LD$DLD$tLLD$-LD$L IMeI]A$Ld$ptA$tIEH\$hxHIEIH$2fDLLD$t$LD$t$LLD$t$LD$t$LhLX,DLCH6 IE1LLD$1LD$iLHD$`XH|$PNLFFH=EH|$HL$pHT$hHt$XLt$pLl$h1Ld$XLLL HD$PHHEH|$1H訨LD$IIx HI5HExHHEHD$PML;=maL;=aL;=AaLsIx HI[HT$xL$H$LLHT$LL HD$HT$H@hH8L8HtHx HH+ HtHx HH! HHEHHHEIGHI:L-E1E1Mžff.HIEtLT$PE1E1M"-DLt$LT$Pt$L LD$I(LKLzRLm4HYH$E1HDŽ$H$H#_H8CHD$PIHHHD$LD$Ix HIK HD$PE1E1LH_{H}HD$PnLE1HKIH5{HE1 E1LLLLHE1E1E1HD$XHD$hHD$pHD$H$H$Hl$xH@hH8HHtHx HH\ HtHExHHEK HtHx HHL E1CE1!LgLLD$@LLD$@{LD$@LiL\HMIME1E1E1EIE1LD$E1LD$(HIE1 LT$PE1E1E1ILT$Px HI E1E1E1CE1/HIE13E1E16LNVLALT$PE1E19E1tHLLD$E1E1E1E1ZH|$LH;[ LǺLD$LD$HI L9M9L;5[LLD$LD$AIx HIR E9 Ix HI HD$PEHwH}DHGH9H\$@Hx HHIE1E1E1E1EH LLT$PE1E1E1#ML|$0HD$ HL$Hl$HMHMLq ILLIHHHMIMHHEIEM)IuHl$H;YLkIHH;8ZAH;YD8L; Z+LLD$7LD$AIx HI ELT$PE1E1E1M4LLD$ըH=$H|$ HL$hHT$`Ht$PLT$PLl$h1L|$`LLLT$LLT$LD$HHD$pH2Lt$1HLT$LD$LLD$LT$HIx HI~HExHHE/HD$pHH;XH;XH;XHLT$LD$LD$LT$AHx HHEhLd$xH$H$ELLD$uLmLeHD$ LHHHxhHXLD$HD$+DHxHHuHLT$LD$LD$LT$cE1E1E1LnLT$PE1E1E1CLIM5E1LLD$LD$HT$H,E1;LLLD$ LD$ NH\$Hx HHnE1/HLD$ LD$ LLIH$E1H;EHLT$LD$fLT$LD$LT$PE1E1E1.H|$5LT$LD$iLT$PE1E1#aLLD$LD$LLD$LD$LLD$LD$DIrHIeLLD$LD$NIEHILuLT$PE1E1.<1H;ScLD$LPXLD$ILd$X<MLT$PE1E1.TE1E1<dME16rLLT$E1E1E1LT$E1C 1JfA.@DANHLzHmM~MfAL|$`tAA$tA$ILd$px HI%ME1pME1;E1WE1ffA.GADE2E1E1HIH$E1HLE1#'E1E1E1 E1H~LT$LD$6HLD$bLD${LPLCsLLD$1LD$bLT$PE1E1bE1 LLD$LD$L:H;PH5%mLLD$`LD$IE1E1$LT$PE1E1E1CMhM`AELl$htAEA$tA$ILd$px HIME1AE1E1Mƾ$E1LLD$AE1E1$LLD$L/LJL.HLD$LD$LLD$HOLD$HD$L7LT$PE1E1/ff.fAWH~IAVAUATUSHhHD$0HD$PHD$XHLYIMHtHH>tH|$0I}HLT$PM4LD$ LL$0M>1HT$(L$LMI\Mf.LLHPHHH9uIH)LЋ t HHI9I\HHtH\$0HLHtHx HH Hh[]A\A]A^A_fLT$HL$HLHHNH9CHD$HL?L\$Ht$\Ht$L\$LT$t"HMHHH5H811H|$0HuHtHxHHH=Hh1[]A\A]A^A_DH!MHH8RHL 1AH pH5(XZpHHD$HD$Hh[]A\A]A^A_HD$HIHL0tHHI9LD$ HT$(H\$0H\HSHyLHH8jRnLT$L\$Ht$LLT$ HT$LD$L\$IE1L\$LLD$HT$HLT$ HtH\$MLLD$HT$.tHIH)HD0HEHHt(M9H0LWHu]Ht"ILD$HT$H\$M9Ld$@Hl$8MHD$8HD$@1LHLYH|$@HLHt#ff.fDH98tHBHHuHKHL$HLLLoH9GuNtlHJHL$@HDH5#H81C@LD$HT$L:묐AWfHHxAVfHnAUIATUSHx)D$@~GHD$`fl)D$PHLqHMHSH7HHUHLL$PM<ML$1L\$@H|M%ff.fLLHPHHH9:uIL)L؋ t HHI9H|H]HHH AHHNIHL H5,H:PH1bXZH|$@HtHxHHuH|$HHtHxHHu H=1]HxH[]A\A]A^A_L\$HL$8LLHYIH9GLT$LHD$8LL$H<$d脩H<$LL$LT$L\$t33HTHHHH5HH1n HD$8IHL@tHHI9LL$@MSH|$HH 8HHIEtEHiHoyHIu QAHjRPjRHH= Pj5cuyHHEHPH<xHHEH|$@HtHx HHH|$HHnHcHHV.LLAtALL$@H OGtHL$HH HNtHL$HHtHL$@L rxAuH ME1TL RxAtALL$@HH~tLH|$HAtALL$@H FhRxHHEf H=L\$LT$LL$H<$HL $\I1L $MHHD$u5k@tLHL)HD@ID$IHt8I9H0HL $:L $HuL $8L $HtJI9_HD$(Ll$0Ld$(HD$01LLHL $A Ht$H|$0LL $HHt"ff.DH98tHBHHuL $HL$8LLHEH9GLOuX֥L $tHDHL$0H H5H81hHHL $ff.@USHH-CqH=|`HUH HHËtHCH5`kHHHHHt;x HHtH[]HHD$HD$H[]x HHH=&H1[]DH=_HGHH;Cuh1H9HH2HuHCHH5}H81h|fDH\HHtEHHHH{CH{`H0oz1H{`HC`8fnHfAWHpAVAUATUSHH<$HD$@HD$`HD$hHLQIMHtHHtHL$@ICHLL$`M4Ll$@M&H,1LMMII|M^ff.LL)ff.ff.fHPHHH9:uHTL)LЋ t HHI9I|HH5L&A$ A$Ld$@HD$HH-AHD$PHD$XI9HlH=S]HD$XHSHIH tAELl$HIELH5$iHH HH IExHIE H-ylH=\HUHvIH tAELl$HIELH5iHH IHm IExHIEH?E1HD$HIH9C^ Ld$hHD$pLl$`/HD$HIH H hHHtLL$`LLHI4)LL$Lt$p MLL$HD$PItIExHIE HD$XIxHIuLLL$[LL$I$xHI$uLLL$7LL$HD$HHxHHuHLL$ LL$MX AtAIxHIuLLL$LL$HqLL$1HD$PMwAwI LL$H@L$$L|$Lt$HD$L $M$L-fM~LLHHH@HHHLLHH M$L-wfHD$PMwLLHHH@LMLLAHD$HHHUH@H;r=LL|$PALotAAEtAELl$HHx HHuH4$LL|$`HD$hIx HIHD$PIUxHIUHD$HHHx HHaI|$ IDHL$LHHCL=ZLM/H=1LHAIMHx HHIExHIEoHH9l$L|$AtAL H E1L hHfH<HH5H8R1H2XZ1H|$@Hu$HtHxHHu qH= 1=HĈH[]A\A]A^A_LT$HL$XLLH1<H9GHD$XLLL$H|$`H|$LL$LT$t3I@H1;LHH5xH81NHD$XHTHL@tHHI9Ld$@MH-;EtEHl$@HD$HHD$PHD$XH$L-cHLLcL IH H@HHLLHIH H$L%bHLLkLHHH@HHLHHD$XHHH@H;9LoLl$PAELgtAEA$tA$HLd$Xx HHZHt$`LLl$`HD$hHD$HHIExHIEHD$PI$xHI$HD$XH3Hx HHHD$Lphff.fMMt I9MvMuHD$E1H$L\$Hx @HpL\$HHHD$HHD$H@hH8LHtHx HHMtIx HIHL$HtHx HHH5V1LHIx HIHT HExHHEF1H|$@HCH:H/HHH|$@Ht fDH EAL LHD$ HD$ ELH{Ln1Ld$@fDtH|$HdLHD$ HD$ HLHHL%IExHIEH|$PLl$XE1E1HtHx HHMtIExHIEHtHx HHtOMtIx HItDL1M,I!HILHLL7LnAtAMsAtALL\$L\$HD$LL|$E1H,6L%ݼH8H|$PLl$XfDsH5LL|$H8HD$HHHHE11L%mL|$fHt$hH|$ H)D$`:Ll$ AALLL$IHHYL. 1LHIHx HH5ML|$,tH|$XT:H={PHGHH;I4h1HIHML|$Hx HHy1E1L%&^L|$HuHk3H5ԤH8HyLJH=OHGHH;31H8IHMOHBIHFH3LH8EHD$XIHIE1E11L%(Nv}LT$LL$H|$qE1L%!LkHkAELl$XtAEEtEHx HHHA1YL])LLL$LT$L\$9IE1L\$LT$LL$HHLH\$MMMLH:tLHH)HD@ID$IHI9H0LZHu`HtE11۽L%ݸHML{HnzH1L1۽H8cH=1fHt$hH|$H)D$`QLd$HD$HHL%@L\$(LfH|$HL$PHT$XHt$HHD$XLl$HHL$PHD$ HL1HL$L\$(HU1HLL\$0HD$(wHL$(L\$0HIx HIHx HHHH;0H;60H9HL\$0HT$(HT$(L\$0AH x HH EELL\$(8H|$ .H|$$HD$L\$(HD$PH@hH8LHtHx HHvMtIx HIHL$HtHx HHIHD$HL$LLHxhM>IMH\$I9Ld$PHl$HMMHD$HHD$P1LHLH|$PHLHtDH98tHBHHuH?/HL$XLLLH9G]vtiHZ.HL$PHH5H81u@H8L+2E1L%_H D%HH HL\$(L\$(H]1E1HHTIMtHx`HH&.H0tE1H}`LE`|%IHtHD$H1E1mDH-HH5zH81eLt$PHD$HMtIx HItL%NLHHfIMHx`IHZ-H0Rt1I|$`It$`|XHIHD$HE1LL\$8HT$0wL\$8HT$0HL$(HL\$0HT$(QL\$0HT$(HL\$(5L\$(DH#v3L$E1=HL$HT$ LHXHD$E1LLL$HHL$E1LL$PH$HxhLL$XiL2E1E11۽0IHL|$%-IH+HH5H81k1HL$Hff.@AWfHWAVfHnHhAUATUHSH)D$p~Y(H|$flHDŽ$H$HDŽ$)$H LIHM H  HtH HtHT$pHL$pH$HIL-H4AUiH$Y^H׃ H$HrH8H|p HEHt"H|p HHt H|p HBcHBHƃH? HH)HH] H{ HSHD$H|$HC\Ld$x HD$`HD$hH(hE1ɹ1HALHD$XHHHD$`tEHExHHE HD$XuHD$`GH[H} L}H5UHHD$IƺL|$(ZMtIvLZf/}y L%(L9w BHD$8LhhfM}Mt M9 MmMuHD$0E1H=bTIH H@H5~QLHHHD$XHH I$xHI$H'H9AHH$HHHDŽ$H$HL$ ֲLt$ HD$hIHD$`Ix HI|HD$XM H|$HHD$XHD$ sHT$ HHD$`IL`HP HD$hMtIExHIEMtIx HIHL$0HtHxHHf.HD$XH=pRKHD$`IHH@H57VLHHIMIExHIEhH=RHD$`HHH@H5PHHH IHM/x HH HAE1HD$`HD$0Hs%I9D$LT$ HDŽ$L$L$LT$ HHD$`HHMHPtHT$0HLLT$ H$L$J4(HD$8MLT$ HD$hItIx HIHD$XIx HIzHx HHVHD$`I$xHI$'MAEtAEIEAuHD$hI} HD$@HPWfH=OH*D$HVHD$ HL$Ht HHHHD$ HD$HLLHIT$HHT$0IHJH@HT$0HHLLIH/HD$H$LLHIT$HHT$0@HHQH@HT$0LMKLAHD$`HH3H@H;#LGLgAtAA$tA$HLd$`x HH Ht$8LL$LD$0HDŽ$?LD$0HD$hHIx HI I$xHI$ HD$`HuHx HH HD$hH|$ HHL$HD$Hl$01Hl$ Ld$@H|$ Hq`H L|$8HHt$L|$(HL$Ll$(IHLt$@Iff.LL$Ht$LMH|$LIIlI9uHl$0L|$8H|$ Ll$(Lt$@H5?1LiHIx HI~ HHx HH AEtAEHExHHE IExHIELMHxHHiIExHIEz H|$pHtHx HHl H|$xHtHx HH. H$HHHHHH<H^tH$f.H AHd HL H޷H8UH571xXZH|$pHtHx HHH|$xHtHx HHH$HtHx HHH=UE1UHĸL[]A\A]A^A_1HVtHT$xHtHT$pHL%A$tA$L$LfDHH A@BRHH HHD$fD#fD%fDfDHHHLL AH gH8Utf.HXHVtH$HVtHT$x f.RH)HHD$Hff.I$xHI$ H,HHD$ 衮H|$8HL$hHT$XHt$`XHH9CtH|$IH; IH( L`HHHD$@.LT$@HIHxHHuHLT$ LT$ IxHIuLcH|$`HtHxHHu D@H|$XHtHxHHu!H|$hHtHxHHuHD$hHD$8H@hH8L8Ht#HxHHuοff.MtIExHIEu L衿H\$0HHHHHrDH`WAtAMoAEtAELTHD$0f.BRHH HD$fH|$HD$`IH HD$hIH LhHD$hL%A$tA$L$Lj@H8ID$H9t;HXHHqHJ1fDHH93H;TuH=GHH H5DHgHD$hIHIHx HH= H5CLgHHI H~H$E1HI9EHp7LL$H$H$ȥLHD$`IiHHD$Xx HH IExHIE HD$h1E1ML=rH#M9I9 L;5@ LrAŅIx HI HD$`EH5ALfHD$`IHH5ZHHD$hIH}IExHIE HD$`M9I9 L;5 LAŅ=Ix HI HD$hEA$tA$H=G1H$HL$HDŽ$LIHD$h"hM}H5ZJ1LHD$`IHjIx HIg HD$hM9I9 L;- LÅ]IExHIE, HD$` H9<t H)<HH$HD$hHDŽ$H8H$ՔHD$`IHt'HpI$xHI$q HD$`HE1E1'HD$ f.H|$ HtHExHHE{MIEHIEHHHHGMIx HI*E1fLع~HuHH5ɪH8蓺[H\HD$@HH3H{&fDHH9$HuH;> fL8kL+uLD$0LD$0H cHHLLHָ`Hɸ0L輸HtHx HHMtIx HIE1LfD1E1E1HԜE1E1HD$ HtHx HHH|$hHtHx HH MtI$xHI$MtIx HIt 1sL׉t$1ҷt$Yf軷fDL訷y蛷fDHHhMIqIEE1 @LPHH(MufHLT$t$LT$t$LT$t$LT$t$@LLT$t$߶LT$t$HȶxH踶Mf.HA7H$1E1HDŽ$H$HiH8yHD$`IHH IExHIE1E1E1HD$`f.LHL$ HL$ fLwHLT$ ӵLT$ fL踵1E1E1;fDL萵H耵LpyAA|@MftH|$`DL MLE1@1۾/@LLT$ fDHд4L=HDHH8ٴ81:E1HD$8H@hH8L8HtHx HH<MtIExHIE5HL$0L|$XHtHx HHK.E1MtIx HItWH|$`E1HHE1HAHLT$E1t$Գt$LT$ufDLLT$t$诳H|$`LT$t$CI$/IExHIEHޗE1E1E1HD$ HHH8qIHIL!sE1E1H/HD$ 諹I螹HD$XHHӲM|$I\$AL|$XtAtI$xHI$HD$0IE1LQfHnLqAfInLT$`flƒtAAtAHLt$Xx HH,H$LLT$ )$ULT$ HD$hIItHIgLZHT/HD$ H|$`E1E1HH*1۾/HD$ 412MxLDM(TfH$H|$0H)${Ld$0HD$hHKL!L1E1)H訶HHE1E1G)THHL1E1HD$ E1E1H諰L螰TH葰11E1E1DHH@`HHHHHHoH@L% L9usfXHEHHvqHH)HHHtgH諳HD$HELHHE>Hį1HZHHH@rUH)HHD$HEDeDmxHHEIM Ld$EUHH HHD$]L;cLT$,LT$LLT$LT$HLT$ )D$@foD$@LT$ HLT$ܮLT$LLT$ ŮLT$ &E1KoH螮+M}MuAL|$XtAAtAIELt$hxHIEMH$L>L1H]/!HI/LrLME1ULЭpH@`HHHHIHL9`u4L/HD$IEHIELh}HWIHuHEHHEH1|1E11E1蹰HuH H5H8έ뙾1E1E1wE1JxH :H߾/1HL$ HE1/HD$ ]DUf(SH(-vZf/\f(f\H,H*XRZ RZ\$^T$YYX :ZY\ 6ZYX 2ZY\ .ZYX *ZY\ &ZYX "ZY\ ZYf(L$胭L$X ZT$f(5Y\$^f(\Yf/YX YX\vIHtDHD\XYL$Hf(T$L$H9T$\uH(f([]f1ff.fHHH?Pf*YHff.HHGH@H~CAUIATIUHS1HfDH}UADHI9uH[]A\A]fDH~SAUIATIUHS1HfDI}AUf*YEAHH9uH[]A\A]ATL%nUH-vSHH H;SfHH HH*AY H;DHCH;HeL$HcT$\$L$D$f(fW%1Wf(بT$L$f($YD$Xf/HH f([]A\ffWV WH []\A\f(HWAWIAVE1AUL-lATL%tUHSHH(f.HdL$HcLT$\$L$D$f(fW%7Vf(ާT$L$f($YD$Xf/BLIL9tkI?AWfHH HH*AYLI;rIGM8LfWU֩ FV\BLIL9uH([]A\A]A^A_Lf(bff.@AUATL%[UH-_SHHH;Sfɉ *AY ;DHCH;HAWL$HcT$ \D$L$A(W-TA(-T$ L$(fA*YݞYD$X/EH([]A\A]@f*YW\T跤 H[]\A\A](ff.fAWAVAUATUSH(Ht$H$IHL%GZ1L->^fH &VL$HcLT$\D$L$A(W-SA(T$L$(fA*YYD$X/LHH9\$tkI?AWfɉ *AY A;DrIGM3Lf*YKWS_ ;\념H([]A\A]A^A_ÐLx(dH~[AUIATIUHS1HfDI}AUfWR軦fWRAHH9uH[]A\A]fff.@H~sAUIATE1UHSHHDI}AUf*YeWRZ5ZW RBDIL9uH[]A\A]AWAVIAUL-ATL%UHSHH(IFI>L$HcT$\$L$%RD$Yf(YT$L$f($YD$Xf/wAI>AVfII LH!H*AYLtfW PI;4?H(f([]A\A]A^A_@I>IFfWPڤ RQI>Y $AVfWP赤 $fWxPf(XYf/vX QAzfW IPm@SHH0=pPD$f/H;SHD$< DPt$T$\f/r. &PD$f(^ã\$f/rH0[ÐD$OL$ \^D$蝣|$L$ D$f(Y\f( O^ZT$\$\f/0H0[f.f(\%OOYd$(%ZOQ^d$ff.H(ff(D$YXOf/sf(L$H;YYD$SL$Of(YYYN\f/wbL$ D$D$n%N\d$f(L$ f(XNYD$(YYXf/D$(D$YD$(H0[fDH~CAUIATIUHS1HfDLADHH9uH[]A\A]DAWAVIAUATL%wUH-{SHsHDIFI> HcL$ \D$%NfAnfZAYAf(YL$ f(fA*YgYD$XZf/wDI>AVfAA A*AYfA~t WLfA~D;l/HfAn[]A\A]A^A_I>IFf*YܖWL ЖI>YL$AVf*YW]L踜L$WKL(XY/vX AfA~RW LfA~AH~CAUIATIUHS1HfDLADHH9uH[]A\A]Df.Kztff.ztSfSHH .ѕD$ zK|$ f.z%/d$ ff.H;SfH*YdT$ at$ T$\/r, DD$(^\$/rH [ÐD$L$\^D$ M|$ L$D$(Y\( Ք^蜡T$\$\/#H [D(d$ \%Yd$Q^|$ HHf(D$ YXO/s(L$H;YYD$SL$+f(*YYYY\/w_L$1D$D$ %ȓ\d$(L$(XYD$YYX/D$D$YD$H [H [ff.HHH?PHHff.HHH?PHff.HHH?PHHff.HHGH@f.HE„uf.QID„uffff.H$L$lYD$X$Hff.SHH0H?D$SH=U^fHH HH*Y H=2fH;sD$H0[Y@HCH;HUL$ HcT$(\D$L$ D$f(fW%oGf(T$(L$ f(D$YD$Xf/`Hdf(D$H0[YfWGA G\D$H0[YDHHH?$L$PYD$X$HHf.Fzt0ff.ztL$YL$f(YHf(fL$L$Hf(Yf(ff.HL$ YD$ HfDSf(HH05\FD$ f/L$(f/,Ff/vf/1@H;SH;D$S F^L$ D$D$蟙%E^d$(f(D$D$|L$=EXf/rT$XT$ff/z|$f/v f/,D$9D$D$(L$^D$(^L$ \ff/~DfWf(蟖~DH0[fW鄖@f.Ez|$ ff.zf(tD$ H\f(D$(HL$DL$f(X^f(H0[|$(f.=Df(ztut$(ff.zf(tDSf(D^H0[f(f.f(L$衕L$H0[\f(鄕@HD$L$f(9H?ST$ -Cf(D$(XYfTff.@HYDf.Czt(ff.zt f(Xf(HfD[Hf(Xf(f.SHHC$Yf./Czff.ztf(HL$L$Xf(YY OCf. Bztcff.ztf(HT$ET$X $H[Y^f(@L$L$XfHT$bT$XfDSHHCHD$5L$H[^f(ÐSHH0H?D$SH=%XfHH HH*Y H=`H;s^L$H0f([HHCH;HOL$ HcT$(\D$L$ D$f(fW-7Af(ޒT$(L$ f(D$YD$Xf/XH,f(GfW@ A\$SfHH0f.zu H0f[f @H;^L$SH=VfL$HH HH*YH=^H;HCH;HNL$(HcT$\$ \D$T$D$f(fW-?f(覑\$ T$f(D$L$(YD$Xf/wHL$L$f(H0f([锓@fW?1@L$\ff.fH ?^L$~M?fW~f(>\f/vGfW?>:L$H[YfInA^\ff.@SHH$L$ff.fH;Sff/v >\^ˑYD$X$H[f.H$L$YD$X$H8SHH0H?D$SH=SfHH HH*Y H=[H;s,Xff.QD$H0[YfDHCH;HGKL$ HcT$(\D$L$ D$f(fW%<f(^T$(L$ f(D$YD$Xf/HHf(7fWf<葐 =\f(Gf(ff.SHH$N $Y <f. I<f(zff.ztaf(HT$ $ $T$f(ff.QYff.w_Q^H[f(fQf(H[Y^f(fDH $D$ $T$f(f($>$f(f(\$$\$$f(Rff.AWf(AVAUATUHSHHf/;D$ff.zAuHHL[]A\A]A^A_D$fW:E1J :D$f.IL$H}UL$Yf/L$wS1D$0D$QY1;X1;f(D$ Y';f(\ +;\-:f(;\%;^ #;d$8X;fI~;^f(XfI~\fI~fDH}UH}f(\9:T$UT$ ":D$f(fT`9\fIn^L$XD$ YXD$X:pL$f/ z:L,\$fInf/MMYf(L$(D$fInL$(t$8D$D$ Y^XT$XT$ID$fI*YL$0\f\L$H*f.8EÄu3f.T9D„u!L$T$ L$T$\f/uf.Mw%o9f/ f/VfDSHH08f(f.\^ztAVID9rH H[]A\A]A^A_IFI>D!A9r\ff.AWAVAUATUSHt$H\$PfA։IAMfAAEEF-DD$ H?AUDD$ A<$3EAfD9sbAAƙAAf9r*Mf3A$xA<$3AfD9s%uI}AUA$3AfD9rD$H[]A\A]A^A_+A$PA$D!f9s!uI}AUA$D!f9rfD$H[]A\A]A^A_fuD$H;S%"H;\d$S ^L$fI~D$>5f(fTf.v;H,f5H*f(fT\ WfUf(fVf/k]-f/Kf(L$T$^X>T$fIn|$f(\AY^Yf(\)^f/H(H,[A^ff.f/Hr ~fDHH?D$PfW=L$$\o=$^f(}BHH,{ff.SH0f.D$(L$=Hf(f/f/2$^XD$ 5Df(L$^f(<X$L$f\f/szH;SY<d$ H;f(YXX $f(L$^\l$YL$SL$(f\Y\f/VH;S$D$< $f(fW fTfU\$(fVXf(fTX$$u\$T$f.\ff(fWH0[fTfUfV@H?SX\YFH0[(5Y4$YXQXf(XQ\f(X^f(YXX^L$ D@ $\$;\$T$DSHH05D$ \f(:D$(H;Sf/D$ H;D$SYD$(8T$\f(Yf/r~f(T$\$):\$D$f(:L$^BX)>H,HaT$ff.EEH0H[f/r HH while calling a Python objectNULL result without error in PyObject_CallShared Cython type %.200s is not a type objectShared Cython type %.200s has the wrong size, try recompiling%.200s() keywords must be strings%s() got multiple values for keyword argument '%U'__int__ returned non-int (type %.200s). The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__int__ returned non-int (type %.200s)%.200s does not export expected C %.8s %.200sC %.8s %.200s.%.200s has wrong signature (expected %.500s, got %.500s)Interpreter change detected - this module can only be loaded into one interpreter per process.too many values to unpack (expected %zd)Failed to import '%.20s.decompress' - cannot initialise module strings. String compression was configured with the C macro 'CYTHON_COMPRESS_STRINGS=%d'.numpy.random._bounded_integers%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s() got an unexpected keyword argument '%U'invalid vtable found for imported typebase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typemultiple bases have vtable conflict: '%.200s' and '%.200s'unbound method %.200S() needs an argumentjoin() result is too long for a Python stringCannot convert %.200s to %.200s__annotations__ must be set to a dict object__qualname__ must be set to a string object__name__ must be set to a string object__kwdefaults__ must be set to a dict objectchanges to cyfunction.__kwdefaults__ will not currently affect the values used in function calls__defaults__ must be set to a tuple objectchanges to cyfunction.__defaults__ will not currently affect the values used in function callscalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionvalue too large to convert to int'%.200s' object is unsliceablenumpy.random.mtrand.RandomState.__str__%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random.mtrand.RandomState.__getstate__numpy.random.mtrand.RandomState.__reduce__numpy.random.mtrand.RandomState._initialize_bit_generatornumpy.random.mtrand.RandomState.randomnumpy.random.mtrand.RandomState.exponentialnumpy.random.mtrand.RandomState.randnumpy.random.mtrand.RandomState.randnnumpy.random.mtrand.RandomState.normalnumpy.random.mtrand.RandomState.laplacenumpy.random.mtrand.RandomState.gumbelnumpy.random.mtrand.RandomState.logisticnumpy.random.mtrand.RandomState.lognormalnumpy.random.mtrand.RandomState.gammanumpy.random.mtrand.RandomState.__repr___ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule was compiled against NumPy C-API version 0x%x (NumPy 1.23) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random.mtrand.RandomState.bytesnumpy.random.mtrand.int64_to_longnumpy.random.mtrand.RandomState.logseriesnumpy.random.mtrand.RandomState.geometricnumpy.random.mtrand.RandomState.zipfnumpy.random.mtrand.RandomState.poissonnumpy.random.mtrand.RandomState.negative_binomialnumpy.random.mtrand.set_bit_generatornumpy.random.mtrand.RandomState.seednumpy.random.mtrand.RandomState.get_statenumpy.random.mtrand.RandomState.__init__hasattr(): attribute name must be stringnumpy.random.mtrand.RandomState.binomialnumpy.random.mtrand.RandomState.set_statenumpy.random.mtrand.RandomState.hypergeometriccannot fit '%.200s' into an index-sized integer'%.200s' object is not subscriptablenumpy.random.mtrand.RandomState.permutationnumpy.random.mtrand.RandomState.random_integersnumpy.random.mtrand.RandomState.uniformnumpy.random.mtrand.RandomState.__setstate__numpy.random.mtrand.RandomState.dirichletnumpy.random.mtrand.RandomState.choiceneed more than %zd value%.1s to unpack'%.200s' object does not support slice %.10snumpy.random.mtrand.RandomState.random_samplenumpy.random.mtrand.RandomState.triangularnumpy.random.mtrand.RandomState.randintnumpy.random.mtrand.RandomState.standard_normalnumpy.random.mtrand.RandomState.standard_exponentialnumpy.random.mtrand.RandomState.waldnumpy.random.mtrand.RandomState.vonmisesnumpy.random.mtrand.RandomState.noncentral_chisquarenumpy.random.mtrand.RandomState.fnumpy.random.mtrand.RandomState.betanumpy.random.mtrand.RandomState.standard_cauchynumpy.random.mtrand.RandomState.noncentral_fnumpy.random.mtrand.RandomState.powernumpy.random.mtrand.RandomState.weibullnumpy.random.mtrand.RandomState.paretonumpy.random.mtrand.RandomState.standard_tnumpy.random.mtrand.RandomState.chisquarenumpy.random.mtrand.RandomState.standard_gammanumpy.random.mtrand.RandomState.multivariate_normalnumpy.random.mtrand.RandomState.shufflenumpy.random.mtrand.RandomState.rayleighnumpy.random.mtrand.get_bit_generatornumpy.random.mtrand.RandomState.tomaxintnumpy.random.mtrand.RandomState.multinomialModule 'mtrand' has already been imported. Re-initialisation is not supported.compile time Python version %d.%d of module '%.100s' %s runtime version %d.%d_cython_3_2_1.cython_function_or_method_cython_3_2_1._common_types_metatypenumpy.random.mtrand.RandomState RandomState(seed=None) Container for the slow Mersenne Twister pseudo-random number generator. Consider using a different BitGenerator with the Generator container instead. `RandomState` and `Generator` expose a number of methods for generating random numbers drawn from a variety of probability distributions. In addition to the distribution-specific arguments, each method takes a keyword argument `size` that defaults to ``None``. If `size` is ``None``, then a single value is generated and returned. If `size` is an integer, then a 1-D array filled with generated values is returned. If `size` is a tuple, then an array with that shape is filled and returned. **Compatibility Guarantee** A fixed bit generator using a fixed seed and a fixed series of calls to 'RandomState' methods using the same parameters will always produce the same results up to roundoff error except when the values were incorrect. `RandomState` is effectively frozen and will only receive updates that are required by changes in the internals of Numpy. More substantial changes, including algorithmic improvements, are reserved for `Generator`. Parameters ---------- seed : {None, int, array_like, BitGenerator}, optional Random seed used to initialize the pseudo-random number generator or an instantized BitGenerator. If an integer or array, used as a seed for the MT19937 BitGenerator. Values can be any integer between 0 and 2**32 - 1 inclusive, an array (or other sequence) of such integers, or ``None`` (the default). If `seed` is ``None``, then the `MT19937` BitGenerator is initialized by reading data from ``/dev/urandom`` (or the Windows analogue) if available or seed from the clock otherwise. Notes ----- The Python stdlib module "random" also contains a Mersenne Twister pseudo-random number generator with a number of methods that are similar to the ones available in `RandomState`. `RandomState`, besides being NumPy-aware, has the advantage that it provides a much larger number of probability distributions to choose from. See Also -------- Generator MT19937 numpy.random.BitGenerator takes no arguments%.200s() %s (%zd given)takes exactly one argumentBad call flags for CyFunctiontakes no keyword arguments%.200s() %sneeds an argument_cython_3_2_1__pyx_capi____loader__loader__file__origin__package__parent__path__submodule_search_locationsdecompresszlibfunctionnumpy.random._commonvariablebuiltinsboolcomplexnumpydtypeflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorBitGeneratorSeedSequenceSeedlessSequencekeywords must be stringsMissing type objectan integer is requiredcannot import name %Sname '%U' is not definednumpy/random/mtrand.pyxexactly__getstate____reduce__at mostat leastrandomrandnlaplacegumbellogisticlognormalnumpy/__init__.cython-30.pxdnumpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy.import_arraybytesnumpy.random.mtrand.ranfnumpy.random.mtrand.samplelogserieszipfpoissonnegative_binomialset_bit_generatorget_state__init__numpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3set_statehypergeometricpermutationrandom_integersuniform__setstate__dirichletassignmentrandom_samplechoicetriangularrandintstandard_normalstandard_exponentialwaldvonmisesnoncentral_chisquarebetastandard_cauchynoncentral_fpowerweibullparetostandard_tstandard_gammanumpy.random.mtrand.seedmultivariate_normalshufflerayleightomaxintmultinomialcython_runtime__builtins__does not matchinit numpy.random.mtrand__module____vectorcalloffset____weaklistoffset__func_doc__doc__func_name__name____qualname__func_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutineget_bit_generatorx~F/OQ H:J_w'n؝t- R@ my.U*DYvN2 E u]_ "<'8NrgE䧳 ?_DOX,20i4XD88zGY48q~ DqA_g;? 'bbAIW/\t>fw ` @(J΃ɋ4yNxS䗋@)㊹2t 3j-$ T\&K^3/&Ɠ`h1l:q/}^y c~tR>v[A1,Wzw^#ا2g"7" LHxd}{SU~ cuʯ^׮OudRmTTƒ3QN^^,&zJ?.Sqg<?R`<ʧJݭL@۳'sء傫3Ij8DF޳]ρ~?ޖ}yR׿>/@cLH&,I6Y,`N8L8MF<3dI~2 "M]+ċ(,3d>sUHTS3%<_dM$换`7 AvQ^1s9Ob7tm[ ^lrꃬ7? s 2 E)f4XkkbFC4Y,~׾/Z#m'$.!Q̥C;z@?8;),_7-qݢKcHhmb]4 &50@e- F0 ʖ1mi:a9dYx{(sGHI¹ÓxtXBopiڤK~%kxCXdl:8PV (h@ I $Y ZzsW-,t,D!h$0V2Sb6Xhr#Pl^@ƞQ1er:< m&ga R' &%(__ Gۍi8*xF|#/fpobv8`i 9C_Nx ?༞g/JD456CcKfXU},D}(ڎpB|QC|Kq`(^@ȐxvB,qk ]HuPM+~>D+u-/p3qB5F3ED, $E= 9Y Ƕ QML0ry bG¶XhK1|nCfLsqsa (tHkl9ol܁s${'@n~I`0;BF{# Y~,˘QCkwg*Rc\_ v;ZYSMջFso&LpGΕgѶN\ o.ڝys1{ nu'M|^y}`4-LFwlimrJmlP~dz{#jIw 3ɫhr # ҦY@uO 2јhs<^!3!Tc2)2}ST4bt[-fK${yk9rn!IE LHdŠ `J+>HmZO/ҔvҰr)7`G,|ֻ o 8 {CZ e"æ[.kQS$##h Ki،L)m)⓫Ȼ~{Zm$|`̺G2 O& 4ΌE*F+%/Bh\U4^v|Ѽ.+N?h ZoZvQ{ vj[x@N 0/Exq~-&]ϟ|*u<e 1JUCw۝Sp7Y@ݽ=a.frLW)kṃ9B`oۃ?n{7w!4aM7&G(WZ(If7%S1Zy@zAeS8VI.exԊgHJ v;kFNDx۹-I((zQ@tGA8yq):.a0+UުAJm(ei|V3DJT!H./GRЇ9«mPFezMb6:?˒qH'fAƥ]r0Ђ1zYΉ ۳n5hl\J@UPlsy*s.u3q֑OWh7hMs8"LC+mmk3mo[P$ܑKMFvÊ@f+Ɋ!B{J`S( ]2푟)vb 'N[:ty4YNأ/I\Dx$ttC\~^Mc$rةG/(v}IS¡4Ktf'v@(*[[NGEoy\$YDt$7%SNVzvX"pf0̳VnuYK#`J8W@ ݾ+G`OPGQXRlJy tzE!}O ӧG)ke눾\teuˤ_bPNIc,*PG_󶍫>Nijǎ[F[:2l˹P.VC*a keISoeVVX h;VsgJ.zDkѶHH(8W_|MZ9Gl " Utbbd]E֟wK' <^\(C?ECy%?UWY5?hZEjwP͢hMLC,fsEe߽ TI}*03S@_&2UwO/l?.i=9\+_)p x |xK$.|0e֙246oW >(۫7t"N–w}#2rXe^j0gQLR[m2&H⠃׏6_HP1#WAGAacxgԞr2y5T$rb:-N<Wƈ`j‰a74n=QXՅLRb$}x͒yl1+p瑿[4#o!|;( .Vmbl0#'֑+b9QydAb!2Jmu&a`95'AIo'a&gd\2*6ȟ&>]~kR+i_37}-1dZ`ĆW9UQ'%&YDL8 ?JfK5QCmSH[b Q4paqɖ~f]y)2'3tdK F AG$܌cct|9?Gs$ ) pR]'ix|7={UsM'O?I$|2BAjӊS'Y\8I4SP\6@@ 0kFQ'pQV1% Aw-^^;bʫo aI'|&NxhUVۓ6nGL/e80fCRWF/`F,}8]y܍66kZϷ Jq~cE77R^?.| 0O5:G0IY3/Qp .V=O(As}wzBb $MD6/gozZoJT!5&S`L'pka( &%|WA5/G\(&vy0*S %#}$ޙ\ 7,N>oJwO ciǛ LR›>|R̿L앤 64ĈAY|lgHJ{C{{nTdC!>0Y;I!?-9la[A4L׏TtnyO;gS$"Y,:KU)]O6!G\ȏ4Ai ւ3240xб W٠\]4g-B6#)1sϬgM;ȽZQלHlud0A2ڋ[*\~L >z# % b!z^ۈ0y/rA4 W4: E.οX6o$u<(ϤIIO}F()`-I&YcC 9`aӠv\:Nqxm:nѥ+$dd'~N"Zv}gE3E3IIWVkj-EkmgqWE/pXxz8͘)oc3}x{r+c 2ӎ;~⸛OZ%_M ?ݦp")I ̿ebÝZjst@̼bw,+8ffHTXudBx=YIMn榪PL~@A>'G vk窰Wa%IC:-3q|h5ACYI_QDԀ Wa}(|g/ !fa!5~Qcf7wvxZ^sSa(De>&v׌ąCXOf`nJszῪqIB ͥ##jZ">1i";t6H`4g(;j'Zun$TjK;';‡%;#}sK`f)F/"'t@lPxko080OPi $_ȋj"0U64"B *!e#W(fZ$onQ68rB?4+r'$!5]ZBUh0j2~4.]ˆi߷o.Szg@s-l余OطlmhNu??es% aj4Kbx? RE哟*1*^amgͪ;P |Vj|Ax hhk(ϳ ܺ)l(pdž.O>j|9-#0!DJkvDSeXᓷDj̗];:~-0Ihe"|>L`^˾]T6Sï| 4?b,HuL6iRU]^OٮJIDRZ0.x' 4I =U]S䧾yT%OcD.[S?o &[!hՈˆ=Ԃ`8Wqx?iE2C GJ " \! r{Pn]a˨0df%Bh}~~KŢzL<ֺ (\Ad;f\=ɇu9 Sjd*RHt,x-'29gY<O`|8.0/AwC+KU;= v2]]Aϳ6%>̂RuqM^9F_ʩ᷊kw),kdŵ<[d߾oV  w<4#m6{h5nb(,,G&aA2f0MFGAb[Rca z$"|F`',T0/1L2S4^\$}ɒFoܘA*[pl\ )['~*YT!e2̖Y8n)HU\r$4+:UZ~=z+Y눼 &g0fަ+f'EcceU",kjyjH};%SQ[~`{և֖-PMcl>bߊ`@5x絍6cw-r܍fBQV&hhgYkX&%E)2FĒE~ a).0 חj%Ud8`/$O)6z䀐nvA_#TDDO:_~ٽ>,_]Ypɾ>:]倾ꨫبnw@ ;/V*u'XO=btϽBM%撯xMHs4T5 2cY^Z)+.VR* $dm Y\d krXU)qlV)!Ʋ$բVGC %hf S!"lIKG?FPG/fW^St"ٍ茑B/%-ŗEz hhzMN2O)ܰxOPTR3W08HQ衣,@YԵxdjn\BUgl9 dX[kdujyfg&&<8*ZB]WGDz8KL+:i/`EtƓI6QY˦/pS2  -JߦT&S-ʽ0? zml weMq籥Va @,PֲjTźJ}ÞMBTm]`6$;&@U0D)(.xdi 綽u2'ɥ qтj$F ~ 0VH+U`* 2t]AY?X L4+;3N|-Cё WKq)-$0)@W="RT:c]6jTE:G͑"(dz>n7?%GP^:kԫ^>RTHz6`~#zfuT(M ޗwͷiGv)8d3\1ba]kM_ p"EH,uY{'0oʵDj.f^u,5^8ݔǭq c6Yߊtt^jƨ*u4XJڪ ]ػUWFar\;X:y9w,g Z"A:k.U\Ub~s1E.J)E9RmSԷ~FKG\f~_=مÀIi񶼔nCHc؆|?%+wJ?`Ae{V҈ OwoFfw&ҡ.&ӕyvڜaTi]Z·OfJr$𢖘[ Ix( tѣy8.ENph%(O%PuЅzUq:ӿvά[$W>ps**{9㒵DKJ2JV4e4T f5GȑB? zb-0JW `%awNZ,?YfߘTM6ڣ~|"oWU=RxP`V |VF#LG dcT{4΍ns!L_ˋ3*0dk۫/u73C P~!…c6kq :_I$ЯA" y@xIj7oyA=Uq`^NG7f6œXJDlY7vH|¼O MʷU!boXM !?d,^iǺ1œ UvSW<M/_1"9BX'a43ff"/d~|Tܵ~O_㹃QBw[x{y|0;;g I_~sp:4q+,1m'︢es)3 |Bպ`m ZtLnXȔ^0Z?ӭz0UUkYAeWe*p uJH+d$B4%Uue}dW*) f,{ QPVYxȃ2*oΔ8Iv1ޅQ*հ FpZLIE3'$$5W]CRBZdXIgu;0+M͍5r|?, ,ê9!Ț&|:q;STi!V jS+(W >HY`#)XZ2-=HWUlyM4x ʈ`xNeAA$~ 4^[b]IS61]2JO28stA - x4-H1nq\T%BɁ>,%K-cWܩ?#-<*A*u8Kx᤹|XݚsE{džD><5h9pI*h6qv(^ jhKӌ)y骼~Y_p@nc /\Aug*N:fvG-ME^7/8_8NRchH(}P.Wځj{^{&^Xn ( ^\j2 Uj<_̗*ȝWSܫ;I[PΎ>B['q ]$j5$meF!1}ڵ' Cˎ:Uij Qµ1mxygq=Upi8dۿ:Fmo* `NA(Cԏ-qqhw .6f9r-9NFQyYW!b˩o1t(m}%IS` ABWSl3ąnbKMʀކ/VSBo̥9~H.TȢ<jZLdyt Mde>RG~LW{ZW( !5禎f,2.d>"BP#Ie}:~cw.!JYߔIttOLaTLO!vL8> (49gkV {z@'[F@NPa2Lj:" Gi^0̖Sϧ~ |K|mD; VPoݛ.FE+qF}ܵ~Kіo;D{F4_N.aъGԊS+JGθDVJj\-e Sk =COY5iiB[3 +bԹqk{JBK:G+He4Y.ܾE#LP6j;n_O(r$fPr<ʝh!ei5(n;E=E; )+tS[ QtFT볦eqC:7׹*b p) $6NdXCldĜhKt* )>@: (-7*DH/OAh93jL/%I8dŘG=>d 1:몔 $͊2czHPꟄЙ** # 0b]j'xP1`* @Rc-ӑ (.Erb^&.d}viطp[nP.}l5ks7g{S9+zs?gLeGTRy2$ay$oP DKv ;J⪣P.i}$_. e:}:flULjiSDQ]C_T,&Hj}&k8 %$o#*M/Z237E~Ӹ+]7J⴪[l ^8&r t >6WLP5M6Mj/\+|A3Ipx2`vdy,H!py/@c sPrJ@ Gk:N=jS՝X'K_2^(nᨫ% H}"jk(XzfLioN.ƚ+bgMyեVWx|uTVJ_'m3MRH5uV_ 58WNxk}79YM^lAe-zn}o=GfV* p?iēei׏+v*m(ǑgxpFu A}wobY;TZgw@.K;R]X幐~;YElXgê7[[w>Q~a) u3'[#4KvYlC-&Р?Xo"qVqFܪĂet!wcVsM`N7˜ '&'IjIC&D4o&'2Z KnVV^6T):oIy̨67mp]LX#J{p',tXz ,<),ˆ,½@m A?FiE0i¤sTjxXj!$Uo,ѤTi?/un@O̮߅p G⇧MVjTc8x{1#=X쿮dipu/WުBdָxI&ٰJd`8YG3,Y,F( >Z-5R@~Z䚾]ѠWh6+ a"d"x-jv-V%=, dTawBysgFĹıUr"Xʯcq8 a]}h/-pO\&@ZD .@|,~_1V Y>zZ޵# T ڵuq|cw`-Ɔ[ ˎ%FbF|Hr!݊`|`ɒѺSLa_} +?{J| <~\$xE~J%(՝C}fpA_2o-f%+3x3)JOaIݼ Ƨq%JOz/s8(FI;??w}WVlGvsDZH5ܢSj*-t zLKr\%Se΃ AswI8?}sj}HT@ZYKUKit(C-6t$F黺_C O/ًxNe?"S !f5..> p;@'}b`Jt.6a9iknf@]Yvsz.K\GqľB}ޮ7 3S˴U߳SZuF ]oѴ,x(6Euu}1 ƅXm5a\4/4\e-pja>+R JKr 0E8\yMlXƑYH P8,%#!S82:3*AA;lOհz=Y@GUer~=k\ ˂ʽ"k[ɒgNBIH5&*w|Gj Q]9Tj'8T m^nk 0K~ ?%uUVm3 o /h/(.싎=aT ǎ؞Lb@ioefMY=Lk #a{06_whr@H5ܼ:mU%y!hFv3c\=M]fBT-EܕFp2^JO? eO u lk&!Lo^L021&G(πslx;oc86`ӶV,ֲ'bsD6lrXݚlukvDiഺ)E RN+P> P+‹,1-w1ʜys97O1Aޖup[s׷*ϽoݚJӄPxQᕇ^휾Cņj>{=7 fM- !;;q9 ԟ go܁fIcq%;M}dzny-LC n/]DbQvr)v[3ĺ4ggʞBĵu qtѥZXB]L~QVdsE+ީQ+[R4HiSZRI-bx,U2rCuM*o?>㉯?VpLdYB1ja%O@6-(0_|Fhu22%L^"Ȩ!oPu4+bi̤~>Ň.@{ApMd_UEI͉Kni6m~,Ӄ<u;^gP4_A6!de >^|j1&ѥtQk0 kŨVڴA@m`Ah htz^= )BmJaXmDiUFtÆos?G?'p2G+Klp ]%Ɵ(ҔV{ WUh,OtMND4R'[(5*ee ,))OvLoR9eKl38i. @v;A:]|ɷ'p޵bWQ?juk3(4Z6在Z;Rg>5!q#ŒU){*5SE,J>:y +^):(@NsYFWBL[P#i\H]Ï,/ZB^fG³ҥ~)j3BI {3r m>ĬyÂR.ɖFu+{w:An !j $/H&5_-xrTZc.읈wvpC3ǢJ Y 2LH>67p`[WUN'~9b]ޭ)RK)vWA`mO^)hCahx'MCB|]Lp K*:`Awx`3|]'d!P"'?pcO$PC2&.t.i9Gmp,E4 ƦF072~:PyKB7\EQdVqaf`7ܑpt-!LBePV U) Uv~}q zD[ kw} YVsRVHhW֚`t_O/5GԮ. o@T >_(lÀ[pacMJ70;LфYwg]x3s߮kkf΢qCZ,Z4X°O"f/Q+ӥxOGm;SYoeGz%ӇvifIdaLR:~ r8.[`oU#!e؊YT pJ  VLnSWEj*syCԈ;rEK}/g4drBN/e@ L/)zbr)b4W!GjKI4@ Utdz|mPjp2 40.$~ \L#P"HGI+f,01Ŭ:F1gG6%tzPFiKF&ǼƾEwi҃=o2Dy=> &e "FZKsݼzy3^۔q7߄!/e$ oOoZ |CsSJ)Oe Ypt B2`8~X 'u;% sb;]zb z7pTdbe`TME¹k搧Kd7|ze&*8sEavJ$.ksm!AI3v1rQ:T;,%2"O4f-Q"dʡe<1V,XNR(e a'<-]-h=s vl=4,p /8 VxUƦv㮳)OM2ib9q1{ѥ@4C05{E9!q;  Rp5gmVfd{@LRbG{׃yw@ Od.4[ُR ҔX { 3 @\&u-K%"[2w[8_#MhE# F(v4 (۩DD s?X}: 9?L pK\݉xO "dj%󀸮F?K"lp wD-j&d&+)RfS у.<Áy- b2_,f-@ŖTg2ľd_6H4Dn!$&Lytמ?KB&IVq η{]{2ͤu =qNx~ʁX4J/m}k6t(O긃N{k]X?d<0^+ǒ g ]Ba Xr X=) "Na7 kQp2/3]-kC0.Ytiː2u@=0Hx4tam{dp.3pjGZ-r>p7F:2@#N?dP$bDS]kyw&kJ-﷌{L MS[J0+}k$HK4:N۽A={k7k=x>&7Blrz^$(޽.?vz^yX`jUNU'+PHa^7:bQ -#? h; fH+_]VWkzT 6b B@S΁kB%O/*-z#*01tb3"B:匲̔4ELY,$%& )+i& iCmRn&ͨkތs3jjfԎ5n⎓qz<0N q5 ͹MF-^ZHýw%M[?&!&  30cPҒPГčx`h2K-RK-K-̟?=Jd;ZbIWս{Ν|mmYfOym솞0My#˓k$D6ɒJ^K޵iY~.+X4'#'S}=f=Ң Ŭ>Ī{{98fE*cmEe&wōX yMDܳ~akT"؋+s1X*&C ǹGE)fĵ'&FHg+h^5uMXM|0Vo(߿aWC-MQSLg-hVGgmʯIFxPkPJx;1x4?k=fE֖G"fGmKQ?f}3('{ ;4c&&(aӞ3~SN"_d 14 Ϝu;?>-D?yѩG"Jl D K`a\/3oq+(1^FkK =>`p@fg->۷~\#ج$;ql iC㑶Onhu6Vhzmz0ukSf֗4Z2=lduw71ԐcNg7Ƃ iZ>cV'k$v2JʩpTw YT랷:7F uӬ!hZXw/^x%{[PgyHj^ZKc}"X(x}{1lN-CS-n+dcϝ82]SK5Zk# (A$74=[X?z|;C@oEAu;$:BM*'bXnc!Բ}Dw7o-{߽-'AܢE7[#o=M}V  PhWh.3ޮΛUp*{.t=ZQ8hjJ\,ON!'3hf3Eǃ9&l\ c9L5w!~p14]Ǧ|pS&UL\~._W q9!N Xb׾O0L'_ D=VkvZYf @u ,2=Dݭ-u+Hig*%.7%LGO|@ &Ûc1ydar@/a9p=6ltI95sK9I#i<=.Fݍ:[FWiu -6>"Rl{zT>mVI;x_gM5q׻jSWx5\L]_{v# ۘQeb`2M#R}:blIyc31XJıd$ 6`B:r|xsR# 0Ҹ z6 3U;,u9C~4jν#W7#:>y{zmXXn|;2rVN^!aFꢫ6 bd),:tw'cEŝ".di"weZSLhXBwS{?R?uy4-f1w"-48a|>&x ?tJ"~oUnl00 .zOB31 ONXyjFΤ&:h&@3 yMg:P}nz;AN㈜~f`O"qB8fko9ZPo8+uX97pX ˹1|d.KĐ=#5y亥C+׆Y6_Ӹ֗3 n:5AKaSp:B LJXG[- Oo}bΝ[A7w?)H?6 <5\DkЩ$yE>58xm"MD7EM1MLN~no`L(%(8)|hE"CJʺ_ 3Yܜ?bXXqe84S':48az h :Mi#dZ(dY!rHm;{! FC~%MEjJP'KerEF&@W"?+8҉MjNq/IԚ0=.$iic: ES /&A[#G}r$˫8%ZI%O+U^Vj UVAhsz,i[A֎iwX͂"$b=Gv9:oy]EpibQ x^Ċ)ŲyzhI+5An+He}nfv(TR m_ףw@= $z/m fkkτHFۖVCIbZV iy9[{ҁCbmɬZzyˬo Đd4ɼ?-ȂCd턑sDVwiq=bVY;H7-i%qa8ъ2YL_7?B=|f4Mq&ɀPeSR|_̉7i}nVu$Z㸅֏dJL$kY4ESVr-aO!j l%DSɉͩmt5lDZZGٟ?>^XIeK5zoFˡig^ԂO.(A%d^q^^O=~H_4Δ{ʯj_U(jzfX3nJ? no_洸Nq|ThZH{O !yfo^-G;g֣`N^vQvh=8}=A;5}GՐ{kwU^enuJNjYWsj\ղ;m]S@2նnK5N[vJD~_S}A"WNѤWl,k;%i4UVgCezI km P`W@՜֫-벞3NFg)aG̚AmzAwZNu=kUT{WΛn>Tzſֱ_]ֶs\E7_F=Fs K(vڏo+J*=R@ZJ2dUyj hF_TB jA :֪}&r7 -j珻74>s` U^,.߬Tg/jSZ9\sdFyq<;U(ԘW4_lN3> 9HQe@ =`q| sjI%j"آJgnΝiX/-*+u6@ϹJ 4k՞'BVy`O`j``֖fǀF@>9$~s;Vd0KMB{Pj$ m5$(rzaA? J卋BpIĹ9b 8DnuV]lmo9ڧD)h<-NY+ͮҘ7K8 7BUQ*Κ2Ku2_Q%mQ?baj" B$ec ʷ,N z[J̓?^q"vb8dePԡ:Qۧ˂4SwnCc*?\,ϞW{*s0}j]XC~c )r;SVaRy U)6bowl;hKUF`"BD3WI6?H<eg]pjid`\Yun&CCѮk? CA"xUd1ԫh>c!(qtS>EpG#'`]۩ǷjJKN%Br?Y`k>Vu)ǧ~nw\)Z(ߩ<|ӫjiu- fK>n29Zcr:lC6,+!֦ dZ%k>}cyKIeهTT#S>M i!C#͔W*s.}}eЪo@; su[ zzwYNMye,߯3_/6~S|MɐoPu}iQvOod5Ol}zpЧfs)XݗnN2r8VRn-?LVdRG"+w&e4 ;P ٽe[o*4SN4MiW񀀢zPl@qR5ʷ8/|NR'' =-s6^.#.E|ZGym xd^_?FIiիH[`1ƘW7e2 Q61/1ܶ-rF}e ;y4M)Z]wB ө-~@رSd}۷ʆʊ*UKZphnFHCCKJsxz,= ӆ (YmR AᚍEOR]J@}k `a4 冨6.RTZ{uz 2V6YYBn6XY<`|`)ͦhAEnI=f7 ~-AAg6%!o8!"ǢK8@ڭQ(i| kbelIB[p/h#!h2xR|w-Ͼ7is0 3"=pFȥ FQ!ˀfi@B<-Ip8NW;<ȂȆKvq%CdD$" vw;[N]^>5|!ܫ~f,.H9N q8'r rkL [\72UKAA6>}ʙ`hPƒ~5Ƭ+I - -EY>{X,հ;Kz82=Cq )}C U+Pm#U" 06}?B%˃{ewjλpJ*[`ٞF} 9$(7aύ >W.D^6tGƟ1led .; Ks&>'\nxUm8lzbb)B(ɀvO>R˔u7 lRC]g.q j4&_~ 'Hl=ѾM$hQ?gGY9z /6nm(}TzϑM;`Kn\}8cZ -mv_d%`@7cOT9Pwja ŗ_ TZ#C25}"Pwhfʉ5c{$Xت?),ʷ*XQϩmAw)-7gԈSP`:O~H%wv_t)%o,,tاԠs:ҲxHWa}_^Yw| 3!&6x $.ַq\{V3A@,hyv#*'+s5Ey ݃&TĴUDb @/hLd I)9sf5_CļUێml"B>:]| |UoA&_4GP_VHl'K/KlIYNJ\mWFv7Q'j0==-@.bi\|Qs. 9r%;\e_𺊥/l'E!?SJ{~Μ{FQ+ҙrX9m.0_ӞK#Pre-1 S G-[[L@ҚpC.+s83vO[Oe:{_ *&3 9>JN!C*sɷj\{j] ,! ~;KK8~Y"Xe9ܻny$Kn҉Rx;nv1nHB11 9@d^9V晫{ܶy`y@atAY? ,+o4sGY<ޔE讗|,W뻲`nch=PS8{1}>Dvʳ$h!%_KPezg^j9;Z` xf /N @%=# !!"!& !!#+),$#'$ '+&'"" =41 /%4 '35 $2a   zt z Sp  " z   '" % "p '   v?A 5 y   * j .                                           ? 9f5`9:DB8::3s(8D* =!t=<;<988::;=98B$=C9=9 <;;;;cccccZtHt5t"tt*zhUB0%%%%%k% This is an alias of `random_sample`. See `random_sample` for the complete documentation. This is an alias of `random_sample`. See `random_sample` for the complete documentation. Sets the singleton RandomState's bit generator Parameters ---------- bitgen A bit generator instance Notes ----- The singleton RandomState provides the random variate generators in the ``numpy.random``namespace. This function, and its counterpart get method, provides a path to hot-swap the default MT19937 bit generator with a user provided alternative. These function are intended to provide a continuous path where a single underlying bit generator can be used both with an instance of ``Generator`` and with the singleton instance of RandomState. See Also -------- get_bit_generator numpy.random.Generator Returns the singleton RandomState's bit generator Returns ------- BitGenerator The bit generator that underlies the singleton RandomState instance Notes ----- The singleton RandomState provides the random variate generators in the ``numpy.random`` namespace. This function, and its counterpart set method, provides a path to hot-swap the default MT19937 bit generator with a user provided alternative. These function are intended to provide a continuous path where a single underlying bit generator can be used both with an instance of ``Generator`` and with the singleton instance of RandomState. See Also -------- set_bit_generator numpy.random.Generator seed(seed=None) Reseed the singleton RandomState instance. Notes ----- This is a convenience, legacy function that exists to support older code that uses the singleton RandomState. Best practice is to use a dedicated ``Generator`` instance rather than the random variate generation methods exposed directly in the random module. See Also -------- numpy.random.Generator permutation(x) Randomly permute a sequence, or return a permuted range. If `x` is a multi-dimensional array, it is only shuffled along its first index. .. note:: New code should use the `~numpy.random.Generator.permutation` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. Returns ------- out : ndarray Permuted sequence or array range. See Also -------- random.Generator.permutation: which should be used for new code. Examples -------- >>> np.random.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> np.random.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) shuffle(x) Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same. .. note:: New code should use the `~numpy.random.Generator.shuffle` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. Returns ------- None See Also -------- random.Generator.shuffle: which should be used for new code. Examples -------- >>> arr = np.arange(10) >>> np.random.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] # random Multi-dimensional arrays are only shuffled along the first axis: >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. .. note:: New code should use the `~numpy.random.Generator.dirichlet` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------ ValueError If any value in ``alpha`` is less than or equal to zero See Also -------- random.Generator.dirichlet: which should be used for new code. Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, https://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. .. note:: New code should use the `~numpy.random.Generator.multinomial` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. .. warning:: This function defaults to the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. Parameters ---------- n : int Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. See Also -------- random.Generator.multinomial: which should be used for new code. Examples -------- Throw a dice 20 times: >>> np.random.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> np.random.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], # random [2, 4, 3, 4, 0, 7]]) For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. A loaded die is more likely to land on number 6: >>> np.random.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> np.random.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8) Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (standard deviation, or "width," squared) of the one-dimensional normal distribution. .. note:: New code should use the `~numpy.random.Generator.multivariate_normal` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. cov is cast to double before the check. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. See Also -------- random.Generator.multivariate_normal: which should be used for new code. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> x = np.random.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively, and the expected correlation coefficient is -3/sqrt(6*3.5) ≈ -0.65465. >>> cov = np.array([[6, -3], [-3, 3.5]]) >>> pts = np.random.multivariate_normal([0, 0], cov, size=800) Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values: >>> pts.mean(axis=0) array([ 0.0326911 , -0.01280782]) # may vary >>> np.cov(pts.T) array([[ 5.96202397, -2.85602287], [-2.85602287, 3.47613949]]) # may vary >>> np.corrcoef(pts.T)[0, 1] -0.6273591314603949 # may vary We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation of the components of this sample. >>> import matplotlib.pyplot as plt >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5) >>> plt.axis('equal') >>> plt.grid() >>> plt.show() logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 <= ``p`` < 1. .. note:: New code should use the `~numpy.random.Generator.logseries` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range [0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. random.Generator.logseries: which should be used for new code. Notes ----- The probability density for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a)*count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). .. note:: New code should use the `~numpy.random.Generator.hypergeometric` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative. nsample : int or array_like of ints Number of items sampled. Must be at least 1 and at most ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. random.Generator.hypergeometric: which should be used for new code. Notes ----- The probability mass function (PMF) for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution Examples -------- Draw samples from the distribution: >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = np.random.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. .. note:: New code should use the `~numpy.random.Generator.geometric` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. See Also -------- random.Generator.geometric: which should be used for new code. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. .. note:: New code should use the `~numpy.random.Generator.zipf` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. random.Generator.zipf: which should be used for new code. Notes ----- The probability mass function (PMF) for the Zipf distribution is .. math:: p(k) = \frac{k^{-a}}{\zeta(a)}, for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 4.0 >>> n = 20000 >>> s = np.random.zipf(a, n) Display the histogram of the samples, along with the expected histogram based on the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import zeta # doctest: +SKIP `bincount` provides a fast histogram for small integers. >>> count = np.bincount(s) >>> k = np.arange(1, s.max() + 1) >>> plt.bar(k, count[1:], alpha=0.5, label='sample count') >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5, ... label='expected count') # doctest: +SKIP >>> plt.semilogy() >>> plt.grid(alpha=0.4) >>> plt.legend() >>> plt.title(f'Zipf sample, a={a}, size={n}') >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. .. note:: New code should use the `~numpy.random.Generator.poisson` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- lam : float or array_like of floats Expected number of events occurring in a fixed-time interval, must be >= 0. A sequence must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. See Also -------- random.Generator.poisson: which should be used for new code. Notes ----- The probability mass function (PMF) of Poisson distribution is .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> s = np.random.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2)) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval [0, 1]. .. note:: New code should use the `~numpy.random.Generator.negative_binomial` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. .. warning:: This function returns the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. See Also -------- random.Generator.negative_binomial: which should be used for new code. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> n, p = 10, .5 # number of trials, probability of each trial >>> s = np.random.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 38%. triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. .. note:: New code should use the `~numpy.random.Generator.triangular` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. See Also -------- random.Generator.triangular: which should be used for new code. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. .. note:: New code should use the `~numpy.random.Generator.wald` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. See Also -------- random.Generator.wald: which should be used for new code. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True) >>> plt.show() rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. .. note:: New code should use the `~numpy.random.Generator.rayleigh` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. See Also -------- random.Generator.rayleigh: which should be used for new code. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = np.random.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. .. note:: New code should use the `~numpy.random.Generator.lognormal` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. random.Generator.lognormal: which should be used for new code. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = np.random.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> b = [] >>> for i in range(1000): ... a = 10. + np.random.standard_normal(100) ... b.append(np.prod(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). .. note:: New code should use the `~numpy.random.Generator.logistic` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. random.Generator.logistic: which should be used for new code. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. .. note:: New code should use the `~numpy.random.Generator.gumbel` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull random.Generator.gumbel: which should be used for new code. Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> mu, beta = 0, 0.1 # location and scale >>> s = np.random.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = np.random.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. .. note:: New code should use the `~numpy.random.Generator.laplace` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. See Also -------- random.Generator.laplace: which should be used for new code. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. .. note:: New code should use the `~numpy.random.Generator.power` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a <= 0. See Also -------- random.Generator.power: which should be used for new code. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> samples = 1000 >>> s = np.random.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = np.random.power(5, 1000000) >>> rvsp = np.random.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('np.random.power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + np.random.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. .. note:: New code should use the `~numpy.random.Generator.weibull` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel random.Generator.weibull: which should be used for new code. Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> s = np.random.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. .. note:: New code should use the `~numpy.random.Generator.pareto` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. random.Generator.pareto: which should be used for new code. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and concentration (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. .. note:: New code should use the `~numpy.random.Generator.vonmises` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Concentration of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. random.Generator.vonmises: which should be used for new code. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the concentration, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and concentration >>> s = np.random.vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). .. note:: New code should use the `~numpy.random.Generator.standard_t` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. See Also -------- random.Generator.standard_t: which should be used for new code. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either positive or negative, hence making our test 2-tailed. Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom. We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square root). >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> t -2.8207540608310198 We draw 1000000 samples from Student's t distribution with the adequate degrees of freedom. >>> import matplotlib.pyplot as plt >>> s = np.random.standard_t(10, size=1000000) >>> h = plt.hist(s, bins=100, density=True) Does our t statistic land in one of the two critical regions found at both tails of the distribution? >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s)) 0.018318 #random < 0.05, statistic is in critical region The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance threshold. Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being true is too low, and we reject the null hypothesis of no deviation. standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. .. note:: New code should use the `~numpy.random.Generator.standard_cauchy` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. See Also -------- random.Generator.standard_cauchy: which should be used for new code. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> s = np.random.standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. .. note:: New code should use the `~numpy.random.Generator.noncentral_chisquare` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. See Also -------- random.Generator.noncentral_chisquare: which should be used for new code. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> import matplotlib.pyplot as plt >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(np.random.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. .. note:: New code should use the `~numpy.random.Generator.chisquare` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- df : float or array_like of floats Number of degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. See Also -------- random.Generator.chisquare: which should be used for new code. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=1}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. .. note:: New code should use the `~numpy.random.Generator.noncentral_f` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. See Also -------- random.Generator.noncentral_f: which should be used for new code. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = np.random.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. .. note:: New code should use the `~numpy.random.Generator.f` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. random.Generator.f: which should be used for new code. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. .. note:: New code should use the `~numpy.random.Generator.gamma` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. random.Generator.gamma: which should be used for new code. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. .. note:: New code should use the `~numpy.random.Generator.standard_gamma` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. random.Generator.standard_gamma: which should be used for new code. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. .. note:: New code should use the `~numpy.random.Generator.normal` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. random.Generator.normal: which should be used for new code. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that normal is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.normal(mu, sigma, 1000) Verify the mean and the standard deviation: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.0 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> np.random.normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random standard_normal(size=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). .. note:: New code should use the `~numpy.random.Generator.standard_normal` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. random.Generator.standard_normal: which should be used for new code. Notes ----- For random samples from the normal distribution with mean ``mu`` and standard deviation ``sigma``, use one of:: mu + sigma * np.random.standard_normal(size=...) np.random.normal(mu, sigma, size=...) Examples -------- >>> np.random.standard_normal() 2.1923875335537315 #random >>> s = np.random.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = np.random.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random random_integers(low, high=None, size=None) Random integers of type `numpy.int_` between `low` and `high`, inclusive. Return random integers of type `numpy.int_` from the "discrete uniform" distribution in the closed interval [`low`, `high`]. If `high` is None (the default), then results are from [1, `low`]. The `numpy.int_` type translates to the C long integer type and its precision is platform dependent. This function has been deprecated. Use randint instead. .. deprecated:: 1.11.0 Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution (unless ``high=None``, in which case this parameter is the *highest* such integer). high : int, optional If provided, the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- randint : Similar to `random_integers`, only for the half-open interval [`low`, `high`), and 0 is the lowest value if `high` is omitted. Notes ----- To sample from N evenly spaced floating-point numbers between a and b, use:: a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.) Examples -------- >>> np.random.random_integers(5) 4 # random >>> type(np.random.random_integers(5)) >>> np.random.random_integers(5, size=(3,2)) array([[5, 4], # random [3, 3], [4, 5]]) Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (*i.e.*, from the set :math:`{0, 5/8, 10/8, 15/8, 20/8}`): >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4. array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ]) # random Roll two six sided dice 1000 times and sum the results: >>> d1 = np.random.random_integers(1, 6, 1000) >>> d2 = np.random.random_integers(1, 6, 1000) >>> dsums = d1 + d2 Display results as a histogram: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(dsums, 11, density=True) >>> plt.show() randn(d0, d1, ..., dn) Return a sample (or samples) from the "standard normal" distribution. .. note:: This is a convenience function for users porting code from Matlab, and wraps `standard_normal`. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like `numpy.zeros` and `numpy.ones`. .. note:: New code should use the `~numpy.random.Generator.standard_normal` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. If positive int_like arguments are provided, `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled with random floats sampled from a univariate "normal" (Gaussian) distribution of mean 0 and variance 1. A single float randomly sampled from the distribution is returned if no argument is provided. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned. Returns ------- Z : ndarray or float A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied. See Also -------- standard_normal : Similar, but takes a tuple as its argument. normal : Also accepts mu and sigma arguments. random.Generator.standard_normal: which should be used for new code. Notes ----- For random samples from the normal distribution with mean ``mu`` and standard deviation ``sigma``, use:: sigma * np.random.randn(...) + mu Examples -------- >>> np.random.randn() 2.1923875335537315 # random Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> 3 + 2.5 * np.random.randn(2, 4) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random rand(d0, d1, ..., dn) Random values in a given shape. .. note:: This is a convenience function for users porting code from Matlab, and wraps `random_sample`. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like `numpy.zeros` and `numpy.ones`. Create an array of the given shape and populate it with random samples from a uniform distribution over ``[0, 1)``. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned. Returns ------- out : ndarray, shape ``(d0, d1, ..., dn)`` Random values. See Also -------- random Examples -------- >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. .. note:: New code should use the `~numpy.random.Generator.uniform` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than or equal to high. The high limit may be included in the returned array of floats due to floating-point rounding in the equation ``low + (high-low) * random_sample()``. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- randint : Discrete uniform distribution, yielding integers. random_integers : Discrete uniform distribution over the closed interval ``[low, high]``. random_sample : Floats uniformly distributed over ``[0, 1)``. random : Alias for `random_sample`. rand : Convenience function that accepts dimensions as input, e.g., ``rand(2,2)`` would generate a 2-by-2 array of floats, uniformly distributed over ``[0, 1)``. random.Generator.uniform: which should be used for new code. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. The ``high`` limit may be included in the returned array of floats due to floating-point rounding in the equation ``low + (high-low) * random_sample()``. For example: >>> x = np.float32(5*0.99999999) >>> x np.float32(5.0) Examples -------- Draw samples from the distribution: >>> s = np.random.uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. note:: New code should use the `~numpy.random.Generator.choice` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. .. warning:: This function uses the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. Parameters ---------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if it were ``np.arange(a)`` size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement. Default is True, meaning that a value of ``a`` can be selected multiple times. p : 1-D array-like, optional The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribution over all entries in ``a``. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also -------- randint, shuffle, permutation random.Generator.choice: which should be used in new code Notes ----- Setting user-specified probabilities through ``p`` uses a more general but less efficient sampler than the default. The general sampler produces a different sample than the optimized sampler even if each element of ``p`` is 1 / len(a). Sampling random rows from a 2-D array is not possible with this function, but is possible with `Generator.choice` through its ``axis`` keyword. Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to np.random.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype='>> np.random.bytes(10) b' eh\x85\x022SZ\xbf\xa4' #random randint(low, high=None, size=None, dtype=int) Return random integers from `low` (inclusive) to `high` (exclusive). Return random integers from the "discrete uniform" distribution of the specified dtype in the "half-open" interval [`low`, `high`). If `high` is None (the default), then results are from [0, `low`). .. note:: New code should use the `~numpy.random.Generator.integers` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is one above the *highest* such integer). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is long. .. warning:: This function defaults to the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. Which corresponds to `np.intp`. (`dtype=int` is not the same as in most NumPy functions.) Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- random_integers : similar to `randint`, only for the closed interval [`low`, `high`], and 1 is the lowest value if `high` is omitted. random.Generator.integers: which should be used for new code. Examples -------- >>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], # random [3, 2, 2, 0]]) Generate a 1 x 3 array with 3 different upper bounds >>> np.random.randint(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> np.random.randint([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], # random [ 1, 16, 9, 12]], dtype=uint8) tomaxint(size=None) Return a sample of uniformly distributed random integers in the interval [0, ``np.iinfo("long").max``]. .. warning:: This function uses the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray Drawn samples, with shape `size`. See Also -------- randint : Uniform sampling over a given half-open interval of integers. random_integers : Uniform sampling over a given closed interval of integers. Examples -------- >>> rs = np.random.RandomState() # need a RandomState object >>> rs.tomaxint((2,2,2)) array([[[1170048599, 1600360186], # random [ 739731006, 1947757578]], [[1871712945, 752307660], [1601631370, 1479324245]]]) >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max array([[[ True, True], [ True, True]], [[ True, True], [ True, True]]]) standard_exponential(size=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. .. note:: New code should use the `~numpy.random.Generator.standard_exponential` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray Drawn samples. See Also -------- random.Generator.standard_exponential: which should be used for new code. Examples -------- Output a 3x8000 array: >>> n = np.random.standard_exponential((3, 8000)) exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. .. note:: New code should use the `~numpy.random.Generator.exponential` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. Examples -------- A real world example: Assume a company has 10000 customer support agents and the average time between customer calls is 4 minutes. >>> n = 10000 >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n) What is the probability that a customer will call in the next 4 to 5 minutes? >>> x = ((time_between_calls < 5).sum())/n >>> y = ((time_between_calls < 4).sum())/n >>> x-y 0.08 # may vary See Also -------- random.Generator.exponential: which should be used for new code. References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalization, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. .. note:: New code should use the `~numpy.random.Generator.beta` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. See Also -------- random.Generator.beta: which should be used for new code. random(size=None) Return random floats in the half-open interval [0.0, 1.0). Alias for `random_sample` to ease forward-porting to the new random API. random_sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random_sample` by `(b-a)` and add `a`:: (b - a) * random_sample() + a .. note:: New code should use the `~numpy.random.Generator.random` method of a `~numpy.random.Generator` instance instead; please see the :ref:`random-quick-start`. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). See Also -------- random.Generator.random: which should be used for new code. Examples -------- >>> np.random.random_sample() 0.47108547995356098 # random >>> type(np.random.random_sample()) >>> np.random.random_sample((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) set_state(state) Set the internal state of the generator from a tuple. For use if one has reason to manually (re-)set the internal state of the bit generator used by the RandomState instance. By default, RandomState uses the "Mersenne Twister"[1]_ pseudo-random number generating algorithm. Parameters ---------- state : {tuple(str, ndarray of 624 uints, int, int, float), dict} The `state` tuple has the following items: 1. the string 'MT19937', specifying the Mersenne Twister algorithm. 2. a 1-D array of 624 unsigned integers ``keys``. 3. an integer ``pos``. 4. an integer ``has_gauss``. 5. a float ``cached_gaussian``. If state is a dictionary, it is directly set using the BitGenerators `state` property. Returns ------- out : None Returns 'None' on success. See Also -------- get_state Notes ----- `set_state` and `get_state` are not needed to work with any of the random distributions in NumPy. If the internal state is manually altered, the user should know exactly what he/she is doing. For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing some information about the cached Gaussian value: ``state = ('MT19937', keys, pos)``. References ---------- .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator," *ACM Trans. on Modeling and Computer Simulation*, Vol. 8, No. 1, pp. 3-30, Jan. 1998. get_state(legacy=True) Return a tuple representing the internal state of the generator. For more details, see `set_state`. Parameters ---------- legacy : bool, optional Flag indicating to return a legacy tuple state when the BitGenerator is MT19937, instead of a dict. Raises ValueError if the underlying bit generator is not an instance of MT19937. Returns ------- out : {tuple(str, ndarray of 624 uints, int, int, float), dict} If legacy is True, the returned tuple has the following items: 1. the string 'MT19937'. 2. a 1-D array of 624 unsigned integer keys. 3. an integer ``pos``. 4. an integer ``has_gauss``. 5. a float ``cached_gaussian``. If `legacy` is False, or the BitGenerator is not MT19937, then state is returned as a dictionary. See Also -------- set_state Notes ----- `set_state` and `get_state` are not needed to work with any of the random distributions in NumPy. If the internal state is manually altered, the user should know exactly what he/she is doing. seed(seed=None) Reseed a legacy MT19937 BitGenerator Notes ----- This is a convenience, legacy function. The best practice is to **not** reseed a BitGenerator, rather to recreate a new one. This method is here for legacy reasons. This example demonstrates best practice. >>> from numpy.random import MT19937 >>> from numpy.random import RandomState, SeedSequence >>> rs = RandomState(MT19937(SeedSequence(123456789))) # Later, you want to restart the stream >>> rs = RandomState(MT19937(SeedSequence(987654321))) ?:0yE>qh?@?@?5gG8?SˆB?AAz?<ٰj_?$+K?88C?J?llf?UUUUUU?dg??~)@ lѿ3 ; @UUUUUU?"@m{?@̶e*$@= ףp=@n?[ m?h|?5?333333 @r?$~?B>٬ @r鷯?Q?Q?9v?(\@ffffff@0C.@4@x&?@?UUUUUU?a@X@`@|@@MA>@@:0yE>-DT! @h㈵>.A-DT! -DT!@C@3?r?q?0@?/*p?3f?(_?xY?յS?N?J?F?DB?Qt??u+ ?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x >b>x>>!>^}>;z>Хw>@t>wr>byl>i>g>Sd>3a>^>]\>&Y>z)W>T>P R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>= >T>T>4>>y >ϣ > >>L>>l>=+==0 =C==8==hp==0== =n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W= C=4=M,=4*=D.=y8=H=~=x=3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k 33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44 4` 4M 47 44?4nB44L4 i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84 C4P4_4q474{4w4>ԕ44s4<4d444$4 (4a44lߢ4$4l44x 4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó 5 5]5^555q5v 5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i ~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`  i   6  H  A!B+m 5XttW3 `wK\ L   s   G {V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~ }}} }}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~ n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u? !?z}k? ~?@?`x?*?8? Qi?oTC?_(4?ָ?@je?!u v?7Zi?{ ?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹? Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+ j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~ /? {^?Z? ?ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8? [B/?I䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T ξ?x.BTv?Imb.??6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#? V#?_?S?Q| z? Y&?$?htQz? 3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%? RD?lj?W'n?-BU؊?h?t4? n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%> T+Y? O?K 2=?]d<A]X`<+M[Ij<[5q&<.8eG< h#ឪV <;LC%K<ꆭh NVeΙVn6nvK zicp%E tQ)2U1WQ9Lin?23F:L"3\LQ V f[_rWDdx h+*k2=Ko:qr Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cx AFẙi&zqVYםΡag6 X83:뇡koɣj_ۤ| Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!X ɦ֬ ᆴX7(. Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B < EOvpc/F<Ң"Ae އ0~ Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+ E>ҙ02yΩ4A (Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF 3n bH޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄ /0 wپ}2}K D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ @樫(afoeW-|&aY +M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<> ~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J> >:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[> Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*> > >Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\= s==d= =yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4 t4u4v4Cw4x4 z42{40S|4u}4~44v4@ 4L4>4ق4v444lV44R4F44p4 I44"4_44Ќ4l4L4`4ԏ4坐4y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/ {ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6 < :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR T=UdVWXYZ[\]^~__`;abbcod.eefLggh~~7~~/~7~~ ~ ~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1? OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g? U7?e&$ ?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?PF9 ?ߓ^??ۮY?3???i?Z8o? O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O? Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8 ? Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~& ~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l ?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n? R=?Kr?*}T#?,"k>?R) ?K{o?vaӽ?命8? t;I_? h?3xk?3Ӻ?b3?vZ9S?LJisk?M$a.?ftW?+ ?"@|?&#?p>_?1fҲ? DE?} ?/?%,?0?5nl+,&?QG?b. ?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u? ̓0?"NR? y? ڥ?d֔?^8 ?0`4I?IrO*?O'?x A?B?/)?7h`|?] ٨v?p?gC_e?T?yx;I< <[,L< Ŀk<4xV<=A[<'?}y<NG<~;[xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8) YfHqն&|s f2,2Ztզޗ .n ZR'ӯB)[l@u Pҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs) 4<=>)G'QA@Y.(5bX jz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ: Aޓ=?;h   $ ? } 0 l [Ht&5679P:z;;@CEDE#H >JX>?| < \4 H \ t l l@ < L ( ̱< \ ,p l < ll  |LT\8dlP\`|tT\(L`,TLL$hlDBEB E(K0D8DPXI`PXAPc8A0A(B BBB8BEE G(A0e(C BBB8lBBA D(A0X(D ABBsdH,pBED D(D0 (G ABBK F(C ABBx4QD t H HhBNB B(A0A8G8A0A(B BBB( >AHA 1AA(  AAGAAH8~&iBEE E(D0D8DP>8D0A(B BBB'D`H(BIB B(A0A8Dx8A0A(B BBB<^*BIB A(A0DP0A(A BBBD(+BHE D(D08I@T8A0R(A BBBphDH D \RBBA D(G@j (A ABBH V (G ABBF m (A ABBE ,bI N AF H` LШBAD G0e  JABH M  AABG ` AAB@lBAA G0  AABG d  DABE YH_ I h(ܪAJ0` AD I AF 4hADD m CAF M CAG 4 ȫ$H )nAAA hAA(p *AHD AAH .BIB B(A0A8D`8A0A(B BBBx 4BBB B(D0D8G` 8G0A(B BBBI V 8D0A(B BBBE Q 8F0A(B BBBH (d خADD Z DAH H 0wBEB B(D0A8DPU8D0A(B BBB 1A H 3BBJ B(D0G8DP] 8D0A(B BBBG ,X jI J AB H` ` ԱBEE B(D0A8GP 8A0A(B BBBB  8A0A(B BBBH d BEE E(D0E8D 8C0A(B BBBG z 8F0A(B BBBA T uLhl }Th8 AAF0 AAB l AAB Do E @ H  hL T(BBD C(D0 (A ABBE  (A ABBE H 4DE G \ D l SDN 8 DM G 4 hAGG K AAD D DAG 4 AAG a CAB i CAC $8xD~ F oDxD~ F o(dADD ^ AAG (ADD ^ AAG @ BED G0\  ABBE D  DBBL `HBEE E(A0A8DP 8A0A(B BBBI D 8D0A(B BBBO dyD O AA PBAA  ABC D ABI H HBN A DBI @i_ H 4AD ~ AD s AD ^ AA 4(A D H H X)Ac4tDA wABHu LBBA D(G@r (C ABBF  (A ABBA 0KADG [ AAG NGAl06BBB D(A0D@r 0A(A BBBG X 0A(A BBBH z 0A(A BBBF 8BBA A(D0Y (D ABBD @0BBB A(A0G@w 0A(A BBBB ( fAG  AD V AI L@}H`BEE E(D0D8D@x 8D0A(B BBBF pBKF A(G0E (I DBBG  (D ABBC Q (I DBBN (I ABB lFA] B  A dDBBB B(A0C8GP 8A0A(B BBBA  8A0A(B BBBE DPBHD  ABI  ABE L ABA LBAA D@  DABF I  GABE KH\POHA@xDHBBB A(A0D` 0A(A BBBK  0A(A BBBJ D 0A(A BBBD Kh\pOhC`\BBA D(GP@ (A ABBJ v (A ABBD v (C ABBB x <BEA A(Q`dhBpKhA` (D ABBG xhMpOhA`w (D ABBK  (D ABBK AOOPdXH`KXAPNXE`RhApAxBAGBFQPZ DAH }XS`RXAP[ DAE  DAB L$"BBA D(G`E (D ABBB L (D ABBK Ltx"BBA D(G`E (D ABBB L (D ABBK XAOS`hHpKhA`UhLpKxAFBFAHAQ`x DAB hSpRhA`p DAF ! DAB PlAOS`hHpKhA`NhRpExFFBFAHFQ`x DAG hSpRhA`p DAF ! DAB AOS`hHpKhA`NhRpExFFBFAHFQ`x DAG hSpRhA`p DAF ! DAB hAOS`hHpKhA`NhRpExFFBFAHFQ`x DAG hSpRhA`p DAF ! DAB AOS`hHpKhA`NhRpExFFBFAHFQ`x DAG hSpRhA`p DAF ! DAB dBBB B(A0C8GP 8A0A(B BBBA  8A0A(B BBBE tBLM G`hPpFhB`}hNpLxFFBFABFP`w  DABD hRpHhA`p  DABF hbpHhA``| BBA A(GP (D ABBF  (D ABBI d (D ABBC ` KAA G0  AABS   CABK D  DABE C08D"BDA A(Dp (A ABB(BDD e ABF `g BIB E(A0A8GpExaOxApp 8C0A(B BBBC  8A0A(B BBBD _xPKxBpfxcHxAp 8A0A(B BBBH `T(BBB D(A0n (A BBBH W (A BBBJ \ (A BBBE `!BBB D(A0n (A BBBH W (A BBBJ \ (A BBBE 8%BBD A(D`+ (A ABBB X+&BHD SP`XP`FXBP[XP`GhHpBxADBFASPXR`HXAPR  DABD Xb`HXAP0/&BHD SP`XP`FXBP[XP`GhHpBxADBFASPXR`HXAPR  DABD Xb`HXAP`2&BHD SP`XP`FXBP[XP`GhHpBxADBFASPXR`HXAPR  DABD Xb`HXAP6AOOPdXH`MXAP@XP`GhHpBxADEFAQP DAE }XS`RXAP[ DAE  DAB l9BLO G`hPpFhB`hOpFxFBFAEFAW`hYpHhA`h  DABG nhbpHhA`t,>wBHA GPEXa`OXAPp  CABB   AABH _XP`LXBPfXc`HXAPg  AABF ph 4BBEB A(A0Q``hBpKhA` 0A(A BBBG ahMpOhA`y 0A(A BBBA \ FBIB B(D0A8DKOAH 8D0A(B BBBC d1BAG@\ AK ($>2%AG  AN L AS HP>3BFB B(A0D8Dj 8D0A(B BBBD >6wAG H DL D>6 BFJ D(D0G 0A(A EBBK L?tABED D(D`r (A ABBE t (C ABBA 0X?DCka L nJHA G LD?CKO  AE b EI t EG L EG XI  ?8EAG@) AN (?G AG  EA WA4$@HAD@ AC F AI \ AC \@KAG@ DD @lLWD R@LD  @\MED r J  I (@NRAG@mFB AO L@ M z E 0$APPDG T ABF hHXATQzBBB B(A0A8GP~ 8D0A(B BBBD HARBBB B(A0A8FPl 8C0A(B BBBH xARBDB B(A0A8DP 8A0A(B BBBD C 8A0A(B BBBC b 8A0A(B BBBD xlB TBDB B(A0A8DP 8A0A(B BBBD  8A0A(B BBBG ` 8A0A(B BBBF (BdUPACD k AAK HCU^BBE B(A0D8D`r 8A0A(B BBBH `CX1BBB B(D0D8DP 8A0A(B BBBI  8A0A(B BBBI f 8A0A(B BBBH w 8A0A(B BBBA dCDZBBB B(A0A8GP 8A0A(B BBBB y 8A0A(B BBBE x`D\BBB B(A0D8DPR 8K0A(B BBBI \ 8A0A(B BBBJ t 8A0A(B BBBB ,D^KHE OABFd E@_BEB B(A0D8D`' 8A0A(B BBBK B8A0A(B BBB tE`AG0 AA 4EtaAG@ AE t AC ^ AA Ec%Ed/DjE0dWljFxdD u G z4FdHD CLF ec\ BdFxeXD K|FewDu G nF fHD | A 4FTfAO  AC  AR x EK FhAG@8 AO (GlnAW0 EK A@Gm`t _XG4n]D g U tGxniAK  AF GoAG K AL $G@pzAG s AL hEPGpuBBA G@  ABFL X  ABBS # ABF 8Hr+AG  AM \Hs;D v(tHsMa J n J L D AHH\tBBB E(D0D8D[ 8D0A(B BBBA Hy(IxRBAG@?FB,I0zm\ KDIz,XIzAD@ AQ ^ AA I|AG@ DD px8 0Hh@\X8XxH@8  ` (*o` @ pP#, o#oo"o6`F`V`f`v`````````aa&a6aFaVafavaaaaaaaaabb&b6bFbVbfbvbbbbbbbbbcc&c6cFcVcfcvcccccccccdd&d6dFdVdfdvdddddddddee&e6eFeVefeveeeeeeeeeff&f6fFfVfffvfffffffffgg&g6gFgVgfgvggggggggghh&h6hFhVhfhvhhhhhhhhhii&i6iFiVifiviiiiiiXGM 4;BP 2GP39@HI60SV V0W(GIV VDn1G SDG`/W@SVjUpS@XaVP T` -U UE@S_UUa`U V`|U`qmT`UKbUp@VpeSgRUY`U`Ui>VtGVhVZVMU@DU8V@.3V U,V@$V`VSpnSs`SwSP|VptU`U`STtTeT [TOVtUiU`RUY`SgVpebUp@UKmT`U`qV`|U Ua`US_UE@-U T` aVP S@XjUpSVW - W -(W 02W 0;W@0HWRW[W`hW`tWWWWW 1W 1W61W@.WBGCC: (GNU) 14.2.1 20250110 (Red Hat 14.2.1-7)GA$3a1GA$3a1``GA$3a1(*0*GA$3a1GA$3a1'*'*GA$3a1'*'*GA$3a1``GA$3a10*5* #H E} @ `  !   U* P> jXU q      R$ >  7X P n p    Xj@ %" j3 l>M mg Dnlz s 0 P `Q o r>@ td ji ( %} %u  Ӑ) bX6m@(P,X] p`  h9j 0R   0 Y$  `9  @h{    n  ,  (  X       w  \    *  B  3c       0"  &  )  *(%  0,4  -SM  p-v  @.  .  `/  0x  0x  1>  1\  2t  `3H  4  5  6  7  9 ;)  <H =` ?Kq ?6 B C Ef @G} @G} G7 PJ_ @NFp O S V @X= @\ _ a0 pe"Q g" i pn s- wf P|   -> i   g  0  H Фu & & & V  w P `: }r '8 & /Z 6q =# Y p& pb 1  P4H Eq< KIs `S  `q"Nx `2 w l | |* |\ |   D `| @  ( g s  @ B8 A.  oD pt1} z `| !&  4  1^L   ` !@ B< 6K<b< v< ;<X< < P< $R< < += S= = H*= wC= /Z== w= `= %= -= P = > `> PB > <> (k@ K> (*Q> h> P^> &> > > /> V> > Y? `z2? F? Pr^?  p? ? pH? `G? ? ? y@ pn @ @+@ 7@ +J@W@ bd@ $z@ %@ @5@ < @ c@ #@  @ A WA W0A %BA RA 1mA A A @ A XA $A ;A `VA z B @ B a8B HB  TB pByB B 0uB PB aB (B X> PC "C 0 .C @q