gL iuT2UdZddlmZddlmZmZddlZddlZddlm Z ddl m Z m Z m Z mZmZmZmZmZddlZddlZddlmZddlmZdd lmZdd lmZmZdd lm Z dd l!m"Z"dd l#m$Z$ddl%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+ddl,m-Z-ddl.m/Z/ddl0m1Z1ddl2m3Z3ddl4m5Z5m6Z6m7Z7m8Z8ddl9m:Z:ddl;mZ>ddl?m@Z@ddlAmBZBmCZCe r*ddlDmEZEmFZFmGZGmHZHddlImJZJddlKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUde djeWeddzd zZXGd!d"eZYd#d$d$d#dd%ZZd"e[d&<Gd'd(eZ\d)d*dd+Z]d(e[d,<d-hZ^d.d/hZ_hd0Z`Gd1d2eZaedidjd4Zbedidkd5Zbedidld6Zb dm dnd7Zbdod8Zc dpd:Zded3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d;. dqd>Zeed3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d?/ drd@Zeed3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3dA0 dsdBZeed3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3dA0 dtdCZee eXjdDdEdFdGdHe3d<e3dId9zJejdd)ejdddddddd#ddddd$d$ejd$dejejejdd#d$d#dd)ddKddLejd$ddddMddNejeZd.d#ddejdA0 dudOZeed3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3dP/ dvdQZied3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d?/ dwdRZied3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3dA0 dxdSZied3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3dA0 dydTZie eXjdFdGdDdEdUe3d<e3dId9zJejdd)ejdddddddd#ddddd$d$ejd$d#ejejejdd#d$d#dd)ddKddLejd$ddddMddNejeZd.d#ddejdA0 dzdVZied3d3d3d3d3dW d{dXZjed3d3d3d3d3dY d|dZZjed3d3d3d3d3d3d[ d}d\Zjd)dd*ejd#dd[ d~d]ZjGd^d=ejZldd_Zmddd`ZndaZoddbZp ddcZqdddZrdeZsddfZt ddgZuddhZvy)z Module contains tools for processing files into DataFrames or other objects GH#48849 provides a convenient way of deprecating keyword arguments ) annotations)abc defaultdictN)fill)IO TYPE_CHECKINGAnyCallableLiteral NamedTuple TypedDictoverload)using_copy_on_write)lib) STR_NA_VALUES)AbstractMethodError ParserWarning)Appender)find_stack_level)check_dtype_backend) is_file_likeis_float is_hashable is_integer is_list_like pandas_dtype)Series) DataFrame) RangeIndex) _shared_docs) IOHandles get_handlestringify_pathvalidate_header_arg)ArrowParserWrapper) ParserBase is_index_colparser_defaults)CParserWrapper)FixedWidthFieldParser PythonParser)HashableIterableMappingSequence) TracebackType) CompressionOptions CSVEngineDtypeArg DtypeBackendFilePath IndexLabel ReadCsvBufferSelfStorageOptionsUsecolsArgTypea {summary} Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the online docs for `IO Tools `_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. sep : str, default {_default_sep} Character or regex pattern to treat as the delimiter. If ``sep=None``, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator from only the first valid row of the file by Python's builtin sniffer tool, ``csv.Sniffer``. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``. delimiter : str, optional Alias for ``sep``. header : int, Sequence of int, 'infer' or None, default 'infer' Row number(s) containing column labels and marking the start of the data (zero-indexed). Default behavior is to infer the column names: if no ``names`` are passed the behavior is identical to ``header=0`` and column names are inferred from the first line of the file, if column names are passed explicitly to ``names`` then the behavior is identical to ``header=None``. Explicitly pass ``header=0`` to be able to replace existing names. The header can be a list of integers that specify row locations for a :class:`~pandas.MultiIndex` on the columns e.g. ``[0, 1, 3]``. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so ``header=0`` denotes the first line of data rather than the first line of the file. names : Sequence of Hashable, optional Sequence of column labels to apply. If the file contains a header row, then you should explicitly pass ``header=0`` to override the column names. Duplicates in this list are not allowed. index_col : Hashable, Sequence of Hashable or False, optional Column(s) to use as row label(s), denoted either by column labels or column indices. If a sequence of labels or indices is given, :class:`~pandas.MultiIndex` will be formed for the row labels. Note: ``index_col=False`` can be used to force pandas to *not* use the first column as the index, e.g., when you have a malformed file with delimiters at the end of each line. usecols : Sequence of Hashable or Callable, optional Subset of columns to select, denoted either by column labels or column indices. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in ``names`` or inferred from the document header row(s). If ``names`` are given, the document header row(s) are not taken into account. For example, a valid list-like ``usecols`` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. To instantiate a :class:`~pandas.DataFrame` from ``data`` with element order preserved use ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns in ``['foo', 'bar']`` order or ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` for ``['bar', 'foo']`` order. If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to ``True``. An example of a valid callable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. dtype : dtype or dict of {{Hashable : dtype}}, optional Data type(s) to apply to either the whole dataset or individual columns. E.g., ``{{'a': np.float64, 'b': np.int32, 'c': 'Int64'}}`` Use ``str`` or ``object`` together with suitable ``na_values`` settings to preserve and not interpret ``dtype``. If ``converters`` are specified, they will be applied INSTEAD of ``dtype`` conversion. .. versionadded:: 1.5.0 Support for ``defaultdict`` was added. Specify a ``defaultdict`` as input where the default determines the ``dtype`` of the columns which are not explicitly listed. engine : {{'c', 'python', 'pyarrow'}}, optional Parser engine to use. The C and pyarrow engines are faster, while the python engine is currently more feature-complete. Multithreading is currently only supported by the pyarrow engine. .. versionadded:: 1.4.0 The 'pyarrow' engine was added as an *experimental* engine, and some features are unsupported, or may not work correctly, with this engine. converters : dict of {{Hashable : Callable}}, optional Functions for converting values in specified columns. Keys can either be column labels or column indices. true_values : list, optional Values to consider as ``True`` in addition to case-insensitive variants of 'True'. false_values : list, optional Values to consider as ``False`` in addition to case-insensitive variants of 'False'. skipinitialspace : bool, default False Skip spaces after delimiter. skiprows : int, list of int or Callable, optional Line numbers to skip (0-indexed) or number of lines to skip (``int``) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning ``True`` if the row should be skipped and ``False`` otherwise. An example of a valid callable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with ``engine='c'``). nrows : int, optional Number of rows of file to read. Useful for reading pieces of large files. na_values : Hashable, Iterable of Hashable or dict of {{Hashable : Iterable}}, optional Additional strings to recognize as ``NA``/``NaN``. If ``dict`` passed, specific per-column ``NA`` values. By default the following values are interpreted as ``NaN``: " z", "Fz )subsequent_indenta- ". keep_default_na : bool, default True Whether or not to include the default ``NaN`` values when parsing the data. Depending on whether ``na_values`` is passed in, the behavior is as follows: * If ``keep_default_na`` is ``True``, and ``na_values`` are specified, ``na_values`` is appended to the default ``NaN`` values used for parsing. * If ``keep_default_na`` is ``True``, and ``na_values`` are not specified, only the default ``NaN`` values are used for parsing. * If ``keep_default_na`` is ``False``, and ``na_values`` are specified, only the ``NaN`` values specified ``na_values`` are used for parsing. * If ``keep_default_na`` is ``False``, and ``na_values`` are not specified, no strings will be parsed as ``NaN``. Note that if ``na_filter`` is passed in as ``False``, the ``keep_default_na`` and ``na_values`` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of ``na_values``). In data without any ``NA`` values, passing ``na_filter=False`` can improve the performance of reading a large file. verbose : bool, default False Indicate number of ``NA`` values placed in non-numeric columns. .. deprecated:: 2.2.0 skip_blank_lines : bool, default True If ``True``, skip over blank lines rather than interpreting as ``NaN`` values. parse_dates : bool, list of Hashable, list of lists or dict of {{Hashable : list}}, default False The behavior is as follows: * ``bool``. If ``True`` -> try parsing the index. Note: Automatically set to ``True`` if ``date_format`` or ``date_parser`` arguments have been passed. * ``list`` of ``int`` or names. e.g. If ``[1, 2, 3]`` -> try parsing columns 1, 2, 3 each as a separate date column. * ``list`` of ``list``. e.g. If ``[[1, 3]]`` -> combine columns 1 and 3 and parse as a single date column. Values are joined with a space before parsing. * ``dict``, e.g. ``{{'foo' : [1, 3]}}`` -> parse columns 1, 3 as date and call result 'foo'. Values are joined with a space before parsing. If a column or index cannot be represented as an array of ``datetime``, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an ``object`` data type. For non-standard ``datetime`` parsing, use :func:`~pandas.to_datetime` after :func:`~pandas.read_csv`. Note: A fast-path exists for iso8601-formatted dates. infer_datetime_format : bool, default False If ``True`` and ``parse_dates`` is enabled, pandas will attempt to infer the format of the ``datetime`` strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. .. deprecated:: 2.0.0 A strict version of this argument is now the default, passing it has no effect. keep_date_col : bool, default False If ``True`` and ``parse_dates`` specifies combining multiple columns then keep the original columns. date_parser : Callable, optional Function to use for converting a sequence of string columns to an array of ``datetime`` instances. The default uses ``dateutil.parser.parser`` to do the conversion. pandas will try to call ``date_parser`` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by ``parse_dates``) as arguments; 2) concatenate (row-wise) the string values from the columns defined by ``parse_dates`` into a single array and pass that; and 3) call ``date_parser`` once for each row using one or more strings (corresponding to the columns defined by ``parse_dates``) as arguments. .. deprecated:: 2.0.0 Use ``date_format`` instead, or read in as ``object`` and then apply :func:`~pandas.to_datetime` as-needed. date_format : str or dict of column -> format, optional Format to use for parsing dates when used in conjunction with ``parse_dates``. The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. See `strftime documentation `_ for more information on choices, though note that :const:`"%f"` will parse all the way up to nanoseconds. You can also pass: - "ISO8601", to parse any `ISO8601 `_ time string (not necessarily in exactly the same format); - "mixed", to infer the format for each element individually. This is risky, and you should probably use it along with `dayfirst`. .. versionadded:: 2.0.0 dayfirst : bool, default False DD/MM format dates, international and European format. cache_dates : bool, default True If ``True``, use a cache of unique, converted dates to apply the ``datetime`` conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. iterator : bool, default False Return ``TextFileReader`` object for iteration or getting chunks with ``get_chunk()``. chunksize : int, optional Number of lines to read from the file per chunk. Passing a value will cause the function to return a ``TextFileReader`` object for iteration. See the `IO Tools docs `_ for more information on ``iterator`` and ``chunksize``. {decompression_options} .. versionchanged:: 1.4.0 Zstandard support. thousands : str (length 1), optional Character acting as the thousands separator in numerical values. decimal : str (length 1), default '.' Character to recognize as decimal point (e.g., use ',' for European data). lineterminator : str (length 1), optional Character used to denote a line break. Only valid with C parser. quotechar : str (length 1), optional Character used to denote the start and end of a quoted item. Quoted items can include the ``delimiter`` and it will be ignored. quoting : {{0 or csv.QUOTE_MINIMAL, 1 or csv.QUOTE_ALL, 2 or csv.QUOTE_NONNUMERIC, 3 or csv.QUOTE_NONE}}, default csv.QUOTE_MINIMAL Control field quoting behavior per ``csv.QUOTE_*`` constants. Default is ``csv.QUOTE_MINIMAL`` (i.e., 0) which implies that only fields containing special characters are quoted (e.g., characters defined in ``quotechar``, ``delimiter``, or ``lineterminator``. doublequote : bool, default True When ``quotechar`` is specified and ``quoting`` is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive ``quotechar`` elements INSIDE a field as a single ``quotechar`` element. escapechar : str (length 1), optional Character used to escape other characters. comment : str (length 1), optional Character indicating that the remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter ``header`` but not by ``skiprows``. For example, if ``comment='#'``, parsing ``#empty\na,b,c\n1,2,3`` with ``header=0`` will result in ``'a,b,c'`` being treated as the header. encoding : str, optional, default 'utf-8' Encoding to use for UTF when reading/writing (ex. ``'utf-8'``). `List of Python standard encodings `_ . encoding_errors : str, optional, default 'strict' How encoding errors are treated. `List of possible values `_ . .. versionadded:: 1.3.0 dialect : str or csv.Dialect, optional If provided, this parameter will override values (default or not) for the following parameters: ``delimiter``, ``doublequote``, ``escapechar``, ``skipinitialspace``, ``quotechar``, and ``quoting``. If it is necessary to override values, a ``ParserWarning`` will be issued. See ``csv.Dialect`` documentation for more details. on_bad_lines : {{'error', 'warn', 'skip'}} or Callable, default 'error' Specifies what to do upon encountering a bad line (a line with too many fields). Allowed values are : - ``'error'``, raise an Exception when a bad line is encountered. - ``'warn'``, raise a warning when a bad line is encountered and skip that line. - ``'skip'``, skip bad lines without raising or warning when they are encountered. .. versionadded:: 1.3.0 .. versionadded:: 1.4.0 - Callable, function with signature ``(bad_line: list[str]) -> list[str] | None`` that will process a single bad line. ``bad_line`` is a list of strings split by the ``sep``. If the function returns ``None``, the bad line will be ignored. If the function returns a new ``list`` of strings with more elements than expected, a ``ParserWarning`` will be emitted while dropping extra elements. Only supported when ``engine='python'`` .. versionchanged:: 2.2.0 - Callable, function with signature as described in `pyarrow documentation `_ when ``engine='pyarrow'`` delim_whitespace : bool, default False Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be used as the ``sep`` delimiter. Equivalent to setting ``sep='\s+'``. If this option is set to ``True``, nothing should be passed in for the ``delimiter`` parameter. .. deprecated:: 2.2.0 Use ``sep="\s+"`` instead. low_memory : bool, default True Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set ``False``, or specify the type with the ``dtype`` parameter. Note that the entire file is read into a single :class:`~pandas.DataFrame` regardless, use the ``chunksize`` or ``iterator`` parameter to return the data in chunks. (Only valid with C parser). memory_map : bool, default False If a filepath is provided for ``filepath_or_buffer``, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead. float_precision : {{'high', 'legacy', 'round_trip'}}, optional Specifies which converter the C engine should use for floating-point values. The options are ``None`` or ``'high'`` for the ordinary converter, ``'legacy'`` for the original lower precision pandas converter, and ``'round_trip'`` for the round-trip converter. {storage_options} dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- DataFrame or TextFileReader A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. {see_also_func_name} : {see_also_func_summary} read_fwf : Read a table of fixed-width formatted lines into DataFrame. Examples -------- >>> pd.{func_name}('data.csv') # doctest: +SKIP c@eZdZUded<ded<ded<ded<ded<y ) _C_Parser_DefaultsLiteral[False]delim_whitespace Literal[True] na_filter low_memory memory_mapNonefloat_precisionN__name__ __module__ __qualname____annotations___/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/pandas/io/parsers/readers.pyr>r>s $$rMr>FT)r@rBrCrDrF_c_parser_defaultsc,eZdZUded<ded<ded<y) _Fwf_DefaultszLiteral['infer']colspecsz Literal[100] infer_nrowsrEwidthsNrGrLrMrNrQrQs LrMrQinferd)rRrSrT _fwf_defaults skipfooterrCrF>nrowscommentdialectquotingverbosedayfirstiterator chunksize thousands convertersrCrDrXlineterminatorrFr@skipinitialspacec"eZdZUded<ded<y)_DeprecationConfigr default_value str | NonemsgNrGrLrMrNrfrfs  OrMrf.cyNrLnamevalmin_vals rNvalidate_integerrprMcyrkrLrls rNrprprqrMcyrkrLrls rNrprp rqrMc||Sd|dd|d}t|r/t||k7r t|t|}t|St|r||k\s t|t|S)a Checks whether the 'name' parameter for parsing is either an integer OR float that can SAFELY be cast to an integer without losing accuracy. Raises a ValueError if that is not the case. Parameters ---------- name : str Parameter name (used for error reporting) val : int or float The value to check min_val : int Minimum allowed value (val < min_val will result in a ValueError) 'sz' must be an integer >=d)rint ValueErrorr)rmrnroris rNrprpsw$ { d1X,WQK 8C} s8s?S/ !#h s8Oo#.o s8OrMc|_t|tt|k7r tdt|ds&t |t j s tdyyy)aZ Raise ValueError if the `names` parameter contains duplicates or has an invalid data type. Parameters ---------- names : array-like or None An array containing a list of the names used for the output DataFrame. Raises ------ ValueError If names are not unique or are not ordered (e.g. set). Nz Duplicate names are not allowed.F) allow_setsz&Names should be an ordered collection.)lensetryr isinstancerKeysView)namess rN_validate_namesr/s[  u:SZ (?@ @ 5 1Zs||5TEF F6U 1 rMfilepath_or_buffercN|jddM|jdtjtjur|jddd|d<nd|d<|jdd}|jdd}|jd d k(r|r td |td t d|d }|jdd}t |jddt |fi|}|s|r|S|5|j|cdddS#1swYyxYw)zGeneric reader of line files. parse_datesN date_parser date_formatFTr_r`enginepyarrowz@The 'iterator' option is not supported with the 'pyarrow' enginezAThe 'chunksize' option is not supported with the 'pyarrow' enginerYr)getr no_defaultryrprTextFileReaderread)rkwdsr_r`rYparsers rN_readrGs(  xx t$, HH]CNN 3s~~ E-5"'D "&D xx E*Hd+I xxY& R   S %[)Q? HHWd #EDHHWd+,. 7$ 7FH "{{5!"""s DD$).sep delimiterheaderr index_colusecolsdtyperrb true_values false_valuesrdskiprowsrXrY na_valuesrBr]skip_blank_linesrinfer_datetime_format keep_date_colrrr^ cache_datesr` compressionradecimalrc quotecharr\ doublequote escapecharrZencodingencoding_errorsr[ on_bad_linesr@rCrDrFstorage_options dtype_backendrrc/yrkrL)0rrrrrrrrrrbrrrdrrXrYrrBr]rrrrrrr^rr_r`rrarrcrr\rrrZrrr[rr@rCrDrFrrs0 rNread_csvrvsnrM)/rrrrrrrrrbrrrdrrXrYrkeep_default_narBr]rrrrrrr^rr_rrarrcrr\rrrZrrr[rr@rCrDrFrrc0yrkrL1rrrrrrrrrrbrrrdrrXrYrrrBr]rrrrrrr^rr_r`rrarrcrr\rrrZrrr[rr@rCrDrFrrs1 rNrrprM)0rrrrrrrrrbrrrdrrXrYrrrBr]rrrrrrr^rr_r`rrarrcrr\rrrZrrr[rr@rCrDrFrrc0yrkrLrs1 rNrrrrMc0yrkrLrs1 rNrr)rrMrz8Read a comma-separated values (csv) file into DataFrame. read_tablez+Read general delimited file into DataFrame.z','decompression_options) func_namesummarysee_also_func_namesee_also_func_summary _default_seprr."stricterrorc0 n|tjur%tjdtt nd}tj |rod}1td|Dsd}1n2t|tr"td|jDrd}1|1r$tjdtt |tjur$tjdtt |+tjur%tjd tt nd}+|tjur%tjd tt nd}tj}2|2d =|2d =t|)||+|||*|d di|0 }3|2j|3t!||2S)NzThe 'keep_date_col' keyword in pd.read_csv is deprecated and will be removed in a future version. Explicitly remove unwanted columns after parsing instead. stacklevelFc32K|]}t|ywrkr.0xs rN zread_csv..s7a;q>7Tc3FK|]}tj|ywrk)rrrs rNrzread_csv..s 3 $%C  Q 3 s!zSupport for nested sequences for 'parse_dates' in pd.read_csv is deprecated. Combine the desired columns with pd.to_datetime after parsing instead.The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.z~The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version. Use ``sep='\s+'`` insteadz[The 'verbose' keyword in pd.read_csv is deprecated and will be removed in a future version.rrr,defaultsr)rrwarningswarn FutureWarningrrallr~dictanyvalueslocalscopy_refine_defaults_readupdater)4rrrrrrrrrrbrrrdrrXrYrrrBr]rrrrrrr^rr_r`rrarrcrr\rrrZrrr[rr@rCrDrFrrdeprr kwds_defaultss4 rNrrdsVCNN*  - ')     $7;77D  T *s3 )4););)=3 0 D  MM)+-  CNN2  3 ') s~~-  N ')  !cnn$  3 ')   8==?D !" U )  s## M KK  #T **rM)/rrrrrrrrrbrrrdrrXrYrrrBr]rrrrrrr^rr`rrarrcrr\rrrZrrr[rr@rCrDrFrrc0yrkrLrs1 rNrrjrMc0yrkrLrs1 rNrr?rrMc0yrkrLrs1 rNrrxrrMc0yrkrLrs1 rNrrrrMz'\\t' (tab-stop)c0 |tjur%tjdtt nd}tj |r6td|Ds$tjdtt |tjur$tjdtt |+tjur%tjdtt nd}+|tjur%tjdtt nd}tj}1|1d =|1d =t|)||+|||*|d d i|0 }2|1j|2t||1S)NzThe 'keep_date_col' keyword in pd.read_table is deprecated and will be removed in a future version. Explicitly remove unwanted columns after parsing instead.rFc32K|]}t|ywrkrrs rNrzread_table..@s0UAQ0UrzSupport for nested sequences for 'parse_dates' in pd.read_table is deprecated. Combine the desired columns with pd.to_datetime after parsing instead.rzThe 'delim_whitespace' keyword in pd.read_table is deprecated and will be removed in a future version. Use ``sep='\s+'`` insteadz]The 'verbose' keyword in pd.read_table is deprecated and will be removed in a future version.rrr r) rrrrrrrrrrrrr)3rrrrrrrrrrbrrrdrrXrYrrrBr]rrrrrrr^rr_r`rrarrcrr\rrrZrrr[rr@rCrDrFrrrrs3 rNrrsZTCNN*  - ')     $S0U0U-U  % ')  CNN2  3 ') s~~-  N ')  !cnn$  3 ')   8==?D !" U )  t$# M KK  #T **rM)rRrTrSrr`c yrkrLrrRrTrSrr_r`rs rNread_fwfrrM)rRrTrSrr_c yrkrLrs rNrrrrM)rRrTrSrr_r`c yrkrLrs rNrrrrMc P| | td|dvr | td|&gd}}|D]} |j||| zf|| z }|J|jd} | t| t|k7r||dk7rwd} |jd.|jd} | durt | sd } n t| } |jd %t| | zt|k7r td ||d <||d <d|d<||d<||d<t |||d<t ||S)aB Read a table of fixed-width formatted lines into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools `_. Parameters ---------- filepath_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a text ``read()`` function.The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.csv``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser determine the `colspecs`. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or TextFileReader A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. Examples -------- >>> pd.read_fwf('data.csv') # doctest: +SKIP z&Must specify either colspecs or widths)NrUz4You must specify only one of 'widths' and 'colspecs'rrrUrFrrz-Length of colspecs must match length of namesrRrS python-fwfrr_r`r)ryappendrr|rrr) rrRrTrSrr_r`rcolwr len_indexrs rNrrsnLFNABB&6+=OPPA# A OOS#'N + 1HC     HHW E  u:X &8w+>Ixx $0!%+!6 E)' 2$% $' N xx "*s5zI/EX/V !PQQD%D!DND!D &)D #T **rMceZdZdZ d ddZddZddZddZ ddZddZ d dd Z dd Z ddd Z ddd Z dd Z ddZy)rzF Passed dialect overrides any of the related parser options Nc |d}nd}d}||_|jd||_t|t |}||dk(r t dt ||}|jdddk(r|jd d nd|d<||_d |_|j|}|jd d|d <|jd d|_ |jd d|_ |j|||j||\|_|_d|vr|d|jd<d|_|j#||j|_y)NTpythonFengine_specifiedrz?The 'dialect' option is not supported with the 'pyarrow' enginerrUrrrr`rYhas_index_names)rr_engine_specified_validate_skipfooter_extract_dialectry_merge_with_dialect_properties orig_options_currow_get_options_with_defaultspopr`rY_check_file_or_buffer_clean_optionsoptionshandles _make_engine_engine)selffrrrr[rs rN__init__zTextFileReader.__init__'sd  # F$  !%*<>N!OT""4(  " U2'4@D 88Hg &' 1"&((7"3";QDN  11&9%)XX.?%F!" [$7[[$/  ""1f-$($7$7$H! dk  $.23D.EDLL* +)- ((DKK8 rMc|j|jj|jjyrk)rcloserrs rNrzTextFileReader.closeVs, << # LL    rMc P|j}i}tjD]V\}}|j||}|dk(r5|tvr-||k7r(|t |d|k7rt dt|d|||<XtjD]]\}}||vrM||}|dk7rE||k7r@d|vr |tvrn3d|vr |tvrn&t dt|dt|d|}|||<_|d k(r1tjD]\}}|j||||<|S) NrvaluezThe z2 option is not supported with the 'pyarrow' enginecrz" option is not supported with the z enginer) rr(itemsr_pyarrow_unsupportedgetattrryreprrO_python_unsupportedrW)rrrrargnamedefaultrs rNrz)TextFileReader._get_options_with_defaults[s}  !0 5 5 7 % GWHHWg.E)#33W$WUGW== 4=/*'( %GG  % !3 8 8 : % GW$W S=Ug%56)g=P.P"f,@T1T("4=/1S#F|nG5  $GG # %& \ !$1$7$7$9 > #'88GW#=  >rMcVt|r|dk7rt|ds tdyyy)Nr__iter__zt | ttfr(t| d k(rt| dkDr |dvrd|d}d}|r|jr t||dk(rtD]} || =d|vrFtD]=} |r6|| tj| k7rtd|dt!| d|| =?|r(t#j$d|dt&t)|d} |d} |d } |d!}|d"}t+|d#| d ur td$t-| r(t | t.t0t2j4fs| g} | |d<| t/| n| } | 1t | t6s#t9d%t;| j<i} |d&}|d'k7}t?|||(\}}|d'k(rtA|sO|Mtd)tA|rt/tC|}| tE}ntG|s tE|}| |d<| |d <||d!<||d*<||d"<||fS#t $rd}YMwxYw)+NrrXrz*the 'c' engine does not support skipfooterrrr@)rrzthe 'z>' engine does not support sep=None with delim_whitespace=Falserz\s+T)rrzr' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex)utf-8Fzthe separator encoded in z is > 1 char long, and the 'z)' engine does not support such separatorsrzNord(quotechar) > 127, meaning the quotechar is larger than one byte, and the 'z)' engine does not support such quotecharsz,Falling back to the 'python' engine because z, but this causes z= to be ignored as it is not supported by the 'python' engine.z;; you can avoid this warning by specifying engine='python'.rrrrbrrrz)The value of index_col couldn't be 'True'z8Type converters must be a dict or subclass, input was a rr)floatifyz@skiprows argument must be an integer when using engine='pyarrow' na_fvalues)$rr|sysgetfilesystemencodingencodeUnicodeDecodeErrorr~strbytesordrry_c_unsupportedr rOrr rrrrr$r'listtuplenpndarrayr TypeErrortyperH_clean_na_valuesrranger}callable)rrrresultfallback_reasonrr@ encodeablerrargrrrbrrrrrs rNrzTextFileReader._clean_optionss4 S=|$q("N!k""#56 ;/))F8$;; " _SA}-1)*;'77F8$FF " 6!&,{# _J002=gH #szz(+,q0!&J&0H"H/z:228:77 "K(  Z C<%HI!# NS(":: &x'PR " t55_- - S=% 3K  v * "vc{6H6L6LS6Q'Q$F*++=d3i[IQQ 3K   MMB&'(''+- K(  \* K( :&GH-.  HI I  "i$rzz)BC&K '{$0U e  !j$/##' #3#<#<"=? J""34Y& 0 !  : Y h'H,@ ' (#h05h'x= w)|'{)|%zv~]& #"  #sK66 LLc` |jS#t$r|jwxYwrk) get_chunk StopIterationrrs rN__next__zTextFileReader.__next__1s/ >># #  JJL  s-c ttttd}||vr t d|d|j dt |tsd}d}|dk(rd}d }nH|d k(rC|jjd d d k(r$t t|tr d}d |vr|d z }t|||jjd d|jjdd|jjdd||jjdd|jjdd|_ |jJ|jj}n|dk7rdt|}t | |||fi|jS#t $r(|j|jj#wxYw)N)rrrrzUnknown engine: z (valid options are )TrrFrbrrrbrrDrrr)rrrDis_texterrorsrrz)Invalid file path or buffer object type: )r)r+r%r*rykeysr~rrrr#rr"rhandler$ Exceptionr)rrrmappingr5moderis rNrzTextFileReader._make_engine8s  ")/ 0   "6(*>w||~>NaP !T"GD"# LL$$Z9WD~a0#6 d?CKD%))*d; LL,,]DA<<++L%@||''(98D $ 0 01BD I DL<<+ ++ ##A x =d1gYGCS/ ! "76?15 5 5 ||' ""$  s F1Gct|rk)rrs rN_failover_to_pythonz"TextFileReader._failover_to_pythonps !$''rMcF |jdk(r |jj}|St d|} |jj|\}}}|T|rOt tt|j}t|j|j|z}nd}n t |}t|dr|jjdd nd t t rt#d}|j% n> :t' t(j*t(j,fvrt# fd}nd}|bi}|j/D]L\} } t'|| t(j*t(j,fvr|| nd} t1| || d || <Nn|}t3|||t5 }|xj|z c_ |S#t$r|j wxYw#t$r|j wxYw) NrrYrrrcyrkrLrLrMrNz%TextFileReader.read..srMcSrkrL) dtype_argsrNr@z%TextFileReader.read..sIrMF)indexrr)columnsrCr)rrrr9rrpr|nextiterrrrrrrr~rrrrr!str_object_rrrr) rrYdfrCrDcol_dictnew_rowsr new_col_dictkvrwrBs @rNrzTextFileReader.readss ;;) # \\&&(B y%We4E  LL%% }"4X__->(?#@AH&t||T\\H5LME Hu:t^, --11'4@  )T*#L1 Y'&< +B G,$$56 ! $NN,RDAq(a1bggrzz5JJa! '-Qe15&QLO R ( ,.. B LLH $L A      sG'H'HH c| |j}|jB|j|jk\rtt ||j|jz }|j |S)N)rY)r`rYrr.minr)rsizes rNr-zTextFileReader.get_chunksZ <>>D :: !||tzz)##tTZZ$,,67Dyyty$$rMc|SrkrLrs rN __enter__zTextFileReader.__enter__s rMc$|jyrk)r)rexc_type exc_value tracebacks rN__exit__zTextFileReader.__exit__s rMrk)rz;FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | listrCSVEngine | NonereturnrE)rZrE)rr2rZdict[str, Any])rr2rZrE)rr[rr2rZz tuple[dict[str, Any], CSVEngine])rZr)r)rz@FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list | IOrr2rZr&)rY int | NonerZr)rQr\rZr)rZr8)rUztype[BaseException] | NonerVzBaseException | NonerWzTracebackType | NonerZrE)rHrIrJ__doc__rrrrrr/rr=rr-rSrXrLrMrNrr s$(-9 F-9!-9  -9^ -^ Z%Z/8Z )Zx 6 K66  6p(EN%,((   rMc"d|d<t|i|S)a Converts lists of lists/tuples into DataFrames with proper type inference and optional (e.g. string to datetime) conversion. Also enables iterating lazily over chunks of large files Parameters ---------- data : file-like object or list delimiter : separator character to use dialect : str or csv.Dialect instance, optional Ignored if delimiter is longer than 1 character names : sequence, default header : int, default 0 Row to use to parse column labels. Defaults to the first row. Prior rows will be discarded index_col : int or list, optional Column or columns to use as the (possibly hierarchical) index has_index_names: bool, default False True if the cols defined in index_col have an index name and are not in the header. na_values : scalar, str, list-like, or dict, optional Additional strings to recognize as NA/NaN. keep_default_na : bool, default True thousands : str, optional Thousands separator comment : str, optional Comment out remainder of line parse_dates : bool, default False keep_date_col : bool, default False date_parser : function, optional .. deprecated:: 2.0.0 date_format : str or dict of column -> format, default ``None`` .. versionadded:: 2.0.0 skiprows : list of integers Row numbers to skip skipfooter : int Number of line at bottom of file to skip converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the cell (not column) content, and return the transformed content. encoding : str, optional Encoding to use for UTF when reading/writing (ex. 'utf-8') float_precision : str, optional Specifies which converter the C engine should use for floating-point values. The options are `None` or `high` for the ordinary converter, `legacy` for the original lower precision pandas converter, and `round_trip` for the round-trip converter. rr)r)argsrs rN TextParserr`sjDN 4 (4 ((rMc|!|rt}n t}t}||fSt|tr|j }i}|j D],\}}t |s|g}|rt|tz}|||<.|j Dcic]\}}|t|}}}||fSt |s|g}t||}|r |tz}t|}||fScc}}wrk) rr}r~rrrr_floatify_na_values_stringify_na_values)rrrr old_na_valuesrMrNs rNr%r%s  %IIU 6 j  5 It $!(  "'') DAq?CF]*IaL =FOO> ! 9SM%9 ^c/UVV!S^^3DDM Ycnn< ?  D 0  CNN")[%[ #'  X#(  w)==CC^  )==BB^  )==BB^ ,  . .2  ,^9\N2NOPP &)D KrMc|jdy|d}|tjvrtj|}t ||S)za Extract concrete csv dialect instance. Returns ------- csv.Dialect or None r[N)rcsv list_dialects get_dialect_validate_dialect)rr[s rNrrsK xx "9oG###%%//'*g NrM)rrrrdrr\cPtD]}t||rtd|dy)zx Validate csv dialect instance. Raises ------ ValueError If incorrect dialect is provided. zInvalid dialect z providedN)MANDATORY_DIALECT_ATTRSrry)r[params rNrxrxs4)Dw&/y BC CDrMcv|j}tD]}t||}t|}|j ||}g}|||fvr4d|d|d|d}|dk(r|j dds|j ||r3tjdj|tt |||<|S) a Merge default kwargs in TextFileReader with dialect parameters. Parameters ---------- dialect : csv.Dialect Concrete csv dialect. See csv.Dialect documentation for more details. defaults : dict Keyword arguments passed to TextFileReader. Returns ------- kwds : dict Updated keyword arguments, merged with dialect parameters. zConflicting values for 'z': 'z+' was provided, but the dialect specifies 'z%'. Using the dialect-specified value.rrlFz r) rrzr r(rrrrrjoinrr) r[rrr{ dialect_valparser_defaultprovided conflict_msgsris rNrr s& ==?D("gu- (/88E>2  NK8 8*5'hZ@88C}E55 [(TXXne-L$$S)  MM M*MFVFX "U ;"< KrMc|jdrJ|jds|jdr td|jdr tdyy)a Check whether skipfooter is compatible with other kwargs in TextFileReader. Parameters ---------- kwds : dict Keyword arguments passed to TextFileReader. Raises ------ ValueError If skipfooter is not compatible with other parameters. rXr_r`z('skipfooter' not supported for iterationrYz''skipfooter' not supported with 'nrows'N)rry)rs rNrr= sU xx  88J 488K#8GH H 88G FG G rM).)rmrrnrErorxrZrE)rmrrnrfrorxrZrx)rmrrnr\rorxrZr\)r)rmrrnzint | float | NonerorxrZr\)rzSequence[Hashable] | NonerZrE)r4FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str]rZDataFrame | TextFileReader)`rrrstr | None | lib.NoDefaultrrr-int | Sequence[int] | None | Literal['infer']r)Sequence[Hashable] | None | lib.NoDefaultr"IndexLabel | Literal[False] | Nonerr:rDtypeArg | NonerrYrb"Mapping[Hashable, Callable] | Noner list | Nonerrrdboolr3list[int] | int | Callable[[Hashable], bool] | NonerXrxrYr\rLHashable | Iterable[Hashable] | Mapping[Hashable, Iterable[Hashable]] | NonerBrr]bool | lib.NoDefaultrrr bool | Sequence[Hashable] | NonerrrrrCallable | lib.NoDefaultr str | dict[Hashable, str] | Noner^rrrr_rAr`r\rr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[str | csv.Dialect | Noner@rrCrrDrrF Literal['high', 'legacy'] | Nonerr9rDtypeBackend | lib.NoDefaultrZr)brrrrrrrrrrrrrr:rrrrYrbrrrrrrdrrrrXrxrYr\rrrrrBrr]rrrrrrrrrrrrrr^rrrr_rr`rxrr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[rr@rrCrrDrrFrrr9rrrZr)brrrrrrrrrrrrrr:rrrrYrbrrrrrrdrrrrXrxrYr\rrrrrBrr]rrrrrrrrrrrrrr^rrrr_r?r`rErr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[rr@rrCrrDrrFrrr9rrrZr)brrrrrrrrrrrrrr:rrrrYrbrrrrrrdrrrrXrxrYr\rrrrrBrr]rrrrrrrrrrrrrr^rrrr_rr`r\rr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[rr@rrCrrDrrFrrr9rrrZr)drrrrrrrrrrrrrr:rrrrYrbrrrrrrdrrrrXrxrYr\rrrrrBrr]rrrrrrrrrrrrrr^rrrr_rr`r\rr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[rrrr@rrCrrDrrFrrStorageOptions | NonerrrZr)brrrrrrrrrrrrrr:rrrrYrbrrrrrrdrrrrXrxrYr\r2Sequence[str] | Mapping[str, Sequence[str]] | NonerrrBrr]rrrrbool | Sequence[Hashable]rrrrrrrrr^rrrr_rAr`r\rr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[rr@rrCrrDrrFrhrr9rrrZr)brrrrrrrrrrrrrr:rrrrYrbrrrrrrdrrrrXrxrYr\rrrrrBrr]rrrrrrrrrrrrrr^rrrr_rr`rxrr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[rr@rrCrrDrrFrhrr9rrrZr)brrrrrrrrrrrrrr:rrrrYrbrrrrrrdrrrrXrxrYr\rrrrrBrr]rrrrrrrrrrrrrr^rrrr_r?r`rErr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[rr@rrCrrDrrFrhrr9rrrZr)brrrrrrrrrrrrrr:rrrrYrbrrrrrrdrrrrXrxrYr\rrrrrBrr]rrrrrrrrrrrrrr^rrrr_rr`r\rr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[rr@rrCrrDrrFrhrr9rrrZr)drrrrrrrrrrrrrr:rrrrYrbrrrrrrdrrrrXrxrYr\rrrrrBrr]rrrrrrrrrrrrrr^rrrr_rr`r\rr1rarhrrrcrhrrr\rxrrrrhrZrhrrhrrhr[rrrr@rrCrrDrrFrhrrrrrZr)rrrR&Sequence[tuple[int, int]] | str | NonerTSequence[int] | NonerSrxrrr_rAr`r\rZr)rrrRrrTrrSrxrrr_rr`rxrZr)rrrRrrTrrSrxrrr_r?r`rErZr)rrrRrrTrrSrxrrr_rr`r\rZr)rZr)TT)rrrr)rr)r[rrrr@rrrYrrrzstr | Callablerrrr[rr)rr[rZzcsv.Dialect | None)r[ csv.DialectrZrE)r[rrr[rZr[)rr[rZrE)wr] __future__r collectionsrrrurtextwraprtypingrrr r r r r rrnumpyr!pandas._configr pandas._libsrpandas._libs.parsersr pandas.errorsrrpandas.util._decoratorsrpandas.util._exceptionsrpandas.util._validatorsrpandas.core.dtypes.commonrrrrrrpandasrpandas.core.framerpandas.core.indexes.apirpandas.core.shared_docsr pandas.io.commonr!r"r#r$&pandas.io.parsers.arrow_parser_wrapperr%pandas.io.parsers.base_parserr&r'r("pandas.io.parsers.c_parser_wrapperr)pandas.io.parsers.python_parserr*r+collections.abcr,r-r.r/typesr0pandas._typingr1r2r3r4r5r6r7r8r9r:r}sorted_doc_read_csv_and_tabler>rOrKrQrWrr r rfrprrrformatr QUOTE_MINIMALrrIteratorrr`r%rbrcrrrzrxrrrLrMrNrs! #    ..-47'.0 F >  $   {x 6;;vm, -rVLy|Mzl{i\  *&I -4CSWX }X#%67*        89 &14@G0+"L+"+"^ '*,/?6@A6BC6D$E6FG6HI6JK6LM6NO6PQ6RS6TU6VW6X Y6Z&[6^+_6`a6bc6d6e6f$g6h0i6jk6 6t '*,/?7@A7BC7DE7F$G7HI7JK7LM7NO7PQ7RS7TU7VW7XY7Z [7\&]7`+a7bc7de7f6g7h$i7j0k7lm7 7v '*,/?7@A7BC7DE7F$G7HI7JK7LM7NO7PQ7RS7TU7VW7XY7Z [7\&]7`+a7bc7de7f6g7h$i7j0k7lm7 7v '*,/?7@A7BC7DE7F$G7HI7JK7LM7NO7PQ7RS7TU7VW7XY7Z [7\&]7`+a7bc7de7f6g7h$i7j0k7l m7 7t ""J'K$%67*+BC #  '*nn,00?R+@(AR+B*CR+D2ER+FGR+HIR+LMR+NOR+R$SR+TUR+VWR+XYR+Z[R+\]R+^_R+`aR+bcR+deR+f gR+h&iR+lmR+p+qR+rsR+tuR+v6wR+x+yR+z0{R+| }R+ R+l '*,/?4@$A4BC4DE4FG4HI4JK4LM4NO4PQ4RS4T U4V&W4Z[4\]4^_4` a4b$c4d0e4fg4 4p '*,/?4@$A4BC4DE4FG4HI4JK4LM4NO4PQ4RS4T U4V&W4Z[4\]4^_4` a4b$c4d0e4fg4 4p '*,/?4@$A4BC4DE4FG4HI4JK4LM4NO4PQ4RS4T U4V&W4Z[4\]4^_4` a4b$c4d0e4fg4 4p '*,/?4@$A4BC4DE4FG4HI4JK4LM4NO4PQ4RS4T U4V&W4Z[4\]4^_4` a4b$c4d0e4f g4 4n ""=% F($%67*+BC #  "'*nn,02?F+@AF+BCF+FGF+HIF+L$MF+NOF+PQF+RSF+TUF+VWF+XYF+Z[F+\]F+^_F+` aF+b&cF+fgF+j+kF+lmF+noF+p qF+r+sF+t0uF+v wF+ F+R 8;#&25 L 5  !    0       8;#&25 L 5  !    0       8;#&25" L 5  !    0      "8?#'25.. p+Lp+5p+ ! p+  p+ 0 p+p+p+ p+flS\\l^ 6)r"!J 6C %C)CC  C $ C ! C 5CC0CL( D3 333lHrM