from __future__ import annotations from collections.abc import Callable from typing import Any from typing import cast from typing import NamedTuple from optuna.distributions import CategoricalChoiceType from optuna.distributions import CategoricalDistribution from optuna.logging import get_logger from optuna.samplers._base import _CONSTRAINTS_KEY from optuna.study import Study from optuna.trial import FrozenTrial from optuna.trial import TrialState from optuna.visualization._plotly_imports import _imports from optuna.visualization._utils import _check_plot_args from optuna.visualization._utils import _filter_nonfinite from optuna.visualization._utils import _is_log_scale if _imports.is_successful(): from optuna.visualization._plotly_imports import go from optuna.visualization._plotly_imports import make_subplots from optuna.visualization._plotly_imports import Scatter from optuna.visualization._utils import COLOR_SCALE _logger = get_logger(__name__) class _SliceSubplotInfo(NamedTuple): param_name: str x: list[Any] y: list[float] trial_numbers: list[int] is_log: bool is_numerical: bool constraints: list[bool] x_labels: tuple[CategoricalChoiceType, ...] | None class _SlicePlotInfo(NamedTuple): target_name: str subplots: list[_SliceSubplotInfo] class _PlotValues(NamedTuple): x: list[Any] y: list[float] trial_numbers: list[int] def _get_slice_subplot_info( trials: list[FrozenTrial], param: str, target: Callable[[FrozenTrial], float] | None, log_scale: bool, numerical: bool, x_labels: tuple[CategoricalChoiceType, ...] | None, ) -> _SliceSubplotInfo: if target is None: def _target(t: FrozenTrial) -> float: return cast(float, t.value) target = _target plot_info = _SliceSubplotInfo( param_name=param, x=[], y=[], trial_numbers=[], is_log=log_scale, is_numerical=numerical, x_labels=x_labels, constraints=[], ) for t in trials: if param not in t.params: continue plot_info.x.append(t.params[param]) plot_info.y.append(target(t)) plot_info.trial_numbers.append(t.number) constraints = t.system_attrs.get(_CONSTRAINTS_KEY) plot_info.constraints.append(constraints is None or all([x <= 0.0 for x in constraints])) return plot_info def _get_slice_plot_info( study: Study, params: list[str] | None, target: Callable[[FrozenTrial], float] | None, target_name: str, ) -> _SlicePlotInfo: _check_plot_args(study, target, target_name) trials = _filter_nonfinite( study.get_trials(deepcopy=False, states=(TrialState.COMPLETE,)), target=target ) if len(trials) == 0: _logger.warning("Your study does not have any completed trials.") return _SlicePlotInfo(target_name, []) all_params = {p_name for t in trials for p_name in t.params.keys()} distributions = {} for trial in trials: for param_name, distribution in trial.distributions.items(): if param_name not in distributions: distributions[param_name] = distribution x_labels = {} for param_name, distribution in distributions.items(): if isinstance(distribution, CategoricalDistribution): x_labels[param_name] = distribution.choices if params is None: sorted_params = sorted(all_params) else: for input_p_name in params: if input_p_name not in all_params: raise ValueError(f"Parameter {input_p_name} does not exist in your study.") sorted_params = sorted(set(params)) return _SlicePlotInfo( target_name=target_name, subplots=[ _get_slice_subplot_info( trials=trials, param=param, target=target, log_scale=_is_log_scale(trials, param), numerical=not isinstance(distributions[param], CategoricalDistribution), x_labels=x_labels.get(param), ) for param in sorted_params ], ) def plot_slice( study: Study, params: list[str] | None = None, *, target: Callable[[FrozenTrial], float] | None = None, target_name: str = "Objective Value", ) -> "go.Figure": """Plot the parameter relationship as slice plot in a study. Note that, if a parameter contains missing values, a trial with missing values is not plotted. Args: study: A :class:`~optuna.study.Study` object whose trials are plotted for their target values. params: Parameter list to visualize. The default is all parameters. target: A function to specify the value to display. If it is :obj:`None` and ``study`` is being used for single-objective optimization, the objective values are plotted. .. note:: Specify this argument if ``study`` is being used for multi-objective optimization. target_name: Target's name to display on the axis label. Returns: A :class:`plotly.graph_objects.Figure` object. """ _imports.check() return _get_slice_plot(_get_slice_plot_info(study, params, target, target_name)) def _get_slice_plot(info: _SlicePlotInfo) -> "go.Figure": layout = go.Layout(title="Slice Plot") if len(info.subplots) == 0: return go.Figure(data=[], layout=layout) elif len(info.subplots) == 1: figure = go.Figure(data=_generate_slice_subplot(info.subplots[0]), layout=layout) figure.update_xaxes(title_text=info.subplots[0].param_name) figure.update_yaxes(title_text=info.target_name) if not info.subplots[0].is_numerical: figure.update_xaxes( type="category", categoryorder="array", categoryarray=info.subplots[0].x_labels ) elif info.subplots[0].is_log: figure.update_xaxes(type="log") else: figure = make_subplots(rows=1, cols=len(info.subplots), shared_yaxes=True) figure.update_layout(layout) showscale = True # showscale option only needs to be specified once. for column_index, subplot_info in enumerate(info.subplots, start=1): trace = _generate_slice_subplot(subplot_info) trace[0].update(marker={"showscale": showscale}) # showscale's default is True. if showscale: showscale = False for t in trace: figure.add_trace(t, row=1, col=column_index) figure.update_xaxes(title_text=subplot_info.param_name, row=1, col=column_index) if column_index == 1: figure.update_yaxes(title_text=info.target_name, row=1, col=column_index) if not subplot_info.is_numerical: figure.update_xaxes( type="category", categoryorder="array", categoryarray=subplot_info.x_labels, row=1, col=column_index, ) elif subplot_info.is_log: figure.update_xaxes(type="log", row=1, col=column_index) if len(info.subplots) > 3: # Ensure that each subplot has a minimum width without relying on autusizing. figure.update_layout(width=300 * len(info.subplots)) return figure def _generate_slice_subplot(subplot_info: _SliceSubplotInfo) -> list[Scatter]: trace = [] feasible = _PlotValues([], [], []) infeasible = _PlotValues([], [], []) for x, y, num, c in zip( subplot_info.x, subplot_info.y, subplot_info.trial_numbers, subplot_info.constraints ): if x is not None or x != "None" or y is not None or y != "None": if c: feasible.x.append(x) feasible.y.append(y) feasible.trial_numbers.append(num) else: infeasible.x.append(x) infeasible.y.append(y) trace.append( go.Scatter( x=feasible.x, y=feasible.y, mode="markers", name="Feasible Trial", marker={ "line": {"width": 0.5, "color": "Grey"}, "color": feasible.trial_numbers, "colorscale": COLOR_SCALE, "colorbar": { "title": "Trial", "x": 1.0, # Offset the colorbar position with a fixed width `xpad`. "xpad": 40, }, }, showlegend=False, ) ) if len(infeasible.x) > 0: trace.append( go.Scatter( x=infeasible.x, y=infeasible.y, mode="markers", name="Infeasible Trial", marker={ "color": "#cccccc", }, showlegend=False, ) ) return trace