ELF>@hJ@8 @&&,,,66$<4<4<WP<P=P=888$$Ptdw9w9w9$W$WQtdRtd$<4<4<PPGNUtsBDGHIJKPQRSTV[\]^abcfghjlmoprstwxyz{}   !#$%'+,-./234589<=>@ABDIJLNOPRTUVXYZ[]^_`bcdehinqrsvwyz{|}~   !$%')+,.01368:;<>@BCDHKMNQTUVXZ[]^`abefc'kjn<ɛPtP@rE=πT(1XPځ4NOQvV:)،14zыsBa9О۬( jМY^-w#:ARf9H*feHHͨ [u @e)̢sSIP)MHa(A^*LfF#y)')&;T2ǬD2ly4u+TPlz(u| ٱQ?T eƶeB-rswoMDx|dnz-mF-~j_?=+ 6+(w|N X㠳ڟYƠD $/6C#[p: s fr Oy4huS˷(%/w-:/`ʓq^6~P::5Rifbps"[j} TzW^S)̔Vg}cJl~as'},=4I\~a%;DžC*kzb3\|]AoS/ WQ<3h.!cL2*ODd 3 6 BN][a=IT>ID,{@m:]4hاqQ?hE}~K_kW "4K1avR?UB 1`5 ؼONǑyޖǚA +!k0=*;s 00w{>[ϙ)¼ SMN~ q|2%$ GKbq$X= %kV5S~Ibk GKhxt?F%>5xe!޲~lEtho@mK_lox\W8ghsazɨq8VAUyx&g3S0 +&Y#yaGRmakTp ` 6#aWP~.;mHŦa+،=tW~I>Wĕ וKKx@ hH5&Go3poK_ @lsE~KEiZOիMy۳D۞k#*E \,j'O f 뜊Gw#Do]qHgb+4qlWfűYHÁf|=!h d~W0c'.cjm AI3G5@˦liz(w4$TuoǞm9w#Uͪ=e!2Ryv M%K42߳DV ŝMkWz'o "rLWF#u P(bpq5aN-(8 /3GPny+=pВY4n+<[gj 7 rc'ogj"יqm9j-*Ykp ˞ .UGw#ѪBybeF zޜ np4օ-+rF;boSaUuVyW:DZk=.7ylE+C80&#'$oQxw:Vio$K}\c H0H_etTkiUse1 +t8\0=saL<HcO9pAma j=M[PNkpmolcCf#EOm<ʢ=aOLBX< ƨ  MIt-BZ-kP6HhpJ<_Kn}rgoҝKPC.I\Aj4fMK@fo2/fMn k,mL&@qډMHAv͘7=6e#J͗0fq ZfbcxWgY;KAJoVT?hnvCL|\2}ͤ"KLsyM"+ueo,LJWpBIۣvOqXPմo KbNF<l{ivzwQHvg}K!uik:dxOiOr\8M_x.2]0wH%e"rkgI'=ѠO"ncjϞr"HJO>PH1OptmY\fgJnIMtYJ||sH>peZ5I}HNsisZ9 < kwplImeryoc{kcJ`c0i$ѱuIFnzu`hFyriN]j0oj7!x_uKeme\Qs&faP(p;"g d0Pjt1Vuwg a0Yn|hxnH sYMkwID\O, ooԮh(w?.cMJePQw I2wiKix]BilJdNle pO]p~<nflL\J] mMiP4]:vrl@[n0x6I Zej[d!qk%s2<nk?O iL<e}e3O5`cŲl<LBHmKsy0jQ&t\<؎Ma8vu " `," M,-4" +,`%" ,#!<{" ,s" 0," ,>" `", w" , !! g9" @,x" L,Vb" P(,@" +,X" h,!4!8<.!`<!< !x<U " " ,L" @+,7" !, S" ," ,]" ,G/!x<!! h9'" ,!=8R" ," u,uA$" ,/!=8" p," ,)-! o9E[" `,Z!=8Z" %, ME" #, o" , " ,*!p=8" *,˕!< #" p,T3" P , !" ,P " e,+<" !, M" @$,.!H<9" p!, 5! s9ZE" #, " *,\" +,*!<" 0," /,8 !P< <3!<" Pm,!!< 8" B,}@?8" F,Զ" d,D" p#, >" ," +,k" ,~!" ,+! @n9L" ,Y" J,*" .,f8" h,!." ,k" ,<" !, " ,`" @," P,! g9" ,1" ," u,u!<" -,QP!@=8" ,t" `+,A" ,6" , c" (,N " ," ,! d9- #!x<1" , >'!@<Թ" e, " p,[!<" 01,u:" ," `+,|S @" `R,m!<&" ,n" 0, :!<R^! f9$" 0,t" l,!A" ", k " p,ߕ" P?,RY" 0%,@v" i,|4" , w" PE," d,?+! m9L/" , " ,/0! p9H" J,)" , Ђ" +,X]" %," .,fa.! o9K?" P,u" , " ,Q @n " `7,x" ,+" Б," P,+!X=8$" ," +," -,QB|?8" ,B" #, !`<5" `,G" =,U!=8v" ," ,<" ," ,!`<+ " p,A"" ,;" !, ! 0g9!=8!" ,&! j9c[" %, " D,,+!<;%! @j9g*! m9K" ,Ac" 0),N!! h9z^" &,7 " `," l,! 9" P!, " P9,Y" P?," ,! c9/e" ,J" @,c:" PE," ,nE" #, ^ " ,/" ,5" , 3! e92-" @,L" ,3! <" ," P,uU !"X" 2,i! d9}N" ,Q " Б,/G" #, C" @#, ǔ!< !<" ," ," ,>"! h9" f," ," ,u" <,[X!< 6" Ѝ,XI" ,!!" ,kD" `#, " , [" %, x8" 0!, ,! n9Q? " ,>" P", |!=8" e,!Щ" [,W!< Ȗ" D,," ,!!<8" g,&! @k9[T $=" ", ]:! v9G" p," I!" ," @,CF" #, <" ", a" 4,y" ,!|x!<" ,uN" $," ,}?8" q,V !+" ," +,\7!<)" ,/,!<" ,U" б,2R P" g," ,D" ,,F" f,l!`=8%" `,5" , " p5, " 0Y," <," B,, !(=8" ," ,Y" ," +,3." p,Z"! ph9^" ,!<.! p9D~~?8,!!<8" @!, P o" S,p" e,!% !(<8!<" ,k*" ,7! u9V" ,{0!< " ,%" p,2" @ , 6!0=8g!=8" i,z?8"" ,٦!P<0 " p,A# " ,q" ,' " ,,!<" 0v,0" ,!=8s!=8B! e9Ak! d9/" , -! `o9OG" P,+ " ,9" `!, D" P#, " P,"U !M+" ,.{?8+" P," H,P z?8*" ," ,!V !" 0,$!<" V,"" ,z" B,," ,x#! i9;!p< [" %, " ,Y-" p," ,(! `l9C-" ,_! @f9(1! q9HHT !x=8?" ", " S," a," ,!p<U !B~?8" 0,Q @o " ,)!<" ,U" ,1!<," 0,Y! e9-:" !, b" (,N>" @8,%" , " ,"$! i93KQ @rR p#" P,:" !, `" ',@ " ,:!<" 0,o!=8," @,C" ,XK@" ", @2" , |?7!0< 7! t9O{?8;"!<l!! g9x&!(<" ,%!<" V,c8! `u9SN)" ,-=" ", " ,c" ," ,ÿ" n,!@<80! @q9^1"  , ! g9Ǫ" ^," 0,X" `," ,'!X<r-!0<" ,W" $,8f" ," ,~@?8" ,,! =8]" P&,77" , 8!<#" @," ,9K s " ," ,iR 0!=8" pe,! " @,#! @i9:" p,YȌ" 2,A" ,b" @,R*!<< " P," P,a" ,}," @," 0,I" ,j" >,"! Ph9" ," l,s!=82" 0 , B" #, F" #, !P=83" ` , !=8" 0,T9" , " @,!h=8S `b" y, " n," ," ,{" n,R#!<֋" 1,`" h," p," ^,(" m,u" ,2!<=" 0", !!<ۇ!=8" ," ,,#! h9"&" 0," ,l`" P',@@" ", }" pe,!" p,f@" ", K " @,@?" p", S p"! h9m" p,Y!=8Y v91!=84! s9V>C" 0#, " ,i'" @,0" , " P,BA" ", a" (,@A" ", ?U `!;" P,)1!<" +," ," p+,3" P=," ,MZ" p%, ɽ" l,sM!(<(!<" ,W" ,ROV P"3B" #, 8" !, |@?8l" ,i" ," P,E(! l9NW" $,8x" h,!=86!<" 1,`" ,վ" m,u" *," p*,!61" , ;4! s9XV !g" ," ,! f94q" .,2! `r9YQ-" P,9! v9M(;" !, ! g9!!<" ,h" p,f#" A,};" !, " P,=>" *,4" `,*! m9K" ,/! p9L!=8aa" ',@ш!=8! `g9. " P=,=>" @", _" P,I6" , Q" v,U" ,f9!<." ,U !ʍ" 6,aU pN"" ,:" ,6!h<"!<4" , V !  (!p</" 3,d" *,q" @, B" p,DN" `$,1~" p*,!Y7" !, " `,*" ,:" !, " ,d" ),8!<T "e!<8," `,Y!< /!<O" .,؀" +," *,Y$! i9m !H=8" ," 0@, " `," M,-0&" ,R P ~?8{?8M5!P<#2! r9Z}V p!I" $,?" ", E" ,6" @,ܫ!8=8" `, !=8$" ,0)!<'" `,3! r9M _! f9.e! g9r " ," 0+,x"!(<25" , " ," v,2(" p,0" , '! k9P! @e99G" #,6i!<" ," ,9! u9Q0" , " `,Mz@?8" ,w)! l9B5" ,(" ,&" 0+,k{?8M" 0, " ,;_" &,7&N" @$," ,k" P,c6! @t9Oq" u,`x!<4" p , _" ',@T !" `,(" ,!=8z?8z?8" +," I;" 0@," Pm,!__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_ZNKSt18bad_variant_access4whatEv_ZNK5arrow6Device9device_idEv_ZNK5arrow9CPUDevice11device_typeEv_ZNK5arrow12ArrayBuilder6lengthEv_ZNK5arrow13ExtensionType10byte_widthEv_ZNK5arrow13ExtensionType9bit_widthEv_ZNK5arrow16DictionaryScalar4dataEv_ZNK5arrow16DictionaryScalar4viewEv_ZN5arrow17RecordBatchReader5CloseEv_Py_NoneStruct_Py_TrueStruct_Py_FalseStruct_ZNSt17_Function_handlerIFN5arrow6ResultISt10shared_ptrINS0_13MemoryManagerEEEEilEPS6_E9_M_invokeERKSt9_Any_dataOiOl_ZNSt17_Function_handlerIFvP7_objectRKSt10shared_ptrIN5arrow6BufferEEPS5_EPS9_E9_M_invokeERKSt9_Any_dataOS1_S7_OS8__ZNSt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZN5arrow4util12CodecOptionsD2Ev_ZN5arrow4util12CodecOptionsD1Ev_ZNSt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZNSt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EED2Ev_ZNSt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EED1Ev_ZNSt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEvPyBaseObject_TypePyExc_TypeErrorPyErr_FormatPyExc_ValueError_ZN5arrow4util12CodecOptionsD0Ev_ZdlPvm_ZNSt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZNSt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EED0Ev_ZN5arrow17LoggingMemoryPoolD0Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZN5arrow3ipc14DictionaryMemoD1EvPyGILState_EnsurePyErr_OccurredPyGILState_ReleasePyUnicode_FromFormat_Py_DeallocPyArg_ValidateKeywordArgumentsPyDict_NextPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyExc_SystemErrorPyErr_SetStringPyObject_GetAttrPyObject_SetAttrPyObject_VectorcallPyDict_NewPyList_AppendPyDict_SizePyDict_ContainsPyDict_UpdatePyExc_DeprecationWarningPyErr_WarnFormatPyLong_TypePyLong_AsLongPyExc_OverflowErrorPyLong_FromSsize_t_ZN5arrow2py12PyReleaseGIL18unique_ptr_deleterEP3_tsPyEval_RestoreThreadPyUnicode_TypePyObject_Format__cxa_rethrow__cxa_begin_catchPyExc_MemoryError__cxa_end_catchPyExc_IOErrorPyExc_IndexErrorPyExc_ArithmeticErrorPyExc_RuntimeError_Unwind_Resume__gxx_personality_v0PyCapsule_NewPyDict_SetItemPyUnicode_FromString_Z37__pyx_CommonTypesMetaclass_get_moduleP7_objectPvPyType_IsSubtypePyType_TypePyObject_RichCompareBoolPyLong_AsUnsignedLongPyObject_InitPyObject_GC_Track_PyObject_GC_NewPyObject_GetAttrStringPyDict_SetItemStringPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyThreadState_GetPyFrame_NewPyObject_ClearWeakRefsPyObject_CallFinalizerFromDeallocPyObject_GC_IsFinalized_ZN5arrow3gdb11TestSessionEvPyImport_AddModulePyUnicode_InternFromStringPyEval_GetBuiltinsPyUnicode_FromStringAndSizePyObject_GetItemPyObject_IsTruePyObject_GC_UnTrackPyTuple_NewPyDict_SetDefaultPyBytes_FromStringAndSizePyBytes_AsStringPyUnstable_Code_NewWithPosOnlyArgs_ZNSt18bad_variant_accessD2Ev_ZTVSt18bad_variant_access_ZNSt9exceptionD2Ev_ZNSt18bad_variant_accessD1Ev_ZNSt18bad_variant_accessD0EvPyModule_AddObject_ZNK5arrow4util5Codec17compression_levelEv_ZN5arrow4util5Codec26UseDefaultCompressionLevelEvPyList_NewPyType_ModifiedPyObject_HasAttrPyObject_CallMethodObjArgsPyInterpreterState_GetIDPyExc_ImportErrorPyModule_NewObjectPyModule_GetDictPyNumber_IndexPyLong_AsSsize_tPyType_ReadyPyGC_DisablePyGC_EnablePyMethodDescr_TypePyDescr_NewClassMethodPyMethod_TypePyClassMethod_NewPyMethod_NewPyDict_TypePySlice_TypePyUnicode_DecodePyObject_HashPyFloat_FromDoublePyLong_FromLongstrrchrPyDict_GetItemWithErrorPyType_FromMetaclassPyTuple_PackPySlice_NewPyImport_ImportModule_Z19pyarrow_wrap_bufferRKSt10shared_ptrIN5arrow6BufferEE_Z29pyarrow_wrap_resizable_bufferRKSt10shared_ptrIN5arrow15ResizableBufferEE_Z22pyarrow_wrap_data_typeRKSt10shared_ptrIN5arrow8DataTypeEE_Z18pyarrow_wrap_fieldRKSt10shared_ptrIN5arrow5FieldEE_Z19pyarrow_wrap_schemaRKSt10shared_ptrIN5arrow6SchemaEE_Z19pyarrow_wrap_scalarRKSt10shared_ptrIN5arrow6ScalarEE_Z18pyarrow_wrap_arrayRKSt10shared_ptrIN5arrow5ArrayEE_Z26pyarrow_wrap_chunked_arrayRKSt10shared_ptrIN5arrow12ChunkedArrayEE_Z30pyarrow_wrap_sparse_coo_tensorRKSt10shared_ptrIN5arrow16SparseTensorImplINS0_14SparseCOOIndexEEEE_Z30pyarrow_wrap_sparse_csc_matrixRKSt10shared_ptrIN5arrow16SparseTensorImplINS0_14SparseCSCIndexEEEE_Z30pyarrow_wrap_sparse_csf_tensorRKSt10shared_ptrIN5arrow16SparseTensorImplINS0_14SparseCSFIndexEEEE_Z30pyarrow_wrap_sparse_csr_matrixRKSt10shared_ptrIN5arrow16SparseTensorImplINS0_14SparseCSRIndexEEEE_Z19pyarrow_wrap_tensorRKSt10shared_ptrIN5arrow6TensorEE_Z18pyarrow_wrap_batchRKSt10shared_ptrIN5arrow11RecordBatchEE_Z18pyarrow_wrap_tableRKSt10shared_ptrIN5arrow5TableEE_Z21pyarrow_unwrap_bufferP7_object_Z24pyarrow_unwrap_data_typeP7_object_Z20pyarrow_unwrap_fieldP7_object_Z21pyarrow_unwrap_schemaP7_object_Z21pyarrow_unwrap_scalarP7_object_Z20pyarrow_unwrap_arrayP7_object_Z28pyarrow_unwrap_chunked_arrayP7_object_Z32pyarrow_unwrap_sparse_coo_tensorP7_object_Z32pyarrow_unwrap_sparse_csc_matrixP7_object_Z32pyarrow_unwrap_sparse_csf_tensorP7_object_Z32pyarrow_unwrap_sparse_csr_matrixP7_object_Z21pyarrow_unwrap_tensorP7_object_Z20pyarrow_unwrap_batchP7_object_Z20pyarrow_unwrap_tableP7_object_ZNSt17_Function_handlerIFvP7_objectRKSt10shared_ptrIN5arrow6BufferEEPS5_EPS9_E10_M_managerERSt9_Any_dataRKSC_St18_Manager_operation_ZTIPFvP7_objectRKSt10shared_ptrIN5arrow6BufferEEPS4_E_ZNSt17_Function_handlerIFN5arrow6ResultISt10shared_ptrINS0_13MemoryManagerEEEEilEPS6_E10_M_managerERSt9_Any_dataRKS9_St18_Manager_operation_ZTIPFN5arrow6ResultISt10shared_ptrINS_13MemoryManagerEEEEilE_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE9_M_createERmmmemcpy_PyThreadState_UncheckedGetPyThreadState_GetFramePyException_GetTracebackPyExc_StopIterationPyErr_SetNone_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZZNSt19_Sp_make_shared_tag5_S_tiEvE5__tag_ZTSSt19_Sp_make_shared_tagstrcmpPyCapsule_GetPointerPyMem_MallocPyMem_Free_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEv_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_destroyEvPyExc_KeyErrorPyErr_SetObjectPyUnicode_NewmemsetPyUnicode_FromOrdinal_PyUnicode_FastCopyCharacters_ZN5arrow19default_memory_poolEvmemcmp_ZN5arrow3ipc7MessageD1Ev_Znwmmemmove_ZSt17__throw_bad_allocv_ZSt28__throw_bad_array_new_lengthv_ZNK5arrow16AsyncErrorDetail8ToStringB5cxx11Ev_PyDict_PopPyCFunction_TypePyOS_string_to_doublePyFloat_FromString_ZNSt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZTSSt14default_deleteIN5arrow6BufferEE_ZNSt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZTSSt14default_deleteIN5arrow15ResizableBufferEE_ZNSt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZTSSt14default_deleteIN5arrow4util5CodecEE_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNSt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE14_M_get_deleterERKSt9type_info_ZNK5arrow17StringViewBuilder4typeEv_ZN5arrow9utf8_viewEv_ZNK5arrow13BinaryBuilder4typeEv_ZN5arrow6binaryEv_ZNK5arrow13StringBuilder4typeEv_ZN5arrow4utf8EvPyTuple_GetSlicePyTuple_GetItemPyErr_NoMemoryPyFloat_TypePyObject_RichComparePyList_TypePyTuple_TypePyImport_ImportModuleLevelObjectPyExc_RuntimeWarningPyErr_WarnExPyException_SetTracebackPyObject_GC_DelPyModule_GetNamePyUnicode_ConcatPyImport_GetModulePyErr_GivenExceptionMatchesPyCMethod_New_ZNSt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEvPyIter_NextPyObject_GetIterPyTraceBack_TypePyObject_IsSubclassPyException_SetCausePyObject_CallObject_PyObject_CallFunction_SizeT_Py_ascii_whitespace_PyUnicode_IsWhitespacePyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyErr_PrintExPyErr_WriteUnraisablePyErr_FetchPyErr_Restore_ZN5arrow21ResetSignalStopSourceEvfreePyCapsule_IsValidPyTraceBack_HerePyCode_NewEmptyPyMem_Realloc_ZN5arrow24GetCpuThreadPoolCapacityEv_ZN5arrow2py8internal18IsThreadingEnabledEv_ZN5arrow2py15get_memory_poolEv_ZN5arrow18system_memory_poolEv_ZN5arrow2io23GetIOThreadPoolCapacityEv_ZN5arrow17LoggingMemoryPoolC1EPNS_10MemoryPoolEPyObject_VectorcallMethod_ZTIN5arrow13ExtensionTypeE_ZTIN5arrow2py15PyExtensionTypeE__dynamic_cast_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE10_M_disposeEv_ZNK5arrow2py15PyExtensionType11GetInstanceEv_ZNKSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE7compareEPKcPyLong_FromSize_t_ZNK5arrow6Schema10num_fieldsEv_ZNK5arrow6Scalar4hashEv_ZNK5arrow12ChunkedArray12device_typesEv_Py_NotImplementedStructPyObject_SizePyExc_UnboundLocalError_ZNK5arrow6Schema8metadataEv_ZNK5arrow2io16MemoryMappedFile15file_descriptorEv_ZN5arrow2io21FixedSizeBufferWriter19set_memcopy_threadsEi_ZNK5arrow5Array10null_countEv_ZNK5arrow6Schema6EqualsERKS0_bPyExc_NameErrorPySequence_Tuple_ZNK5arrow9UnionType4modeEvPyEval_SaveThread_ZNK5arrow12ChunkedArray6EqualsERKS0_RKNS_12EqualOptionsE_ZNK5arrow6Tensor13is_contiguousEv_ZNK5arrow6Tensor4sizeEv_ZNK5arrow12SparseTensor4sizeEv_ZNK5arrow12BooleanArray11false_countEv_ZNK5arrow12BooleanArray10true_countEv_ZNK5arrow11RecordBatch11num_columnsEvPyBytes_TypePyByteArray_TypePyNumber_FloatPyNumber_Long_PyByteArray_empty_stringPyUnicode_AsUTF8AndSizePyLong_AsDoublePyExc_NotImplementedError_ZN5arrow2py23set_default_memory_poolEPNS_10MemoryPoolE_ZNK5arrow5Field6EqualsERKS0_b_ZN5arrow2py8IsPyBoolEP7_object_ZN5arrow2py7IsPyIntEP7_object_ZN5arrow2py9IsPyFloatEP7_objectPyObject_Str_ZN5arrow4util15TotalBufferSizeERKNS_5ArrayE_ZNK5arrow18RunEndEncodedArray18FindPhysicalOffsetEv_ZNK5arrow18RunEndEncodedArray18FindPhysicalLengthEv_ZN5arrow4util15TotalBufferSizeERKNS_12ChunkedArrayE_ZN5arrow4util15TotalBufferSizeERKNS_11RecordBatchE_ZNK5arrow5Table6EqualsERKS0_b_ZN5arrow4util15TotalBufferSizeERKNS_5TableE_ZNK5arrow16KeyValueMetadata4sizeEvmallocPyObject_Repr_ZN5arrow2io12CacheOptions12LazyDefaultsEv_ZN5arrow2py9benchmark28Benchmark_PandasObjectIsNullEP7_objectPySequence_ListPySequence_Contains_ZN5arrow6Buffer11ToHexStringB5cxx11Ev_ZNK5arrow16KeyValueMetadata5valueB5cxx11El_ZNK5arrow16KeyValueMetadata3keyB5cxx11ElPyErr_NormalizeExceptionPyIter_Check_PyType_Lookup_PyObject_GetDictPtr_PyDict_GetItem_KnownHashPyDescr_IsDataPyObject_VectorcallDict_ZNK5arrow6Schema5fieldEi_ZTIN5arrow14FixedWidthTypeE_ZTIN5arrow8DataTypeEPyNumber_AddPyDict_CopyPyNumber_InPlaceAddPyObject_IsInstancePyObject_GetBufferPyExc_BufferError_ZNK5arrow9ArrayData11device_typeEv_ZNK5arrow18FixedSizeListArray6valuesEv_ZNK5arrow15DictionaryArray10dictionaryEv_ZNK5arrow15DictionaryArray7indicesEv_ZN5arrow4util5Codec24SupportsCompressionLevelENS_11Compression4typeE_ZN5arrow4util5Codec11IsAvailableENS_11Compression4typeEPyUnicode_Join_ZNK5arrow5Array6EqualsERKS0_RKNS_12EqualOptionsEPyUnicode_FormatPyFloat_AsDouble_ZN5arrow2io12CacheOptions22MakeFromNetworkMetricsElldl_ZN5arrow2io21FixedSizeBufferWriter21set_memcopy_thresholdEl_ZN5arrow2io21FixedSizeBufferWriter21set_memcopy_blocksizeElPyList_SetSlicePyList_AsTuplePyObject_SetItem_ZN5arrow2py16PyFloat_FromHalfEtPyLong_FromUnsignedLongPyExc_GeneratorExit_ZN5arrow15ProxyMemoryPoolC1EPNS_10MemoryPoolEPyArg_UnpackTuple_ZNK5arrow16KeyValueMetadata6EqualsERKS0_PyExc_ModuleNotFoundErrorPySequence_GetSlice_PyStack_AsDict_ZNK5arrow12SparseTensor6EqualsERKS0_RKNS_12EqualOptionsE_ZNK5arrow6Tensor6EqualsERKS0_RKNS_12EqualOptionsE_ZNK5arrow6Buffer6EqualsERKS0_PyCapsule_TypePyCapsule_GetNamePyBytes_FromStringstrlen_ZN5arrow12GetBuildInfoEvPyUnicode_Resize_PyDict_NewPresized_ZNK5arrow3ipc7Message16metadata_versionEv_ZNK5arrow12SparseTensor8dim_nameB5cxx11Ei_ZNK5arrow6Tensor8dim_nameB5cxx11Ei_ZN5arrow4util5Codec16GetCodecAsStringB5cxx11ENS_11Compression4typeE_ZNK5arrow3ipc7Message4typeEv_ZN5arrow3ipc17FormatMessageTypeB5cxx11ENS0_11MessageTypeE_ZN5arrow3ipc14IpcReadOptions8DefaultsEv_ZNK5arrow16KeyValueMetadata8ToStringB5cxx11Ev_ZSt19__throw_logic_errorPKc_ZNK5arrow5Field8ToStringB5cxx11Eb_ZNK5arrow5Array4DiffB5cxx11ERKS0_PyNumber_Or_ZNK5arrow8DataType6EqualsERKS0_b_ZNK5arrow9Decimal328ToStringB5cxx11Ei_ZNK5arrow10Decimal2568ToStringB5cxx11Ei_ZNK5arrow10Decimal1288ToStringB5cxx11Ei_ZNK5arrow9Decimal648ToStringB5cxx11EiPyMemoryView_Type_ZN5arrow14GetRuntimeInfoEvPyByteArray_FromStringAndSizePyExc_ExceptionPyNumber_NegativePyNumber_Subtract_ZNK5arrow3ipc7Message6EqualsERKS1_PyList_SortPyList_Reverse_ZTVN5arrow13StringBuilderE_ZTVN5arrow17StringViewBuilderEPyBytes_AsStringAndSize_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE9_M_assignERKS4__ZNK5arrow6Schema13GetFieldIndexESt17basic_string_viewIcSt11char_traitsIcEE_ZNK5arrow16KeyValueMetadata8ContainsESt17basic_string_viewIcSt11char_traitsIcEE_ZNK5arrow10StructType13GetFieldIndexERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEPyDict_DelItemPyWrapperDescr_Type__pyx_wrapperbase_7pyarrow_3lib_10StructType_6__len____pyx_wrapperbase_7pyarrow_3lib_10StructType_8__iter____pyx_wrapperbase_7pyarrow_3lib_10StructType_11__getitem____pyx_wrapperbase_7pyarrow_3lib_13ExtensionType_2__init____pyx_wrapperbase_7pyarrow_3lib_5Array_53__getitem____pyx_wrapperbase_7pyarrow_3lib_12ChunkedArray_27__getitem____pyx_wrapperbase_7pyarrow_3lib_8_Tabular_8__getitem____pyx_wrapperbase_7pyarrow_3lib_9UnionType___len____pyx_wrapperbase_7pyarrow_3lib_9UnionType_2__iter____pyx_wrapperbase_7pyarrow_3lib_9UnionType_7__getitem____pyx_wrapperbase_7pyarrow_3lib_15TimestampScalar_2__repr__PyObject_SetAttrStringPy_VersionPyOS_snprintf__pyx_module_is_main_pyarrow__libPyImport_GetModuleDictPyDict_GetItemString_ZN5arrow2py14import_pyarrowEv_ZN5arrow2py16arrow_init_numpyEv_ZN5arrow2py8internal24NewMonthDayNanoTupleTypeEv_PyDict_SetItem_KnownHashPySet_NewPySet_Add__pyx_wrapperbase_7pyarrow_3lib_10ListScalar___len____pyx_wrapperbase_7pyarrow_3lib_10ListScalar_2__getitem____pyx_wrapperbase_7pyarrow_3lib_10ListScalar_4__iter____pyx_wrapperbase_7pyarrow_3lib_12StructScalar_9__getitem____pyx_wrapperbase_7pyarrow_3lib_9MapScalar___getitem____pyx_wrapperbase_7pyarrow_3lib_9MapScalar_2__iter___ZNSt14_Function_baseD2Ev_ZNSt14_Function_baseD1Ev_ZSt26__throw_bad_variant_accessPKc__cxa_allocate_exception_ZTISt18bad_variant_access__cxa_throw_ZSt26__throw_bad_variant_accessb_ZN5arrow18TypedChunkLocationIiEC2Eii_ZN5arrow18TypedChunkLocationIiEC1Eii_ZNK5arrow18TypedChunkLocationIiEeqES1__ZN5arrow18TypedChunkLocationIsEC2Ess_ZN5arrow18TypedChunkLocationIsEC1Ess_ZNK5arrow18TypedChunkLocationIsEeqES1__ZN5arrow18TypedChunkLocationIaEC2Eaa_ZN5arrow18TypedChunkLocationIaEC1Eaa_ZNK5arrow18TypedChunkLocationIaEeqES1__ZN5arrow18TypedChunkLocationIhEC2Ehh_ZN5arrow18TypedChunkLocationIhEC1Ehh_ZNK5arrow18TypedChunkLocationIhEeqES1__ZN5arrow18TypedChunkLocationItEC2Ett_ZN5arrow18TypedChunkLocationItEC1Ett_ZNK5arrow18TypedChunkLocationItEeqES1__ZN5arrow18TypedChunkLocationIjEC2Ejj_ZN5arrow18TypedChunkLocationIjEC1Ejj_ZNK5arrow18TypedChunkLocationIjEeqES1__ZN5arrow18TypedChunkLocationIlEC2Ell_ZN5arrow18TypedChunkLocationIlEC1Ell_ZNK5arrow18TypedChunkLocationIlEeqES1__ZN5arrow18TypedChunkLocationImEC2Emm_ZN5arrow18TypedChunkLocationImEC1Emm_ZNK5arrow18TypedChunkLocationImEeqES1__ZN5arrow12ArrayBuilder13CheckCapacityEl_ZN5arrow8internal19StringStreamWrapperC1Ev_ZSt16__ostream_insertIcSt11char_traitsIcEERSt13basic_ostreamIT_T0_ES6_PKS3_l_ZNSo9_M_insertIlEERSoT__ZN5arrow8internal19StringStreamWrapper3strB5cxx11Ev_ZN5arrow8internal19StringStreamWrapperD1Ev_ZN5arrow6StatusC1ENS_10StatusCodeERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZN5arrow21PrettyPrintDelimitersC2Ev_ZN5arrow21PrettyPrintDelimitersC1Ev_ZN5arrow21PrettyPrintDelimitersD2Ev_ZN5arrow21PrettyPrintDelimitersD1Ev_ZN5arrow18PrettyPrintOptionsD2Ev_ZN5arrow18PrettyPrintOptionsD1EvPyInit_libPyModuleDef_Init_ZStplIcSt11char_traitsIcESaIcEENSt7__cxx1112basic_stringIT_T0_T1_EEOS8_S9__ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE9_M_appendEPKcm_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE10_M_replaceEmmPKcm_ZSt20__throw_length_errorPKc_ZNSt16_Sp_counted_baseILN9__gnu_cxx12_Lock_policyE2EE24_M_release_last_use_coldEv_ZNSt16_Sp_counted_baseILN9__gnu_cxx12_Lock_policyE2EE10_M_releaseEv_ZN5arrow2py16GetPrimitiveTypeENS_4Type4typeE_ZN5arrow9MakeArrayERKSt10shared_ptrINS_9ArrayDataEE_ZN5arrow2io12BufferReaderC1ESt10shared_ptrINS_6BufferEE_ZTVSt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow2py14PyReadableFileC1EP7_object_ZTVSt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow2py14PyOutputStreamC1EP7_object_ZTVSt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EEPyNumber_FloorDivide_ZN5arrow7MapTypeC1ESt10shared_ptrINS_5FieldEES3_b_ZTVSt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow8durationENS_8TimeUnit4typeE_ZN5arrow6time64ENS_8TimeUnit4typeE_ZN5arrow6time32ENS_8TimeUnit4typeE_ZN5arrow9timestampENS_8TimeUnit4typeERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZN5arrow9timestampENS_8TimeUnit4typeE_ZN5arrow2py23MakeStreamTransformFuncENS0_26TransformInputStreamVTableEP7_object_ZNK5arrow5Field12WithNullableEb_ZTVSt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow14ExtensionArrayC1ERKSt10shared_ptrINS_8DataTypeEERKS1_INS_5ArrayEE_ZN5arrow6StatusD2Ev_ZN5arrow6StatusD1Ev_ZN5arrow3ipc15IpcWriteOptions8DefaultsEv_ZNK5arrow12ChunkedArray5SliceEll_ZNK5arrow12ChunkedArray5SliceEl_ZN5arrow17BaseBinaryBuilderINS_10BinaryTypeEE17AppendEmptyValuesEl_ZN5arrow12ArrayBuilder16UnsafeSetNotNullEl_ZN5arrow17BaseBinaryBuilderINS_10BinaryTypeEE11AppendNullsEl_ZN5arrow12ArrayBuilder13UnsafeSetNullEl_ZN5arrow17BinaryViewBuilder17AppendEmptyValuesEl_ZN5arrow17BinaryViewBuilder11AppendNullsEl_ZN5arrow17BaseBinaryBuilderINS_10BinaryTypeEE10AppendNullEv_ZN5arrow17BaseBinaryBuilderINS_10BinaryTypeEE16AppendEmptyValueEv_ZN5arrow17BinaryViewBuilder16AppendEmptyValueEv_ZN5arrow17BinaryViewBuilder10AppendNullEv_ZN5arrow6dlpack12ExportTensorERKSt10shared_ptrINS_6TensorEE_ZN5arrow2py8internal12check_statusERKNS_6StatusE_ZN5arrow6dlpack11ExportArrayERKSt10shared_ptrINS_5ArrayEE_ZN5arrow2py8internal14StringToTzinfoERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZN5arrow6dlpack12ExportDeviceERKSt10shared_ptrINS_6TensorEE_ZN5arrow6dlpack12ExportDeviceERKSt10shared_ptrINS_5ArrayEE_ZN5arrow17RecordBatchReader8ReadNextEv_ZN5arrow6Status8CopyFromERKS0__ZNK5arrow6Status8ToStringB5cxx11Ev_ZN5arrow8internal14DieWithMessageERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEC1EOS4__ZNK5arrow6Scalar6EqualsERKS0_RKNS_12EqualOptionsE_ZTVSt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTVN5arrow9extension10OpaqueTypeE_ZN5arrow8internal19UninitializedResultEv_ZN5arrow4util20ReferencedBufferSizeERKNS_5TableE_ZN5arrow4util20ReferencedBufferSizeERKNS_5ArrayE_ZN5arrow4util20ReferencedBufferSizeERKNS_11RecordBatchE_ZN5arrow4util20ReferencedBufferSizeERKNS_12ChunkedArrayE_ZN5arrow2py8internal36MonthDayNanoIntervalScalarToPyObjectERKNS_26MonthDayNanoIntervalScalarE_ZN5arrow2py8internal33MonthDayNanoIntervalArrayToPyListERKNS_25MonthDayNanoIntervalArrayE_ZN5arrow19SetSignalStopSourceEv_ZN5arrow10StopSource5tokenEv_ZNK5arrow6Status4WarnEv_ZN5arrow4util5Codec23MinimumCompressionLevelENS_11Compression4typeE_ZN5arrow4util5Codec23MaximumCompressionLevelENS_11Compression4typeE_ZN5arrow4util5Codec23DefaultCompressionLevelENS_11Compression4typeE_PyBytes_Resize_PyBytes_Join_ZN5arrow7compute11CastOptionsD2Ev_ZTVN5arrow7compute11CastOptionsE_ZN5arrow7compute11CastOptionsD1Ev_ZN5arrow5ArrayD2Ev_ZTVN5arrow5ArrayE_ZN5arrow5ArrayD1Ev_ZN5arrow7compute11CastOptionsD0Ev_ZN5arrow5ArrayD0Ev_ZNK5arrow5Array5SliceEll_ZNK5arrow5Array5SliceEl_ZN5arrow10NullScalarD2Ev_ZTVN5arrow6ScalarE_ZN5arrow10NullScalarD1Ev_ZN5arrow6ScalarD2Ev_ZN5arrow6ScalarD1Ev_ZN5arrow6ScalarD0Ev_ZN5arrow10NullScalarD0Ev_ZN5arrow26default_cpu_memory_managerEv_ZN5arrow23RecordBatchWithMetadataD2Ev_ZN5arrow23RecordBatchWithMetadataD1Ev_ZN5arrow16DictionaryScalar9ValueTypeD2Ev_ZN5arrow16DictionaryScalar9ValueTypeD1Ev_ZNK5arrow11StructArray5fieldEi_ZNK5arrow11StructArray14GetFieldByNameERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZNK5arrow8DataType6EqualsERKSt10shared_ptrIS0_Eb_ZN5arrow13ExtensionType9WrapArrayERKSt10shared_ptrINS_8DataTypeEERKS1_INS_5ArrayEE_ZN5arrow13ExtensionType9WrapArrayERKSt10shared_ptrINS_8DataTypeEERKS1_INS_12ChunkedArrayEE_ZN5arrow2py9IsPyErrorERKNS_6StatusE_ZN5arrow2py14RestorePyErrorERKNS_6StatusE_ZNK5arrow6Status7messageB5cxx11Ev_ZNK5arrow6Status6detailEvPyExc_BaseException_ZN5arrow8internal15ErrnoFromStatusERKNS_6StatusE_ZN5arrow8internal18WinErrorFromStatusERKNS_6StatusE_ZN5arrow8internal16SignalFromStatusERKNS_6StatusE_ZN5arrow23ExportRecordBatchReaderESt10shared_ptrINS_17RecordBatchReaderEEP16ArrowArrayStream_ZN5arrow2io16MemoryMappedFile6ResizeEl_ZN5arrow2py24SparseCSFTensorToNdarrayERKSt10shared_ptrINS_16SparseTensorImplINS_14SparseCSFIndexEEEEP7_objectPS9_SA_SA__ZN5arrow2py24SparseCSCMatrixToNdarrayERKSt10shared_ptrINS_16SparseTensorImplINS_14SparseCSCIndexEEEEP7_objectPS9_SA_SA__ZN5arrow2py24SparseCSRMatrixToNdarrayERKSt10shared_ptrINS_16SparseTensorImplINS_14SparseCSRIndexEEEEP7_objectPS9_SA_SA__ZN5arrow2py24SparseCOOTensorToNdarrayERKSt10shared_ptrINS_16SparseTensorImplINS_14SparseCOOIndexEEEEP7_objectPS9_SA__ZN5arrow2py15TensorToNdarrayERKSt10shared_ptrINS_6TensorEEP7_objectPS7__ZN5arrow17ExportRecordBatchERKNS_11RecordBatchEP10ArrowArrayP11ArrowSchema_ZN5arrow18ExportChunkedArrayESt10shared_ptrINS_12ChunkedArrayEEP16ArrowArrayStream_ZNK5arrow12ChunkedArray12ValidateFullEv_ZNK5arrow12ChunkedArray8ValidateEv_ZN5arrow11ExportArrayERKNS_5ArrayEP10ArrowArrayP11ArrowSchema_ZNK5arrow5Array12ValidateFullEv_ZNK5arrow5Array8ValidateEv_ZN5arrow10DebugPrintERKNS_5ArrayEi_ZNK5arrow6Scalar8ValidateEv_ZNK5arrow6Scalar12ValidateFullEv_ZN5arrow12ExportSchemaERKNS_6SchemaEP11ArrowSchema_ZN5arrow11ExportFieldERKNS_5FieldEP11ArrowSchema_ZN5arrow10ExportTypeERKNS_8DataTypeEP11ArrowSchema_ZN5arrow31RegisterCancellingSignalHandlerERKSt6vectorIiSaIiEE_ZN5arrow11PrettyPrintERKNS_12ChunkedArrayERKNS_18PrettyPrintOptionsEPNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZN5arrow11PrettyPrintERKNS_6SchemaERKNS_18PrettyPrintOptionsEPNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZN5arrow2py15PyExtensionType9FromClassESt10shared_ptrINS_8DataTypeEENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEP7_objectPS2_INS_13ExtensionTypeEE_ZN5arrow3ipc18GetRecordBatchSizeERKNS_11RecordBatchEPl_ZN5arrow3ipc13GetTensorSizeERKNS_6TensorEPl_ZN5arrow2py15PyForeignBuffer4MakeEPKhlP7_objectPSt10shared_ptrINS_6BufferEE_ZN5arrow2io23SetIOThreadPoolCapacityEi_ZN5arrow2io11HaveLibHdfsEv_ZN5arrow11PrettyPrintERKNS_5ArrayERKNS_18PrettyPrintOptionsEPNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZN5arrow2py25UnregisterPyExtensionTypeERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZN5arrow2py23RegisterPyExtensionTypeERKSt10shared_ptrINS_8DataTypeEE_ZN5arrow21jemalloc_set_decay_msEi_ZN5arrow20mimalloc_memory_poolEPPNS_10MemoryPoolE_ZN5arrow20jemalloc_memory_poolEPPNS_10MemoryPoolE_ZN5arrow10InitializeERKNS_13GlobalOptionsE_ZN5arrow8internal10SendSignalEi_ZN5arrow33UnregisterCancellingSignalHandlerEv_ZNK5arrow9StopToken4PollEvPyErr_SetInterruptPyErr_CheckSignals_ZN5arrow8internal18SendSignalToThreadEim_ZN5arrow24SetCpuThreadPoolCapacityEi_ZNK5arrow3ipc7Message8metadataEv_ZNK5arrow13ListViewArray5sizesEv_ZNK5arrow18LargeListViewArray5sizesEv_ZNK5arrow13ListViewArray7offsetsEv_ZNK5arrow18LargeListViewArray7offsetsEv_ZNK5arrow9ListArray7offsetsEv_ZNK5arrow14LargeListArray7offsetsEv_ZN5arrow15ExtensionScalarD2Ev_ZTVN5arrow15ExtensionScalarE_ZN5arrow15ExtensionScalarD1Ev_ZN5arrow15ExtensionScalarD0Ev_ZNSt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE10_M_disposeEv_ZN5arrow15DictionaryArrayD2Ev_ZTVN5arrow15DictionaryArrayE_ZN5arrow15DictionaryArrayD1Ev_ZN5arrow15DictionaryArrayD0EvPy_IsInitializedPyGILState_Check_ZN5arrow16DictionaryScalarD2Ev_ZTVN5arrow16DictionaryScalarE_ZN5arrow16DictionaryScalarD1Ev_ZN5arrow16DictionaryScalarD0Ev_ZN5arrow3ipc14DictionaryMemoC1Ev_ZTVSt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow17BaseBinaryBuilderINS_10BinaryTypeEE5ResetEv_ZN5arrow12ArrayBuilder5ResetEv_ZN5arrow13BinaryBuilderD2Ev_ZTVN5arrow17BaseBinaryBuilderINS_10BinaryTypeEEE_ZTVN5arrow12ArrayBuilderE_ZN5arrow13BinaryBuilderD1Ev_ZN5arrow13StringBuilderD2Ev_ZN5arrow13StringBuilderD1Ev_ZN5arrow23ExportDeviceRecordBatchERKNS_11RecordBatchESt10shared_ptrINS_6Device9SyncEventEEP16ArrowDeviceArrayP11ArrowSchema_ZN5arrow17ExportDeviceArrayERKNS_5ArrayESt10shared_ptrINS_6Device9SyncEventEEP16ArrowDeviceArrayP11ArrowSchema_ZN5arrow13StringBuilderD0Ev_ZN5arrow13BinaryBuilderD0Ev_ZTTN5arrow2io16MockOutputStreamE_ZTVN5arrow2io16MockOutputStreamE_ZTVSt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow17StringViewBuilderD2Ev_ZTVN5arrow17BinaryViewBuilderE_ZN5arrow17StringViewBuilderD1Ev_ZNK5arrow2py15PyExtensionType11SetInstanceEP7_object_ZN5arrow17StringViewBuilderD0Ev_ZNK5arrow3ipc7Message4bodyEv_ZN5arrow12ArrayBuilder6FinishEPSt10shared_ptrINS_5ArrayEE_ZN5arrow2io21FixedSizeBufferWriterC1ERKSt10shared_ptrINS_6BufferEE_ZTVSt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow21ExtensionTypeRegistry17GetGlobalRegistryEv_ZN5arrow2py24MakeTransformInputStreamESt10shared_ptrINS_2io11InputStreamEENS0_26TransformInputStreamVTableEP7_object_ZN5arrow15run_end_encodedESt10shared_ptrINS_8DataTypeEES2__ZNK5arrow6Schema12WithMetadataERKSt10shared_ptrIKNS_16KeyValueMetadataEE_ZNK5arrow5Field12WithMetadataERKSt10shared_ptrIKNS_16KeyValueMetadataEE_ZNK5arrow5Field8WithNameERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZTVN5arrow8ListTypeE_ZTVSt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTVN5arrow17FixedSizeListTypeE_ZTVSt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow12BaseListTypeD2Ev_ZTVN5arrow13LargeListTypeE_ZTVSt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EE_ZNK5arrow5Field14RemoveMetadataEv_ZNK5arrow6Schema14RemoveMetadataEv_ZN5arrow14Decimal128TypeC1Eii_ZTVSt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow13Decimal32TypeC1Eii_ZTVSt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow13Decimal64TypeC1Eii_ZTVSt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow14Decimal256TypeC1Eii_ZTVSt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EE_ZTVN5arrow19FixedSizeBinaryTypeE_ZTVSt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EE_ZNK5arrow10UnionArray5fieldEi_ZN5arrow16TableBatchReaderC1ERKNS_5TableE_ZN5arrow16TableBatchReader13set_chunksizeEl_ZN5arrow3ipc11WriteTensorERKNS_6TensorEPNS_2io12OutputStreamEPiPl_ZNK5arrow11RecordBatch6EqualsERKS0_bRKNS_12EqualOptionsE_ZN5arrow14MakeNullScalarESt10shared_ptrINS_8DataTypeEE_ZTVSt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZNK5arrow5Field8WithTypeERKSt10shared_ptrINS_8DataTypeEE_ZNK5arrow3ipc7Message11SerializeToEPNS_2io12OutputStreamERKNS0_15IpcWriteOptionsEPl_ZN5arrow2py23TensorToSparseCOOTensorERKSt10shared_ptrINS_6TensorEEPS1_INS_16SparseTensorImplINS_14SparseCOOIndexEEEE_ZN5arrow2py23TensorToSparseCSRMatrixERKSt10shared_ptrINS_6TensorEEPS1_INS_16SparseTensorImplINS_14SparseCSRIndexEEEE_ZN5arrow2py23TensorToSparseCSCMatrixERKSt10shared_ptrINS_6TensorEEPS1_INS_16SparseTensorImplINS_14SparseCSCIndexEEEE_ZN5arrow2py23TensorToSparseCSFTensorERKSt10shared_ptrINS_6TensorEEPS1_INS_16SparseTensorImplINS_14SparseCSFIndexEEEE_ZN5arrow9list_viewESt10shared_ptrINS_5FieldEE_ZN5arrow15large_list_viewESt10shared_ptrINS_5FieldEE_ZN5arrow4nullEv_ZTVN5arrow10NullScalarE_ZTVSt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EE_ZNSt6vectorISt10shared_ptrIN5arrow5FieldEESaIS3_EED2Ev_ZNSt6vectorISt10shared_ptrIN5arrow5FieldEESaIS3_EED1Ev_ZNK5arrow6Schema18GetAllFieldsByNameESt17basic_string_viewIcSt11char_traitsIcEE_ZNK5arrow5Field7FlattenEv_ZNK5arrow10StructType18GetAllFieldsByNameERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZN5arrow6SchemaC1ESt6vectorISt10shared_ptrINS_5FieldEESaIS4_EES2_IKNS_16KeyValueMetadataEE_ZTVSt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EE_ZNSt12_Vector_baseIiSaIiEED2Ev_ZNSt12_Vector_baseIiSaIiEED1Ev_ZNK5arrow6Schema18GetAllFieldIndicesESt17basic_string_viewIcSt11char_traitsIcEE_ZNK5arrow10StructType18GetAllFieldIndicesERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE_ZNSt12_Vector_baseIN5arrow8FieldRefESaIS1_EED2Ev_ZNSt12_Vector_baseIN5arrow8FieldRefESaIS1_EED1Ev_ZNSt6vectorISt10shared_ptrIN5arrow6BufferEESaIS3_EED2Ev_ZNSt6vectorISt10shared_ptrIN5arrow6BufferEESaIS3_EED1Ev_ZNSt6vectorISt10shared_ptrIN5arrow9ArrayDataEESaIS3_EED2Ev_ZNSt6vectorISt10shared_ptrIN5arrow9ArrayDataEESaIS3_EED1Ev_ZNSt6vectorISt10shared_ptrIN5arrow6BufferEESaIS3_EEC2ERKS5__ZNSt6vectorISt10shared_ptrIN5arrow6BufferEESaIS3_EEC1ERKS5__ZNSt12_Vector_baseIlSaIlEED2Ev_ZNSt12_Vector_baseIlSaIlEED1Ev_ZNSt6vectorISt10shared_ptrIN5arrow5ArrayEESaIS3_EED2Ev_ZNSt6vectorISt10shared_ptrIN5arrow5ArrayEESaIS3_EED1Ev_ZN5arrow12ChunkedArrayC2ESt10shared_ptrINS_5ArrayEE_ZN5arrow12ChunkedArrayC1ESt6vectorISt10shared_ptrINS_5ArrayEESaIS4_EES2_INS_8DataTypeEE_ZN5arrow12ChunkedArrayC1ESt10shared_ptrINS_5ArrayEE_ZN5arrow11RecordBatch4MakeESt10shared_ptrINS_6SchemaEElSt6vectorIS1_INS_5ArrayEESaIS6_EES1_INS_6Device9SyncEventEE_ZNSt12_Vector_baseINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS5_EED2Ev_ZNSt12_Vector_baseINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS5_EED1Ev_ZNSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS5_EED2Ev_ZNSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS5_EED1Ev_ZN5arrow27SupportedMemoryBackendNamesB5cxx11Ev_ZNSt12_Vector_baseIaSaIaEED2Ev_ZNSt12_Vector_baseIaSaIaEED1Ev_ZN5arrow6ResultISt10unique_ptrINS_15ResizableBufferESt14default_deleteIS2_EEED2Ev_ZN5arrow6ResultISt10unique_ptrINS_15ResizableBufferESt14default_deleteIS2_EEED1Ev_ZNSt10unique_ptrIN5arrow15ResizableBufferESt14default_deleteIS1_EED2Ev_ZNSt10unique_ptrIN5arrow15ResizableBufferESt14default_deleteIS1_EED1Ev_ZN5arrow13BufferBuilder6ResizeElb_ZN5arrow23AllocateResizableBufferEllPNS_10MemoryPoolE_ZTVSt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow17BinaryViewBuilder6ResizeEl_ZN5arrow12ArrayBuilder6ResizeEl_ZN5arrow17BaseBinaryBuilderINS_10BinaryTypeEE16AppendArraySliceERKNS_9ArraySpanEll_ZN5arrow17BaseBinaryBuilderINS_10BinaryTypeEE6ResizeEl_ZN5arrow23AllocateResizableBufferElPNS_10MemoryPoolE_ZN5arrow2io18BufferOutputStreamC1ERKSt10shared_ptrINS_15ResizableBufferEE_ZTVSt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow6ResultISt10unique_ptrINS_6BufferESt14default_deleteIS2_EEED2Ev_ZN5arrow6ResultISt10unique_ptrINS_6BufferESt14default_deleteIS2_EEED1Ev_ZNSt10unique_ptrIN5arrow6BufferESt14default_deleteIS1_EED2Ev_ZNSt10unique_ptrIN5arrow6BufferESt14default_deleteIS1_EED1Ev_ZN5arrow13BufferBuilder6FinishEPSt10shared_ptrINS_6BufferEEb_ZN5arrow14AllocateBufferEllPNS_10MemoryPoolE_ZTVSt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow17BaseBinaryBuilderINS_10BinaryTypeEE14FinishInternalEPSt10shared_ptrINS_9ArrayDataEE_ZN5arrow9ArrayData4MakeESt10shared_ptrINS_8DataTypeEElSt6vectorIS1_INS_6BufferEESaIS6_EEll_ZN5arrow14AllocateBufferElPNS_10MemoryPoolE_ZN5arrow17BaseBinaryBuilderINS_10BinaryTypeEE6AppendEPKhi_ZN5arrow6ResultINS_23RecordBatchWithMetadataEED2Ev_ZN5arrow6ResultINS_23RecordBatchWithMetadataEED1Ev_ZNSt6vectorISt10shared_ptrIN5arrow11RecordBatchEESaIS3_EED2Ev_ZNSt6vectorISt10shared_ptrIN5arrow11RecordBatchEESaIS3_EED1Ev_ZNSt12__shared_ptrIKN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EE5resetIS1_EENSt9enable_ifIXsrSt21__sp_is_constructibleIS2_T_E5valueEvE4typeEPS9__ZTVSt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow6ResultINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEED2Ev_ZN5arrow6ResultINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEED1Ev_ZNK5arrow16KeyValueMetadata3GetB5cxx11ESt17basic_string_viewIcSt11char_traitsIcEE_ZN5arrow2py8internal14TzinfoToStringB5cxx11EP7_object_ZNSt12__shared_ptrIN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EE5resetIS1_EENSt9enable_ifIXsrSt21__sp_is_constructibleIS1_T_E5valueEvE4typeEPS8__ZNSt12__shared_ptrIN5arrow8DataTypeELN9__gnu_cxx12_Lock_policyE2EE5resetINS0_14DictionaryTypeEEENSt9enable_ifIXsrSt21__sp_is_constructibleIS1_T_E5valueEvE4typeEPS9__ZTVSt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow14DictionaryTypeC1ERKSt10shared_ptrINS_8DataTypeEES5_b_ZN5arrow2py14GetResultValueISt10shared_ptrINS_5ArrayEEEET_NS_6ResultIS5_EE_ZN5arrow6ResultISt6vectorISt10shared_ptrINS_5ArrayEESaIS4_EEED2Ev_ZN5arrow6ResultISt6vectorISt10shared_ptrINS_5ArrayEESaIS4_EEED1Ev_ZNK5arrow11StructArray7FlattenEPNS_10MemoryPoolE_ZN5arrow6ResultISt10shared_ptrINS_5ArrayEEEC2IS1_INS_11StructArrayEEvEEONS0_IT_EE_ZN5arrow6ResultISt10shared_ptrINS_5ArrayEEEC1IS1_INS_11StructArrayEEvEEONS0_IT_EE_ZNSt6vectorISt10shared_ptrIN5arrow12ChunkedArrayEESaIS3_EED2Ev_ZNSt6vectorISt10shared_ptrIN5arrow12ChunkedArrayEESaIS3_EED1Ev_ZN5arrow6ResultISt6vectorISt10shared_ptrINS_12ChunkedArrayEESaIS4_EEED2Ev_ZN5arrow6ResultISt6vectorISt10shared_ptrINS_12ChunkedArrayEESaIS4_EEED1Ev_ZNK5arrow12ChunkedArray7FlattenEPNS_10MemoryPoolE_ZN5arrow2py14GetResultValueISt10shared_ptrINS_11RecordBatchEEEET_NS_6ResultIS5_EE_ZN5arrow2py14GetResultValueISt10shared_ptrINS_5TableEEEET_NS_6ResultIS5_EE_ZN5arrow2py13SmartPtrNoGILISt10shared_ptrJNS_17RecordBatchReaderEEED2Ev_ZN5arrow2py13SmartPtrNoGILISt10shared_ptrJNS_17RecordBatchReaderEEED1Ev_ZTVSt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow16TableBatchReaderC1ESt10shared_ptrINS_5TableEE_ZNSt6vectorISt10shared_ptrIN5arrow5TableEESaIS3_EED2Ev_ZNSt6vectorISt10shared_ptrIN5arrow5TableEESaIS3_EED1Ev_ZNSt10unique_ptrIN5arrow4util5CodecESt14default_deleteIS2_EED2Ev_ZNSt10unique_ptrIN5arrow4util5CodecESt14default_deleteIS2_EED1Ev_ZN5arrow6ResultISt10unique_ptrINS_4util5CodecESt14default_deleteIS3_EEED2Ev_ZN5arrow6ResultISt10unique_ptrINS_4util5CodecESt14default_deleteIS3_EEED1Ev_ZTVN5arrow4util12CodecOptionsE_ZN5arrow4util5Codec6CreateENS_11Compression4typeERKNS0_12CodecOptionsE_ZTVSt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow4util5Codec6CreateENS_11Compression4typeEi_ZTVSt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow2py13SmartPtrNoGILISt10shared_ptrJNS_3ipc17RecordBatchWriterEEED2Ev_ZN5arrow2py13SmartPtrNoGILISt10shared_ptrJNS_3ipc17RecordBatchWriterEEED1Ev_ZN5arrow2py14GetResultValueINS_23RecordBatchWithMetadataEEET_NS_6ResultIS3_EE_ZN5arrow2py13SmartPtrNoGILISt10shared_ptrJNS_3ipc21RecordBatchFileReaderEEED2Ev_ZN5arrow2py13SmartPtrNoGILISt10shared_ptrJNS_3ipc21RecordBatchFileReaderEEED1Ev_ZNSt16_Sp_counted_baseILN9__gnu_cxx12_Lock_policyE2EE15_M_add_ref_copyEv_ZN5arrow5Table4MakeESt10shared_ptrINS_6SchemaEESt6vectorIS1_INS_12ChunkedArrayEESaIS6_EEl_ZTVSt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTVN5arrow5FieldE_ZTVSt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow5FieldD0Ev_ZN5arrow6ResultISt10shared_ptrINS_8DataTypeEEE7DestroyEv_ZN5arrow2py17NumPyDtypeToArrowEP7_object_ZN5arrow7compute11CastOptionsC1Eb_ZN5arrow2py14NdarrayToArrowEPNS_10MemoryPoolEP7_objectS4_bRKSt10shared_ptrINS_8DataTypeEERKNS_7compute11CastOptionsEPS5_INS_12ChunkedArrayEE_ZN5arrow10ImportTypeEP11ArrowSchemaPyBool_Type_ZN5arrow2py14InferArrowTypeEP7_objectS2_b_ZN5arrow9extension9Bool8Type4MakeEv_ZTVSt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow17fixed_size_binaryEi_ZTVN5arrow9extension8UuidTypeE_ZN5arrow9extension17JsonExtensionType4MakeESt10shared_ptrINS_8DataTypeEE_ZNSt8__detail9__variant16_Variant_storageILb0EJN5arrow9FieldPathENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorINS2_8FieldRefESaISB_EEEE8_M_resetEv_ZN5arrow6ResultISt10shared_ptrINS_5ArrayEEE7DestroyEv_ZNK5arrow11StructArray17GetFlattenedFieldEiPNS_10MemoryPoolE_ZN5arrow8MapArray10FromArraysESt10shared_ptrINS_8DataTypeEERKS1_INS_5ArrayEES7_S7_PNS_10MemoryPoolES1_INS_6BufferEE_ZN5arrow8MapArray10FromArraysERKSt10shared_ptrINS_5ArrayEES5_S5_PNS_10MemoryPoolES1_INS_6BufferEE_ZN5arrow25DefaultDeviceMemoryMapperEil_ZN5arrow17ImportDeviceArrayEP16ArrowDeviceArrayP11ArrowSchemaRKSt8functionIFNS_6ResultISt10shared_ptrINS_13MemoryManagerEEEEilEE_ZN5arrow17ImportDeviceArrayEP16ArrowDeviceArraySt10shared_ptrINS_8DataTypeEERKSt8functionIFNS_6ResultIS2_INS_13MemoryManagerEEEEilEE_ZN5arrow11ImportArrayEP10ArrowArrayP11ArrowSchema_ZN5arrow11ImportArrayEP10ArrowArraySt10shared_ptrINS_8DataTypeEE_ZNK5arrow5Array6CopyToERKSt10shared_ptrINS_13MemoryManagerEE_ZNK5arrow5Array4ViewERKSt10shared_ptrINS_8DataTypeEE_ZN5arrow18FixedSizeListArray10FromArraysERKSt10shared_ptrINS_5ArrayEES1_INS_8DataTypeEES1_INS_6BufferEEl_ZN5arrow18FixedSizeListArray10FromArraysERKSt10shared_ptrINS_5ArrayEEiS1_INS_6BufferEEl_ZN5arrow15DictionaryArray10FromArraysERKSt10shared_ptrINS_8DataTypeEERKS1_INS_5ArrayEES9__ZN5arrow15DictionaryArrayC1ERKSt10shared_ptrINS_8DataTypeEERKS1_INS_5ArrayEES9__ZTVSt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow2py6ArangeElllPNS_10MemoryPoolE_ZN5arrow19MakeArrayFromScalarERKNS_6ScalarElPNS_10MemoryPoolE_ZN5arrow15MakeArrayOfNullERKSt10shared_ptrINS_8DataTypeEElPNS_10MemoryPoolE_ZN5arrow6ResultISt10shared_ptrINS_6BufferEEE7DestroyEv_ZN5arrow2py8PyBuffer12FromPyObjectEP7_object_ZN5arrow15SliceBufferSafeESt10shared_ptrINS_6BufferEEll_ZN5arrow15SliceBufferSafeESt10shared_ptrINS_6BufferEEl_ZN5arrow3ipc20SerializeRecordBatchERKNS_11RecordBatchERKNS0_15IpcWriteOptionsE_ZN5arrow3ipc15SerializeSchemaERKNS_6SchemaEPNS_10MemoryPoolE_ZNSt6vectorISt10shared_ptrIN5arrow15ResizableBufferEESaIS3_EE17_M_realloc_insertIJS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZN5arrow8internal17StringHeapBuilder7ReserveEl_ZN5arrow17BinaryViewBuilder6AppendEPKhl_ZN5arrow6ResultISt10shared_ptrINS_11RecordBatchEEE7DestroyEv_ZN5arrow23ImportDeviceRecordBatchEP16ArrowDeviceArrayP11ArrowSchemaRKSt8functionIFNS_6ResultISt10shared_ptrINS_13MemoryManagerEEEEilEE_ZN5arrow23ImportDeviceRecordBatchEP16ArrowDeviceArraySt10shared_ptrINS_6SchemaEERKSt8functionIFNS_6ResultIS2_INS_13MemoryManagerEEEEilEE_ZN5arrow17ImportRecordBatchEP10ArrowArrayP11ArrowSchema_ZN5arrow17ImportRecordBatchEP10ArrowArraySt10shared_ptrINS_6SchemaEE_ZN5arrow11RecordBatch15FromStructArrayERKSt10shared_ptrINS_5ArrayEEPNS_10MemoryPoolE_ZNK5arrow11RecordBatch6CopyToERKSt10shared_ptrINS_13MemoryManagerEE_ZN5arrow3ipc15ReadRecordBatchERKNS0_7MessageERKSt10shared_ptrINS_6SchemaEEPKNS0_14DictionaryMemoERKNS0_14IpcReadOptionsE_ZN5arrow6ResultISt10shared_ptrINS_6TensorEEE7DestroyEv_ZNK5arrow12SparseTensor8ToTensorEPNS_10MemoryPoolE_ZNK5arrow11RecordBatch8ToTensorEbbPNS_10MemoryPoolE_ZN5arrow9extension20FixedShapeTensorType10MakeTensorERKSt10shared_ptrINS_15ExtensionScalarEE_ZNK5arrow9extension21FixedShapeTensorArray8ToTensorEv_ZN5arrow3ipc10ReadTensorEPNS_2io11InputStreamE_ZNSt10_HashtableINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEES5_SaIS5_ENSt8__detail9_IdentityESt8equal_toIS5_ESt4hashIS5_ENS7_18_Mod_range_hashingENS7_20_Default_ranged_hashENS7_20_Prime_rehash_policyENS7_17_Hashtable_traitsILb1ELb1ELb1EEEE5clearEv_ZN5arrow2py13PandasOptionsD2Ev_ZN5arrow2py13PandasOptionsD1Ev_ZN5arrow2py20ConvertArrayToPandasERKNS0_13PandasOptionsESt10shared_ptrINS_5ArrayEEP7_objectPS8__ZN5arrow2py27ConvertChunkedArrayToPandasERKNS0_13PandasOptionsESt10shared_ptrINS_12ChunkedArrayEEP7_objectPS8__ZNSt10_HashtableINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEES5_SaIS5_ENSt8__detail9_IdentityESt8equal_toIS5_ESt4hashIS5_ENS7_18_Mod_range_hashingENS7_20_Default_ranged_hashENS7_20_Prime_rehash_policyENS7_17_Hashtable_traitsILb1ELb1ELb1EEEE21_M_deallocate_bucketsEv_ZNSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS5_EE17_M_realloc_insertIJRKS5_EEEvN9__gnu_cxx17__normal_iteratorIPS5_S7_EEDpOT__ZNSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS5_EE9push_backERKS5__PyList_ExtendPySet_Contains_ZN5arrow16KeyValueMetadataC1ESt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EES9_PySet_TypePyFrozenSet_TypePyFrozenSet_New_ZN5arrow2py15NdarrayToTensorEPNS_10MemoryPoolEP7_objectRKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISB_EEPSt10shared_ptrINS_6TensorEE_ZNK5arrow11RecordBatch13RenameColumnsERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EE_ZN5arrow6ResultISt10shared_ptrINS_5FieldEEE7DestroyEv_ZN5arrow11ImportFieldEP11ArrowSchema_ZN5arrow6ResultISt10shared_ptrINS_6SchemaEEE7DestroyEv_ZN5arrow12ImportSchemaEP11ArrowSchema_ZNK5arrow6Schema8SetFieldEiRKSt10shared_ptrINS_5FieldEE_ZNK5arrow6Schema11RemoveFieldEi_ZNK5arrow6Schema8AddFieldEiRKSt10shared_ptrINS_5FieldEE_ZN5arrow3ipc10ReadSchemaERKNS0_7MessageEPNS0_14DictionaryMemoE_ZN5arrow3ipc10ReadSchemaEPNS_2io11InputStreamEPNS0_14DictionaryMemoE_ZNSt6vectorISt10shared_ptrIN5arrow6SchemaEESaIS3_EE17_M_realloc_insertIJRKS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZN5arrow5Field12MergeOptions10PermissiveEv_ZN5arrow12UnifySchemasERKSt6vectorISt10shared_ptrINS_6SchemaEESaIS3_EENS_5Field12MergeOptionsE_ZNSt6vectorISt10shared_ptrIN5arrow5FieldEESaIS3_EE17_M_realloc_insertIJRKS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZN5arrow10StructTypeC1ERKSt6vectorISt10shared_ptrINS_5FieldEESaIS4_EE_ZTVSt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EE_ZNSt6vectorIaSaIaEE17_M_realloc_insertIJRKaEEEvN9__gnu_cxx17__normal_iteratorIPaS1_EEDpOT_PyObject_LengthHint_ZN5arrow12sparse_unionESt6vectorISt10shared_ptrINS_5FieldEESaIS3_EES0_IaSaIaEE_ZN5arrow11dense_unionESt6vectorISt10shared_ptrINS_5FieldEESaIS3_EES0_IaSaIaEE_ZNSt6vectorIlSaIlEE17_M_realloc_insertIJRKlEEEvN9__gnu_cxx17__normal_iteratorIPlS1_EEDpOT__ZN5arrow2py25NdarraysToSparseCOOTensorEPNS_10MemoryPoolEP7_objectS4_RKSt6vectorIlSaIlEERKS5_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISF_EEPSt10shared_ptrINS_16SparseTensorImplINS_14SparseCOOIndexEEEE_ZN5arrow2py25NdarraysToSparseCSRMatrixEPNS_10MemoryPoolEP7_objectS4_S4_RKSt6vectorIlSaIlEERKS5_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISF_EEPSt10shared_ptrINS_16SparseTensorImplINS_14SparseCSRIndexEEEE_ZN5arrow2py25NdarraysToSparseCSCMatrixEPNS_10MemoryPoolEP7_objectS4_S4_RKSt6vectorIlSaIlEERKS5_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISF_EEPSt10shared_ptrINS_16SparseTensorImplINS_14SparseCSCIndexEEEE_ZN5arrow9extension20FixedShapeTensorType4MakeERKSt10shared_ptrINS_8DataTypeEERKSt6vectorIlSaIlEESB_RKS7_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISH_EE_ZN5arrow2py25NdarraysToSparseCSFTensorEPNS_10MemoryPoolEP7_objectS4_S4_RKSt6vectorIlSaIlEES9_RKS5_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISF_EEPSt10shared_ptrINS_16SparseTensorImplINS_14SparseCSFIndexEEEE_ZN5arrow6ResultISt10shared_ptrINS_6ScalarEEE7DestroyEv_ZNK5arrow16DictionaryScalar15GetEncodedValueEv_ZNK5arrow12ChunkedArray9GetScalarEl_ZNK5arrow5Array9GetScalarEl_ZN5arrow6ResultISt10shared_ptrINS_12ChunkedArrayEEE7DestroyEv_ZN5arrow18ImportChunkedArrayEP16ArrowArrayStream_ZN5arrow17DictionaryUnifier17UnifyChunkedArrayERKSt10shared_ptrINS_12ChunkedArrayEEPNS_10MemoryPoolE_ZN5arrow2py17ConvertPySequenceEP7_objectS2_NS0_19PyConversionOptionsEPNS_10MemoryPoolE_ZNSt6vectorISt10shared_ptrIN5arrow6BufferEESaIS3_EE17_M_realloc_insertIJRKS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZN5arrow15DictionaryArrayC1ERKSt10shared_ptrINS_9ArrayDataEE_ZNSt6vectorISt10shared_ptrIN5arrow9ArrayDataEESaIS3_EE17_M_realloc_insertIJRKS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZN5arrow9ArrayData4MakeESt10shared_ptrINS_8DataTypeEElSt6vectorIS1_INS_6BufferEESaIS6_EES4_IS1_IS0_ESaIS9_EEll_ZSt10__do_visitINSt8__detail9__variant20__variant_idx_cookieEZNS1_17_Copy_assign_baseILb0EJblmdNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEEEaSERKSA_EUlOT_T0_E_JRKSt7variantIJblmdS9_EEEEDcOSF_DpOT1__ZN5arrow6ResultISt10shared_ptrINS_9ListArrayEEE7DestroyEv_ZN5arrow9ListArray10FromArraysESt10shared_ptrINS_8DataTypeEERKNS_5ArrayES6_PNS_10MemoryPoolES1_INS_6BufferEEl_ZN5arrow9ListArray10FromArraysERKNS_5ArrayES3_PNS_10MemoryPoolESt10shared_ptrINS_6BufferEEl_ZN5arrow6ResultISt10shared_ptrINS_14LargeListArrayEEE7DestroyEv_ZN5arrow14LargeListArray10FromArraysESt10shared_ptrINS_8DataTypeEERKNS_5ArrayES6_PNS_10MemoryPoolES1_INS_6BufferEEl_ZN5arrow14LargeListArray10FromArraysERKNS_5ArrayES3_PNS_10MemoryPoolESt10shared_ptrINS_6BufferEEl_ZN5arrow6ResultISt10shared_ptrINS_13ListViewArrayEEE7DestroyEv_ZN5arrow13ListViewArray10FromArraysESt10shared_ptrINS_8DataTypeEERKNS_5ArrayES6_S6_PNS_10MemoryPoolES1_INS_6BufferEEl_ZN5arrow13ListViewArray10FromArraysERKNS_5ArrayES3_S3_PNS_10MemoryPoolESt10shared_ptrINS_6BufferEEl_ZN5arrow6ResultISt10shared_ptrINS_18LargeListViewArrayEEE7DestroyEv_ZN5arrow18LargeListViewArray10FromArraysESt10shared_ptrINS_8DataTypeEERKNS_5ArrayES6_S6_PNS_10MemoryPoolES1_INS_6BufferEEl_ZN5arrow18LargeListViewArray10FromArraysERKNS_5ArrayES3_S3_PNS_10MemoryPoolESt10shared_ptrINS_6BufferEEl_ZNSt6vectorISt10shared_ptrIN5arrow5ArrayEESaIS3_EE17_M_realloc_insertIJRKS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZN5arrow11ConcatenateERKSt6vectorISt10shared_ptrINS_5ArrayEESaIS3_EEPNS_10MemoryPoolE_ZN5arrow12ChunkedArray4MakeESt6vectorISt10shared_ptrINS_5ArrayEESaIS4_EES2_INS_8DataTypeEE_ZN5arrow6ResultISt10shared_ptrINS_11StructArrayEEE7DestroyEv_ZNK5arrow11RecordBatch13ToStructArrayEv_ZN5arrow11StructArray4MakeERKSt6vectorISt10shared_ptrINS_5ArrayEESaIS4_EERKS1_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISE_EES2_INS_6BufferEEll_ZN5arrow11StructArray4MakeERKSt6vectorISt10shared_ptrINS_5ArrayEESaIS4_EERKS1_IS2_INS_5FieldEESaISA_EES2_INS_6BufferEEll_ZN5arrow6ResultISt10shared_ptrINS_18RunEndEncodedArrayEEE7DestroyEv_ZN5arrow18RunEndEncodedArray4MakeERKSt10shared_ptrINS_8DataTypeEElRKS1_INS_5ArrayEES9_l_ZN5arrow18RunEndEncodedArray4MakeElRKSt10shared_ptrINS_5ArrayEES5_l_ZN5arrow6ResultISt10shared_ptrINS_5TableEEE7DestroyEv_ZN5arrow17RecordBatchReader7ToTableEv_ZN5arrow17DictionaryUnifier10UnifyTableERKNS_5TableEPNS_10MemoryPoolE_ZNK5arrow5Table13CombineChunksEPNS_10MemoryPoolE_ZNK5arrow5Table13RenameColumnsERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EE_ZNSt6vectorISt10shared_ptrIN5arrow12ChunkedArrayEESaIS3_EE17_M_realloc_insertIJRKS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZNSt6vectorISt10shared_ptrIN5arrow11RecordBatchEESaIS3_EE17_M_realloc_insertIJRKS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZN5arrow5Table17FromRecordBatchesESt10shared_ptrINS_6SchemaEERKSt6vectorIS1_INS_11RecordBatchEESaIS6_EE_ZN5arrow24ConcatenateRecordBatchesERKSt6vectorISt10shared_ptrINS_11RecordBatchEESaIS3_EEPNS_10MemoryPoolE_ZNSt6vectorISt10shared_ptrIN5arrow5TableEESaIS3_EE17_M_realloc_insertIJRKS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZN5arrow17ConcatenateTablesERKSt6vectorISt10shared_ptrINS_5TableEESaIS3_EENS_24ConcatenateTablesOptionsEPNS_10MemoryPoolE_ZN5arrow6ResultISt10shared_ptrIKNS_16KeyValueMetadataEEE7DestroyEv_ZN5arrow6ResultISt10shared_ptrINS_2io11InputStreamEEE7DestroyEv_ZTIN5arrow2io19BufferedInputStreamE_ZTIN5arrow2io11InputStreamE_ZN5arrow2io19BufferedInputStream6DetachEv_ZTIN5arrow2io16RandomAccessFileE_ZN5arrow2io16RandomAccessFile9GetStreamESt10shared_ptrIS1_Ell_ZN5arrow6ResultISt10shared_ptrINS_2io16MemoryMappedFileEEE7DestroyEv_ZN5arrow2io16MemoryMappedFile4OpenERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEENS0_8FileMode4typeE_ZN5arrow2io16MemoryMappedFile6CreateERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEl_ZN5arrow6ResultISt10shared_ptrINS_2io12ReadableFileEEE7DestroyEv_ZN5arrow2io12ReadableFile4OpenERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEPNS_10MemoryPoolE_ZN5arrow6ResultISt10shared_ptrINS_2io16FileOutputStreamEEE7DestroyEv_ZN5arrow6ResultISt10shared_ptrINS_2io12OutputStreamEEE7DestroyEv_ZTIN5arrow2io20BufferedOutputStreamE_ZTIN5arrow2io12OutputStreamE_ZN5arrow2io20BufferedOutputStream6DetachEv_ZN5arrow2io16FileOutputStream4OpenERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEb_ZN5arrow6ResultISt10shared_ptrINS_2io21CompressedInputStreamEEE7DestroyEv_ZN5arrow2io21CompressedInputStream4MakeEPNS_4util5CodecERKSt10shared_ptrINS0_11InputStreamEEPNS_10MemoryPoolE_ZN5arrow3ipc13MessageReader4OpenERKSt10shared_ptrINS_2io11InputStreamEE_ZN5arrow6ResultISt10shared_ptrINS_2io22CompressedOutputStreamEEE7DestroyEv_ZN5arrow2io22CompressedOutputStream4MakeEPNS_4util5CodecERKSt10shared_ptrINS0_12OutputStreamEEPNS_10MemoryPoolE_ZN5arrow6ResultISt10shared_ptrINS_2io19BufferedInputStreamEEE7DestroyEv_ZN5arrow2io19BufferedInputStream6CreateElPNS_10MemoryPoolESt10shared_ptrINS0_11InputStreamEEl_ZN5arrow6ResultISt10shared_ptrINS_2io20BufferedOutputStreamEEE7DestroyEv_ZN5arrow2io20BufferedOutputStream6CreateElPNS_10MemoryPoolESt10shared_ptrINS0_12OutputStreamEE_ZN5arrow6ResultISt10unique_ptrINS_3ipc7MessageESt14default_deleteIS3_EEE7DestroyEv_ZN5arrow3ipc11ReadMessageEPNS_2io11InputStreamEPNS_10MemoryPoolE_ZN5arrow6ResultISt10shared_ptrINS_3ipc17RecordBatchWriterEEE7DestroyEv_ZN5arrow3ipc14MakeFileWriterESt10shared_ptrINS_2io12OutputStreamEERKS1_INS_6SchemaEERKNS0_15IpcWriteOptionsERKS1_IKNS_16KeyValueMetadataEE_ZN5arrow3ipc16MakeStreamWriterESt10shared_ptrINS_2io12OutputStreamEERKS1_INS_6SchemaEERKNS0_15IpcWriteOptionsE_ZN5arrow6ResultISt10shared_ptrINS_17RecordBatchReaderEEE7DestroyEv_ZN5arrow2py19PyRecordBatchReader4MakeESt10shared_ptrINS_6SchemaEEP7_object_ZN5arrow23ImportRecordBatchReaderEP16ArrowArrayStream_ZN5arrow2py24CastingRecordBatchReader4MakeESt10shared_ptrINS_17RecordBatchReaderEES2_INS_6SchemaEE_ZN5arrow6ResultISt10shared_ptrINS_3ipc23RecordBatchStreamReaderEEE7DestroyEv_ZN5arrow3ipc23RecordBatchStreamReader4OpenERKSt10shared_ptrINS_2io11InputStreamEERKNS0_14IpcReadOptionsE_ZN5arrow6ResultISt10shared_ptrINS_3ipc21RecordBatchFileReaderEEE7DestroyEv_ZN5arrow3ipc21RecordBatchFileReader4OpenEPNS_2io16RandomAccessFileElRKNS0_14IpcReadOptionsE_ZN5arrow3ipc21RecordBatchFileReader4OpenEPNS_2io16RandomAccessFileERKNS0_14IpcReadOptionsE_ZNSt6vectorISt10shared_ptrIN5arrow11RecordBatchEESaIS3_EE17_M_default_appendEm_ZNSt10_HashtableINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEES5_SaIS5_ENSt8__detail9_IdentityESt8equal_toIS5_ESt4hashIS5_ENS7_18_Mod_range_hashingENS7_20_Default_ranged_hashENS7_20_Prime_rehash_policyENS7_17_Hashtable_traitsILb1ELb1ELb1EEEE9_M_assignIRKSI_NS7_17_ReuseOrAllocNodeISaINS7_10_Hash_nodeIS5_Lb1EEEEEEEEvOT_RKT0__ZNSt10_HashtableINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEES5_SaIS5_ENSt8__detail9_IdentityESt8equal_toIS5_ESt4hashIS5_ENS7_18_Mod_range_hashingENS7_20_Default_ranged_hashENS7_20_Prime_rehash_policyENS7_17_Hashtable_traitsILb1ELb1ELb1EEEE18_M_assign_elementsIRKSI_EEvOT__ZNSt6vectorIiSaIiEE17_M_realloc_insertIJiEEEvN9__gnu_cxx17__normal_iteratorIPiS1_EEDpOT__ZNK5arrow11RecordBatch13SelectColumnsERKSt6vectorIiSaIiEE_ZNK5arrow5Table13SelectColumnsERKSt6vectorIiSaIiEE_ZN5arrow17LoggingMemoryPoolD2Ev_ZN5arrow17LoggingMemoryPoolD1Ev_ZNSt6vectorISt10shared_ptrIN5arrow6BufferEESaIS3_EE17_M_realloc_insertIJS3_EEEvN9__gnu_cxx17__normal_iteratorIPS3_S5_EEDpOT__ZN5arrow9ArrayData4MakeESt10shared_ptrINS_8DataTypeEElSt6vectorIS1_INS_6BufferEESaIS6_EES4_IS1_IS0_ESaIS9_EES9_ll_ZSt16__do_uninit_copyIN9__gnu_cxx17__normal_iteratorIPKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIS7_SaIS7_EEEEPS7_ET0_T_SG_SF__ZN5arrow15DenseUnionArray4MakeERKNS_5ArrayES3_St6vectorISt10shared_ptrIS1_ESaIS6_EES4_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISE_EES4_IaSaIaEE_ZN5arrow16SparseUnionArray4MakeERKNS_5ArrayESt6vectorISt10shared_ptrIS1_ESaIS6_EES4_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISE_EES4_IaSaIaEE_ZNSt10_HashtableINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEES5_SaIS5_ENSt8__detail9_IdentityESt8equal_toIS5_ESt4hashIS5_ENS7_18_Mod_range_hashingENS7_20_Default_ranged_hashENS7_20_Prime_rehash_policyENS7_17_Hashtable_traitsILb1ELb1ELb1EEEE9_M_rehashEmRKm_ZSt11_Hash_bytesPKvmm_ZNKSt8__detail20_Prime_rehash_policy14_M_need_rehashEmmm_ZN5arrow2py20ConvertTableToPandasERKNS0_13PandasOptionsESt10shared_ptrINS_5TableEEPP7_object_ZSt16__do_uninit_copyIN9__gnu_cxx17__normal_iteratorIPKN5arrow8FieldRefESt6vectorIS3_SaIS3_EEEEPS3_ET0_T_SC_SB__ZNSt8__detail9__variant15_Copy_ctor_baseILb0EJN5arrow9FieldPathENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorINS2_8FieldRefESaISB_EEEEC2ERKSE__ZNSt8__detail9__variant15_Copy_ctor_baseILb0EJN5arrow9FieldPathENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorINS2_8FieldRefESaISB_EEEEC1ERKSE__ZNK5arrow12StructScalar5fieldENS_8FieldRefE_ZN5arrow6SchemaD0Ev_ZTVSt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt11_Mutex_baseILN9__gnu_cxx12_Lock_policyE2EE_ZTISt11_Mutex_baseILN9__gnu_cxx12_Lock_policyE2EE_ZTVN10__cxxabiv117__class_type_infoE_ZTSN5arrow8internal20ArrayBuilderExtraOpsINS_17BaseBinaryBuilderINS_10BinaryTypeEEESt17basic_string_viewIcSt11char_traitsIcEEEE_ZTIN5arrow8internal20ArrayBuilderExtraOpsINS_17BaseBinaryBuilderINS_10BinaryTypeEEESt17basic_string_viewIcSt11char_traitsIcEEEE_ZTSN5arrow4util18EqualityComparableINS_6ScalarEEE_ZTIN5arrow4util18EqualityComparableINS_6ScalarEEE_ZTSSt23enable_shared_from_thisIN5arrow6ScalarEE_ZTISt23enable_shared_from_thisIN5arrow6ScalarEE_ZTSFvP7_objectRKSt10shared_ptrIN5arrow6BufferEEPS4_E_ZTIFvP7_objectRKSt10shared_ptrIN5arrow6BufferEEPS4_E_ZTVN10__cxxabiv120__function_type_infoE_ZTSFN5arrow6ResultISt10shared_ptrINS_13MemoryManagerEEEEilE_ZTIFN5arrow6ResultISt10shared_ptrINS_13MemoryManagerEEEEilE_ZTSN5arrow4util18EqualityComparableINS_7compute15FunctionOptionsEEE_ZTIN5arrow4util18EqualityComparableINS_7compute15FunctionOptionsEEE_ZTSSt16_Sp_counted_baseILN9__gnu_cxx12_Lock_policyE2EE_ZTISt16_Sp_counted_baseILN9__gnu_cxx12_Lock_policyE2EE_ZTVN10__cxxabiv120__si_class_type_infoE_ZTSSt18bad_variant_access_ZTISt9exception_ZTSN5arrow5ArrayE_ZTIN5arrow5ArrayE_ZTSN5arrow15DictionaryArrayE_ZTIN5arrow15DictionaryArrayE_ZTSN5arrow17BaseBinaryBuilderINS_10BinaryTypeEEE_ZTIN5arrow17BaseBinaryBuilderINS_10BinaryTypeEEE_ZTVN10__cxxabiv121__vmi_class_type_infoE_ZTIN5arrow12ArrayBuilderE_ZTSN5arrow13BinaryBuilderE_ZTIN5arrow13BinaryBuilderE_ZTSN5arrow13StringBuilderE_ZTIN5arrow13StringBuilderE_ZTSN5arrow17StringViewBuilderE_ZTIN5arrow17StringViewBuilderE_ZTIN5arrow17BinaryViewBuilderE_ZTSN5arrow6ScalarE_ZTIN5arrow6ScalarE_ZTSN5arrow10NullScalarE_ZTIN5arrow10NullScalarE_ZTSN5arrow8internal19PrimitiveScalarBaseE_ZTIN5arrow8internal19PrimitiveScalarBaseE_ZTSN5arrow16DictionaryScalarE_ZTIN5arrow16DictionaryScalarE_ZTSN5arrow15ExtensionScalarE_ZTIN5arrow15ExtensionScalarE_ZTSN5arrow2io12OutputStreamE_ZTIN5arrow2io13FileInterfaceE_ZTIN5arrow2io8WritableE_ZTSN5arrow4util12CodecOptionsE_ZTIN5arrow4util12CodecOptionsE_ZTSN5arrow7compute15FunctionOptionsE_ZTIN5arrow7compute15FunctionOptionsE_ZTSN5arrow7compute11CastOptionsE_ZTIN5arrow7compute11CastOptionsE_ZTSPFN5arrow6ResultISt10shared_ptrINS_13MemoryManagerEEEEilE_ZTVN10__cxxabiv119__pointer_type_infoE_ZTSPFvP7_objectRKSt10shared_ptrIN5arrow6BufferEEPS4_E_ZTSSt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTISt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EE_ZTSSt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EE_ZTISt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EE_ZN5arrow12ArrayBuilder12AppendScalarERKNS_6ScalarEl_ZN5arrow12ArrayBuilder13AppendScalarsERKSt6vectorISt10shared_ptrINS_6ScalarEESaIS4_EE__cxa_pure_virtual_ZN5arrow17BinaryViewBuilder5ResetEv_ZN5arrow17BinaryViewBuilder16AppendArraySliceERKNS_9ArraySpanEll_ZN5arrow17BinaryViewBuilder14FinishInternalEPSt10shared_ptrINS_9ArrayDataEEPyObject_SelfIter__pthread_key_create_ZTINSt8ios_base7failureB5cxx11E_ZTISt10bad_typeid_ZTISt11range_error_ZTISt12domain_error_ZTISt12out_of_range_ZTISt14overflow_error_ZTISt15underflow_error_ZTISt16invalid_argument_ZTISt8bad_cast_ZTISt9bad_alloclibarrow_python.so.2100libarrow_substrait.so.2100libarrow_dataset.so.2100libparquet.so.2100libarrow_acero.so.2100libarrow_compute.so.2100libarrow.so.2100libdl.so.2librt.so.1libstdc++.so.6libm.so.6libgcc_s.so.1libc.so.6GCC_3.0GLIBC_2.2.5GLIBC_2.14GLIBCXX_3.4.18CXXABI_1.3.5GLIBCXX_3.4.21GLIBCXX_3.4.9CXXABI_1.3.9CXXABI_1.3GLIBCXX_3.4$ORIGIN   > P&y />%>0ui 7>C>=h N>uѯ ]>qj>)y>yѯ >ӯk>t)>4<J4<J4<4<4<a94<Y95<Y95<Y9 5< .905<Y9@5<.9P5<t7`5</4p5<-45<q75<@45<@n75<`h75<b75<@>85<45<`76<`_76<79 6<_906<[7@6<W7P6< 4`6<jW9p6<86<U76<46<96<p86<V86<86<P86< 97<87<`8 7<807<8@7<0q8P7<8`7<V8p7< _87<47<87<97<P)97<97<{87< 87<@)98<p88<8 8<8908< 9@8<8P8< 9`8< 9p8<`48<88<88<_88<(98< 98<98<P88<99<0)99<79 9< )909<@8@9<8P9<8`9<p 9p9<` 99<089<89<)99< 89< 49<89<089<`8:<8:<P 9 :<80:<@ 9@:<9P:<8`:<8p:<{8:<8:<8:<8:<C9:<8:<a9:<R9:<~_9;<8;<4 ;<40;<V8@;<9P;<8`;<U7p;<^8;<`4;< 4;<3;<0 9;<9;< 9;<P8;<8<<@8<<8 <<80<<`=8@<<)9P<<8`<<T7p<<8<<8<<9<<p8<<79<<^8<<4<< 8<< 9=<9=<p8 =<R90=<9@=<8P=<4`=<`4p=<^8=< 9=<V8=< =8=<8=<8=<9=<(9=<T7>< 9><P8 ><80><P8@>< 4P><4`><g8p><08><4><@T7><^8><79><`S7><a9><z_9><v_9?<`4?<8 ?<f80?<q8@?< S7P?<R7`?<p{8p?<P{8?<=8?<<8?<[9?<79?< 9?< 9?<Л8?<p8@< 4@<`R7 @<40@< R7@@<4P@<8`@<`4p@< 4@<4@<4@<@4@<4@<4@<4@<Q7@<@4A<@N7A<H7 A<`C70A<09@A<4PA<9`A<>7pA<:7A<0{8A< 9A<8A<O8A<08A<8A<8A<{8B<4B<8 B<080B<f8@B<8PB<`V8`B<4pB<^8B<@4B<97B<<8B<4B<В8B<4B<8B<@V8C<8C<97 C<80C< V8@C<8PC<N8`C<а8pC<4C<@4C<3C<`8C<]8C<8C<V8C<Х8C<N8D<p8D<<8 D<80D<4@D<8PD<]8`D<4pD<N8D<@N8D<@8D<]8D<8D<8D<]8D<P8D<@<8E<8E<4 E<p80E<`97@E<@4PE<@97`E<,4pE<p8E<U8E<08E<p8E<4E<8E<dW9E<8E<8F<8F<8 F< 970F< 9@F< 8PF<97`F<87pF<4F<R9F< 98F<К8F<4F<@4F<P8F<87F<4G<4G< 57 G</70G< -7@G<)7PG< '4`G<!4pG<@%7G<7G<7G<@7G<@!4G<7G<7G<@7G< 7H<7H< 6 H<*80H<'8@H< 6PH<6`H<6pH<6H< 6H<`4H<6H<6H<%8H<@6H<6H<@#8I< 8I<`8 I<40I<`6@I<`4PI< 6`I<`6pI<6I<6I<7I<6I<@6I<4I<8I< 6I< 6J<@6J<@6 J<`60J<6@J<6PJ<4`J<6pJ<6J<@6J<~6J<y6J<@j6J<g6J<f6J<7J<`6K<@Z6K<T6 K<40K< 4@K< S6PK<7`K< 7pK<7K<7K< 7K<P6K<M6K<7K< K6K<I6K<`7L<@H6L<C6 L<@B60L<@6@L<@?6PL<7`L<;6pL<`96L<76L<4L<4L<@56L<26L< 06L<`-6L<@+6M<@%6M<"6 M<60M<@ 6@M<@ 6PM<6`M<@6pM< 5M<P8M<08M<79M<C9M<8M<0p8M<8M<8N<`8N<5 N<50N<4@N<8PN<z8`N<8pN<x8N<N8N<4N<@4N<z8N<4N<9N<h 9N<8O<9O<X 9 O<80O<8@O< 9PO<PJ9`O<8pO<`8O<8O<h8O<@8O<7O<4O<p8O<@8O<8P<X8P< 8 P<`70P<4@P<H8PP<`8`P<p8pP<9P<Б8P<M8P<@4P<88P<P8P<P8P<9P<8Q<M8Q<4 Q<50Q<(8@Q<Q9PQ<Q9`Q<8pQ<8Q<z8Q<4Q<@8Q<4Q<@4Q<`]8Q<U8Q<8R<8R< 7 R<40R< 8@R<p8PR<`M8`R<p8pR<8R<8R<`5R<4R< 5R< 5R<`5R<9R<`4S<4S<4 S<50S<4@S<4PS< 4`S<4pS< 4S<4S< 4S<9S<H 9S<8S<5S<4S<8T<8T<8 T<8 90T<4@T<B9PT<HJ9`T<@4pT<^W9T< 8T<08T<4T<3T<@3T<3T<4T<8U<8U<`4 U<30U<U8@U<U8PU<5`U<`4pU<5U<P8U<@]8U<8U< 4U<8U<f8U<4U<4V< 5V<5 V<`50V<8@V<(9PV<8`V< ]8pV<8V<08V< 5V<5V<7V<8V<08V<`U8V<8W<5W<`4 W< 40W<4@W<8PW<8`W<XW9pW<PW9W<AJ9W<8W<8W<`8W<p8W<@U8W<( 9W<А8X<8X<P8 X<40X< U8@X<`4PX<8`X<`5pX<8X<@M8X<8X<o8X<Я8X< M8X<8X<o8X< 5Y<5Y<4 Y<80Y<4@Y<`3PY<4`Y<5pY<8Y<5Y<@4Y<P8Y<4Y< 3Y<M8Y<08Y<Й8Z<8Z<U8 Z<80Z<4@Z<4PZ<@4`Z<3pZ<3Z<@8Z<7Z<4Z<@5Z<8Z<8Z<f8Z<4[<L8[<4 [<50[<`7@[<`7P[<`7`[<(9p[<9[<8[< 8[<7[<8[<[9[<a9[<J9[<8\<8\<8 \<a90\<Q9@\<J9P\<@4`\<4p\<5\<T8\<7\<4\<@3\<89\<4\<3\<o8]<L8]<DW9 ]<(90]<4@]<T8P]<p(9`]<(9p]<p8]<`(9]<9]<P8]<P(9]<9]<08]<879]<@(9^<8^<I9 ^<I90^< 9@^<8P^<8`^<8p^<08^<8^<T8^<T8^<8^<L8^< 4^<`3^<8_<8_<7 _<40_<8@_<5P_<4`_< 5p_<5_<`4_<@5_<(79_<0(9_<B9_<pf8_< 4_<8`<a9`<B9 `<80`<o8@`<8P`<z8``<08p`<8`<p8`<pz8`<8`<Є8`<r_9`<79`<I9`<@8a<8a<8 a<e80a<~4@a<8Pa<8`a<8pa<@7a<8a<7a<~4a<`~4a<7a<5a<p8a<8b<e8b<@L8 b< ~40b<@5@b< 8Pb<L8`b<p8pb<]8b<p8b<8b<79b<P8b<5b<}4b<}4b<8c<'9c<8 c<B90c<P8@c<`}4Pc< }4`c<8pc<po8c<|4c<|4c<`|4c< |4c<x8c< 9c<08c<7d<K8d<{4 d<50d<`5@d<5Pd<7`d<[9pd<08d<{4d<`{4d<a9d<>W9d<5d<B9d<8d<@7e<69e<8 e<`80e<h8@e<I9Pe<8`e<5pe< {4e<z4e<z4e<`z4e< z4e<I9e<5e<8e<@5f<5f<e8 f<\80f<9@f<9Pf<8`f<K8pf<5f<8f<y4f<y4f<Џ8f<8f<8f<p8f<'9g<pe8g<`T8 g<Pe80g<8@g<0e8Pg<8`g<Po8pg<`y4g<I9g<p8g<K8g<5g<0o8g<`5g<P8g<o8h<X8h<8 h<Ф80h<B9@h<P8Ph<8`h< y4ph<x4h<И8h< 9h<n8h<x4h<e8h<`x4h< x4h<\8i< 5i<w4 i< 30i<w4@i<@w4Pi<va9`i<[9pi<5i<5i<P8i<w4i<'9i<`8i<8i<d8i<@T8j<08j<\8 j<\80j<`\8@j<7Pj< T8`j<`8pj<08j<8j<@8j<`8j<8j<8j<@8j< 8j<@8k<8k<8 k< 80k<Ю8@k<8Pk<8`k<08pk<8k< 8k<8k<p8k<8k<P8k<8k<@8k<p8l<8l<[9 l<[90l<H8@l<08Pl<p8`l<`n8pl<8l<@v4l<69l<9l<'9l<8l<7l<5l<5m<5m<7 m<`50m<@5@m< 5Pm< 9`m<Q9pm<Q9m<Q9m<P8m<Pz8m<`8m<@\8m<v4m<pK8m<9n< 9n<'9 n<T80n<u4@n<8Pn<@5`n<d8pn<d8n<8n<P8n<@K8n<5n<0z8n<5n<z8n<@n8o< \8o<S8 o<\80o<[8@o<5Po<8`o<Ѓ8po<08o< K8o<8o<8o<8o<8o<d8o<p8o<@5p<P8p<5 p<50p<[8@p<5Pp<@u4`p<5pp<5p< 5p<9p< 9p<9p<u4p<5p<8p<5q<t4q<8 q<'90q<pd8@q<S8Pq<Э8`q<P8pq<8q<a9q<8W9q<'9q<[9q<69q<8q<0[8q<69r<9r<t4 r<90r< 8@r<J8Pr<@S8`r<7pr<5r<[8r<5r< 4r<7r<8r<@7r<`5r<Z8s<8s<@t4 s< n80s<y8@s<t4Ps<s4`s< 7ps<s4s<3s<8s<p8s<7s<PJ8s<@s4s<Pd8s<s4t<3t<P8 t< 50t<5@t<0J8Pt<08`t<5pt<`5t<J8t<8t<n8t<Z8t<r4t<S8t<08t<8u<8u<y8 u<@50u<0d8@u<r4Pu<@r4`u<`3pu<Z8u<Ў8u<8u<r4u<@8u<d8u<p8u<p8u<R8v<8v<q4 v<Ђ80v<q4@v<I8Pv<@q4`v<q4pv< 3v<5v<I8v<p4v<m8v<p4v<c8v<5v<@p4w<3w<5 w<P80w<R8@w<8Pw<@5`w<8pw<p4w<8w<Z8w<pZ8w<8w<5w<8w<`o4w<5x<}5x<@y5 x<`w50x<@7@x< u5Px<q5`x<l5px<i5x<8x<p8x<`g5x<e5x< 7x<c5x<@4x<`4y<b5y<_5 y<\50y< 3@y<Z5Py<Y5`y<X5py<3y< W5y<T5y<3y<R5y< O5y<@L5y<K5y<@7z< i4z< d4 z<^40z<[4@z<H5Pz<F5`z<7pz<B5z<@5z<08z<@5z<`[4z<3z<P7z<@5z<P8{<m8{<8 {<c80{<[4@{<Z4P{<`Z4`{<`3p{< 9{<9{<Q9{<xI9{<pI9{<hI9{<Q9{<Q9{<P8|<`8|< 9 |<90|<m8@|<@8P|<m8`|<P8p|<@8|<Q9|<8|<08|< 8|<8|<08|<8|<8}<I8}<8 }< Z40}<8@}<8P}<8`}<R8p}<8}<p8}<p 9}<У8}<08}<Y4}<8}<R8}<pR8~<Y4~<8 ~<`Y40~<8@~<P8P~< Y4`~<X4p~< 7~<@>5~<;5~<X4~<@X4~<8~<08~<8~<X4< 8<c8 <'90<8@<8P<7`<8p<7< :5<85<`3< 55<15< -5<)5< 5<@5<7 <@T40<hB9@<Q9P<5`< 5p<8<`m8<y8<T4<S4<5Ѐ<9<`5<8<S4< 5 <@S40<y8@<Ѝ8P<S4`<c8p<R4<pc8<PZ8<py8<R4<Py8Ё<@m8<0y8<8<@R4<5 <R40<y8@<8P<Q4`<Pc8p<0c8<0Z8<x8<x8< m8<x8Ђ<8<Q4<5<@Q4<x8 <80<Q4@<c8P<Z8`<px8p<m8<Px8<8<P4<`5<P4Ѓ<0x8<p8<@P4<b8<b8 <Y80<x8@<w8P<l8`<w8p<9<8<8<69<l8<Y8Є< 5<9<w8<8<I8 <50<p8@<Y8P<P8`<P4p<` 9<й8<8<`8<O4<O4Ѕ<w8<5<pw8<@O4<8 <p90<PR8@<@8P<8`<8p<8<P 9<Ь8<l8<8<8І<p'9< 8<8<8<l8 <O40<N4@< 3P<b8`<5p<N4<@N4<a9<W9<@ 9<8Ї<P8<N4<08<0R8<08 <80<8@<8P<8`<`8p<b8<`'9<08<8<7<P'9Ј<0 9<8<8<8<8 <Y80<p8@<R8P<8`<pY8p<Ё8<M4<PY8<M4<8<Pw8Љ<@'9<8<`l8<8<@7 <@M40<M4@<p8P<`I8`<Т8p<7<0I8<L4<7< 9<8Њ<@8<pb8<`9<`8< 8 <Pb80<8@<@l8P<@8`<0w8p<L4<8<XI9<`8<P8<8Ћ< l8<@8<I8<8<P8 < 80<@5@<8P<w8`<5p<5<8<7<8<0Y8<8Ќ<p8<8<v8<08<H8 <80<H8@<8P<`H8`<8p<5< 8<l8< 9<Ќ8<`8Ѝ<Y8<@8<X8< 8< 5 <30<Q9@<8P<8`<8p<v8<@L4<8<v8<L4<x8Ў<p8<8<k8<K4<K4 <Q80<@H8@<Q8P<5`<8p<P8<8<@7< 5<0'9< K4Џ<J4<`J4< 5< 5<@ 5 <` 50< 5@< 3P<5`<5p<5< 5<@3<`3<3<`5А<3<3<@3< J4<@5 <70<I4@<`5P<I4`< 7p<5<5<5<`3<@7<@4Б<7<@7<08< 7< I4 <30<4@<@4P<H4`<@H4p<G4<G4<4<4<4<4В<4<4<`4<`3<3 <`70<4@<7P<4`<`7p<@G4<Q9<P9< 9<08< '9Г<G4<@9< 9<8<'9 <F40<69@<69P<8`<8p<8<h8<P8<F4<4<7Д<B4<?4<'9<8<8 <80<@?4@<@4P<[9`<4p<69<09<8<x69< 9<9Е<8<8<8<8<8 <80<9@<X8P<08`<p8p<&9<8<&9<&9<&9<h69Ж<Q8<8<p8<P8<8 <X690<8@<XB9P<PI9`<08p<`8<9<8<9<9<9З<x8<9<9<9<&9 <?40<3@<>4P<9`< 9p<8<p9< 9<и8<`9< 9И<8<&9<P9<@8<[9 <>40<3@< 3P<=4`<=4p<@=4<@4<@3<&9<8<7Й<8<8<8<`8<`8 <@90< 8@<H69P<@8`<8p<P8<k8<=4<<4<8<<4К<3<4<4<8<09 <8690<&9@< 8P<HB9`<0b8p<@<4<8<^a9<[a9<Xa9<Ua9Л<Ra9<:_9<Q9<p&9<HI9 < 90<Q9@<9P<4`<8p<<4<`&9< 9<7<`4<`8М<[9<7_9<3_9<0_9<-_9 <+_90<*_9@<*_9P<%_9`<!_9p<_9<Pa9<_9<Na9<La9<Ja9Н<Ha9<Fa9<Da9<Ba9<a9 <?a90<V9@<Q9<%9<88<P9<H9<8Ц<A9<8<x8<859<7Q9 <@80<0Q9@<08P<P8`<)Q9p<%9<"Q9<xH9<A9<%9<A9Ч<h8<(59<59<Q9<X8 <Q90<V9@<V9P<A9`<(8p< 8<A9<8<8<@9<xA9Ш<hA9< 9<59<pH9<8 < Q90<Q9@<8P<XA9`<hH9p<HA9<8A9<8<p%9<P9< 9Щ<09<`%9<8<H8<[9 <880<@;4@<`H9P<[9`<P9p< 9< 9< ^9<08<P%9<8Ъ<V9< 9<H8<(A9<V9 <XH90<(8@<8P<P9`<V9p<8<PH9<P8<xV9<P9< A9Ы< 9<^9<8<rV9<P9 <lV90<fV9@<X8P< 9`<^9p<9<8<P9<A9<8< 9Ь<HH9<8<A9<P9<8 <90<8@<@9P<9`<8p<p8<@H9<8<Ѐ8<8<pv8Э<8<8<8<@%9<8 <80<49@<0%9P<P9`<[9p<8H9<;4<`V9<ZV9<8<@9Ю<9<8<49<P9<8 <X80<49@< %9P<8`<49p<%9<0H9<}[9<9<8<8Я<a9<x[9<%9<49<8 <080<s[9@<P9P<$9`<8p<P9<p8<49<x8<@9<8а<8< 9<8<p8<n[9 <90<@9@<(H9P<$9`<08p<$9<49<Ъ8<49<8<P9б< H9<x49<$9<P8<8 <H90<8@<k8P<b8`<p8p<pQ8<TV9<NV9<9<i[9<$9в<8<9<P9<P9<8 <P80<P9@<9P<3a9`<`[9p<P9<$9< 9<p 9<08<8г<8<8<4<X[9<@9 <h490<:4@<H9P<`8`<X8p<$9<P9<p8<^9<Pv8<a8д<4<`4< 4<S[9<}P9 <@90<0v8@<8P<з8`<4p<N[9<` 9<X49<0a9<HV9<@9е<8<9<p9<$9<`9 <a90<a9@<8P<p8`<BV9p<P9<@9<vP9<vP9<P8<oP9ж<@8<P 9<H9<H49<^9 <@90< 8@<p8P<8`<8p<Р8<09<8V9<H9<I[9<849з<G9<hP9<aP9<^9<x@9 <ZP90<h@9@<G9P<(49`<PP9p<@[9<X@9< 9<P8<49<p$9и<H@9<8<H8<88<`$9 <a90<a9@<-a9P<*a9`<'a9p<2V9<G9<G9<`8<9<P8й<8<9<:4<EP9<8 <90<>P9@<49P<P$9`<7P9p<8<@ 9<,V9<8<8<0P9к<08<PQ8<8<&V9<G9 <390<p8@< V9P<G9`<8p<G9<8<G9<p8<V9<@8л<8<(8<)P9<p8<9 <080<@$9@<0 9P< 9`<0$9p< $9<8<p8<$9<8<a8м<8<@:4<9<ж8<9 < 80<9@<8P<$9`<9p< 9<9<P8<9<39<9[9н<`8<0[9<$P9<p9<P9 <$a90<8@<G9P<]9`<G9p<`8<39<7<08<P8<08о<8<8<v8<8<@8 <#90< 8@< 8P<#9`<8@9p<39<39<(@9<@9<8<P9п<]9<8<@9<#9<8 < a90<$[9@<a9P<39`<P9p<X8<P8<08<[9< 9<`9<8<]9<[9<8<a9 <a90<a9@<a9P<a9`<a9p<a9<:4<V9<]9<8<8<8<8<8<P8<P9 <390<8@<4P<8`<p8p<P9<V9<G9<8<#9<G9<39<O9<P9<9<#9 <[90<8@<9P<9`<@9p<09<9<P8<O9<G9<V9<8<V9<8<U9<`8 <[90<8@<x39P<П8`<O9p<a9<P8<8<?9<8<9<@8<8<9<O9<?9 <80<8@<u8P<8`<h39p<X39<?9<@8<?9<8<9<@4< 8<9<8<p9 <80<#9@<X9P<O9`<4p<3<G9<8<H9<89< 9<9<H39<839<8<U9 <?90<9@<O9P<U9`<(39p<U9<[9<#9<39<U9<G9<8<Z9<94<#9<9 <p80<8@<Z9P<39`<29p<Z9<O9< 8<a9<]9<29<?9<Z9<O9<9<Z9 <O90<(9@<08P<p#9`<P8p<8< k8<29<9<8<`#9<08<Z9<P#9<9<O9 <U90<xG9@<]9P<Z9`<U9p<Z9<8<9<Щ8<29<9<94<29<08<29<8 <U90<8@<8P<8`<8p<x8<8<O9<U9<U9<]9<U9< a9<Z9<9<U9 <80<P8@<x8P<]9`<`8p<pG9<8<Z9<4<Z9<]9<U9<h8<4<Pa8<@#9 <90<8@<k8P<X8`<9p<`G9<0#9<8<p9<XG9<Z9<29<?9<p8<8<9 <90<8@<]9P<U9`<j8p<U9<PG9<Z9<Z9<O9<?9<P8<@94<`9<a9<a9 <O90<Z9@<O9P<O9`<O9p<"9<U9<94<H9<89<x?9<O9<HG9<8<Z9<]9 <290<h?9@<"9P<X?9`<H?9p<@G9<Z9<a9<84<O9<е8<Z9<P8<x29<h29<4 <a90<@4@<@3P<`9`<`9p<8?9<Z9<(9<"9<H8<@8<08<9<(?9<U9< 8 <@80<"9@<9P<"9`<9p<P8<8<"9<9<8<j8<?9<9<U9<a9<]9 <}O90<?9@<vO9P<8G9`<X29p<`9<84<P8<P8<`P8<oO9<8<Z9<iO9<9<]9 <0G90<}U9@<(G9P<9`<`9p<wU9<H29<9<9<x"9<]9<829< G9<h"9<?9<9 <X"90<9@<G9P<H"9`<8p<bO9<8<8<9<8<8<9<>9<(29<@84<84 <]90<rU9@<nU9P<Z9`<9p<[O9<[O9<8"9<8<x9<x9<08<TO9<hU9<Z9<`9 <~Z90<{Z9@<`9P<h9`<8p<("9<h9<MO9<FO9<j8<vZ9<]9<]9<>9<29<74 <30<`3@< 3P<8`<G9p<G9<8<X9<X9<qZ9<F9<74< 8<>9<8<"9 <?O90<29@<>9P<F9`<8O9p<F9<19<19<8<8<@P8< 74<G8<4<P8<O8 <O80<p8@<8P<8`<`8p<P8<8<8<p8<H9<P8<8<G8<8<8<H9 <H90<8@<08P<@8`<8p<64<8<8<8<p8<8<89<u8<bU9<19<1O9 <*O90<\U9@<4P<8`<(9p<"9<19<>9<pX8<7< 8<!9<a9<VU9<X>9<PU9 <a90<|]9@<x]9P<H>9`<JU9p<8<DU9<t]9<`9<nZ9<19<`9<iZ9<>U9<8>9<F9 <90<9@<08P<64`<P8p<9<08<9<9<(>9<8<F9<#O9<>9<>9<19 <90<t8@<8P<9`<8p<p9<h8<19<O9<P8<19<x19<=9<=9< 8<`64 <80<8@<p8P<O9`<@8p< 8<`8< O9<8<F9<8<`Z9<h19<8<P8<F9 <90<p]9@<X19P<O9`<08p<N9<`9< 9<F9<l]9<N9<=9< 9<=9<9<P9 <h]90<H19@<@8P<8`<p9p<08<=9< 9<`9<a9<8<7< 64<54<@4<4 <40<3@<3P<@3`<3p<TZ9<OZ9<N9<8<8U9<N9<8< 8<`8<F9<2U9 <P90<F9@<JZ9P<=9`<N9p<EZ9<`54< 8<`4<54<44<`44<44< 4<34<@34 <240<24@< 24P<4`<@Z9p<819<@9< 9<N9<d]9< 9<8<08<8<8<8 <80<=9@<p8P<=9`<8p<,U9<F9<8<8<P8<8<`]9<N9<N9< 9<;Z9 <6Z90<N9@<N9P<&U9`<F9p<8<N9< U9<U9<U9<N9< 9<1Z9<F9<09<(19 <F90<N9@<@9P<`9`<19p<x 9<19<N9< 9<(Z9<9<09<9<N9< U9<h 9 <U90<X 9@<T9P<9`< Z9p<Z9<F9<09<9<X]9<T9<N9<8<8<x=9<N9 <xF90<09@<|N9P<@8`< 8p< 9<p8<8<8<9<uN9<p=9<9<8<9<M]9 <80<T9@<j8P<`8`<I]9p<д8<`=9<T9<pF9<8<8<8<8<nN9<Z9<gN9 <80<9@<`9P<Z9`<09p<`N9<Z9<P=9<H 9<8 9<09<09<T9<Z9<YN9<8 <090<@=9@<RN9P<8`<09p<09<i8<x09<8<8<8<8<hF9<p8<h09<p8 <P80<9@<9P<9`<9p<0=9<T9<( 9<`F9< =9<8<X09<9<P8<8<8 < 90<8@<H09P<809`<(09p<08<8<=9<09<@8<09<XF9</9<KN9<`8<DN9 <P80<8@<9P<08`</9p<t8<P7<x8<=9<8<`9<E]9<Y9<>N9<8N9<2N9 < 90<4@<h8P<PF9`</9p<T9<9<`9<+N9<@8<`9<`9<`9<`9<$N9< 8 <N90<8@<N9P<8`<T9p< 8<p8<8<T9<N9<Y9</9<i8<14<N9<N9 <`80<8@<T9P<`9`<8p<08<p9<9<8<`8<A]9<Y9<P8<T9<Y9<}a9 <=]90<<9@<T9P<`9`<9p<8<8<8<9<P9<M9<<9<9<E9</9<@9 <Y90<`9@<M9P<{a9`<Y9p<<9<`9<M9<G8<M9<8<p/9<`4<p8<`/9<P/9 <90<E9@<<9P<@8`<cT9p<9<9<p9<09<@/9<9<M9<`8<ya9<88<14 <9]90<4]9@<Y9&=-&=?'=-'=`b'='=-('=-0'=0b8'=@@'=-P'=$-X'=xh'=--x'=D-'=X'=O-(=-(=\-0(=d-X(=o-(=-(=(=-(=,(=P(=h-)= -)=`)=- )=-()=c@)=~,H)=c)=-)=)=)=`)=d)=)=U)=P)=@*=*=*=*=`+=(*=0@*=~,H*= *=d-*=-*=-*=o-`+=-h+= sp+=+=-+= s+=+=-+={+=+=-+={+=,=-,=@U,=`(,=-0,=g8,=P,=-X,=g`,=x,=-,=`U,=-,=`U,=-,=,=-,=-= - -=U@-=-H-=Uh-=-p-=Pex-=-=,-=Pe-=-=,--=d-= -=;--=pg-=.=K-.=`.=8-x.=.=.=?.=Y-.=Pg.=-/=?/=@/=H/=.X/=/=`-/=|80=pT0=0,81=-P1=}1=T1=X2=p&2=-2=~x3=S3=`3=`'x4=-4=5=S 5=5=%6=@-06=Ѐ6=S87= %7=p-7= X8=R8=&X9=-p9=p9=0Rx:=$:=-;=;=Q<=+<=.<=8==`Q==P+8>=0.P>= >=PX?=*?=`.?=px@=P@=P*xA=.A=B=OB=)C=.0C=pC=O8D=P)D=.D=XE=pOE=(XF= .pF=`F=NxG=P(G=P.H=H=@NI=,I=.I=8J= N@J=J=&8K=.PK=0kK=NXL=tL=.L=xM=MM=ОxN=.N=O=MO= /P=0.0P=P=M8Q=.Q=X.Q=XR=MR= .XS=.pS=`S=MxT=-T=.U=U=LV= -V=.V=8W=LW='8X=n-PX=X=LX=XY=XY=.Y=0!xZ=XZ= Z=@\=Z=`[=Z=c#`[=-h[=px[=8.[=,[=[=x.[=b9[=N![=.[=-[=@\=,H\=*X\=e/`\=e-h\=U%x\=e/\=8-\=#\=c/\=-\=*\=`c/\=F,\=PL\= c/\=;,\=\=b/]=,]=]=b/ ]=,(]=8]=@b/x]=`.]= 6!H^=_=^=_=,_=p*_=g/ _=,(_=` 8_=f/@_=,H_=X_=f/_=._=9!h`=a=x`= a=`=b# a=,(a=@8a=x.a=,a=*a=h/a=,a=`a=g/a=,a=a=g/b=.0b= 6!b= d=b=c=8c=c=-c=@jc=-c= d=,(d=*8d=x/@d=,Hd=Xd=`x/`d=,hd=xd= x/d=-d=Pe=.xe=`e=`e=@f=e=Se=d@f=-Hf=Z*Xf=~/`f=-hf=pf=-f=p*f= ~/f=,f= f=}/f=,f=Pf=}/g=8.0g=@!g=`.g=h=(h=#8h=`ih=,h=@h=/h=,h=h=@/i=-0i=!i=8.i=pYi= i=j=(j=8j=Mj=,j=j=/j=,j=j=`/k=-0k=@!k=l=8l=a!l=-l=l=P/l=,l=l= /l=,l=l=/8m=.Pm=p!m=.n=n=Xn=p~#n=-n=w!n=/n=,n=n=/o=,o=o=/Xo= .po=@!o=8 .(p=p=xp=!p=,p=p= /q=#,q= +q=/ q= ,(q=(8q= /@q=,Hq=PXq=/`q=,hq=xq=/q=-q=0!Pr=p .Xr=Y`r=r=@s=r=p1@s=,Hs=PXs=/`s=,hs=xs=й/s=,s=s=/s=--s=!pt= .xt=pZt=0t=`u=t=j`u=U-hu=05*xu= /u=,u= %*u=/u= -u=u=@/u=,u=u=/u=,u=u=/v=,v=~v=/Xv=J-pv=П!v=.v=Zw=(w=w=xw=nw=a,w=yw=/x=,x= x=/ x=,(x=P8x=`/@x=,Hx=Xx= /`x=,hx=|xx=/x=a-x=zy=`z=y=@z=Py=.y= {=y=z=y=@z=f`z=fz=-z=f {=,({=K%8{=1@{=,H{=X{= 1`{=-h{=}!x{=1{=,{={=@1{=,{=>{=1{=-|=`zH|=}=P|=}=|=.|=`~=|=~=}=`}=g}=g~=-~=g`~=,h~=@#x~= 1~=,~=~=@1~=-~= !~=1~=,~=~=`1~=,~=<~= 18=-P=@!=.=p[=0==X=г=) -Ȁ=@؀=1=,=`#= 1=-=pZ=@1X=-p=@!=h.=p[=0x==.=@!=.=p[=0ȃ====,=p= 1=-=%= 1=q-Ȅ=؄=1= .0=@!= .=p[=0= ===8==-=$= .Ȇ=,І=%=`!. =-(=)8=1@=-H=KX=1`=,h=x=1=,=0k=1=,=k=1=-=@!=!.=p[=0؈===@=-==0".= -=@!=".=p[=0Ȋ====,=`'=1؋=*-=@!p=#.x=p[=0=x=D-=@!=X#.=p[ =0=@=^-0=@!=#.=p[=08= =v-А=@!P=#.X=p[`=0ؑ=X=-p=@!= $.=p[=0x==-=@!=h$.=p[=0=`=-=@!0=$.8=p[@=0=8=-P=З=$.==X=0=,Ș= Lؘ=2=-0== %.8=`0=X%.К=P=%.=@=؛=1@=) -H=X= 2`=-h=%x=2= -М=P=%.===@=؝=@=,H=2X=%.=,=06=2=,Ȟ="؞=@2=& -0==0&.= ===8==,= 3=`&.Ƞ=> -Р==&. =,(=>8=`2x=&.==&.H=`=X====,=P6=`&.`=,h=x=@2=H -У=P=0'.===@=ؤ=0@=\-H=6X=p'.h=,p= '='.=-=0$=,=$=2=~,=n=@2 =,(=K8=@2x=e -=Ȧ= =Ц==='.8=PH===`3=g8=r=,== 2=,==2={ -=8=H==P==h=0i= (.= ȩ===P=P=и+=P=rت==n,=0=2 =,(=p8=2@=,H=`uX=2=P(.==38= -P=X=1خ= -==/x=p(.==0= -0=h==p===(.ز==== =8=0==`1=س=r =,(=%=,=A=2ش= -==x= -== 1=!-0=8==:!-й=P=(.=@=غ=3@=,H=X=2=).==@28=S!-P=X=2ؾ=q!-=`=`=p=().===p`==-==2=,=0=2=,= =2=`).0==).====8==,= =).=,=(=@2X=!-p==).(=@=8==x==,=@=,H=kX=`2=!-==P0=(*.h==x= == =,(==,=p=2=!-=p=X*.===`==0`=,h==,==2=!-0==*.====8==,==,== 2X=!-p==*.(=@=8==x==,=@=,H=`X=2= "-=0=*.h==x= == =,(==,==2=%"-=p=+.=`==`=,h=x=2=B"-=P=P+.=@==@=,H=pX=2=_"-=0=+.h= == =,(=08=2x={"-==+.H===p=,== 2X="-p====+.(==x=P`=@7p==,=Y=@2X="-p====,.(==x=`=5p==,=PJ=`2X="-p====,.(==x=`=9p=`=,=P=2X="-p====H,.(==x=P==,=E=2X="-p====x,.(==x== =,=@U=2X=#-p====,.(==x===,= H=2X=-#-p====,.(==x=p==,=[=2X=F#-p====-.(==x==@=,=L= 2X=^#-p====8-.(==x===,=N=@2X=w#-p====h-.(==x=0==,=S=`2X=#-p====-.(==x==`=,=pW=2X=#-p====-.(==x=p(=@=,==2X=#-p==-.(==h=Jx=%#=,=P4=28=(..P===X=!=-=2!=2=,=0=2>,>P2>@2X>P..p> !>x..(>>h>^x>>,>y>3>j,>`Y>@3X>#-p>!>/.x>`>#->!>2.>@>$->!>@>> >0>h4.X>ph> >x>>>@ >(>g@>X>r>$$-> >8.>_-> >9. >~,(>0m8>p3x>)$->y >:.H > > >W >  >, >` >`3 >,( >'8 > 3x >E$- > >c$-H > > >[ >`  >, > >3 >,( >%8 >3x >w$- >@ >;. > K > H >>X >> > >\>Z,>(>$-0>P>,X>0x>),>>->>L,> >^,>p>, >@>(,H>zh>-p>@>,>>,>>,>P>,>0>~-8>@X>,`>>K,>>],>>t,>`>,> >,(>H>,P>Pp>,x>P>,>>,> >,>>,>p\8>B,@>\`>M,h>p]>W,>]>,>@>3>,>>3 >,(>8>3@> ,H>`X>3`>C,h>0x>3>N,>>p3>X,>г>@3>->`e>3>,>>3>,>[>3 >,(>08>`3x>$->`B>K > H>`>X>>>;>,>@n`>-h>-+x>3>F,>m >3>;,>@ >3>,> >@3>,>!>38>$-P>@>>X>b>,> >3>,>>@38>$-P>x>><.>@>>>H>#X>p >->'>$-> ->> C.@>-H>^X>/`>p,h>x>/>U,> >`/> ->p\>@/>{ ->PV>@/> ->`Y>@/>,>%>/ >,(>%8>@/@>,H>P X>/`>,h>Px>/>$->`yP>XC.h>@> >>@>>> @>%-H>@P>Ph>&%-p>x>@>7%->m>p>><%->>0 >,(> 8>`/@>,H> X> /`>~,h>@x>/>K%->7!P >pG.x > > >!> >@!> >P_ >P @!>-H!>0!X!>XK.!>-!> !>-!>@A!!>v/!>-!>#!>u/">Z-">">@t/ ">-(">)8">s/@"> -H">X">`s/`">F,h">PKx"> s/">;,">">r/">-"> *">q/">M -"> F!"> p/">l-">*">o/#>,#>#>`m/ #>U-(#>*8#>`l/@#>,H#>X#>@j/`#>-h#>P*x#>i/#>,#>#>h/#>,#>#>h/#>K.$>4!$>K.$>%>$>%>%> %>,%> %>L.%>-%>%%>}/&>-&>`"&>{/ &> -(&>8&>z/@&> -H&>pX&> z/`&>F,h&>Kx&>y/&>;,&>P&>y/&>,&>&>`y/&>,&>&> y/'>L.0'>@!'>L.'>(>((>`f*8(>i(>,(>(>/(>,(>(>`/)>@O.0)>@!)>hO.)>*>(*>@^*8*>i*>,*>p*> /*>,*>*>/+>S.0+>@!+>S.+>,>(,>w*8,>i,>C-,>E*,>@/,>,,> ,>/,>,,>,>/8->U.P->@!->U..>.>H.>n*X.>i.>C-.>*.>/.>,.> .>`//>,/>/> /X/>i%-p/>@!/>/>W.0> 0> >(0>`1>80>0>x0>Ph0>$$-0>p<0>Y.1>%-1>`1>F,h1>Lx1>/1>;,1>0q1>@/1>,1>1>/1>,1>`1>/1>,1>1>/2>,2>`2>/ 2>,(2>82>/@2> -H2>X2>P/`2>,h2>`x2>0/2>,2>-2>/2>,2>+2>/2>z,2>p)2>/2>-2>"2>@/3>b93>0*3>/ 3>x-(3> #83>/@3> -H3>X3>/`3> -h3>Я!x3> /3>-3> %3>`/3> -3>_3>/3>J-3>*3> /3>%-3>"3>`/4>[,4>t4>@/ 4>,(4>84> /@4>-H4>`7#X4>@/`4>,h4>x4>@/4>,4>`4>/4>-4>0>4>&-4>01%4>/4>a,4> 4>/5>,5> 5>/ 5> -(5>85>`/@5>g -H5>EX5>/`5>-h5>'x5>/5>k-5><5>/5>,5>5>/5>,5>w5>@/6>%-06>6>hZ.6>7>87>7> -7> 7>`/7>%-8>88>H8>9>P8>9>8>9>8>Z.8>8>;>8> :>9>79>`9>9>p9>{9>p9>pr :>-(:>P8:>@[.H:>%-P:>`:>p[.p:>%-x:>0:>\.:>v,:>:>H\.:>"-:>P:>\.:>/-:>p;>\.;>%-;>(;>`].8;>,@;>!;>c,;>0;>/;>,;>;> /;> -;>(%;>`/<>?,<>pL<>/ <>-(<>@u8<>@/@<>!,H<>0X<>/<>%-<><>:0=>].h=>>>x=> >>=>c=>  >>"-(>>8>>^.H>>v,P>>``>>_.>>,>>>>`3>>,>>+>> 3?>%-0?>ЋX?>`?>_.?>?>A>?>@>(@>d8@>0 @>9 -@>p@>a.@>&-@>@>8a.@>v,@>A>b.A>%- A>0A>b.A>,A>A>д3A>,A>)A>3A> &-B> B>c.B>0^B> B>D>B>C>C>!C>$&-C>4C>n.C>0&-C>C>hp.C>-C> C>r.C>9&-D>"D>t. D>%-(D>8D>xx.HD>v,PD>`D>y.D>p,D>@D>1D>~,D> D>1D>D -D>6 D>`1E>-E>0#E>1 E>-(E> D8E> 1@E>,HE>ptXE>1`E>#,hE>JxE>P1E>-E>%E> 1E>+,E>0%E>`1E>-E>%E>1E>-E>@&E>0F>E-F>p:%F>0 F> -(F>z8F>0@F>?,HF>`"XF>0`F>-hF>@+xF>0F>-F>F>0F>,F>F>0F>-F>f#F>0F>-F>+F>0G>,G>|%G>`0 G>,(G>@)8G> 0@G>-HG>%XG>0`G>;-hG>%xG> 0G>M -G>1 G>0G>l-G>`u%G>0G>-G>"G> 0G>,G>^G>@0H>U-H>n%H>0 H>-(H>Q!8H>@0@H>-HH>e%XH>0`H>-hH>0 "xH>`0H>-H>P^%H>0H>@&-H>pI>Py.I>`K>I>`J>I>#`J>-hJ>xJ>.J>$&-J>J>.J>0&-J>J>.J>9&-J>pJ>.K>v,K>@K>.`K>p,hK>xK>0K>D -K>- K> 0K>~,K>@sK>0K> -K>K>0K>-K>p;+K>0L>-L>*#L>`0 L>-(L>)8L>0@L>-HL>)XL>@0`L>-hL>)xL>0L>?,L>`uL> 0L>-L>L>0L>-L>#L> 0L>-L>+L>0M>,M>@M> 0 M>,(M>@h8M>}0@M>-HM>)XM>x0`M>-hM> "xM>@t0M>-M>#M>o0M>,M>'M>o0M>-M><M>n0M>,M>yM>`l0N>#,N>GN>0l0 N>-(N>@)8N>g0@N>+,HN>Ч)XN>e0`N>-hN>`)xN>@b0N>-N>)N>`]0N>,N>@MN> \0N>u,N>N>W0N>P-N>rN>J0O>4-O>hO> @0 O>,(O>8O>@>0xO>R&-O>xO>O> Q>O>Q>P>P.(P>tHP>R>XP>Q>P> cP> Q>~Q> Q>~8Q>`rQ>g&-Q>Q>.Q>-Q> Q>.Q>$&-Q>`[Q>0&-R>[ R>z,(R>j8R>.HR>-PR>[R>x,R>R>U1R>,R>@R>Q1R>-R>R>P1S>-S>`BS>O1 S>p,(S> 8S>PO1@S>,HS>@XS>L1`S>-hS>xS>I1S>K,S>0CS>F1S>L-S>dS> @1S>M,S>^S>`:1S>,S>0S>`81T>.-T>T>31 T>O-(T>8T>`01@T>8-HT>@XT>)1`T>,hT>yxT>%1T>,T>0~T> 1T> -T>T> 1T>+,T>T>1T>-T>T>1U>-U>U>@1 U>,(U>F8U>1@U>,HU>@XU>1`U>,hU>`xU>@1U>t&-U>!U>V>`W>V>@W>(V>PV>Ȗ.XV>^`V>hV>@nxV>V>@Y>V>W>V>`?V>%@W>|HW>f`W>|xW>PrW>+-W>W>d,W>X> .X>-X>(X>.8X>9&-@X>P%PX>.`X>&-hX>xX>؝.X>-X>X>.X>v,X>X>.X>-X>m@Y>~,HY>@*XY>1`Y>,hY>xY> 1Y> -Y>o Y>1Y>,Y>pY>1Y>D -Y>0M Y>1Y>,Y>sY>1Z>#,Z>MZ>1 Z>-(Z>C8Z>@1@Z>-HZ>pXZ>1`Z>1-hZ>xZ>1Z>f-Z>`Z>1Z>?,Z>Z>1Z>,Z>+Z>`1Z>) -Z>%Z>`1[>x,[>@6[> 1 [>-([>`38[>@1@[>P,H[>X[>@1`[>-h[>`#x[>@}1[>-[>#[>z1[>-[>[>@y1[>-[>[>v1[> -[>`[>`t1\>8-\>@\>@p1 \>\-(\>P 8\>l1@\>O-H\>X\> j1`\>-h\>x\>@h1\>-\>PS\>f1\>-\>'\>`1\>,\>&\>_1\>,\>\>^1]>,]> ]>[1 ]>,(]>K 8]>`Y1@]>U-H]> 'X]>`X1`]>c,h]>x]>@X1]>С.]>@!P^>.X^>p[`^>0^>@_>^>@_>,H_>07X_>2_>&-_>@!0`>H.8`>p[@`>0h`>a>x`> a>`> a>,(a>#a>,a>a>@1a>&-a>!pb>.xb>b>b>c>b>`c>b>`c>-hc> "c>#-c>"c>P,c>PMc>`1d>,d>Pd>1 d>,(d>(8d>1@d>-Hd>$Xd>1d>&-d>@!0e>.8e>p[@e>0e>!8f>&-Pf>@!f>.f>p[f>0Xg>`!g>'-g>@!ph>h.xh>p[h>0h>`i>h>"`i>-hi>@xi>.i>'-i>@!pj>@.xj>p[j>0j>`k>j>"`k>,hk>`xk>1k>7'-k>@!Pl>.Xl>p[`l>0l>m>l>@m>l>P"@m>_-Hm>dXm>N'-hm>h-pm>5m>Ф.m>,m>` m>1m>K,m>"m>`1n>?-n>`c+n>1 n>j-(n>x+8n>1xn>H.n>@!o>h.o>p[ o>0Ho>`p>Xo>p>o>@p>,p>!p>.`p>-hp>$xp>1p>h'-p>@!Pq>Ȩ.Xq>p[`q>0q>r>q>@r>q>@r>,Hr> Xr>.hr>n,pr>@!r>@.r>-r>~$r>@1s>x.0s>@!s>.s>p[s>0s>@u>s>t>8t>`t>,t>` t> .t>h-t>!t>h.t>}'-t> !u>8.@u>-Hu>)Xu>1u>'-u>@!0v>.8v>p[@v>0hv>w>xv> w>v>  w>,(w>8w>H.Hw>h-Pw> !`w>H.pw>}'-xw> !w>.w>-w> (w>1x>'-0x>@!x>.x>p[x>0x> z>x>y>8y>y>,y>y>8.y>h-y> !y>p. z>-(z>p(8z>@1xz>'-z>@!{>.{>p[ {>0H{>|>X{>|>{>|>,|>|>.(|>h-0|>!@|>.|>-|>(|>`1|>'-|>@!x}>p[}>0}>`~>}>!`~>-h~> x~>1~>,~>~>1~>,~>@~>@1~>'->@!> .>p[>0>>> >K,> >1>->u$>@1>-Ȁ>#؀> 1>->pE)>1>->|> 1X>(-p>@!>h.>p[>0x>>(->@!>.>p[>0>>8(->@!0>.8>p[@>0>8>S(-P>@!؆>p[>0X>؇>@.>@!p>h.x>p[>0>0x>n(->@!>.>p[ >0>>(-0>@!>.>p[>08>>(-Ќ>@!P>8.X>p[`>0؍>X>(-p>@!>x.>p[>0x>>(->@!>.>p[>0> >(->@!0>.8>p[@>0>@8>(-P>@!Г>8.ؓ>p[>0X>ؔ>)->@!p>x.x>p[>0>x>.)->@!>.>p[ >0>>E)-0>@!>.>p[>08>>\)-Й>@!P>8.X>p[`>0ؚ>`X>x.p>@!>.>p[>0x>>r)->@!>.>p[>0>>)->@!0>.8>p[@>0>8>)-P>@!Р>@.ؠ>p[>0>>X>p >)-ȡ>3>)-> 4X>)-p>@!>.>p[>0x> >)->!8>>.>0_>>Ȥ>>ؤ>>> 9>#>%->>*->p Х>z,إ>>->@3 > *-(>@H>*-P>0p>d,x>l>*,Ȧ>@jئ>`/>->`X'>/>?->">@/ >) -(>8>/@>-H>P%X>/`>?,h>,x>/>,>>/>,>p>/>,ȧ>0oا>`/>%*-0>!X>@>.>_> Ȩ>У> >>>(><8>">%->`ȩ>*-Щ> >z,>>- >2@> *-H>0h>*-p>>A*->>d,>f >*,(>pU8>/@>-H>P&X>/`>-h>'x>@/>->&> />?->">/>) -ȫ>p& ث>/> -> >/> ->p >@/ >-(>%8>/@>?,H>p#X>/`>,h>` x>@/>,>>/>,>`Z>/>V*->!8>P>8.>0`>>ȭ>>ح>>>`:>@$>%->>*-> Ю>z,خ>>->`2 > *-(> H>*-P>0p>d,x>d>*,ȯ>Pcد>/>->&>/>->!'>/ >?-(> "8>/@>) -H> X>/`> -h>x> />->`%>/>?,>P&>/>,Ȱ>ذ> />,>@>/>,>@h>/X>r*-p>@!>>`.>`> >(> >8>>h>;x>`#>%->`>*-> 0>z,8>pX>-`>1> *->>*->г>d,س>a >*,(>`\8>/@>-H>0&X>/`>-h><'x>@/>?->">/>) ->` >/> -ȴ>0ش>/>->p%>@/>?,>0)>`/ >,(>8>/@>,H>PX>`/`>,h>Pax> />*-е>P!>@>@>P>.X>0a`>0h>p> >>`>ȶ> >ض>0@>@o`> *-h>x>.>%->>.>*->0ȷ>P.ط>*-> >.>->1>.(>z,0>P@>.P>,X>`h>X.x>d,>S>q,> Tȸ>,и> W >-(>`N8>0@>-H>`&X>0`>) -h>* x>0>?,>.>`0>,>`>0>z -ȹ> ع>/> ->>/>,>>p/ >,(>pS8>@/x>*->@!>pȺ> >к>>>>.>p[ >0(>Pd8>гH>>X>>>0i>>R>j >R8>@r>->>9&-> >.м>,ؼ>Д>.>%->>. >v,(>`8>H.H>2,P>t"`>.p>d,x>S>->`S>u ->`Z >F2 >g-(>8>@D2@>-H>>X>B2`>U-h> $x>A2>->P>?2>->>@?2>P,Ⱦ>P.ؾ>=2>->> =2>->0>82 >~,(>/!8>82@>,H>(X>52`>,h>@jx>42>#,>P>P42> -> >/2>,ȿ>ؿ> /2>?,>>.2>->^>-2 >-(>8>-2@>1-H>X>,2`>f-h> x>+2> ->n>)2>O->`>'2>->>'2>8->p>%2>\->>`#2 >-(>Pt8>"2@>,H>+X>!2`>x,h>0x>!2>) ->0%>2>,>>2>,>>2>D ->`V >2>->!> 2 >;-(>$8>2@>M -H>Q X>`2`>l-h>p$x>2>->PL">2>U->$>@2>->PV!> 2>->`$> 2>->p9"> 2 >-(>$8> 2@>z -H>X>@2`> -h>x>2>.>x>@>>X@>,H>X>`G2`>,h>x> G2>,>@ >F2>*->>@p>.>>>`>>m>P `>-h>px>.>*->>8.>*->P>p.>*->>.>*->@>.(>+-0>@>.>,> > `2>,>:>_2>+->8>pX>0h>g>P.>j>>>>>p> >d,>p>x.>1->>.>->0w>2 >D -(>[ 8>`2@>?,H>X>2`>~,h>px>2>,>O>2>!+->>(>>0>`>8>{H> p>.>g>>>>>>R>`>[h>>[>0r>4+->>.>Y->` >.0> ,8> H>.X>b9`>p>8.>~,>0>s3>#,>>`s3>A,>>q3 >?,(>8>o3@>-H>X>k3`>K,h>x>i3>,>3> i3>P,>>#>h3>u->0>@e3>->W#>@c3>,> \>`3 >[-(>f&8>^3@>A-H>a&X> ]3`>*-h>Z&x>@[3>,>>Z3>E->!>@X3>E->`B%>@V3>->r">T3> -> >`Q3 >M -(>a 8>`P3@>l-H>PT&X>O3`> -h>_ x> O3>U->PN&>@N3>D+->@!>@8>PH>p>@.x>a>>q>@>>`>>PS>`>P -h>0x>.>->>.>b9>C!>.>d,> R@>?,H>WX>3`>~,h>x>3>E->!>`3>->0o">~3>->">|3>}->!>@{3>K ->>@y3 >-(>H#8>v3@>M -H>Pf X>u3`>l-h>H&x> u3> ->pd >t3>U->B&>s3>V+->8>hH>>P>>h>s>8.>0>>>>&> >>#>> r> >?,>>`3 >~,(>08> 3@> ,H>&X>3`>,h>`#x>`3>,>>03>,>P>3>n,>>3>->>3>->I>3X>s+-p>xx>X>+->!>.>>>@>},> >3>~,>>3>b,>`>3>+-0>!>.>>8> >},>>@3>~,>>3>b,>>38>+-P>!>(.>@>>>X>`>9 ->>.>C ->>.@>},H>PX>@3`>~,h>x>3>b,>0Q>3>+->!p>P.>`>>`>},h>Rx>3>~,>>3>b,>M>3>.>!>.>`>>>>>->>0/>z,>@ >h/> *->[+>/>+->d#>/`>},h>PRx>3>~,>p>`3>b,>pS> 3>+->!8>>/>8>>> >@>,>O>`3>j,>/>3>~,>k>3>},>P>3>b,>N> 3X>,-p>!>x/(>>8>>x> >$,->2>/>-> >/0>3,-8>?H>/X>>,-`>>p>H/>},>`N>3>b,>Q>3>,>>3X>H,-p>!>/(>`>8>>x>>f,->>-> `>~,h>=x>`3>s,->!P>/>>>@>>@>,-H>X>/h>,-p>>x/>~,>C>3>,-0>!>8/> >>>8>>,->P>/>,->>/ >~,(>@8>3x>,->!>/H>>X>>>>,->>/(>,-0> @>h/>~,>:>3>,->!p> />>>`>>`>,-h>px>/>,->>/>~,>PI>38>/P>!>/>>X>>~,>P> 3>,-0>!>/>>8>>,>@>p/>--0>!>8/>>8>>,>`>X/>--0>!>/>>8>`>,>>(/?4--0?!?/? ???8??,??@!/?,?G?"/ ?~,(?pF8?P3x?N--?!?"/H??X???@?i--??#/(?q--0?Ѐ@?$/P?-X?@h?%/?~,??3?|--? ?&/???p?!?,?@? 3?,?-?3?--?!H??P???8'/?? ?? ?? ?0?Q?0?q ?Y- ?  ?P*/( ? ,0 ?@ ?X+/ ?u- ?P ?`3 ?- ?\# ? 3 ?~, ?  ?У3 ?--0 ?! ?,/ ?@ ? ? ?8 ? ?-- ? ?-/ ?- ?` ?p./ ?-- ? ?8//@ ?~,H ?8X ?3 ?-- ?!0 ?//h ? ?x ? ? ? ?--(?P!8?(1/H?.-P?0J!`?2/p? .-x?!?2/?.-?pL!?3/?.-?0?4/ ?~,(?058?3x?*.-?!?h5/H??X????--??6/(?-0?@?p7/?~,?? 3?H.-?!p?@8/???`??`?--h?0x? 9/?-??9/?~,??P38?a.-P?!?:/?@???X??--??-??;/@?~,H?0X?p3?{.-?!0?/?~,??3?.-?!8?X?fh?~?>/?r?????t?? &-??>,-? A??/?3,-??@/?.-??hA/ ?.-(?8? C/H?.-P?`?(D/?~,??3??,??@3?-?@k?3?M -?k ?3 ?l-(?P$8?3@? -H?0i X?@3`?U-h?J$x?`3?.-?x?P?PE/???@??px? @?.-H?0X?F/?,?@E?3?,?`?`3?,? ?3?,??3 ?,(?8?`3@?,H?X?3`?,h?0x?`3?,?#? 3?.-? ?bp ?`F/ ?@"? ?`!? ?@| ? d`!?d,h!?-!?b9!?` !!?-!?!? /-!?pz!@"??,H"?P?X"?/`"?--h"?@"x"?`/"?E-"?"? /"?,"?"?/"?,"?P"?/#?/-0#?#?F/#?%?#?$?($?U8$?`b#$?)/-$?J$? O$?>/-$?$?pO$?O/-$?P%?P%?, %?p (%?0:+%?,%?%? /%?,%?P%?/%?[/-&?0&?8J/&?(?&?'?'?'?Ю'?w/-'?&'?;'?-'?:'?;'?-'?@'?Б'?2,(?`(?# (?O/-((?D0(?FH(?/-P(?GX(?@Hp(?-x(?0I(?I(?,(?(?/(?,(?P(?`/8)?/-P)?xX*?X*?,*? *?X/*?-*? *? Y/+?$-+?+?Y/ +?,(+?8+?Y/@+?{-H+?p%X+? Z/`+?n-h+?`n&x+?[/+?-+?@*+? ]/+?-+?%+?^/+?-+?@"+?`_/+? -+? +?`/,? -,?@ ,?`a/ ,?,(,?8,?@b/@,?,H,?X,?b/`,?;,h,?x,?b/,?F,,?PL,? c/,?-,?*,?`c/,?8-,?#,?c/,?e-,?U%,?e/-?,-?*-?e/ -?,(-?8-?f/@-?,H-?` X-?f/`-?,h-?p*x-?g/-?,-?-?g/-?,-?`-?g/-?,-?*-?h/-?,-?-?h/.?,.?.?h/ .?-(.?P*8.?i/@.?,H.?X.?@j/`.?U-h.?*x.?`l/.?,.?.?`m/.?l-.?*.?o/.?M -.? F!.? p/.?-.? *.?q//?;,/?/?r/ /?F,(/?PK8/? s/@/? -H/?X/?`s/`/?-h/?)x/?s//?Z-/?/?@t//?-/?#/?u//?-/?@A!/?v//?9,/?9/?v/0?,0?0? x/ 0?,(0?80?`x/@0?,H0?*X0?x/`0?,h0?x0? y/0?,0?0?`y/0?;,0?P0?y/0?F,0?K0?y/0? -0?p0? z/1? -1?1?z/ 1?-(1?`"81?{/@1?-H1?%X1?}/`1?,h1?Px1?}/1?,1? 1?}/1?-1?p*1? ~/1?-1?Z*1?~/1?,1?P1?/2?,2?2?/ 2?E-(2?82? /@2?--H2?@"X2?`/`2??,h2?P?x2?/2?,2?P2?`/2?,2?2?/2?,2?P2?/2?,2?2? /3?B-3?`3?`/ 3?\-(3?83?@/@3?,H3?+X3?/`3?,h3?1x3?/3?,3?P3?/3?,3?P 3?/3?,3?%3?@/3?,3?%3?/4? -4?`Y4?@/ 4?{ -(4?PV84?@/@4? -H4?p\X4?@/`4?U,h4? x4?`/4?p,4?4?/4?-4?^4?/4?~,4?@4?/4?,4? 4? /5?,5? 5?`/ 5?*,(5?85?p/@5?-H5?X5?/`5? -h5? x5?/5?[-5?pH%5?`/5?-5? 5? /5?,5?5?/5?,5?5?/6?,6?6?@/ 6?,(6?@86?/@6?,H6?X6?/`6?,h6? x6?/6?C-6?E*6?@/6?,6?6? /6?,6? 6?`/6?C-6?*6?/7?,7?7?`/ 7?,(7?87?/@7?,H7?X7?/`7?,h7?px7? /7?,7?7?`/7?,7?7?/7?,7?7?/7?,7?7? /8?-8?8?P/ 8?,(8?88?/@8?,H8?X8?/`8?-h8?w!x8?/8?T-8?#8?/8? -8? 8?`/8?!,8?08?/8?-8?@u8?@/9??,9?pL9?/ 9? -(9?(%89?`/@9?,H9?X9? /`9?c,h9?0x9?/9?,9?9?/9?,9?P9?/9? ,9?(9? /9?#,9? +9?/:?,:?:? / :?,(:?8:?/@:?,H:?X:?й/`:?,h:?Px:?/:?v,:?:? /:?-:?Z:? /:?,:?~:?/:?,:?:?/;?,;?;?/ ;? -(;?8;?@/@;?,H;? %*X;?/`;?U-h;?05*x;? /;?,;?|;?/;?,;?;? /;?,;?P;?`/;?,;? ;?/?,>?`>?/ >?,(>?8>?@/@>?-H>?`7#X>?@/`>?,h>?x>? />?[,>?t>?@/>?%->?">?`/>?J->?*>? />? ->?_>?/??-?? %??`/ ?? -(??Я!8?? /@?? -H??X??/`??x-h?? #x??/??b9??0*??/??-??"??@/??z,??p)??/??,??+??/@?,@?-@?/ @?,(@?`8@?0/@@? -H@?X@?P/`@?,h@?x@?/@?,@?`@?/@?,@?@?/@?,@?`@?/@?,@?@?/A?;,A?0qA?@/ A?F,(A?L8A?/@A? -HA? XA?/`A?,hA? \xA?@/A?; -A?` A?/A?,A?0oA?`/A?,A?pA?/A?,A?A?/B??,B?,B?/ B?-(B?P%8B?/@B?) -HB?XB?/`B??-hB?"xB?@/B?-B?`X'B?/B?*,B?@jB?`/B?,B?@hB?/B?,B?@B?/C?,C?C? / C??,(C?P&8C?/@C?-HC?`%XC?/`C? -hC?xC? /C?) -C? C?/C??-C? "C?/C?-C?!'C?/C?-C?&C?/D?*,D?PcD?/ D?,(D?Pa8D? /@D?,HD?PXD?`/`D?,hD?xD?/D??,D?0)D?`/D?-D?p%D?@/D? -D?0D?/D?) -D?` D?/E??-E?"E?/ E?-(E?<'8E?@/@E?-HE?0&XE?/`E?*,hE?`\xE?/E?,E?`ZE?/E?,E?E?/E?,E?` E?@/E??,E?p#E?/F?-F?%F?/ F? -(F?p 8F?@/@F? -HF? XF?/`F?) -hF?p& xF?/F??-F?"F?/F?-F?&F? /F?-F?'F?@/F?-F?P&F?/G?*,G?pUG?/ G?,(G?pS8G?@/@G?,HG?XG?p/`G? -hG?xG?/G?z -G? G?/G?,G?`G?0G??,G?.G?`0G?) -G?* G?0H?-H?`&H?0 H?-(H?`N8H?0@H?,HH? XH?@0`H?,hH? xH?0H?L,H?1H?0H?K-H?PH?0H? -H?0)H?0H?%-H?*H?0I?,I?I?0 I?,(I?-8I?@.0@I?,HI?OXI?=0`I?,hI?xI?@>0I?4-I?hI? @0I?P-I?rI?J0I?u,I?I?W0I?,I?@MI? \0J?-J?)J?`]0 J?-(J?`)8J?@b0@J?+,HJ?Ч)XJ?e0`J?-hJ?@)xJ?g0J?#,J?GJ?0l0J?,J?yJ?`l0J?-J?<J?n0J?,J?'J?o0K?-K?#K?o0 K?-(K? "8K?@t0@K?-HK?)XK?x0`K?,hK?@hxK?}0K?,K?@K? 0K?-K?+K?0K?-K?#K? 0K?-K?K?0L??,L?`uL? 0 L?-(L?)8L?0@L?-HL?)XL?@0`L?-hL?)xL?0L?-L?*#L?`0L?-L?p;+L?0L? -L?L?0L?~,L?@sL?0M?D -M?- M? 0 M?p,(M?8M?0@M?-HM? +XM?0`M?,hM?IxM? 0M?-M?P^%M?0M?-M?0 "M?`0M?-M?e%M?0M?-M?Q!M?@0N?U-N?n%N?0 N?,(N?^8N?@0@N?-HN?"XN? 0`N?l-hN?`u%xN?0N?M -N?1 N?0N?;-N?%N? 0N?-N?%N?0N?,N?@)N? 0O?,O?|%O?`0 O?-(O?+8O?0@O?-HO?f#XO?0`O?,hO?xO?0O?-O?O?0O?-O?@+O?0O??,O?`"O?0O? -O?zO?0P?E-P?p:%P?0 P?-(P?@&8P?0@P?-HP?%XP?1`P?+,hP?0%xP?`1P?-P?%P? 1P?#,P?JP?P1P?,P?ptP?1P?-P? DP? 1Q?-Q?0#Q?1 Q?D -(Q?6 8Q?`1@Q?~,HQ? XQ?1`Q?p,hQ?@xQ?1Q?,Q?`Q?@1Q?,Q?@Q?1Q?,Q?FQ?1Q?-Q?Q?@1R?-R?R?1 R?+,(R?8R?1@R? -HR?XR? 1`R?,hR?0~xR? 1R?,R?yR?%1R?8-R?@R?)1R?O-R?R?`01R?.-R?R?31S?,S?0S?`81 S?M,(S?^8S?`:1@S?L-HS?dXS? @1`S?K,hS?0CxS?F1S?-S?S?I1S?,S?@S?L1S?p,S? S?PO1S?-S?`BS?O1T?-T?T?P1 T?,(T?@8T?Q1@T?x,HT?XT?U1`T?y-hT?p%)xT?@U1T?c,T?T?@X1T?U-T? 'T?`X1T?,T?K T?`Y1T?,T? T?[1U?,U?U?^1 U?,(U?&8U?_1@U?-HU?'XU?`1`U?-hU?PSxU?f1U?-U?U?@h1U?O-U?U? j1U?\-U?P U?l1U?8-U?@U?@p1V? -V?`V?`t1 V?-(V?8V?v1@V?-HV?XV?@y1`V?-hV?#xV?z1V?-V?`#V?@}1V?P,V?V?@1V?-V?`3V?@1V?x,V?@6V? 1W?) -W?%W?`1 W?,(W?+8W?`1@W??,HW?XW?1`W?f-hW?`xW?1W?1-W?W?1W?-W?pW?1W?-W?CW?@1W?#,W?MW?1X?,X?sX?1 X?D -(X?0M 8X?1@X?,HX?pXX?1`X? -hX?o xX?1X?,X?X? 1X?~,X?@*X?1X?,X?>X?1X?,X?X?@1Y?-Y?}!Y?1 Y?,(Y?8Y? 1@Y?,HY?K%XY?1`Y?,hY?<xY? 1Y?,Y?Y?`1Y?-Y? !Y?1Y?,Y?Y?@1Y?,Y?@#Y? 1Z?-Z?iZ?@1 Z?_-(Z? )8Z?1@Z?-HZ?pZXZ?@1`Z?,hZ?`#xZ? 1Z?) -Z?@Z?1Z?q-Z?Z?1Z?-Z?%Z? 1Z?,Z?pZ? 1[?,[?[?@1 [?,([?k8[?1@[?,H[?0kX[?1`[?,h[?x[?1[?-[?K[?1[?-[?)[?1[?-[?|[? 1[?-[?pE)[?1\?-\?#\? 1 \?-(\?u$8\?@1@\?K,H\? X\?1`\?-h\?$x\?1\?,\?(\?1\?,\?P\?1\?P,\?PM\?`1\?,\?`'\?1]?,]?`]?1 ]?j-(]?x+8]?1@]??-H]?`c+X]?1`]?K,h]?"x]?`1]?,]?` ]?1]?-]?$]?1]?-]?~$]?@1]?-]?)]?1^?-^? (^?1 ^?-(^?p(8^?@1@^?-H^?(X^?`1`^?,h^?@x^?@1^?,^?^?1^?-^? ^?1^?,^?07^?2^? -^?^?2_?z -_?_?@2 _?-(_?$8_? 2@_?-H_?p9"X_? 2`_?-h_?`$x_? 2_?-_?PV!_? 2_?U-_?$_?@2_?-_?PL"_?2_?l-_?p$_?2`?M -`?Q `?`2 `?;-(`?$8`?2@`?-H`?!X`? 2``?D -h`?`V x`?2`?,`?`?2`?,`?`?2`?) -`?0%`?2`?x,`?0`?!2a?,a?+a?!2 a?-(a?Pt8a?"2@a?\-Ha?Xa?`#2`a?8-ha?pxa?%2a?-a?a?'2a?O-a?`a?'2a? -a?na?)2a?f-a? a?+2b?1-b?b?,2 b?-(b?8b?-2@b?-Hb?^Xb?-2`b??,hb?xb?.2b?,b?b? /2b? -b? b?/2b?#,b?Pb?P42b?,b?@jb?42c?,c?(c?52 c?~,(c?/!8c?82@c?-Hc?0Xc?82`c?-hc?xc? =2c?P,c?P.c?=2c?-c?c?@?2c?-c?Pc??2c?U-c? $c?A2d?-d?>d?B2 d?g-(d?8d?@D2@d?u -Hd?`Z Xd?F2`d?,hd?@ xd?F2d?,d?d? G2d?,d?d?`G2d?,d?:d?_2d?,d? d? `2e?0-e?X+e?``2 e?d-(e?8e?`2@e?f-He?$Xe?`a2`e?-he?V$xe?`d2e?y-e?$e?@f2e?-e?p$e?j2e?-e?e?m2e?:-e?|(e?o2f?9,f?@f?@}2 f?>-(f?PG$8f?}2@f?L-Hf?(Xf?}2`f?,hf? Lxf?2f?-f?%f?2f?) -f?f? 2f?,f?@f? 2f?,f?"f?@2g?,g?06g?2 g?,(g?>8g?`2@g?,Hg?Xg?@2`g?,hg?Kxg?@2g?~,g?ng?@2g?,g?$g?2g?,g?g?2g?,g?g? 2h?,h?`uh?2 h?,(h?p8h?2@h?n,Hh?0Xh?2`h?,hh?Axh?2h?,h?h?2h?,h? h?2h?,h?0h?2h?-h?h?2i?,i?(i?@2 i?,(i?k8i?`2@i?,Hi?pXi?2`i?,hi?xi?2i?,i?i? 2i?,i?Mi?@2i?,i?`i?2i?,i?i?2j?,j?j?2 j?,(j?p8j?2@j?,Hj?0Xj?2`j?,hj?xj? 2j?,j?Yj?@2j?,j?PJj?`2j?,j?Pj?2j?,j?Ej?2k?,k?@Uk?2 k?,(k? H8k?2@k?,Hk?[Xk?2`k?,hk?Lxk? 2k?,k?Nk?@2k?,k?Sk?`2k?,k?pWk?2k?,k?k?2l?,l?P4l?2 l?,(l?O8l?2@l?~,Hl?pXl?2`l??,hl?xl?2l?D -l?[ l?`2l?-l?0wl?2l?,l?P2l?@2l?,l?0l?2m?-m?2!m?2 m?A,(m?`d8m?2@m?$,Hm?aXm?2`m?,hm?`_xm?2m?-m?Pa$m?2m?-m?,m?@2m?-m? m?2m?,m?m?2n?2 -n? n?2 n?-(n? g$8n?2@n?,Hn?p'Xn?@2`n?-hn?j$xn?`2n?-n?pn$n?2n?5-n?е!n? 2n?,n?fn?2n?-n?&n? 2o?-o?&o?2 o?-(o?&8o?2@o?-Ho?Х#Xo?2`o?-ho?vxo?2o?-o?`#o?2o?W-o?`#o?2o?-o?Pb"o?2o?-o?@W"o?2p? -p?`6p?3 p?8-(p?68p?3@p?,Hp?жXp?3`p?P-hp?7xp?3p?i-p?P7p?@3p?Q-p?"p?` 3p?,p?`p? 3p?-p?7p?@3q?:-q?Ћ"q?3 q?-(q?w"8q?3@q?$-Hq?"Xq?3`q?-hq?P~"xq?3q?-q?7q?!3q?-q?@8q? #3q?-q?8q?$3q?-q?8q?'3r?-r?09r?(3 r?/-(r?98r? *3@r? -Hr?Xr? ,3`r? -hr?@xr?`.3r?. -r?pr?/3r?A -r?r? 13r? -r?r?53r?p-r?`#r?63s?-s?9s?@83 s? -(s? :8s?93@s?-Hs?p:Xs?:3`s?.-hs?:xs? <3s?A-s?;s?=3s?S-s?`;s?>3s?f-s?;s? @3s?w-s?<s?`A3t?-t?P<t?B3 t?-(t?<8t?D3@t?K,Ht?($Xt?@E3`t?-ht?pw&xt? J3t?U-t?PN&t?@N3t? -t?_ t? O3t?l-t?PT&t?O3t?M -t?a t?`P3u? -u? u?`Q3 u?-(u?r"8u?T3@u?E-Hu?`B%Xu?@V3`u?E-hu?!xu?@X3u?,u?u?Z3u?*-u?Z&u?@[3u?A-u?a&u? ]3u?[-u?f&u?^3v?,v? \v?`3 v?-(v?W#8v?@c3@v?u-Hv?0Xv?@e3`v?P,hv?>#xv?h3v?,v?3v? i3v?K,v?v?i3v?-v?v?k3v??,v?v?o3w?A,w?w?q3 w?#,(w?8w?`s3@w?~,Hw?0Xw?s3`w?U-hw?B&xw?s3w? -w?pd w?t3w?l-w?H&w? u3w?M -w?Pf w?u3w?-w?H#w?v3x?K -x?x?@y3 x?}-(x?!8x?@{3@x?-Hx?"Xx?|3`x?-hx?0o"xx?~3x?E-x?!x?`3x?~,x?x?3x??,x?Wx?3x?,x?Vx?3y?-y?Iy?3 y?-(y?8y?3@y?n,Hy?Xy?3`y?,hy?Pxy?3y?,y?y?03y?,y?`#y?`3y? ,y?&y?3y?~,y?0y? 3z??,z?z?`3 z?d -(z?p 8z?3@z?f -Hz?@ Xz?3`z?j,hz?`Yxz?@3z?,z?yz?3z?b,z?0Qz?3z?~,z?z?3z?},z?Pz?@3{?b,{?M{?3 {?~,({?8{?3@{?},H{?RX{?3`{?b,h{?pSx{? 3{?~,{?p{?`3{?},{?PR{?3{?b,{?{?3{?~,{?{?3|?},|?|?@3 |?b,(|?`8|?3@|?~,H|?X|?3`|?},h|? x|?3|?b,|?N|? 3|?},|?P|?3|?~,|?k|?3|?j,|?/|?3}?,}?O}?`3 }?,(}?8}?3@}?b,H}?QX}?3`}?},h}?`Nx}?3}?~,}?=}?`3}?~,}?C}?3}?~,}?@}?3}?~,}?:}?3~?~,~?PI~?3 ~?~,(~?P8~? 3@~?~,H~?pFX~?P3`~?~,h~?0mx~?p3~?K,~?@~?3~?~,~? ~?У3~?-~?\#~? 3~?K,~?~?3?u-?P?`3 ?~,(?88?3@?~,H?05X?3`?~,h?x? 3?~,??P3?~,?0?p3?~,??3?~,??3?,?-?3 ?,(?@8? 3@?U-H?J$X?`3`? -h?0i x?@3?l-?P$?3?M -?k ?3?-Ȁ?@k؀?3??,??@3?~,??3 ?K,(?`8? 3@?-H?.X?3`?,h?`\x?3?Z-? ?3?#,?p?@3?/-ȁ?t؁?`3?/-??3?,?+? 3 ?,(?8?`3@?,H?)X?3`?,h?x?д3?0-?z#?3?~ -? ?`3?0-Ȃ?[؂?3?-??@3?,?T?3 ?40-(?0 8?3@?I0-H? X?@3`?^0-h?Zx?3?h,?p^?@3?,??`3?q0-ȃ?Y؃?`3?,?'? 3?,?`?`3 ?,(?%8?3@?,H?X?3`?,h?#x? 3?,?0?`3?,??3?,Ȅ?؄?`3?,??3?,? ?3 ?,(?`8?`3@?,H?@EX?3`?,h?0x?`3?,?[?3?,??3?,ȅ?؅? 3?,??3?,? ?@3 ?,(?p8?3@?.,H?X?3`?,h? x?3?,??@3?,??3?c-Ȇ?؆?3?-?`e?3?X,?г?@3 ?N,(?8?p3@?C,H?0X?3`? ,h?`x?3?,??3?-?2?3?,ȇ?P؇?@3?,??3?,?@?3 ? -(?p 8?3@?u-H?X?3`?,h?!x?3?,? ?@3?;,?@ ?3?F,Ȉ?m ؈?3?-?-+?3?,?pD?@3 ?,(?8?@3@?,H? X?3`?,h?Bx?3?,??3?,?`?? 3?b,ȉ?؉?3?E,??`3?0-?`{?3 ?0-(?#8?3@? ,H?X?3`?,h?x?3?0-?X?3? -? ?3?,Ȋ?X؊? 3?P?X?P(?(=8?'=H?'=h?x??d-`<p<<<<<x<h<x<<<-<<<<D<<<<`<x<<<<<(<<<<<(<@<X<p<<<<<<<<0<H<`<x<<<<<<< <8<P<h<<<<<<<<<<i<:<@?<<m <X<(<v<v@<v0<@<P<,h<p<<<^<a<<<O<<<x<<8<<<< <0<H<X<fh<<<<#<<<E<E<x<<=<F<!<9 <98<9P<9h<9<9<9<9<9<9<9<9(<9@<9X<9p<9<9<9<9<9<9<9<90<9H<9`<9x<9<9<9<9<9<9<9 <9<t0<pH<`<Cx<<"<N<<u<H< <8<P<h<Q<<<K<\<%<,<(<8@<X<p<<Y<L<<T<I<<0<3=38<VP =V@<H<4`<h<x<<<<H0<H<HH =H<Z8<Z<8@<8 =8<H<<zP<z<X<<`<<h<<<p<<<x<<<<#< <(<<w<<_<*<<C<:<<V< <<X<9 <$(<8<@<BH< X<N`<&h<p<Mx<S<=<F< <.<<B<<<c<<I<===y =R(=0=8=@=H=UX=P`=Fh= p=x==l=0===6===c==`=E=== === =(=8=6@=H=P=X=@`=p=2x===P==U=}==H=A==`===/==(=7=s =(=0=:8=@=P=X=;`=h=;p=x='====5===d====V=[==2==?= =0=8=%@=H=P=lX=oh=p=~x=@=o==k==w=8=====D= ===+== =|(=0=8=CH=5P=X=`=|h=p=3===============m===(=0=e8=)@=H=qP=`=+h=?p=x===A====W==]===>======E =(=0=@=nH=P=X=`=\h=px==3=======I===X=<=h=/==]=h =C(=0=J8=@=H= = =' = = =} = = => ='( =+0 =8 =@ =.H =P =bX =0` =h =p =x =7 =8 =[ =< = =D =F =G =Q =$ =Y = =Z =% =a =e =h =^ =m = = =}( =0 =8 =@ =X =` =h ="p =x = = =- = = =  = = = = = = =d = = = = = = = =( =0 =i8 =?@ =H =GP = X =O` =Rh =Ep =4x =X = = =a =J = =  =K =n = = = = = = = = = = = =0 =( =90 =8 =@ =^H =cP =X =` =h =p =x = = = = =U =  = =L = = = = = =k = = =&=7=7=== =e(=0= 8=@=[H=P=X="`=$h=%p=x=.=2==t==R=:==(==K= =O=)==u==f=f=g=i =M(=r0=s8=@=~H=P=X=-`=h=p=x======O==X?==*==Z===2??q????c?? ?w(?0?8?.H?H= =(=0=8=@=H=P=+X= `= h=p= x= =e= ================= =! ="(=#0=$8=%@=&H=(P=)X=*`=,h=-p=.x=/=1==2=3=4=5=6=9=:=;===>==?=@=A=B=C==H =I(=J0=8=K@=LH=MP=NX=O`=Ph=Rp=Sx=T=U=V==W={=Z=[=\=]=^=_=`=b=d===f=g=i=j =k(=l0=n8=@=oH=pP=qX=r`=sh=tp=ux=w=x=y=z={=|=~===========>=== ={(=0=8=@=H=P=X=`=h=p=x==.=================== =(=0=8=@=H=P=X=`=h=p=x===========4========D== =(=0=8=@=H=P=X=`=h=p=x======W=============== =(=0=8=@=H=P=X=`=h=p=Xx===X============ =Y= = = = = =(=0= 8=@=SH=P=X=`=h=p=x============= =!="==#=$=%=&=' =((=)0=*8=+@=,H=P=-X=/`=0h=1p=2x==3=4=5=6=7=8=9=:=;=<===>=@=A=B==D=E=F=I =B(=J0=K8=L@=MH=NP=X=P`=vh=Qp=x=$=S=T==U=V=W=Y=Z=[=5=R=/=\=]=^=_=`=K==a =b(=c0=d8=e@=gH=hP=iX=j`=h=kp=lx==m=n=o=p===q=r=s=t==u=v=w=x=y=z=#=={ =|(=}0=~8=@=(H=P=X=`=bh=p=x=======z============== =(=0=8=@=H=P=X=`=h=p=x=========y=_=========== =(=0=8=@=H=P=X=`=h=p=x=======b============== =(=0=8=@=H=P=X=`=h=p=Qx================= = = =` = =( =0 =8 =@ =H =P =X =a` =Th =p =x = = = = = = = = = = =  =  =  = =  = =!=!=!=!= !=(!=0!=8!=@!=H!=P!=X!=`!=h!=p!=x!=!=!= !=!!=&!=!=s!='!=(!=)!=*!=+!=G!=!=,!=-!="=/"=0"="=1 "=3("=40"=58"=6@"=7H"=8P"=9X"=;`"=<h"==p"=>x"=?"=@"=A"=B"=C"=D"=E"=F"=G"=H"=A"=I"=J"=L"=M"=N"=P#=Q#=R#=S#=T #=U(#=10#=8#=V@#=WH#=XP#=YX#=Z`#=[h#=\p#=]x#=^#=g#=_#=`#=a#=b#=c#=d#=e#=#=g#=#=h#=j#=k#=l#=m$=n$=o$=$= $=($=p0$=q8$=t@$=uH$=vP$=xX$=y`$=zh$={p$=|x$=Z$=}$=$=$=W$=$=$=$=$=$=$=$=$=$=$=$=%=%=r%=%= %=(%=0%=8%=@%=H%=P%=X%=`%=h%=p%=x%=%=%=%=%=%=%=%=%=%=%=%=%=%=%=%=%=&=G&=&=&= &=(&=0&=8&=@&=H&=P&=X&=`&=h&=p&=x&=&=&=&=&=&=HH+7HtH5/7%/7@%/7h%/7h%/7h%/7h%/7h%/7h%/7h%/7hp%/7h`%/7h P%/7h @%/7h 0%/7h %z/7h %r/7h%j/7h%b/7h%Z/7h%R/7h%J/7h%B/7h%:/7h%2/7h%*/7hp%"/7h`%/7hP%/7h@% /7h0%/7h %.7h%.7h%.7h%.7h %.7h!%.7h"%.7h#%.7h$%.7h%%.7h&%.7h'p%.7h(`%.7h)P%.7h*@%.7h+0%.7h, %z.7h-%r.7h.%j.7h/%b.7h0%Z.7h1%R.7h2%J.7h3%B.7h4%:.7h5%2.7h6%*.7h7p%".7h8`%.7h9P%.7h:@% .7h;0%.7h< %-7h=%-7h>%-7h?%-7h@%-7hA%-7hB%-7hC%-7hD%-7hE%-7hF%-7hGp%-7hH`%-7hIP%-7hJ@%-7hK0%-7hL %z-7hM%r-7hN%j-7hO%b-7hP%Z-7hQ%R-7hR%J-7hS%B-7hT%:-7hU%2-7hV%*-7hWp%"-7hX`%-7hYP%-7hZ@% -7h[0%-7h\ %,7h]%,7h^%,7h_%,7h`%,7ha%,7hb%,7hc%,7hd%,7he%,7hf%,7hgp%,7hh`%,7hiP%,7hj@%,7hk0%,7hl %z,7hm%r,7hn%j,7ho%b,7hp%Z,7hq%R,7hr%J,7hs%B,7ht%:,7hu%2,7hv%*,7hwp%",7hx`%,7hyP%,7hz@% ,7h{0%,7h| %+7h}%+7h~%+7h%+7h%+7h%+7h%+7h%+7h%+7h%+7h%+7hp%+7h`%+7hP%+7h@%+7h0%+7h %z+7h%r+7h%j+7h%b+7h%Z+7h%R+7h%J+7h%B+7h%:+7h%2+7h%*+7hp%"+7h`%+7hP%+7h@% +7h0%+7h %*7h%*7h%*7h%*7h%*7h%*7h%*7h%*7h%*7h%*7h%*7hp%*7h`%*7hP%*7h@%*7h0%*7h %z*7h%r*7h%j*7h%b*7h%Z*7h%R*7h%J*7h%B*7h%:*7h%2*7h%**7hp%"*7h`%*7hP%*7h@% *7h0%*7h %)7h%)7h%)7h%)7h%)7h%)7h%)7h%)7h%)7h%)7h%)7hp%)7h`%)7hP%)7h@%)7h0%)7h %z)7h%r)7h%j)7h%b)7h%Z)7h%R)7h%J)7h%B)7h%:)7h%2)7h%*)7hp%")7h`%)7hP%)7h@% )7h0%)7h %(7h%(7h%(7h%(7h%(7h%(7h%(7h%(7h%(7h%(7h%(7hp%(7h`%(7hP%(7h@%(7h0%(7h %z(7h%r(7h%j(7h%b(7h%Z(7h%R(7h%J(7h%B(7h%:(7h%2(7h%*(7hp%"(7h`%(7hP%(7h@% (7h0%(7h %'7h%'7h%'7h%'7h%'7h%'7h%'7h%'7h%'7h%'7h%'7hp%'7h`%'7h P%'7h @%'7h 0%'7h  %z'7h %r'7h%j'7h%b'7h%Z'7h%R'7h%J'7h%B'7h%:'7h%2'7h%*'7hp%"'7h`%'7hP%'7h@% '7h0%'7h %&7h%&7h%&7h%&7h %&7h!%&7h"%&7h#%&7h$%&7h%%&7h&%&7h'p%&7h(`%&7h)P%&7h*@%&7h+0%&7h, %z&7h-%r&7h.%j&7h/%b&7h0%Z&7h1%R&7h2%J&7h3%B&7h4%:&7h5%2&7h6%*&7h7p%"&7h8`%&7h9P%&7h:@% &7h;0%&7h< %%7h=%%7h>%%7h?%%7h@%%7hA%%7hB%%7hC%%7hD%%7hE%%7hF%%7hGp%%7hH`%%7hIP%%7hJ@%%7hK0%%7hL %z%7hM%r%7hN%j%7hO%b%7hP%Z%7hQ%R%7hR%J%7hS%B%7hT%:%7hU%2%7hV%*%7hWp%"%7hX`%%7hYP%%7hZ@% %7h[0%%7h\ %$7h]%$7h^%$7h_%$7h`%$7ha%$7hb%$7hc%$7hd%$7he%$7hf%$7hgp%$7hh`%$7hiP%$7hj@%$7hk0%$7hl %z$7hm%r$7hn%j$7ho%b$7hp%Z$7hq%R$7hr%J$7hs%B$7ht%:$7hu%2$7hv%*$7hwp%"$7hx`%$7hyP%$7hz@% $7h{0%$7h| %#7h}%#7h~%#7h%#7h%#7h%#7h%#7h%#7h%#7h%#7h%#7hp%#7h`%#7hP%#7h@%#7h0%#7h %z#7h%r#7h%j#7h%b#7h%Z#7h%R#7h%J#7h%B#7h%:#7h%2#7h%*#7hp%"#7h`%#7hP%#7h@% #7h0%#7h %"7h%"7h%"7h%"7h%"7h%"7h%"7h%"7h%"7h%"7h%"7hp%"7h`%"7hP%"7h@%"7h0%"7h %z"7h%r"7h%j"7h%b"7h%Z"7h%R"7h%J"7h%B"7h%:"7h%2"7h%*"7hp%""7h`%"7hP%"7h@% "7h0%"7h %!7h%!7h%!7h%!7h%!7h%!7h%!7h%!7h%!7h%!7h%!7hp%!7h`%!7hP%!7h@%!7h0%!7h %z!7h%r!7h%j!7h%b!7h%Z!7h%R!7h%J!7h%B!7h%:!7h%2!7h%*!7hp%"!7h`%!7hP%!7h@% !7h0%!7h % 7h% 7h% 7h% 7h% 7h% 7h% 7h% 7h% 7h% 7h% 7hp% 7h`% 7hP% 7h@% 7h0% 7h %z 7h%r 7h%j 7h%b 7h%Z 7h%R 7h%J 7h%B 7h%: 7h%2 7h%* 7hp%" 7h`% 7hP% 7h@% 7h0% 7h %7h%7h%7h%7h%7h%7h%7h%7h%7h%7h%7hp%7h`%7h P%7h @%7h 0%7h  %z7h %r7h%j7h%b7h%Z7h%R7h%J7h%B7h%:7h%27h%*7hp%"7h`%7hP%7h@% 7h0%7h %7h%7h%7h%7h %7h!%7h"%7h#%7h$%7h%%7h&%7h'p%7h(`%7h)P%7h*@%7h+0%7h, %z7h-%r7h.%j7h/%b7h0%Z7h1%R7h2%J7h3%B7h4%:7h5%27h6%*7h7p%"7h8`%7h9P%7h:@% 7h;0%7h< %7h=%7h>%7h?%7h@%7hA%7hB%7hC%7hD%7hE%7hF%7hGp%7hH`%7hIP%7hJ@%7hK0%7hL %z7hM%r7hN%j7hO%b7hP%Z7hQ%R7hR%J7hS%B7hT%:7hU%27hV%*7hWp%"7hX`%7hYP%7hZ@% 7h[0%7h\ %7h]%7h^%7h_%7h`%7ha%7hb%7hc%7hd%7he%7hf%7hgp%7hh`%7hiP%7hj@%7hk0%7hl %z7hm%r7hn%j7ho%b7hp%Z7hq%R7hr%J7hs%B7ht%:7hu%27hv%*7hwp%"7hx`%7hyP%7hz@% 7h{0%7h| %7h}%7h~%7h%7h%7h%7h%7h%7h%7h%7h%7hp%7h`%7hP%7h@%7h0%7h %z7h%r7h%j7h%b7h%Z7h%R7h%J7h%B7h%:7h%27h%*7hp%"7h`%7hP%7h@% 7h0%7h %7h%7h%7h%7h%7h%7h%7h%7h%7h%7h%7hp%7h`%7hP%7h@%7h0%7h %z7h%r7h%j7h%b7h%Z7h%R7h%J7h%B7h%:7h%27h%*7hp%"7h`%7hP%7h@% 7h0%7h %7h%7h%7h%7h%7h%7h%7h%7h%7h%7h%7hp%7h`%7hP%7h@%7h0%7h %z7h%r7h%j7h%b7h%Z7hUHGHuH6HH5#'H81(1Ht$H;W tHn6HH5#'H81Z]UHAVAUIATE1SLwHM9}'IEJHz8HttHZ8ICV [1A\A]A^]HGHHt/UHSQ4H HHH H _B)HcHHHPHH6H8Z[]~iHHPHHv6H8GHHPHHT6H8l%HHPHHB6H8JHHPHH 6H8(mHHPHH6H8HHHPHH6H8#HHPHH16H8oHHPHH6H8JHHPHH6H8o%HHPHH6H8JH6H5&H8*o HHHHX[]U1HATIHS1HHt8I$H5P:HxHy1HHuH9HS [A\]UHAWAVAUIATE1SHQLvM9}PKDLxHtLH>u.HL/tLH6H5#'1H8IHuH6tZH[A\A]A^A_]UHAWAVEAUIATIHSAQHt?H;6Hu E1AtHLLAHx1HHu)H2H6AH8-tE1ZD[A\A]A^A_]UHHtt]UHATSHty H=&HeIHt]HHHI$xHI$uLHt1HHAąxHHuHoAt D%%:%:HƒHu H[A\]UHAWAVIAUI MATDASHH8EHLH-HuAHUHMfALEIH6Hu1L9}H ƋtILHLLLIHEHuE1E1E1H}AIHtCt?1E1%EIHHIHtpM1LIHHIE1H MHAH959HAUSuuuPPuPPAW9H`IL:P L2P I$yMHI$uLHeL[A\A]A^A_]UHAWL=x&AVIAUILATSHH}H=(:IHu5HIHt~tA$H=(:LLx^1LLUHHtIHuHLnx6HxHHuHI$y1&HI$uLH,O L$O H[A\A]A^A_]UHSHHXHUHMHuLELMHUHMEHUHMHtALPLMH׹1҃/w ΃LHHLA0tA0MHH9uHX[]UHAVIAUIATISHÅuVL[H5:Lt;H5q:LE1LL1HHtHxHHu [A\A]A^]UHAVAUATISOHx&HMHe7Hu HX7 H9tHB6H5'H8L5&:MtAuLAH5'LWIHHHIExHIEuLHHIHuIAH &HLH&xAH &LLH&xAH &LLH&xE1H z&LLHv&k LL 1H[A\A]A^]UHHAUATSHVHPuHHuYH[A\A]],HPHt~L HsHyH9~eHDu"HPH6H5'H81AhMu+H t!HHH6HH5'H81HHHAHAEtZD[A\A]]ULOIH56LHJ tIp(Ix]L; Q6u Ix]L]UHt9HAUL-?)ATSH6Q~6(fH:"H ) 9(fH:"H fH:"H-  9)9~C6fH:"H@9LР~6fH:")ʘ9H;HteC t0@t3sHc$t1ITsHcHt4I$HHt#HI\3 H:Hu$\3H:Ht1H:Ht̿H:HtH:HtjH:HtTH}:Hp:Hk:HV HY:H< HG:H"2H5:H@H#:HdH:HH:HH:HjH:HzPH:Hl5\6H:HRA H:H86t H:H> H:HD ;Ho:HHHHZ:Z[A\A]]UHAWAVAUIATSH(L6H}.HULHtLpLHH-H=&IHuE1HHEHtHHIHu.rHHMH}LLHHutJAEH}HHE>HUHItAL9t,HxHHuHiIcULLxL&IyIHIuLHU4HULF Hx"HHuHILrF LH(H[A\A]A^A_]U1HAUATSWH9H5 :HՔ9Hu HI9H5:1vH9HtH9H5:1PH9HtH5:H5:1*Hs9HtH61HHHHS9HZH{:H591H19H0L%6H591LH 9HH$:H591H9HH:H591WHȓ9HH:H591-H9HH~:H591H9H[HT:H5:1HH_9H.H59L1HA9HH:H591H9HH=:HHdHu9HH:H591:Hے9HH:H591H9HhHa:H591H9H>H=O:HHHݑ9HH:H5V:1HS9HHHH|H9HHH :1VH9HH :H5`91,H9HH :H :1H5 :H̑9HSH :H :1H5 :H9H"H9H591H9HH޿1Hj9HH  :H :1H5 :PHA9HH :H5 :1&H9H~H :H :1H5r :H9HMH5N :HHӿH9H+HT :H5- :1H9HHr9H 91H5-9xH9HHH591RHk9H549 15959595M95W9H@ :L A9L9H :H5 :H0H 9HH@H5Ѯ91H9HH9H5:1H̏9HHH591uH9HL-v61LOH9HL%61L)Hr9HL1 H[9HbL :LLL1H79H6H5' :1H9HL1H9HL1}H9HH61HHTH͎9HL15H9HIHHH޿1 H9HeLH޿1H|9HCVMMLATHH޿S1SATATAUATAUAUATAUH`H@9HH591H%9HILHH޿1\H9HH:Hٿ1H54 :/H9HH5x:Hڿ1 H9HaH5b91H9H>LL1H9HH :H޿1H:Hh9HH:H5y:1mHF9HIMLLH޿1BH#9HIIHHH޿1H9HoH5p9Hڿ1H9HIH5:91Hnj9H&LL1H9HHLL1H9HMIHHH޿1\Hm9HHLH޿17HP9HSH9HMAUIH޿1H&9ZYH[H9H޿1H9H5H591H9HHK:H5:1Hɋ9HL%Y6Hڿ1LgH9HH59HL1>H9HH9ILH޿1Hc9HjH5#9Hڿ1HE9HDH9L 91L9H 9H59H9HHH5{91H9HH؊9H5 91]HΊ9HH5:Hڿ17H9HH9H5)91 H9HHbH591HHl9He[A\A]]UHAVAUATSH(H.9=9L IH (9H 9LHL63fHD) JH9HD."9IL=u9H 9H9L363HDf) H9H-9IL=:H 9H[9LM33HIf) HZ9H-z9IL=9H 9H9L53HgIf) NH9HH-&9IL=y9H B:H9L753HkIf) Hˆ9H,9IL=%9H f9H_9L43HoIf) Hv9H,~9IL=9H *9H 9L43HYKf) RH*9HL,~9ILfH:"9~ 9Hi9L543HCH 9Hz9)0fH:" 9H@) H9H+9IL59H 9H#9L*13HDf) Hj9H|+~y9IfH:"#9Lw33~ D9H 9LHqDH9)0fH:" 9) H9H+9IL=?9H 9H9L23HgEf) H9H*H9H 9ILH|9L03HcRH xHx9Hr*~W9ILfH:"9H9H 9L\23H%AH9) H0H9H*9IL5A9H 9Hk9L13H:Ef) H҅9H)9IL=9H ^9H9L13HHf) nH9Hh)H9H /9ILH9L.3HVH &HF9H )HF9H 9ILH9L-3H{BH H9H(H9H 9ILHB9L-3HvCH HƄ9H(H9H W9ILH9LH-3HhDH NH9HH(Hn9H 9ILH9L-3HCEH HF9H(H n9E1ILH9L*3H"L H 9H'E1H '9LH9L ILU.3HB~H΃9Hx'(>9H'9ILx2fl%9H 9LH Hj9H0) Hx9H'E1H 9ILH09L H"L)3H<9H&1H B9ILH9H Lp-3HBH9H&(Y9HB9ILHn2fl@9H 9LH3H9H0) ;H9H5&H9H 9ILHO9L+.3HCH Hk9H%1H 9IH'9H LL.3H3H09H%H9H 99ILH9L 3HE@H hH9Hb%1H9ILH H z9L)3HX%H9H%He9H V9ILHQ9L3H`H Hu9H$H9H 9ILH 9L$3H`H H59H$9IL509H 9H9LS2H`f) AH9H;$1H 9ILH Hk9L)3HH9H#(9H 9ILfm9H9L2H) Hf9H#H9H 79ILH9L2H*H fH&9H`#~9H 9ILH99fH:"9L2HA9) H9H #H9H 9ILH9L!3H.H H9H"9=;9IL9 3H9H 9LHHH9fmH0) iHA9Hc"HI9ILH 9HU9L(3I LH H~9H"9IL59H 9H9I L'3Lf) H~9H!H9H 9ILH9Ll&3HH Ho~9Hy!W9IL=z9H 9Ht9L2H fm) ,H$~9H&!H 9H 9ILH(9L2HH H}9H ~9ILfH:"9~ 9H9L<.HH 9H9)0fH:" R9H@) hHp}9Hb HH9LILH 9HQ9L&3H 'H7}9H! 9LIL59H 9L%3H9f) H|9HH 9H 9ILH9L2H>H H|9H9IL==9H F9Ho9L2HPfl) ?Hg|9H9(9Hp9IL3fl9H 9LHvHc9H0) H|9H~9ILfH:"o9H9H a9L3HzH9) H0H{9Hy~^9H 9ILH9fH:"9L2H) +Hk{9H%~ 9H #9ILHn9fH:"9L2H ) H{9HH9H 9ILH9Ll3HH Hz9HHo9H 9ILH9L$3HH GHz9HAH'9H 9ILH9L3HH H_z9HH9H `9ILHC9L3HH Hz9HH9H 9ILH9LL3HH oHy9HiHO9H 9ILH9Li2HH 'Hy9H!~9H 9ILHj9fH:"79L3H) HSy9H9IL59H 9H9LQ2Hfm) Hy9Hz~_9H 9ILH9fH:"9L2H) ,Hx9H&9IL=G9H `9Hi9L2H fm) Hqx9H~9H 9ILH9fH:"9Lr2H@) H%x9H]9IL59H 9H9L2Hfm) 2Hw9H, 9IL=M9H 69Ho9L2Hfm) Hw9H9IL59H C9H9L]2Hfm) HDw9H~k9H 9ILH9fH:"9Le\2H!) 8Hv9H2~9ILfH:"9H_9H 89Lq2HHX9) H0Hv9HH V9ILH9Ll1(9Hg( 9f9)0f 9) nH>v9HhF9IL=I9H 29HS9L3H`f) Hu9H9IL59H 9HG9Lx3H&f) Hu9HH9H 9ILH9L[3H5H ~Hfu9HxH^9H G9ILH9LC3H<H 6H&u9H09IL=9H Z9Hc9L2HCfm) Ht9HH9H 9ILH9Lx3HNH Ht9HH{9H 9ILH9L 3HUH SH[t9HMH39ILLH 9H<9L3H H"t9H 9ILL59H 9L3H9f) Hs9HH9LILH 59H9Lo3H Hs9H~\9LIL=\9H E9L.3H_9f) 7H_s9H1H9LILH 9H 9L3H H&s9H9LIL59H 9L3H9f) Hr9HH19H z9ILH9LN2HH aHr9H[y9IL=\9H u9H9L2Hfl) HVr9H&9IL5 9H B9H;9L 2H fl) H r9HHC9H 9ILH9L 3HH sHq9Hm+9IL=9H 9H9LQ2H`fl) Hq9H9IL59H 9HM9L2H`fl) H5q9HHU9H ~9ILH9Lz3HH Hp9HHu9H 9ILH9L3H@H =Hp9H7H9H 9ILHq9L3HH Hup9HH59H 9ILH)9L*3HH H5p9H9IL=9H 9H9L3H#f) YHo9HSH99LILH 9HB9L3H Ho9H9LIL59H 9L3H9f) Hko9HH9LILH ;9H9Lu3H H2o9Hb9LIL=b9H K9L43He9f) =Hn9H7H 91ILH69L3HH Hn9HH 91ILHk9LE1H'@(H Hwn9HH9H 9ILH#9L3H`H oH7n9Hi( 9(h9IL1fl f9fmN9LH (z9H ;9fl9H9)0)@) Hm9H(9( ,9ILb2fm9fl 9LHH 9H79) )0Hem9H(]9H 9ILfl9H9L /H@( 9f 9) )0&Hm9H ~9H ~9ILH9fH:">9L?H2H ) Hl9H H9H C9ILH>9L3HfH Hzl9H ~9ILfH:"x9~ P9H)9L2HBrH 9H9)0fH:" 9H@) Hl9H H9H /9ILHz9L 3HH Hk9H ~9H 9ILH19fH:"9L2H) rHzk9Hl ~!9H 9ILH9fH:"9L2HA) H.k9H 959ILm2Hκ9H 9LHHk9fmH0) Hj9H H=9H N9ILH)9Lr2H(9f9H0) ^H~j9HX H>9ILLH 9HG9L3H HEj9H 9ILL=9H 9L3H9f) Hj9H H9H A9ILH<9L2HaH Hi9H Hh9H 9ILH9Le3H5bH @Hi9H: H 9H 9ILH9L3HebH H@i9H H9H i9ILHd9L% 3HbH Hi9H H9H !9ILH9L3HH hHh9Hb HH9H 9ILH9L3HH Hh9H H9H 9ILH9L3HBH H@h9H~9H 9ILHC9fH:"9Lq2H) Hg9H~~c9H ܾ9ILH9fH:"9La2H#) 0Hg9H*~9H 9ILH9fH:"P9L2H) H\g9HH9H M9ILHH9L93H!H Hg9H~s9H 9ILH9fH:"9L2Hd) @Hf9H:H 9H 9ILH9L2HH Hf9HH9H i9ILHd9LM3HH 谿HPf9HH9H !9ILH9L}3HeH hHf9HbHH9H 9ILH9L}3HH He9HH9H 9ILH9L53HH ؾHe9HH9H I9ILHD9L3HH 萾HPe9HHp9H 9ILH9L3H7H HHe9HBH(9H 9ILH9L3H`H Hd9HH9H 9ILHl9L3Hu&H 踽Hd9HH9H ٮ9ILH$9LM3H{&H pHPd9HjH959ILZ.H9H 9LHH9f) H0Hc9HH9H 79ILHz9L3H_'H ƼHc9H(V9H/9ILU3fm9H ƭ9LHk'H9H0) hH`c9HbHH9H 9ILH9L2HwH H c9HH9H 19ILH9L3Hz'H ػHb9HH9H 9ILHD9LM3H'H 萻Hb9HHp9H 9ILH9L3HH HH`b9HBH(9H 9ILH9L%3HgH H b9HH9H !9ILHl9Lm3HH 踺Ha9HH9H ɫ9ILH$9L%3HH pHa9HjHP9H 9ILH9L3H'H (H`a9H"H9H I9ILH9L2HH H a9HH9H 9ILHL9LM2HH 蘹H`9HHx9H 9ILH9L2H(H PH`9HJH09H q9ILH9L2H H H``9HH9H 9ILHt9Lu2H$H H `9HH9H 19ILH,9L3H'(H xH_9HrHX9H 9ILH9L2H*H 0H_9H*H9H A9ILH9L2HPH H`_9HH9H Y9ILHT9L2HShH 蠷H _9HH9H 9ILH 9L 2HVH XH^9HRH89H 9ILH9L3Hn(H H^9H (9Hy9IL3fmg9H 9LHqHH\9H0) 貶HJ^9HH Z9ILH%9L.2(9Hyf9) aH^9H[H y9ILH9L2(9HHfë9) H]9H 9IL=9H 9Hu9L2Hfm) 轵Hm]9HH9H .9ILH)9Lb2HLIH uH-]9HoM9IL59H a9H9L2HO)f) !H\9H9IL=L9H 9H9L?2H[)f) ʹH\9H9=9IL<}2 95V9LHs H r9H9fmf) )0`H0\9HZ 89=Q9IL 295y9LH H %9H9fmf) )0H[9HH K9ILHf9L2(X9Hf9) 袳H[9Hz95s9IL2H9H 9LHIH9fmH0) AH)[9H;H!9H 9ILH9L2HH HZ9HH 9ILHl9LE2(ަ9H#( 9fD9)0f D9) 葲HZ9Hi9IL=<9H ]9H9L2HEf) =H=Z9H75959IL2 9=9LH_ H 9H9f)0f) ϱHY9H(9Hȥ9IL2fl9H ?9LHH9H0) qHY9Hk(Ѯ9( J9IL2flإ9fl 9LH H<9H 9H9) H@)0HY9H~9ILfH:"#9H$9H 9L2HɊHE9) H0蛰HX9H~z9H 9ILH9fH:"û9LT2H) GHoX9HA(9H9ILV2fl9H 9LH*H9H0) HX9H959IL82H9H Ҡ9LH H69fmH0) 舯HW9HH9H 9ILH9L-2H (9fc9H0) )HiW9H#H 9H 9ILH9L2He+H H)W9HH )9ILHT9L2(Ƴ9Hk( 9fl9)0f 9) yHV9Hs~X9ILfH:"G9H9H A9Lҹ2HH9) H0HoV9H9=9ILƶ2H9H 9LH Hd9fmH0) 趭HV9H5n99ILE1=99LH&L fl 95 9f9=9)0fl%959)@H ^9H9fm)Pf)`) HeU9H~ܿ9ILfH:"#9Hd9H =9LJ.HTl HE9) H0蛬H U9Hs9=̭9IL 2Hk9H 9LH|LH9f) H09HT9H395j9IL1H9H 9LHl H9fmH0) ثHXT9H~9H Ы9ILHC9fH:"9LQ2H) 脫H T9H~~c9H \9ILH9fH:"9L2H) 0HS9H*~9H 9ILH9fH:"p9L)2H ) ܪHtS9H~;9ILfH:"9~ 9H9L2HmH 9H9)0fH:" «9H@) `HS9HZ89=9IL2H9H 9LH9MH9f) H0HR9HH9H w9ILHj9L2HXm(29( 9H@f{9f 9)0) 舩H8R9H`9IL59H L9H9L2H}f) 4HQ9H.H 9ILH9Lq2()9H( 9f9)0f 9) ̨HQ9HH ,9ILH?9Ls2(9HM( 9f9)0f 9) dH,Q9H^<9IL=9H 09Hɶ9Lr2HЍf) HP9H 59 9IL2к99LH fm59=*9H9H <9)0H69fmf)@HP) |HTP9Hv~[9H d9ILH9fH:"9L2H) (HP9H"(ب9H9ILW2flϛ9H 9LH%.Ht9H0) ʦHO9H9=˛9ILY2Hz9H 9LH7H9fmH0) iHYO9HcHɷ9H 9ILHմ9L~2HE(9fD9H0) HO9H959IL9+1 9=9LHA_H9H 9flHE9fl)0H@) 营HN9HH 9IL~ "9~9fH:" 9L'1H.fH:"9fHn~9H9)0fH:"9fH:":9)P)@) HM9HH Y91ILHb9L2H H 认HM9HH .91ILH9L2HH kHM9HeH C91ILHܲ9L2H6H (HHM9H"H 9E1ILH9LQ2HQL H M9HH 9E1ILHT9L 2HlL 蠣HL9HE1H %9LH9L IL2H\HL9HVE1H 9ILH̱9L HLt2HXL9H1H 9ILH9H L;2HբHL9H1H 9IHI9H LL2Hد蒢HK9H1H9ILH H $9L2HOHK9HIH9H Ȼ9ILH9L2H+H HgK9H~F9H ׷9ILHr9fH:"W9L`2H@0) 賡HK9H95$9IL1=9H9LHWH (9H9(ffH@) )0;HJ9H59-<9IL 15+9H D9LH H9fl) )0ڠHRJ9HR9=۫9IL1-ʺ9H 9LH H'9fl) )0yHI9Hs59ILHt9H 9Hޮ9L2H H0) #HI9H1H 19ILH H9L&2HHpI9HH 91ILHQ9L2H/H 蝟H5I9HH }91ILH9L2HDH ZHH9HTH 91ILH˭9LT2HYH HH9HH w91ILH9LA2H{H ԞHH9HH D91ILHE9L2HH 葞HIH9H99IL=9H 9H9Lj2Hf) =HG9H79IL-9H 9H9L[j2Hf) HG9H~9H 19ILHT9fH:"I9Li2H) 蕝HeG9H~<9H 9ILH9fH:"9Lni2HVr) AHG9H;H 9E1ILH9L*2HuL HF9HH 9E1ILHm9L2HrL 蹜HF9Ha9IL5Ě9H ݎ9H9L2Hrfm) fHVF9H`E1H 9LH٪9L ILh2H۲"HF9HE1H 9ILH9L HL2ޛHE9H1H d9ILHO9H L2Hs蛛HE9H1H 9IH9H LLn2H0XHhE9HR1H֩9ILH H "9L+2H?H-E9H~|9IfH:"9L?[.~ 9H Р9LHNsH\9)0fH:" ʠ9) 觚HD9HH9H 9ILH9L &1Hs H _HD9HYHW9H 9ILH˨9Ld;2HH HGD9HH9H p9ILH9LH2HH ϙHD9Hמ9=@9IL1Hߞ9H 9LHH9f) H0mHC9Hg~l9ILfH:"S9H9H 9Ls/H`TH9) H0 HSC9H( 9Hl9IL1fm 29H 9LHt HW9(9H@f9) )0薘HB9H( 9H 9ILfm 9H9L2HT(r9fٍ9)0) /HB9H)( ?9H 9ILfm J9H9Ll2HU( 9fr9)0) ȗH(B9H9-9ILw1H9H 9LH6uH9flH0) gHA9Ha~F9ILfH:"U9~ %9Hާ9LQ2H_ H 9H9)0fH:" 9H@) H[A9H~b9ILfH:"9H 9H 9L2HyUH39) H0艖HA9HH 19ILH9Lզ2(n9Hf9) 8H@9H259=ي9IL 1ؐ9A9LH 9-f9flf&959%ذ9=9f)0HΠ9H ϓ9f)@H,9f)PHp) )`oH?9Hiw9IL-ڊ9H 9Hԣ9L-2H6f) H?9H(9H 9ILfmV9H9L2H>6 (9( 9fg9f ^9(G9) f9)0)@)P膔H?9H9IL59H 9H9L_2H6f) 2H>9H,H 9ILH9L^1(9H6 fD9) H>9H(9H b9ILfm\9HE9L^1H֖(9( 9f9f Ԡ9(9) fݗ9)0)@)PLH=9HFH̎9H E9ILH9Lџ2H3WH H=9HH49H 9ILHp9L2HOH 輒H|=9HH9H M9ILH(9L2H[H tH<=9HnH9H 9ILH9L12HgH ,H<9H&H 9H 9ILH9L)2H{wH H<9HHĤ9ILLH T9Hͧ9L2H 裑H<9H{9ILL={9H d9LM2H~9f) VH><9HP~9ILfH:"9~ 9H9L.z2HI`H 9H~9)0fH:" ħ9H@) ڐH;9H9IL-U9H 9H'9LxO2HAaf) 膐H~;9H^9IL5Q9H 9HӞ9L~2H~ fm) 3H3;9H-H9H 9ILH9L2H H H:9H~ʢ9H 39ILH>9fH:"9L2HA) 藏H:9H~v9H ߀9ILH9fH:"_9LP2HA) CH[:9H=H9H 9ILH9L2HA@(9f9H0) H:9HH9H -9ILH89L)2HA@(9f9H0) 腎H99HHU9H 9ILHٜ9L2HA (99f09H0) &HV99H H9H o9ILHz9L+2HAA(ڠ9fє9H0) ǍH89HH9H 9ILH9L 2HA)A({9fr9H0) hH89HbH89H ~9ILH9Lm2HA?A(9f9H0) HQ89HH١9H R~9ILH]9LN2HAUA(9f9H0) 誌H79HHz9H }9ILH9L2HAkA(^9fU9H0) KH79HEH9H }9ILH9L2HAA(9f9H0) HL79HH9H 5}9ILH@9Lq2HA(9f9H0) 荋H69HH]9H |9ILH9L2HAA(A9f89H0) .H69H(H9H w|9ILH9L32HAA(9fّ9H0) ϊHG69H~9IfH:"@9L91~ 9H {9LHA H9)0fH:" l9) aH59H[~09IfH:"҅9L1~ #9H {9LHA H9)0fH:" 9) H{59H~ž9IfH:"d9L=1~ 9H {9LHA H"9)0fH:" 9) 腉H59H~T9IfH:"9L1~ G9H z9LHA0 H9)0fH:" "9) H49HH9H `z9ILHk9L1HAO"(˛9f9H0) 踈HX49HH9H z9ILH 9L2HAn(l9fc9H0) YH49HS~С9ILfH:"/9~ 9H9L11HH H9H9)0fH:" 9H@) ݇H39H~9IfH:"N9L1~ 9H y9LHAH 9)0fH:" z9) oH'39Hi~>9IfH:"9LY1~ 19H x9LHAH9)0fH:" 9) H29H(ћ9Hr9IL:.flh9H 1x9LHA H59( 9H@f 9)0) 茆HT29H(\9H9IL:.fl9H w9LHAH9( 19H@f !9)0) H19HH gw9ILHr9LC2(9HAO( ˘9fR9)0f 9) 诅H19H9IL=j9H v9H9L2Hgfm) \H<19HV~;9ILfH:"29Hx9H v9Lx2HAn#H9) H0H09HHڗ9H #x9ILHN9Lw2H{cH 貄H09H~9ILfH:"9Hiw9H u9L+l2HAcH9) H0PHH09HJ~/9ILfH:"&9Ht9H u9LIk2HA˃H9) H0H/9H-9IL9H Z9H;9L\2Hf֭0f) 蒃H/9H~q9ILfH:"h9Hq9H t9L1HA)$ H‘9) H00H@/9H*95a9IL02H9H it9LHEHe9f) H0΂H.9HH9H t9ILH"9L5.HA{(9( {9H@f9f b9)0) XHx.9HR~_9IfH:"A9L1~ 9H K9LHdH9)0fH:" r9) H.9H=R|9˃9IL(.959LHfl˚9=9 m9-V9fm)0H{9H 9fl)PHۏ9f) H`)@=Hm-9H7H9H 9ILH9L2HdH H--9H~ԓ9H =r9ILHH9fH:"9L[2HA) 血H,9H~9H q9ILH9fH:"i9LJ2HA) MH,9HGH9H q9ILH9Lh2HA?(9f9H0) H>,9H~͒9H 6q9ILHA9fH:"9LgM2HAjE) H+9H~ q9ILfH:" h9~|9H9LR0H~~p9H ~9)0H9HPfH:"9fH:"9)@) Hd+9H~9H Lp9ILHW9fH:"̅9Le2HAE) ~H+9HH9H 9ILH9LE2H%H h~H*9Hb( H9H 9ILfl s9H9L1H (9fv9)0) ~Hy*9H~9ILfH:"ׄ9H@9H 1o9L:e2HAeH19) H0}H*9HH 9I~|9L0fH:"9Hێ9LH>"~n9fHnfH:"9fH:"-n9H9HE~ ps9)0fH:" 9~9)@fH:"4z9~%̗9)PfH:"% 9)`) )p|HI)9H(9H Z9ILfm9Hu9L2H@`) q|H)9HkH9H J}9ILH-9Lv0Hq(59( n9H@f^9f 59)0) {H(9HD({9(=c9ILI4.fDl@9fm=X9LH (59(-x9fl5o9fm-͌9D)@(%.9(9)Pfm%Hl9fl}9)`( b9fm j}9)pD( K9(d9)efD v9f=9(u9D(^9)]fD09D)0fk9D) )U)M)EH k9H9zHq'9H(ѕ9H *l9ILfm̓9H9LN1H~ ) zH)'9H{( 9(9IL1fm 9fmp9LH Hj9H 9H9(9) f'9HP)0)@yH&9H~ m9ILfH:" l9~9Hn9L1H! ~9H 9)0Hw9HPfH:" m9fH:"9)@) `yH&9HZH9H {9ILH9Le1H" (Tx9( -9H@f9f 9)0) xH%9HB9-[9IL9R2Z95Cl9LHC? 9=9flH -i9Hn9fl)0f)@) dxH,%9H^-9 9IL3*.5t9}i9LHaB =)}9(fH}9H 39H9f)0fHP) )@wH$9H̾jp9IL-g9H 9H9L 2H߂fl) wHW$9HyH_9ILLH 9Hh9L)2H >wH$9H89ILL59H 9L2H9f) vH#9H(%a9( }9IL 1fl%p9fm 09LHH(|m9H ͎9fm]9Hv9)`(=l9(59f=x9f5Oy9(-ho9(w9f-9f9(X9D(09f79fD}9)0D) )@)P)p)U)M)EuH"9HH q9ILH9L=1(6p9H ( 9f9)0f 9) uH"9Ha9IL=d9H M9Hn9Lw2H`f) 5uH5"9H/H9H fn9ILH9Lj2H0H tH!9HŇ9-9ILd2H59H vo9LH4H9fmH0) tH!9H~9ILfH:"29~ R9H{9LC2HYDH #j9H9)0fH:" 9H@) tH(!9H ( 9H A9ILfl 9Hā9L͌2Hr(9f39)0) sH 9H95x9ILK2HI~9H 9LHHF9f) H0GsHo 9HAH'9H @9ILH9L2HH rH/ 9Hׅ9=p|9ILn^2H}9H hm9LHH9fmH0) rH9HH~9H g9ILHZ9L|2HH VrH9HP( |9Hy9IL<2fl -y9H Vq9LHH9(+9H@fk9) )0qH)9H۸H9H R9ILH9LT2HdH qH9H(%yd9({9IL0fm%z9fmg9LH($d9( e9fleg9fm e9)0(b9H p9)@fl9H~9)P(-$9)`f-v9)p) pH29HԷ9IL-9H q9H~9Lx{2HSfm) pH9HHg9H Ȅ9ILHC~9L<`2HcH ?pH9H9~9ILfH:"9~ g9Hz9Lw2Hp ~k9H v9)0~ς9H}9H`fH:" 69fH:"+9fH:"q9)@) )PoH9HH9H (n9ILHK}9L2He(C9ft9H0) 0oH9H*9IL5y9H k9H|9Ln2Hefm) nH]9H׵9=Nw9IL32H}y9H r9LHAHz|9fmH0) |nH9HvH\9H Er9ILH8|9LQk2HH 4nH9H.H9H er9ILH{9L2HH mH9HĀ9IL-k9H k9H{9Lz2HEfm) mH99H(Is9H 9ILfl~9HM{9L$1H & ( E9f w9) )02mH9H, 9IL5-o9H ƃ9Hz9L@2H@Ff) lH9HسH9H Gh9ILHz9L2HSH lHN9Hn9=ws9ILe2Hv9H Oj9LHBZFH3z9fmH0) 5lH9H/Hs9H n9ILHy9Lz2HDqF(99( ~9H@f"h9f 9)0) kH9Hp9-m9ILn22 ~95Xv9LHH $9HUy9flfm)0) SkH#9HM~9IfH:"|p9L-2~ ~9H >9LHfHx9)0fH:" u9) jH9H߱(b9( }9ILt".fm̅9fl Df9LHH p[9Hyx9) )0jH_9Hy~ F9ILfH:" uu9~^9H[9LW .H~%}9H >9)0Hx9HPfH:"&9fH:";9)@) iH9H|9=p9IL8v2H9H 9LHAHw9f) H0iHw9HHg|9H 9ILHCw9Lt2HH ?iH79H9|9IL-h9H 9Hv9L'2HAgf) hH9H{9IL5z9H [9Hv9L@2H?fm) hH9H\9=\9IL'. X{9-b9LHKg H E`9H.v9f)0f) *hH:9H$~s9ILfH:"\9~ z9H!]9LB2HoH d9Hu9)0fH:" s9H@) gH9H~ m\9IfH:" 7]9L2~[9H i9LH' ~$i9H=u9)0fH:"\9fH:"h9)@) &gHF9H 5.\9=}9IL0Z9_i9LHG \9-b9ffsy95W9%y9=w9fm)0H W9H}t9fl)@fm)P) )`mfH9Hg~|[9ILfH:"Y9~ x9HW9Le!2HݧH g9Hs9)0fH:" V9H@) eH!9H~Hq9ILfH:"Z9~ x9HZ9Lit2HH b9Hs9)0fH:" p9H@) ueH9Ho~ dY9IfH:" Z9L0~X9H f9LH~f9Hs9)0fH:"Z9fH:"/~9)@) dH-9H~-$j9IfH:"-VX9Lד1~%Y9H U9LH.(~m9H|r9)0fH:"%f9fH:"O{9~gZ9~ w9~l9fH:",`9)@~5=w9)PfH:" U9fH:"9)`fH:"5Nu9)p) )EdHH9H~Y9ILfH:"fW9~ ~v9HT9LX.2HpHH oe9Hq9)0fH:" vT9H@) cH9H~~cv9ILfH:"y9HK^9H L^9L=~2HHq9) H0"cHz9H~v9H ^9ILHp9fH:"B]9L+z2H) bH.9Hȩj9-p9IL2 u95i9LHAHSS9H z9fmHYp9f)0H@) SbH9HM~2u9ILfH:"r9Hl9H c`9L,2HHo9) H0aHa9HHt9H |9ILHo9L֮2H;JH aH!9HHt9H |9ILHeo9L2HQJH aaH9H[~xz9ILfH:"m9~7h9Hr9L.Hl~ 7|9H _9)0~QU9Hn9HpfH:"Pk9fH:" k9fH:"X9~%*k9fH:"%{9)@)P) )``H9H~y9ILfH:" m9~mg9Hq9Lo0H%k~ m{9H _9)0~T9Hn9HpfH:"j9fH:" +k9fH:"X9~%`j9fH:"% {9)@)P) )`_H]9HǦ~%z9ILfH:"%x9~;l9H q9L0H~i9H <^9)0fH:"jf9HCm9HEfH:"s9~ lz9~S9)@fH:" Jj9~-i9)PfH:" W9fH:"-ms9)`)p) ^H 9H~%y9ILfH:"%w9~Zk9H+p9L-H~ i9H []9)0fH:"e9Hbl9HEfH:"r9~ y9~R9)@fH:" ii9~-h9)PfH:"?V9fH:"-r9)`)p) ^H 9H(b9( Th9IL .HSo9H \9LHs(Hk9fmh9((Cj9(Q9HEf-v9fd9)0f%b9f}U9f b9)@) )P)`)pE]H 9H?~\v9ILfH:"#d9~ ;x9Hn9L]-H ~Q9H [9)0~w9Hj9H`fH:" b9fH:"Q9fH:"b9)@) )P\HE 9HHw9H R9ILHQj9L*2H(Io9fh9H0) 6\H 9H0~o9ILfH:"h9H}m9H vY9L/ 2HHi9) H0[H 9H΢~%Q9IfH:"%]Y9L>.~t9H Z9LHN~N9Hci9)0fH:"f9fH:"Q9~ vO9~w9~-t9)@fH:" P9fH:"l9)PfH:"-v9)`) )pZH 9H~X9ILfH:"$t9~e9H=l9LV.H~ P9H Z9)0~6P9Hwh9HpfH:"M9fH:" N9fH:"v9~%s9fH:"%P9)@)P) )`4ZH 9H.~ R9IfH:" c9LV2~c9H X9LH/~_9Hg9)0fH:")d9fH:"t9)@) YH9H~ CR9IfH:" c9LU2~c9H WX9LH:/~"_9H;g9)0fH:"c9fH:"6t9)@) $YH9HHl9H S9ILHf9L2HH XH9H֟Hk9H US9ILHf9L2HoH XH9H(%tK9(a9ILC.fm%R9fmb9LH(K9H (W9fli9Hf9)0(K9( L9fM9f M9(-+q9)@f-]9)P) )`)pWH9H͞~%^9ILfH:"%b9~V9Hi9Lk-HO ~_9H BV9)0fH:"i9HIe9HEfH:"zY9~ Q9~BL9)@fH:" L9~-HY9)PfH:"K9fH:"-Q9)`)p) VH9H~G9IfH:"L9L.~ i9H -T9LHHd9)0fH:" X9) VH9H~~ ]9ILfH:" "G9~zL9H+Y9L.H6~*i9H T9)0Hd9HPfH:"b9fH:"X9)@) UH9H~ F9IfH:" gb9L1~8h9H S9LHW~h9H}c9)0fH:"KF9fH:"]9)@) fUH~9H`D(\9(5H9IL-fDm[n9fl5I9LHn7(%^9(XV9fl%Z9fmXb9D)@( E9fl A]9)`D( R9(=[H9fD [9f=I9(-H9(j9f-I9fR9(Y9D(E9D)0fD\9)Pfe9D) )p)e)])U)M)EH}p9H S9Hb9HE/THO9H)~>G9IfH:"XY9LY1~ l9H h9LH ~U9Ha9)0fH:" h9fH:"1Q9~f9fH:"~^9)@) )PSH9Hn9=ne9IL0-Y9Y9LHP5c9 H9(ffWl9-Y9=yC9fmHd9)05e9H Q9f)@H`9fl(HEf) )P)`)pRH9H( d9H _Q9ILfm m9Hj`9L1H (k9fX9)0) ORH9HI~ 6E9IfH:" [9L-~y\9H P9LH"1~-k9H_9)0fH:"$H9fH:"W9)@) QH9H~d9H O9ILH_9fH:"7b9LЃ2Hr) sQH9HmKd9IL=a9H WO9H(_9Lqj2H~fm) QHp9H~N9IfH:"qb9L0~ j9H [P9LH1 H^9)0fH:" =f9) PH 9HHc9H h9ILHn^9L72H1H jPH8HdBc9-[M9IL9j2HH9H h9LHH^9fmH0) PHq8H(c9H O9ILfj9)@(O9H]9L-( 0\9H*R'(Y9f @9fmfYJ9)0) )PxOH8HrH xg9ILH;]9L.(k9H ( ,b9fK9)0f Sk9) OH8H Hxd9H iN9ILH\9LE2HrH NHH8H•X9IL5#d9H M9H}\9L-HR fm) uNH8HoZ9-&?9ILġ1 A9=.B9LH`S ?95U9flH E9H[9f)@f)0) MH~8HH I9ILH[9L1(f9HSfp>9) MH58HH >9ILHp[9Li1(b`9H#` f/h9) LMH8HFHh9H =9ILH[9LA2H6(`9fh9H0) LH8H_9IL=W9H J9HZ9Lk2HB@f) LHI8HHy_9ILLH ]9Hb9LC2H XLH8HR0_9LIL-0[9H `9L2H3b9f) LH8HH {<9ILHY9L׵1(^9He` ff9) KH8HHf9H 3<9ILHY9L2Hx(n^9ff9H0) [KH+8HU3^9IL5VV9H OI9H Y9Lل2H@f) KH8HH]9ILLH w[9H`9L2H JH8H]9LIL=Y9H ^9Lp2H`9f) yJHa8HsHY]9H Z9ILHX9Ln2HIH 1JH!8H+H]9H O9ILHX9L2HcH IH8H~he9IfH:"zA9L1~ +^9H 9LHW"HR9fmH0) DH8HSB95P9ILj1 V9=tK9LH"H:9H B9flHFR9f)0H@) CH8HxV9IL- K9H :9HQ9L~1Hނf) LCH8HFH,V9H E]9ILHQ9LqN2HH CH8HHU9H ]9ILH`Q9L)A2H4H BHL8H(lH9H -W9ILflT9HQ9LY1Hc ( hU9f L9) )0UBH8HO-U956I9ILdy2HK9H @9LHHP9fmH0) AH8HHlI9H C9ILHPP9L92HDc(V9( T9H@f=9f h\9)0) ~AH&8HxVT9IL=yC9H X9HO9LLt2Hdf) *AH8H$H T9H <9ILHO9L[2H=$H @H8H܇F9-B9IL2 S95{K9LHeH GU9HO9flfm)0) v@H68HpL9=W59ILe%2 6S9-G9LH}H +Z9HN9flf)0) @H8H~R9H 169ILHdN9fH:"!A9L1HD) ?H8H Q95@9IL$1 uR9=~F9LHAL%H W9HM9f)0f) G?H8HA~ ~59ILfH:" 49~U9HT9L0Hk~Q9H 09)0HhM9HPfH:":9fH:"O9)@) >H8H~29IfH:"Q9L{2~ #T9H $@9LHHL9)0fH:" 39) C>H+8H=H#Q9H /9ILHL9Lp2HH =H8H~.9IfH:"l19L%0~29H 49LHE ~ N9H*L9)0fH:"(39fH:" e39~N9~%m.9fH:"Y9)@fH:"%V9)P) )`?=H78H9~ 59IfH:" 049Lɾ0~-9H -9LHe~O9HnK9)0fH:"$>9fH:"a89)@) 9IfH:"x;9LI1~ AL9H M9LH@H HG9)0fH:" M9) 9Ha8H K9IL5 ;9H O9HfG9Lk2Hshf) 8H8HK9=?9IL1H5B9H v69LHHF9fmH0) \8H8HV( 49(@9ILk}1fm s99fl+/9LHA H oP9HF9(J9)0f>9)@) 7HG8H~(F9ILH.9H P9H4F9L1HA I (fmXI9( J9f?9f o>9HP) )0)@W7H8HQ~ ?D9-I9IL.'O95C9LH2 I9=K9fmHJ89H O9fl)0HiE9f)@HP) 6H;8H}I9IL-79H G9HE9Ly|2HQf) o6H8Hi} w895@-9IL0/I9-X-9LHUI79=mG9flH 19HD9fm)0f) )@5Hq8H|~X39IfH:",9L{2~ H9H %9LHH D9)0fH:" 69) {5H 8Hu|SH9529ILo2HS,9H %9LHHC9fmH0) 5H8H|H E9ILH K9LƓ1(_/9H ( G9fEO9)0f J9) 4HR8H{G9IL=C9H vH9HJ9L 2H`f) ^4H8HX{H>G9H 79ILHB9L t2H-H 4H8H{HF9H D9ILHrB9Le2H0H 3H8HzF9IL-I39H zN9H#B9L2HA4jf) z3H:8Htz~'9IfH:"&9LDB2~ 9)0fH:"19fH:" 29~19~%B9fH:"*19)@fH:"%H89)P) )`/H8HvH C9ILH>9L1(d"9Hl( cB9f*:9)0f 69) G/HO8HAv(49H C9ILfl@9H=9Ld0HE ( A9f J99) )0.H8Hu~ $9IfH:" E9LJ|1~99H S+9LH~~A9H=9)0fH:"?9fH:"b99)@) X.Hp8HRu~!9ILfH:"n"9~ A9H/9LP1Hl H @9H<9)0fH:" %9H@) -H8Ht(<+9H #9ILfl69H0<9L0H(@9( $9fH89f _#9(h@9)0f(D9)@) )PG-Ho8HAt@9579ILFE2Hg29H 8E9LH#H;9f) H0,H8Hs(e?9(>69ILt1fm99fl#9LH' ( `%9H +9fl 9H ;9)0(49(%#9f9f%&9)@) )P)`;,Hs8H5s~>9ILfH:"39~9Hz=9L-Hm~ 9H *9)0~KG9HT:9HpfH:" 9fH:" 59fH:"t#9~%9fH:"%49)@)P) )`q+H8Hkr~A9H *9ILH99fH:") 9L2H) +He8Hr=9=9ILl2H}9H ~C9LH HZ99f) H0*H 8Hq95 9IL*v1 [<9-29LHn `=9=49flH69H B9f)@H89f)0HP) &*H~8H q~9IfH:"g9L0-~ <9H !9LHmn H]89)0fH:" #9) )H8Hp~59ILfH:"f9~ ~<9H9L2H.H o&9H79)0fH:" 49H@) <)H8H6p(9H *9ILfl79H79L9O2H ( 9(*9f 9fo;9)0) )@(H.8Ho~59IfH:"9Lȡ0~X?9H 9LH~ *9H69)0fH:"S9fH:" $9~:9~%0;9fH:" 9)@fH:"%S99)P) )`(Hz8Hn~:9H 9ILH]69fH:"99L32HN) 'H.8Hn~9ILfH:"9~ ,:9H9L&1HH )9H59)0fH:" $9H@) 2'H8H,n~29ILfH:"9~ 99H)9L*2H.H #9Hb59)0fH:" (29H@) &HF8Hm(F9H O(9ILfl9H 59LS1HJ( r9(+(9f 9f89)0) )@8&H8H2m~-o+9IfH:"-9L0~%*9H 9LHo~/9Hg49)0fH:"%E(9fH:"<9~9~ b89~.9fH:"w!9)@~589)PfH:" ^9fH:"S@9)`fH:"569)p) )EK%H8HEl~Z9ILfH:"9~ 79H:9L 2HOH &9H{39)0fH:" 9H@) $Hw8HkH 59ILH239Lg2(9Hof!79) ~$H.8Hxk-!959IL-0^959LH/ 09=9ff9-9%.95:9fl)0H :9Hu29f)@f)P) )`#H{8HjH69H <'9ILH29Lpc2HH {#H;8HujS69IL="9H '>9H19L91HApf) '#H8H!j59-(9IL6 2H9H 39LHHd19fmH0) "H8Hi(v(9H 779ILfl49H19LZ1H ( r59f ,9) )0_"H78HYi959ILx1 59=H9LHp H#9H 49flH09fm)0H@) !H8Hh=9-69IL402 495^)9LH1H 29H09flf)0) x!H`8Hrh~9IfH:"-9L(2~ :49H 9LH\1H/9)0fH:" (9) !H8Hh"9=-9ILy2 39-c(9LH1H 9H@/9f)0f) H8Hg$-95}9IL2 \39='9LHѱH Q:9H.9flf)0) / H/8H)g39=+9IL^1 9-79LH *95M19fmH 9HS.9f) f)0)@H8Hf(9H q9ILfls(9H-9Le0H=(19( ]9f*9f +9(429)0f59)@) )PH#8H f(19(l(9IL0fm+9fl9LH| ( >19HW9fl 9H 9)0H*-9(9Hpf&9(%,9)@f%9)P) )`[Hs8HUe~09ILfH:"%9~Q9H/9L0H̲~ Y9H 9)0~9Ht,9HpfH:"9fH:" 8fH:"D"9~%9fH:"%1&9)@)P) )`H8HdH 9ILH+9L]t1(39H33f9) @Hh8H:d(9H 59ILfl;9H+9L'2HV( /9f $9) )0H 8Hc( i9(9ILz0fm 9fl9LHkSH l9H +9(9)0f/9)@) \H8HVc( l,9(-9IL0fm 9flK9LHH 49H*9(.9)0f#9)@) H8HbHG29H 049ILH;*9L1HS (9( .9H@f+9f "9)0) iH8Hcb(49H9IL2fm19H Y39LH5H)9( .9HPf 9(-9)0f%9)@) H-8Ha9-.,9IL,1 -959LHWtH 9H)9f)0f) oH8HiaG-9IL=39H 9H(9L 2Hfm) H|8HaH,9H ].9ILHx(9L#2HH H<8H`~ C9ILfH:" 9~9H# 9LL\0HT ~z,9H c 9)0H'9HPfH:"s 9fH:"9)@) >H8H8`,9-o9ILmJ2H~9H )9LH#UH{'9f) H0HT8H_( L9HE 9IL 0fl 9H D,9LHEU H'9( 9HPf 9(j+9)0f9)@) PH8HJ_~ 9IfH:" 9L,~r 9H )9LH5~ 9H&9)0fH:"}9fH:" 9~9~%*9fH:"9)@fH:"%- 9)P) )`H8H^~s*9H 9ILH%9fH:"9L\2H) @H8H:^*95Q9ILG2H19H 9LHH}%9f) H0Hv8H]~9IfH:"g(9L1~9H 9LH  ~ L(9H %9)0fH:"39fH:" 9~09~%P)9fH:"E9)@fH:"%(9)P) )`"H8H]( 9((9ILD1fl  9fl'9LH H}'9H 9HO$9(h.9) fh'9HP)0)@H?8H\~v(9H 9ILH#9fH:"&9L!2H) CH8H=\H %9ILH#9LV2(9Hwf'9) H8H[~y'9IfH:"{9L.~ %9H %9LH-~9H!#9)0fH:" 7'9fH:"9~$ 9fH:"9)@) )PPH8HJ[H *9IL~&9~ 9H"9L.HW1fH:"9fHnfH:" %9~ 9fH:"%9~ 9)0fH:"#9fH:"79)@)P) )`H_8HZ=9 9IL0 9-p9LHbfl95)9)9=9f)0H9H 9f)@H!9f)PH`) H8HY(H#9IL( 9H T 9fl 9L1HX(H!!9fm9f 9)0) )@oHG8HiY~%$9IfH:"%9L0~19H z9LH~-9H 9)0fH:"9fH:",9~ i9~9~-9)@fH:" 9fH:" 9)PfH:"-9)`) )pHy8HX~ $9IfH:""9L.~ [9H 9LH9~9H9)0fH:"+9fH:" 9~9fH:"9)P"9) )@)`H8HW #95I'9IL19-1+9LHfH 9H9fmf) )0{Hk8HuW=s99ILS0 '9-9LHnf#9=D9)0959fmH9H 9fm)@Hs9f) H`)PH8HVH 9ILH89L&2("9H1 f*9) |H|8HvVt9-9ILn1 95 9LH=Hi+9H :9flH9f)0H@) H 8HU!9IL=9H &9H^9L1H`f) H8HU!9IL-x9H 1 9H 9L?2Hvfm) ZHr8HTU~9!9H  9ILH9fH:"r9LS2H) H&8HU~ 9ILfH:"#9H9H 9L(2H/HF9) H0 H8HT~ 9H 9ILH9fH:"9L$2HH) P H8HJTH0 9ILLH 9H9#9LY2H  HG8H T9ILL59H 9LY2H"9f) H8HSZ9=9IL=2Hb9H 9LHnH9f) H0` H8HZS-91 9ILo- 95i9LHf 9=9(9)09-9f)@H 9Hj9f)Pf) H8HR59=8IL--N99LHa '9-<9fmflM95&9%9=9f)0H9H 9f)@H9f)PHp) )` HN8HQ->99ILŭ- 958LHԡ&9=9fm9-b9fl)0H 9H 9fm)@f)P) W H8HQQ(9H9IL=2fl9H 9LHaH9H0) Ha8HPH9H !9ILH]9L1H(9f9H0) H 8HP599IL r0:9-S9LH"f:959)0 9=9flH9H !9fm)PH9f) H`)@Hd8HO 9=9IL[E1l9-9LH-b 958f)0H9H 9f)@H9f) HPVHּ8HPO.9IL=9H 9H9L2H<f) H8HN9IL-9H 9H_9L82HGfm) H?8HN~9H W9ILH9fH:"9LH?2Hi) [H8HUNH;9ILLH 9HD9LT2H H8HN9ILL59H 9LS2H9f) Hu8HMe8=9IL72Hm9H 9LHH9f) H0kH8HeM-C9l9ILn0{8=D8LHf8-D9)0 95_8flH,"9H 9fl)PHk9f) H`)@Hu8HL58^9IL,, 8=8LHfm!9-995)9fl)0Hg9H 9f)@H9f)PH`) HϹ8H L(?9Hp8IL72flF8H g9LHcHS9H0) Hy8HK=99IL1 q9H 9LH H9f)0f) JH8HDKr95{9IL9Q1 J9-39LH% (=89flHb95S8flH `9Ha9f)0fH`) )@)PHx8HJx9IL=8H 9H9L>1H8f) LH,8HFJ$9IL-9H 8H9L 42HBfm) H8HI~9H 8ILH\9fH:"9L:2Hd) H8HIH9ILLH 9H9LOO2H dH\8H^I<9ILL5<9H %9LO2H?9f) H8HI8=8 9IL&32H8H 9LHH\9f) H0H8HH-99ILdi08=8LHf8-9)0 858flHv9H G9fl)PH9f) H`)@H8HH5O89ILv, 8=8LHfm9-9 95s8fl)0H9H 8f)@H9f)PH`) YHq8HSG( 9H8IL32fl8H 8LHcH9H0) H8HF=# 9, 9ILʔ1 9H 9LH H@9f)0f) H8HF( 9( 9ILL1fm 9fm s9LH (?9H9fl8H 9)0H 9(d 9H`f8) )@)PH#8HE9IL5N8H g9HP 9Lq2H)f) H׳8HEw9IL=j 9H #8H 9L]/2H4fm) LH8HFE~+9H 8ILH 9fH:"d8L52HV) H@8HDH9ILLH h9H9LJ2H H8HD9ILL- 9H x9LaJ2H9f) jH²8HdD859ILy.2H 8H 38LHH 9f) H0Hh8HD~/8ILfH:"8H8H 8L!-H.)`HA 99~8~y8)p~9fH:"w9HE~ 8fH:"fH:"18fH:" 8)0~%8fH:"%l8)@)P) )EH8HC(O9H8IL.2flV8H w8LHdHc 9H0) H18HB=99IL1 9H 9LH H 9f)0f) ZHҰ8HTB29IL-8H 9H 9L2Hf) H8HB 9IL59H 8Hc 9L+2Hfm) H;8HA~ 9H [8ILH 9fH:"8LL22H1) _H8HYAH? 9ILLH 9HH9L G2H H8HA 9ILL=9H 9LF2H9f) Hq8H@1H 8ILH H9L?2H1H68H@H v81ILH9LXE2H=H KH8HE@H;8H 9ILHW9L,2HN@H H8H?H 9H l8ILH9Lp>2HH H{8H?( 9H 8ILfl f8H9L>2H (W8f>9)0) TH8HN?H4 9H M9ILH`9L)92HH Hܭ8H?H 9H 9ILH9L82HH H8H>H 9H 9ILH9L82HH |H\8Hv>H\ 9H 8ILH9LQ=2HH 4H8H.>H 9H 8ILH@9LD2HH Hܬ8H=H 9H ]8ILH9L11HH H8H=H 9H 8ILH9Ly02H@H \H\8HV=H< 9H 8ILHh9L1/2H`H H8H=H9H 8ILH 9L)2H`H Hܫ8H<H9H U8ILH9L2H`H H8H~<H 9I~Y9L22HC8LH9HfH:"H0) &HF8H <H 8I~8LtZ0~ 9H=8LH H9fH:"fH:" ?8H@) )0H֪8H;~59IfH:"O9L~1~ p9H Y 9LH H9)0fH:" 9) @Hp8H:; 9-9ILo09%i8LH-H8H 9fmH9f) H@)0H8H:~9H =8ILH9fH:"}8L1HW) qH8Hk:H I9ILH9L1(&8Hd( %9f8)0f 8) HQ8H:5Q8%*8IL8f0i8 28LHz=88flfm5H8%98H C9f)0H9fm)@f) )P)`WH8HQ9 o8%8IL18=8LH8-9fl958f)@H 08H9f)0f)P) H8H8~8ILfH:"8~ $8HU8LΙ-H~8H %9)0~F9H8H`fH:" 8fH:"8fH:"8)@) )PHf8H8~9H 9ILH8fH:"v8L 2H) H8H7H9H 9ILH8L02H bH jHڦ8Hd78%+8IL9q1 8=8LHB 9-8flH8H >9f)@H+8f)0HP) HM8H6H 8ILH8L1=2(9H/f9) H8H~6~c9H 8ILH8fH:"8L;2H=) 0H8H*6 85q8IL_-9%8LHQ U8=8flH 8H8fm)0f) )@H:8H5H9H 9ILH8L<2HnH bH8H\5H28H c 9ILHn8L2Ht(9f8H0) H8H4(c8(58IL 1fm5*8(8LH+fl8(=9D(fmfDm8fl=N9)0H@8H 8)`H8(-D8) f-D8(%M 9( 8HEf%9(9)@f R 9f8)PD)p)])M)UH8H3(b8(9IL-(%8(-8LH"fm%8fl-f9ffmHV8H 8)PH8(Z8) fZ8( C9HEf &8)0)@)`)p>H8H83(^8(8f8)@(P8fm9IL1(8H 09LHfl{9H8fl)0( 9)Pf 8) )`HP8H2( x8H 9ILfl 9H8L1HWc(48f8)0) 1H8H+2H8ILLH 8H9L72H H8H18ILL-8H 8L72H9f) Hs8H1{8IL5.8H 9H8L1,2HCf) OH'8HI1H w8ILHb8L"2(8HڃfQ8) Hޠ8H0~8H &8ILH 8fH:"8L 2H) H8H0H8LILH 8H8LT62H iHY8Hc0A8LIL=A8H *8L62HD8f) H8H0~ 8IfH:" 8LFM0~>8H 8LH$ ~ 8H8)0fH:")8fH:"8)@) H8H/ 8%8ILg0T8-8LH,9858flH 8Hh8fl)0f)@) H8H/~8H V8ILH8fH:"8L2HH) Hʞ8H.H8H s8ILH8L1HR$H rH8Hl.HR8LILH 8H[8L42H 1HQ8H+. 8LIL= 8H 8L32H 8f) H 8H- 8%8IL1H8H -8LHWH8flH0) H8H}-(8H 8ILfm8H8L@-2HD) 3Hk8H--H8H 8ILH?8L&2HH H+8H,H8LILH [8H8L22H H8H,8LIL-8H k8LT22H8f) ]H8HW,585n8IL2HU9H 8LHHJ8f) H0HS8H+8=\8ILZ2H9H |8LHH8f) H0H8H+(y8H9IL2fl8H )8LH'H8H0) ;H8H5+H8LILH 8H$8L02H Hj8H*8LIL%8H 8L02H8f) H%8H*H8H 8ILH8L"2HUH eH8H_*HE8H v8ILHq8Lz1HjEH H8H*(8H 8ILflh8H!8L+1He ( 8f 8) )0HF8H)8-8IL%-H8H /8LH؅H8fmH0) UH8HO)~48ILfH:"c8H,8H 8L-H H=8) H0H8H(H8H $8ILH8Lx1H H HS8H(( 8H 8ILfl f8H8L1H7(w8f8)0) DH8H>(~ 8IfH:" -8LA1~&8H G8LHO ~B8H#8)0fH:"8fH:"^8)@) Ht8H'H8H -8ILH8L!1HH tH48Hn'HT8ILLH 8H]8L-2H 3H8H-' 8ILL5 8H 8L,2H8f) H8H&8IL=8H 8H8L2HFf) Hj8H&Hr8LILH 8H{8L<,2MH NH.8HH&&8IL%)8H 8H38I L+2Lf) Hߖ8H%H8LILH g8H8L+2H H8H%8LIL-8H w8L`+2H8f) iHa8Hc%HI8LILH 8HR8L+2H (H(8H"%8LIL58H 8L*2H8f) H8H$H8LILH K8H8L*2H H8H$r8LIL=r8H [8LD*2Hu8f) MHe8HG$~,8IfH:"8L7F0~ 8H H8LHRH48)0fH:" 8) H8H#H8LILH O8H8L)2H HƔ8H#v8LIL%v8H _8MLE)2Hv8f) NH~8HH#~-8IfH:"8Lx{1~ 8H I8LH H58)0fH:" 8) H8H"H8ILH S8H8L(2I LH HՓ8H"m8LIL-m8H V8L?(2Hp8f) HH8HB"H(8LILH 8H18L'2H HW8H"8LIL58H 8L'2H8f) H8H!~8ILfH:"88H8H 8L 2HH8) H0XH8HR!~78ILfH:"8H/8H 8L1HH@8) H0H^8H 8=8IL(1 f8%8LH H8H 8fmH8f)0H@) {H8Hu (8H 8ILfl&8H8L2Hh) +H8H% ( +8(d8IL1fm r8fl8LH-H 8H8(8)0f8)@) H.8HH8H 8ILH8L1HLhH fH8H`H8H 8ILHr8Ly1HH H8H(~8( w8IL-1fm%8fm 8LH H 8H8) )0HP8HH8H 8ILH8L!2H>H pH8HjH8IL-8H 8Hu8L.1HDf) Hď8HHD8H =8ILH(8L 2HH H8H~#8H 8ILH8fH:"8L 2H) H88Hz~8H 8ILH8fH:"p8L)2H ) ,H8H&~{8H 8ILH78fH:"8L1HЉ) H8H~'8H 8ILH8fH:"8L1H߉) HT8H~~8H 8ILH8fH:"t8L]1H) 0H8H*58%A8ILY08 8LH8=8flf8-G8%858fm)0H'8H 8fm)@H8fm)PHp) )`jHJ8Hd=8%8ILyH088LHA*858flf=8%8 8-#8fl)0H8H 8fm)@H8f) Hp)P)`H8HH8ILLH 8H8LM 2H bHR8H\:8ILL%:8H #8L 2H=8f) H 8H}8-8IL1 858LHH8H #8flH8f)0H@) H8H B8=8ILi18%8LH 8-8flH 8Hn8f)0f)@) H8H  8=T8ILB-85|8LHH8H A8fmH8f) H@)0H8H P8-8IL1X8%8LHH-8H 8fmHs8f) H@)0H58HH8LILH 8H8L2H H8H8LIL58H 8L2H8f) H8HHo8LILH 8Hx8L92H NH~8HH&8LIL=&8H 8L2H)8f) H98H8%8IL1HI8H z8LHiH8fmH0) H8H~ 8ILfH:" 8~8H78LZ1HzA~F8H 8)0Hy8HPfH:"G8fH:"d8)@) HR8H~8IfH:"8L1~ 8H E8LHH8)0fH:" ߾8) H8HH|8LILH 8H8LF2H [H8HU38LIL-38H 8L2H68f) Hn8H858IL1 8=G8LHH 8H8flfm)0) H 8Hz8IL%8H f8H8LN1Hߡfm) OH8HIH/8LILH 8H88L2H H8H8IL-8H 8H8L2H f) H:8H8IL558H ~8H8L81H!f) fH8H`(8( ?8IL1fm8fl U8LHBH8H 8HK8) H@)0H8H 8=38IL1 8%;8LH"H 8H8flfm)0) H8HHf8H 8ILH8L{2H5H >Hބ8H8H8H 8ILHR8L2H<H H8H-88IL 2 8H 8LH?"H8flfm)0) HA8HHq8LILH 8Hz8L;2H PH8HJ(8IL=+8H 8H58I L2Lf) H8H8%8IL1 8-8LHa"H8H _8flH8fm)0H@) HG8HyH_8ILLH 8Hh8L)2H >H8H88LIL58H 8L2H8f) Hɂ8H8=8IL1HI8H 8LHzH8f) H0Ho8H~n8H O8ILH8fH:"8Lȷ1H) ;H#8H58IL%F8H 8HH8L1H"f) Hׁ8H8IL-B8H {8H8L1HCfm) H8HHt8H 8ILH8L2HH LHL8HFH,8H 8ILH`8L 2H&H H 8H 588IL 2 8H 8LH)#H8flfm)0) H8H (8H8IL01flV8H O8LH,# H8( D8H@f 8)0) *HB8H$ ~ 8ILfH:"`8HѺ8H 8L1HLH8) H0H8H ~8IfH:"8L1~ Z8H 38LH_cH8)0fH:" =8) ZH8HT (8( 38IL)1fl8fl Y8LHyc H8H .8H?8) H@)0H8H ~8IfH:"8LP1~ X8H Y8LHH8)0fH:" 8) xH~8Hr ~8IfH:"18Lbi-~ 8H 8LHCHg8)0fH:" 8) HJ~8H (8H8ILY1fl8H 8LHH8( O8H@f ߵ8)0) H}8H Hu8ILLH 8H~8L?2H TH}8HN ,8ILL%,8H 8L2H/8f) H_}8H 8-x8IL#1 858LH$ H t8H8flfm)0) H|8H H{8LILH 8H8LE2H ZH|8HT 28LIL=28H 8L2H58f) H}|8H  8%8ILa18-&8LHd 858flH 8H a8fl)0H8fm)@HP) zH{8HtHZ8LILH 8Hc8L$2H 9H{8H38LIL=8H 8L 2H8f) Ht{8H t8%8IL60L8-8LHQd85j8flH G8H8fl)0fm)@) gHz8Ha~F8ILfH:"8H^8H /8L1Hu HW8) H0Hz8H8=68ILt1H8H ֿ8LH$ H8f) H0裿HCz8H~8ILfH:"8~ i8H 8L*0H H 8H8)0fH:" q8H@) 'Hy8H!H8H 8ILH;8L2HH ߾Hy8H( 8H 8ILfl 8H8L 2HD({8fr8)0) xH0y8HrHX8ILLH 8Ha8L" 2H 7Hx8H18ILL%8H 8L 2H8f) Hx8H~8H "8ILH8fH:"8L1H) 薽Hfx8HH ƽ8ILH8L1(8Hf8) EHx8H? 8568ILtr18-8LHdH8H 8fmH(8f) H@)0ʼHw8H(8H 8ILfl8H8L'1H"( V8f m8) )0cHKw8H]~8IfH:"D8L1~ 8H 8LH< HR8)0fH:" x8) Hv8H~ T8ILfH:" 8~[8Hl8L 4.HY~8H 8)0H8HPfH:"l8fH:"!8)@) _HWv8HY~ 8ILfH:" 8~8H֫8L1H ~U8H 8)0H88HPfH:"8fH:"{8)@) ɺHu8HH8H 8ILH8L~2H H 聺Hu8H{Ha8H r8ILHm8LF21H (58( >8H@f8f 8)0) Hu8HH8H 8ILH8LP0H (8( 8H@f8f 8)0) 蕹Ht8HHu8H 8ILH8L1H` (I8( R8H@f"8f 8)0) H?t8HtHy1,HHuH/HxHHuHH[A\A]A^]UHAVIHAUIATIS7HHH@u H5LLH5%H81lLK(HC Mt I9LLIM9s#H֯5MLLH5n%H81謯(I9s-RL1MPMHI%11xY^y H1 HeH[A\A]A^]UHATL%v%SL҈HLHHH%HI8HHxHHuHȅL耈HHy H %LHH^I8HTHxHHuHvL.HH' H%LHHHI8HHxHHuH$L%%LՇHH H%LHHH8H(HK%LHHH8H0LLHHH8Htc(H %LHHnH8Ht@He%LH_HSH8HtHxHHuH?1 1H [A\]UH%H5*hH=ή%HSQyyHf%H5OLH=%SxHp%H5n H=j%5xH%H5X H=L%xHT%H5ZH=%xH%H5H=v%۶^H%H5"H=%蹶8UH=81H55HK]HH_>8UH5ܥ51HuHƒHt1H5!5 HHY8]UH5U8HATS躓HHtP1HIHu ˥HuHW5H5%H8耂HxHHtL HzH[A\]UHAWAVE1AUATISH(LPHA~Ht HLcHcHDHHIEHEJAHEL9uKDH HHuIM$IL9}tI?u'IHuLEHuLEIGIIH9tIHu=IcH5 %IDHHI$HPH75H81-HuMs_HW1H([A\A]A^A_]HWHBpHtH@HtH1UHӤ5H5%HRH81H軡1]H߾zL肎H}yHqH}HuH)HtzHTH% LBH:U1HSH(HuHuHUHHM1HEʰ 1HPH(H[]HGHH;5u 1醍UHATSHtH螝HHuDQ|Hx`IHk5H0 t%I|$`1ID$`HtHx HHuRwH[A\]UHATSHH5a8^IHu 跋1H޺H蓎ÅxLu[A\]UHAWAVE1AUATIS1H(LM9_OlIEt Hu`19H58LHHt31Hu1H}HHELe` H}IHy)4HtLH薂HHu8HEIVPtH8LmIVXtH`8LeIV`tHi8H]IVhtLLLML)H?H(JhH LLFpHIH LHxH HHuH aLH0Hx%H0HHuHL `L H8Hx%H8HHuHL0`L0HHHx%HHHHuHL8r`L8H@Hx%H@HHuHLH?`LHHPHx%HPHHuHLH `LHHXHx%HXHHuHLP_LPIExHIEuLLX_LXI$xHI$uLLX_LXHxHHuHLXf_LXIxHIuLH_IxHIuL1_H(HxH(HHuH _M1E11E1H@E1E1HHHPHXH0H8H(L L A)E11E1E11H@E1E1E1HHA)HPHXH0H8H 1E1E11H@E1E1E1HHA)HPHXH8H N1E1E11H@E1E1A)HHHPHXH8H 1E1E11H@E1E1E1HHA*HPHXH01E1E11H@E1E1E1HHA*HXH01E1E11H@E1E1E1HXA+H0[1E1E11H@E1E1A,HXH0+1E1E11H@E1E1E1HPA-HXH8E1E1E11L@E1E1LPLXL8A-E1E1E11LHE1E1E1LPA.LXE1E1E11LHE1E1A.LPLXTE1E1E11L@E1E1A/LXE1'1E1E11H@E1E1A/HX1E1E11HPE1E1E1A01E1E11HPE1E1A01E1E11HXE1E1A11E1E11HXE1A1yE1E11E1E1A2cE1E11E1A2PE1E1E1E1A3H=8)% 8H8H8H{7UH5'8H=8N{:H=8&H8H51O8H=8%uH^8Hu HǀHz8H=3w7H8Hŧ8(HH=$8)-M8HF8H8Hw7"H5\8H=8zwH=8 cH8H5P8H=W8btAH8Hu HǀH 8H=s7H٦8H80HH=i8)5z 8Hs 8H$8Ht7_H58H=28yH=8GH 8H5J8H=8s~H8Hu HǀH 8HH8fHnHH=o7fH:"HH=8H 8HX8)y 8Hp7茀H=n8H5V%oHHs5H9Xu$Hu5Hp(HH p ,HP(HJ H=!8H5X%oHH9Xu$Hv5Hp(HH ,HP(HJ H=8H5k%?oHMH9Xu$Hs5H ,Hp(HHZ HP(H5ݤ8H=8xH=z8Hf8H5o^8H=8qHD8Hu HǀH8H=al7H="8HSm7H8H5C8H=8qkH=8Hu HLJIBH 8H=mi7H8H88HH=8)=g 8H` 8HA8H2j7|~H58H=g8vH=S8dH?8H5C8H=8pH8Hu HǀH 8H=Jf7H8H\8HH=8) 8H 8H~8Hg7})H5Ӣ8H=8"vH=8H8H5Mc8H=8oHb8Hu HǀH8H=c7HP8H8HOH=(8)8H8H8HLd7|fH58H=8_uKH=87H8H5*b8H=+86oH8Hu HǀH8H=`7H8H֡8H H=m8)8H8H8Ha73|H5=8H=68tH="8tH8H5a8H=h8snRH8Hu HǀHH8H=^7H8H8 HH=8)%8H8H58H^7p{H5r8H={8sH=g8XHS8H5@8H=8mH18Hu HǀHu8H=^[7H8HP8(HH=8)-H8HA8Hr8H#\7zH58H=8sH=8H8H5C8H=8lHv8Hu HǀH:8H8H=4X7H8H2H=<8HY7)5n8Hg8yaH58H= 8ZrFH= 82H 8H5}=8H=&81lH 8Hu HǀH8H=U7H`8Hi88HH= 8)=8H8Hc 8HU7.yH58H=Q 8qH== 8oH) 8H5<8H=c8nkMH 8Hu HǀH8H=Q7H8H8HDH= 8) 8H8H 8HR7kxH5M8H= 8pH= 8SHn 8H5;8H=8jHL 8Hu HǀH08H=N7Hʜ8H8HH= 8)8H8H 8HO7wH58H= 8pH= 8H 8H5:8H=ݜ8iH 8Hu HǀH]8H=K7H8H8H>H=W 8)08H)8H 8H{L7vUH58H= 8No:H= 8&H 8H5O8H=8%iH 8Hu HǀH8H=G7H48Hś8 HkH= 8)%]8HV8H 8HH7"vH58H=e 8nwH=Q 8 cH= 8H5.8H=W8bhAH 8Hu HǀH8H8H=D7Hb8H*H= 8HE7)-8H|8fuH= 8H5AU%dHH|h5H9Xu$Hg5Hx+Hp(HHZ HP(H5ۙ8H=d 8mnH=P 8ZH< 8H5;8H=N8Yg8H 8Hu HǀH7H=@7HX8Ha80HH=8)5q7Hj7H8HA7VtH58H=8lH=8>H8H5z<8H=8fuH_8Hu HǀH7H==7H8H88HH=%8)=7H7H8H>7sH5E8H=8kH=8{H8H5?-8H=Ș8eH8Hu HǀH7H=:7H—8Hۗ8HH=j8) 7H7H58HF;7r@H5z8H=389k%H=8H 8H5,E8H=8eH8Hu HǀH%7H=77H8H8HVH=8)7H7Hr8Hc87 r}H58H=x8vjbH=d8NHP8H5 [8H=B8Md,H.8Hu HǀHR7H=47H,8HU8HH=8)%7H7H8H57JqH58H=8iH=82H8H5~<8H=8ciHs8Hu HǀH_8H=X27H=Q8HJ37p$H68H5O@8H=8#cH8Hu HǀH7HQ|H8fHnH, H=W*7fH:"HiH=8H7H7H8HH7H8)7H +7odH5~8H=8]hIH=k8ܾ5HW8H578H=)84bH58Hu HǀH7H«H8fHnHxH=h#7fH:"H8H=8)7HE$7/oH58H=8gH=8pH8H5H8H=d8oaNHx8Hu HǀH7H qH.8fHnHH=7fH:"HH=.8H7H8)7H 7\nH5֒8H=8fH=8DH8H5G8H=8`{H8Hu HǀH17H*tHS8fHnH'!!H=7fH:"HB8H=c8)7H7mH5 8H=:8fH=&8H8H5#$8H=̒8_H=8Hu HLJH8H=7H=8H7ldH8H5w@8H=X8c_BH=8Hu HLJ H7HfHnH8H H* fH:"Hj H=7)7fHnfH:"H 8H= 8)}7H70lH=8H52X%v[HHF_5H9Xu$Hb5H~*Hp(HHZ HP(H5M8H=8Ld8H=8˺$Hn8H5g"8H=8#^HL8Hu HǀHx7H=Q 7Hʏ8H#tH\7H7H=8H' 71kH58H=7cH=7rH7H5M8H=f8q]PH=7Hu HLJ.'H7H=27H8HtH7H7H=W7H7rjH5̎8H=57bH=!7ZH 7H5G8H=8\H=7Hu HLJohH7H=6H<8H H7HW7H=7H6i#H58H=~7bH=j7蛸HV7H5E8H=8[H=47Hu HLJH#7H=t6Hu8H"H7H7H=7HJ6hdH5>8H=7]aIH=7ܷ5H7H5D8H=)84[H=}7Hu HLJH\7H=6H8HgH@7H7H=27Hk65hH5w8H=7`H=7vH7H5D8H=j8uZTH=7Hu HLJ2+H}7H=66H8H8 )%^7hHK7H=t7H6)-N7hgH58H=K7_H=77PH#7H598H=8YH7Hu HǀH7H=V6H8HP80)5~7xH7H=7H%6)=n7fH5ڊ8H=7_H=7萵Hk7H5t 8H=݋8XHI7Hu HǀH7H=6HW8H8) 7PH7H=7H6)7eXH58H=7Q^=H=7д)H7H578H=8(XH7Hu HǀH8H7H=6H8)7bH=S7Hl6)%7/eH5Q8H=*7]H=7pH7H5/8H=d8oWNH7Hu HǀH7H==6HΈ8H׈8()-7pH7H=7H 6)57odH58H=r7\H=^7WHJ7H5-8H=8VH(7Hu HǀH$7H=6H8H88)=7HH7H=7H6) 7cH58H=7\H=7藲H7H5-8H=8UHp7Hu HǀHD7H=}6H>8HO8)%7XH7H=+7HL6)7b_H58H=7X[DH=7ױ0H7H5J8H=$8/UH7Hu HǀHd7H=6Hv8H8 )%E7hHZ7H=s7H6)-57/bH518H=J7ZH=67pH"7H5+,8H=d8oTNH7Hu HǀH7H=6H8Hυ80)5e7xH7H=7H6)=U7oaH5i8H=7YH=~7WHj7H5H8H=8SHH7Hu HǀH7H=]6H8H8) 7PH7H=7H,6)u7`H58H=7YH=7藯H7H5*8H=8RH7Hu HǀH7H=6H8HO8)7`H7H=K7H6)%7__H5ك8H="7XXDH=7׮0H7H5G8H=$8/RH7Hu HǀH7H=6HV8H8()-7pHZ7H=7Hl6)57/_H58H=j7WH=V7pHB7H5[)8H=d8oQNH 7Hu HǀH7H==6H8Hς88)=7HH7H=7H 6) 7o^H5I8H=7VH=7WH7H5F8H=8PHh7Hu HǀH$7H=6HƁ8H8)7XH7H=#7H6)7]H58H=7VH=7藬H7H5&8H=8OH7Hu HǀHD7H=}6H8HG8 )%%7hH"7H=k7HL6)-7\_H58H=B7XUDH=.7׫0H7H5%8H=$8/OH7Hu HǀHd7H=6H68H80)5E7xHb7H=7H6)=57/\H58H=7TH=v7pHb7H5S!8H=d8oNNH@7Hu HǀH7H=6Hn8H8) e7PHR7H=7H6)U7o[H5)8H=7SH=7WH7H5#8H=8MH7Hu HǀH~8H7H=V6H~8)7bH=J7H36)%|7Z&H5h~8H=!7S H= 7螩H7H5*8H=8LH7Hu HǀH7H=6H}8H}8()-7pH7H=7H6)57YfH5}8H=i7_RKH=U7ި7HA7H58H=+86LH7Hu HǀH7H=6H}8H.}88)=7HH7H=7Hs6) 76YH5|8H=7QH=7wH7H5:8H=k~8vKUHg7Hu HǀH 7H=D6HU|8Hn|8)7XH 7H="7H6)7vXH5|8H=7PH=7^H7H58H=}8JH7Hu HǀH+7H=$6H{8H^|8 )% 7hH7H=j7H6)-7W&H5H{8H=A7P H=-7螦H7H568H=|8IH7Hu HǀHK7H=D6Hz8H{80)5,7xH7H=7H6)=7VfH5z8H=7_OKH=u7ޥ7Ha7H58H=+|86IH?7Hu HǀHz8H d7H=6H y8 ) L7RH=7H6)C7=VH5y8H=7NH=7%~H7H5"8H=r{8}H\H7Hu HǀH7H= 6HH7H5 8H=2y8=FHf7Hu HǀH7H=k6Hv8Hv8)7XH7H=!7H:6)7=SH5v8H=7KH=7%~H7H5 8H=rx8}E\H7Hu HǀH7H=k6Hv8HEv8 )%7hH@7H=i7H:6)-7}RH5u8H=@7JH=,7eH7H58H=w8DH7Hu HǀH27H=6HTu8Hev80)57xH7H=7H6)=7Q-H5u8H=7&JH=t7襠H`7H598H=v8CH>7Hu HǀHR7H=K6Ht8Hu8) 37PH7H=7H6)#7PmH5Gt8H=7fIRH=7>H7H5.8H=2v8=CH7Hu HǀHr7H=6Hs8Ht8)S7`H 7H=A7HZ6)%C7=PH5s8H=7HH=7%~H7H5q 8H=ru8}B\H7Hu HǀH7H=+6Hr8H%t8()-s7pH`7H=7H6)5c7}OH5r8H=`7GH=L7eH87H5-8H=t8AH7Hu HǀH7H=˛6H4r8Hes88)=7HH7H=7H6) 7N-H5q8H=7&GH=7襝H7H58H=s8@H^7Hu HǀH7H=K6Hlq8Hr8)7XH7H=7H6)7MmH5'q8H=7fFRH=7>H7H5!8H=2s8=@H7Hu HǀH7H=K6Hp8Hq8 )%7hH 7H=a7H6)-7=MH5_p8H=87EH=$7%~H7H58H=rr8}?\H7Hu HǀH7H=6Ho8H%q80)57xH`7H=7Hz6)=7}LH5o8H=7DH=l7eHX7H5!8H=q8>H67Hu HǀHB7HZHo8fHnH8H=щ6fH:"H7H=7)7H6K(L%7%H=7L:H H>5H9Xu$H>?5Hp(HH )HP(HJ H5zn8H=s7CH=_7PHK7H58H=p8=H)7Hu HǀH7H=6Hm8H}H7H7H=7Hl6J&H=7L:HH9Xu$HzA5H)Hp(HHZ HP(H5~m8H=7BH=s7\H_7H5+8H=o8<H==7Hu HLJqjH 7H U Hl8fHnH"WH=z6fH:"H7H=7)7H{6IH5l8H=7 BH=7芘H7H5(8H=n8;Hs7Hu HǀH77H H!l8fHnHSH=6s6fH:"H 7H=)7)7Ht6HMH5k8H=7FA2H=7ŗH7H5A8H=n8;H7Hu HǀHR7H [MHTk8fHnHx H=o6fH:"H3kH=l7H%7H7)7H`p6 HzH5j8H=57s@_H=!7KH 7H5 8H=?m8J:)H=7Hu HLJHR7H+KHlj8fHnH( H=1l6fH:"HlH=7H%7H7)7Hm6*GH5j8H=]7?H=I7kH57H58H=_l8j9IH=7Hu HLJ' Hb7H Hi8fHnH H=f6fH:"H7H=7)%7Hg6XFȽH5:i8H=7>H=7@Hk7H5<8H=k88wHI7Hu HǀHh8Hv7H BH=d6Hh8 H g7H=7Hd6) B7E H5vh8H=7>H=7脔ݼH7H508H=j87H7Hu HǀH7HfHnHg8HH ^fH:"H"H)T7fHnH=h\6fH:"HH=#7)<7fHnfH:"H97)27H+]6DH5gg8H=7<H=7}ֻH7H58H=i86H=7Hu HLJ蒸H=7H5f8 HHf8HP7H=WY6H=H7HIZ6CCH5f8H=&7<<(H=7軒H7H5?7H=i86H=7Hu HLJзɺH;7H5$f8 HHf8H7H=uV6H=7HgW6CH5e8H=l7z;fH=X7RHD7H57H=Fh8Q50H="7Hu HLJH97H5be8 HH;e8H7H=S6H=7HT6OBH5 e8H=7:H=77H7H58H=g84nH=h7Hu HLJLEH77H5d8 HHqd8H 7H=P6H=7HQ6AH5?d8H=79H=7uθH7H5I8H=f83H=7Hu HLJ芵H7H=.M6H=7H N6@ZHd7H57H=Nf8Y38H=B7Hu HLJH!7H=zH6H=7HlI6v@H7H5y8H=e82ķH=7Hu HLJ袴Hm7H ֕ Hb8fHnHc8 H=D6fH:"HE H=7H@7Hi7)"7HE6?5H5ob8H=H7.8H=47譎H 7H57H=d82H7Hu HǀH7H=@6Ha8H Hv7H7H=7HA6?H5a8H=7|7hH=7THv7H5O7H=Hd8S12H=T7Hu HLJ H7H==6H%a8HVH7H=7b>ҵH5`8H=76H=7JH7H58H=c80H=7tmH=:6H=7=RH7H58H=Fc8Q00H=b7#Hn7HgfHnH+`8H H fH:"H/HXS)17fHnH ŽH=16fH:"H H=7)7fHnHfH:"Hة)7fHnH UfH:"H )7fHnHĶfH:"H)߿7fHnfH:"H\)տ7fHnfH:")ҿ7< H5._8H=?75H=+7脋ݳH7H588H=a8.H=7记H7H=.6H^8Ha8HH=7H7H7H/6;_H5y^8H=7X4DH=7׊0Hr7H5{ 8H=$a8/.H=P7Hu HLJH7H=,6H]8H`8HH=7H7H7H,6-;H5]8H=73H=7nH7H58H=b`8m-LH=7Hu HLJ*#HE7H ~H]8fHnHH=T(6fH:"H.7H=?7)7H1)6[:˱H=7H5o%)HHq-5H9Xu$H425Hp(HH +HP(HJ H=7H5p%T)HbH9Xu$HN15Hp(HH y+HP(HJ H=7H5%%)HH9Xu$H,5H+Hp(HHZ HP(H5[8H==71װH=)7jðH7H5!8H=^8+H7Hu HǀH[8H7H=)%6Hr[8H=7H&6)j78DH5F[8H=7=1)H=7輇Ho7H5h8H= ^8+HM7Hu HǀHٺ7H="6HZ8HZ8H 7H=7H#6)78H5Z8H=70tH=7`H7H5 7H=T]8_*>H7Hu HǀH7H=- 6HZ8H_\8 H7H=f7H!6)%7j7ڮH5Y8H==7/H=)7RH7H5 8H=\8)H7Hu HǀH7H=X6H=7HJ66DH7H57H=8\8C)"H=7Hu HLJH˸7H=6HX8HZ8()-7H@H=I7H7H7H666H5X8H=7.H=7wH7H58H=k[8v(UH7Hu HǀH7H=D6H X8H.Z80)5̷7H@H=7Hʷ7H37H 6v5H5W8H=a7-ˬH=M7^H97H5J7H=Z8'H7Hu HǀH 7H=6HEW8HnY88)=7H@H=7H7Hs7HL64&H5W8H=7- H=7螃H7H58H=Y8&իH_7Hu HǀH+7H=6H}V8HX8) 7H@H=!7H 7H7H63fH58V8H=7_,KH=7ނ7H7H5B7H=+Y86&H7Hu HǀHK7H= 6HU8HW8),7H@H=i7H*7H7H 663H5pU8H=97+H=%7wH7H58H=kX8v%UH7Hu HǀHk7H=D6HT8H.W8)L7H@H=7HJ7H37H 6v2H5T8H=7*˩H=m7^HY7H5z7H=W8$H77Hu HǀH7H=6H%T8HnV8 )%l7H@H=7Hj7Hs7HL61&H5S8H=7* H=7螀H7H5R8H=V8#ըH7Hu HǀH7H=6H]S8HU8()-7H@H=A7H7H7H60fH5S8H=7_)KH=77H7H57H=+V86#H7Hu HǀH˱7H=5HR8HT80)57H@H=7H7H7H560H5PR8H=Y7(H=E7wH17H58H=kU8v"UH7Hu HǀH7H=D5HQ8H.T88)=̰7H@H=7Hʰ7H37H 5v/H5Q8H=7'˦H=7^~Hy7H57H=T8!HW7Hu HǀH 7H=5HQ8HnS8) 7H@H=7H7Hs7HL5.&H5P8H=7' H=7}H7H5 7H=S8 եH7Hu HǀH+7H=5H=P8HR8) 7H@H=a7H 7H7H5-fH5O8H=17_&KH=7|7H 7H57H=+S86 H7Hu HǀHK7H=5HuO8HQ8),7H@H=7H*7H7H56-H50O8H=y7%H=e7|wHQ7H5b7H=kR8vUH/7Hu HǀHk7H=d5HN8H.Q8 )%L7H@H=7HJ7H37H,5v,H5hN8H=7$ˣH=7^{H7H57H=Q8Hw7Hu HǀH7H=5HM8HnP8()-l7H@H=97Hj7Hs7H5+&H5M8H= 7$ H=7zH7H5j7H=P8բH7Hu HǀH7H=$5HM8HO80)57H@H=7H7H7H5*fH5L8H=Q7_#KH==7y7H)7H57H=+P86H7Hu HǀH˪7H=5HUL8HN88)=7H@H=7H7H7HL56*H5L8H=7"H=7ywHq7H5z7H=kO8vUHO7Hu HǀH7H=5HK8H.N8) ̩7H@H=7Hʩ7H37HL5v)H5HK8H=7!ˠH=7^xH7H5:7H=N8H7Hu HǀH 7H=5HJ8HnM8)7H@H=Y7H7Hs7HL5(&H5J8H=)7! H=7wH7H57H=M8՟H߿7Hu HǀH+7H=5HI8HL8) 7H@H=7H 7H7HL5'fH5I8H=q7_ KH=]7v7HI7H5 8H=+M86H'7Hu HǀHK7H=5H5I8HK8 )%,7H@H=7H*7H7HL56'H5H8H=7H=7vwH7H5 8H=kL8vUHo7Hu HǀHk7H=5HmH8H.K8()-L7H@H=17HJ7H37HL5v&H=7H5$HʝH5H9Xu$H5Hp(HH Z*HP(HJ H5G8H=7~H=7ujH7H5 8H=^K8iHHj7Hu HǀH>7H=75HXG8H!J80)57H@H=,7H7H&7H5i%ٜH5G8H=7H=7QtHԼ7H57H=J8H7Hu HǀH^7H=75HF8HaI88)=?7H@H=t7H=7Hf7H5$H5KF8H=D7H=07sH7H5]7H=I8țH7Hu HǀH~7H=75HE8HH8) _7H@H=7H]7H7H5#YH5E8H=7R>H=x7r*Hd7H5%7H=I8)HB7Hu HǀHE8H7H=5HD8)7HRH=7H}7H50#H5D8H=ۺ7H=Ǻ7rqH7H57H=eH8pOH7Hu HǀHš7H=~5H?D8HHD8)7H@H=S7H7H57HF5p"H5C8H=#7řH=7XqH7H57H=G8Hٹ7Hu HǀH7H=5HwC8HC8 )%Ơ7H@H=7HĠ7Hu7H5! H52C8H=k7H=W7pHC7H57H=F8ϘH!7Hu HǀHB8H 7H=w5H B8*)-7HRH=7H7HM5 gH5qB8H=7`LH=7o8H7H5{7H=,F87Hp7Hu HǀH,7H=%5HA8HB80)5 7H@H=27H 7H7H57 H5A8H=7H=7oxHڷ7H57H=lE8wVH7Hu HǀHL7H=ż5H&A8H7A88)=-7H@H=z7H+7HT7H5wH5@8H=J7̖H=67_nH"7H57H=D8H7Hu HǀHl7H %7H^@8HoC8H07H=ɪ5H 2@8H 7H @8H"@8HÜ7)7HP)7H7H7H̜7H7H~7)7)7)Y7H?8H(7) !7HHH7H 7H 7)7Ho?8H7)7H@H N?8H??8H7H=!7H7H۪5UH5?8H=7N:H=7l&Hе7H5Q7H=C8%H7Hu HǀHښ7H=5H>8HA8)7H@H=p7H7H7Hۧ5%H5G>8H=@7zH=,7 lfH7H57H=ZB8eDH7Hu HǀH7H=5H=8HA8 )%ۙ7H@H=7Hٙ7H"7H5eՓH5=8H=7H=t7MkH`7H58H=A8H>7Hu HǀH7H=Ӡ5H<8H]@8()-7H@H=7H7Hb7H5H5<8H=г7H=7jH7H5Y7H=@8 ĒH7Hu HǀHJ<8H 37H= 5H -<82)57HRH=H7H7H5\H5;8H=7UAH= 7i-H7H57H=!@8,  Hղ7Hu HǀHa7H=5Hs;8H|;88)=B7H@H=7H@7Hy7H5,H5.;8H=g7H=S7imH?7H57H=a?8l KH7Hu HǀH7H=5H:8H:8) b7H@H=߱7H`7H7H5lܐH5f:8H=7H=7ThH7H57H=>8 He7Hu HǀH7H=5H98H=8)7XHϭ7H= 7H5)r7H598H=7H=7gHϰ7H5h7H==8 ˏH7Hu HǀH7H=Z5H98HT<8 )%7hH7H=h7H)5)-7\H588H=?7UAH=+7f-H7H57H=!=8,  H7Hu HǀH7H=5HS88H;80)5“7xHO7H=7Hɒ5)=7,H588H=7H=s7fmH_7H57H=a<8l KH=7Hu HǀH7H=5H78H:8) 7PH7H=7Hi5)Ғ7l܍H5F78H=Ϯ7H=7TeH7H57H=;8H7Hu HǀH!7H=:5H68H:8)7`HϪ7H=@7H 5)%7H5~68H=7H=7dH7H57H=:8ˌHͭ7Hu HǀHA7H=ڊ5H58HT98()-"7pH7H=7H5)57\H558H=_7U AH=K7c-H77H587H=!:8, H7Hu HǀHa7H=z5H358H$888)=B7HH7H=Ь7HI5) 27,H548H=7 H=7cmH7H5 7H=a98lKH]7Hu HǀH7H=څ5Hk48H88)b7XHO7H=7H5)R7l܊H5&48H=7 H=۫7TbHǫ7H57H=88H7Hu HǀH7H=5H38HT78 )%7hH7H=`7H5)-r7H5^38H=77 H=#7aH7H5x7H=78ˉH7Hu HǀH7H=z5H28H680)57xHϦ7H=7HI5)=7\H528H=7U AH=k7`-HW7H57H=!78, H57Hu HǀH7H=|5H28H48) Œ7PHW7H=7Hi}5)7,H518H=ǩ7 H=7`mH7H57H=a68lKH}7Hu HǀH7H=:z5HK18H38)7`H7H=87H {5)%ҋ7l܇H518H=7H=7T_H7H57H=58HŨ7Hu HǀH!7H=Zw5H08H 38()-7pHץ7H=7H)x5)57H5>08H=W7H=C7^H/7H5 7H=48ˆH 7Hu HǀH7H=Zs5H=7HLt5HЧ7H57H=z48dH=7Hu HLJB;HM7H=o5H=7Hp5Hd7H57H=48H=B7Hu HLJ΂DžH97H5"18 HH.8H7H=l5H=7Hm5H5.8H=Ҧ7xdH=7\PH7H57H=D38O.H=7Hu HLJ H77H5`08 HH.8Hʣ7H=qi5H=:7Hcj5M H5-8H=7H=75\H7H57H=28lH=Υ7Hu HLJJCH57H6" H5/8HH0-8fHnH?"fH:"H7H=uf5H=f7Hgg5)7j ڃH5,8H==7H=)7R[H7H5~7H=18H=7Hu HLJg`H7H5.8 HHL,8H%7H=Lc5H=7H>d5 H5,8H=7H=o7ZH[7H5 7H=08ǂH=97Hu HLJH7H5-8 HH+8Hc7H=j`5H=7H\a5 VH5P+8H=ɣ7O;H=7Y'H7H57H=08&H=7Hu HLJ~܁H7H57-8 HH*8H7H=]5H=17Hz^5$ H5*8H=7yH=7 YeH7H57H=Y/8dCH=Ţ7Hu HLJ!~H 7H5u,8 HH)8Hߟ7H=Z5H=w7H[5b ҀH5)8H=U7H=A7JXH-7H5v7H=.8H= 7Hu HLJ_}XH 7H5+8 HH$)8HݕH7H 7H=W5H=7HX5H5(8H=7H=y7zWHe7H5v7H=-8H=C7Hu HLJ|H7H=T5H=7HU5_H7H5:7H=S-8^=H=נ7Hu HLJ|H7H=Q5H=7HR5{~H7H5&7H=,8~H=k7Hu HLJ{~H7H=N5H=<7HO5w~H!7H57H=k,8vU~H=7Hu HLJ3{,~HΟ7H=WL5H=П7HIM5~H7H5v7H=+8}H=7Hu HLJz}Hʙ7H=CH5H=d7H5I5}HI7H57H=+8m}H='7Hu HLJKzD}H=6F5H=7)}H={D5H=7}H=B5H=ٞ7|H=A5H=ƞ7h|H=J?5H=7M|H==5H=72|H=;5H=7|H=:5H=z7l|H=^85H=g7Q|H=65H=T76|H=45H=A7|H=-35H=.7|H=r15H=7u{H=/5H=7Z{H=-5H=7?{H=A,5H=7${H=*5H=ϝ7 y{H=(5H=7^{H='5H=7C{H=U%5H=7({H=#5H=7 {H=!5H=p7zH=$ 5H=]7gzH=i5H=J7LzH=5H=771zH=5H=$7z1[A\]UHAWE1AVAUATSHHj(8LLLLLHXHt-1H9XH4H5%H8鍽HtH='8CH7HwtH=$]H7HSH=6$AH̎7H7H7H='8H5$H4H0HH u1H}7Huj߃HHAVHHHA L $RHJ%PH$P1"H 1HyzHeL11HH7HY1HH7H?j2?E1E1E1LL=$LLLLLLALLLLxLpLhL`/NqNdNWHI48u'HH:$H8H5s8H=%8L%[$HLHtJoHx%8LHmLD wBH5671HH H=7HHHoHHxHHHuHFH57H3HHt HH=8HH8Hx HHuHHxHHHuHHHxHHHuHH5,71HHqH=7HHH҂HHxHHHuH4H57H!HHt HH=8HH8Hx HHuHHxHHHuHHHxHHHuHHR8Ht H1HHH57H¿1HH HHxHHHuHH(HH@H5I7H¿1HHHHHxHHHuH@HHH5U7H¿1FHHHHxHHHuH1HH1HnHHHHxHHHuHHHxHHHuHH1HHxHHHuHH7Ht HH57HJHHHHHxHHHuHH5ז7H1IHH߃HHxHHHuH1H~F7fH:"8HHH H^7HCtHHHHHHDHHHxHHHuHHHxHHHuHHxHHuHHE1LHxHHHuHHt7HH5%7H=79HHE1LLH1E11E1HE1L=$HHAHHHxHpHhH`HLHLL^HHxHHHuHH=27;HHfH57HGHHɂHHxHHHuHIHH +4H9HuH8ut)HHHH҂HHHHxHHHuHH=P7:HHHH57HXHHxHHHuHhHHxHHHuHCL% 8A$tA$LOHHMH57H¿1HHHHxHHHuHĿHHH57H¿1tHH4HHxHHHuH_腿HHgH57H¿1HHHHxHHHuH HHH57H¿1HH)HHxHHHuH蕾軾HHPH57H¿1EIHHHxHHHuH4ZHHH57H¿1H`HHHxHHHuHϽ HHH5&7H¿1HhH7HHxHHHuHj 落HHIH57H¿1HpHtHHxHHHuH +HHH5L7H¿1HxHHHxHHHuH蠼 ƼHHH5/7H¿1PHHƆHHxHHHuH; aHHĆH57H¿1HHHӆHHxHHHuHϻHHʆH57H¿1HHHHxHHHuHj萻HH؆H57H¿1HHHHHxHHHuH$HHH5U7H¿1HHHHxHHHuH虺QLMH1HHxph`HPHHHHxHHHuHHHxHHHuHٹHHxHHHuH费HHxHHHuH菹IxHIuLxH`HxH`HHuHSHhHxHhHHuH.HpHxHpHHuH HxHxHxHHuHHHxHHHuH迸HHxHHHuH蚸H1HHxHHHuHlHHxHHHuHG1HHHxHHHuHH{7Ht HH57HS>HHHHHxHHHuH觷H5h7H1R=HHÄHHxHHHuH]1H~7fH:"HHHH7HCtHHLHHHHHHxHHHuH譶HHxHHHuH舶HxHHuHq1HI$xHI$uLO1HHt'HH5f7H=y7Ҷփ1HHHE1E1ALE1H1LLxLpLhL`L=h$HHHHHHHHxHHHuH\H=7P/HHE1E1E1LL=ܿ$LLLLLLA.LLLLxLpLhL`NH57H;HHHʂHHxHHHuHoHH Q4H9HuH8tH HH*Ht HHHHHxHHHuHH=7-HHHvHH57H҂HHxHHHuH肳HHxHHHuH]1HH 8t1HgHH˂H5p7H¿1HH%HHxHHHuHܲHH_H57H¿1HHHHxHHHuHw蝲HHH57H¿1'HH5HHxHHHuH8HHbH5Y7H¿1HHHHHxHHHuH覱̱HHH57H¿1VHH=HHxHHHuHALL1HHHpHHMHHxHHHuHݰHHxHHHuH踰HHxHHHuH蓰HHxHHHuHnHE1LHxHHHuH?Hs7Ht HH57Hy6HHHHHxHHHuHͯH57H1x5HH݄HHxHHHuH胯1H~7fH:"HIHH7ID$tHLHHHHHIHHxHHHuHϮHHxHHHuH誮I$xHI$uL葮HE1LxHHuHpE1LMt#H57H=q7LE1LLH111HE1L=Ǹ$AHHxHpHhH`HHHHHHH;IExHIEuL蒭H=37'HIH11E1A%HL=$HHHxHpHhH`HHHHHHH郝H5,7HT3HHH^I$xHI$uL踬1HH4H9CuH;tHTHIHtHIHxHHuHVH=7J&HHHH5h7LH_I$xHI$uL1HHxHHuHH=71HHH1E1AHL=$HHHxHpHhH`1HHHHHHHӛH57H=n7HݫbHxHHuHH=/71HHHE1E1ALLLLxLpLhL`E1LLLLLLLL=Y$H57H=m7H`HxHHuH6HHHxhHInH= 71HHHH57H=am7H艪xgHxHHuH辩HE11E1LE1-HH,HL,LH,I|$`H5"8E1LH%$H=]$k HHLHH4H57H=ql7蜩xlHL,HE1L6,HE1L ,I|$hHHHAAAI|$hE1HHHL=6$Ȫ11HHHHxHpHhH`HHHHHHHmH=71HHH11E1AHL=$HHHxHpHhH`HHHHHHH̗H57H=j7H֧bHxHHuHH=871HHH1E1AHL=$HHHxHpHhH`1HHHHHHHH57H=i7HbHxHHuH1H=B7% HHH?|HxHHHuH1HHH;a4u"{|u1E1A)HL=$HHHxHpHhH`1HHHHHHH̕HHH1E1A0HL=$HHHxHpHhH`1HHHHHHH4H5m7H=h7H>bHxHHuHoAU11H=bN75y7L g7L^7HG79HHA^A_H1E1E1A3HL=$HHHxHpHhH`LLLLLLL:H57H=g7HDaHxHHuHuAQ11H=HM75x7L f7Ld7H78HHAZA[H1E1E1AEHL=$HHHxHpHhH`LLLLLLL@H57H="f7HJaHxHHuH{ƸHHH11E1AXHL=1$HHHxHpHhH`HHHHHHHsHT7H5=7H}bAW11H=xK75w7H7L $e7L77IHXZM I$tHxHHuH\H5]7H=d7E1LLI$xHI$uL1DHHHE1E1E1LL=Φ$LLLLLLAcLLLLxLpLhL`H57H=c7H`HxHHuHJpHHH1E1E1AdHL=$HHHHHHLLLLxLpLhL`<H57H=c7HFaHxHHuHw蝟HHHE1E1E1AeLL=&$LLLxLpLhL`LLLLLLLhH5a7H=Jb7Hr`HxHHuH裞ɞHHH1E1E1AfHL=S$HHHxHpHhH`LLLLLLL镎H57H=wa7H蟞aHxHHuHНHHH11E1AgHL=$HHHxHpHhH`HHHHHHHÍH57H=`7H͝bHxHHuH$HHH11E1AhHL=$HHHxHpHhH`HHHHHHHH5*7H=_7HbHxHHuH,RHHH1E1AiHL=ڡ$HHHxHpHhH`1HHHHHHHH57H=_7H)bHxHHuHZ耛HHH1E1AjHL=$HHHxHpHhH`1HHHHHHHMH57H=/^7HWbHxHHuH舚讚HHHE1E1AkLLLLxLpLhL`E1LLLLLLLL=ן$yH5j7H=[]7H胚`HxHHuH贙 ڙHHHE1E1E1LL=d$LLLLLLAlLLLLxLpLhL`饉H57H=\7H诙`HxHHuH HHH1E1E1AmHL=$HHHHHHLLLLxLpLhL`҈H57H=[7HܘaHxHHuH 3HHHE1E1E1AnLL=$LLLxLpLhL`LLLLLLLH5'7H=Z7H`HxHHuH9 _HHH1E1E1AoHL=$HHHxHpHhH`LLLLLLL+H547H= Z7H5aHxHHuHf+茖HHH11E1ApHL=$HHHxHpHhH`HHHHHHHYH5B7H=;Y7HcbHxHHuH蔕,躕HHH11E1AqHL=E$HHHxHpHhH`HHHHHHH釅H5x7H=iX7H葕bHxHHuH”HHH1E1ArHL=p$HHHxHpHhH`1HHHHHHH鵄H57H=W7H返bHxHHuHHHH1E1AsHL=$HHHxHpHhH`1HHHHHHHH5İ7H=V7HbHxHHuHDHHHE1E1AtLLLLxLpLhL`E1LLLLLLLL=m$H5د7H=U7H`HxHHuHJpHHHE1E1E1LL=$LLLLLLAuLLLLxLpLhL`;H5 7H=U7HE`HxHHuHv蜑HHH1E1E1AvHL=&$HHHHHHLLLLxLpLhL`hH5A7H=JT7HraHxHHuH裐ɐHHHE1E1E1AwLL=R$LLLxLpLhL`LLLLLLL销H5]7H=vS7H螐`HxHHuHϏHHH1E1E1AxHL=$HHHxHpHhH`LLLLLLLH57H=R7HˏaHxHHuH!"HHH11E1AyHL=$HHHxHpHhH`HHHHHHH~H57H=Q7HbHxHHuH*%PHHH11E1AzHL=ۓ$HHHxHpHhH`HHHHHHH~H5v7H=P7H'bHxHHuHX~HHH1E1A{HL=$HHHxHpHhH`1HHHHHHHK}H57H=-P7HUbHxHHuH膌 謌HHH1E1A|HL=4$HHHxHpHhH`1HHHHHHHy|H5*7H=[O7H背bHxHHuH贋#ڋHHHE1E1A}LLLLxLpLhL`E1LLLLLLLL=${H57H=N7H诋`HxHHuH"HHHE1E1E1LL=$LLLLLLA~LLLLxLpLhL`zH5J7H=M7Hۊ`HxHHuH 2HHH1E1E1AHL=$HHHHHHLLLLxLpLhL`yH57H=L7HaHxHHuH9(_HHHE1E1E1ALL=$LLLxLpLhL`LLLLLLL*yH57H= L7H4`HxHHuHe'苈HHH1E1E1AHL=$HHHxHpHhH`LLLLLLLWxH57H=9K7HaaHxHHuH蒇踇HHH11E1AHL=C$HHHxHpHhH`HHHHHHHwH57H=gJ7H菇bHxHHuH$HHH11E1AHL=q$HHHxHpHhH`HHHHHHHvH57H=I7H轆bHxHHuH)HHH1E1AHL=$HHHxHpHhH`1HHHHHHHuH5j7H=H7HbHxHHuH*BHHH1E1AHL=ʊ$HHHxHpHhH`1HHHHHHHuH57H=G7HbHxHHuHJpHHHE1E1E1LLLLxLpLhL`ALLLLLLLL=$;tH5̡7H=G7HE`HxHHuHv 蜃HHH1E1E1AHL=&$HHHxHpHhH`LLLLLLLhsH57H=JF7HraHxHHuH裂ɂHHHE1E1E1ALL=R$LLLxLpLhL`LLLLLLLrH5U7H=vE7H螂`HxHHuHρHHHE1E1E1ALL=~$LLLxLpLhL`LLLLLLLqH5i7H=D7Hʁ`HxHHuH!HHH11E1AHL=$HHHxHpHhH`HHHHHHHpH57H=C7HbHxHHuH)OHHH11E1AHL=څ$HHHxHpHhH`HHHHHHHpH57H=B7H&bHxHHuHW&}HHH1E1AHL=$HHHxHpHhH`1HHHHHHHJoH57H=,B7HTbHxHHuH~1~HHH1E1AHL=6$HHHxHpHhH`1HHHHHHH{nH5t7H=]A7H~bHxHHuH}}HHHE11E1ALLLLxLpLhL`L=7$HHHHHHHmH57H=@7H}aHxHHuH|Hd4H57E1H=K@7LHl}SH5E7H=&@7HN}GTH57H=@7H0}TS11H= &75Q7L ?7Lh7Hi7HHA\A]HE1E1E1ALL=$LLLxLpLhL`LLLLLLLClH5Ĺ7H=%?7HM|`HxHHuH~{W11H=$75P7L >7Ln7H7HHAXAYH11E1AHL= $HHHxHpHhH`HHHHHHHKkH5T7H=->7HU{bHxHHuHzP11H=#75O7H7L =7Lo7HHXZH1E1AHL=$HHHxHpHhH`1HHHHHHHUjH57H=7=7H_zbHxHHuHyAU11H="75N7L <7L7H7HHA^A_H1E1E1AHL=$HHHxHpHhH`LLLLLLL[iH5d7H==<7HeyaHxHHuHxAQ11H=!75 N7L ;7L7H^7 HHAZA[H1E1E1AHL=O$HHHxHpHhH`LLLLLLLahH57H=C;7HkxaHxHHuHw1Hˡ4H= ;7HH5.7)x&P,|HHHxhHI;H=71HHHt~H5w7H=:7HwxdHxHHuHvH1HXH1HCH1H.1HH1HHI|$`H5O71HH$%H=$HHLHLH=}71֕HHH5_7H=97HvHHxHHHuHuHE14HL!H1H I|$hHHHwE1A%LE1LA&A'I|$h1E1E1HHL=E$HwHHHxHpHhH`LLLLLLLKeAQ11H=758J7L !87L7H7 HHAZA[H1E1E1A*HL=t$HHHxHpHhH`LLLLLLLdH5_7H=h77HtaHxHHuHs HHH11E1A9HL=$HHHxHpHhH`HHHHHHHcH4H5[7HsbP11H=75H7HR7L k67L7_IHXZM!I$tHxHHuHrH57H=671LH4sI$xHI$uLcrH571讦HIHE11E1ALLLLxLpLhL`L=K~$HHHHHHHLbH==7HkHHH]I$xHI$uLqH5 7Hr}HIH"H57H=47HqI$xHI$uL(qHE1LxHHuHqH=71詐HHHE1E1E1LL=#}$LLLLLLALLLLxLpLhL``H57H=37Hp`HxHHuH/pH= 71яHHH1E1E1AHL=K|$HHHHHHLLLLxLpLhL``H5~7H=27H'paHxHHuHXoH=971HHHE1E1E1ALL=s{$LLLxLpLhL`LLLLLLLE_H57H='27HOo`HxHHuHnH571ˢHIH1E1E1AHL=z$HHHxHpHhH`LLLLLLLi^H=7HgHHH]I$xHI$uLmH57HyHIH"H5}7H=07HnI$xHI$uLEmH1HxHHuH%mH571pHIH11E1AHL==y$HHHxHpHhH`HHHHHHH]H=7HfHHH^I$xHI$uLDlH5͐7H5xHIH#H57H=/7HlI$xHI$uLk1HHxHHuHkH4H01zHIH1E1A!HL=w$HHHxHpHhH`1HHHHHHH[HHHHeH1֚HIHHHkZ7E1HHL7HHHI9uI$HLH5$lyE1E1E1A!LL=v$LLxLpLhL`LLLLLLLZHI$uLiHH5yY7HLHHHCH5PY7H=A-7HijaCHHxHHHuHi1HHHxHHHuH^iIExHIEuLEi1HHxHHuH%iH=X7HHHE1E1A%LLLLxLpLhL`E1LLLLLLLL=t$YH5=7H¿1NwHIHUHxHHuHDhL>HHH#H1HH HW7E1HHL7HHHHBI9uI$HLH5ˍ$jy1E1A%HL=s$HHxHpHhH`1HHHHHHHWHI$uLgHH5V7HHHHHAH5V7H=]*7HgAHHxHHHuHfHE1LHxHHHuHyfHE1LHxHHHuHJfHxHHuH3fH=U7'HHHE1E1E1A)LL=Pr$LLLxLpLhL`LLLLLLL"VH5C7H¿1\tHHXHxHHuHUeHKHHH@H1HHH"AHT7L7E1HHHHHHbAHH9uHHHHH5$gyE11E1A)HL=p$HHxHpHhH`LLLLLLLTHHHuHdHHH5S7HHHH5S7H=B'7Hjd@HHxHHHuHcHHxHHHuHhcHE1LHxHHHuH9cHE1LHxHHHuH cH=R7HHH11E1A-HL=)o$HHHxHpHhH`HHHHHHHRH57H¿15qHIHWHxHHuH+bL%HHH%H1ߑHIHHQ7E1HHL7HHHI9uI$HLH5$dy11E1A-HL=m$HHxHpHhH`HHHHHHHQHI$uL aAW11H= 7567HP7L i$7L7]HHZYHC>HH 4H57H9HuHNHHvnHH{q>HHxHHHuHT`HH5O7HL!HHH>H5O7H=#7H`>HHxHHHuH_HE1LHxHHHuH_IExHIEuL_HE1LxHHuHx_H=N7lHHH1E1E1A3HL=k$HHHHHHLLLLxLpLhL`hOH5y7H¿1mHIHVHxHHuH^LHHH$H1LHH H,N7E1HHL\7HHHH=I9uI$HLH5$q`yE1E1E1A3LL=9j$LLxLpLhL`LLLLLLLNHI$uLq]HH53M7HH:HHH=H5M7H= 7H]z=HHxHHHuH\HE1LHxHHHuH\HE1LHxHHHuH\HxHHuH\H=L7yHHH1E1E1A7HL=h$HHHxHpHhH`LLLLLLLuLH5~7H¿1jHHYHxHHuH[HHHHY<H1THHH<HK7Lf7E1HHHHHHuy11E1A7HL=pg$HHxHpHhH`HHHHHHHIKHH9uHHx9 HH5$H\IHHHuHbZHH5J7HH+HHH5I7H=7HZ;HHxHHHuHYHxHHuHYH1HHxHHHuHY1HHHxHHHuHYH=I7sHHH1E1A;HL=e$HHHxHpHhH`1HHHHHHHpIHƿ1gHIH^HxHHuHXLHHH,H1[HIHHG7E1HHLh7H+HHI9uI$HLH52~$ZyE1E1A;LLLxLpLhL`E1LLLLLLLL=c$%HHI$uLWHH5F7HLQHHH9H5F7H=7HW9HHxHHHuHW1HHHxHHHuHVIExHIEuLV1HHxHHuHVH=+F7HHHE1E1A?LLLLxLpLhL`E1LLLLLLLL=gb$FH57H¿1dHIHUHxHHuHULHHH#H1}HH H%E7E1HHL7HPHHH8I9uI$HLH5P{$WyE11E1A?HL=ka$HHxHpHhH`LLLLLLLDEHI$uLTHH5-D7HHlHHH8H5D7H=7H Uy8HHxHHHuH,THE1LHxHHHuHSHE1LHxHHHuHSHxHHuHSH=8C7HHHE1E1E1ACLL=_$LLLxLpLhL`LLLLLLLCHƿ1aHH_HxHHuHRHHHH^7H1茂HHH7H]B7L7E1HHHTHHH7HH9uHHHHH5?x$TyE1E1E1LL=Z^$LLLLLLACLLLxLpLhL`2BHHHuHQHHH5>A7HPHHH5A7H=7HQJ7HHxHHHuHQHHxHHHuHPHE1LHxHHHuHPHE1LHxHHHuHPH=@7HHH11E1AGHL=\$HHHxHpHhH`HHHHHHH@Hƿ1^HIH^HxHHuHOLHHH,H1pHIHH>7E1HHL}7H@HHI9uI$HLH5Gu$QyE1E1E1AGLL=a[$LLxLpLhL`LLLLLLL:?HI$uLN1uHHH5P11H=65$7H=7L 7Ld7HZYH?5HHnZH 7HHtHH ;x4H57H9HuHNHH[HHhA5HHxHHHuHMHH5=7HLnHHe5HHTz5HHxHHHuHH5x71rHHHE1E1E1ALL=Z$LLLxLpLhL`LLLLLLLR.H={f7H7HH_HxHHuH=H5w7HyIHHH(H5w7H=7H=(HHxHHHuH=HE1LHxHHHuHa7E1H=6L7%HHxHHHuH 7H=`7HH1E1E1A;HL=AS$HHHxHpHhH`LLLLLLL&H5w7H˼HHHW%HHxHHHuH6HH5 `7H=66HHxHHHuH5AQ11H=K65 7L >6Lu7Hy7+HHAZA[H1E1E1A>HL=Q$HHHxHpHhH`LLLLLLL%H5x7H=6H5aHxHHuH4R11H=265 7L E6Lt7H_z72HHY^H1E1APHL=P$HHHxHpHhH`1HHHHHHH$H5y7H=6H4bHxHHuH3H=!71SHHH1E1AHL=:$HHHxHpHhH`1HHHHHHH#H57H=6H3bHxHHuH3H5771]gHHHE11E1ALLLLxLpLhL`L= 9$HHHHHHH"H=L{7H|,HH`HxHHuH52H567H">HHH!H567H=}6H2!HHxHHHuH1HE1LHxHHHuH1S1ɾH=657L 6Lq7H;7HA\A]H!H5v7H=6H'f6"HHxHHHuH1AQ1ɾH=#657L v6Lp7H:7cHAZA[HH"H5H[7H=i6He"HHxHHHuH0VH=61ɾ57Lp7L 6Hb:7H_AXH"H5Cd7H=6He##HHxHHHuH0P1ɾH=65 7H[:7L d6Lo7XHZYH7#H5m7H=`6Hd#HHxHHHuH/AU1ɾH=3657L 6Loo7H97HA^A_H#H5He7H=6Hd $HHxHHHuH.AS1ɾH=657L _6Ln7H97LH[A\H$H5c7H=S6Hc$HHxHHHuHv.AP1ɾH=657L 6Lbn7H87HAYAZH$H5kc7H=6Hc$HHxHHHuH-QH=B6157L S6Lm7H87@H^_H %H5b7H=H6Hbm%HHxHHHuHk-AV1ɾH=657H77L 6LPm7HA_ZH~%H5qb7H=6Ha%HHxHHHuH,S1ɾH=657L I6Ll7H;776HA\A]H%H5x7H=<6HsaS&HHxHHHuH_,AQ1ɾH=O657L 6LKl7H<67HAZA[He&H5`7H=6H`&HHxHHHuH+VH=61ɾ57Lk7L 56H57)H_AXH&H5`7H=06Hg`@'HHxHHHuHS+P1ɾH=657HW57L 6L9k7HZYHT'H5+`7H=6H_'HHxHHHuH*AU1ɾH=_65!7L 26Lj7H47HA^A_H'H5_7H=%6H\_((HHxHHHuHH*AS1ɾH=657L 6L4j7H}47蘿H[A\H9(H5_7H=6H^(HHxHHHuH)AP1ɾH=65$7L %6Li7H37HAYAZH(H5^7H=6HO^)HHxHHHuH;)QH=n6156L 6L(i7Hi37茾H^_H')H5^7H=6H])HHxHHHuH(AV1ɾH=65)6H27L 6Lh7HA_ZH)H5]7H=6HE])HHxHHHuH1(S1ɾH="656L 6Lh7H17肽HA\A]H*H5Z7H=6H\p*HHxHHHuH'AQ1ɾH={65-6L 6Lg7Hp17HAZA[H*H5`Y7H=6H8\*HHxHHHuH$'VH=61ɾ56Lg7L 6H07uH_AXH*H5;i7H=|6H[]+HHxHHHuH&P1ɾH=06526Hc07L 6Lf7HZYHq+H5l7H=6H/[+HHxHHHuH&H6tW1HHH?H)^ HHxHHuH%1HHE1E1ALLLXLLxLpLhL`E1LLLLLLL=+$H=c|7HHU|7Hx HHu%H:|7H5b7H=l6%*S1ɾH=P65z6L C6Ld7H*70HA\A]H(+H5=g7H=.6HmY+HHxHHHuHY$AQ1ɾH=656L 6LEd7HF*7詹HAZA[H+H5.I7H=6HX,HHxHHHuH#VH= 61ɾ5}6Lc7L /6H)7#H_AXH,H59n7H="6HaXw,HHxHHHuHM#P1ɾH=^656HQ)7L 6L3c7螸HZYH,H5\7H=6HW,HHxHHHuH"AU1ɾH=656L ,6Lb7H(7HA^A_H,H5^7H=6HVW_-HHxHHHuHB"AS1ɾH=656L 6L.b7HG(7蒷H[A\Hp-H5`7H=6HV-HHxHHHuH!AP1ɾH=l656L 6La7H'7 HAYAZH11E1AHL=,$HHHxHpHhH`HHHHHHHHH5Jc7H=c6!D-HHxHHHuH P1ɾH=B656H&7L 6L`7HZYHE1E1E1LLLLxLpLhL`ALLLLLLLL=*$~HH5e7H=Y6 ,HHxHHHuHAS1ɾH=656L 6L_7HD$7H[A\HH5a7H=6H,HHxHHHuH!AP1ɾH=q656L 6L _7H#7qHAYAZHmH5d7H=O6Hw,HHxHHHuHQH=6156L 6L^7Hp)7H^_HH5`7H=6H,HHxHHHuHAV1ɾH=&656H)7L r6L]7fHA_ZHcH5c7H=E6Hm,HHxHHHuHS11H=656L 6L]7H!I7HA\A]H,H5I7H=6H,HHxHHHuH AQ11H=656L s6L\7H[7`HAZA[H-H5[7H=>6Hfs-HHxHHHuHVH=A61156L\7L 6HT7ݱH_AXH-H5kT7H=6H-HHxHHHuHP11H=656H.d7L g6L[7[HZYH.H5d7H=;6Hcf.HHxHHHuHAU11H=656L 6Lu[7HQ7ٰHA^A_Hy.H5Q7H=6H.HHxHHHuHAS11H=U65'6L h6LZ7HzT7UH[A\H.H5[T7H=46H\S/HHxHHHuHAP11H=656L 6LnZ7H_7үHAYAZHh/H5_7H=6H/HHxHHHuHH=E7HHH/HW1HǺH)H?R HHHxHHHuH1HH11E1AHL=b$HHXHxHpHhH`HHHHHHH~ L%oD4L9u%H=p7HHp7HH5R6Hf!u11E1AHL=$HHxHpHhH`HHHHHHHHHuH==P7HHH.1H1HHHo7HHP HHHxHHHuH1HH1E1AHL=u$HHXHxHpHhH`1HHHHHHHL9u%H=$n7HHn7HH56HuE1E1E1LLLxLpLhL`ALLLLLLLL=X$HHu7AS11H=J65l6L 6L&V7H/N7芫H[A\H-H6HHtHH5M7H=E6p_-HHxHHHuHAP11H=656L 6LU7H`7HAYAZHr-H5_7H=6H-HHxHHHuHQ1H=615U6L v6LT7HK7cH^_H-H5jK7H=C6HkP.HHxHHHuHAV11H=A656H\7L 6LvT7HA_ZHe.H5o\7H=6H.HHxHHHuH S1ɾH=65^6L o6LS7H!7\HA\A]HE1E1E1ALL=c$LLLxLpLhL`LLLLLLLHH5U7H=67.HHxHHHuHW1ɾH=p65Z6L c6LR7H7PHAXAYH11E1AHL=Y$HHHxHpHhH`HHHHHHHHH5W7H=6-HHxHHHuHAV1ɾH=E65W6H7L Q6LQ7EHA_ZHH5 T7H=$6HL-HHxHHHuHoS1ɾH=656L 6L\Q7H7HA\A]HpH5V7H=6H-HHxHHHuHAQ11H=65^6L O6LP7Hq<7<HAZA[H-H5Q<7H=6HB.HHxHHHuHeH=3710HH;.H537H=6H.HHxHHHuHH5e71ODHH1E1E1AHL=$HHHxHpHhH`LLLLLLLHH=87m HHH&.HHxHHHuHH5r7HHH H5O7H=`6H:.HHxHHHuHHHxHHHuHH=L71(.HHH11E1AHL=\$HHHxHpHhH`HHHHHHHuH5.L7H=W6HbHxHHuH H=O71R-HHH11E1AHL=$HHHxHpHhH`HHHHHHHH5xN7H=6H bHxHHuH H= U71|,HHH1E1AHL=$HHHxHpHhH`1HHHHHHHH5jT7H=6H bHxHHuH H==Y71+HHH1E1AHL=$HHHxHpHhH`1HHHHHHHH5X7H=6H bHxHHuH. y!HHH*H=3b7H,b7Hx HHu AU11H=65m6L V6LJ7H<7CHHA^A_H1E1E1A'HL=$HHHxHpHhH`LLLLLLLH5<7H=6H aHxHHuH 5HHHE1E1E1AYLL=$LLLxLpLhL`LLLLLLL} HHdH,7HH )HHxHHHuH$ HH)H;7HH &*HHxHHHuHHHb*H;7HH) *HHxHHHuHL rHH+H#I7HHm+HHxHHHuHHH+H6HHw,HHxHHHuHHHH,H7HH,HHxHHHuHAgHH,H7HHP-HHxHHHuHHH-H7HHl-HHxHHHuH HH/.H47HH.HHxHHHuH6 \HH.H-57HH6/HHxHHHuH HHp/H,07HHa/HHxHHHuHH=\7H\7Hx HHubW11H=6656L 6LRE7H;7趚HHAXAYH11E1AHL= $HHHxHpHhH`HHHHHHH/H5x:7H=6H9bHxHHuHjP11H=656H967L 6LSD7辙HHXZHE1E1ALLLLxLpLhL`E1LLLLLLLL= $7H6HtH5r57H=6H+JHxHHuH\S11H=656L 6LLC7H-57谘HHA\A]HE1E1E1ALL= $LLLxLpLhL`LLLLLLL'H6HtH5r47H=6HJHxHHuHLW11H=656L 6LP1ɾH=656H6L 6L$A7菖HHXZH1E1AHL=$HHHxHpHhH`1HHHHHHH H5/7H=6HK5bHxHHuHEAU1ɾH=u656L 6L1@7H6蕕HHA^A_H1E1E1AfHL=$HHHxHpHhH`LLLLLLL H5A7H=6HN4aHxHHuHHHHHE1E1E1ArLL=%$LLLxLpLhL`LLLLLLL>Hg(4H5&7HH`W1ɾH=65C6L 6L}>7H6HAXAYHHtHxHHuH'1HH=6HH5,72(HHxHHHuHAW1ɾH=ǝ656H6L 36L=7'HZYH(H5G7H=/6Hf2)HHxHHHuHRAT1ɾH="656L 6L>=7H6袒HA]A^H-)H5+7H=6H1)HHxHHHuHAR1ɾH={656L .6L<7H(6HA[[HH5/7H="6HY1)HHxHHHuHEHR7tH5/7H=6HIHt~LE11HHLLH4 HI$xHI$uLHxHHuHE1HL11E1AHL=$HHHxHpHhH`HHHHHHHHH5x.7H=6/(HHxHHHuHAW1ɾH=_656H"6L +6L:7HZYH(H5n7H='6H^/(HHxHHHuHJS1ɾH=65%6L 6L7:7H6蛏HA\A^H%H5x-7H=6H.(HHxHHHuHHEP7Ht HH5-7H=;6荅HHH(HE11LHLH+2 HHHxHHHuHHE1LHxHHHuHHE1E1E1ALL=#LLLxLpLhL`LLLLLLLHH5+7H=6--9(HHxHHHuHQH=l6156L }6L87H6jH^_HN(H51:7H=J6Hr(HHxHHHuHAV1ɾH=Ŗ656H6L 6Lz77HA_ZH(H5=7H=ĺ6H$)HHxHHHuHS1ɾH= 656L s6L67H6`HA\A]H5)H597H=6H+)HHxHHHuHAQ1ɾH=y656L 6Lu67H~6ًHAZA[H)H587H=6H+ *HHxHHHuHVH=ڔ61ɾ56L57L _6H6SH_AXH *H587H=j6H**HHxHHHuH}P1ɾH=.656H6L ڸ6Lc57ΊHZYH*H577H=6H **HHxHHHuHAU1ɾH=65 6L \6L47HV6IHA^A_H +H577H=o6H)l+HHxHHHuHrAS1ɾH=656L շ6L^47Hw6‰H[A\H}+H567H=6H)+HHxHHHuHAP1ɾH=<656L O6L37H6<HAYAZH+H557H=r6Hy(V,HHxHHHuHeQH=6156L ɶ6LR37Hk 7趈H^_Hk,H5$7H=6H',HHxHHHuHAV1ɾH=656H7L =6L271HA_ZH,H5!7H=p6Ho'A-HHxHHHuH[S1ɾH=L656L 6LH27HQ7謇HA\A]HR-H5#7H=6H&-HHxHHHuHAQ1ɾH=656L 86L17H7%HAZA[H-H537H=c6Hb&*.HHxHHHuHNVH=61ɾ56LB17L 6H7蟆H_AXH=.H5E 7H=6H%.HHxHHHuHP1ɾH=Z656He7L &6L07HZYH.H527H=:6HY%/HHxHHHuHEAU1ɾH=656L 6L107H 7蕅HA^A_H'/H5R27H=6H$/HHxHHHuHAS1ɾH=65 6L !6L/7H#6H[A\H/H517H=6HL$/HHxHHHuH8AP1ɾH=h656L 6L$/7H6舄HAYAZH0H5E17H=6H#s0HHxHHHuHQH=ċ615$6L 6L.7H6H^_H0H507H=6HA#0HHxHHHuH-AV1ɾH=656Hh6L 6L.7}HA_ZH0H5;07H= 6H"^1HHxHHHuHS1ɾH=x65*6L 6L-7H 6HA\A]Ho1H5/7H=6H5"1HHxHHHuH!AQ1ɾH=щ656L 6L -7H6qHAZA[H1H5./7H=6H!G2HHxHHHuHVH=261ɾ5-6L,7L 6H6H_AXHZ2H5I7H=6H)!2HHxHHHuHP1ɾH=656H6L r6L+7fHZYH2H57H=6H 43HHxHHHuHAU1ɾH=6536L 6L}+7H6HA^A_HD3H587H=6H 3HHxHHHuH AS1ɾH=:656L m6L*7H6ZH[A\H3H5 7H= 6H4HHxHHHuHAP1ɾH=6566L 6Lp*7Hi6HAYAZH11E1AkHL=7#HHHxHpHhH`HHHHHHHPHH5 7H=63HHxHHHuHyH5r 7H=6euHHH:!HH3HHxHHHuHHH5 7H=T63HHxHHHuHP1ɾH=Ä656H6L /6L(7#~HZYH3H5*7H=ӳ6HbO4HHxHHHuHNAU1ɾH=656L 6L:(7H+6}HA^A_H_4H5 7H=L6H4HHxHHHuHAS1ɾH=w656L *6L'7H6}H[A\H4H5 7H=Ʋ6HU65HHxHHHuHAAP1ɾH=т656L 6L-'7H6|HAYAZHH5H5 7H=g6H5HHxHHHuHQH=-6156L 6L&7H6 |H^_H5H5(7H=6HJ#6HHxHHHuH6AV1ɾH=656H6L 6L&7{HA_ZH46H57H=]6H6HHxHHHuHS1ɾH=656L 6L%7H7{HA\A]H6H5^7H=ϰ6H> 7HHxHHHuH*AQ1ɾH=:656L 6L%7HG7zzHAZA[H7H57'7H=H6H7HHxHHHuHVH=61ɾ56L$7L 6H7yH_AXH7H5b7H=ï6H27HHxHHHuHP1ɾH=~65!6Hb6L {6L$7oyHZYH 8H57H='6Hl8HHxHHHuHAU1ɾH=J~656L 6L#7H6xHA^A_H|8H5%7H=6H'8HHxHHHuHAS1ɾH=}65%6L v6L"7HP6cxH[A\H8H57H=6HS9HHxHHHuHAP1ɾH=|656L 6Ly"7HJ6wHAYAZHe9H5:7H=6H9HHxHHHuHQH=Y|615)6L j6L!7H6WwH^_H9H5$7H=6H@:HHxHHHuHAV1ɾH={656HU6L ޤ6Lg!7vHA_ZHQ:H5@7H=6H:HHxHHHuHS1ɾH= {65/6L `6L 7Hj6MvHA\A]H:H57H=6H&;HHxHHHuHvAQ1ɾH=fz656L ٣6Lb 7H6uHAZA[H8;H5"7H=6H;HHxHHHuHVH=y61ɾ526L7L L6He6@uH_AXH;H57H=6H~<HHxHHHuHjAW1ɾH=y656H56L Ƣ6LO7tHZYH&<H517H=6H<HHxHHHuHAT1ɾH=ux6576L H6L7H65tHA]A^H1E1E1AqHL=#HHHHHHLLLLxLpLhL`HH57H=6;HHxHHHuHH57H=6iHHHHH<HHxHHHuHyHH5k7H=<6F@<HHxHHHuH21{HH<H57H=6H<HHxHHHuHAP11H=Kv6556L >6L7H87+rHAYAZH<H57H= 6H1[=HHxHHHuHTQ1H=u6156L 6LD7H%(7qH^_Hr=H5(7H=6H=HHxHHHuHH=46UHH11E1AHL=#HHHxHpHhH`HHHHHHHHH561HHH[=HHxHHHuH,HHHH5V6H1HHHf=HHxHHHuHs1HHHxHHHuHEHH@ Ht HHH1HXH;4H8HHDHH9HPHKE1AH4H5$L=#H811HHxHpHhH`1HHHHHHHHHxHHHuH#HHxHHHuH1HHt HHH=5H=L6H-5H66H5y{E1E1ALLLxLpLhL`E1LLLLLLLL=B#H537H=6W;H=6 ^VH}6H56H=W47b4H[6Hu HǀHHxHHHuHS1ɾH=p656L 6L7H6lHA\A]H;H57H=Т6H' |;HHxHHHuHAQ1ɾH=#p656L v6L7H6clHAZA[H;H5 7H=I6H ;HHxHHHuHVH=o61ɾ56L7L 6H"6kH_AXH<H5# 7H=ġ6H f<HHxHHHuHP1ɾH=n656H6L d6L7XkHZYHy<H5g"7H=@6H <HHxHHHuHAU1ɾH=3n656L 6Lo7H 6jHA^A_H<H50 7H=6H O=HHxHHHuHAS1ɾH=m65~6L _6L7H6LjH[A\Hb=H5!7H=36H =HHxHHHuHvAP1ɾH=l656L ٗ6Lb7H6iHAYAZH=H5 7H=6H :>HHxHHHuHQH=Bl615z6L S6L7Hu6@iH^_HM>H5_7H=(6H>HHxHHHuHkAV1ɾH=k656H6L ǖ6LP7hHA_ZH>H57H=6H"?HHxHHHuHS11H=j656L L6L7H79hHA\A]H8?H֥6HHtHH57H=6{?HHxHHHuHAAQ1ɾH=1j656L 6L-7H6gHAZA[H?H&6HHtHH5J7H=[6?HHxHHHuHVH=qi61ɾ5D6L7L 6H6fH_AXH?H57H=ٜ6H(D@HHxHHHuHP1ɾH=h65Ǫ6H6L q6L7efHZYHW@H547H=U6H@HHxHHHuHAU1ɾH= h65J6L 6L|7H6eHA^A_H@H57H=Λ6H-AHHxHHHuH AS1ɾH=yg65˩6L l6L7H6YeH[A\H@AH5G7H=H6HAHHxHHHuHAP1ɾH=f65M6L 6Lo7H(6dHAYAZHAH57H=6HBHHxHHHuHQH=/f615Ϩ6L `6L7H6MdH^_H+BH547H==6HBHHxHHHuHxAV1ɾH=e65R6H6L ԑ6L]7cHA_ZHBH5>6H=6HCHHxHHHuHS1ɾH=d65է6L V6L 7H(6CcHA\A]HCH5x6H=16HwCHHxHHHuHlAQ1ɾH=WHA^A_H FH56H=46H{FHHxHHHuHgAS1ɾH=wV656L ʄ6LS7H6VH[A\HFH5u6H=6HFHHxHHHuHAP1ɾH=U65C6L D6L7H61VHAYAZHGH5F7H='6HniGHHxHHHuHZQH=-U615Ś6L 6LG7HH6UH^_H~GH5r7H=6HGHHxHHHuHֿAV1ɾH=T65H6H6L 26L6&UHA_ZHGH5D6H=6HdWHHHxHHHuHPS1ɾH=S65˙6L 6L=6H^6THA\A]HhHH5n 7H=6HHHHxHHHuHʾAQ1ɾH=:S65L6L -6L6H6THAZA[HHHO6HHtHH57H=66IHHxHHHuH"VH=zR61ɾ56L6L 6H6sSH_AXH/IH57H=j6HIHHxHHHuH蝽AW1ɾH=Q65/6H6L 6L6RHZYHIH6HHtHH57H=6 IHHxHHHuHAT1ɾH=Q656L Z6L6H6GRHA]A^HIH5|6H==6H\JHHxHHHuHpAR1ɾH=`P656L 6L\6HE6QHA[[HH56H=6HOJHHxHHHuHHk7tH5D6H=e6HGIHt~LE11HHLLHj HI$xHI$uLjHxHHuHSE1HL11E1A%HL=2#HHHxHpHhH`HHHHHHHKHH56H=>6RIHHxHHHuHtAW1ɾH=DN656H'6L }6LY6OHZYHdIH56H=6HIHHxHHHuHS1ɾH=M656L S}6L6H6@OHA\A^HH56H=66H}IHHxHHHuHiH7Ht HH56H=Є62EHHIHE11LHLH HHHxHHHuH˸HHxHHHuH覸HE1E1E1AELL=#LLLxLpLhL`LLLLLLL馨HH56H=6IHHxHHHuHϷHHXIHK6H56HTIVH=4K6115Z6L6L z6HE7LH_AXHIHHtHHxHHHuHHH57H=z6買 JHHxHHHuHն HHIJH= 7H 7Hx HHu螶P11H=J65d6H6L y6L6KHZYHkJH6HHtHH5u6H=y6ٶJHHxHHHuH1%HHJ HHTKHHK׵HIH L躵HIH^L蝵HIHL耵HHMjHHiMPHHM 6HxH NHpHRNHhHNH`HNδIHN踴HH(O 螴HHMO 脴HHlO jHHO1HHOHHOHHxHHHuH׳HHxOHHxHHHuH藳HHT_OHHxHHHuHWHLy51HXL=F#AHHH韣I$xHI$uLH1LHNIExHIEuL轲H1LHuYIxHIuL膲HE1HL=!HxHHuHNHH yNHHxHHHuHHHgNHHxHHHuHαHxH\NHxHxHxHHuH莱HpHKXNHpHxHpHHuHNHhH [NHhHxHhHHuHH`HfNH`HxH`HHuHΰHL|NIxHIuL蠰HH]NHHxHHHuH`HHNHHxHHHuH HHNHHxHHHuHHHOHHxHHHuH蠯H=7HH7Hx HHuwAS11H=B65D6L r6Lf6H6DH[A\HNH5x6H=r6HѯYOHHxHHHuHAP11H='B65ɉ6L Zr6L6H,6GDHAYAZHlOH5 6H=%r6HMOHHxHHHuHpQ1H=A615N6L q6L`6H6CH^_HOH56H=q6ḪJPHHxHHHuHAV11H=@65Ԉ6Hm6L Nq6L6BCHA_ZH_PH5@6H=!q6HIPHHxHHHuHlS11H=@@65Z6L p6L\6H6BHA\A]HPH56H=p6Hƭ:QHHxHHHuHAQ11H=?65އ6L Op6L6H)66115c6L\6L o6H6AH_AXHQH56H=o6H(RHHxHHHuHP11H=W>656HB6L Co6L67AHZYH@RH56H=o6H?RHHxHHHuHbAU11H==65o6L n6LQ6H6@HA^A_HRH56H=n6H軫SHHxHHHuHުAS11H==656L Dn6L6H>61@H[A\H/SH56H=n6H8SHHxHHHuH[HHSH=G7H@7Hx HHu$oHHTH=7H7Hx HHu8HHdTH=7H7Hx HHu趩AP11H=;65ӄ6L m6L6H6 ?HAYAZHTH56H=l6HTHHxHHHuH2Q1H=(;615X6L l6L"6H6>H^_HTH56H=fl6H莩aUHHxHHHuH豨AV11H=:65ރ6H6L l6L6>HA_ZHuUH:{6HHtHH56H=k6UHHxHHHuH S11H=965C6L tk6L6H6a=HA\A]HUH56H=?k6Hg,VHHxHHHuH芧AQ11H=965ǂ6L j6Ly6H6<HAZA[HAVH5j6H=j6HVHHxHHHuHVH=~86115L6L6L fj6HG6Z<H_AXHVH5(6H=9j6HaWHHxHHHuH脦P11H=765ҁ6H[6L i6Lm6;HZYH6WH5/6H=i6HWHHxHHHuHAU11H=6765X6L ii6L6H6V;HA^A_HWH5c6H=4i6H\ XHHxHHHuHAS11H=665܀6L h6Ln6H6:H[A\H!XH56H=h6H٥XHHxHHHuHAP11H=565a6L bh6L6H6O:HAYAZHXH56H=-h6HUXHHxHHHuHxQ1H=N56156L g6Lh6H69H^_HYH5s6H=g6HԤxYHHxHHHuHAV11H=465l6H-6L Vg6L6J9HA_ZHYH56H=)g6HQYHHxHHHuHtS11H=465~6L f6Ld6H68HA\A]HZHuv6HHtHH5Q6H=f6譣CZHHxHHHuHТAQ11H=C365U~6L 6f6L6H6#8HAZA[HXZHu6HHtHH56H=e6ZHHxHHHuH+VH=26115}6L"6L e6H467H_AXHZH-u6HHtHH56H=:e6eZHHxHHHuH舡P11H=165}6H6L d6Lq66HZYH [Ht6HHtHH5_6H=d6áL[HHxHHHuHAU11H=065|6L Ld6L6Hf696HA^A_H_[H5F6H=d6H?[HHxHHHuHbAS11H=U065|6L c6LQ6H65H[A\H[H56H=c6H輠9\HHxHHHuHߟHHHv\Hƿ1藮HH\HHxHHHuH肟AP11H=U/65/{6L b6Lq6Hr64HAYAZH\HHtHHxHHHuHHH5 6H=kb6薟]HHxHHHuH蹞Q1H=o.615oz6L b6L6H6 4H^_H]H56H=a6H|]HHxHHHuH8AV11H=-65y6Hv6L a6L 63HA_ZH]H5I6H=ja6H蒞]HHxHHHuH赝S11H=)-65{y6L a6L6H6 3HA\A]H^H56H=`6Hl^HHxHHHuH2AQ11H=,65x6L `6L!6H:62HAZA[H^H56H=c`6H苝^HHxHHHuH讜VH=+6115x6L6L `6HG62H_AXH^H5(6H=_6H \_HHxHHHuH,HSHH_Hƿ1HH_HHxHHHuHϛP11H=*65w6Hv6L /_6L6#1HZYH`HHtHHxHHHuHPHH56H=^6&`HHxHHHuH AU11H=)65v6L o^6L6H6\0HA^A_H;`H56H=:^6Hb`HHxHHHuH腚AS11H=X)65rv6L ]6Lt6He6/H[A\H`H5F6H=]6HߚaHHxHHHuHAP11H=(65u6L h]6L6H6U/HAYAZH*aH56H=3]6H[aHHxHHHuH~Q1H=(615|u6L \6Ln6H6.H^_HaHl6HHtHH56H=\6蹙aHHxHHHuHܘAV11H=O'65t6H 6L ;\6L6/.HA_ZHaHk6HHtHH56H=[6dHpe6HHtHH56H=eU6萒dHHxHHHuH賑AS11H=65n6L U6L6H6'H[A\HdH5Ե6H=T6H dHHxHHHuH0AP11H=c65m6L T6L6Hp6&HAYAZHeH5P6H=aT6H艑peHHxHHHuH謐7貼HHeH=6 HHfH56HHifHHxHHHuH3H=6' HHfH56HH豐fHHxHHHuHԏH=-6 HH+gH596HHRgHHxHHHuHuH=6i HHgH5r6HHhHHxHHHuHH=6 HHFhH56HH蔏hHHxHHHuH跎H=6HHhH56HH5/iHHxHHHuHXH=6LHHbiH56HH֎iHHxHHHuHH=j6HHiH56HHwMjHHxHHHuH蚍H= 6HH~jH56HHjHHxHHHuH;H=6/HH kH5P6HH蹍ekHHxHHHuH܌H=]6HHkH5A6HHZkHHxHHHuH}H=.6qHH'lH56HHlHHxHHHuHH=6HHlH56HH蜌mHHxHHHuH迋H=@6HHBmH5 6HH=mHHxHHHuH`H=6THHmH56HHދ+nHHxHHHuHH=6HH^nH5V6HHnHHxHHHuH袊H=36HHnH56HH IoHHxHHHuHCH=67HHzoH56HHoHHxHHHuHH=6HHpH5i6HHbapHHxHHHuH腉H=6yHHpH56HHpHHxHHHuH&H=O6HH#qH56HH褉qHHxHHHuHLjH=6HHqH5Ը6HHE rHHxHHHuHhH=6\HH>rH5u6HHrHHxHHHuH H=B6HHrH56HH臈'sHHxHHHuH誇H=6HHZsH5Ƿ6HH(sHHxHHHuHKH=6?HHsH5`6HHɇEtHHxHHHuHH=56HHvtH5ٳ6HHjtHHxHHHuH荆H=ֶ6HHuH56HH ]uHHxHHHuH.H=6"HHuH56HH謆uHHxHHHuHυH=p6 HHvH56HHM|vHHxHHHuHpH=6d HHvH56HH wHHxHHHuHH="6 HH:wH56HH菅wHHxHHHuH貄H=6 HHwH56HH0#xHHxHHHuHSH=6G HHVxH56HHфxHHxHHHuHH=E6 HHxH596HHrAyHHxHHHuH蕃H=6 HHryH56HHyHHxHHHuH6H=_6* HHyH5C6HH贃YzHHxHHHuHׂH=6 HHzH5t6HHUzHHxHHHuHxH=6l HH{H56HHx{HHxHHHuHH=Ҭ6 HH{H56HH藂|HHxHHHuH躁H=[6 HH6|H5G6HH8|HHxHHHuH[H=6O HH|H56HHف}HHxHHHuHH=6 IHuy11E1AHL=߇#HHxHpHhH`HHHHHHHpHH61LHHH1HH HI$xHI$uLH$HH56H袀\|HHxHHHuHH=6 IHuy11E1AHL=#HHxHpHhH`HHHHHHHo11HLHH(6HH HI$xHI$uL~H+HH56Hr{HHxHHHuH~H=6 IHuy1E1AHL=u#HHxHpHhH`1HHHHHHHn11HLHH 6HH躶 HI$xHI$uL}H+HH56HB~zHHxHHHuHe}H=6Y IHu{E1E1ALLLxLpLhL`E1LLLLLLLL=#fmH6E11HHLLH臵 HI$xHI$uL|H(HH56H}#zHHxHHHuH2|H=6& IHuz1E1E1AHL=#HHxHpHhH`LLLLLLL4lH}6E11HHLLHU HI$xHI$uLU{H)HH56H{cyHHxHHHuH{H=6 IHu{E1E1E1ALL=#LLxLpLhL`LLLLLLLkHr6E11HHLLH" HI$xHI$uL"zH(HH56HzxHHxHHHuHyH=N6 IHuy11E1AHL=#HHxHpHhH`HHHHHHHiHi61HLH1HH HI$xHI$uLxH+HH56HzywHHxHHHuHxH=6 HHuy11E1AHL=#HHxHpHhH`HHHHHHHh1L1HHH$6LHH軰 HHxHHuHwH&HH5I6HEx!wHHxHHHuHhwH=ɤ6\ HHuy1E1AHL=H~#HHxHpHhH`1HHHHHHHkg11LHHH6HH药 HHxHHuHvH-HH56HwgvHHxHHHuH:vH=6. HHu{E1E1ALLLxLpLhL`E1LLLLLLLL=|#;fH6E11LHHLH\ HHxHHuH^uH*HH56HuuHHxHHHuH uH=j6 HHuz1E1E1AHL={#HHxHpHhH`LLLLLLL eH6E11LHHLH, HHxHHuH.tH+HH56HttHHxHHHuHsH=:6 HHu{E1E1E1ALL=z#LLxLpLhL`LLLLLLLcHs6E11LHHLH HHxHHuHrH*HH5a6Hs0tHHxHHHuHrH=6 HHuy11E1AHL=y#HHxHpHhH`HHHHHHHbW1LH?H)۪ HHxHHuHqH;HH56HersHHxHHHuHqH=q6HHc6Hx HHu_qP11H=s55M6Hn6L 46LH6HZYHisH5B6H=46HqsHHxHHHuHpAU11H=55CM6L D46LͰ6H61HA^A_HsHC6HHtHH56H=36qtHHxHHHuH9pAS11H= 55L6L 36L(6Hy6H[A\H5tHB6HHtHH566H=G36rpxtHHxHHHuHoAP11H=H55 L6L 26L6HM6HAYAZHtH5-6H=26HotHHxHHHuHoQ1H=515K6L x26L6Hڣ6eH^_HuH56H=E26HmoiuHHxHHHuHnAV11H=55K6H6L 16Lx6HA_ZH}uH56H=16HnuHHxHHHuH nS11H=a55J6L t16L6H6aHA\A]HuH56H=?16HgnWvHHxHHHuHmAQ1ɾH=55J6L 06Lv6H?k6HAZA[HivH5߯6H=;6HvHHxHHHuHmVH=51ɾ5I6L6L `06Hj6TH_AXHvH56H=306H[mCwHHxHHHuH~lP1ɾH=o55!I6H:j6L /6Ld6HZYHVwH56H=/6HlwHHxHHHuHkH96tW1HHH?)觤 HHxHHuHkH1E1AHL=r#HXHHxHpHhH`1HHHHHHH[HH56H=.6k wHHxHHHuHjH=61v HHAwH5o6H=(.6HPkwHHxHHHuHsjH=61 HHwH56H=-6Hj@xHHxHHHuHjH561]HHsxH=p6HdHHxHHxHHHuHiH56HuHHyH56H=,6H"jayHHxHHHuHEiHHxHHHuH iHn6H5{61dHH_yH=6HcHHyHHxHHHuHhH5K{6HtHHtbH5,{6H=,6H-iyHHxHHHuHPhH5m6H=tHHuy1E1AHL=@o#HHxHpHhH`1HHHHHHHHXHH5m6H=#+6NhnyHHxHHHuHqgHHxHHHuHLgAU1ɾH=55C6L *6L86Hw6HA^A_HSyHq:6HHtHH56H=v26踛yHHxHHHuHf|HHyHH3H56H)g8zAS1ɾH=!55#C6L )6L]6Hv6H[A\HnzHHtHHxHHHuHeHH56H=x16躚zHHxHHHuHeAP1ɾH=655`B6L )6L6H#v6HAYAZHzH5ӓ6H=06H3zHHxHHHuHeQH=515A6L (6L 6H}u6pH^_H {H5/6H=p06H诙p{HHxHHHuHdzHH{L%3H5@6HLe|AV1ɾH=55/A6Ht6L '6LJ6HA_ZHG|HHtHHxHHHuHcHH56H=l/6讘]|HHxHHHuHcH5j6H= '6L4dE1E1E1LL=j#LLLLLLALLLLxLpLhL`SH5#j6H=l&6Lc`'yHH{H56LHecD|AR1ɾH=55?6L &6L6Hjk6HA[[H||HHtHHxHHHuH)bHH5K6H=/6|HHxHHHuHaH/6tW1HHH?)菚 HHxHHuHaHE1E1E1ALL=h#LLXLLxLpLhL`LLLLLLQHH5+h6H=l$6a{HH5h6H=J$6ua?|HHxHHHuH`vHH|H5D6LH!a|QH=|515D=6L #6LV6HOQ6H^_H}HHtHHxHHHuH_HH5 6H=-6贔3}HHxHHHuH_uHHr}H5L6LH)`}AV1ɾH=a55S<6H\~6L "6LV6HA_ZH~HHtHHxHHHuH^HH56H=,6躓)~HHxHHHuH^tHHj~H3H5K6HH(_~AS1ɾH=@55Z;6L !6L\6H_6HA\A]H~HHtHHxHHHuH]HH5 6H=+6踒HHxHHHuH]sHHTH5P6HH-^AP1ɾH=%55g:6L 6La6H |6HAYAZHHHtHHxHHHuH\HH56H=*6轑 HHxHHHuH\rHHIH5U6HH2]QH= 515u96L 6Lg6H]6H^_HHHtHHxHHHuH[HH56H=)6ŐHHxHHHuH[qHH?H5]6HH:\AV1ɾH=5586H=z6L 6Lg6HA_ZHہHHtHHxHHHuHZHH5 ~6H=)6ˏHHxHHHuHZqHH4H5c6HH@[S1ɾH=5576L 6Lu6H[6HA\A]HӂHHtHHxHHHuHZHH5&}6H=(6юHHxHHHuHYpHH)H)3H5b6HH?ZAQ1ɾH=5566L 6Ls6HLx6HAZA[HHHtHHxHHHuHYHH5$|6H='6ύӃHHxHHHuHXoHHH5g6HHDY|VH=51ɾ556L6L 6HY6H_AXHHHtHHxHHHuH XHH5+{6H=$&6֌̄HHxHHHuHW nHH H5n6HHKXrAW1ɾH=5546HX6L 6Lx6HZYHHHtHHxHHHuHWHH52z6H=3%6݋HHxHHHuHVmHHH5u6HHRWfAT1ɾH=j5536L 6L6HV6HA]A^HHHtHHxHHHuHVHH57y6H=@$6HHxHHHuHUlHHH5z6HHWV\AQ1ɾH=O5526L 6L6HQ6HAZA[HHHtHHxHHHuHUHH5AW1ɾH=5506HwN6L 6L6HZYHvHHtHHxHHHuH!SHH5Cv6H=d!6HHxHHHuHR%iHHˉH56HHcS1AT1ɾH=55/6L 6L6HL6HA]A^HfHHtHHxHHHuH&RHH5Hu6H=q 6~HHxHHHuHQ*hHHH56HHhR&AQ1ɾH=55/6L 6L6HL6HAZA[H]HHtHHxHHHuH+QHH5Mt6H=~6tHHxHHHuHP/gHHH56HHmQVH=51ɾ5.6L6L 6HJ6H_AXHPHHtHHxHHHuH2PHH5Ts6H=6fHHxHHHuHO6fHHHW{3H56HHmPAW1ɾH=55-6HI6L 6L6HZYH@HHtHHxHHHuH2OHH5Tr6H=6XHHxHHHuHNAT11H=55X,6L Q6Lڎ6Hy6>HA]A^HlHs!6HHtHH5y6H=6#OHHxHHHuHFNdHHH56HHNRAQ1ɾH=55+6L z6L6HLj6gHAZA[HHHtHHxHHHuHMHH5p6H=6_HHxHHHuHKMcHHH56HHMGVH=51ɾ5*6L6L y6Hzi6mH_AXHHHtHHxHHHuHLHH5o6H= 6fHHxHHHuHRLbHH֏H56HHL<AW1ɾH=55)6Hh6L 6L6sHZYHsHHtHHxHHHuHKHH5n6H=6mHHxHHHuHYKaHHʐHv3H56HHK+AT1ɾH=s55(6L 6L6HG6sHA]A^HaHHtHHxHHHuHJHH5m6H=!6kyHHxHHHuHWJ`HHH56HHJAQ1ɾH=X55'6L 6L6HP6xHAZA[HTHHtHHxHHHuHIHH5l6H=.6p~jHHxHHHuH\IVH=t51ɾ5&6LP6L 6H96H_AXH|H5;l6H=6H}HHxHHHuHH"_HH!H56HH`IAW1ɾH=55J&6H96L  6L6HZYHHHtHHxHHHuH%HHH5Gk6H=6|ؓHHxHHHuHGAT1ɾH=55%6L A 6Lʇ6H+86.HA]A^HH5l6H=46Hk|JHHxHHHuHWG]HHH56HHGAR1ɾH=55$6L 6L6HE\6xHA[[H'HHtHHxHHHuHFHH5i6H=O6q{?HHxHHHuH]FH=X6Q HHxH56H¿1 UHHԕHHxHHHuHEA\HHHH5I6H1THH`HHxHHHuHEHHxHHHuHjEHH@ Ht HHH1HXH`p3H8HH-HH9HPHKE1AH'q3H5.$L=L#H81 nE1E1LLLLxLpLhL`LLLL5HHxHHHuHMDHHxHHHuH(DHt HHH=>4H=6H4H6H"4zyy11E1AHL=J#HHHxHpHhH`HHHHHH3H=96H5kP#iHH͔Hfm3H9Xu2Hm3HHHq(H )HH HHA(H=6H5e#;iH H9Xu$Ho3Hp(HH )HP(HJ H=6H5R#hHH9Xu$Hp3Hp(HH Z)HP(HJ H5˚6H=D6q~H=06QjH6H5=F6H=6kHH6Hu HǀHHxHHHuHA+XHHԓHLm3H5z6HeB8P1ɾH=>55h6HE6L 6L6HZYHrHHtHHxHHHuH+AHH5Md6H=6uHHxHHHuH@H6H=v4H=6Hh4wE1E1ALLLLxLpLhL`E1LLLLLLLL=kG#0H56H=6ocH=6OH6H5?6H=e6pi-H6Hu HǀH6H= 4H=6H4vE1E1E1LL=F#LLLLLLALLLLxLpLhL`/H5j6H=6ncH= 6OH 6H5 B6H=M6Xh-H 6Hu HǀH 6H= 4H= 6H 4u1E1E1AHL=E#HHHHHHLLLLxLpLhL`.H5K6H= 6jmdH= 6PH 6H55B6H=66Ag.H 6Hu HǀHv 6H=O4H= 6HA 4ktE1E1E1ALL=D#LLLxLpLhL`LLLLLLL-H5+6H= 6RlcH= 6OH 6H5-@6H=6)f-H 6Hu HǀH=A6y HHdH56H¿13KHHHHxHHHuHH5n6H=i6H@mHHxHHHuH,8wNHHHc3H5p6H8FAU1ɾH=I556L \5Lw6HM6IA_IXMHIt HHHxHHHuHr7H5Z6H=l6LClIxHIuL=7AS1ɾH=m556L 5L)w6HL6[A\IHH5/Z6H=6Hk!IxHIuL6H=*<6轰 HHiH56H¿1wEHHÑHHxHHHuHb6LHHHH5G;6H1EHHNHHxHHHuH5HHxHHHuH5HLp AtAH`3I^1HH8HH6HH9HPHa3H5j$L=<#HKATH81^E1LLLxLpLhL`LLLLLL%HHxHHHuH4HHxHHHuH4AtAH{6H=43L5}3H=6H3iky|E1ATLL=;#LLLxLpLhL`LLLLLLL$H=6H5V#7ZHHH^3H9Xu2HKb3HHHq(H G(HH HHA(H=6H5B#YHH9Xu$H^3Hp(HH (HP(HJ H5{6H=T6bH=@61H,6H586H=~6\H 6Hu HǀIxHIuL2IIHOH>^3H5wk6HHT3VH=51ɾ5w6Lr6L 5H76H_AXHLAtAIxHIuL22HH5TU6H=-6fHHxHHHuH1P1ɾH=ܸ556H66L H5Lq6<HZYH1H5h6H=6H{fHHxHHHuHg1AU1ɾH=755Q6L 5LSq6H,6HA^A_HH54s6H=-6HeHHxHHHuH0Ha6Ht HH5r6H=5诼HHHE1H1HLHPi HHHxHHHuHD0HHxHHHuH0H1E1E1AHL="7#HHHHHHLLLLxLpLhL` HH5q6H=5]dHHxHHHuHI/AP1ɾH=55; 6L 5L5o6H*6HAYAZHH5Vq6H=5HcVHHxHHHuH. EHHH5ng6HHK/QH=&515 6L 5Ln6H!*6H^_H7HHtHHxHHHuH.HH53Q6H=5bMHHxHHHuH-DHHH5vf6HHS.AV1ɾH= 55 6H=6L 5Lm6HA_ZH(HHtHHxHHHuH-HH59P6H="5a@HHxHHHuH,CHHH!d!IHH5HH!IxHIuL !IH@H5HHw!IxHIuL  IHH5HH,!AIxHIuL]  IHHh5HH IxHIuL 8 IH,H5HH IxHIuLIHќH5HHK /IxHIuL|IHwH5HH ԝIxHIuL1 WIHHD5HHzIxHIuL IHžH5HHj IxHIuL IHgH5HHğIxHIuLP vIH H{5HHhIxHIuL++IHH85HH IxHIuL,IHSH5HH>IxHIuLoIHH5HHUIxHIuL$JIHHo5HHIxHIuLIHBH,5HH]IxHIuLIHH5HHFIxHIuLCiIHH5HHIxHIuLIH2Hc5HH|IxHIuLIH֥H 5HH13IxHIuLb!IHzH5HHצIxHIuL=IHH5HH{IxHIuL#IHçH_5HHP!IxHIuLIHiH5HHƨIxHIuL6(\IHH5HHlIxHIuL IHH5HHoIxHIuL"IHYHK5HH$IxHIuLU'{IHH5HHZIxHIuL 0IHH5HHIxHIuL$IHEH5HHCIxHIuLt IHH?5HHGIxHIuL))OIHH5HHIxHIuL*IH4H5HHbIxHIuLIHڮH~5HH8IxHIuLHnIHH;5HHݯIxHIuL#IH$H5HHIxHIuL&IHȰH5HH6%IxHIuLgIHlHr5HHɱIxHIuLBIHH'5HHmIxHIuL%IHHT5HHUIxHIuLIH[H5HH IxHIuL;H=l6HHl6Hx HHu]+HHسH~@3H5E6HH9H5-N6HHvAV11H=1555L $5LT6HX6A_IXMҴHK5ItHIt HHHxHHHuH$H5mX6H=5LѴIxHIuLH5&61:HIHH=<6H HHyIxHIuLH53&6HIHH5&6H=5HIxHIuLFHHxHHHuH!H=O612 HH5H5O6H=u5HHHxHHHuHH=_61b2 HHѶH5_6H=5H<4HHxHHHuH_AS11H=555L 5LNR6HL6貧HA\A]HIH5L6H=5HHHxHHHuHAP11H=5505L A5LQ6HsD6.HAYAZHH5SD6H= 5H4!HHxHHHuHWL%H>3A$tA$QH޿MSIHH1 ^_IH7I$xHI$uLAU11H=55]5H~36L _5LP6SHA_ZH`LAtAIxHIuLHH5"36H=5.HHxHHHuHQAS11H=D555L 5L@P6Hi36褥H[A\HH5HHtHH5&36H=_5HHxHHHuHAP11H=555L 5LO6H K6HAYAZHH5HHtHH5J6H=5AHHxHHHuHQ1H=515~5L o5LN6HQ6\H^_HXH5HHtHH5oQ6H=5CHHxHHHuHfAV11H=555H\B6L 5LNN6蹣HA_ZHH5HHtHH5 B6H=t5HHxHHHuH  HH(Hƿ1yIHHHxHHHuHh #HHѺH83H5F6H /S11H=555L 5L%M6Hv/6艢HA\A]HcLAtAHHHtIxHIuL HHxHHHuH HH5.6H=5 FHHxHHHuH> AQ11H=555L 5L-L6HG6葡HAZA[H[H5F6H=o5H HHxHHHuH VH=5115P5LK6L 5HN6H_AXHӻH5N6H=5H 5HHxHHHuH8 P1ɾH=I555H5L 5LK6艠HZYH1E1AHL=#HHHxHpHhH`1HHHHHHHHH5L6H=5 HHxHHHuH0 AU1ɾH= 555L 5LJ6H5耟HA^A_HH5O6H=^5H HHxHHHuH AS1ɾH=y55S5L 5LI6H6H[A\H-H5HHtHH53S6H=5>oHHxHHHuH AP1ɾH=555L e5LH6Hg6RHAYAZHH5K6H=`5H=cHHxHHHuH{QH=51565L 5LhH6H6̝H^_HwH5M6H=5H =ټHHxHHHuHAV1ɾH=g555H5L S5LG6GHA_ZHH526H=^5H<LHHxHHHuHqS1ɾH=Š55<5L 5L^G6H5œHA\A]H]H536H=5H;HHxHHHuHAQ1ɾH=555L N5LF6H 5;HAZA[HӽH5HHtHH5,.6H=-5W;HHxHHHuHCVH=[51ɾ55L7F6L 5Hq5蔛H_AXH)H5S6H=5H:HHxHHHuHP1ɾH=555H5L 5LE6HZYHH5M6H='5HN:HHxHHHuH:AU1ɾH= 55$5L 5L&E6HO5芚HA^A_HH5P6H=5H9sHHxHHHuHAS1ɾH=c555L 5LD6H5H[A\HH5HHtHH506H=5 9ȿHHxHHHuH AP1ɾH=555L o5LC6H15\HAYAZHڿH5qP6H=r5H8>HHxHHHuHQH=5155L 5LrC6H+5֘H^_HH5HHtHH546H=57HHxHHHuHL5aY6AtAH536H=y5軎HH21H1LHHHH^; HHHxHHHuHRIxHIuL;HE11E1ALLLLxLpLhL`L= #HHHHHHH<HH526H=O5y6HHxHHHuHeAT1ɾH=55o5L 5LQA6HB5赖HA]A^HH5rC6H=5H5HHxHHHuHAQ1ɾH=555L A5L@6H{5.HAZA[H/H+5HHtHH516H= 5J5пHHxHHHuH6HV6Ht HH506H=5HHHE11HHLH8 HHHxHHHuHHHxHHHuHyH11E1AHL=b#HHHxHpHhH`HHHHHHH{HH5/6H=533HHxHHHuHP1ɾH=555H`5L 5L>6HZYHHH506H= 5H43HHxHHHuH AU1ɾH=55B5L 5L >6H5pHA^A_HH5C6H=5H2HHxHHHuHHH\HK6H5616HHK6H5G6Hx{HK6H5J6Hx]HsK6H5&6Hx?H&3H5>C6HHxHtK6H5*6Hyz1E1E1ApHL=#HHxHpHhH`LLLLLLLAQ1ɾH=#~55}5L 5L?<6HX5裑HAZA[HHHtHHxHHHuHHH5F6H=q50HHxHHHuHVH=?}51ɾ55L{;6L 5H5ؐH_AXH H5+6H=5H0qHHxHHHuHP1ɾH=|55=5H5L _5L:6SHZYHH52)6H=k5H/HHxHHHuH~HH&H546HHAU1ɾH={555L 5L;:6H5蟏HA^A_HHHtHHxHHHuHHH5/6H=m5.HHxHHHuHAS1ɾH=z555L 5Lo96H@5ӎH[A\HH5.6H=5H.OHHxHHHuHAP1ɾH=-z55O5L `5L86H5MHAYAZHaH5.6H=c5H-HHxHHHuHvQH=y5155L ڻ5Lc86H5ǍH^_HH5'6H=5H-9HHxHHHuHAV1ɾH=x55T5H5L N5L76BHA_ZHJHH5HHtHH5=6H=55_,HHxHHHuHKS1ɾH=x555L 5L876H95蜌HA\A]HH5?6H=5H+HHxHHHuHAQ1ɾH=uw5575L (5L66H*5HAZA[HH5#6H=+5HR+wHHxHHHuH> HHHb#6H516HVH=v51ɾ55L56L h5H5\H_AXHPHHtHHxHHHuHHH52%6H=+5U*fHHxHHHuHA HHH 3H5v.6HHAW1ɾH={u555H5L g5L46[HZYH?H"5HHtHHHtHHxHHHuHdHH5(6H=51)2HHxHHHuHAT1ɾH=mt555L 5L 46H5mHA]A^HDHz5HHtHH5&:6H=_5(HHxHHHuHuAQ1ɾH=s555L ض5La36H5ňHAZA[HH5HHtHH5<6H=5'HHxHHHuHVH=r51ɾ5h5L26L *5H{5H_AXHH5HHtHH56H=5;'*HHxHHHuH'P1ɾH=r555H+5L 5L 26xHZYH?H5HHtHH5;6H=l5&HHxHHHuHHHH5.*6HH *AU1ɾH=#q555L 5L?16HP5裆HA^A_H`HHtHHxHHHuHHH5:6H=q5%vHHxHHHuHAS1ɾH=7p5595L 5Ls06H5ׅH[A\HH5:6H=5H%HHxHHHuHLHH(H3H5F!6HAP1ɾH=^o555L 15L/6H5HAYAZHHHtHHxHHHuHIHH5;6H=5$HHxHHHuHQH=un5155L f5L.6H05SH^_HH56H=k5H#RHHxHHHuH~AV1ɾH=m55H5H5L ڱ5Lc.6΃HA_ZHcH56H=5H #HHxHHHuHS1ɾH=)m555L \5L-6H5IHA\A]HH5HHtHH5Z6H=;5e"HHxHHHuHQAQ1ɾH=al55+5L 5L=-6HV5衂HAZA[HH5v 6H=5H! HHxHHHuHHKC6Ht HH5 6H=W5xHH HHE11HHLH7% HHHxHHHuH+HHxHHHuHH11E1AHL="HHHxHpHhH`HHHHHHHHH56H=5E gHHxHHHuH1P1ɾH="j555H5L 5L+6肀HZYH|H5HHtHH5 6H=v5HHxHHHuHAU1ɾH=\i55v5L 5Lx*6H5HA^A_HH56H=5HHHxHHHuHL5@6AtAH5e6H=5uHHE11HLHLH" HHHxHHHuH}IxHIuLfH1E1E1AHL=N"HHHHHHLLLLxLpLhL`gHH5A6H=z5.HHxHHHuHAP1ɾH=@g555L 5L|(6H5}HAYAZH>H5HHtHH56H=ҳ5HHxHHHuHQH={f5155L L5L'6H59}H^_H H5 6H=Q5HxxHHxHHHuHdH=6Ht HH56H=53sHH1H1HHHH HHHxHHHuHHHxHHHuHHE1E1E1LLLLxLpLhL`ALLLLLLLL=/"HH56H=5HHxHHHuHAS1ɾH=Ad555L 45L%6H5!{H[A\HHW5HHtHH5C6H=5>-HHxHHHuH*AP1ɾH=zc5545L 5L%6HG5zzHAYAZHH5g6H=5HHHxHHHuHH$;6Ht HH56H=05rpHH311HHHHH HHHxHHHuHHHxHHHuHH11E1ApHL="HHHxHpHhH`HHHHHHHHH56H=5"|HHxHHHuHAV1ɾH=>a55 5H5L j5L"6^xHA_ZHH5HHtHH5h6H=Q5{HHxHHHuHgS1ɾH=x`555L ˥5LT"6H55wHA\A]HH56H=έ5HHHHxHHHuH,HHHM 3H56HfAQ1ɾH=_555L 5L!6Hc5vHAZA[HHHtHHxHHHuH)HH5K+6H=55HHxHHHuHVH=^51ɾ5 5L 6L ?5H53vH_AXHGHɳ5HHtHH56H=5PHHxHHHuH55l5H55L 5L6WHZYHH55H=5H9xHHxHHHuH%AU1ɾH=u=555L 5L6H5uWHA^A_HH5HHtHH55H=?5HHxHHHuH}AS1ɾH=<55O5L 5Li6H5VH[A\HH5HHtHH55H=5HHxHHHuHAP1ɾH=;555L 95L6Hc5&VHAYAZHH[5HHtHH55H=5BHHxHHHuH.L56AtAH55H=5 LHH11HHHHLH HHHxHHHuH蠿IxHIuL艿H11E1AnHL=r"HHHxHpHhH`HHHHHHH鋯HH5}5H=v5lHHxHHHuH贾AV1ɾH=9555HW5L 5L5THA_ZH~HB5HHtHH56H=ϊ5!HHxHHHuH AS1ɾH=8555L p5L5H5]SHA\A]HH5Z5H=S5HHHxHHHuH膽H6Ht HH55H=5OIHHHE11HHLH HHHxHHHuHHHxHHHuHüHE1E1E1ALL="LLLxLpLhL`LLLLLLLìHH55H=5 HHxHHHuHQH=6515ߜ5L P5L5H5=QH^_H.Ht5HHtHH55H=5[HHxHHHuHGH6Ht HH55H=5GHH1H1HHHH HHHxHHHuH谺HHxHHHuH苺HE1E1A LLLLxLpLhL`E1LLLLLLLL="鋪HH5}5H=~5AHHxHHHuH费S1ɾH=E4555L }5L5H5OHA\A]HH5HHtHH55H=׈5!HHxHHHuH L56AtAH55H=5DHH5HE11LHHLH HHHxHHHuH~IxHIuLgHE1E1E1A"LL=N"LLLxLpLhL`LLLLLLLgHH5y5H=Z5HHxHHHuH萷VH=251ɾ55L5L z5HF5LH_AXHH5'5H=؆5HHHxHHHuH AW1ɾH=[1555H5L gz5L5[LHZYHH55H=S5HvHHxHHHuH膶AT1ɾH=0555L y5Lr5H5KHA]A^HH5{5H=45HjHHxHHHuHH 6Ht HH55H=΂5AHHyHE11HHLHm HHHxHHHuHaHHxHHHuHIHHH9uHHHH5"Ly1AHL="HHxHpHhH`HHHHHƣHHHuHHH5i5LH:HHH5C5H=dv5H茳HHxHHHuH诲IxHIuL蘲HHxHHHuHsHHxHHHuHNH5G51HHH%;HHH1IH[H5L O5HL5HHHHxHHHuH*AU1ɾH=(55T5L r5L5H5zDHA^A_H6H5HHtHH55H=T~5HHxHHHuH肮H6Ht HH5N5H=}5Q:HHHHE11HHLH HHHxHHHuHHHxHHHuH辭H1E1E1A*HL="HHHHHHLLLLxLpLhL`鿝HH55H=|5 HHxHHHuHAP1ɾH=&555L Kp5L5H58BHAYAZHHM5HHtHH5Y5H="|5T^HHxHHHuH@QH=%515{5L o5L-5H֜5AH^_H H585H={5HSHHxHHHuH輫H=6Ht HH55H=A{57HHg1H1HHHH1 HHHxHHHuH%HHxHHHuHHE1E1ALLLLxLpLhL`E1LLLLLLLL="HH55H= z5=HHxHHHuH)AS1ɾH=#55k5L m5L5H5y?HA\A]HH55H=y5HHHxHHHuH袩L5#6AtAH5b5H=3y5}5HHE11HLHLH& HHHxHHHuHIxHIuLHE1E1E1ALL="LLLxLpLhL`LLLLLLLHH5=5H=x5@%HHxHHHuH,+2HH`1;IHHs5HH虨-IxHIuLʧIHuHs5HHNIxHIuL襧IHHzs5HHvIxHIuL4ZIHH?s5HH踧IxHIuLIHaHs5HHmIxHIuL螦ĦIHHr5HH"bIxHIuLSyIHHFr5HHצIxHIuL.IHPH r5HH茦IxHIuL轥IHHq5HHASIxHIuLr 蘥IHHq5HHIxHIuL'MIH@HZt5HH諥IxHIuLܤIHHt5HH`AIxHIuL葤跤IHHs5HHIxHIuLFlIH,Hs5HHʤIxHIuL!IHHNs5HH.IxHIuL谣!֣IHvH s5HH4IxHIuLe%苣IHHPp5HHyIxHIuL @IHHMo5HH螣IxHIuLϢ IHgH o5HHSIxHIuL脢 誢IH Hn5HHhIxHIuL9_IHHn5HH轢 IxHIuL$IHSHyn5HHrIxHIuL裡)ɡIHH6n5HH'TIxHIuLX*~IHHm5HHܡIxHIuL 3IHBHm5HH葡IxHIuL  IHHmm5HHFEIxHIuLw蝠IHH*m5HHIxHIuL,RIH2Hl5HH谠IxHIuLIHHl5HHe3IxHIuL薟 輟IHzHQl5HHIxHIuLK#qIHHn5HHϟ{IxHIuL"&IHHkn5HH脟 IxHIuL赞(۞IHhHk5HH9IxHIuLj'萞IH H5k5HHkIxHIuLEIHHj5HH裞IxHIuLԝIHYHj5HHXIxHIuL艝+话IHHi5HH ZIxHIuL>,dIHHi5HHIxHIuLIHEHVi5HHwIxHIuL訜ΜIHHi5HH,FIxHIuL]胜IHHh5HHIxHIuL&8IH4Hk5HH薜IxHIuLǛIHHh5HHK7IxHIuL|H=U5HHG5Hx HHuSQ1H=515|5L ^5LC5H|50H^_H.Hm5HHtHH5:5H=c^5莛pHHxHHHuH豚AV11H=55|5HW5L ^5L50HA_ZHH5*5H=]5H HHxHHHuH.H=51й HHH55H=]5H誚~HHxHHHuH͙S1ɾH=55({5L 1]5L5Hî5/HA\A]HH5ӻ5H=4i5H[HHxHHHuHGAQ1ɾH=755z5L \5L35HD5.HAZA[HH5\5H=h5HjHHxHHHuHVH=51ɾ5+z5L5L \5Hƭ5.H_AXH}H5_5H=(h5HOHHxHHHuH;P1ɾH=55y5H/5L [5L!5-HZYHE11E1ALLLLxLpLhL`L=g"HHHHHHH HH55H=Z5OHHxHHHuH2AT1ɾH=55x5L Z5L5H5,HA]A^H1E1E1AHL="HHHHHHLLLLxLpLhL`HH55H=Y5HHxHHHuH&AP1ɾH=55w5L Y5L5Hk5v+HAYAZHH5+5H=e5H0HHxHHHuH蟕QH= 515*w5L Y5L5H5*H^_HEH55H=e5H/HHxHHHuHAV1ɾH=K 55v5H~5L wX5L5k*HA_ZHH55H=d5HHHxHHHuH蕔S1ɾH= 550v5L W5L5H˩5)HA\A]HXH55H=W5HHHxHHHuHAQ1ɾH= 55u5L rW5L5HL5_)HAZA[HH5|5H==W5HeHHxHHHuH舓H=51* HH9H55H=V5HHHxHHHuH'VH= 51ɾ5t5L5L V5Hm5x(H_AXHH565H=_5HHHxHHHuH袒P1ɾH=S 55Ut5H.5L U5L5'HZYH'H55H=c_5H2HHxHHHuHiHHHB5H55H裒-HD5H5=5H聒x]H5H5?5Hcx?Hh2H55HHBxH5H5(5H$y{E1E1AwLLLxLpLhL`E1LLLLLLLL="酁AS1ɾH=55r5L XT5L5H5E&A\A]IHpHIt HHHxHHHuHmH55H=o]5L>IxHIuL8AP1ɾH=55q5L S5L$5HE5%AYAZIHH5q5H=\5H IxHIuLÏIH`H55HHPQH=515cq5L R5L5H5$H^_HLAtAIxHIuL/HH55H=*\56HHxHHHuHAV1ɾH=55p5H5L DR5L58$HA_ZHHH55H=[5HvHHxHHHuHbAS1ɾH=r555Lֺ5H75:HA\A]HH5w5H=G5Hw HHxHHHuHczAQ1ɾH=s455]5L =5LO5H5HAZA[HH5H5H=)G5HHHxHHHuHyVH=41ɾ5\5Lй5L 9=5H:5-H_AXHH55H=F5HkHHxHHHuHWyAW1ɾH='459\5H5L <5L<5HZYH H5ޡ5H=F5HlHHxHHHuHxAT1ɾH=45[5L 5<5L5H5"HA]A^H|H5ץ5H=E5H_HHxHHHuHKxAR1ɾH=45=[5L ;5L75H5 HA[[HH5A5H=E5H٬UHHxHHHuHwW1ɾH=645Z5L );5L5H5 HAXAYH11E1AHL=}"HHHxHpHhH`HHHHHHHgH[J5HHtHH55H=C5貫HHxHHHuHvH55H=C5HHH_IHHHxHHHuHBvH5S5H=LC5LIxHIuL vP1ɾH=^45Y5H 5L j95L5^ IXZME1E1E1LLLLxLpLhL`ALLLLLLLL=u{"eHH5ItH5Y5H=BB5L qIxHIuLuH5$5H= B5IHHȬHHIxHIuLtHH5ϥ5H=A5肩HHxHHHuHntAS1ɾH=45@I5L 75LZ5Hk5 H[A\HH55H=5A5HSHHxHHHuHsAP1ɾH=45V5L K75LԳ5H58 HAYAZHcH55H=@5HuHHxHHHuHasQH=T415tV5L 65LN5H5H^_HH55H=*@5H?HHxHHHuHrAV1ɾH=45U5H5L 965L²5-HA_ZHRHsF5HHtHH5'5H=?5JHHxHHHuH6r聈HHH2H5۪5HHr2AS1ɾH=45"U5L c55L5H=5PA\A]IHkHIt HHHxHHHuHxqH55H=>5LIIxHIuLCq莇IHH55HHq<AP1ɾH=45BT5L {45L5He5hHAYAZHtLAtAIxHIuLpHH5κ5H==5yHHxHHHuHep谆HHH 2H55HpJHk5H55HpQH=415CS5L t35L5Hn5a^_IHHIt HHHxHHHuHoH5ܹ5H=<5L\IxHIuLVoP1ɾH=45R5Hr5L 25L<5IXZMH5ʱ5H=#<5L~IxHIuLnAU1ɾH=45&R5L G25LЮ5H54A_IXMH55H=;5LvIxHIuLpnAS1ɾH=45Q5L 15L\5HՆ5[A\IH,H5ڏ5H=;;5HIxHIuLmAP1ɾH=45NQ5L _15L5Hi5LAYAZIHH5 5H=:5H荢IxHIuLmQH=Z415P5L 05Lt5HŅ5^_IHBH55H=T:5HIxHIuLmP1ɾH=45xP5Hi5L r05L5fIXZMH55H=95L詡4IxHIuLlAU1ɾH=345 P5L 05L5Hy5A_IXMZH55H=~95L5IxHIuL/lAS1ɾH=45O5L /5L5Hx5[A\IHH5A5H= 95HGIxHIuLkIHHc2H55HDlAP1ɾH=45O5L .5Lx5Hy5HAYAZH5LAtAIxHIuL kHH55H=385fHHxHHHuHjQH= 415\N5L =.5Lƪ5Hx5*H^_HyHa=5HHtHH5U5H=75HHHxHHHuH4jAV1ɾH=D45M5Hw5L -5L5HA_ZHH5’5H= 75Hž2HHxHHHuHiS1ɾH=45AM5L -5L5HeAV1ɾH=.45I5Hr5L (5L#5HA_ZHH$85HHtHH5H5H=15諙HHxHHHuHdS1ɾH=h45rH5L '5L5Hr5HA\A]HH55H=n15H%bHHxHHHuHdAQ1ɾH=45G5L t'5L5HFq5aHAZA[HrH&75HHtHH5R5H=05}HHxHHHuHicVH=41ɾ5TG5L]5L &5Hp5H_AXHH55H=A05H' HHxHHHuHbP1ɾH=U45F5H`p5L A&5Lʢ55HZYH1E1A' HL=h"HHHxHpHhH`1HHHHHHHRH55HHtHH55H=/5Ӗ}HHxHHHuHaH55H=.5HHH耙IHHHxHHHuHcaH5\5H=}.5L4IxHIuL.aAU1ɾH=~45(E5L $5L5Hn5~A_IXMH 35ItH5b5H=-5L誕IxHIuL`H%5Ht HH5 5H=-5mHHHHE11HHLH IHHxHHHuH`HHxHHHuH_M1E1E1A HL=e"HHHHHHLLLLxLpLhL`OH5ݏ5H=n,5L%8IxHIuL_AP1ɾH=O45!C5L "5L 5Hl5oAYAZIHH5(5H=+5H谓>IxHIuL^H+5Ht HH5Џ5H=+5sHH\11HHHHH IHHxHHHuH^HHxHHHuH]M11E1A HL=c"HHHxHpHhH`HHHHHHHMH55H=}*5L4IxHIuL.]P1ɾH=?459A5Hjk5L 5L5IXZMH5J5H= *5L‘AIxHIuL\AU1ɾH=45@5L  5L5Hj5 A_IXMfHf05ItH5Ȧ5H=)5L8IxHIuL2\AS1ɾH=45L@5L 5L5Hwi5[A\IHH55H= )5HĐ> IxHIuL[AP1ɾH=n45?5L !5L5Hh5AYAZIHc H.5ItH515H=(5L9 IxHIuL3[QH=415^?5L 5L 5H)h5^_IHH5_5H=(5HǏ IxHIuLZHB5Ht HH55H='5HH 1HH1HHHH) IHHxHHHuH!ZHHxHHHuHYM1E1AHL=_"HHHxHpHhH`1HHHHHHHJH5܌5H=&5LD/ IxHIuL>YAV1ɾH=45p=5L 5L*5He5A_IXMU H+5ItH5{5H=&5L躍 IxHIuLXAS1ɾH=45<5L 5L5Hye5A\A]IH H=+5ItH5G{5H=x%5L/ IxHIuL)XAP1ɾH=Y45k<5L 5L5H&e5yAYAZIHH5Z5H=%5H躌 IxHIuLWH55Ht HH55H=$5}HH9 11HHHHH# IHHxHHHuHWHHxHHHuHVM11E1AHL=\"HHHxHpHhH`HHHHHHHFH5މ5H=#5L> IxHIuL8VP1ɾH=I45:5H4c5L 5L5IXZM H<)5ItH55H="5L越 IxHIuLUAU1ɾH=45:5L 5L5Hb5A_IXMH55H="5LB IxHIuL45@55L 15L5H5AYAZIH) H55H=5H(Q IxHIuLYPQH=41545L 5LF5Hf5^_IH H5u5H=.5H IxHIuLO2fIHk Hy2H505HpP AU1ɾH=45:45Hg5L 5L5HA_ZH LAtAIxHIuLMOHH5ߛ5H=X5; HHxHHHuHOAS1ɾH=4535L i5L5Hke5VH[A\HM H55H=5H蔃 HHxHHHuHNAP1ɾH=p4535L 5Ll5HUf5HAYAZH H!5HHtHH5i5H=*5 HHxHHHuHMQH=415s25L <5Lō5He5)H^_H H5H5H=5Hhx HHxHHHuHTMAV1ɾH=4515Hd5L 5L95HA_ZH H5HHtHH5Ώ5H=5 HHxHHHuHLS1ɾH=>45X15L 5L5Hc5HA\A]H H35HHtHH5O|5H=X5!HHxHHHuHLAQ1ɾH=v4505L i5L5Hb5VHAZA[H3H5HHtHH5t5H=5ruHHxHHHuH^KVH=41ɾ505LR5L 5Hlc5H_AXHH5HHtHH55H= 5HHxHHHuHJAW1ɾH=45z/5Ha5L 5L5HZYHH5HHtHH5x5H=d5&HHxHHHuHJAT1ɾH="45.5L u 5L5H`5bHA]A^H-H'5HHtHH5Sq5H=5~~pHHxHHHuHjIAR1ɾH=Z45<.5L 5LV5Ho`5HA[[HE1E1E1A|LL=,O"LLLxLpLhL`LLLLLLL59H5HHtHH5zy5H=5U}HHxHHHuHAHH5:y5H=S5-HHHIHHHxHHHuHGH5x5H=5L|IxHIuLGQH=415,5L  5L5H^5^_IHH5ItH5w5H=o5L.| IxHIuL(GH5Ht HH5w5H=5HH*1HH1HHHH IHHxHHHuHFHHxHHHuHcFM1E1AHL=^L"HHHxHpHhH`1HHHHHHHj6H5cv5H=5Lz}IxHIuLEAU1ɾH=U45*5L  5L5H\5A_IXMH5v5H=x5L7zIxHIuL1EH5Ht HH5Wv5H= 5HHHE11HHLH} IHHxHHHuHDHHxHHHuHrDM1E1E1A3HL=oJ"HHHHHHLLLLxLpLhL`x4H51u5H=5Lx IxHIuLCAP1ɾH=C45(5L 5L5H[5AYAZIHH<5ItH55H=o5L.xmIxHIuL(CQH=415(5L 5L5HZ5y^_IHH5ItH5vs5H=5LwaIxHIuLBH!5Ht HH5s5H=5iHH1H1HHHH{ IHHxHHHuHBHHxHHHuHAM1E1AkHL=G"HHHxHpHhH`1HHHHHHH1H5q5H=k5L*v IxHIuL$AAU1ɾH=t45&5L 5L5H Y5tA_IXMH5ItH55H= 5LuPIxHIuL@AS1ɾH=ʪ45%5L 5L5HX5[A\IHvH$5ItH5v5H=W 5LuIxHIuL@AP1ɾH= 45%5L s5L5HV5`AYAZIHH5ItH55H= 5Lt6IxHIuL?QH=x415$5L 5Lr5HU5^_IH]H5h5H=Z 5HtIxHIuL?P1ɾH=45.$5HGV5L p5L~5dIXZMH5p5H= 5LsLIxHIuL>AU1ɾH=Q45#5L 5L~5HU5A_IXMqH55H=t 5L3sIxHIuL->AS1ɾH=45W#5L 5L~5HT5}[A\IHH5_5H= 5Hr`IxHIuL=AP1ɾH=)45"5L 5L}5H6U5 AYAZIHH5*5H= 5HJrIxHIuLD=QH=415"5L 5L1}5H U5^_IHH5h5H= 5HqvIxHIuL!5L O4L{5H!S5<[A\IHH5ItH5n5H=5LhpIxHIuLb;AP1ɾH=245 5L 4LN{5HR5AYAZIH#H#5ItH5q5H=5LoqIxHIuL:QH=415: 5L ;4Lz5H%R5(^_IHH 5ItH5-q5H=5LUoIxHIuLO:P1ɾH=455HP5L 4L5z5IXZM H 5ItH5\5H=5Ln\IxHIuL9AU11H=:45<5L -4Ly5H{5A_IXMH5{5H=4L%:IxHIuLV9AS11H=455L 4LEy5H^{5[A\IHHK 5ItH5-{5H=v4L9aIxHIuL8AP11H=45T5L 54Lx5H5"AYAZIHH 5ItH5ŀ5H=4L9IxHIuLG8Q1H=]4155L 4L7x5Ha5^_IHH 5ItH5`a5H=i4L8QIxHIuL7P11H=45X5H a5L "4Lw5IXZM{HQ 5ItH5`5H=4L 8IxHIuL=7AU11H=455L 4L,w5H%h5A_IXMH5 h5H=s4L7UIxHIuL6AS11H=45q5L 24Lv5Hg5[A\IH}H5g5H=4H*7IxHIuL[6HL5L #51LTv5H54HIHAP11H=455L 4Lv5HiL5|HAYAZHTH 5HHtH_2I9^H5i5uHNHLCHLPsHHxHHHuHf5Q1H=ܜ4155L 4LVu5HK5H^_HI9^H5W5uHNHLBHL PHHxHHHuH4H_4H5 K5LH=_2藼HHH5J5H=4H;5LHHxHHHuH^4IxHIuLG4H=(|51S IHkH5|5H=4H4IxHIuL3P1ɾH=I455HM5L U4Ls5IIXZMH5Tl5H=m4Lh\IxHIuL3AU1ɾH=45H5L 4Lrs5HSM5A_IXMH5ItH5d5H=4LhMIxHIuL2H}5Ht HH5c5H=4žHHkHE1H1HLHfk IHHxHHHuH^2HHxHHHuH92M1E1E1A=HL=:"HHHHHHLLLLxLpLhL`?"H5b5H=a4LfIxHIuLz1AP1ɾH=45D5L 4Lfq5HK5AYAZIHH5{5H=4H fGIxHIuL1QH=4155L i4Lp5HJ5V^_IHnH59_5H=z4HeIxHIuL0P1ɾH=d45n5HGJ5L 4Lyp5IXZMH5\5H=4L'e_IxHIuL!0AU1ɾH=і455L 4L p5HI5qA_IXMH5ItH5\5H=~4LdIxHIuL/AS1ɾH='455L 4Lo5HI5[A\IHH5!\5H= 4H)d^IxHIuL#/AP1ɾH=455L 4Lo5HH5sAYAZIHH5HH1HH1HHH] HHHxHHHuH$HHxHHHuH$H1E1AHL=-"HHHxHpHhH`1HHHHHHHHH5kU5H=4XGHHxHHHuH#AU1ɾH=j45 5L =4Lc5H75*HA^A_HYH5om5H=`4HgXHHxHHHuHS#AS1ɾH=È45 5L 4L?c5H65裸H[A\HH5Ym5H=4HW2HHxHHHuH"AP1ɾH=45 5L 04Lb5H65HAYAZHBH5l5H=S4HZWHHxHHHuHF"QH=y4155L 4L3b5H55藷H^_HH5fl5H=4HVHHxHHHuH!AV1ɾH=҆45 5H45L 4La5HA_ZH,H5O5H=I4HPVHHxHHHuHH^_H;Hu4HHtHH5YB5H=J4\FHHxHHHuHHHg5Ht HH5A5H=4HH1HH1HHHHI HHHxHHHuHHHxHHHuHHE1E1ALLLLxLpLhL`E1LLLLLLLL=u"HH5@5H=4D\HHxHHHuHAS1ɾH=r45z4L 4LO5H=#5HA\A]HH-4HHtHH5i@5H=4D-HHxHHHuHL5e5AtAH5@5H=4ۚHHME11HLHLHG HHHxHHHuHxIxHIuLaHE1E1E1ALL="LLLxLpLhL`LLLLLLLaHH5>5H=4BHHxHHHuH QH=]p415e4L 4LwM5H(!5ۢH^_HH5>5H= 4HBHHxHHHuH Hc5Ht HH54>5H=4ϘHH1H1HHHHuE HHHxHHHuHi HHxHHHuHD HE1E1E1LLLLxLpLhL`ALLLLLLLL=:"DHH5<5H=o4@HHxHHHuHm AS1ɾH=n45O4L 4LYK5H5轠H[A\HH5U5H=4H?qHHxHHHuH AP1ɾH=wm454L J4LJ5H57HAYAZHH5T5H=e4Ht?HHxHHHuH` QH=l415S4L 4LMJ5H5豟H^_HH5T5H=4H>[HHxHHHuH AV1ɾH=,l454Hg5L 84LI5,HA_ZHlH5 85H=[4Hj>HHxHHHuHV S1ɾH=k45Y4L 4LCI5H5觞HA\A]HH555H=4H=EHHxHHHuHAQ1ɾH=j454L 34LH5H55 HAZA[HVH5J5H=4H& HHxHHHuHIVH=Aj41ɾ5\4L=H5L 4H5蚝H_AXHH5M5H=y4H/ HHxHHHuHP1ɾH=i454H5L !4LG5HZYHE1E1E1LLLLxLpLhL`ALLLLLLLL="H4HHtHH575H=4;HHxHHHuHH5^75H=o4艒HHH^>HHHHxHHHuH=HH565H=4 ;HHxHHHuHAS1ɾH=g454L Y4LE5H5FH[A\H6H 4HHtHH5`65H=a4c:HHxHHHuHOH[5Ht HH565H=4HHHHE11HHLH= HHHxHHHuHHHxHHHuHHE1E1E1ALL= "LLLxLpLhL`LLLLLLLHH545H=48HHxHHHuHQH=Ge4154L 4LC5H5H^_HH545H=E4HD8HHxHHHuH0L5Y5AtAH5p45H=4 HH11HLHHH; HHHxHHHuHIxHIuLHE1E1E1LLLLxLpLhL`ALLLLLLLL= "HH5L35H=46pHHxHHHuHAS1ɾH=+c454L 4LA5H5 H[A\HH5QK5H=J4HI6HHxHHHuH5AP1ɾH=b45o4L 4L!A5HJ5腖HAYAZHH5RK5H=4H5WHHxHHHuHQH=a4154L 4L@5H5H^_HlH5.5H=?4H>5HHxHHHuH*AV1ɾH=:a45t4H5L 4L@5zHA_ZHH5p,5H=4H4E HHxHHHuHS1ɾH=`454L 4L?5Hz5HA\A]HV H5A5H=4H HHxHHHuHAQ1ɾH=_45x4L 4L ?5H5nHAZA[H H5D5H=L4Ht*!HHxHHHuHH= '519 HHb!H5'5H=4H!HHxHHHuH6H=<51 HH!H5a<5H=4Ha"HHxHHHuHH=>?51w HH"H5 ?5H=)4HQ"HHxHHHuHtH=E51 HH0#H5E5H=4H#HHxHHHuHH=E51 HH#H5E5H=g4H,$HHxHHHuHH=E51T HHc$H5E5H=4H.$HHxHHHuHQH=I51 HH$H5lI5H=4Ha%HHxHHHuHL5H B51Ht4H5e4&0HH}%H=q05HIH%HHxHHHuHxH5 4LiHHH54H=˾4H%HHxHHHuHH54LHHH54H=i4H &HHxHHHuHH5 5LHHt^H55H= 4H3#&HHxHHHuHVH5W5LGHHu|E1A LL=S"LLLxLpLhL`LLLLLLLOHH55H=*4U%HHxHHHuHxIxHIuLaH4H551-IH%H=D:5HLHH1&IxHIuLH5N5HIHtPH535H=\4H\&IxHIuLH5n4HIHuy11E1A!HL=!HHxHpHhH`HHHHHHHH5r5H=4H&IxHIuLHHxHHHuHH?5H5-51 ,HH&H=85HIH~&HHxHHHuH]H5.-5LNHHt^H5-5H=4H&HHxHHHuHH5>5LHHu{1A$HL=!HHHxHpHhH`HHHHHHHHH5+>5H=Թ42&HHxHHHuH"IxHIuL HD5H5E4H=v4H&P11H=V45O4H(5L I4L55=IXZM&H5(5H=!4LI&IxHIuLzAU11H= V454L 4Li55H*5͊A_IXM'H5)5H=4L~'IxHIuL AS11H=|U45~4L o4L45HY:5\[A\IH'H5>:5H=?4Hg (IxHIuLH9C5H5* 5H=4e)N(AP1ɾH=T454L ٷ4Lb45H4ƉAYAZIH(H5"5H=x4H)(IxHIuLQH=4T4154L e4L35HG4R^_IH)H5}"5H=4H()IxHIuLP1ɾH=S454H4L 4Lu35IXZM)H5+55H=4L#( *IxHIuLAU1ɾH= S454L 4L 35HZ4mA_IXM2*H5@5H= 4L'*IxHIuLAS1ɾH=yR45C4L 4L25H4[A\IH*H575H=4H;'+IxHIuL5AP1ɾH=Q454L 4L!25H4腇AYAZIHC+H5(5H=74H&+IxHIuLQH=SQ415k4L $4L15H^4^_IH+H5!5H=ž4HT&2,IxHIuLNP1ɾH=P454H4L 4L415蟆IXZMZ,H5b5H=S4L%,IxHIuLAU1ɾH=,P454L ?4L05H94,A_IXM,H55H=߽4Ln%I-IxHIuLhAS1ɾH=O45*4L ˳4LT05H4踅[A\IHo-H55H=k4H$-IxHIuLAP1ɾH=O454L W4L/5Hi4DAYAZIH-H5%5H=4H$^.IxHIuLQH=rN415R4L 4Ll/5H4Є^_IH.H55H=4H$.IxHIuL P1ɾH=M454H94L j4L.5^IXZM/H545H=4L#t/IxHIuLAU1ɾH=KM45}4L 4L.5HX4A_IXM/H5'5H=4L-#/IxHIuL'AS1ɾH=L454L 4L.5HL4w[A\IH"0H565H=*4H"0IxHIuLAP1ɾH=#L454L 4L-5H4AYAZIH0H4ItH515H=4L."0IxHIuL(QH={K415#4L 4L-5H4y^_IH!1H5D5H=-4H!1IxHIuLP1ɾH=J454H 4L 4L,5IXZM1H5*:5H=4LJ!2IxHIuLDAU1ɾH=TJ45N4L 4L0,5H 4蔁A_IXM82Hξ4ItH5`-5H=14L 2IxHIuLAS1ɾH=I454L 4L+5Hg4 [A\IH2H55H=4HL 3IxHIuLFAP1ɾH=I45`4L 4L2+5H4薀AYAZIH53H5,5H=H4H3IxHIuLQH=H4154L 54L*5H4"^_IH3H]4ItH5+5H=4LO4IxHIuLIP1ɾH=G45t4HE4L 4L/*5IXZM54H5+5H=N4L4IxHIuLAU1ɾH=GG45 4L :4L)5H4'A_IXM4H5+5H=ڶ4Li"5IxHIuLcAS1ɾH=F454L Ƭ4LO)5H`4~[A\IHH5H4ItH5+5H=P4L5IxHIuLAP1ɾH= F454L <4L(5H4)~AYAZIH5Hb4ItH5*5H=ŵ4LT 6IxHIuLNQH=aE4154L 4L;(5H,4}^_IH26Hں4ItH5)5H==4L6IxHIuLP1ɾH=D454H4L #4L'5}IXZM6H5Z25H=˴4LZ7IxHIuLTAU1ɾH=$D454L 4L@'5H4|A_IXM37H545H=W4L7IxHIuLAS1ɾH=C45B4L C4L&5Hu40|[A\IH7Hj4ItH55H=ͳ4L\ 8IxHIuLVAP1ɾH=B454L 4LB&5H4{AYAZIH.8H߸4ItH5)5H=B4L|8IxHIuLQH=A415>4L /4L%5H4{^_IH8HW4ItH515H=4LI8IxHIuLCP1ɾH=@454H4L 4L)%5zIXZM9HϷ4ItH5 15H=24Lg9IxHIuLAU1ɾH=+@45=4L 4L$5H4 zA_IXM9H5&5H=4L9IxHIuLGAS1ɾH=?454L 4L3$5H4y[A\IH:H5)5H=z4H|:IxHIuLH=d4] HH:H50&5HjHH(;HHxHHHuHsH4HE11HLHHH HHHxHHHuH HE1E1E1AiLL=!LLXLLxLpLhL`LLLLLL HHxHHHuHXQH==4154L 4LE"5Hn4w^_IH$:H4ItH5,5H=4Lr:IxHIuLP1ɾH=<45k4H4L -4L!5!wIXZM:H\4ItH5~#5H=74LN:IxHIuLHAV1ɾH=8<454L 4L4!5HU4vA_IXM ;Hҳ4ItH5"5H=4LZ;IxHIuLAS1ɾH=;45h4L !4L 5H4vA\A]IH~;H5"5H=4H;IxHIuLIAP1ɾH=:454L 4L5 5HF4uAYAZIH<H5%5H={4Hl<IxHIuLQH=g:4154L 84L5H4%u^_IHH5 5H=Y4Hhv<IxHIuLbH55Ht HH5@ 5H=4+kHH<1H1HHHH IHHxHHHuHHHxHHHuHME1E1E1LLLLxLpLhL`ALLLLLLLL=R!H55H=ۭ4L;IxHIuLAS1ɾH=T8454L G4L5H44s[A\IH<H4ItH55H=Q4L`c<IxHIuLZAP1ɾH=745$4L 4LF5H'4rAYAZIH<H5C 5H=ܬ4H<IxHIuLQH=74154L I4L5H46r^_IH=H5A 5H=j4Hyv=IxHIuLsP1ɾH=645N4H'4L П4LY5qIXZM1E1AHL=!HHHxHpHhH`1HHHHHHHFH55H=(4LP<IxHIuLAT1ɾH=q545c4L 4Lm5H.4pA]A_IH1E1E1AHL=!HHHHHHLLLLxLpLhL`PH5q 5H=24HZ<IxHIuLAP11H=^445x4L 4Lz5H5oAYAZIH<H_4ItH5y5H=4L<IxHIuLQ1H=34154L j4L5H5Wo^_IH#=H55H=;4Hc=IxHIuLP1ɾH=%3454H4L 4Lz5nIXZM=H55H=!4L(>IxHIuL"AU1ɾH=245$4L 4L5HG4rnA_IXMH5<5H=U4L}>IxHIuLAS1ɾH=1454L 4L5H4m[A\IH.H5 5H=4H $>IxHIuL:AP1ɾH=j145L4L 4L&5H4mAYAZIHI>H5{5H=̧4H >IxHIuLQH=04154L )4L5HS4m^_IH>H55H=Z4HY :?IxHIuLSP1ɾH=D045v4H4L 4L95lIXZMa?H55H=4L ?IxHIuLAU1ɾH=/45 4L D4L5HV41lA_IXMlH55H=4L<?IxHIuLmAS1ɾH=/454L Й4LY5H4k[A\IHH55H=4H?IxHIuLAP1ɾH=.4534L \4L5H64IkAYAZIH?H5 4H=4H [@IxHIuLQH=-415Ǿ4L 4Lq5H4j^_IH@H585H=y4H @IxHIuLP1ɾH=c-45]4H~4L o4L5cjIXZMAHn4ItH55H=4L ]AIxHIuLAU1ɾH=,45ܽ4L 4Lv5H4iA_IXMAH55H=}4L AIxHIuLAS1ɾH=&,45p4L y4L5HK4fi[A\IH BH585H= 4HrBIxHIuLAP1ɾH=+454L 4L5H4hAYAZIHBH5s5H=4H3BIxHIuL-QH=+4154L 4L5H4~h^_IH#CH4ItH55H=4LqCIxHIuLP11H=Y*454H4L 4L5gIXZMCHܥ4ItH5V4H=Ǖ4LCIxHIuL AV1ɾH=)454L 4L 5H54pgA_IXMDH525H=4LrDIxHIuLS1ɾH=)45/4L 4L5H4fA\A]IHE1E1E1ALL=!LLLxLpLhL`LLLLLLL{H5D5H=]4HCIxHIuLW1ɾH=(45A4L 4L5H4fAXAYIH11E1AHL=!HHHxHpHhH`HHHHHHHH55H=i4H~CIxHIuLP1ɾH=&45U4Hn4L 4L5eIXZMCH55H=g4LV DIxHIuLPAU1ɾH=`&454L 4L<5H4dA_IXMH5j5H=4LDIxHIuLAS1ɾH=%45~4L ?4L5Hq4,d[A\IH&H5N5H=4H7DIxHIuLhAP1ɾH=8%454L ˑ4LT5H4cAYAZIHH55H=4H DIxHIuLQH=$4154L W4L 5H!4Dc^_IH?H5g5H=(4HP*DIxHIuLP1ɾH=$45<4HE4L ސ4Lg 5bIXZMH55H=4L4DIxHIuLAU1ɾH=#45Ѷ4L r4L 5H4_bA_IXMYH55H=B4Lj]H[A\HFH1I9^H54uHNHLhHLHFHHxHHHuHJAP11H==45o4L 4L95H*4\HAYAZHWFI9^H54uHNHLHLFHHxHHHuHH@4H54LH=1xNHHFH5{4H=4HGHHxHHHuH?IxHIuL(Q1H=415V4L 4L5H5|[^_IHGH55H=`4HGIxHIuLP11H=m454H5L 4L5 [IXZMGH55H=4LHIxHIuLJAU11H=454L 4L95H4ZA_IXM6HHח4ItH5i4H=j4LHIxHIuLAS11H=6454L )4L5H4Z[A\IHHH54H=4H!IIxHIuLRAP11H=454L 4LA5H:4YAYAZIH8IH54H=4HIIxHIuLQH=41534L D4L5H>41Y^_IHH4ItH5V4H=4L^IIxHIuLXH5Ht HH54H=4!OHHI1HH1HHHHIHHxHHHuHHHxHHHuHM1E1A HL=!HHHxHpHhH`1HHHHHHH隲H54H=4LIIxHIuLAU1ɾH=45/4L 84L5H*4%WA_IXMH55H=4Lg IIxHIuLaH5Ht HH5O5H=4*MHH+IHE11HHLHIHHxHHHuHHHxHHHuHM1E1E1A> HL=!HHHHHHLLLLxLpLhL`騰H5)5H=4LHIxHIuLAP1ɾH=45E4L F4L4H043UAYAZIHHH55H=4Ht IIxHIuLnQH=A415٩4L ҂4L[4H4T^_IHH524H=4HIIxHIuLH}5Ht HH54H=[4JHH2I1H1HHHHkIHHxHHHuHcHHxHHHuH>ME1E1E1LLLLxLpLhL`A LLLLLLLL=!CH54H=54LHIxHIuL~AS1ɾH=.454L 4Lj4H4R[A\IHH5 4H=4HHIxHIuL H5Ht HH54H=i4HHHHHHE11HHLHqIHHxHHHuHiHHxHHHuHDME1E1E1A LL=R!LLLxLpLhL`LLLLLLLIH54H=;4LHIxHIuL脻QH=4154L ~4Lq4H4P^_IHH5p5H=Ɉ4H HIxHIuLH5Ht HH55H=q4FHH*H1H1HHHHIHHxHHHuHyHHxHHHuHTME1E1A LLLLxLpLhL`E1LLLLLLLL=!YH55H=K4LGIxHIuL蔹AS1ɾH= 454L |4L4H4NA\A]IHH54H=ֆ4H%GIxHIuLH5Ht HH54H=~4DHHGHE11HHLHIHHxHHHuH腸HHxHHHuH`ME1E1E1A LL=n!LLLxLpLhL`LLLLLLLeH5v4H=W4LGIxHIuL蠷QH= 415+4L {4L4H.4L^_IHH54H=4H4 GIxHIuL.H 5Ht HH54H=4BHH'G1H1HHHHIHHxHHHuH蕶HHxHHHuHpM1E1A HL=}!HHHxHpHhH`1HHHHHHHwH54H=i4LFIxHIuL貵AU1ɾH=45D4L y4L4H74KA_IXMH54H=4LDFIxHIuL>H 5Ht HH5<4H=4AHHFHE1H1HLHIHHxHHHuH蠴HHxHHHuH{M1E1E1A HL=!HHHHHHLLLLxLpLhL`遤H54H=s4LEIxHIuL輳AP1ɾH=45V4L w4L4H4 IAYAZIH!FH4ItH54H=4L7oFIxHIuL1QH=$415ԝ4L v4L4H4H^_IHFH4ItH5W4H=`4LFIxHIuL該P1ɾH=z45T4H4L v4L4GIXZMGH54H=u4LsGIxHIuL7AU1ɾH=454L u4L#4H4GA_IXMGH54H=ju4L蒲GIxHIuLñAS11H=V454L )u4L4H4G[A\IH$HH4ItH54H=t4L rHIxHIuLNIxHIuLHH54H=n4誫NHHxHHHuHͪH=N4$ HHNHƿ1肹IHOHHxHHHuHqLk3HH\OH1(HHOH4L 4HL74HH4HHOHI9uIHLH5!Fy1AmHL=!HHxHpHhH`HHHHHHIuL\HHl4H54H9XuHNH H7~OHHH54H0IHOH5k4H=dl4H茩PIxHIuL轨HHxHHHuH蘨HHxHHHuHsHHxHHHuHNHk4H54H=r4OE11ɾD%y4H=43AU54L k4L4H4r=HA^A_H1E1E1AHL=z!HHHHHHLLLLxLpLhL`HH54H=j4]OHHxHHHuHAP1ɾH=354L yj4L4H4f<HAYAZH11E1AHL=o!HHHxHpHhH`HHHHHHHHH54H=i4NHHxHHHuH Hi4H5]4H=~p4ORHHfOHw41ɾH=3P54Hԧ4L %i4L4;HZYHH54H=h4H!OHHxHHHuHDAU1ɾH=3564L h4L04HI4:HA^A_H.H54H=rh4H蚥rOHHxHHHuH轤AS1ɾH=M354L h4L4H4 :H[A\HOH54H=o4HKOHHxHHHuH7AP1ɾH=3594L g4L#4H49HAYAZHOHLx4HHtHH54H=Yn4;PHHxHHHuH菣QH=3154L f4L|4H48H^_HPPHw4HHtHH5c4H=m4PHHxHHHuHAV1ɾH=354HE4L Ff4L4:8HA_ZHH54H=f4HAPHHxHHHuHdS1ɾH=u354L e4LQ4H47HA\A]HOH54H=e4H転xPHHxHHHuHޡAQ1ɾH=354L Ae4L4H4.7HAZA[HH54H=q4HkjPHHxHHHuHWH4Ht HH54H=4q4&-HH~PHE1H1HLHHHHxHHHuH軠HHxHHHuH薠H11E1AHL=6!HHHxHpHhH`HHHHHHH阐HH54H=o4OHHxHHHuHP1ɾH=354H4L c4L45HZYHOH514H=zo4HQ@PHHxHHHuH=AU1ɾH=35o4L b4L)4Hj44HA^A_HH5R4H=kb4H蓟4PHHxHHHuH趞AS1ɾH=F354L b4L4H44H[A\HH5$4H=a4H (PHHxHHHuH0AP1ɾH=35r4L a4L4HE43HAYAZH8PH54H=Vk4HPHHxHHHuH詝QH=3154L a4L4HǏ42H^_HPH1p4HHtHH54H=j4PHHxHHHuHAV1ɾH=435V4H74L ``4L4T2HA_ZHQHo4HHtHH5f4H=j4qDQHHxHHHuH]S1ɾH=n354L _4LJ4Hk41HA\A]HVQH5k4H=i4HQHHxHHHuHכAQ1ɾH=3594L :_4L4Hč4'1HAZA[HQH54H=h4Hd-RHHxHHHuHPVH=(31ɾ54LD4L ^4HF40H_AXH?RH54H=xh4HRHHxHHHuH˚P1ɾH=|35>4H׌4L (^4L40HZYHE1E1ALLLLxLpLhL`E1LLLLLLLL=Ť!阊HH5Z4H=s]4螚RHHxHHHuHS1ɾH=R35<4L %]4L4HNj4/HA\A]HE1E1E1ALL=!LLLxLpLhL`LLLLLLL錉HH54H=g\4蒙QHHxHHHuH赘H6c4tLW1HߺL)H?_HHxHHuHaHE1E1E1AbLL=!LLXLLxLpLhL`LLLLLLaHHKb4Hi4tW1LH?H)tHHxHHuHvH11E1AbHL=!HXHHxHpHhH`HHHHHHHxH1赥HHOHHxHHHuH蠖P1ɾH=35#4HL4L Y4L4+HZYHOHHtHHxHHHuHHH54H=f4PHHxHHHuHוAU1ɾH='35a4L :Y4L4Hd4'+HA^A_H H54H=Y4H-PHHxHHHuHPAS1ɾH=354L X4L<4H4*H[A\HH54H=X4H觕OHHxHHHuHʔH34L4E11H5HX4HHHPAP11H=3554L W4L4H4)HAYAZHXPHH51H9pH54uHNHH HH$PHHxHHHuHHHqW4H5B4H=1HHPH54H=(W4HPQHHxHHHuHsHHxHHHuHNQH=A315~4L V4L;4H4(H^_HPH54H=`4HMQHHxHHHuHʒAV1ɾH=35t~4H54L &V4L4(HA_ZH_QH504H=_4HXQHHxHHHuHDS1ɾH=35wg4L U4L14H4'HA\A]HQH5z4H=s_4H4RHHxHHHuH辑AQ1ɾH=N35p}4L !U4L4H 4'HAZA[HDRH54H=^4HKRHHxHHHuH7H=4+ HHRH54H|HHDSHHxHHHuHאHH54H=B^4xSHHxHHHuH萐VH=31ɾ5K|4L4L S4H4%H_AXHSH54H=]4HSHHxHHHuH P1ɾH=\35{4H4L hS4L4\%HZYHTH54H=<]4HbTHHxHHHuH臏AU1ɾH=35Q{4L R4Ls4H|4$HA^A_HrTH54H=\4HTHHxHHHuHAS1ɾH=35z4L cR4L4H%4P$H[A\HTH5f4H=/\4HLUHHxHHHuHzAP1ɾH=j35Tz4L Q4Lf4H4#HAYAZH^UH54H=[4HUHHxHHHuHQH=315y4L WQ4L4H 4D#H^_HH54H=$[4HUHHxHHHuHoL54AtAH54H=Z4JHHU1H1LHHHHHHHxHHHuHIxHIuLʌHE1E1A_LLLLxLpLhL`E1LLLLLLLL=!|HH54H=Y4-UHHxHHHuHAS1ɾH=35w4L VO4L4Hؗ4C!HA\A]H=UHx^4HHtHH5t4H=X4_UHHxHHHuHKAP1ɾH=35=w4L N4L74Hh4 HAYAZHH5x4H=yX4HؿtUHHxHHHuHĊHE4Ht HH54H=X4HHU11HHHHH3HHHxHHHuH'HHxHHHuHH11E1AHL=!HHHxHpHhH`HHHHHHHzHH5޼4H=V4ATHHxHHHuH-AV1ɾH=35'u4Hx4L L4L4}HA_ZH/H[4HHtHH54H=8V4蚽THHxHHHuH膈H4Ht HH54H=U4UHHTHE11HHLHHHHxHHHuHHHxHHHuHɇH1E1E1AHL=h!HHHxHpHhH`LLLLLLLwHH5t4H=T4THHxHHHuHAQ1ɾH=C35r4L VJ4L4H(4CHAZA[HH5P4H=!T4H耻SHHxHHHuHlL54AtAH54H=S4GHHTLE11LHLLHHHHxHHHuH݅IxHIuLƅH11E1AHL=f!HHHxHpHhH`HHHHHHHuHH5ҵ4H=R4pSHHxHHHuHP1ɾH="35p4H4L NH4L4BHZYHE11E1ALLLLxLpLhL`L=!HHHHHHHtHH54H=G4ńRHHxHHHuHS1ɾH=35o4L LG4L4H49HA]A^HE1E1E1ALL=@!LLLxLpLhL`LLLLLLLsHH54H=F4蹃PRHHxHHHuH܂HeM4tW1LH?H)荻HHxHHuH菂HE1E1E1ALL=-!LLXLLxLpLhL`LLLLLLrHHL4HS4tW1LH?H)袺HHxHHuH褁H11E1AHL=D!HHXHHxHpHhH`HHHHHHqL-1H1LُIHPHHxHHHuHȀAW1ɾH=35l4HS4L $D4L4HZYHPLAtAIxHIuL^HH5м4H=aP4+PHHxHHHuHS1ɾH=35:l4L {C4L4H4hHA\A^H$H5-4H=FC4HnPHHxHHHuHAQ1ɾH=A35k4L B4L}4H4HAZA[HH54H=B4HPHHxHHHuH HI4tLW1HߺL)H?贷HHxHHuH~H1E1E1AHL=U!HHXHHxHpHhH`LLLLLLnHHH4HO4tW1LH?H)ʶHHxHHuH}H11E1AHL=l!HHXHHxHpHhH`HHHHHHmHL1IHHOHHxHHHuH|AU1ɾH=35)i4Hڈ4L S@4Lܼ4GHA_ZH[OLAtAIxHIuL|HH54H=L4YOHHxHHHuHE|AS1ɾH=35h4L ?4L14H 4H[A\HRH5[4H=t?4H|OHHxHHHuH{AP1ɾH=35h4L "?4L4H4HAYAZHH5,4H=>4H|tOHHxHHHuH8{H=q4, HHOH5O41HIHPHHxHHHuHzH54H=L>4Lt{KPIxHIuLzH=v4 IHPHƿ1^HHPIxHIuLWzHMIHFQH1HHQH4L 4LHL4HHHQL9uHHHHH5֟!(|y1A4HL=b!HHxHpHhH`HHHHHiHHHuH7yHH5a1H<4H9pH5w4uHNH H VQHH54LHHHQH54H=8<4H`yQHHxHHHuHxHHxHHHuH^xHHxHHHuH9xIxHIuL"xHB4tLW1HߺL)H?̰HHxHHuHwH11E1ARHL=n~!HHXHHxHpHhH`HHHHHHgHHA4HI4tW1LH?H)IHxHHuHvM1ARHL=}!HHXHHxHpHhH`HHHHHHHfH5ߡ1L1H%HHOIxHIuLvP1ɾH=O35ib4Hʁ4L {94L4o IXZMPHIt HHHxHHHuHuH54H=E4LjPIxHIuLduAV1ɾH=t35a4L 84LP4H 4 A_IXM=PH54H=?E4LPIxHIuLtH54H= E4IHPH5Ҧ4H=D4H袩MQIxHIuLtS1ɾH=35`4L 84L4HJ4 A\A]IHrQH5&4H=wD4H.QIxHIuL(tAQ1ɾH=35`4L 74L4H4x AZA[IHQH5i4H=D4H蹨^RIxHIuLsH=4 IHRH5T4HHH SIxHIuLesHH54H=xC42OSHHxHHHuHsVH=־31ɾ5_4L4L {64H~4oH_AXHaSH5%4H=B4H譧SHHxHHHuHrP1ɾH=*35 _4H-~4L 54L4HZYHSH54H=rB4H)=THHxHHHuHrAU1ɾH=35^4L x54L4H}4eHA^A_HOTH5*4H=C54HkrTHHxHHHuHqAS1ɾH=޼35^4L 44Lz4H#}4H[A\HTH54H=44Hq%UHHxHHHuHqAP11H=;35]4L n44L4H4[HAYAZH8UH54H=944HaqUHHxHHHuHpQ1H=315]4L 34Lt4Hm4H^_HUH5O4H=34HpVHHxHHHuHpAV11H=35\4H4L b34L4VHA_ZH+VH54H=534H]pVHHxHHHuHoS11H=T35&\4L 24Lp4H14HA\A]HVH54H=24HoWHHxHHHuHnAQ11H=35[4L c24L4Hu4PHAZA[HWH5U4H=.24HVo{WHHxHHHuHynVH=3115/[4Lp4L 14H"4H_AXHWHA4HHtHH5߯4H=14nWHHxHHHuHmP11H=J35Z4H4L 614L4*HZYHWHa@4HHtHH554H=04n-XHHxHHHuH4mAU11H=35Y4L 04L#4H4HA^A_HBXH54H=e04HmXHHxHHHuHlAS11H=35}Y4L 04L4H`4H[A\HE1E1E1ALL= w!LLLxLpLhL`LLLLLLL~\HH54H=Y/4lXHHxHHHuHkVH=3115}X4L4L /4H`4H_AXHH5A4H=.4Hl XHHxHHHuH%kP11H=35X4H4L .4L4yHZYHwH5ȫ4H=Y.4HkXHHxHHHuHj誖HH>XHy4H5<4H$kXH[4H5c4Hk !H+\4H5c4Hj HɅ4H5c4Hj Hs4H5c4Hj Hj4H5c4Hzj Hky4H5dc4HXjv Hx4H5zc4H6jT H'4H5He4Hj2 H݃4H5e4Hi HC4H5 e4HiHa4H52m4HiH4H5m4HiHm4H5l4HjiH 4H5$m4HHifHI4H5 m4H&iDH4H5k4Hi"H4H5k4HhHc4H5dm4HhH4H5Jm4HhH4H5m4H|hHM4H5l4HZhxHSz4H5l4H8hVHт4H5zg4Hh4H4H5`g4HgH%4H5.g4HgH+v4H5D}4HgHAy4H5|4HgHv4H5|4HlgH]k4H5|4HJghH3k4H5|4H(gFH4H524Hg$H4H54HfHu4H54HfH34H5܂4HfH 4H54H~fHׁ4H5(4H\fzH4H5.4H:fXH4H5b4Hf6H!4H5"`4HeH4H5`4HeH4H5`4HeH4H5_4HeH4H5*_4HneH4H5_4HLejHm4H5_4H*eHHk4H5_4He&Hr4H5Ҧ4HdH'4H5 4HdHU~4H5~b4HdH[4H5b4HdH14H5Zb4H^d|H4H50b4Hb4Hd8H[\4H5 b4HcHiP4H5*b4HcHOP4H5a4HcH5P4H5a4HcHc4H5\a4HpcHq4H5t4HNclH_~4H5Ht4H,cJHE~4H5t4H c(H+~4H5s4HbHm4H5Zs4HbH_|4H5Hs4HbHq4H5Vs4HbHt4H5s4H`b~Hp4H52s4H>b\Hp4H5s4Hb:HN4H5~r4HaHN4H5r4HaHo4H5s4HaHo4H5s4HaHMN4H5s4HraH4H5r4HPanHY4H5r4H.aLH7X4H5؏4H a*HX4H54H`HX4H54H`HX4H5«4H`HX4H54H`HX4H5N4Hb`H;X4H5 4H@`^HQX4H54H`<HW4H5ؓ4H_HX4H54H_HW4H54H_HW4H54H_HW4H54Ht_HW4H5ާ4HR_pHV4H54H0_NHV4H5b4H_,HV4H54H^ HuV4H54H^H;V4H5<4H^H!W4H5*4H^HU4H54Hd^HU4H54HB^`HU4H5܈4H ^>HU4H54H]HT4H54H]HJ4H54H]H;V4H54H]HU4H54Hv]HU4H54HT]rHJ4H54H2]PHcT4H54H].HT4H54H\ HS4H54H\HS4H5>4H\H{S4H54H\HIS4H5 4Hf\H?S4H5X4HD\bHmW4H54H"\@HS4H5\4H\HS4H5 4H[HS4H54H[HmS4H5f4H[HkS4H5D4Hx[HQ4H524HV[tHQ4H5x4H4[RHMR4H5ƞ4H[0HsS4H5}4HZHR4H54HZHR4H54HZH=Q4H5d4HZHO4H5LH4HhZHy4H5I4HFZdHoh4H5I4H$ZBHh4H5I4HZ HO4H5$]4HYHh4H5]4HYHOh4H5\4HYHeh4H5[4HzYHKO4H5\4HXYvH)h4H5\4H6YTHg4H5\4HY2Hg4H5\4HXHN4H5[4HXHg4H5z[4HXHWg4H5H[4HXH=g4H5.[4HjXHCN4H5\4HHXfHN4H5ZW4H&XDHg4H5@W4HX"HMN4H5fV4HWH#N4H5G4HW HQM4H5R4HW He4H5L4H|W He4H5fK4HZWx H;e4H5K4H8WV H_4H52K4HW4 H?s4H5K4HV H5r4H5~J4HV He4H5J4HV Hd4H5ZJ4HV Hd4H5XJ4HlV Hmd4H5I4HJVh HCe4H5I4H(VF HAd4H5bJ4HV$ HOH4H5H4HU H=K4H5H4HU HU4H5,I4HU HU4H5H4H~U HJ4H5J4H\Uz HJ4H5I4H:UX HJ4H5LI4HU6 Hf4H5rH4HT H?S4H5H4HT Hf4H5H4HT H{b4H5G4HT Hs4H5I4HnT H\4H5pH4HLTj He4H56G4H*TH HJ4H5G4HT& HJ4H5G4HS HgJ4H50H4HS HI4H5&{4HS Hke4H5k4HS HZ4H5rk4H^S| H7W4H5Xk4H4H5~i4HQHI4H5^4H`Q~HY4H5j^4H>Q\HY4H5P^4HQ:H%b4H5f^4HPH+m4H5]4HPH!l4H5]4HPHW=4H5H]4HPHH4H5]4HrPHc^4H5]4HPPnHH4H5]4H.PLHGp4H5]4H P*H}E4H5]4HOHcB4H5\4HOHqa4H5"]4HOHA4H5H\4HOHE4H5^\4HbOHKE4H5,\4H@O^H!E4H5*\4HO<HE4H5\4HNHuD4H5>f4HNH`4H5e4HNH)G4H5e4HNHM4H5d4HtNHR4H5d4HRNpHl4H5e4H0NNH@4H5bd4HN,Hg@4H5d4HM HED4H5^d4HMHC4H5d4HMHC4H5*d4HMHC4H5c4HdMHC4H5d4HBM`HC4H5d4H M>H1^4H52d4HLH?U4H5c4HLH=U4H5c4HLHh4H5c4HLHg4H5*c4HvLH94H5pb4HTLrHD4H5>c4H2LPH+Z4H5dc4HL.HiD4H5 c4HK HGF4H5b4HKHU4H5b4HKHU4H5db4HKHB4H54HfKHB4H54HDKbH@4H5s4H"K@H@4H5s4HKHU4H5`4HJHA4H5d4HJH@4H56d4HJHY4H5c4HxJHY4H5c4HVJxxHP4H5tc4H8JxZHK4H5c4HJx%E1A#LL=J?!LLXL%1E1A$HHL= ?!HHXLL$H11ɻHL=>!A$HXHH$11L=>!HA%HHHHXH?$1A%HHL=E>!HX1HH$1AHHL=>!HX1HH#E1E1A'LLXLLxLpLhL`E1LLLLLL=|=!O#E1E1E1LL=[=!LLLLA'LLLXLLxLpLhL`"E11E1AHL= LLxLpLhL`LLLLLLL^u1E1E1Ak HL=ċ HHXHxHpHhH`LLLLLLLt11E1Ak HL=D HHxHpHhH`HHHHHHHdt11E1A HL=ˊ HHXHxHpHhH`HHHHHHHs1E1A HL=H HHxHpHhH`1HHHHHHHks1E1A HL=ω HHXHxHpHhH`1HHHHHHHrE1E1A LLLxLpLhL`E1LLLLLLLL= prE1E1E1LL=ֈ LLLLLLA& LLLxLpLhL`qE11E1A& HL=[ HHHHHLLLXLxLpLhL`{qE1E1E1A& LL= LLLxLpLhL`LLLLLLq1E1E1AT HL=f HHXHHxHpHhH`LLLLLLp11E1AT HL= HHHxHpHhH`HHHHHHp11E1A| HL=m HHXHHxHpHhH`HHHHHHo1E1A| HL= HHHxHpHhH`1HHHHHH o1E1A HL=q HHXHHxHpHhH`1HHHHHHnE1E1A LLLLxLpLhL`E1LLLLLLL= nE1E1E1LL=x LLLLLA LLLXLLxLpLhL`mE11E1A HL= HHHHHLLLLxLpLhL`mE1E1E1A LL={ LLXLLxLpLhL`LLLLLLl1E1E1A HL= HHHxHpHhH`LLLLLLl11E1A HL= HHXHHxHpHhH`HHHHHHk11E1A HL= HHHxHpHhH`HHHHHH!k1E1A HL= HHXHHxHpHhH`1HHHHHHj1E1A HL= HHHxHpHhH`1HHHHHH(jE1E1A9 LLLXLLxLpLhL`E1LLLLLLL=- iE1E1E1LL= LLLLLA9 LLLLxLpLhL`+iE11E1AX HL= HHHHHLLLXLLxLpLhL`hE1E1E1AX LL= LLLxLpLhL`LLLLLL/h1E1E1A} HL=~ HHXHHxHpHhH`LLLLLLg11E1A} HL=~ HHHxHpHhH`HHHHHH5g11E1A HL=} HHXHHxHpHhH`HHHHHHf1E1A HL=} HHHxHpHhH`1HHHHHH1E1A/HL= U HXHHxHpHhH`1HHHHHHH'>1E1A/HL=T HHxHpHhH`1HHHHHHH=E1E1ADLLXLLxLpLhL`E1LLLLLLLL=S ,=E1E1E1LL=S LLLLLLADLLLxLpLhL`<1E1E1AYHL=S HHHHHHLLXLLxLpLhL`0<E1E1E1AYLL=R LLxLpLhL`LLLLLLL;1E1E1A{HL=R HXHHxHpHhH`LLLLLLL4;11E1A{HL=Q HHxHpHhH`HHHHHHH:11E1AHL="Q HXHHxHpHhH`HHHHHHH;:1E1AHL=P HHxHpHhH`1HHHHHHH91E1AHL=&P HXHHxHpHhH`1HHHHHHHB9E1E1ALLLxLpLhL`E1LLLLLLLL=NO 8E1E1E1LL=-O LLLLLLALLXLLxLpLhL`E81E1E1AHL=N HHHHHHLLLxLpLhL`7E1E1E1ALL=0N LXLLxLpLhL`LLLLLLLI7E11E1AHL=M HHxHpHhH`LLLLLLL611E1AVHL=6M HXHHxHpHhH`HHHHHHHO611E1AVHL=L HHxHpHhH`HHHHHHH51E1AuHL=:L HXHHxHpHhH`1HHHHHHHV51E1AuHL=K HHxHpHhH`1HHHHHHH4E1E1ALLXLLxLpLhL`E1LLLLLLLL=J [4E1E1E1LL=J LLLLLLALLLxLpLhL`31E1E1AHL=FJ HHHHHHLLXLLxLpLhL`_3E1E1E1ALL=I LXLLxLpLhL`LLLLLL21E1E1AHL=JI HXHHxHpHhH`LLLLLLj211E1AHL=H HHxHpHhH`HHHHHHH111E1AHL=XH HXHHxHpHhH`HHHHHHHq11E1AHL=G HHxHpHhH`1HHHHHHH01E1AHL=\G HXHHxHpHhH`1HHHHHHHx0E1E1ALLLxLpLhL`E1LLLLLLLL=F /E1E1E1LL=cF LLLLLLALLXLLxLpLhL`{/1E1E1AHL=E HHHHHHLLLxLpLhL`/E1E1E1A0LL=fE LXLLxLpLhL`LLLLLLL.E11E1A0HL=D HHxHpHhH`LLLLLLL.11E1A?HL=lD HXHHxHpHhH`HHHHHHH-11E1A?HL=C HHxHpHhH`HHHHHHH -1E1ANHL=pC HXHHxHpHhH`1HHHHHHH,1E1ANHL=B HXHHxHpHhH`1HHHHHH,E1E1ANLLXLLxLpLhL`E1LLLLLLL=B +E1E1E1LL=A LLLLLLANLLLxLpLhL`+1E1E1AHL=A HHHHHHLLXLLxLpLhL`*E1E1E1ALL=A LLxLpLhL`LLLLLLL!*1E1E1AHL=@ HXHHxHpHhH`LLLLLLL)11E1AHL=@ HHxHpHhH`HHHHHHH')11E1AHL=? HXHHxHpHhH`HHHHHHH(1E1AHL= ? HHxHpHhH`1HHHHHHH.(1E1AHL=> HXHHxHpHhH`1HHHHHHH'E1E1ALLLxLpLhL`E1LLLLLLLL== 3'E1E1E1LL== LLLLLLA`LLXLLxLpLhL`&1E1E1A`HL== HHHHHHLLLxLpLhL`7&E1E1E1ALL=< LXLLxLpLhL`LLLLLLL%E11E1AHL=< HHxHpHhH`LLLLLLL;%11E1AHL=; HXHHxHpHhH`HHHHHHH$11E1AHL="; HHxHpHhH`HHHHHHHB$1E1AHL=: HXHHxHpHhH`1HHHHHHH#1E1AHL=&: HHxHpHhH`1HHHHHHHI#E1E1A6LLXLLxLpLhL`E1LLLLLLLL=N9 "E1E1E1LL=-9 LLLLLLA6LLLxLpLhL`L"1E1E1A_HL=8 HHHHHHLLXLLxLpLhL`!E1E1E1A_LL=08 LLxLpLhL`LLLLLLLP!1E1E1AyHL=7 HXHHxHpHhH`LLLLLLL 11E1AyHL=67 HXHHxHpHhH`HHHHHHV 11E1AyHL=6 HXHHxHpHhH`HHHHHH1E1AyHL=A6 HHxHpHhH`1HHHHHHHd1E1AHL=5 HXHHxHpHhH`1HHHHHHHE1E1ALLLxLpLhL`E1LLLLLLLL=4 iE1E1E1LL=4 LLLLLLALLXLLxLpLhL`1E1E1AHL=M4 HHHHHHLLLxLpLhL`mE1E1E1ALL=3 LXLLxLpLhL`LLLLLLLE11E1AHL=Q3 HHxHpHhH`LLLLLLLq11E1A>HL=2 HXHHxHpHhH`HHHHHHH11E1A>HL=X2 HHxHpHhH`HHHHHHHx1E1AyHL=1 HXHHxHpHhH`1HHHHHHH1E1AyHL=\1 HXHHxHpHhH`1HHHHHHE1E1AyLLLxLpLhL`E1LLLLLLL=0 E1E1E1LL=q0 LLLLLAzLLXLLxLpLhL`1E1E1AyHL=/ HHHHHLLLxLpLhL`E1E1E1A{LL=/ LXLLxLpLhL`LLLLLL1E1E1AyHL=/ HHxHpHhH`LLLLLL/11E1A|HL=. HXHHxHpHhH`HHHHHH11E1AyHL=. HHxHpHhH`HHHHHHD1E1A}HL=- HXHHxHpHhH`1HHHHHH1E1AyHL=/- HHxHpHhH`1HHHHHHYE1E1A~LLXLLxLpLhL`E1LLLLLLL=e, E1E1E1LL=D, LLLLLAyLLLxLpLhL`jE11E1AHL=+ HHHHHLLXLLxLpLhL`E1E1E1AyLL=U+ LLxLpLhL`LLLLLL|1E1E1AHL=* HXHHxHpHhH`LLLLLL11E1AyHL=i* HHxHpHhH`HHHHHH11E1AHL=) HXHHxHpHhH`HHHHHH1E1AyHL={) HHxHpHhH`1HHHHHH1E1AHL= ) HXHHxHpHhH`1HHHHHH,E1E1AyLLLxLpLhL`E1LLLLLLL=?( E1E1E1LL=( LLLLLALLXLLxLpLhL`=1E1E1AyHL=' HHHHHLLLxLpLhL`E1E1E1ALL=/' LXLLxLpLhL`LLLLLLO1E1E1AyHL=& HHxHpHhH`LLLLLL11E1AHL=C& HXHHxHpHhH`HHHHHHc11E1AyHL=% HHxHpHhH`HHHHHH1E1AHL=U% HXHHxHpHhH`1HHHHHHx1E1AyHL=$ HHxHpHhH`1HHHHHHE1E1ALLXLLxLpLhL`E1LLLLLLL=$ E1E1E1LL=# LLLLLAyLLLxLpLhL` E11E1AHL=}# HHHHHLLXLLxLpLhL` E1E1E1AyLL=# LLxLpLhL`LLLLLL) 1E1E1AHL=" HXHHxHpHhH`LLLLLL 11E1AyHL=" HHxHpHhH`HHHHHH= 11E1AHL=! HXHHxHpHhH`HHHHHH 1E1AyHL=(! HHxHpHhH`1HHHHHHR 1E1AHL= HXHHxHpHhH`1HHHHHH E1E1AyLLLxLpLhL`E1LLLLLLL= e E1E1E1LL= LLLLLALLXLLxLpLhL`1E1E1AyHL=P HHHHHLLLxLpLhL`wE1E1E1ALL= LXLLxLpLhL`LLLLLL1E1E1AyHL=b HHxHpHhH`LLLLLL11E1AHL= HXHHxHpHhH`HHHHHH11E1AyHL=w HHxHpHhH`HHHHHH1E1AHL= HXHHxHpHhH`1HHHHHH%1E1AyHL= HHxHpHhH`1HHHHHHE1E1ALLXLLxLpLhL`E1LLLLLLL= 8E1E1E1LL= LLLLLAyLLLxLpLhL`E11E1AHL=* HHHHHLLXLLxLpLhL`JE1E1E1AyLL= LLxLpLhL`LLLLLL1E1E1AHL=< HXHHxHpHhH`LLLLLL\11E1AyHL= HHxHpHhH`HHHHHH11E1AHL=Q HXHHxHpHhH`HHHHHHq1E1AyHL= HHxHpHhH`1HHHHHH1E1AHL=c HXHHxHpHhH`1HHHHHHE1E1AyLLLxLpLhL`E1LLLLLLL= E1E1E1LL=x LLLLLALLXLLxLpLhL`1E1E1AyHL= HHHHHLLLxLpLhL`$E1E1E1ALL= LXLLxLpLhL`LLLLLL1E1E1AyHL= HHxHpHhH`LLLLLL611E1AHL= HXHHxHpHhH`HHHHHH11E1AyHL=$ HHxHpHhH`HHHHHHK1E1AHL= HXHHxHpHhH`1HHHHHH1E1AyHL=6 HHxHpHhH`1HHHHHH`E1E1ALLXLLxLpLhL`E1LLLLLLL=l E1E1E1LL=K LLLLLAyLLLxLpLhL`qE11E1AHL= HHHHHLLXLLxLpLhL`E1E1E1AyLL=\ LLxLpLhL`LLLLLL1E1E1AHL= HXHHxHpHhH`LLLLLL 11E1AyHL=p HHxHpHhH`HHHHHH11E1AHL= HXHHxHpHhH`HHHHHH1E1AyHL= HHxHpHhH`1HHHHHH1E1AHL= HXHHxHpHhH`1HHHHHH3E1E1AyLLLxLpLhL`E1LLLLLLL=F E1E1E1LL=% LLLLLALLXLLxLpLhL`D1E1E1AyHL= HHHHHLLLxLpLhL`E1E1E1ALL=6 LXLLxLpLhL`LLLLLLV1E1E1AyHL= HHxHpHhH`LLLLLL11E1AHL=J HXHHxHpHhH`HHHHHHj11E1AyHL= HHxHpHhH`HHHHHH1E1AHL=\ HXHHxHpHhH`1HHHHHH1E1AyHL= HHxHpHhH`1HHHHHH E1E1ALLXLLxLpLhL`E1LLLLLLL= E1E1E1LL= LLLLLAyLLLxLpLhL`1E1E1AyHL= HHHHHLLLxLpLhL`E1E1E1AyLL= LLxLpLhL`LLLLLL71E1E1AyHL= HHxHpHhH`LLLLLL11E1AyHL=+ HHxHpHhH`HHHHHHR11E1AyHL= HHxHpHhH`HHHHHH1E1AyHL=D HHxHpHhH`1HHHHHHn1E1AyHL= HHxHpHhH`1HHHHHHE1E1AyLLLxLpLhL`E1LLLLLLL= E1E1E1LL= LLLLLAyLLLxLpLhL`1E1E1AyHL=z HHHHHLLLxLpLhL`E1E1E1AyLL= LLxLpLhL`LLLLLL-1E1E1AyHL= HHxHpHhH`LLLLLL11E1AyHL=! HHxHpHhH`HHHHHHH11E1AHL= HXHHxHpHhH`HHHHHHH1E1AHL=, HHxHpHhH`1HHHHHHHO1E1AHL= HXHHxHpHhH`1HHHHHHHE1E1ALLLxLpLhL`E1LLLLLLLL= TE1E1E1LL= LLLLLLALLXLLxLpLhL`1E1E1AHL=8 HHHHHHLLLxLpLhL`XE1E1E1A3LL= LXLLxLpLhL`LLLLLLLE11E1A3HL=< HHxHpHhH`LLLLLLL\11E1AOHL= HXHHxHpHhH`HHHHHHH11E1AOHL=C HHxHpHhH`HHHHHHHc1E1A[HL=HXHHxHpHhH`1HHHHHHH1E1A[HL=GHHxHpHhH`1HHHHHHHjE1E1AgLLXLLxLpLhL`E1LLLLLLLL=oE1E1E1LL=NLLLLLLAgLLLxLpLhL`m1E1E1A{HL=HHHHHHLLXLLxLpLhL`E1E1E1A{LL=QLLxLpLhL`LLLLLLLq1E1E1AHL=} HXHHxHpHhH`LLLLLLL11E1AHL=HHxHpHhH`HHHHHHHw11E1AHL=HXHHxHpHhH`HHHHHHH1E1AHL=HHxHpHhH`1HHHHHHH~1E1AHL=HHxHpHhH`1HHHHHHHE1E1ALLXLLxLpLhL`E1LLLLLLLL=%E1E1E1LL=LLLLLLALLLxLpLhL`1E1E1AHL=HHHHHHLLXLLxLpLhL`E1E1E1ALL=LLxLpLhL`LLLLLLL 1E1E1AHL=HXHHxHpHhH`LLLLLLL11E1AHL= HXHHxHpHhH`HHHHHH11E1AHL=HXHHxHpHhH`HHHHHH1E1AHL=HHxHpHhH`1HHHHHH'1E1AHL=HHXHHxHpHhH`1HHHHHHE1E1ALLXLLxLpLhL`E1LLLLLLL=,E1E1E1LL=LLLLLALLLxLpLhL`1E1E1AHL=9HHHHHLLLxLpLhL`EE1E1E1AILL=LXLLxLpLhL`LLLLLLLE11E1AIHL=DHHxHpHhH`LLLLLLLI11E1AaHL=HXHHxHpHhH`HHHHHHH11E1AaHL=KHHxHpHhH`HHHHHHHP1E1AaHL=HXHHxHpHhH`1HHHHHH1E1AaHL=VHHHxHpHhH`1HHHHHH^E1E1A~LLLXLLxLpLhL`E1LLLLLLL=~E1E1E1LL=]LLLLLA~LLLLxLpLhL`aE11E1AHL=HHHHHLLLXLLxLpLhL`E1E1E1ALL=`LLLxLpLhL`LLLLLLe1E1E1AHL=HHXHHxHpHhH`LLLLLL11E1AHL=fHHHxHpHhH`HHHHHHk11E1AHL=HXHHxHpHhH`HHHHHH1E1AHL=qHHxHpHhH`1HHHHHHHy1E1AHL=HXHHxHpHhH`1HHHHHHHE1E1ALLLxLpLhL`E1LLLLLLLL= ~E1E1E1LL=LLLLLALLXLLxLpLhL`E11E1AHL=HHHHHLLLLxLpLhL`E1E1E1ALL= LLLxLpLhL`LLLLLL1E1E1AHL=HHHxHpHhH`LLLLLL11E1AHL=HHXHHxHpHhH`HHHHHH11E1AHL=HHHxHpHhH`HHHHHH1E1AHL=HHXHHxHpHhH`1HHHHH"1E1AHL=HHHxHpHhH`1HHHHHHE1E1ALLLXLLxLpLhL`E1LLLLLLL='E1E1E1LL=LLLLLALLLLxLpLhL`E11E1AHL=-HHHHLLLXLLxLpLhL`2E1E1E1ALL=LLLxLpLhL`LLLLLL1E1E1AHL=8HHXHHxHpHhH`LLLLLL611E1AHL=HHHxHpHhH`HHHHHH11E1AHL=?HHXHHxHpHhH`HHHHHD1E1AHL=HHHxHpHhH`1HHHHHH1E1AHL=JHHXHHxHpHhH`1HHHHHHKE1E1ALLLLxLpLhL`E1LLLLLLL=rE1E1E1LL=QLLLLALLLXLLxLpLhL`UE11E1AHL=HHHHHLLLLxLpLhL`E1E1E1A)LL=[LLXLLxLpLhL`LLLLLLY1E1E1A)HL=HHHxHpHhH`LLLLLL11E1A)HL=aHHXHHxHpHhH`HHHHHf11E1A)HL=HHHxHpHhH`HHHHHH1E1A?HL=lHHXHHxHpHhH`1HHHHHHm1E1A?HL=HHHxHpHhH`1HHHHHHE1E1A?LLLXLLxLpLhL`E1LLLLLL=yE1E1E1LL=LLLLLA?LLLLxLpLhL`E11E1AUHL=HHHHHLLLXLLxLpLhL`}E1E1E1AULL=LLLxLpLhL`LLLLLL1E1E1AUHL=HHXHHxHpHhH`LLLLL11E1AUHL= HHHxHpHhH`HHHHHH11E1AkHL=HHXHHxHpHhH`HHHHHH1E1AkHL=HHHxHpHhH`1HHHHHH1E1AkHL=HHXHHxHpHhH`1HHHHHE1E1AkLLLLxLpLhL`E1LLLLLLL="E1E1E1LL=LLLLLALLLXLLxLpLhL`E11E1AHL=!HHHHHLLLLxLpLhL`&E1E1E1ALL=LLXLLxLpLhL`LLLLL1E1E1AHL=,HHHxHpHhH`LLLLLL111E1AHL=HHXHHxHpHhH`HHHHHH11E1AHL=3HHHxHpHhH`HHHHHH81E1AHL=HHXHHxHpHhH`1HHHHH1E1AHL=>HHHxHpHhH`1HHHHHHFE1E1ALLLXLLxLpLhL`E1LLLLLLL=fE1E1E1LL=ELLLLLALLLLxLpLhL`IE11E1AHL=HHHHLLLXLLxLpLhL`ϿE1E1E1ALL=OLLLxLpLhL`LLLLLLT1E1E1AHL=HHXHHxHpHhH`LLLLLLӾ11E1AHL=UHHHxHpHhH`HHHHHHZ11E1AHL=HHXHHxHpHhH`HHHHH1E1AHL=`HHHxHpHhH`1HHHHHHh1E1AHL=HHXHHxHpHhH`1HHHHHHE1E1ALLLLxLpLhL`E1LLLLLLL=mE1E1E1LL=LLLLALLLXLLxLpLhL`E11E1AHL=sHHHHHLLLLxLpLhL`xE1E1E1ALL=LLXLLxLpLhL`LLLLLL1E1E1AHL=wHHHxHpHhH`LLLLLL|11E1AHL=HHXHHxHpHhH`HHHHH11E1AHL=HHHxHpHhH`HHHHHH銹1E1AHL= HHXHHxHpHhH`1HHHHHH 1E1AHL=HHHxHpHhH`1HHHHHH鑸E1E1ALLLXLLxLpLhL`E1LLLLLL=E1E1E1LL=LLLLLALLLLxLpLhL`雷E11E1A0HL=HHHHHLLLXLLxLpLhL`E1E1E1A0LL=LLLxLpLhL`LLLLLL韶1E1E1A0HL= HHXHHxHpHhH`LLLLL%11E1A0HL=HHHxHpHhH`HHHHHH鬵11E1AOHL=.HHXHHxHpHhH`HHHHHH,1E1AOHL=HHHxHpHhH`1HHHHHH鳴1E1AOHL=2HHXHHxHpHhH`1HHHHH:E1E1AOLLLLxLpLhL`E1LLLLLLL=a鿳E1E1E1LL=@LLLLLAnLLLXLLxLpLhL`=E11E1AnHL=HHHHHLLLLxLpLhL`òE1E1E1AnLL=CLLXLLxLpLhL`LLLLLH1E1E1AnHL=HHHxHpHhH`LLLLLLα11E1AHL=PHHXHHxHpHhH`HHHHHHN11E1AHL=HHHxHpHhH`HHHHHHհ1E1AHL=THHXHHxHpHhH`1HHHHHHU1E1AHL=HHHxHpHhH`1HHHHHHܯE1E1ALLLXLLxLpLhL`E1LLLLLL=aE1E1E1LL=LLLLLALLLLxLpLhL`E11E1AHL=gHHHHHLLLXLLxLpLhL`eE1E1E1ALL=LLLxLpLhL`LLLLLL1E1E1AHL=kHHXHHxHpHhH`LLLLLp11E1AHL=HHHxHpHhH`HHHHHH11E1AHL=yHHXHHxHpHhH`HHHHHHw1E1AHL=HHHxHpHhH`1HHHHHH1E1AHL=}HHXHHxHpHhH`1HHHHH酫E1E1ALLLLxLpLhL`E1LLLLLLL= E1E1E1LL=LLLLLALLLXLLxLpLhL`鈪E11E1AHL= HHHHHLLLLxLpLhL`E1E1E1ALL=LLXLLxLpLhL`LLLLL铩1E1E1AHL=HHHxHpHhH`LLLLLL11E1AOHL=HHXHHxHpHhH`HHHHHH陨11E1AOHL=HHHxHpHhH`HHHHHH 1E1AOHL=HHXHHxHpHhH`1HHHHH駧1E1AOHL=&HHHxHpHhH`1HHHHHH.E1E1AgLLLXLLxLpLhL`E1LLLLLLL=N鬦E1E1E1LL=-LLLLLAgLLLLxLpLhL`1E11E1AnHL=HHHHHLLLXLLxLpLhL`鰥E1E1E1AnLL=0LLLxLpLhL`LLLLLL51E1E1AnHL=HHXHHxHpHhH`LLLLL黤11E1AnHL==HHHxHpHhH`HHHHHHB11E1A{HL=ĺHHXHHxHpHhH`HHHHHH£1E1A{HL=AHHHxHpHhH`1HHHHHHI1E1AHL=ȹHHXHHxHpHhH`1HHHHHHɢE1E1ALLLLxLpLhL`E1LLLLLLL=NE1E1E1LL=ϸLLLLALLLXLLxLpLhL`ӡE11E1AHL=THHHHHLLLLxLpLhL`YE1E1E1ALL=ٷLLXLLxLpLhL`LLLLLLנ1E1E1AHL=XHXHHxHpHhH`LLLLLL]11E1AHL=߶HXHHxHpHhH`HHHHHH11E1AHL=fHXHHxHpHhH`HHHHHr1E1AHL=HHXHHxHpHhH`1HHHH1E1AHL=HHXHHxHpHhH`1HHHHH釞E1E1ALLLXLLxLpLhL`E1LLLLLLL=E1E1E1LL=LLLLLALLLLxLpLhL`銝E11E1AHL= HHHHLLLXLLxLpLhL`E1E1E1ALL=LLLxLpLhL`LLLLLL镜1E1E1AHL=HHXHHxHpHhH`LLLLLL11E1AHL=HHXHHxHpHhH`HHHHH雛11E1AHL=HHXHHxHpHhH`HHHHH"1AHL=HHXHHxHpHhH`HHHHH鮚1AHL=0HHXHHxHpHhH`HHHHH:1E1AHL=HHXHHxHpHhH`1HHHHHE1E1ALLLXLLxLpLhL`E1LLLLLLL=?E1E1E1LL=LLLLLALLLLxLpLhL`ĘE11E1A)HL=EHHHHHLLLXLLxLpLhL`CE1E1E1A)LL=îLLLxLpLhL`LLLLLLȗE1A)LL=ILLXLLxLpLhL`LLLLLLL1A)HL=έHHHxHpHhH`HHHHHHHі1AEHL=SHHXHHxHpHhH`HHHHHHHO1AEHL=ѬHHHxHpHhH`HHHHHHHԕ11E1ATHL=VHHXHHxHpHhH`HHHHHHT1E1ATHL=ӫHHXHHxHpHhH`1HHHHH۔1E1ATHL=ZHHXHHxHpHhH`1HHHHHbE1E1E1LLXLLxLpLhL`ATLLLLLL=E1ATLL=oLXLLxLpLhL`LLLLLLy1L= ATHHHXHHxHpHhH`HHHHHHE1A{LL=LLXLLxLpLhL`LLLLLLL{E1A{LL=LLLxLpLhL`LLLLLLLE1A{LL=LXLLxLpLhL`LLLLLLL郑E11E1A{HL=HHxHpHhH`LLLLLLL 11E1AHL=HXHHxHpHhH`HHHHHHH鉐11E1AHL= HHxHpHhH`HHHHHHH1E1AHL=HHxHpHhH`1HHHHHHH闏1E1AHL=HHXHHxHpHhH`1HHHHHE1E1ALLLxLpLhL`E1LLLLLLLL=E风E1E1E1LL=$LLLLLLALLXLLxLpLhL`!1E1E1AHL=HHHHHHLLLxLpLhL`駍E1E1E1ALL='LXLLxLpLhL`LLLLLLL%E11E1AHL=HHxHpHhH`LLLLLLL髌11E1AHL=-HXHHxHpHhH`HHHHHH211E1AHL=HHHxHpHhH`HHHHHH鹋1E1AHL=8HHXHHxHpHhH`1HHHHHH91E1AHL=HHHxHpHhH`1HHHHHHE1E1ALLXLLxLpLhL`E1LLLLLLL=EE1E1E1LL=ƠLLLLLLALLLxLpLhL`ʉ1E1E1A?HL=KHHHHHHLLXLLxLpLhL`IE1E1E1A?LL=ɟLLxLpLhL`LLLLLLLΈ1E1E1A?HL=OHXHHxHpHhH`LLLLLLT11E1A?HL=֞HHHxHpHhH`HHHHHHۇ11E1AjHL=]HHXHHxHpHhH`HHHHHH[1E1AjHL=ڝHHHxHpHhH`1HHHHHH1E1AjHL=aHXHHxHpHhH`1HHHHHHiE1E1E1LLLxLpLhL`AjLLLLLLLL=1E1E1A~HL=oHHxHpHhH`LLLLLLLtE1E1E1A~LL=LLXLLxLpLhL`LLLLLE1E1E1A~LL=yLLxLpLhL`LLLLLLL~11E1AHL=HXHHxHpHhH`HHHHHHH11E1AHL=HXHHxHpHhH`HHHHHH酃1AHL=HXHHxHpHhH`HHHHHH1AHL=HXHHxHpHhH`HHHHH餂1AHL=&HXHHxHpHhH`HHHHH71AHL=HHxHpHhH`HHHHHсE1E1E1LLLXLLxLpLhL`ALLLLLLL=OE1ALL=ЗLLXLLxLpLhL`LLLLLLӀ1L=gAHHHXHHxHpHhH`HHHHH_E1ALL=LXLLxLpLhL`LLLLLE1ALL=rLXLLxLpLhL`LLLLLE1ALL=LLxLpLhL`LLLLL1AHL=HXHHxHpHhH`HHHH~1AHL=8HHxHpHhH`HHHHHP~1AHL=ҔHXHHxHpHhH`HHHHH}1AHL=eHHxHpHhH`HHHHH}}1AHL=HHXHHxHpHhH`HHHHHHH|1AHL=}HHHxHpHhH`HHHHHHH|1AHL=HHXHHxHpHhH`HHHHHHH{1AHL=HHHxHpHhH`HHHHHHH{1AHL=HHXHHxHpHhH`HHHHHHH{E1ALLLLxLpLhL`LLLLLLLL='zE1L=LLLXLLxLpLhL`LLLLLLA z1E1E1AHL=HHHxHpHhH`LLLLLLyE1E1E1ALL=LLXLLxLpLhL`LLLLLL yE1ALL=LLXLLxLpLhL`LLLLLLxE1ALL=LLLxLpLhL`LLLLLLx1AHL=HHXHHxHpHhH`HHHHHHw1AHL=#HHHxHpHhH`HHHHHH-w1AHL=HHXHHxHpHhH`HHHHHHv1AHL=4HHHxHpHhH`HHHHHH>v1AHL=HHXHHxHpHhH`HHHHHHu1AHL=EHHHxHpHhH`HHHHHHOu1AHL=ыHHXHHxHpHhH`HHHHHHt1AHL=VHHHxHpHhH`HHHHHH`t1A HL=HHXHHxHpHhH`HHHHHHsE1ALLLLxLpLhL`LLLLLLL=psE1L=LLLXLLxLpLhL`LLLLLLA rE1ALL=uLLLxLpLhL`LLLLLLr1L=A HHHXHHxHpHhH`HHHHHHrE1ALL=LLLxLpLhL`LLLLLLqE1A LL=LLXLLxLpLhL`LLLLLLqE1ALL=LLLxLpLhL`LLLLLLpE1A LL=LLXLLxLpLhL`LLLLLL"p1AHL=HHHxHpHhH`HHHHHHo1AHL=0HHXHHxHpHhH`HHHHHH3o1AHL=HHHxHpHhH`HHHHHHn1AHL=AHHXHHxHpHhH`HHHHHHDn1AHL=ƄHHHxHpHhH`HHHHHHm1AHL=RHHXHHxHpHhH`HHHHHHUm1AHL=׃HHHxHpHhH`HHHHHHl1AHL=cHHXHHxHpHhH`HHHHHHfl1AHL=HHHxHpHhH`HHHHHHkE1ALLLXLLxLpLhL`LLLLLLL=vkE1L= LLLLxLpLhL`LLLLLLAkE1ALL=LLXLLxLpLhL`LLLLLLj1L=AHHHHxHpHhH`HHHHHHjE1ALL=LLXLLxLpLhL`LLLLLLiE1ALL=LLLxLpLhL`LLLLLL iE1ALL=LLXLLxLpLhL`LLLLLLhE1ALL=%LLLxLpLhL`LLLLLL/h1AHL=~HHXHHxHpHhH`HHHHHHg1AHL=6~HHHxHpHhH`HHHHHH@g1AHL=}HHXHHxHpHhH`HHHHHHf1AHL=G}HHHxHpHhH`HHHHHHQf1AHL=|HHXHHxHpHhH`HHHHHHe1AHL=X|HHHxHpHhH`HHHHHHbe1AHL={HHXHHxHpHhH`HHHHHHd1AHL=i{HHHxHpHhH`HHHHHHsd1AHL=zHHXHHxHpHhH`HHHHHHcE1ALLLLxLpLhL`LLLLLLL=%zcE1L=zLLLXLLxLpLhL`LLLLLLAcE1ALL=yLLLxLpLhL`LLLLLLb1L=&yAHHHXHHxHpHhH`HHHHHHbE1ALL=xLLLxLpLhL`LLLLLLaE1ALL=#xLLXLLxLpLhL`LLLLLL&aE1ALL=wLLLxLpLhL`LLLLLL`E1ALL=2wLLXLLxLpLhL`LLLLLL5`1AHL=vHHHxHpHhH`HHHHHH_1AHL=CvHHXHHxHpHhH`HHHHHHF_1AHL=uHHHxHpHhH`HHHHHH^1A HL=TuHHXHHxHpHhH`HHHHHHW^1AHL=tHHHxHpHhH`HHHHHH]1A!HL=etHHXHHxHpHhH`HHHHHHh]1AHL=sHHHxHpHhH`HHHHHH\1A"HL=vsHHXHHxHpHhH`HHHHHHy\1AHL=rHHHxHpHhH`HHHHHH\E1A#LLLXLLxLpLhL`LLLLLLL=+r[E1L=rLLLLxLpLhL`LLLLLLA[E1A$LL=qLLXLLxLpLhL`LLLLLLZ1L=,qAHHHHxHpHhH`HHHHHH$ZE1A%LL=pLLXLLxLpLhL`LLLLLLYE1ALL=)pLLLxLpLhL`LLLLLL3YE1A&LL=oLLXLLxLpLhL`LLLLLLXE1ALL=8oLLLxLpLhL`LLLLLLBX1A'HL=nHHXHHxHpHhH`HHHHHHW1AHL=InHHHxHpHhH`HHHHHHSW1A(HL=mHHXHHxHpHhH`HHHHHHV1AHL=ZmHHHxHpHhH`HHHHHHdV1A)HL=lHHXHHxHpHhH`HHHHHHU1AHL=klHHHxHpHhH`HHHHHHuU1A*HL=kHHXHHxHpHhH`HHHHHHT1AHL=|kHHHxHpHhH`HHHHHHT1A+HL=kHHXHHxHpHhH`HHHHHH TE1ALLLLxLpLhL`LLLLLLL=8jSE1L=)jLLLXLLxLpLhL`LLLLLLA,SE1ALL=iLLLxLpLhL`LLLLLLR1L=9iA-HHHXHHxHpHhH`HHHHHH*RE1ALL=hLLLxLpLhL`LLLLLLQE1E1E1A>LL=5hLLXLLxLpLhL`LLLLLL3Q1E1E1A>HL=gHHHxHpHhH`LLLLLLP11E1A>HL=;gHHHxHpHhH`HHHHHH@P1A>HL=fHHXHHxHpHhH`HHHHHHO1A>HL=GfHHHxHpHhH`HHHHHHHJO1AHL=fHHXHHxHpHhH`HHHHHHHN1AHL=/fHHXHHxHpHhH`HHHHHHMN1AHL=eHHXHHxHpHhH`HHHHHHM1AHL=9eHHHxHpHhH`HHHHHH^ME1E1ALLLXLLxLpLhL`E1LLLLLLL=cdLE1E1E1LL=BdLLLLLALLLLxLpLhL`aLE11E1AHL=cHHHHHLLLXLLxLpLhL`KE1E1E1ALL=EcLLLxLpLhL`LLLLLLeK1E1E1A@HL=bHHXHHxHpHhH`LLLLLLJ11E1A@HL=KbHHHxHpHhH`HHHHHHkJ11E1AqHL=aHHXHHxHpHhH`HHHHHHI1E1AqHL=OaHHHxHpHhH`1HHHHHHrI1LL=`HAHHXHHxHpHhH`HHHHHHH1AHL=W`HHXHHxHpHhH`HHHHHHuHE1E1ALLLLxLpLhL`E1LLLLLLL=_GE1E1E1LL=`_LLLLLA~LLLXLLxLpLhL`xGE11E1A~HL=^HHHHHLLLLxLpLhL`FE1E1E1ALL=c^LLXLLxLpLhL`LLLLLL|F1E1E1AHL=]HHHxHpHhH`LLLLLLF11E1AHL=i]HHXHHxHpHhH`HHHHHHE11E1AHL=\HHHxHpHhH`HHHHHH E1E1A"HL=m\HHXHHxHpHhH`1HHHHHHD1E1A"HL=[HHHxHpHhH`1HHHHHHDE1E1A?LLLXLLxLpLhL`E1LLLLLLL=[CE1L=[LLLXLLxLpLhL`LLLLLLA?CE1A?LL=xZLLXLLxLpLhL`LLLLLLB1L=ZA?HHHHxHpHhH`HHHHHH"BE1A?LL=YLXLLxLpLhL`LLLLLLAE1E1E1A?LL=YLLxLpLhL`LLLLLLL2A1E1E1AaHL=XHXHHxHpHhH`LLLLLLL@11E1AaHL=XHHxHpHhH`HHHHHHH8@11E1AHL=WHXHHxHpHhH`HHHHHHH?1E1AHL=WHHxHpHhH`1HHHHHHH??1E1AHL=IYHHxHpHhH`1HHHHHHH>E1E1ALLXLLxLpLhL`E1LLLLLLLL=qXD>E1E1E1LL=PXLLLLLLALLLxLpLhL`=1E1E1AHHL=/UHHHHHHLLXLLxLpLhL`H=E1E1E1AHLL=TLLxLpLhL`LLLLLLL<E11E1AHL=VHHxHpHhH`LLLLLLLS<11E1AHL=`VHXHHxHpHhH`HHHHHHH;11E1AHL=UHHxHpHhH`HHHHHHHZ;1E1A0HL=RHXHHxHpHhH`1HHHHHHH:1E1A0HL=>RHHxHpHhH`1HHHHHHHa:E1E1A4LLXLLxLpLhL`E1LLLLLLLL=fQ9E1E1E1LL=EQLLLLLLA4LLLxLpLhL`d91E1E1AYHL=PHHHHHHLLXLLxLpLhL`8E1E1E1AYLL=HPLLxLpLhL`LLLLLLLh81E1E1ArHL=OHXHHxHpHhH`LLLLLLL711E1ArHL=NOHHxHpHhH`HHHHHHHn711E1AHL=NHXHHxHpHhH`HHHHHHH61E1AHL=RNHHxHpHhH`1HHHHHHHu61E1AHL=MHXHHxHpHhH`1HHHHHHH5E1E1E1LLLxLpLhL`ALLLLLLLL=Mz51E1E1AHL=LHXHHxHpHhH`LLLLLLL4E1E1E1ALL=^LLLxLpLhL`LLLLLLL~4E1E1E1ALL=KLXLLxLpLhL`LLLLLLL311E1AHL=cKHHxHpHhH`HHHHHHH311E1AHL=JHHxHpHhH`HHHHHHH 31AHL=qJHHXHHxHpHhH`HHHHHH21E1AHL=IHHxHpHhH`1HHHHHHH21E1AHL=zIHXHHxHpHhH`1HHHHHHH1E1E1ALLLxLpLhL`E1LLLLLLLL=H1E1E1E1LL=HLLLLLLALLLxLpLhL`0E11E1AHL=HHHHHLLLXLLxLpLhL`&0E1E1E1ALL=GLLxLpLhL`LLLLLLL/1E1E1ASHL=GHXHHxHpHhH`LLLLLLL*/11E1ASHL=FHHxHpHhH`HHHHHHH.11E1AcHL=FHXHHxHpHhH`HHHHHHH1.1E1AcHL=EHHxHpHhH`1HHHHHHH-1E1ApHL=EHXHHxHpHhH`1HHHHHHH8-E1E1ApLLLxLpLhL`E1LLLLLLLL=DD,E1E1E1LL=#DLLLLLApLLXLLxLpLhL`B,E11E1ApHL=CHHHHHLLLLxLpLhL`+E1E1E1ALL=-CLLXLLxLpLhL`LLLLLLF+1E1E1AHL=BHHHxHpHhH`LLLLLL*11E1AHL=3BHHXHHxHpHhH`HHHHHHL*11E1AHL=AHHHxHpHhH`HHHHHH)1E1AHL=7AHHXHHxHpHhH`1HHHHHHS)1E1AHL=@HHHxHpHhH`1HHHHHH(E1E1ALLXLLxLpLhL`E1LLLLLLL=?_(E1E1E1LL=?LLLLLLALLLxLpLhL`'1E1E1AHL=J?HHHHHHLLXLLxLpLhL`c'E1E1E1ALL=>LLxLpLhL`LLLLLLL&1E1E1AHL=N>HXHHxHpHhH`LLLLLLLg&11E1AHL==HHxHpHhH`HHHHHHH%11E1AHL=U=HXHHxHpHhH`HHHHHHHn%1E1AHL=<HHxHpHhH`1HHHHHHH$1E1A HL=Y<HXHHxHpHhH`1HHHHHHHu$E1E1A LLLxLpLhL`E1LLLLLLLL=;#E1E1E1LL=`;LLLLLLA@LLXLLxLpLhL`x#1E1E1A@HL=:HHHHHHLLLxLpLhL`"E1E1E1ASLL=c:LXLLxLpLhL`LLLLLLL|"E11E1ASHL=9HHxHpHhH`LLLLLLL"11E1AZHL=i9HXHHxHpHhH`HHHHHHH!11E1AZHL=8HHxHpHhH`HHHHHHH !1E1AZHL=m8HXHHxHpHhH`1HHHHHH 1E1AZHL=7HHHxHpHhH`1HHHHHH E1E1AqLLLXLLxLpLhL`E1LLLLLLL=7E1E1E1LL=6LLLLLAqLLLLxLpLhL`E11E1AqHL=6HHHHHLLXLLxLpLhL`E1E1E1AqLL=6LLxLpLhL`LLLLLLL%1E1E1AHL=5HXHHxHpHhH`LLLLLLL11E1AHL= 5HHxHpHhH`HHHHHHH+11E1AHL=4HXHHxHpHhH`HHHHHHH1E1AHL=4HHxHpHhH`1HHHHHHH21E1AHL=3HXHHxHpHhH`1HHHHHHHE1E1ALLLxLpLhL`E1LLLLLLLL=27E1E1E1LL=2LLLLLLALLXLLxLpLhL`1E1E1AHL=2HHHHHHLLLxLpLhL`;E1E1E1ALL=1LXLLxLpLhL`LLLLLLLE11E1AHL=1HHxHpHhH`LLLLLLL?11E1AHL=0HXHHxHpHhH`HHHHHH11E1AHL=-0HHHxHpHhH`HHHHHHM1E1AHL=/HHXHHxHpHhH`1HHHHHH1E1AHL=1/HHHxHpHhH`1HHHHHHTE1E1ALLLXLLxLpLhL`E1LLLLLLL=Y.E1E1E1LL=8.LLLLLALLLLxLpLhL`WE11E1AHL=-HHHHHLLXLLxLpLhL`E1E1E1ALL=B-LLxLpLhL`LLLLLLLb1E1E1A?HL=,HXHHxHpHhH`LLLLLLL11E1A?HL=H,HHxHpHhH`HHHHHHHh11E1AKHL=+HXHHxHpHhH`HHHHHHH1E1AKHL=L+HHxHpHhH`1HHHHHHHo1E1AoHL=*HXHHxHpHhH`1HHHHHHHE1E1E1LLLxLpLhL`AoLLLLLLLL=)t1E1E1AHL=)HHxHpHhH`LLLLLLLE1E1E1ALL=_)LLXLLxLpLhL`LLLLLE1E1E1ALL=(LLxLpLhL`LLLLLLL11E1AHL=k(HXHHxHpHhH`HHHHHHH11E1AHL='HHxHpHhH`HHHHHHH 1E1AHL=o'HHxHpHhH`1HHHHHHH1AHL=&HHXHHxHpHhH`HHHHHH1E1AHL={&HHxHpHhH`1HHHHHHHE1E1ALLXLLxLpLhL`E1LLLLLLLL=%E1E1E1LL=%LLLLLLALLLxLpLhL` 1E1E1AHL=%HHHHHHLLLxLpLhL`' E1E1E1ALL=$LLXLLxLpLhL`LLLLL E11E1AHL=$HHxHpHhH`LLLLLLL2 11E1A.HL=#HXHHxHpHhH`HHHHHHH 11E1A.HL=#HHxHpHhH`HHHHHHH9 1E1ApHL="HHxHpHhH`1HHHHHHH 1E1ApHL=$"HHXHHxHpHhH`1HHHHHG E1E1ApLLLxLpLhL`E1LLLLLLLL=S! E1E1E1LL=2!LLLLLLALLXLLxLpLhL`J 1E1E1AHL= HHHHHHLLLxLpLhL`E1E1E1ALL=5 LXLLxLpLhL`LLLLLLLNE11E1AHL=HHxHpHhH`LLLLLLL11E1A HL=;HXHHxHpHhH`HHHHHHHT11E1A HL=HHxHpHhH`HHHHHHH1E1A HL=?HXHHxHpHhH`1HHHHHHb1E1A HL=HHHxHpHhH`1HHHHHHE1E1E1LLLXLLxLpLhL`A LLLLLLL=g1E1E1A HL=HHHxHpHhH`LLLLLLE1E1E1A; LL=RLLXLLxLpLhL`LLLLLLkE1E1E1A; LL=LLLxLpLhL`LLLLLL11E1AQ HL=WHHXHHxHpHhH`HHHHHHp11E1AQ HL=HHHxHpHhH`HHHHHH1E1Al HL=[HHHxHpHhH`1HHHHHH~1Al HL=HHXHHxHpHhH`HHHHHH1E1Al HL=gHHHxHpHhH`1HHHHHHE1E1E1LLLLxLpLhL`A% LLLLLLL=1E1E1A% HL=uHHXHHxHpHhH`LLLLLE1E1E1A% LL=LLLxLpLhL`LLLLLLE1E1E1A LL=LLLxLpLhL`LLLLLL11E1A HL=HXHHxHpHhH`HHHHHH&11E1A HL=HHHxHpHhH`HHHHHH1E1A HL=HHHxHpHhH`1HHHHHH41A HL=HHXHHxHpHhH`HHHHHH1E1A HL=HHHxHpHhH`1HHHHHH@E1E1As LLLLxLpLhL`E1LLLLLLL=LE1E1E1LL=+LLLLAs LLLXLLxLpLhL`JE11E1As HL=HHHHHLLLLxLpLhL`E1E1E1A LL=5LLLxLpLhL`LLLLLLU1E1E1A HL=HXHHxHpHhH`LLLLLL11E1A HL=BHHHxHpHhH`HHHHHHb11E1AHL=HHXHHxHpHhH`HHHHHH1E1AHL=FHHHxHpHhH`1HHHHHHi1E1AHL=HHXHHxHpHhH`1HHHHHHE1E1E1LLLLxLpLhL`ALLLLLLL=n1E1E1AHL=HHHxHpHhH`LLLLLLE1ALL=ZLLXLLxLpLhL`LLLLLLxE1E1E1ALL=LLLxLpLhL`LLLLLL1E1E1AHL=cHHHxHpHhH`LLLLLL11E1AHL= HHXHHxHpHhH`HHHHH 11E1AHL=q HHHxHpHhH`HHHHHH1E1AHL= HHHxHpHhH`1HHHHHH1E1AHL=| HXHHxHpHhH`1HHHHHHE1E1E1LLLLxLpLhL`ALLLLLLL= $1E1E1A:HL= HHHxHpHhH`LLLLLLE1A:LL= LLXLLxLpLhL`LLLLLL.E1E1E1A:LL= LLLxLpLhL`LLLLLL1E1E1AHL= HHXHHxHpHhH`LLLLLL211E1AHL= HHHxHpHhH`HHHHHH11E1AHL= HHXHHxHpHhH`HHHHHH91E1AHL=HHHxHpHhH`1HHHHHH1E1AHL=$HHHxHpHhH`1HHHHHHGE1E1ALLLXLLxLpLhL`E1LLLLLL=SE1E1E1LL=2LLLLLALLLLxLpLhL`QE11E1AHL=HHHHHLLLLxLpLhL`E1E1E1ALL=<LXLLxLpLhL`LLLLLL\1E1E1AHL=HHHxHpHhH`LLLLLL11E1AHL=IHHXHHxHpHhH`HHHHHHb11E1AHL=HHHxHpHhH`HHHHHH1E1A6HL=MHHXHHxHpHhH`1HHHHHHi1E1A6HL=HHHxHpHhH`1HHHHHHE1E1E1LLLXLLxLpLhL`AWLLLLLLL=n1E1E1AWHL=HHHxHpHhH`LLLLLLE1E1E1AnLL=YLLLxLpLhL`LLLLLLyE1AnLL=LLXLLxLpLhL`LLLLLL1E1E1AnHL=cHHHxHpHhH`LLLLLL11E1AHL=HHXHHxHpHhH`HHHHHH11E1AHL=jHHHxHpHhH`HHHHHH1E1AHL=HHHxHpHhH`1HHHHHH1E1AHL=uHHXHHxHpHhH`1HHHHHE1E1E1LLLLxLpLhL`ALLLLLLL=1E1E1A HL=HHHxHpHhH`LLLLLLE1E1E1A LL=LXLLxLpLhL`LLLLLL(E1E1E1A LL=LLLxLpLhL`LLLLLL11E1A"HL=HHHxHpHhH`HHHHHH41A"HL=HHXHHxHpHhH`HHHHHH11E1A"HL= HHHxHpHhH`HHHHHH@1E1ArHL=HHXHHxHpHhH`1HHHHHH1E1ArHL=$HHHxHpHhH`1HHHHHHGE1E1A~LLLXLLxLpLhL`E1LLLLLLL=LE1E1E1LL=+LLLLLA~LLLLxLpLhL`JE11E1AHL=HHHHHLLLLxLpLhL`E1E1E1ALL=5LLXLLxLpLhL`LLLLLU1E1E1AHL=HHHxHpHhH`LLLLLL11E1AHL=BHHXHHxHpHhH`HHHHHH[11E1AHL=HHXHHxHpHhH`HHHHH1E1AHL=FHXHHxHpHhH`1HHHHHp1AHL=HXHHxHpHhH`HHHHHE1ALLXLLxLpLhL`LLLLLL=E1L= LLLxLpLhL`LLLLLA.1E1E1AHL=HHXHHxHpHhH`LLLLLLE1E1E1ALL=LXLLxLpLhL`LLLLLL2E1ALL=LXLLxLpLhL`LLLLLLE1ALL=#LXLLxLpLhL`LLLLLO1AHL=HXHHxHpHhH`HHHHH1AHL=IHHxHpHhH`HHHHH|11E1AHL=HXHHxHpHhH`HHHHHHH1E1AHL=`HHxHpHhH`1HHHHHHH1E1AHL=HXHHxHpHhH`1HHHHHHHE1E1ALLLxLpLhL`E1LLLLLLLL=E1E1E1LL=LLLLLLA*LLLxLpLhL` E11E1A*HL=sHHHHLLLXLLxLpLhL`E1E1E1A*LL=LLxLpLhL`LLLLLLL1E1E1AHL=~HXHHxHpHhH`LLLLLLL11E1AHL=HHxHpHhH`HHHHHHH11E1AHL=HHxHpHhH`HHHHHHH1E1AHL= HHXHHxHpHhH`1HHHHH,1E1AHL=HHxHpHhH`1HHHHHHHE1E1ALLLxLpLhL`E1LLLLLLLL=8E1L=LLLXLLxLpLhL`LLLLLLA1E1E1AHL="HHxHpHhH`LLLLLLLBE1E1E1ALL=LXLLxLpLhL`LLLLLLLE1ALL=&LXLLxLpLhL`LLLLLLLDE1ALL=LLxLpLhL`LLLLLLL1AHL=6HXHHxHpHhH`HHHHHHHT1AHL=HHxHpHhH`HHHHHHH1AHL=GHXHHxHpHhH`HHHHHHHe1AHL=HHxHpHhH`HHHHHHH1AHL=XHXHHxHpHhH`HHHHHHHv1AHL=HHxHpHhH`HHHHHHH1AHL=iHXHHxHpHhH`HHHHHHH1AHL=HHxHpHhH`HHHHHHH1A HL=zHXHHxHpHhH`HHHHHHHE1ALLLxLpLhL`LLLLLLLL=#E1L=LLXLLxLpLhL`LLLLLLLA E1ALL= LLxLpLhL`LLLLLLL21L=A HHXHHxHpHhH`HHHHHHHE1ALL=LLxLpLhL`LLLLLLLBE1A LL=LXLLxLpLhL`LLLLLLLE1ALL=,LLxLpLhL`LLLLLLLQE1A LL=LXLLxLpLhL`LLLLLLL1AHL=<HHxHpHhH`HHHHHHHa1AHL=HXHHxHpHhH`HHHHHHH1AHL=MHHxHpHhH`HHHHHHHr1AHL=HXHHxHpHhH`HHHHHHH1AHL=^HHxHpHhH`HHHHHHH1AHL=HXHHxHpHhH`HHHHHHH1AHL=oHHxHpHhH`HHHHHHH1AHL=HXHHxHpHhH`HHHHHHH1AHL=HHxHpHhH`HHHHHHHE1ALLXLLxLpLhL`LLLLLLLL=)E1L=LLLxLpLhL`LLLLLLLAE1ALL=LXLLxLpLhL`LLLLLLL81L=AHHHxHpHhH`HHHHHHHE1ALL=*LXLLxLpLhL`LLLLLLLHE1ALL=LLxLpLhL`LLLLLLLE1ALL=9LXLLxLpLhL`LLLLLLLWE1ALL=LLxLpLhL`LLLLLLL1AHL=IHXHHxHpHhH`HHHHHHHg1AHL=HHxHpHhH`HHHHHHH1AHL=ZHXHHxHpHhH`HHHHHHHx1AHL=HHxHpHhH`HHHHHHH1AHL=kHXHHxHpHhH`HHHHHHH1AHL=HHxHpHhH`HHHHHHH1AHL=|HXHHxHpHhH`HHHHHHH隿1AHL=HHxHpHhH`HHHHHHH&1AHL=HXHHxHpHhH`HHHHHHH髾E1ALLLxLpLhL`LLLLLLLL=6E1L=LLXLLxLpLhL`LLLLLLLA麽E1ALL= LLxLpLhL`LLLLLLLE1L=AHHXHHxHpHhH`HHHHHHHʼE1ALL=0LLxLpLhL`LLLLLLLUE1ALL=LXLLxLpLhL`LLLLLLLٻE1ALL=?LLxLpLhL`LLLLLLLdE1ALL=LXLLxLpLhL`LLLLLLL1AHL=OHHxHpHhH`HHHHHHHt1AHL=HXHHxHpHhH`HHHHHHH1AHL=`HHxHpHhH`HHHHHHH酹1A HL=HXHHxHpHhH`HHHHHHH 1AHL=qHHxHpHhH`HHHHHHH閸1A!HL=HXHHxHpHhH`HHHHHHH1AHL=HHxHpHhH`HHHHHHH駷1A"HL=HXHHxHpHhH`HHHHHHH,1AHL=HHxHpHhH`HHHHHHH鸶E1A#LLXLLxLpLhL`LLLLLLLL=<E1L=LLLxLpLhL`LLLLLLLAǵE1A$LL=-LXLLxLpLhL`LLLLLLLK1L=AHHHxHpHhH`HHHHHHH״E1A%LL==LXLLxLpLhL`LLLLLLL[E1ALL=LLxLpLhL`LLLLLLLE1A&LL=LLXLLxLpLhL`LLLLLLLjE1ALL=LLxLpLhL`LLLLLLL1A'HL=\HXHHxHpHhH`HHHHHHHz1AHL=HHxHpHhH`HHHHHHH1A(HL=mHXHHxHpHhH`HHHHHHH鋱1AHL=HHxHpHhH`HHHHHHH1A)HL=~HXHHxHpHhH`HHHHHHH霰1AHL=HHxHpHhH`HHHHHHH(1A*HL=HXHHxHpHhH`HHHHHHH魯1AHL=HHxHpHhH`HHHHHHH91A+HL=HXHHxHpHhH`HHHHHHH龮E1ALLLxLpLhL`LLLLLLLL=IE1L=LLXLLxLpLhL`LLLLLLLA,ͭE1ALL=3LLxLpLhL`LLLLLLLX1L=A-HHXHHxHpHhH`HHHHHHHݬE1ALL=CLLxLpLhL`LLLLLLLhE1A.LL=LXLLxLpLhL`LLLLLLLE1ALL=RLLxLpLhL`LLLLLLLw1E1E1A`HL=HXHHxHpHhH`LLLLLLL11E1A`HL=]HHxHpHhH`HHHHHHH}11E1AHL=HXHHxHpHhH`HHHHHHH1E1AHL=aHHxHpHhH`1HHHHHHH鄩1E1AHL=ԿHXHHxHpHhH`1HHHHHHHE1E1ALLLxLpLhL`E1LLLLLLLL=鉨E1E1E1LL=۾LLLLLLA#LLXLLxLpLhL`1E1E1A#HL=YHHHHHHLLLxLpLhL`鍧E1E1E1A6LL=޽LXLLxLpLhL`LLLLLLL E11E1A6HL=]HHxHpHhH`LLLLLLL鑦11E1ABHL=HXHHxHpHhH`HHHHHHH11E1ABHL=dHHxHpHhH`HHHHHHH阥1E1AHL=HHxHpHhH`1HHHHHHH1E1AHL=)HHxHpHhH`1HHHHHHH馤E1E1AeLLXLLxLpLhL`E1LLLLLLLL=$E1E1E1LL=vLLLLLLAeLLLxLpLhL`驣1E1E1AxHL=HHHHHHLLXLLxLpLhL`(E1E1E1AxLL=yLLxLpLhL`LLLLLLL魢1E1E1AHL=HXHHxHpHhH`LLLLLLL,11E1AHL=HHxHpHhH`HHHHHHH鳡11E1AHL=HHxHpHhH`HHHHHHH:1E1AHL=DHHxHpHhH`1HHHHHHH1E1AHL=5HXHHxHpHhH`1HHHHHHHAE1E1ALLLxLpLhL`E1LLLLLLLL=]ƟE1E1E1LL=<LLLLLLAILLXLLxLpLhL`D1E1E1AIHL=HHHHHHLLLxLpLhL`ʞE1E1E1AcLL=?LXLLxLpLhL`LLLLLLLHE11E1AcHL=HHxHpHhH`LLLLLLLΝ11E1AwHL=EHXHHxHpHhH`HHHHHHHN11E1AwHL=ŲHHxHpHhH`HHHHHHH՜1AwHL=LHXHHxHpHhH`HHHHHHHZ1AwHL=ѱHHHxHpHhH`HHHHHHHߛ1AHL=VHHXHHxHpHhH`HHHHHHH]1AHL=԰HHHxHpHhH`HHHHHHHE1ALLLXLLxLpLhL`LLLLLLLL=_E1L=LLLLxLpLhL`LLLLLLLAE1ALL=YLXLLxLpLhL`LLLLLLLg1E1E1AHL=ݮHHHHHHLLLxLpLhL`E1E1E1A LL=bLXLLxLpLhL`LLLLLLLkE11E1A HL=HHxHpHhH`LLLLLLL11E1A"HL=hHXHHxHpHhH`HHHHHHHq11E1A"HL=HHxHpHhH`HHHHHHH1E1ABHL=lHXHHxHpHhH`1HHHHHHHx1E1ABHL=HHxHpHhH`1HHHHHHHE1ABLLXLLxLpLhL`LLLLLLLL=郕E1L= LLLLxLpLhL`LLLLLLLABE1AdLL=}LLXLLxLpLhL`LLLLLLL鄔1L= AdHHHHxHpHhH`HHHHHHH E1A}LL=LLXLLxLpLhL`LLLLLLL醓E1A}LL=LLLxLpLhL`LLLLLLL E1ALL=LLXLLxLpLhL`LLLLLLL釒E1ALL=LLLxLpLhL`LLLLLLL 1AHL=HHXHHxHpHhH`HHHHHHH鉑1AHL=HHHxHpHhH`HHHHHHH1AHL=HHXHHxHpHhH`HHHHHHH錐1AHL=HHHxHpHhH`HHHHHHH1AHL=HHXHHxHpHhH`HHHHHHH鏏1AHL=HHHxHpHhH`HHHHHHH1A%HL=HHXHHxHpHhH`HHHHHHH钎1A%HL= HHHxHpHhH`HHHHHHH1A4HL=HHXHHxHpHhH`HHHHHHH镍E1A4LLLLxLpLhL`LLLLLLLL=E1L=LLLXLLxLpLhL`LLLLLLLAW閌E1AWLL= LLLxLpLhL`LLLLLLL1L=AHHHXHHxHpHhH`HHHHHHH阋E1ALL=LLLxLpLhL`LLLLLLLE1ALL=LLXLLxLpLhL`LLLLLLL陊E1ALL=LLLxLpLhL`LLLLLLLE1ALL=LLXLLxLpLhL`LLLLLLL隉1AHL=HHHxHpHhH`HHHHHHH1A4HL=HHXHHxHpHhH`HHHHHHH靈1A4HL=HHHxHpHhH`HHHHHHH"1AcHL=HHXHHxHpHhH`HHHHHHH頇1AcHL=HHHxHpHhH`HHHHHHH%1AHL=HHXHHxHpHhH`HHHHHHH飆1AHL=HHHxHpHhH`HHHHHHH(1AHL=HHXHHxHpHhH`HHHHHHH馅1AHL=HHHxHpHhH`HHHHHHH+E1ALLXLLxLpLhL`LLLLLLLL=F鯄E1E1E1LL=%LLLLLLALLLxLpLhL`41E1E1AHL=HHHHHHLLXLLxLpLhL`鳃E1E1E1ALL=(LLxLpLhL`LLLLLLL81E1E1A=HL=HXHHxHpHhH`LLLLLLL鷂11E1A=HL=.HHxHpHhH`HHHHHHH>11E1AeHL=HXHHxHpHhH`HHHHHHH龁1E1AeHL=2HHxHpHhH`1HHHHHHHE1E1A}HL=HXHHxHpHhH`1HHHHHHHŀE1E1E1LLLxLpLhL`A}LLLLLLLL=J1E1E1AHL=HXHHxHpHhH`LLLLLLLE1E1E1ALL=>LLxLpLhL`LLLLLLLNE1E1E1A:LL=ÔLXLLxLpLhL`LLLLLLL~11E1A:HL=CHHxHpHhH`HHHHHHHS~11E1ALHL=ʓHXHHxHpHhH`HHHHHHH}1E1ALHL=GHHxHpHhH`1HHHHHHHZ}1ALHL=ђHXHHxHpHhH`HHHHHHH|1ALHL=VHHHxHpHhH`HHHHHHHd|1AkHL=ۑHHXHHxHpHhH`HHHHHHH{E1AkLLLLxLpLhL`LLLLLLLL=f{E1L=LLLLxLpLhL`LLLLLLLAz1E1E1AHL=`HHXHHxHpHhH`LLLLLpzE1ALL=LLLxLpLhL`LLLLLLLyE1ALL=jLLXLLxLpLhL`LLLLLLLqyE1ALL=LLLxLpLhL`LLLLLLLxE1ALL=kLLXLLxLpLhL`LLLLLLLrx1AHL=HHHxHpHhH`HHHHHHHw1AeHL=nHHXHHxHpHhH`HHHHHHHuw1AeHL=HHHxHpHhH`HHHHHHHv1AyHL=qHHXHHxHpHhH`HHHHHHHxv1AyHL=HHHxHpHhH`HHHHHHHu1AyHL=tHHHxHpHhH`HHHHHHHu1AyHL=HHXHHxHpHhH`HHHHHHu1E1AyHL={HHHxHpHhH`1HHHHHHtE1E1ALLLXLLxLpLhL`E1LLLLLLL= tE1E1E1LL=LLLLLALLLLxLpLhL`sE11E1AHL=HHHHHLLLXLLxLpLhL`sE1E1E1ALL=LLLxLpLhL`LLLLLLr1E1E1AHL= HHXHHxHpHhH`LLLLLLr11E1AHL=HHHxHpHhH`HHHHHHq11E1AHL=HHXHHxHpHhH`HHHHHHq1E1AHL=HHHxHpHhH`1HHHHHHp1E1ACHL=HHXHHxHpHhH`1HHHHHH"pE1E1ACLLLLxLpLhL`E1LLLLLLL=>oE1E1E1LL=LLLLLAfLLLXLLxLpLhL`%oE11E1AfHL=HHHHHLLLLxLpLhL`nE1E1E1ALL= LLLxLpLhL`LLLLLL0nE1ALL=LLXLLxLpLhL`LLLLLLm1AHL=+HHHxHpHhH`HHHHHHH9m1AHL=HHHxHpHhH`HHHHHHHl1AHL=5HHXHHxHpHhH`HHHHHHCl11E1AHL=HHHxHpHhH`HHHHHHk1E1AHL=>HHXHHxHpHhH`1HHHHHHJk1E1AHL=HHHxHpHhH`1HHHHHHjE1E1A@LLLXLLxLpLhL`E1LLLLLLL=OjE1E1E1LL=LLLLLA@LLLLxLpLhL`iE11E1AsHL=JHHHHHLLLXLLxLpLhL`SiE1E1E1AsLL=~LLLxLpLhL`LLLLLLh1E1E1AHL=N~HHXHHxHpHhH`LLLLLLWh11E1AHL=}HHHxHpHhH`HHHHHHg11E1AHL=U}HHXHHxHpHhH`HHHHHH^g1E1AHL=|HHHxHpHhH`1HHHHHHf1AHL=\|HHXHHxHpHhH`HHHHHHjf1AHL={HHHxHpHhH`HHHHHHHeE1A LLLXLLxLpLhL`LLLLLLLL={leE1L=zLLLLxLpLhL`LLLLLLLA dE1A LL=fzLLXLLxLpLhL`LLLLLLtdE11E1A HL=yHHHHHLLLLxLpLhL`cE1E1E1A2 LL=oyLLXLLxLpLhL`LLLLLLxc1E1E1A2 HL=xHHHxHpHhH`LLLLLLb11E1A2 HL=uxHHHxHpHhH`HHHHHHb1A2 HL=wHHXHHxHpHhH`HHHHHH b1A2 HL=wHHHxHpHhH`HHHHHHHa1AQ HL=wHHXHHxHpHhH`HHHHHHH a1AQ HL=vHHHxHpHhH`HHHHHHH`1AU HL= vHHXHHxHpHhH`HHHHHHH`1AU HL=uHHHxHpHhH`HHHHHHH_E1A LLLXLLxLpLhL`LLLLLLLL=t_E1L=tLLLLxLpLhL`LLLLLLLA ^E1A LL= tLLXLLxLpLhL`LLLLLLL^1L=sA HHHHxHpHhH`HHHHHHH]E1ALL=wLLXLLxLpLhL`LLLLLLL]E1ALL=!wLLLxLpLhL`LLLLLLL\E1ALL=vLLXLLxLpLhL`LLLLLLL\E1ALL="vLLLxLpLhL`LLLLLLL[1A- HL=qHHXHHxHpHhH`HHHHHHH[1A- HL=pHHHxHpHhH`HHHHHHHZ1A0 HL=pHHXHHxHpHhH`HHHHHHHZ1A0 HL=oHHHxHpHhH`HHHHHHHY1A4 HL=oHHXHHxHpHhH`HHHHHHHY1A4 HL=nHHHxHpHhH`HHHHHHHX1A4 HL=nHHXHHxHpHhH`HHHHHH(X1E1A4 HL=mHHHxHpHhH`1HHHHHHWE1E1AL LLLXLLxLpLhL`E1LLLLLLL=l-WE1E1E1LL=lLLLLLAL LLLLxLpLhL`VE11E1A HL=(lHHHHHLLLXLLxLpLhL`1VE1E1E1A LL=kLLLxLpLhL`LLLLLLU1E1E1A HL=,kHHXHHxHpHhH`LLLLLL5U11E1A HL=jHHHxHpHhH`HHHHHHT11E1A HL=3jHHXHHxHpHhH`HHHHHHhLLLLLAe LLLXLLxLpLhL`FRE11E1Ae HL=gHHHHHLLLLxLpLhL`QE1E1E1A LL=AgLLXLLxLpLhL`LLLLLLJQ1E1E1A HL=fHHHxHpHhH`LLLLLLP11E1A HL=GfHHXHHxHpHhH`HHHHHHPP11E1A HL=eHHHxHpHhH`HHHHHHO1E1A HL=KeHHXHHxHpHhH`1HHHHHHWO1E1A HL=dHHHxHpHhH`1HHHHHHNE1E1AE LLLXLLxLpLhL`E1LLLLLLL=c\NE1E1E1LL=cLLLLLAE LLLLxLpLhL`ME11E1A~ HL=WcHHHHHLLLXLLxLpLhL``ME1E1E1A~ LL=bLLLxLpLhL`LLLLLLL1E1E1A HL=[bHHXHHxHpHhH`LLLLLLdL11E1A HL=aHHHxHpHhH`HHHHHHK11E1A HL=baHHXHHxHpHhH`HHHHHHkK1E1A HL=`HHHxHpHhH`1HHHHHHJ1E1A# HL=f`HHXHHxHpHhH`1HHHHHHrJE1E1A# LLLLxLpLhL`E1LLLLLLL=_IE1E1E1LL=m_LLLLLA' LLLLxLpLhL`|I1L=_A' HHHXHHxHpHhH`HHHHHHIE1A' LL=w^LLLxLpLhL`LLLLLLLHE1A LL=]LLLxLpLhL`LLLLLLL HE1E1E1A LL=~]LLXLLxLpLhL`LLLLLG1A HL=]HHHxHpHhH`HHHHHHHG1A HL=\HHHxHpHhH`HHHHHHHF11E1A HL=\HXHHxHpHhH`HHHHHHF1A HL=[HHHxHpHhH`HHHHHHHE1A HL=[HHXHHxHpHhH`HHHHHHH"E1A HL=ZHHHxHpHhH`HHHHHHHD1AHL=ZHHXHHxHpHhH`HHHHHHH%D1AHL=YHHHxHpHhH`HHHHHHHCE1AmLLLXLLxLpLhL`LLLLLLLL=X'CE1L=XLLLLxLpLhL`LLLLLLLAmBE1ALL=!XLLXLLxLpLhL`LLLLLLL(B1L=WAHHHHxHpHhH`HHHHHHHAE1ALL=#WLLLxLpLhL`LLLLLLL1AE1E1E1ALL=VLLXLLxLpLhL`LLLLL@E1ALL=,VLLLxLpLhL`LLLLLLL:@1AHL=UHHXHHxHpHhH`HHHHHHH?1AHL=/UHHHxHpHhH`HHHHHHH=?1AHL=THHXHHxHpHhH`HHHHHHH>1AHL=2THHHxHpHhH`HHHHHHH@>1AHL=SHHHxHpHhH`HHHHHHH=1E1AHL=9SHHXHHxHpHhH`1HHHHHL=1AHL=RHHHxHpHhH`HHHHHHH<1A.HL=HRHHXHHxHpHhH`HHHHHHHO<E1A.LLLLxLpLhL`LLLLLLLL=jQ;E1L=[QLLLLxLpLhL`LLLLLLLAJW;1E1E1AJHL=PHXHHxHpHhH`LLLLLL:E1AJLL=SPLLLxLpLhL`LLLLLLLa:E1AoLL=OLLXLLxLpLhL`LLLLLLL9E1AoLL=TOLLLxLpLhL`LLLLLLLb9E1ALL=NLLLxLpLhL`LLLLLLL811E1AHL=]NHHXHHxHpHhH`HHHHHm81AHL=MHHHxHpHhH`HHHHHHH71AHL=iMHHXHHxHpHhH`HHHHHHHp71AHL=LHHHxHpHhH`HHHHHHH61AHL=lLHHXHHxHpHhH`HHHHHHHs61AHL=KHHHxHpHhH`HHHHHHH51AHL=oKHHXHHxHpHhH`HHHHHHHv51AHL=JHHHxHpHhH`HHHHHHH4E1ALLLXLLxLpLhL`LLLLLLLL=Jx4E1L=JLLLLxLpLhL`LLLLLLLA3E1ALL=rILLXLLxLpLhL`LLLLLL3E11E1AHL=HHHHHHLLLLxLpLhL`3E1E1E1ALL={HLLXLLxLpLhL`LLLLLL21E1E1AHL=GHHHxHpHhH`LLLLLL 211E1AHL=GHHXHHxHpHhH`HHHHHH111E1AHL=GHHHxHpHhH`HHHHHH11E1AHL=FHHXHHxHpHhH`1HHHHHH01E1AHL=FHHHxHpHhH`1HHHHHH0E1E1ALLLXLLxLpLhL`E1LLLLLLL=-E/E1E1E1LL= ELLLLLALLLLxLpLhL`/E11E1A\HL=DHHHHHLLLXLLxLpLhL`.E1E1E1A\LL=DLLLxLpLhL`LLLLLL.1E1E1AHL=CHHXHHxHpHhH`LLLLLL-11E1AHL=CHHHxHpHhH`HHHHHH%-11E1AHL=BHHXHHxHpHhH`HHHHHH,1E1AHL=BHHHxHpHhH`1HHHHHH,,1E1A HL=AHHXHHxHpHhH`1HHHHHH+E1E1A LLLLxLpLhL`E1LLLLLLL=@1+E1E1E1LL=@LLLLLA=LLLXLLxLpLhL`*E11E1A=HL=%@HHHHHLLLLxLpLhL`5*E1E1E1A|LL=?LLLxLpLhL`LLLLLL)E1A|LL=0?LLXLLxLpLhL`LLLLLL>)1A|HL=>HHHxHpHhH`HHHHHHH(1AHL=:>HHHxHpHhH`HHHHHHHH(11E1AHL==HHXHHxHpHhH`HHHHH'1AHL=F=HHHxHpHhH`HHHHHHHT'1A3HL=<HHHxHpHhH`HHHHHHH&1E1A3HL=M<HXHHxHpHhH`1HHHHHH`&1A3HL=;HHHxHpHhH`HHHHHHH%E1AVLLLXLLxLpLhL`LLLLLLLL=:b%E1L=:LLLLxLpLhL`LLLLLLLAV$E1AkLL=\:LLLxLpLhL`LLLLLLLj$E11E1AkHL=9HHHHLLLXLLxLpLhL`#E1AkLL=f9LLLxLpLhL`LLLLLLLt#E1ALL=8LLXLLxLpLhL`LLLLLLL"E1ALL=g8LLLxLpLhL`LLLLLLLu"1AHL=7HHXHHxHpHhH`HHHHHHH!1AHL=j7HHHxHpHhH`HHHHHHHx!1A5HL=6HHXHHxHpHhH`HHHHHHH 1A5HL=m6HHHxHpHhH`HHHHHHH{ 1AWHL=5HHXHHxHpHhH`HHHHHHH1AWHL=p5HHHxHpHhH`HHHHHHH~1AHL=4HHXHHxHpHhH`HHHHHHH1AHL=s4HHHxHpHhH`HHHHHHH1AHL=3HHXHHxHpHhH`HHHHHHHE1ALLLLxLpLhL`LLLLLLLL=3E1L= 3LLLXLLxLpLhL`LLLLLLLAE1ALL=v2LLLxLpLhL`LLLLLLL1L= 2A#HHHXHHxHpHhH`HHHHHHHE1A#LL=x1LLLxLpLhL`LLLLLLLE1AELL=0LLXLLxLpLhL`LLLLLLLE1AELL=y0LLLxLpLhL`LLLLLLLE1ALL=/LLXLLxLpLhL`LLLLLLL1AHL={/HHHxHpHhH`HHHHHHH1AHL=/HHXHHxHpHhH`HHHHHHH1AHL=~.HHHxHpHhH`HHHHHHH1AHL=.HHXHHxHpHhH`HHHHHHH 1AHL=-HHHxHpHhH`HHHHHHH1AHL=-HHXHHxHpHhH`HHHHHHH 1AHL=,HHHxHpHhH`HHHHHHH1AHL= ,HHXHHxHpHhH`HHHHHHH1AHL=+HHHxHpHhH`HHHHHHHE1ALLLXLLxLpLhL`LLLLLLLL=*E1L=*LLLLxLpLhL`LLLLLLLAE1ALL= *LLXLLxLpLhL`LLLLLLL1L=)AHHHHxHpHhH`HHHHHHHE1ALL=)LLXLLxLpLhL`LLLLLLLE1ALL=(LLLxLpLhL`LLLLLLLE1ALL=(LLXLLxLpLhL`LLLLLLLE1ALL='LLLxLpLhL`LLLLLLL1AbHL='HHXHHxHpHhH`HHHHHHH1AbHL=&HHHxHpHhH`HHHHHHH1AHL=&HHXHHxHpHhH`HHHHHHH1AHL=%HHHxHpHhH`HHHHHHH1AHL=%HHXHHxHpHhH`HHHHHHH1AHL=$HHHxHpHhH`HHHHHHH1AHL=$HHXHHxHpHhH`HHHHHHH!1AHL=#HHHxHpHhH`HHHHHHH 1A@HL=#HHXHHxHpHhH`HHHHHHH$ E1AfLLLXLLxLpLhL`LLLLLLL=?" E1L=0"LLLLxLpLhL`LLLLLLAf3 E1AnLL=!LLXLLxLpLhL`LLLLLL 1L=@!AnHHHHxHpHhH`HHHHHHC E1A@LL= LLXLLxLpLhL`LLLLLL E1A@LL== LLLxLpLhL`LLLLLLR E1ALL='"LLXLLxLpLhL`LLLLLLL E1ALL=!LLLxLpLhL`LLLLLLLS 1A1HL=)!HHXHHxHpHhH`HHHHHHH1A1HL= HHHxHpHhH`HHHHHHHV1A=HL=, HHHxHpHhH`HHHHHHH11E1A=HL=HHXHHxHpHhH`HHHHHb1A=HL=8HHHxHpHhH`HHHHHHH1A`HL=HHXHHxHpHhH`HHHHHHHe1A`HL=;HHHxHpHhH`HHHHHHH1AvHL=HHXHHxHpHhH`HHHHHHHhE1AvLLLLxLpLhL`LLLLLLLL=E1L=LLLXLLxLpLhL`LLLLLLLAiE1ALL=>LLLxLpLhL`LLLLLLL1L=A/HHHXHHxHpHhH`HHHHHHHkE1A/LL=@LLLxLpLhL`LLLLLLLE1AHLL=LLXLLxLpLhL`LLLLLLLlE1AHLL=ALLLxLpLhL`LLLLLLLE1ALL=LLXLLxLpLhL`LLLLLLLm1AHL=zHHHxHpHhH`HHHHHHH1AHL=HHXHHxHpHhH`HHHHHHHp1AHL=}HHHxHpHhH`HHHHHHH1AnHL=HHHxHpHhH`HHHHHHHz1AnHL=PHHXHHxHpHhH`HHHHHH1E1AnHL=HHHxHpHhH`1HHHHHH1E1AHL=YHHHxHpHhH`1HHHHHH E1E1E1LLXLLxLpLhL`ALLLLLLL=1E1E1AHL=gHHHxHpHhH`LLLLLLE1E1E1ALL=LLLxLpLhL`LLLLLLE1E1E1ALL=qLLXLLxLpLhL`LLLLL"11E1AHL=HHHxHpHhH`HHHHHH11E1AHL=HHHxHpHhH`HHHHHH01AHL=HHXHHxHpHhH`HHHHHH1E1AHL=HHHxHpHhH`1HHHHHH<1E1AHL=HHHxHpHhH`1HHHHHHE1E1ALLXLLxLpLhL`E1LLLLLLL=>HE1E1E1LL=LLLLLALLLLxLpLhL`E11E1AHL=HHHHHLLLXLLxLpLhL`LE1E1E1ALL= LLLxLpLhL`LLLLLL1E1E1AHL=HHXHHxHpHhH`LLLLLLP11E1AHL=&HHHxHpHhH`HHHHHH11E1A-HL=HHXHHxHpHhH`HHHHHHW1E1A-HL=*HHHxHpHhH`1HHHHHH1E1A<HL= HHXHHxHpHhH`1HHHHHH^E1E1A<LLLLxLpLhL`E1LLLLLLL= E1E1E1LL= LLLLLAGLLLXLLxLpLhL`aE11E1AGHL=6 HHHHHLLLLxLpLhL`E1E1E1AiLL= LLXLLxLpLhL`LLLLLLe1E1E1AiHL=: HHHxHpHhH`LLLLLL11E1AHL= HHXHHxHpHhH`HHHHHHk11E1AHL=x HHHxHpHhH`HHHHHH1E1AHL= HHXHHxHpHhH`1HHHHHHr1E1AHL=| HHHxHpHhH`1HHHHHHE1E1E1LLLLxLpLhL`ALLLLLLL=t~1E1E1AHL=SHXHHxHpHhH`LLLLLLE1E1E1ALL=LLxLpLhL`LLLLLLLE1E1E1ALL=]LLxLpLhL`LLLLLLL11E1AHL=HHXHHxHpHhH`HHHHH11E1AHL=kHHxHpHhH`HHHHHHH1E1AHL=HHxHpHhH`1HHHHHHH1AHL=yHHXHHxHpHhH`HHHHHH(1E1AHL=HHxHpHhH`1HHHHHHHE1E1ALLLxLpLhL`E1LLLLLLLL=*4E1E1E1LL= LLLLALLLXLLxLpLhL`1E1E1AHL=HHHHHHLLLxLpLhL`?E1E1E1ALL=LXLLxLpLhL`LLLLLLLE11E1AHL=HHxHpHhH`LLLLLLLC11E1A%HL=HXHHxHpHhH`HHHHHHH11E1A%HL=HHxHpHhH`HHHHHHHJ1E1A8HL=HXHHxHpHhH`1HHHHHHH1E1A8HL=HHxHpHhH`1HHHHHHHQE1E1ABLLXLLxLpLhL`E1LLLLLLLL=E1E1E1LL=LLLLLLABLLLxLpLhL`T1E1E1AdHL=)HHHHHHLLXLLxLpLhL`E1E1E1AdLL=LLxLpLhL`LLLLLLLX1E1E1AHL=dHXHHxHpHhH`LLLLLLL11E1AHL=HHxHpHhH`HHHHHHH^11E1AHL=kHXHHxHpHhH`HHHHHHH1E1AHL=HHxHpHhH`1HHHHHHHe1E1AHL=8HHxHpHhH`1HHHHHHHE1E1E1LLXLLxLpLhL`ALLLLLLL=gq1E1E1AHL=FHHHxHpHhH`LLLLLLE1E1E1ALL=LLLxLpLhL`LLLLLL|E1E1E1ALL=PLLXLLxLpLhL`LLLLL11E1AHL=HHHxHpHhH`HHHHHH11E1AHL=^HHHxHpHhH`HHHHHH1AHL=HHXHHxHpHhH`HHHHHH1E1AHL=gHHHxHpHhH`1HHHHHH1E1AHL=HHHxHpHhH`1HHHHHHE1E1ALLXLLxLpLhL`E1LLLLLLL='E1E1E1LL=LLLLLALLLLxLpLhL`E11E1AHL=HHHHHLLLXLLxLpLhL`+E1E1E1ALL=LLLxLpLhL`LLLLLL1E1E1AHL=HHXHHxHpHhH`LLLLLL/11E1AHL=HHHxHpHhH`HHHHHH11E1A)HL=HHXHHxHpHhH`HHHHHH61E1A)HL= HHHxHpHhH`1HHHHHH1E1A4HL=HHXHHxHpHhH`1HHHHHH=E1E1A4LLLLxLpLhL`E1LLLLLLL=E1E1E1LL=LLLLLAVLLLXLLxLpLhL`@E11E1AVHL=HHHHHLLLLxLpLhL`E1E1E1ALL=LLXLLxLpLhL`LLLLLLD1E1E1AHL=PHHHxHpHhH`LLLLLL11E1AHL=HHXHHxHpHhH`HHHHHHJ11E1AHL=WHHHxHpHhH`HHHHHH1E1AHL=HHHxHpHhH`1HHHHHHX1E1AHL=+HXHHxHpHhH`1HHHHHHE1E1E1LLLxLpLhL`ALLLLLLLL=Zd1E1E1AHL=9HHxHpHhH`LLLLLLLE1E1E1ALL=LLXLLxLpLhL`LLLLLoE1E1E1ALL=CLLxLpLhL`LLLLLLL11E1AHL=HHxHpHhH`HHHHHHH{1AHL=QHHXHHxHpHhH`HHHHHH11E1AHL=HHxHpHhH`HHHHHHH1E1AHL=ZHXHHxHpHhH`1HHHHHHH1E1AHL=HHxHpHhH`1HHHHHHHE1E1ALLXLLxLpLhL`E1LLLLLLLL= E1E1E1LL=LLLLLLALLLxLpLhL`1E1E1AHL=fHHHHHHLLXLLxLpLhL`E1E1E1ALL=LLxLpLhL`LLLLLLL1E1E1A1HL=jHXHHxHpHhH`LLLLLLL11E1A1HL=HHxHpHhH`HHHHHHH11E1AHL=HXHHxHpHhH`HHHHHHH1E1AHL=%HHxHpHhH`1HHHHHHH1E1AHL=HXHHxHpHhH`1HHHHHHH"E1E1ALLLxLpLhL`E1LLLLLLLL=E1E1E1LL=/LLLLLLALLXLLxLpLhL`%1E1E1AHL=HHHHHHLLLxLpLhL`E1E1E1ALL=2LXLLxLpLhL`LLLLLLL)E11E1AHL=HHxHpHhH`LLLLLLL11E1AHL=8HXHHxHpHhH`HHHHHHH/11E1AHL=HHxHpHhH`HHHHHHH1E1AHL=<HXHHxHpHhH`1HHHHHHH61E1AHL=HHxHpHhH`1HHHHHHHE1E1E1LLXLLxLpLhL`ALLLLLLLL=;1E1E1AHL=HHxHpHhH`LLLLLLLE1E1E1ALL=HLXLLxLpLhL`LLLLLLL?E1E1E1ALL=LLxLpLhL`LLLLLLL11E1AHL=MHXHHxHpHhH`HHHHHHHD11E1AHL=HHxHpHhH`HHHHHHH1E1A HL=QHXHHxHpHhH`1HHHHHHHK1A HL=HXHHxHpHhH`HHHHHHH1A HL=YHHxHpHhH`HHHHHHH\1A HL=HHxHpHhH`HHHHHHHE1A LLLxLpLhL`LLLLLLLL=sE1L= LLLxLpLhL`LLLLLLLA E1A!LL=LLXLLxLpLhL`LLLLLLL{1L=A!HHXHHxHpHhH`HHHHHHHE1A!LL=LLxLpLhL`LLLLLLLE1A!LL=LLxLpLhL`LLLLLLLE1E1E1A$LL=LXLLxLpLhL`LLLLLLL1A$HL=HXHHxHpHhH`HHHHHHH1A$HL=HHxHpHhH`HHHHHHH1A$HL=.HHxHpHhH`HHHHHHH111E1A(HL=HHHxHpHhH`HHHHHHH鱿1A1HL=:HHXHHxHpHhH`HHHHHHH/1A1HL=HHHxHpHhH`HHHHHHH鴾1A=HL==HHXHHxHpHhH`HHHHHHH21A=HL=HHHxHpHhH`HHHHHHH鷽E1ANLLLXLLxLpLhL`LLLLLLLL=4E1L=LLLLxLpLhL`LLLLLLLAN鸼1E1E1AwHL=@HHHxHpHhH`LLLLLLL7E1ALL=LLXLLxLpLhL`LLLLLLL鴻E1ALL=<LLLxLpLhL`LLLLLLL8E1ALL=LLXLLxLpLhL`LLLLLLL鵺E1ALL==LLLxLpLhL`LLLLLLL91AHL=HHXHHxHpHhH`HHHHHHH鷹1AHL=@HHHxHpHhH`HHHHHHH<1AHL=HHXHHxHpHhH`HHHHHHH麸1AHL=CHHHxHpHhH`HHHHHHH?1AHL=HHXHHxHpHhH`HHHHHHH齷1AHL=FHHHxHpHhH`HHHHHHHB1AHL=HHXHHxHpHhH`HHHHHHH1AHL=IHHHxHpHhH`HHHHHHHE1AHL=HHXHHxHpHhH`HHHHHHHõE1ALLLLxLpLhL`LLLLLLLL=GE1L=LLLXLLxLpLhL`LLLLLLLAĴE1ALL=LLLLxLpLhL`LLLLLLLH1L=AHHHXHHxHpHhH`HHHHHHHƳE1ALL=NLLLxLpLhL`LLLLLLLJE1ALL=LLXLLxLpLhL`LLLLLLLDzE1ALL=OLLLxLpLhL`LLLLLLLKE1ALL=LLXLLxLpLhL`LLLLLLLȱ1AHL=QHHHxHpHhH`HHHHHHHM1AHL=HHXHHxHpHhH`HHHHHHH˰1AHL=THHHxHpHhH`HHHHHHHP1AHL=HHXHHxHpHhH`HHHHHHHί1AHL=WHHHxHpHhH`HHHHHHHS1A HL=HHXHHxHpHhH`HHHHHHHѮ1A HL=ZHHHxHpHhH`HHHHHHHV1AHL=HHXHHxHpHhH`HHHHHHHԭ1AHL=]HHHxHpHhH`HHHHHHHYE1A-LLLXLLxLpLhL`LLLLLLLL=֬E1L=pLLLLxLpLhL`LLLLLLLA-ZE1AWLL=LLXLLxLpLhL`LLLLLLL׫1L=rAWHHHHxHpHhH`HHHHHHH\E1AdLL=LLXLLxLpLhL`LLLLLLL٪E1AdLL=aLLLxLpLhL`LLLLLLL]E1AzLL=LLXLLxLpLhL`LLLLLLLکE1AzLL=bLLLxLpLhL`LLLLLLL^1AHL=HHXHHxHpHhH`HHHHHHHܨ1AHL=eHHHxHpHhH`HHHHHHHa1AHL=HHXHHxHpHhH`HHHHHHHߧ1AHL=hHHHxHpHhH`HHHHHHHd1AHL=HHXHHxHpHhH`HHHHHHH1AHL=kHHHxHpHhH`HHHHHHHg1A HL=HHXHHxHpHhH`HHHHHHH1A HL=nHHHxHpHhH`HHHHHHHj1AHL=HHXHHxHpHhH`HHHHHHHE1ALLLLxLpLhL`LLLLLLLL=lE1L=LLLXLLxLpLhL`LLLLLLLA/E1A/LL=qLLLxLpLhL`LLLLLLLm1L=A=HHHXHHxHpHhH`HHHHHHHE1A=LL=sLLLxLpLhL`LLLLLLLoE1AQLL=LLXLLxLpLhL`LLLLLLLE1AQLL=tLLLxLpLhL`LLLLLLLpE1AnLL=LLXLLxLpLhL`LLLLLLL1AnHL=vHHHxHpHhH`HHHHHHHr1AtHL=HHXHHxHpHhH`HHHHHHH1AtHL=yHHHxHpHhH`HHHHHHHu1AHL=HHXHHxHpHhH`HHHHHHH1AHL=|HHHxHpHhH`HHHHHHHx1AHL=HHXHHxHpHhH`HHHHHHH1AHL=HHHxHpHhH`HHHHHHH{1AHL=HHXHHxHpHhH`HHHHHHH1AHL=HHHxHpHhH`HHHHHHH~E1AWLLLXLLxLpLhL`LLLLLLLL=E1L=LLLLxLpLhL`LLLLLLLAWE1ALL=LLXLLxLpLhL`LLLLLLL1L=AHHHHxHpHhH`HHHHHHH遚E1ALL=LLXLLxLpLhL`LLLLLLLE1ALL= LLLxLpLhL`LLLLLLL邙E1E1E1AiLL= LLXLLxLpLhL`LLLLLL11E1AiHL=HHXHHxHpHhH`HHHHH釘1AHL=HHXHHxHpHhH`HHHHHHH1AHL=HHHxHpHhH`HHHHHHH銗1AHL=HHXHHxHpHhH`HHHHHHH1AHL=HHHxHpHhH`HHHHHHH鍖1AHL=HHXHHxHpHhH`HHHHHHH 1AHL=HHHxHpHhH`HHHHHHH鐕1AHL=HHXHHxHpHhH`HHHHHHHE1ALLLLxLpLhL`LLLLLLLL=钔E1L=LLLXLLxLpLhL`LLLLLLLAE1ALL=LLLxLpLhL`LLLLLLL铓1L=.AHHHHxHpHhH`HHHHHHHE1E1E1ALL=LXLLxLpLhL`LLLLLL青E1ALL=%LLLxLpLhL`LLLLLLL!E1A,LL=LLXLLxLpLhL`LLLLLLL鞑1A,HL='HHHxHpHhH`HHHHHHH#1AHHL=HHXHHxHpHhH`HHHHHHH顐1AHHL=*HHHxHpHhH`HHHHHHH&1ARHL=HHXHHxHpHhH`HHHHHHH餏1ARHL=-HHHxHpHhH`HHHHHHH)1AHL=6HHHxHpHhH`HHHHHHH鮎1AHL=HHHxHpHhH`HHHHHHH31AWHL=HHXHHxHpHhH`HHHHHHH鱍1AWHL=:HHHxHpHhH`HHHHHHH6E1ALLLXLLxLpLhL`LLLLLLLL=\鳌E1L=MLLLLxLpLhL`LLLLLLLA7E1ALL=LLXLLxLpLhL`LLLLLLL鴋1L=OAHHHHxHpHhH`HHHHHHH9E1ALL=ELLLxLpLhL`LLLLLLL齊E1ALL=ɤLLLxLpLhL`LLLLLLLAE1ALL=ɟLLXLLxLpLhL`LLLLLLL龉E1ALL=FLLLxLpLhL`LLLLLLLB1AHL=˞HHXHHxHpHhH`HHHHHHH1AHL=IHHHxHpHhH`HHHHHHHE1A'HL=ΝHHXHHxHpHhH`HHHHHHHÇ1A'HL=LHHHxHpHhH`HHHHHHHH1AHL=UHHHxHpHhH`HHHHHHH͆1AHL=ڠHHHxHpHhH`HHHHHHHR1AUHL=ۛHHXHHxHpHhH`HHHHHHHЅ1AUHL=YHHHxHpHhH`HHHHHHHU1AjHL=ޚHHXHHxHpHhH`HHHHHHHӄE1AjLLLLxLpLhL`LLLLLLLL=WE1L=LLLXLLxLpLhL`LLLLLLLAԃE1ALL=\LLLxLpLhL`LLLLLLLX1L=AHHHXHHxHpHhH`HHHHHHHւE1ALL=^LLLxLpLhL`LLLLLLLZE1ALL=LLXLLxLpLhL`LLLLLLLׁE1ALL=_LLLxLpLhL`LLLLLLL[E1A LL=LLXLLxLpLhL`LLLLLLL؀1A HL=aHHHxHpHhH`HHHHHHH]1A7HL=HHXHHxHpHhH`HHHHHHH1A7HL=dHHHxHpHhH`HHHHHHH`1AOHL=HHXHHxHpHhH`HHHHHHH~1AOHL=gHHHxHpHhH`HHHHHHHc~1AHL=HHXHHxHpHhH`HHHHHHH}1AHL=jHHHxHpHhH`HHHHHHHf}1AHL=sHHHxHpHhH`HHHHHHH|1AHL=HHHxHpHhH`HHHHHHHp|E1ALLLXLLxLpLhL`LLLLLLLL={E1L=LLLLxLpLhL`LLLLLLLAq{E1ALL=}LLLxLpLhL`LLLLLLLz1L=AHHHHxHpHhH`HHHHHHHzzE1ALL=LLLxLpLhL`LLLLLLLyE1ALL= LLLxLpLhL`LLLLLLLyE1ALL=LLLxLpLhL`LLLLLLLyE1ALL=LLLxLpLhL`LLLLLLLx1AHL=HHHxHpHhH`HHHHHHHx1AHL=HHHxHpHhH`HHHHHHHw1ARHL=HHXHHxHpHhH`HHHHHHHw1ARHL=HHHxHpHhH`HHHHHHHv1AHL=HHHxHpHhH`HHHHHHHv1AHL=)HHHxHpHhH`HHHHHHHu1AHL=*HHXHHxHpHhH`HHHHHHHu1AHL=HHHxHpHhH`HHHHHHHt1AHL=HHHxHpHhH`HHHHHHH)tE1ALLLLxLpLhL`LLLLLLLL=ڍsE1L=ˍLLLLxLpLhL`LLLLLLLA1sE1ALL==LLLxLpLhL`LLLLLLLr1L=PAHHHXHHxHpHhH`HHHHHHH3rE1ALL=LXLLxLpLhL`LLLLLLLqE1ALL=?LLxLpLhL`LLLLLLLBqE1ALL=ʆLXLLxLpLhL`LLLLLLLpE1ALL=NLLxLpLhL`LLLLLLLQp1AHL=څHXHHxHpHhH`HHHHHHHo1AHL=_HHxHpHhH`HHHHHHHbo1AHL=HHXHHxHpHhH`HHHHHHHn1AHL=iHHHxHpHhH`HHHHHHHen1AHL=HHXHHxHpHhH`HHHHHHHm1AHL=lHHHxHpHhH`HHHHHHHhm1A-HL=HHXHHxHpHhH`HHHHHHHl1A-HL=oHHHxHpHhH`HHHHHHHkl1ALHL=HHXHHxHpHhH`HHHHHHHkE1ALLLLLxLpLhL`LLLLLLLL=mkE1L=LLLXLLxLpLhL`LLLLLLLAjE1ALL=rLLLxLpLhL`LLLLLLLnj1L= A HHHHxHpHhH`HHHHHHHiE1E1E1A LL=zLLXLLxLpLhL`LLLLLxiE1A LL=LLLxLpLhL`LLLLLLLhE1A> LL=~LLLxLpLhL`LLLLLLLh11E1A> HL= ~HHXHHxHpHhH`HHHHHh1A> HL=}HHHxHpHhH`HHHHHHHg1AD HL=}HHXHHxHpHhH`HHHHHHH g1AD HL=|HHHxHpHhH`HHHHHHHf1A HL=|HHHxHpHhH`HHHHHHHf1E1A HL={HXHHxHpHhH`1HHHHHHe1A HL=${HHHxHpHhH`HHHHHHH eE1A LLLLxLpLhL`LLLLLLLL=MzdE1E1E1LL=,zLLLLA LLLXLLxLpLhL`)d1L=yA HHHHxHpHhH`HHHHHHHcE1A LL=6yLLLxLpLhL`LLLLLLL2cE1E1E1A LL=xLLXLLxLpLhL`LLLLLbE1A LL=?xLLLxLpLhL`LLLLLLL;b1A HL=wHHHxHpHhH`HHHHHHHa11E1A HL=IwHXHHxHpHhH`HHHHHHGa1A HL=vHHHxHpHhH`HHHHHHH`1A HL=UvHHHxHpHhH`HHHHHHHQ`1E1A HL=uHHXHHxHpHhH`1HHHHH_1A HL=auHHHxHpHhH`HHHHHHH]_1A HL=tHHHxHpHhH`HHHHHHH^E1E1E1LLLXLLxLpLhL`A LLLLLL=tg^E1A LL=sLLLxLpLhL`LLLLLLL]1L=sA HHHXHHxHpHhH`HHHHHHHi]E1A LL=rLLLxLpLhL`LLLLLLL\E1AA LL=urLLXLLxLpLhL`LLLLLLLj\E1AA LL=qLLLxLpLhL`LLLLLLL[E1ALL=uLLXLLxLpLhL`LLLLLLLk[1AHL=xuHHHxHpHhH`HHHHHHHZ1AHL=tHHXHHxHpHhH`HHHHHHHnZ1AHL={tHHHxHpHhH`HHHHHHHY1A HL=|oHHXHHxHpHhH`HHHHHHHqY1A HL=nHHHxHpHhH`HHHHHHHX1A HL=nHHXHHxHpHhH`HHHHHHHtX1A HL=mHHHxHpHhH`HHHHHHHW1A HL=mHHXHHxHpHhH`HHHHHHHwW1A HL=mHHHxHpHhH`HHHHHHHVE1A LLLXLLxLpLhL`LLLLLLLL="lyVE1L=lLLLLxLpLhL`LLLLLLLA UE1ALL=lLLXLLxLpLhL`LLLLLLLzU1L=kAHHHXHHxHpHhH`HHHHHHTE1ALL=kLLXLLxLpLhL`LLLLLLTE1ALL=jLLLxLpLhL`LLLLLLTE1E1E1ALL=*jLLXLLxLpLhL`LLLLLLS11E1AHL=iHHHxHpHhH`HHHHHHS11E1AGHL=1iHHXHHxHpHhH`HHHHHHR1AGHL=hHHXHHxHpHhH`HHHHHHR1AGHL=6hHHHxHpHhH`HHHHHHHQ1AMHL=gHHXHHxHpHhH`HHHHHHHQ1AMHL=9gHHXHHxHpHhH`HHHHHHP1AMHL=fHHXHHxHpHhH`HHHHHH%PE1AMLLXLLxLpLhL`LLLLLLL=eOE1L=eLLXLLxLpLhL`LLLLLAMBO1L=reA]HHHxHpHhH`HHHHHHNE1AMLL=dLXLLxLpLhL`LLLLLgNE1AMLL=dLLxLpLhL`LLLLLNE1AgLL=dLLXLLxLpLhL`LLLLLLL}ME1AgLL=cLXLLxLpLhL`LLLLLLLM11E1AgHL=cHHxHpHhH`HHHHHHHL11E1AmHL=bHXHHxHpHhH`HHHHHHHL1AmHL=&bHXHHxHpHhH`HHHHHHHK1AmHL=aHXHHxHpHhH`HHHHHHHK1AmHL=0aHXHHxHpHhH`HHHHHHJ1AmHL=`HXHHxHpHhH`HHHHH1JE1E1A}LLLxLpLhL`E1LLLLLL=`IE1L=_LLXLLxLpLhL`LLLLLAmVIE1AmLL=s_LLxLpLhL`LLLLLH1E1E1AHL= _HHHHHHLLLLxLpLhL`nHE1E1E1ALL=ybLLxLpLhL`LLLLLLLGE11E1AHL=aHHxHpHhH`LLLLLLLyG11E1AHL=]HHHxHpHhH`HHHHHHHF11E1AHL=]HHXHHxHpHhH`HHHHHHyF1E1AHL=`HHxHpHhH`1HHHHHHHF1E1AHL= `HHxHpHhH`1HHHHHHHEE1E1AiLLXLLxLpLhL`E1LLLLLLLL=C[EE1E1E1LL="[LLLLLLAiLLLxLpLhL`D1E1E1AzHL=ZHHHHHHLLXLLxLpLhL` DE1E1E1AzLL=%ZLLxLpLhL`LLLLLLLC1E1E1AHL=YHXHHxHpHhH`LLLLLLL C11E1AHL=+YHHxHpHhH`HHHHHHHB11E1AHL=\HHxHpHhH`HHHHHHHB1E1AHL=%\HHxHpHhH`1HHHHHHHA1E1AHL=WHHxHpHhH`1HHHHHHH)AE1E1ALLLXLLxLpLhL`E1LLLLLL=V@E1E1E1LL=VLLLLLLALLLxLpLhL`3@1E1E1AHL=PVHHHHHHLLXLLxLpLhL`?E1E1E1ALL=ULLxLpLhL`LLLLLLL7?E11E1AHL=CYHHxHpHhH`LLLLLLL>11E1AHL=XHHxHpHhH`HHHHHHHD>11E1AHL=bTHXHHxHpHhH`HHHHHHH=1E1AHL=SHHxHpHhH`1HHHHHHHK=1E1AHL=fSHXHHxHpHhH`1HHHHHHH<E1E1ALLLxLpLhL`E1LLLLLLLL=RP<E1E1E1LL=mRLLLLLLALLXLLxLpLhL`;1E1E1AHL=QHHHHHHLLLxLpLhL`T;E1E1E1A5LL=pQLXLLxLpLhL`LLLLLLL:E11E1A5HL=PHHxHpHhH`LLLLLLLX:11E1A<HL=vPHXHHxHpHhH`HHHHHHH911E1A<HL=OHHxHpHhH`HHHHHHH_91E1A?HL=zOHXHHxHpHhH`1HHHHHHH81E1A?HL=NHHxHpHhH`1HHHHHHHf8E1E1ALLLxLpLhL`E1LLLLLLLL=R7E1E1E1LL=QLLLLLLALLLxLpLhL`p7E11E1AaHL=MHHHHHLLXLLxLpLhL`6E1E1E1AaLL=MLXLLxLpLhL`LLLLLL{6E11E1AaHL=LHHxHpHhH`LLLLLLL611E1AHL=PHHxHpHhH`HHHHHHH511E1AHL=OHHxHpHhH`HHHHHHH51E1AxHL=*KHXHHxHpHhH`1HHHHHHH41E1AzHL=JHXHHxHpHhH`1HHHHHH4E1E1AzLLLxLpLhL`E1LLLLLLL=I3E1E1E1LL=ILLLLLAxLLXLLxLpLhL`'31E1E1AxHL=DIHHHHHLLLxLpLhL`2E1E1E1ALL=HLXLLxLpLhL`LLLLLLL22E11E1AHL=OHHHxHpHhH`LLLLLLL111E1AHL=GHXHHxHpHhH`HHHHHHH8111E1AHL=VGHHxHpHhH`HHHHHHH01E1AHL=FHXHHxHpHhH`1HHHHHHH?01E1AHL=ZFHHxHpHhH`1HHHHHHH/E1E1ALLXLLxLpLhL`E1LLLLLLLL=ED/E1E1E1LL=aELLLLLLALLLxLpLhL`.1E1E1AHL=DHHHHHHLLXLLxLpLhL`H.E1E1E1ALL=dDLXLLxLpLhL`LLLLLL-1E1E1AHL=CHHHxHpHhH`LLLLLLS-11E1AHL=qCHHXHHxHpHhH`HHHHHH,11E1AHL=BHHHxHpHhH`HHHHHHZ,1E1A&HL=uBHHXHHxHpHhH`1HHHHHH+1E1A&HL=AHHHxHpHhH`1HHHHHHa+E1E1E1LLLXLLxLpLhL`A)LLLLLLL=A*1E1E1A)HL=@HHHxHpHhH`LLLLLLe*E1E1E1A,LL=@LLXLLxLpLhL`LLLLLL)E1E1E1A,LL=?LLLxLpLhL`LLLLLLh)11E1ALHL=?HHXHHxHpHhH`HHHHHH(11E1ALHL=?HHHxHpHhH`HHHHHHo(1E1A_HL=>HHHxHpHhH`1HHHHHH'1A_HL=>HHXHHxHpHhH`HHHHHH{'1E1A_HL==HHHxHpHhH`1HHHHHH'E1E1AyLLLXLLxLpLhL`E1LLLLLLL=<&E1E1E1LL=<LLLLLAyLLLLxLpLhL`&E11E1AHL="<HHHHHLLLLxLpLhL`%E1E1E1ALL=;LLXLLxLpLhL`LLLLL%1E1E1AHL=-;HHHxHpHhH`LLLLLL$11E1AHL=:HHHxHpHhH`HHHHHH$11E1AHL=;:HXHHxHpHhH`HHHHHH#1E1AHL=9HHHxHpHhH`1HHHHHH+#1E1AHL=F9HHHxHpHhH`1HHHHHH"E1ALLLXLLxLpLhL`LLLLLLL=t86"E1E1E1LL=S8LLLLLALLLLxLpLhL`!E11E1AHL=;HHHHHLLLLxLpLhL`A!E1E1E1ALL=L;LLLxLpLhL`LLLLLL E1ALL=6LLXLLxLpLhL`LLLLLLJ 1AHL=h6HHXHHxHpHhH`HHHHHH11E1AHL=5HHHxHpHhH`HHHHHHV11E1AHL=c9HHHxHpHhH`HHHHHH1E1AHL=8HHHxHpHhH`1HHHHHHd1AHL=4HHXHHxHpHhH`HHHHHH1AHL=4HHXHHxHpHhH`HHHHHHnE1E1E1LLLLxLpLhL`ALLLLLLL=131E1E1AHL=6HHHxHpHhH`LLLLLLyE1E1E1ALL=6LLLxLpLhL`LLLLLLE1E1E1A/LL=2LLXLLxLpLhL`LLLLLL|1A/HL=1HHXHHxHpHhH`HHHHHH1A/HL=1HHHxHpHhH`HHHHHHH1A4HL=0HHXHHxHpHhH`HHHHHHH1A4HL="0HHXHHxHpHhH`HHHHHH1A4HL=/HHXHHxHpHhH`HHHHHH1A4HL=,/HHXHHxHpHhH`HHHHH1A4HL=.HXHHxHpHhH`HHHHH-1A<HL=K.HHxHpHhH`HHHHHHE1A4LLXLLxLpLhL`LLLLLL=-RE1L=-LLLxLpLhL`LLLLLA4E1AQLL=-LLXLLxLpLhL`LLLLLLo1L=,AQHHHXHHxHpHhH`HHHHHHE1AQLL=,LLLxLpLhL`LLLLLLLxE1AuLL=+LLXLLxLpLhL`LLLLLLLE1AuLL=+LLLxLpLhL`LLLLLLLyE1ALL=*LLXLLxLpLhL`LLLLLLL1AHL=*HHHxHpHhH`HHHHHHH{1AHL=)HHXHHxHpHhH`HHHHHHH1AHL=)HHHxHpHhH`HHHHHHH~1AHL=(HHXHHxHpHhH`HHHHHHH1AHL=(HHHxHpHhH`HHHHHHH1AHL='HHXHHxHpHhH`HHHHHHH1AHL='HHXHHxHpHhH`HHHHHH1E1AHL=&HHHxHpHhH`1HHHHHH E1E1ALLLXLLxLpLhL`E1LLLLLLL=%E1E1E1LL=%LLLLLALLLLxLpLhL`E11E1AHL=+%HHHHHLLLXLLxLpLhL`E1E1E1ALL=$LLLxLpLhL`LLLLLL1E1E1AHL=(HHXHHxHpHhH`LLLLLL 11E1AHL='HHHxHpHhH`HHHHHH 11E1AHL=%'HHXHHxHpHhH`HHHHHH 1E1AHL=&HHHxHpHhH`1HHHHHH 1E1AHL=:"HHXHHxHpHhH`1HHHHHH E1E1ALLLLxLpLhL`E1LLLLLLL=b!$ E1E1E1LL=A!LLLLLALLLXLLxLpLhL` E11E1AHL= HHHHHLLLLxLpLhL`( E1E1E1ALL=D LLXLLxLpLhL`LLLLLL 1E1E1AHL=HHHxHpHhH`LLLLLL, 11E1A"HL=JHHXHHxHpHhH`HHHHHH11E1A"HL=HHHxHpHhH`HHHHHH31E1A<HL=NHHXHHxHpHhH`1HHHHHH1E1A<HL=HHHxHpHhH`1HHHHHH:E1E1AYLLLXLLxLpLhL`E1LLLLLLL=E1E1E1LL=LLLLLAYLLLLxLpLhL`=E11E1AHL=ZHHHHHLLLXLLxLpLhL`E1E1E1ALL=LLLxLpLhL`LLLLLLA1E1E1AHL=%HHXHHxHpHhH`LLLLLL11E1AHL=%HHHxHpHhH`HHHHHHG11E1AHL=THHHxHpHhH`HHHHHH1E1AHL=HHHxHpHhH`1HHHHHHU1E1AHL=_HHHxHpHhH`1HHHHHHE1E1E1LLLXLLxLpLhL`ALLLLLLL=Z1E1E1AHL=HHHxHpHhH`LLLLLLE1E1E1ALL=LLLxLpLhL`LLLLLLeE1E1E1ALL=LLLxLpLhL`LLLLLL11E1AHL=(HHHxHpHhH`HHHHHHt11E1AHL=HHHxHpHhH`HHHHHHHԒHȒH輒H谒H褒H蘒H茒H耒LxH`lHh`HpTHxHH<H0HX$HH HH=j0tKH=/ttLDH=4要H=j0Ht?1Hj0Hx/HHu'= 9HuH"=-H5K4H8{H=j0He[A\A]A^A_]H=[-fH}HtH$H}HtH#H}HtH#H}HtvH#IELP *H}HtLH}Ht>H}Hu(xLHn#Hv(H}HuH}HtH>#H}HtH(#H @wH# H HPX)H(H" H HP1)H 8 H"H'H" ILP(AH}Ht1H}Ht#Et PLHxHtHH"HE1M'H}HtH%"H}HtH"H}HtH!H}HtH}'Hp'H!H}HtpHXHhHxHtMHpH!H}Ht+Hs!E1HMtLHX!E1E1E1E1E1H}HtL@ H F8 &H&H E1H}HtH HL HL LL&H HL HL H}Ht*Hr H@vHPt HPHH H@tH@HPtHPH H MtLHEHEH1HpH%HHHt pHHtHHUHHPH%H0%Hs111y1r1k1d1]1V1O1H1A1:131,1%1111 H$H; L 5#HpH=1{4A1111111111{1tI1e#Lb1[LN LF H.L6 L. HL L HL L HL HL#H}HtpHL L HH}HtBH} HHHt HHHt HHMHt"HH/H@3 HL! H L HL HMtLMtLHMtLjHH} HH}HtAHH}Ht+HsH}HtH]H}T"H}HtH>H}HtH}HtHH}HtHP!H}HtHHP!L H}HttHH LH LL HL H|L HlH}s MtLHNMtLH9H1Mt&LHH}# H} HL HL HH LH} HH LH} HH LH} H{H} HjHr LZHb LJLR H:LB H*H}1 HL! H L HL H}HtHLHLHH}HLHLHLHzLHjLrHZLbHJLRH:LBH*L2HL"H LHLHHXLfLHHxLBHLLHhHt9 H }H}tHphHXHt HOH}Ht LGH/L7HL'H}Ht HL HLHHXH]LLHH}LLLH}Ht6 H~HLnLvH^LfHNLVH0:}tHpE$HL$H LHMtL HH}Ht HH}Hts HH}Ht] HH}HtG HH}Ht1 HyH}Ht HcH}Ht HMH}Ht H7H}Ht H!H}Ht H H}Ht HH{Ht LH{Ht LH{Htk LH{HtU LLL,p_tLLHbHJHRH:LBH}Ht HH}Ht HLH}Ht HH}Ht HH}Htt HH}Ht^ HHxH}Ht< HHxH}Ht Hb]I$LPHVH>LFH.L6HH}HtHH}HtHH}HtHH}Ht~HH}HthHH}HtRHL8HIELPHyHaI|$HtHJI|$HtH3HxHtLH{HtH}LH}HtHHI|$Ht~LLHtHaLHt%HLLHtH7LHwHoMuHbLHEHEH}HtH}HtH}HtHH}HtH}HtHH}HtH}HtHH}HtxHH}HtbHH}HtLHH}Ht6H~LvH}HtH`I|$HtHII|$HtH2I|$HtHI|$HtHH}HtIHtH}HtHI|$HtsHI|$Ht\HI|$HtEHI|$Ht.HvI|$HtH_I|$HtHHHLMH}HtH}HtHxHtHH H}HtHxHtHI|$HtvHHLH}HtUH}HtGHxHt6H~HH}HtHxHtHKI|$HtH4I|$HtHMtLLHL[H}HtHI$LP1HIELPMtLVLPLHMuHLxHLH}Ht HUPILPHJLH}HtHH}HtHH}HtH H}HtH I$LP"HH}Ht\H XLI$LPHH}HtHc XLOI$LPHHH}HtH" XLuI$LP_HH}HtH XL4I$LPHH}HtXH H}HtBH LHtH%Lm Ht%HLX HtHLC H; H3 H}HtMt IELPH LH}Ht־xLIH}Ht#H H}HtuH H H LMtLHH Mt%L3H{ MtLHf H^ HV HuHI HHEHEI|$HtH Hu2L Ht5HL HtHL HL H LyH{HtkL LH}u$HLL MtL7H}t H}'HuH}t1H] H}HtH}tbH}H}HtH% 11HuB!DžxE11H}uH IH IH}`L HpIH}HtTL LHtHH8 H@t Hph HPHTL H}SH;H}HtXLI$LPj HH}HtMu H}LLHhH`H}Ht_HxHtNHLH}H{HH`gH@[LSL{H`?H7pHH}HtLHlH}CHhHtHp&LLfH}HhHtlHpHHPLHI=L5L}H}Hu^H߾L_eLXIHMuH>H&HLE1ŐHH}HtH}HHt HHP*LLxH}HL_LH`H@}HuLLIPHVH JH>L6H^H$HtHHEHEHMHyHt HEHEHLLH8Ht}H(HtlLH@HH1H HHXHtH(!H(HHHtH(H(HtHH(H(H tH H(H(LH($H(HH1H 1H=HhHteH$DžU%밐IH xMH@iHt HLKH}BL:1LHHEH@H@MtLHEE1H@H}LHV 1MtLtHt H^`H$I|$Ht/E1:MtL-LuI|$HuHcH[II|$HtI|$HuH:I|$Ht L#HHtHE1I|$HiHHMHI|$H@LI|$H*HI|$HHI|$HHI|$HHrLzH}ID$HpHtHhHtHXHtH&MtLL%-H}HtHLLIH}HtLHtHtHtHeH}HtWLHwHLeLH}HtHgMMtLH-HUH}HtL/LL/H}HtH MtLMtLH}HtLhH*LLH}HtZH}HtLHMtLL LH}HtLdLHtHH HLOH8HHHHtH(HtHHtHHtHHtHH HLHHHt^WsL LLH}Ht,LtHtHHxHtMMMtLMMtLHhHtHL` LLHxHtHxHt;E1E1E1HxHxMMbHxHzVE1`L LH}Ht0LxsHxH%E1ME1zL LPH}HtL*HtHI1H}HHtHLHtHH}HtLL LH}HthH}Ht%1E1SILE1H}Ht81ILH}HuuH}HhE1L L\H}HyoMtLHtHH}HtH}HtLMt1LL. L11MuMtLjE1LLHH}Ht HE@HEHMMtLHE HELLjH8HtMtLLL}L5HH8HuHHHtHXHtL(E1H8HtH(yH(hLiHLH8Ht6H(Ht%HHtH\HdLLR;ILPH5댾pLvzMtLHxHtHH3HLMtLyMtLlH}Ht^HMtME1LCLLMtL"MtLMuMtLMtLH}HtHxHtHMtLMtLMtLL6LLLH{Ht8E1kMtL^LMtLIE1H{HtLH{HuHrH{HuHaHiH`t H`L;H`t,H`LHptHpHH`tCH`HH`H81H`H8t"H8bHHxH`t H`6H~LIH}HtMtLLPMtL1HtHH}HtE1HMtLLE1H}HuHE1yLLH}Ht~H}HtpHxHt_HLLH}Ht9MthL*1LeHMH}t H}MtLH}HtH=E1E1H}tE1MtLLeMtLLLLLHpHtHHHtqHMtL\LLH}HtHtH1H}Ht#H}HtL]11MtLL@LHMtLE1Mt1LL LH}LCH(HtHMtL}HHLH}Ht HEVHEHHtHHE9HEHKHLH}Ht HEHEHRHtHHEHEHH;LH}Ht HEHEH HtHHEHEHHLH}Ht HE~HEHHtHHEaHEMtLNH}IMHt:MtL-LuMtLIH`t H`L1H}HuH5LML2H}HtE1H`HHHH}HtH}HtLHtHpLLH}HtPLhLHMMtL(L>LvMtL H}HtHCLKH(HtH0~HLHHtH0QHE1LE1Dž LLLLLE1LLLL1LLDž HHQH}8H(HtHP[H0OHHE1L2H&Et 0H4LAE1LLLL1LLDž H,HLrH}YHhHtHp|H4/[5HH# 8"LLHXHtH}HpHHHtfHHHHLDž H^"HtrLLI\H}HtL6HtHLL'H}HtLHtHLZLIH}HtLHtHlL"LH}HtLLHtH7HHH}HtH}Ht LQHtHLLBH}HtLHtHHuH H}HtH}HtLHtH|L2LLH}HtTH}HtFHMtL1LLH}HtLmLeM9tBI|$HtIH5a;DžXwkH$H}HuH)Ht]HHH}HtH}HDžxE1PzHHHPH߾PLHsyHhE1A1ZHHUHpH1HH}H}AILPA1HHl7H=?Iܻ:"HgHZHHHt'L_LH H(?HGHHHtLLH H(H-HEHIExEHuLAH4HAHx HEAHHHpH@H HHtH?HHBHEHH)>LAE1H)E1AHHPH0HaHHt@HHHouLAE1H)FrLE1AH2HPH0JHHHtHHHLH}HpHPhHHHtGHHA:kqLAHWyHJl0\6LLAI(1HHHHtHHHt|H@H tHhHHEHHEE1AHWHEHLj[H]HEHC8dHEH3HEMAE1HHHEHHHH}HpHPuHHHtTHE11E1DžLE1H(H[aHTiHG\H6H}HpQHPHHHtHE11E1DžLE1H-HR5HiH\HLH@kHHHHHtH.)UHH!11HE1H`E1HXHHHLHTHHHHH11E1E1H`HXHKH\HOHH'S-1AE1E1HE1HHf|HH}HpHPHHHtmH{HHHH7HH}HtLYLLYH}HtH3LL3H}HtH LLI H}HtLHtHHtHxLLH}HtXLHxHLH}Hu~HH}HtHhHhHxHtHhHhMtLHhHhH#MtLHhHhxLLLH}HtH8Ht$1HmHt HWH(HtFHHt5H}Ht'HoHt H HLHHt HLH8HZPLLE1HtH1HH(HtwHLHHt[HHtJHHt9HHt(HHtH@+HSHIuOA:HLLLLH8HtWnPLLLLLFLH(Ht-H8HtHHt MtLHHtH5ME1HHtMtLHHtE1LL?LLL8LH8HtWoPLLLLLLH(Ht.H8HtHHt MtLHHtH6ME1HHtMtLHHtE1LGLLL0LH(HtwHHtfHHtUHHtDHHt3H{LL{LLLdHHtH(HlbLqL)LLLH(HtHHtHHtHHtnHHt]HLLLL&LHHtH(HlbHHxHtHhHtH}dHHdHL.H뚐IHXHtHHHtsH8HtbHpLLvLLIHhHt"HHvHMySDžE1E1LLLL'I HHtHMH}HtMtLLH}HtE1HHtHVME1MtLCLLI莿LL~zH}HuHXH}HuHGE1SH}HOH*HHtH@ HHtHxHtLL,LH踹HHHhHtOHXHt>H聺11L01MHE1HHHH(H8HDžH3/HH$ 6111L0HL1HHHH(H8HDžH.LHLL製uHh|H8E1E1E1L01ME1LE1LLLL(LH L8DžH.H1LHMtLHXLHtwMtLjHHHtYH1HL^L薼HXHtE11LHtH1HI\HE1LICHXHS`HE1LIH}H HXHHE1LILL輻!L读LWL蟻H}Ht1HyL1LyHxHuSH}HuQHHhHtHXHXH*MMtLHXHXLLIH}HtLHtHvL|LĺHxHuSH}HuQHHhHtHX4HXHuMMtLHXHXMtLLL8H}HtʿHMtL赿LLH}Ht蕿HMtL耿H}HtrHHrHL跹蠵11E1E1DžHHHHHM}LxRHHE1DžHHH颯LL HXHt蜾H}HpHHHtvHHHH먐IHxHt;HhHt*HXHtH}LXHtHLLIH}Hu)U/IEIAx1IcHHLHxHt膽HhHtuH}\H诳I$xIݻSHHH=%IE1ZHptHHXHtHHHtH}H$HHL! 6IA1jHLxILtLܶH}tB1HMH}fH}t H}VLH}uHIH}uH{H}t6H}I1HUH}t H}IMtLH}IkH(H}uH}INH H}Z1LmHEHEMt)L蓻HMLzHHH}Ht\MtLOHMtBL:HMt%L%HmMt8LHXHPHHH}HtH0H(H}HtʺMtL轺MtL谺HMt]LLE1蕺MtL膺H}LtH}sL LH}HtSLMt&E1LMuLMtLuE1E1LmLXLLfE1"E1MtLH}Ht߹H}&HpMtL轹HH}Ht觹E1LpH}LMtL}HMtLhE1LHLL謳LpH}Ht3H}Ht#LLqHYH}HtHtHL6HtHٸL!LHt*H輸LHu:LHu=LHHtH腸LHHmLH]LLL襲HHt%H0LxHtHLcH[HSH}HtHtHL0HtJHӷLHu%LHuLH詷LH虷LLLLٱLѵLɱHMtLTLpLsL蛱H}Ht-HuMtLMMtLMt I$LPH}HtH1H}HtӶMtLƶH}Ht踶HL}LԻLMtL荶H}tH}}H}tE1MtLE1_LL議H}Ht?LH}Ht)HtHMtL LpLLTH}HtH.MuH!H}HtõMtL趵HMtLE1螵MtL葵MuHMtLE1rMtLeHH}HtOMtLBMuHLpLTL|H}HtHVMuHILLIHH.MtLHELpHEMMtLLMMtL萴HؿL@LخMMLDL輮HHHtKH8Ht:H(Ht)HqHtH LQHtHHt HӳHt H轳MiL謳\MSLE1LLcLۭHHHtjH8HtYH衾H蕶MtL8MtL)MtLH(tH(MtLMt+ME1E1L۲MtLβMtLH MtLE1該LLH}HuLMtLuMuHu\L豽Hu%Ht@HML蕽LH5L}L%L}HeH]HLMHu\L@Hu%Ht@HܱL$L,HıL LL HHH蔱LܼMtP1LpE1HxHphHxu7A1E1HpHxHpLuHHLHxMtLLL\H}HtH}HuHxHtHxʰ1HxTHjH諰]H}ͳHHEHH讳HƻHPMtL]LSL諪LCL蛪HEHHRLjH}AHYLLYLϼHtHH8HtϯML袼 7E11AUHPHHLHxHtvHtHiHhHtXH}?L藺II蚿HxHuLLPL(LpH}HtvL襺H0虺H1HL6H8HtŮHiH]HHLH8Ht艮H=̤ҾIxZM E1L0LL褨HxHt3H}ZHhHtHaH\ H=iME1HF/[5lHH}H}H*H7H=H߽HսH}蚰H貸H}艰H衸H=薣蜽IxZME1L0L&LnHxHtH}$HhHtH+H&H=C3ME1HHH L趮LHHtt}mƢ̼IH1AH}HH萢薼HL%,A1HHnHHtHxHxHtHHt׫HPH0߭H.IHA16茫肫5HջbHȻUH}HtUH}HtGH菶MtL耡LLբмHxHpH(HEHXHXCH}:H(nH&LHLgLH CL;LsHxHt蒪HPֻHJHHHhHtQH虵蔠蚺LHA&syE1A&H`H[SHNFHL0膣&H"L@A{&HHEH@HEE1AH@:軟LXA :H L@H菹HHtH@bH֭H芢H~HxHtݨH%LXLfLH0BL:LrnHf LPA9H̸HEH@-H贸 I薹0LH0}Hu{OHHiHPMLLLvLLL_HLH8Ht讧HHt蝧LLH1H%HHtdH謲LdL謡L褿H(Ht3H0wLHgHPLp4MyS11E1E1HE11E1Dž*HHH8HH LE1H}H(HtMtLrH@覛Ht HPHHH`脷HHt#Hk1E1HqHfHZY>E1LLH"1HXHt輤H8HukL8HHHt藤H`H(HtzH¯轚ôDž BHH觴@艚菴Dž 1E1HHHHȠHW[=iCA%ƴH]H}HtţLhhL,A&鉴HXHt芣HHHuHLH8HteH(HtTH`ȯH萮H蘳1z耳E11A"A+HNsHAfH4YH}Hut LiHxHt訢H}ߗHhHt莢HXHt}HŭAL觗H}HtYEuM薘L讳脘芲Dž'1E1HHHH@HE1NzHA#UHSHPH,H5 ,HH,H_HHQUH@t H= )H=)H=9B/H2B/H9tHN,Ht H= B/H5B/H)HH?HHHtH],HtfD=A/u+UH=B,Ht H=+詚dA/]wff.@Ha,tHff.HHHHt 1DUHAUIATISHHH HtHAԅCH{(HtLAԅ,H{0HtLAԅH{8HtLAԅH{@HtLAԅH{HHtLAԅH{PHtLAԅH{XHtLAԅH{`HtLAԅH{hHt LAԅuxH{pHt LAԅueH{xHt LAԅuRHHt LAԅutH@(HHt tHWPtHff.@HW`tHff.@HGhHttDH,ff.@UHAUIATISHHHpHtHAԅH{ HtLAԅH{@HtLAԅH{XHtLAԅH{`Ht LAԅu{H{8Ht LAԅuhHHt LAԅuRHHt LAԅuH]I<$UHAWAVIAUATSHGxHIuAL{ IHC Ht!H@(HtHPLHUOHUHBID$hLHLHC(M|$hSH{ IHC(ID$hHC(HtD8XIHt7H@HxHtH@Hx HHtcI$x HI$t!{xMut)H[A\A]A^A_]L;{xMuuIH[A\A]A^A_]@;떐HtHdi,EH:i;E@UHSHHLg,DHL9tHu#HHuHHH;H]HtHHHtHWHH;H]t;wteHu/t@u3Hv/tfH/t͉fDH9f,tfDHy~/tff.Hy/tHff.HtHtHHH@ M LA8M~HEȅPA-It.LuHMH)L9LEHML?LEHMM~FIt$LHM)HCMMLH)1HwIK4(DHI9uH(H[A\A]A^A_]fDHQ(LA8@LE=DHHf.oAHH9uLHAHtLH)HzHvH<3I<1HHHjK4(fDHI9K1(f111ULFHHHHcЉHiQH%)kd)ȉHȉH HcAfu1 HHH)y F-HHHt1HA HI1@>XUIHLI ףp= ףHH H}HHIHH?HHH)HHHH)HHHHcAfHu HH)HMy F-HHHt1HA HI1f>XUHAWIHAVIAUAATISH(9F;H~HAHEAHEC HK(Hs8@HDHML9eKME1HE:DHz(Hr8@HEA9tXM1LHBMIL9eI$LrMtHEL)I9J  uHr8A9uELLHHMHωHU4AHH?HGAHEAEEC AA HC8HEH \,H5jH8:Hx HHt1H(H[A\A]A^A_]fDH11@UHSHHHtCf@@(@8@HH(HCVFHC0HC(HC8CHCPHH]ff.UHAWIAVIAUATSHHLoHMLEIIHMID$IHHL9huLPM;VuDX EF DD@@8uA Hp(H8A@HHDA IF(Iv8A@HEIXnHEI)IL H[A\A]A^A_]@HpI;vu&DP EF DD@@8t\@HL9tHHL;hufH1[A\A]A^A_]Iv8UHx8+A ubHx8A tnMV(IF8A@IEHHWqH[,HULH5H81XHx(H8A@HDA uIF8/RIHULHAWAVAUATL$SH8LMM~hHEHMIIHEM1IDI$I|LHuMDHPHHt;H9:uIL)L؋ t HHI9uH81[A\A]A^A_]fDH)Y,H9GHELML]LEHMLLH}H}L]LMtIt0HEHtXIHHLML]/L]LMbH8[A\A]A^A_]HEII ËtH1E &H?Z,HUHH5~HH1$WfLEHMLLH}9LML]H}<UHATSHGHHu0LcMtLWOL/H[A\]fD@uHH9P0uH,t[A\]ÐBuHCҐUHHt H/HP]DUHHt H/HP]DUHHt Hk/HP]DUHSHHHGHu&H{HtHPHH]f.@u'HH9P0uH,tH]AuHCʐH9UHAVAUATISHHVL6H?HCIM)H)L9r*HKHH)L9rsMH{[A\A]A^]DML_/LLHI~-H;Ht HsH):.K<,L#H{H{[A\A]A^]f1Hu9LH)uLH{[A\A]A^]fH/H;L[DLH.HKH;IT$M4$HH)DLL.H;Lf.,ff.UHHt H/HP]DUHHt Hs/HP]DUHHt HK/HP]DUHwHt H/HP]DUHWHt HÄ/HP]DUH7Ht H/HP]DUHHt H/HP]DUHHt H/HP]DUHHt H/HP]DUHHt HK/HP]DUHATSHHH;wsHDtH[A\]DH,IHt0HHBI$xHI$uLHEW)HE볐1ff.UHHt H/HP]DL9UAIHHSAtGAtXA_@ƃ.@E1 _A@LЃwuHI9|/AuA H]1AKf@uH]1Ðff.H9UHAWAVAUATISHHL~L6H?HCMM)H)L9rtHCHH)L9rM9tI^0IvH9t HAoE IMI}0AF H9ttIuIEIIUIvIFIVHtH@(1IHL4IE(IEIE0I}IEIE[A\A]A^]fDIE0HIF0|LOH?IЃMQtHLAHtIH>HLAf.UHG,H H5 IH81HD1]fDH?ILW8HHWLJtHHLAfDHtH>HHHLAUH@G,H pH5{HH81H"D1]ff.UH?LOMQHt!IHuiHMu01]Af.Ht{HH>LBfHF,IH H5H81C1]f.HytHrF,IH H5H81WCDHIF,IH vH5H81.C@Hy[ff.UH?LOMQHt!IHuiHIu/H6]AHt{HH>LBHDHE,IH :H5H81B1]f.HytHrE,IH H5H81WBDHIE,IH vH5H81.B@Hy[ff.LVM1HI9tH9|ufE1DJTHBtv@tmH9tHXHt,LAM~S1HI9t?H;TufDHDHH9HuH;B,nfDIM9k1UHSHHHGHu&H{(Ht Hs8H)QHH]@@u'HH9P0uHBtH],uHCʐUHATIHSHHHGLH@tY'HLH[A\]A@ukHLFI$HvHL[A\]AfHLF1MtHCH H5HHC,H81@@H1C,H5H8 H1[A\]HHLMHU/LMHuH^%@HLMHULMHuH%HCH H5HHkB,H81a?r@HLMHULMHuHDHCH H5HHB,H81 ?DUHAWAVAUIATISHHhLG0Mt-HVHvMuPHhH1[A\A]A^A_]Af.HwHhHL[A\A]A^A_]ML$MtI<LEHHULM;IHHULMLEHt8HBHIM 1I9XILI HH9ufDLLULEHULMP=LMHUHLELUHHEM,HUE1HEHEAHEHEHpLMIHEHELELMLx4fHEHPH#tHMȋtKDK IHMHULHuz%uLMIHULELMLxHpMLMLHHMLUALMHMLUHHx HHLME1MMfDIM9K|HxHHuQHVLIH1Lq2HHtIHLLHIx HItHhH[A\A]A^A_]fDLfDIx HIH>,HSPH5vH81;1@MLHHHAoDAHH9uHHILI 1fHLULM6LULML!`1L1 H:>,H5HM1LUH8LM=LMLUHM&ff.H9tkHGH;;,ufHOHtHθHtHt!fDHщȃHtHHuЋGH9f1DH;i>,tgUHSH0HHt|H;>,H;:,u,H;<,t#H[-Hx HHt3H]Df1H*f.GE@H߉EE뽸붐H!<,HOHWtHtHx HHt1UHHd1]H;,HOHWtHtHx HHt1UHH$1]H;,HOHWtHtHx HHt1UHH1]Ha;,HOHWtHtHx HHt1UHH1]UHAUATSHHHGH;u:,H;=,tfL`pLhhMI|$HaIHeHHAT$IUxSHIUuILHEHE7fDHOHHH9HDtH[A\A]]@MtkIEHtbHy HH[A\A]]DHOt'HHyH9s)HSH‹uHHjHhIHtpHH'I$ZHI$LLHEHE7fDIUHOHuHHuHxHIE1D1H7,HuH8#tM"IEHuHt+tHWXHwXHtHx HHt1fH59,UHHd 1]H.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;7,f1ff.fH.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;.7,f1ff.fHy.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;6,f1ff.fHq.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;.6,f1ff.fH.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;5,f1ff.fH.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;.5,f1ff.fH.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;4,f1ff.fHa.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;.4,f1ff.fH!.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;3,f1ff.fH.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;.3,f1ff.fH.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;2,f1ff.fH.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;.2,f1ff.fHi.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;1,f1ff.fHi.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;.1,f1ff.fH.HGH9t0HXHt4HqH~K1HH9t7H;Tuf.HH9tHu1H;0,f1ff.fUHAUIATISHHt[H5<.HHE1LLHx HHtH[A\A]]DHHE|HEH[A\A]]DH1[A\A]]ff.UHSHHƒtSHxbHHt)tHx HHtPHH]HuHxHHufDufHHH]ff.@UHSHHH .HtXHHtH/,H{8HS8tHtHx HHt H]1D;H]1H5zfUHSHHH.HtXHHtH{/,H{8HS8tHtHx HHt H]1DH]1H5zfUHSHHH.HtXHHtH.,H{8HS8tHtHx HHt H]1D;H]1H5yfUHSHHH.HtXHHtH{.,H{@HS@tHtHx HHt H]1DH]1H5yfUHSHHH.HtXHHtH-,H{hHShtHtHx HHt H]1D;H]1H5xfUHSHHH.HtXHHtH{-,H{8HS8tHtHx HHt H]1DH]1H5xfUHSHHH .HtXHHtH,,H{8HS8tHtHx HHt H]1D;H]1H5wfUHSHHH.HtXHHtH{,,H{8HS8tHtHx HHt H]1DH]1H5wfUHSHHH .Ht`HHtH+,HHtHtHx HHtH]13H]1H5|vf.UHSHHHM.HtXHHtHk+,H{hHShtHtHx HHt H]1DH]1H5ufUHSHHH.HtXHHtH*,H{xHSxtHtHx HHt H]1D+H]1H5tufUHSHHHM.HtXHHtHk*,H{hHShtHtHx HHt H]1DH]1H5tfUHSHHH.HtXHHtH),H{8HS8tHtHx HHt H]1D+H]1H5ttfUH;5),HtCHt>HF tItHHHtHx HHt 1]Ð1@H1@H),H52aH8]ff.UHHATISHHHHtHx HHtEMtI$x HI$t>HtHx HHt [A\]@H[A\]@HfDLfDUHATL%k(,SHHA$LctA$HtHx HHtEA$H{ Lc tA$HtHx HHt [1A\]@{[1A\]@kfUHHtGHFt:tHWPHwPHtHx HHt1]H1@HI(,H5_H8Z]UHHtGHFt:tHWPHwPHtHx HHt1]H1@H',H5_H8]UHHtGHFt:tHWXHwXHtHx HHt1]H81@Hi',H5^H8z]UHHtGHFt:tHWHHwHHtHx HHt1]H1@H&,H5^H8 ]UH &,HATISH9tHHubHH&,H5^H8tI$I$HtHx HHt1[A\]#HF uHL&,H5%^H8]fDUHp%,HATISH9tHHubHH(&,H5^H8$tI$I$HtHx HHt1[A\]sHFuH%,H5 ^H8fDUHgHtHQ/H@ H@(HP]DUH7HtHcQ/H@ H@(HP]DUHAVIAUISHHHt H9J(I~`IV`HtHx HHtVMtIEx HIEtGHtHx HHtH[A]A^]HH[A]A^]NfDC룐L8fDHHHUHU]UHHtGHF tZtHW@Hw@HtHx HHt1]H1@H#,H5\H8 ]H#,H5 ]H8G HgHcH@HHWH9uHwHHUHHtGHH9t.HXHtRHJH~y1DHH9tgH;tu]fHa#,H5H8:1]fDHDHH9tHuH;5h!,tfH",HNH56\HWH811ff.UHSHHHHtHHCx HHGH{8HtHHC8x HH2H{@HCHHtHHC@x HHH{ HtHHC x HHH{hHtHHChx HHH{pHtHHCpx HHH{PHtHHCPx HHH{XHtHHCXx HHH{`HtHHC`x HHt H]DH]fDfDfDfDfD fD fD5fDJff.UHSHH_H{0tH@CxxHAHu%H-HHH]8 H]f.UHAWAVAUIATSHHHGHHt!IMt'HL[A\A]A^A_]DIMuH",H8 u%H",LH5H81HHHtp&HHtcH5/H/IHtfLHIHtnH|LHEvLxvHpvHEH^I1Tv1Mv1Fv<1:v13vH+v!1vLvHvf.UH8.HATSHHHHtL%,H{8A$Lc8tA$HtHx HHtGA$H{@Lc@tA$HtHx HHt [1A\]fD[1A\]@fH5I4hgff.@UHATSH!L%2,H{HA$LcHtA$HtHx HHtHA$H{PLcPtA$HtHx HHt[1A\]C[1A\]@3뱐UHATL%,SHHA$LctA$HtHx HHtuA$H{ Lc tA$HtHx HHt[A$H{(Lc(tA$HtHx HHt[1A\]f.[1A\]@{fkfUHH胰Ht[H'J/H@ H@(HPHij.LBMÐ11ɾHEH=7rHEHx HHt 1H1ff.UHgHt HI/HP]DUHHӯHt[HK/H@ H@(HPH.LBMÐ11ɾHEH=FqHEHx HHt 1H01ff.UHHCHtsHgK/H ,H@ H@(HPHH8tHp.LBMD11ɾHEH=pHEHx HHt 1H1@UHWHt HJ/HP]DUH7Ht HJ/HP]DUHHt H{J/HP]DUHHt HSJ/HP]DUHHt H+J/HP]DUHHt HJ/HP]DUHHt HI/HP]DUHwHt HI/HP]DUHWHt HF/HP]DUH7Ht H[I/HP]DUHHt H3I/HP]DUHHt H#I/HP]DUHHt HH/HP]DUHHt HH/HP]DUHHt H{H/HP]DUHwHt HSH/HP]DUHWHt HE/HP]DUH7Ht HE/HP]DUHHt HH/HP]DUHHt HG/HP]DUHHt HG/HP]DUHHt HG/HP]DUHHt H[G/HP]DUHwHt H+G/HP]DUHWHt HG/HP]DUH7Ht HF/HP]DUHHt HF/HP]DUHHCHtsHF/H ,H@ H@(HPHH8tHp.LBMD11ɾHEH=lHEHx HHt 1H1@UHHHATISHUHH HEH@ЃtbH{@HCHHtHHC@x HHtQHuHL:H}HtHx HHt1H [A\]HUI$H [A\]먐EEH [A\]ff.UHSHҩHfH@f@(@8@H@XH(HC, C`HC8H.HC@L@HCHCXM HH]f11H=KkHx HHt 1H1@UHAWIAVIAUATSHLg`HG`MMl$AEtAELHUHuHuHUHHt tAEtAEA$tA$IFhL.L"IL0L IEx HIEtRHtHx HHtMMtIx HItH1[A\A]A^A_]LfDLfDHfDHGhHHHL0H{HG@t~HFHtt@tkH9t.HXHt*HJH~A1DHH9t/H;tufHH9tHu1H;5,f1Dt4@UHAUIATISHHHHHHtTH;],t;HHtHP(Ht 2t2IMHI$H[A\A]]fDHx HHt111HxfDUHSH"Hx`Ht HHGHu 1H]DH,H2H9u!HC`HxHHufHX¸tH{`HC`Htf.UHAUATSHHHGH?H0HGHHIMI|$Hh,H9t7HXHHqH1fHH9H9TuID$(HP@HSC H{LcH1[A\A]]f.H[A\A]] IVHDHH9tHuH;,~f.H5!,H9t qID$@ bID$H;$,PHG11H=b2,LjIHNI$x HI$t3M@I$ HI$L.L!ff.@UHSHHuRHx`HHt HGHu1d@H,H2H9upHC`HxHHu10Hx HHt0H ,HH5WIH81 H]f.HugHuHtH{`HC`Hw1ff.UHAWAVIAUIATMSH(E HGH;J,H; ,t3HHrMuHIH([A\A]A^A_]fDHH;G3HPIUHWH‹tMtHCH{H.L{AtALk AEtAEHx HHM>M,$\fDHH;GH\HPIU)j@H}IH}I9uKHMHUL[HUtIMHUȋtI$@H ,H5GH81fH([A\A]A^A_]DHP Hy fH; ,HcHg ,H5FH81A HIHHx HHtIGLHIHLHEHLӾHuRIx HIt8HEM.I$H ,H5FH8HTtLG1LcLcH}cHc1E1HEϻt11HU1Hbff.UIHAWAVAUIATSHHHt9L=B ,IL9t1H ,H9Bt'H ,H5EH8L= ,E1MpIH@L9HA@HWLsI@t/M9<LLLEHCLEHtIfHt6H ,H5=EH8H[A\A]A^A_]H1MtTM9GIEHtA@W@,AEtAELLLELELLLE}Mt H}LHtHx HHH[A\A]A^A_]@tqA@tg1LEtLEIMt1LLLELEHIx HIHtHK@MIH ,H5"DH8fHH[A\A]A^A_]Jf.E1Hi ,H5bDH8zD1LLELEHIDI1@DH޿1LELEILLEH,LH5CH81aUHSHHHpHtHHCpx HHH{ HtHHC x HHH{@HtHHC@x HHH{HHtHHCHx HHH{PHtHHCPx HHH{XHtHHCXx HHH{`HtHHC`x HHH{hHtHHChx HH|H{8HC8HtHx HHgHHtHǃHx HHLHHtHǃHx HH1HHtHǃHx HHHHtHǃHx HHH{xHtHHCxx HHt H]1f;H]1+fDfD fD&fD;fDPfDefDzfDfDfDfD{fDkfDUHSHHOH{(tH0HHH]Kff.UHAVAUATSHHttH[A\A]A^]@Iu,H,ƒt tI$L5 /HHtAtAHCE1H11L0H= .WIHx HHMtkIELLHHHIEx HIEtzHt5I$Hx HHtfI$f{H,tfHcI$uLyHHMff.@UHu10Htf@]@H,H5Қ.18UHu#10Ht Hw3/HP]fH,H5.18UHu10Htf@]@Hi,H5B.18UHu#10Ht H0/HP]fH!,H5.18UHu310HtH//H@ H@(HP]fH,H5.18UHu310HtHG1/H@ H@(HP]fHa,H5:.18UHu310HtH_//H@ H@(HP]fH,H5ژ.18UHu310HtH./H@ H@(HP]fH+H5z.18UHu310HtH?0/H@ H@(HP]fHA+H5.18UHu310HtH//H@ H@(HP]fH+H5.18UHu310HtH-/@0fH@8HP@ ]DH+H5Z.18UHu#10HtH-/H@(HP]ÐH1+H5 .18UHu#10HtH,/H@(HP]ÐH+H5.18UHATISH+H I\$ tHtHx HHI|$(I\$(tHtHx HHxI|$0I\$0tHtHx HH\I|$8I\$8tHtHx HH@I|$@I\$@tHtHx HH$I|$HI\$HtHtHx HHI|$PI\$PtHtHx HHI|$XI\$XtHtHx HHI|$`I\$`tHtHx HHI|$hI\$htHtHx HHI|$pI\$ptHtHx HH|I|$xI\$xtHtHx HH`I$I$tHtHx HH>I$I$tHtHx HHI$I$tHtHx HHt[1A\]K[1A\]@;bfD+~fDfD fDfDfD fD&fDBfD^fDzfDfD{fDkfDH?UHAUATSHHHH9t~HFHHW@@HXHt6HJH~t1fHH9t^H;\uH[A\A]]HH9tHu1H;N+֐E1JtH9tH}uIH}M9uH1[A\A]]@HH[A\A]]fDLfM~1 HI9tH;|u[1DUHu310HtH&/H@ H@(HP]fH+H5Z.18UHu310HtH_&/H@ H@(HP]fH!+H5.18UHu310HtHW&/H@ H@(HP]fH+H5.18UHu310HtH&/H@ H@(HP]fHa+H5:.18UHu310HtH%/H@ H@(HP]fH+H5ڏ.18UHu310HtHW%/H@ H@(HP]fH+H5z.18UHu310HtH$/H@ H@(HP]fHA+H5.18UHu310HtH_$/H@ H@(HP]fH+H5.18UHu310HtH$/H@ H@(HP]fH+H5Z.18UHu310HtHo#/H@ H@(HP]fH!+H5.18UHu310HtH#/H@ H@(HP]fH+H5.18UHu310HtH"/H@ H@(HP]fHa+H5:.18UHu310HtH'"/H@ H@(HP]fH+H5ڌ.18UHu310HtH"/H@ H@(HP]fH+H5z.18UHu310HtH!/H@ H@(HP]fHA+H5.18UHu310HtHG!/H@ H@(HP]fH+H5.18UHu310HtH!/H@ H@(HP]fH+H5Z.18UHu310HtH7 /H@ H@(HP]fH!+H5.18UHu310HtH /H@ H@(HP]fH+H5.18UHu310HtH/H@ H@(HP]fHa+H5:.18UHu310HtH/H@ H@(HP]fH+H5ډ.18UHu310HtH/H@ H@(HP]fH+H5z.18UHu310HtHo/H@ H@(HP]fHA+H5.18UHu310HtH/H@ H@(HP]fH+H5.18UHu310HtH/H@ H@(HP]fH+H5Z.18UHu310HtH/H@ H@(HP]fH!+H5.18UHu310HtH/H@ H@(HP]fH+H5.18UHu310HtHo/H@ H@(HP]fHa+H5:.18UHu310HtH/H@ H@(HP]fH+H5چ.18UHu310HtH//H@ H@(HP]fH+H5z.18UHHt3H C+f@ HH8HH@փtE1H/HP]ff.fUH观Ht3H +f@ HH8HH@փtE1H/HP]ff.fUHWHt3H +f@ HH8HH@փtE1H/HP]ff.fUHHt3H S+f@ HH8HH@փtE1H/HP]ff.fUH跁Ht3H +f@ HH8HH@փtE1H /HP]ff.fUHgHt3H +f@ HH8HH@փtE1H/HP]ff.fUHHt3H c+f@ HH8HH@փtE1H/HP]ff.fUHǀHt3H +f@ HH8HH@փtE1H/HP]ff.fUHwHt3H +f@ HH8HH@փtE1HC/HP]ff.fUH'Ht3H s+f@ HH8HH@փtE1HS/HP]ff.fUHHt3H #+f@ HH8HH@փtE1H/HP]ff.fUHHt3H +f@ HH8HH@փtE1H[/HP]ff.fUH7Ht3H +f@ HH8HH@փtE1H/HP]ff.fUH~Ht3H 3+f@ HH8HH@փtE1H/HP]ff.fUH~Ht3H +f@ HH8HH@փtE1H/HP]ff.fUHG~Ht3H +f@ HH8HH@փtE1H+/HP]ff.fUHuC10Ht/H/H 0+H@ H@(HPHH8t]DH1+H5 .18UHuC10Ht/H/H +H@ H@(HPHH8t]DH+H5.18UHuC10Ht/H/H P+H@ H@(HPHH8t]DHQ+H5*.18UHuC10Ht/H/H +H@ H@(HPHH8t]DH+H5.18H 0E/uS~OUHt.fHHSH/HH€HCC HHH]ÐH01DH 0e/uS~OUH.fHHSH?/HHHCC HJHH]ÐH01DH 0=/uS~OUH~.fHHSH/HHXHCC HHH]ÐH01DH 0=/uS~OUH$~.fHHSH/HHȐHCC 2HjHH]ÐH01DH (/u[~WUH}.fHHSH/HHHC HCHHH]DH01ff.fH 5 /uS~OUH4}.fHHSH /HH°HCHBHzHH]ÐH01DH /uS~OUH|.fHHSH/HH HCHH HH]ÐH01DH 8/uc~_UHT|.fHHSH/HHpHC0HCC ZH蒾HH]fH01DH He /uc~_UH{.fHHSH? /HH@HC@HCC C0HHH]DH01DH 8- /uc~_UHT{.fHHSH /HHˆHC0HCC ZH蒽HH]fH01DH  /uS~OUHz.fHHSH /HHЎHCHHH]DH01DH X /Hup~lUH az.HHSH /HH1H{HHHHCPH)XHHVH莼HH]DH01HfH 8 /uc~_UHy.fHHSH_ /HH`HC0HCC HHH]fH01DH 8M /uc~_UHTy.fHHSH' /HH¨HC0HCC ZH蒻HH]fH01DH  /uS~OUHx.fHHSH/HHHCHHH]DH01DH 0/uS~OUHdx.fHHSH/HH8HCC rH誺HH]ÐH01DH 0u /uS~OUHw.fHHSHO /HH0HCC H:HH]ÐH01DH P/uc~_UHw.fHHSH/HHHCC C0C@H¹HH]fH01DH 8 /uc~_UHw.fHHSH/HH¸HC0HCC HBHH]fH01DH @/u[~WUHv.fHHSH/HHHCC C0HƸHH]DH01ff.fH 8/uc~_UHv.fHHSHw/HHHHC0HCC HBHH]fH01DH 8e/uc~_UHu.fHHSH?/HHHC0HCC H·HH]fH01DH 8-/uc~_UHu.fHHSH/HH،HC0HCC HBHH]fH01DUHu310HtHO /H@ H@(HP]fH+H5jt.18UHu310HtH/H@ H@(HP]fH1+H5 t.18UHu310HtH?/H@ H@(HP]fH+H5s.18UHu310HtH/H@ H@(HP]fHq+H5Js.18UHu310HtH/H@ H@(HP]fH+H5r.18UHu310HtHg/H@ H@(HP]fH+H5r.18UHu310HtH/H@ H@(HP]fHQ+H5*r.18UHu310HtH/H@ H@(HP]fH+H5q.18UHu310HtH/H@ H@(HP]fH+H5jq.18UHu310HtH/H@ H@(HP]fH1+H5 q.18UHu310HtHo/H@ H@(HP]fH+H5p.18UHu310HtH_/H@ H@(HP]fHq+H5Jp.18UHATSH PHx`HHtHH9+H0H9HHMHUHuiH}HtHxHH@H}HtHx HHtoL%@+H5H1I<$HuHHtcHI<$H H[A\]'VH [A\]f.諫f蛫^fDH H[A\].UHAUATISHH$+L(HthHA$tA$Lc1HLIHx HHtCMt/ٯHH@hH8t/w .H'HzHHLMHDL}IHHu1HHENEL9eHX[A\A]A^A_]C<'fDA<fDCH=1]ff.UHHHc軄Ht@HKH=HEHEff.H;=ѯ+t7uH+t@H+ufUH+H`H5H81H-HP)H=J1]ÐH;=Q+t7uHv+t@H+ufUHp+HH5ZH81H譬HЉ)H=1]ÐH;=Ѯ+t7uH+t@H+ufUH+HH5H81H-HP)H=1]ÐH;=Q+t7uHv+t@H+ufUHp+HH5ZH81H譫HЈ)H=Z1]ÐUH@.HAUATSHH(HEHEHEH<LIHM,HtHHtHUHGHHUH41L%ojLEATAQIURH H H|Lm@H5)L.I9ut L;-+N HHAEtAELkH=N.sAIHID$(H.ID$Hx HH^H+I96I9ukIu HHI|$(I\$(Ht#HH@H;G+/I\$(ID$HL(H7A$tA$LI$xHI$1IExHIE HeH[A\A]]DIعH=φR1H}HuHtHxHHt=HH="1#뎐HuL.AEtAELm1fHIعL_Hx HHHtH=1DL@L01HOLWL1uI\$(J@L%jHM1ATHuIYZY@H+HvH8H511HH= f.Ha+H6H8DH`~H`H=}1~IUHAVAUL-+ATSL9uHHHGH5t.HHIMID$H5.LHHoII$MxHI$3HCH5.HHH=HH?L9HCH5s.HHHhIM2L-.AEtAEIx HIRHxHHMtI$xHI$[LA\A]A^]y,HH=E1[A\LA]A^]DHI$uL|@L%.A$:A$1L`|LP|[LA\A]A^]@H8|5L-.AE9AEL[A\A]A^]@HʂH=΂0IHIHE1E1L{HH+HH5kH81HCH=G@[IlKI;HHH=XI(TLE1zH ۠IHE1 ff.fH;=1+t'HHH@H;+u HGhfDfDUH`+HgH5JH81H蝣HTH=H]ff.UH;=+HtHGHx`FzHt(]H+HH5H81)HH=V1]ff.fH;=A+t'HHH@H;-+u HGhfDfDUHp+HwH5ZH81H譢HdTH=H]ff.UH;=+HtHGHx`VyHt(]H+HH5H819HQH=!1]ff.fUH;=P+HtHG1PHt$]H+H-H5{H81ѡHH=1]DUHSH8HHH.HC HCH;.HC(L@HC0HC8HC@HCHM+H;+tRC`fCPHH]f.11H=Hx HHtK1H+H~H5{H81ѠH}zH=H1fwnUHHt H.HP]DUHHt H.HP]DUHHt H.HP]DUHHt H.HP]DUHgHt H.HP]DUHGHt'H+.H ,+f@hHPHHxt]fH;=+t'4uH*+tHQ+uÐUH0+HrH5H81HmH|ZH=zU1]ÐUH5.HATSHGHHHIMtwHCH5.HHHHHKHtL`HX [A\]fI$xHI$Hx HHtbH{:H=\]CIU3HmI$xHI$uLu@HufDLtqff.UHAVAUATSHHHHHCH5.HHHIMHCH5ݻ.HHHIMtH=d.Hu1HHEH]IHx HHMtG譜HHLhLp 菜HvL`HX H[A\A]A^]ÐI$$HI$IExHIEpMtIxHIu LsHzxH=51HXs7I$yIEyfDI11ҾH=P1;fHyxGHH=1DIBI$LHI$>Lr1諘I6IEHIEL~rfI$xHI$uLVrHHHH6rL(rLr`fDUHAWAVAUATSHHHH*H=@.H5.HGHH8IM"HCH5.HHHLIMHCH5.HHHIMHCH5.HHHIMnHCH5s.HHHXHHtsHU蠙HUHHtYL`Lp Lx(HP0zH!LhHX H[A\A]A^A_]f.論Id1E1IExHIEI$xHI$/E1MtIx HI&MtIx HI%HtHx HH$MtI$xHI$H'wH=,1DI11ҾH=1HyxHH=g1D됐苕IIESHIEELYo8@KILHU4oHULHUoHULHUoHUHnLnӔI`1&軔HIܻ(LHUnHUff.UHAWAVAULmATSHHHLmHEEHOC(It$XHQHcHH51.H=9.1~HHGH.H58.HHCv=H;^+ttHCLHSHu}tIHx HHt2LH}L9t HEHp pHHH[A\A]A^A_]HhmfDHA+HH5+H81聖AE1LHtDH=7ZHrE1WfH+e^H5q0.H=z7.1}HHE1AyH5A0.H=7.1{}HH Hp.H5)7.HHC5uIAu1%DH5/.H=j7.1#}HHH .H56.HHCt8IAs1DH5/.H=6.1|HHKH.H5y6.HHCtIA]1uDH59/.H=Z6.1s|HHqH.H5!6.HHC-tIA[1DH5..H=6.1|HHH.H55.HHCs0IA{1DH5..H=5.1{HHH.H5q5.HHC}sIAc1mDH5ٕ+H1L}H)+čHLIHPPH]LHV0L~MLnHHE1AH5-.H=*5.1zHHH.H54.HHCrIAk1DH5i-.H=4.1zHHH.H5Q4.HHC]rIAo1MDH5-.H=4.1KzHHH0.H53.HHCr`IAy1DH5,.H=6.1yHHHh.H53.HHCqIAg1DH5a,.H=3.1yHHH.H5I3.HHCUqIAm1EDH5 ,.H="3.1CyHHH.H52.HHCpXIAY1DH5+.H=2.1xHH/HP.H52.HHCpIAW1DH5Y+.H=2.1xHH/H.H5A2.HHCMpIA_1=DH5+.H=b2.1;xHHcHX.H51.HHCoPIAi1DH5*.H=1.1wHHH .H51.HHCoIAa1DH5Q*.H=1.1wHHHx.H591.HHCEoIAw15DH5).H="4.13wHHH.H50.HHCnHIAe1DH5).H=1.1vHH?H.H50.HHCnIAq1DE1AUrf.IAU1XH5lHu]H5).H=0.1HvHHH.H5/.HHCn]IA1f.H5elHqcH5(.H=S0.1uHHH.H5/.HHCmIA1~fDE1AqjE1As\E1A]NE1Au@E1A_2E1Ag$E1AeE1A{E1AYE1AoE1AaE1A[E1AmE1AkE1AiE1AcE1AWE1Ay|E1AwnH5kHuKH5$'.H=..1xHH!H5..H#l~IA1H5jH虃u@H5&.H=..1wIHH5-.HkLH5kjHFH5w&.1҅uBH=J..MwIHtH5f-.Hvku1AmE1A_H=-.uIHtH5$-.H4ko1A'E1AE1A 1AHff.UH;=+Ht#HG@H@0H8H8Ht)]Hѐ+HiH5H81HhPH=1]DUH;=0+Ht#HG@H@0H8H8Ht)]Ha+HiH5KH81衊HlhwH=1]DUH;=+Ht#HG@H@0H8H8Ht)]H+HhH5H811HgH=v1]DUH;=P+Ht#HG@H@0H8H8/Ht)]H+H;hH5kH81HgH=61]DUH;=+Ht#HG@H@0H8H8Ht)]H+HgH5H81QHg]H=91]DUH;=p+HtH@HHVHt(]H+HrgH5H81HfH=1]ff.fUH;=+HtH@HXHt(]H9+HgH5#H81yHDf!H=a1]ff.fUH;=+Ht#HG@H@0H8H8oHt)]H+HfH5H81HeeH=F1]DUH;= +Ht#HG@H@0HxH8Ht(]HQ+H$fH5;H81葇H\eiH=y1]DUH;=+HtH@HHHt(]H+HH5H81)HdH=1]ff.fUH;=@+HtHHHh&Ht(]Hy+HaeH5cH81蹆HdH=1]ff.fUH;=Ј+HtH HHt(]H +HeH5H81IH/d@H=n11]ff.fUH;=`+HtH HFHt(]H+HdH5H81مHbaH=1]ff.fUHAUATSHHjIH~ID$H5.LHHHHtID$H5.LHHYIMH=l.Hu1HH]LetIHxEHHI$x HI$t8Hx HHt~MtVHL[A\A]]I$xHI$uL^[@HxHHx HHH>cH=1fDH[uHZCI11ҾH=bfDHyxuHH=bf諀Hy蛀IHZPHxZH,UHAUATSH(HzHHtH=}.Le1HLHEH]rIHx HHMIExHIEHCH5.HHH)HHtH=3.1LH]HHECrHxHHt{x HHt&HtIH([A\A]]fDLHYdHHE4YHEfDH YH@_H=)a@1@HHEXHHEmI11ҾH=a1`HyxeHH=`1<D~Hff.UH;=+HtH XHt$]HA+H9`H5+H81聁Hn^H=i1]DUH;=+HtH(:XHt$]H+H_H5˿H81!H^ H= 1]DUH;=@+HtH8WHt$]H+Hy_H5kH81H] H=1]DUHHoHH;=ς+tH HP8HcWHt%]@H +H]H5H81IH]:H=11]DI11ҾH=_1@HyxmHH=^1UHHoHH;=+tH HPHHVHt%]@HI+H]H53H81HQ\AH=q1]DI11ҾH=S^@1@HyxmHH=/^1UHSHHZHuuHN+H9H HP@HxHUHH]tHH]fDI11ҾH=]1@HyxtHH=]@1@H+H5 H[H81Y~KH[H=A1]f.LfUHHoHH;=O+tH HPPHTHt%]@H+H^[H5sH81}HZSH=1]DI11ҾH=\1@HyxmHH=\,1H;=+tHtHUH+H H5ʻH81H}HZLH=1]ÐUHSHHH;=8+tNHw0H}HP0H}H+}HxH}HHt HuH)UHt1HH]fHA+H^H5+H81|1HJZNH=gHH]HfDUHSHHH;=~+t^Hw0H}HP0}t2H+tH}Ht HuH)EUHH]@Hq|+uH+H6^H5k1H81{HY^H= HH]ff.UHHH}+H9t\HW o)E}H}tQRHtf.tDHZH=(1@H+H5H:ZH81{f.UHHH)}+H9t\HW oB)E}H}tQHtftDHfYH=U1@H!+H5HYH81az f.UH;=|+Ht+HG01H@@Ht HHRHQHt%]@H+HGYH5H81yH3YzH=1]ff.fUH;=|+Ht+HG01H@@Ht HHRHPHt%]@H9+HXH5#H81yyHXlH=a1]ff.fUH;={+Ht+HG01H@@Ht HHRHPHt%]@H~+HGXH5H81xH3XH=V1]ff.fUH;={+Ht+HG01H@@Ht HHRHOHt%]@H9~+HWH5#H81yxHWGH=a1]ff.fUH;=z+Ht#HG0HxTHcOHt(]H}+HkH5H81xHT}H=1]DU1HATISHH5!.H=.MHL`8HA$tA$H5f.H=.HH".H5L d.L.ZYHtLHx HHt He[A\]HHEMHEHe[A\]Hiy+tHTH= Hx HHt1@HM1ff.UH;=y+HtH qHt;]fHQ|+HIUH5;H81vHwTH=Uyx]HHHUHSHH;=x+tf9Ht=G8tHy+tH]Hv+uH]@H0ZC9HC8H{+HJUH5sH81uHRH=豿H]1fH;=w+tHG HtNH@H@DUH {+HTH5 H81H]uH(TH=TE1]Ð1ff.fUH;=pw+HtHG H@Hx LHt$]Hz+HwTH5H81tHS=H=.Ѿ1]ff.fUH;=w+Ht3HW01HBH@H~ HR <+:HcKHt)]H!z+HXH5 H81atH,SeH=ξI1]DUH;=v+Ht3HW01HBH@H~ HR HfDL>ff.UHSHH(H .HFH9t,HXHthHyH~1 HH9toH;TutH= l.Hu1HuHH]KVHx HHtKHtXH]HH9tHuH;h+tfDH.t̉H]f.HHE$=HEHETH=˲HEBHEff.t#t&Hi+tDUHAVAUATSIHHh+I9t^Hi+L5Jf+I9AM9DuHL;%g+t?LXAI$x HI$tZEx=ELHDËt[A\A]A^]ÐI$x HI$tE1@LHH=HE觫HEH]ff.fUHSHH(tH=y.Hu1HEHH]PHx HHtHt#H]HHE7HEHuH>H= HEHEH]D[ff.UHSHBHHt HH]Ð cHuH/e+H877DUHSHH(tH=tZ.Hu1HEHH]OHx HHtHt#H]HHE6HEHuH>H=XHEHEH]DUHSHH(tH=Y.Hu1HEHH]COHx HHtHt#H]HHET6HEHuHq= H=HEoHEH]DUHSHH(tH=4Y.Hu1HEHH]NHx HHtHt#H]HHE5HEHuH<!H=hHEϨHEH]DUHSHH(tH=X.Hu1HEHH]NHx HHtHt#H]HHE5HEHuH1<7H=HE/HEH]DUHSHH(tH=W.Hu1HEHH]cMHx HHtHt#H]HHEt4HEHuH;MH=xHE菧HEH]DUHSHH(tH=TW.Hu1HEHH]LHx HHtHt#H]HHE3HEHuH:cH=HEHEH]DUHSHH(tH=V.Hu1HEHH]#LHx HHtHt#H]HHE43HEHuHQ:yH=HEOHEH]DUHSHH(tH=V.Hu1HEHH]KHx HHtHt#H]HHE2HEHuH9H=HE该HEH]DUHSHH(tH=tU.Hu1HEHH]JHx HHtHt#H]HHE1HEHuH9H=HEHEH]DUHSHH(tH=T.Hu1HEHH]CJHx HHtHt#H]HHET1HEHuHq8H= HEoHEH]DUHSHH(tH=4T.Hu1HEHH]IHx HHtHt#H]HHE0HEHuH7H=HEϣHEH]DUHAWAVAUATSH(H;=[+B9HtH=f.L}1HLHEH]HIHx HH"MH5-H=.1|zIHL`A$tA$H5o.H=v-LH.H5 L .F.LGa.IXZMIx HI8I$xHI$HEAE|AE|H5Z+LLVAE|LeMIExHIEL;%[+AL;%X+DL;%qZ+L;KAŅI$xHI$Dk8C9Et"H[+tHe[A\A]A^A_]HAX+uHe[A\A]A^A_]Do8벐HW+H57H86IEHa4xHIEuL).fHH=yLHe1[A\A]A^A_]AH-HYY+Et H HY+L5?Y+H3H=ܥHܠIx HII$\HI$NLf-ALX-LH-5L8-L(-lH\+H5H5H&3H81:VH 3@kXHI$H2Cf.L,UHSHH(tH=O.Hu1HEHH]#EHx HHtHt#H]HHE4,HEHuHQ3MH=HEOHEH]DUHSHH(tH=m.Hu1HEHH]DHx HHtHt#H]HHE+HEHuHM2H=@HE诞HEH]D[ff.UHSHBHHt HH]ÐVHuHX+H8*DUHATIH=-S*HHHO.H;hV+HCt:LH]VHuGtIHx HHtLL[A\]@HY+H]H5kH81SH0wH=4E1覝@HX*L[A\]E1HU0vH=3uL[A\]ff.fUHSHH(tH=`.Hu1HEHH]BHx HHtHt#H]HHE)HEHuH0J H=HEϜHEH]DUHHHH;=T+t9H0tHKV+t]HR+tfDH X+H FH5H81IRH$/. H=11]DI11ҾH=21@HyxQHH=a2謭1UHSH(HzHHtH=K.Hu1HEHH]AHx HHtHtpH]f.HHE$(HEfDI11ҾH=101@HyxeHH=1ܬ1H.|H=1qUHAWAVAUIATSHHGxLwE1AoF M~0HIfH:L%R+L9I~M~L9L)EIHfoEH{ M~0AF Ht#HHC xHHu &fDCxHL[A\A]A^A_]L%IR+L9I~oFfHnHE1fH:L99A$tQA$Kf.HR+H5H8.AI}`tyHS-DH=5rE1CxH/:HuAAH9R+H5ZH8J.UHAWAVAUIATSHHGxLwE1AoF M~0HIfH:L%Q+L9I~M~L9L)EIHfoEH{ M~0AF Ht#HHC xHHu %fDCxHL[A\A]A^A_]L%yP+L9I~DfHnHE1fH:L99A$tQA$Kf.HP+H52H8,A[ I}`twH+DH=3袗E1CxH-:HuAY AZ HiP+H5H8z,UHAWAVAUIATSHHGxLwE1AoF M~0H*IfH:L%AO+L9I~M~L9HG)ELPIHfoEH{ M~0AF HtHHC x HHCxHL[A\A]A^A_]fL%N+L9I~H9HGPNHI~BfHnHE1fH:L9A$tPA$JHQ+H,H5H81KAjI}`tuH*DH=1蹕E1CxH+f["fDHuFAgH!Q+H7H5 H81aKAh{fDAijH>N+H5_H8O*ff.fUHAWAVAUATS1H(GxHuLoIHM}M!IGH;L+t H;O+AtAHE1fH} IGH JL+I9OpH9&IGH<؋tHIUI}HtHx HHYHGH5V.HHIML;5M+L;5J+@@L;5KL+L=xYI6x HI6%HNJ+Eȃt H =J+Ix HIH J+]fDIx HIMtIx HIHEHx`t{sH6&H=)C1AD$xL)H(H[A\A]A^A_]fDLEE DHI}LhL?HM+H<)H53H81H1@LHEHHJHtHL+H2H93IxHIuL HK+DIH9}I|fDLXFIHH@HHEHt)HLH6II9HI,LOf.UHAWAVAUIATSHHGxLwE1AoF M~0HIfH:L%qI+L9I~M~L9L)EIHfoEH{ M~0AF Ht#HHC xHHu ~fDCxHL[A\A]A^A_]L%H+L9I~HH=>E1ֈ@HL[A\]E1HpH= 襈L[A\]ff.fUH;=@+HtH H@Ht(]H D+HJH5|H81I>H6H=11]ff.fUHATIH=-SHHHn.H;8@+HC HCHC(t:LH@HuGtIHx HHtLL[A\]@HAC+HGH5+|H81=H4@H= E1f@HL[A\]E1H?H=5L[A\]ff.fUH;=`?+HtH HHt(]HB+HbH5{H81+HtHG Hx@HrHt$]H)B+HIH5{H81i+HtHuDtIHx HHtIL[A\]ÐHqA+HwH5[zH81;HH=E1薅@HHL[A\]E1HH=reL[A\]ff.fUH;==+HtH0HHt(]H@+H.H5yH81 ;HUH=1]ff.fUHAUATSHL-=+L9H_8IL9ttHH[A\A]]HG0HxSHHtkL9u6I|$8Hx HHtI\$8f.fH5-HuHxHHu HD HH=]1HH[A\A]]H?+H5xH H819 f.UHATSH?tkH5-I1H=-;%HHH;;+tvH@LH;HutIHx HHt,L[A\]@L%;+A$tA$L[A\]@HL[A\]H>+HCH5wH818H2H=VE1ւmHH=5E1赂\UH;=:+HtHG@Hx0Ht(]H)>+HH5wH81i8H4CH=Q1]ff.fUH;=:+HtHG@Hx0fHt(]H=+HiH5vH817HjH=1]ff.fUH;=:+HtHG@Hx0Ht(]HI=+HH53vH817HTH=nq1]ff.fUH;=9+HtHG@Hx0Ht(]H<+HH5uH817HH=.1]ff.fUH;=09+HtHG@Hx0Ht(]Hi<+HH5SuH816HtPH=葀1]ff.fUHATIH=-SZHHHh.H;8+HC HCHC(t:LH}8HuGtIHx HHtLL[A\]@H;+H@H5tH815H H=fE1@Hx L[A\]E1Hx H=2L[A\]ff.fH?tBUHHHtfDHH= HEDHEfDHy7+t ff.@UHATSHL%F7+L9H0\HdHHL9tH=WU.Hu1HHEH]$IHxLHHt+MtC…x HHHL[A\]H MtHfDMuH H=+~fH9+HEH5rH814H H=ևE1}HL[A\]f.H HL[A\]@tHI܉ @HI܉UH;=5+Ht#HHPHca Ht+]f.H9+H=H5qH81A3HsH=>)}1]DUHAUATISHHGH5C.HHMHHH5P.HC_AHExxx HHEL;%4+I\$ 4HHH@XH;2+&Hc] HH[A\A]]fy\@ H0H=0|H1[A\A]]Ha4+tH[A\A]]DH<HHuHDHy7+HH5cpH811 lc.HHff.UHATSHHHHtH=p+.Hu1HHEH] IHx HHt\SMI$x HI$t,H;=3+tCH{h:%HcHtLH[A\]@LfDHxfDHQ6+HcH5;oH810THy H=yz1DI11ҾH=TH1tHyxHH=01Pff.fUH;=`2+HtcWPu4GTtH@HHxHP0t-H3+t]fDH HHxHP0uH<0+tՉѐHQ5+HjH5;nH81/H~ H=&yy1]DUH B.HAUATISHH8HEHEHEHiLIHMYHtHHtHUHGHHUH41L-jLEAUAQI2H H H|LmȐL舏ƃH0+I9-I|$@tHMIUHIUuuLHE HEcfDIعH=1H}HuHtHxHHtMH H=w1He[A\A]]HuL.AEtAELmkfIعLv_E/uHEH3+H'H5kH81A-H. H=)w1fL- jHM1AUHuIZY.ff.UHHGHubH;=#/+tyHG@HxHt]DH H=v1]@I11ҾH=5x1@HyxtHH=4(1@H2+H5jH&H81A,|H;=q.+t7HG0H@@Htx tH/+tHy,+uÐUH1+H H5zjH81H+H H=u1]ÐUH;=-+HtHG Hp HGPHt&]DH)1+Hb H5jH81i+H4 H=ƀQu1]ff.fH;=-+t7HG xPuH++t@H.+ufUH0+H H5iH81H*H H=bt1]ÐUH;=-+HtHG HpXHGPHt&]DH90+Hr H5#iH81y*HD &H=6at1]ff.fH;=,+t7HG uH*+tfH-+uÐUH/+H0 H5hH81H)H-H=s1]ÐUHAUIATSHHtH=#.Hu1HHEH] IHx HHMtI$x HI$t9H;++t@HC x H@B<($Ht>H[A\A]]@LfDH.+H5H5gH81(HH= rH1[A\A]]@HF1sUH;=*+HtHG HxHt(]H).+H5H5gH81i(HV^H=~Qr1]ff.fUH;=*+HtHG Hx$Ht(]H-+H4H5fH81'HhH=6~q1]ff.fH;=*+t7HG xuH6(+t@HY++ufUH0-+H$4H5fH81Hm'HZzH=}Uq1]ÐH;=)+t7HG x uH'+t@H*+ufUH,+H3H5eH81H&HH=z}p1]ÐUHATSHH HH tH= .Hu1HHEH]IHx HHtlMI$x HI$tHe[A\A]A^]ÐHHHXtH]L(AEtAELmHE1"fDIع1Liz@+fDfDEH!+f1^fH&+HNH5_H81 1{H# H=j1HEHEfDHEgHEfDL-jHM1AUHuI[ZY@1HL_\LzHwz1R"Hff.fH -HFH9t0HXHtdLAM~{1HI9tgH;TuUH "+HH9H9tH Hv HP tMHf#+t]HH9tHuH;!+tfDH+t"H+tfDH$+H\+H5]H81)HIH=li1]ff.ft#t&H!+tDUHAVAUATSIHH!+I9t^HY"+L5+I9AM9DuHL;% +t?LAI$x HI$tZEx=ELHDËt[A\A]A^]ÐI$x HI$tE1@LfDLff.UH;=0 +Ht+HW HHH@(H;!+uPHt%]@HY#+H)H5C\H81HL]H=tg1]DHHff.H;=+t7HG xuH+t@H +ufUH"+H3)H5[H81HHgH=*tf1]ÐUHAWAVAUATSHH;=+Lg ID$PI+D$HHEH]HIHH#1E1!ftIGJIL9mID$HIJ<(?HHt'MtIxHIuLHXH=usfI HIMtIx HIHt_HH[A\A]A^A_]A|AIbHItFILDKHOH=rseH9H=r1YeILL MUdIHIHIL&IL@LMtIiHI\LOfHa +H5RYHH81)HRH=qxdL+t7AIx%HIt>LmHx HH&LVIxHIuLLE1H;=A+t7HG x(uHf+t@H+ufUH`+HXH5JXH81HHGH=Rqc1]ÐUH+HH9t0HW z(ut]Hcz,?HuM'H+H5WHH81!LHH=p c1]DUH@+HH9t0HW z(ut]Hz0Hul'Ha+H5RWHRH81kHH=pb1]DUH+HH9t0HW z(ut]Hcz,?Hu'H+H5VHH81!HH=Np b1]DUH@+HH9t0HW z(ut]Hz0Hu'Ha+H5RVHRH81HH=oa1]DUH+HH9t0HW z(ut]Hz0?Hu'H+H5UHH81!HH=o a1]DUH@+HH9t0HW z(ut]Hz0Hu'Ha+H5RUHRH81HH=No`1]DUH;=+Ht;HG Hx)UHt]fDZH9H=5o@`1]@H+H5THH81YfUHAUATSH(H*IH>A$tA$H=7.Lm1HLHELe6HI$xHI$HtH=$6.1LH]HHEHxHHtlx HHtHt:H([A\A]]HHEHEfDLnHH=n^1@HHEHHE|I11ҾH=m1oHyxHH=Tp1Kff.fUHSH(HzHHtH=F5.Hu1HEHH]Hx HHtHtpH]f.HHEHEfDI11ҾH=~l1@HyxeHH=Z|o1H{H=$]1qUHAUATSH(H*IH>A$tA$H=4.Lm1HLHELeHI$xHI$HtH=3.1LH]HHEdHxHHtlx HHtHt:H([A\A]]HHEdHEfDLPnHSH=kp\1@HHEHHE|I11ҾH=(k1oHyxHH=m1Kff.fUHHHH;=++t9H0tH+t]H9+tfDHI+H2H53PH81HdH=jq[1]DI11ҾH=@j1@HyxQHH=l1UHATSHHHH0tH= .Hu1HHEH]OIHx HHt|MI$x HI$tLH;+tcCPtH=+tH[A\]H+uH[A\]fLfDHwH+H5NHH81HH=iY1vfI11ҾH=h1UHyxHH=tk11ff.fUHATSHHHH0tH= .Hu1HHEH]IHx HHt|MI$x HI$tLH;]+tcCTtH+tH[A\]Hi+uH[A\]fLfDHxwHQ+H5BMHLH81HyH=NhyX1vfI11ҾH=Hg1UHyxHH=i11ff.fUHATSHHHH0tH=.Hu1HHEH]OIHx HHt|MI$x HI$tLH;+tcCXtH=+tH[A\]H +uH[A\]fLfDHwH+H5KHH81 HH=fV1vfI11ҾH=e1UHyxHH=yth11ff.fUHATSHHHHtH=.Hu1HHEH]IHx HHt\MI$x HI$t!H +tH[A\]LHq +uHfDI11ҾH=d1@Hyx#HH=yTg1|DHuH=>pU1XfUHSH(HzHHtH=n#.Hu1HEHH]Hx HHtHtpH]f.HHEHEfDI11ҾH=c1@HyxeHH=\f1H} H=dxT1qUHATSHHGpHX HtH=\ .Hu1HHEH]IHx HHt@MtjI$x HI$tH: +tH[A\]LfDHfDHQ +HH5cH81 HH=dSH1[A\]ff.UHATSHHGpHXHtH=\.Hu1HHEH]IHx HHt@MtjI$x HI$tH: +tH[A\]LfDHfDHQ +HH5bH81HH=.cRH1[A\]ff.UH;= +Ht#HG0HxH+8HHc]KH]1ÐHHEHEH]f.HHsHxHHuHDUH;=+HtHHHxHt(]H9+H!H5#?H81yHDH=\aJ1]ff.fUH;=+Ht#HG0Hx0H+x(HHcHt%]@H+HPH5>H81H;H=f\I1]DUH;= +Ht#HG0Hx0H+x(HHcHt%]@HQ+HH5;>H81HYH=\yI1]DUH;=+Ht#HG0Hx0H+x(HHc;Ht%]@H+HoH5=H81!H[KH=[ I1]DUH;=@+Ht#HG0Hx0H+x(HHcHt%]@Hq+HH5[=H81H^H=[H1]DUH;=+Ht#HG0Hx0H+x(HHc[Ht%]@H+HH5<H81AH{&H=V[)H1]DUHAWAVAUATSHH_H+HHHEHIH}IH,HE11&@tIGJHEII9I$IJcH=XD1]DH;=*tHW0HB8H+B0HH@UHP+HH5:9H81HHXH=XuDH]ff.H;=*tHW0HB8H+B0HH@UH*HH58H81HHH=DH]ff.UHSHHH;5%*HGt#oF oN0HH]OfHQ*HIH5;8H81H~H=WyCHH]UH;=*HtHG0HxFHt(]H*HH57H81)HH=fWC1]ff.fUH;=@*HtHG0HxHt(]Hy*H{H5c7H81H H=WB1]ff.fUH@.HAUATSHH8HEHEHEHLIHM HtH HtHUHGHHUH41L%*jLEATAQIUH H H| H]@HC?HCHHSH)HAH HusA%#H"LH*tH}HHutHHEHEbIعH=:P1H}HuHtHxHHYHH=@1He[A\A]]@HH)HHH|CSHH AH fH *H5H8HJ@H*HHtH]QHHHAH yHuMHt?HtDCSHH HH FE1/fDIعLNfKvfDHUIHxHXAIEHIELf.L%LjHM1ATHuIZYff.UHATSHHtH=-Hu1HHEH]AIHx HHMttI$x HI$t.H;*t5HC0Hx0hHtBH[A\]f.LfDH*HH52H811HH=R>H1[A\]fDHQff.UHHgH~H;=*tHG0Hx(Ht"]ÐHa*H+H5K2H81H|nH=fR=1]DI11ҾH=XL1@HyxuHH=O1H;=*t7HG@xhuH*t@H*ufUH*HiH51H81HHH=Q<1]ÐUH;=*HtHG@xHWHt!]HA*HH5+1H81HLzH=Qi<1]DUH;=*HtHG@xHHt!]H*HqH50H81!HH=^Q <1]DUH;=@*HtHG@xH藍Ht!]H*HH5k0H81H7H=&Q;1]DUH;=*HtHG@xH7Ht!]H!*HH5 0H81aH,ZH=PI;1]DUH;=*HtHG@HcxHHt(]H*HiH5/H81HjH=P:1]ff.fH;=*t7HG@xHuH6*t@HY*ufUH0*HH5/H81HmH8.H=RPU:1]ÐUH;=*HtHGHHcxP&Ht(]H*HtH5.H81 HH=P91]ff.fUH;= *HtHGHHcxPHt(]HY*HH5C.H81HdH=O91]ff.fUH;=*HtHGHHcxPFHt(]H*HH5-H81)H#H=O91]ff.fUH;=@*HtHGHHcxPHt(]Hy*HRH5c-H81HTH=FO81]ff.fUH;=*HtHGHHcxLfHt(]H *HH5,H81IHH=O181]ff.fUH;=`*HtHGHHcxLHt(]H*HSH5,H81HH=N71]ff.fUH;=*HtHGHHcxLHt(]H)*HH5,H81iH4H=NQ71]ff.fUH;=*HtHGHHcxLHt(]H*HH5+H81HFH=FN61]ff.fH;=*t7HG0xHuH6*t@HY*ufUH0*HH5+H81HmH8 H=MU61]ÐUH;=*HtHG0x('Ht!]H*HH5*H81HH=M51]DUHh-HAWAVAUATISHHHHEHEHEH%LIHMHtHHtHUHGHHUH41L-jLEAUAQI讒H pH H|ݨLmDH5-I9ut L;-\*fA$tA$H=-Lu1HLHELeVHI$xHI$HHx HH[H*I9I9I\$0M}0LEIHHW'LHEHE"X'fELH*tIUxHIUIHe[A\A]A^A_]f.IعH=B1H}HuHtHxHHt]HH=rK31눐HuL.AEtAELmIH*=:f vfDHLfIعLA/H*H5'HdH81HH=J21fLHEtHE1HL$LB1wL-jHM1AUHuICZYff.UHATS4HHL%y*H.HC HCA$HC(Lc8tA$HV-L@M=L9txA$HC0tA$I$x HI$tALc8H[A\]D11H=W@Hx HHt[1L@fDH*HH5&H81YH4& H=>IA1H1dfUH5p-1HATIH=-SHH;9*HtHx HHtK1HA*H*H5+$H81H\H=i/H1wUH5-1HATIH=-SHH;i*HtH=E-H1.sfH;=*t'uH*tH*uÐUH*HH5!H81H HH=E,1]ÐUfHHAWAVIHw-AUHIATSH)E)EfHnH0 fH:"Hh#HE)EfHnfH:")EHLIHMzIH )JcHHHtHMHHtHMHHtHMHtHMHWH]LeHLI1jJ4LARLxAQM(LxH xiH}H}H}L}M~rf.IIZJ<uM1LD:@H;HtHx HHt8HI9uH 5H=E1+HeL[A\A]A^A_]f軷fIIvILHDžpHDžxHH1Hh`tL8HhAHutAHpL}H*@HxH]LeI9IELH`H1HHH F-tHBHHXHH=-ȰHXHIHx HHH5-LLXkLXHIHtAIx HI:Ix HIAtAH*I9FBHhfL}HELmHE)E}MIHZHHuH!-IWtHpH.HEIW tHxHLLLxHEmH`LxIHtHx HHIx HIOIx HI[MAEtAEIx HIIExHIEH;HtHx HHtpHL9ufIujHpHxʉptHxHMHH1HphtHpHuKfM1H=0H]Q6LeIx HI8HH=ݿ$'E1@HEHhHEHpHEHxH8*H)*tHE7HA*tHU H*tHEtHEH]LeHxL8AtAH*L}tHEHDžxHhH* t HUHpL踲HDžxHLX葲LXHA9}A9Ix HI2HuDH==%MWILHI?L2fDLLLXLXDLLxѱLxDL踱LjH1ARMLLx讌ZLxYHa*HH5KH817`HHLx@L0/L LE1A8HHtMwHLxѰLxIVMNtAtAIx HIt{HhfLXHUH`L}LmHE)EH`LXHIL~HY9H=f#LLXH` H`LX\H8H=ٻ #ff.UH;=P*Ht;H0蚳tH*t]@HY*tfDHi*HH5SH81HH=N;"1]ff.fUH;=*HtH0 HRHt$]H*HH5H819HsH=;!"1]ff.fUH;=P*HtH0HHt$]H*HH5sH81HbH=:!1]ff.fUH;=*HtH0HrHt$]H*HH5H81YHTH=~:A!1]ff.fUH;=p*HtH0HHt$]H*H7H5H81H#gH=>: 1]ff.fUH;=*HtH0:H蒭Ht$]H9*HǵH5#H81yH/H=9a 1]ff.fUH;=*HtH0 H"Ht$]H*HH5H81 HԴ# H=91]ff.fUH;= *HtH0jH責Ht$]HY*HH5CH81Hd' H=~91]ff.fUH;=*HtH0ʴHcBHt$]H*HH5H81)H H=>91]ff.fUHATSHH HGH;*teL%*L9H;*H;*H; *yHHHCL9u-tH0fDL%*L9tHHHx HHH [A\]fHGHBfH¸H)ЋWHH*/HHVHٱH=88H 1[A\]HWHH54*HTf.@'zuEEHtfHHEDHEH [A\]H;*fDHZHHMH@G @tTHuaHUHH貈YDHWHw 蛈BfDHw(+k"Qff.UHATSHH HGH;*teL%N*L9H;*H;Q*H;*9HHHCL9u-tH0fDL%*L9tH?HHx HHH [A\]fHGHBfH¸H)ЋWHH*HHVHH=6H 1[A\]HWHH5*Hf.\>'zuEEHtfHHEHEH [A\]H;*fDHZHHMH踧@G @tTHu!HUHHrYDHWHw [BfDHw(++"ff.UHATISH tH=R-Hu1HHELeHI$x HI$tLHtTH*H9Ct*H2Ht}Hx HHtMH [A\]@tHfL蘦HuHH=`4H 1[A\]HHEdHEH [A\]HxHHuH8fDH;=*t'$uH*tH*uÐUH*H H5 H81HH H=31]ÐUHAUATSHHH;5*L-$*IH;5O*u8L9t3HÃu'HtH,H=3WM9tAD$1H[A\A]]H*HQH5 H81QHӫH=>39HS*H5H8*DH;*H轷Aą/D%-L%*A$tA$LHHx~HHHeL[A\]IعH=)1H}HuHtHxHHt]HH=) 1He[A\]f.HuHtH]DA[vfDHH/IعLV?H+DL%CjHM1ATHuI uZY1@UHAUATSHHH;5*L-D*IH;5o*u8L9t3HÃu'HtHL5H=( WM9tAD$P1H[A\A]]H1*HqH5H81qH6H=f(Y Hs*H5H8\f.H;=q*t'QuH*tH*uÐUH*HH5H81HH_:H=( 1]ÐUHAUATSHHH;5[*L-*IH;5*u8L9t3H蛴Ãu'HtH=H='R WM9tAD$Q1H[A\A]]H*HH5H81H>H=v' H*H5H8f.H;=*t'RuH:*tHa*uÐUH@*HH5*H81H}HBH="'e 1]ÐUHAUATSHHH;5*L-*IH;5*u8L9t3H;Ãu'_HtHEH=& WM9tAD$R1H[A\A]]Hq*HH5[H81豿H3FH=& H*H5UH8蜞f.H;=*t'AuHڿ*tH*uÐUH*H H5H81HHH=2& 1]ÐUH-HAVAUATISH@HEHEHEHLIHMH HAhHHULE1HjPAQE1eH LmMID$H51-LHHHH`H;*H;*H;]*H'AƅHx HH8EID$H5;-LHHHHtfH]EIHH-HPtH=\-HuLLmHҬHHH*I$xHI$Hx HHH/IUHIULHE術HEHe[A\A]A^]Hu#H *tHEIJI11ҾH=1H}Hu%Ht HxHHu &@HFH=#H1He[A\A]A^]fD+Ha*Hx!HHu H訒Hx HHt8HH=%#1fHhHXfDKHBI$B_HHEHECLHEHEHjHM1PHuE1lZYDHHEđHE賷H0ff.UHAUATSHHH;5{*L-*IH;5/*u8L9t3H軭Ãu'߼HtH H=!rWM9tAD$A1H[A\A]]H*H1H5H811HH=!H3*H5՜H8f.H;=1*t'@uHZ*tH*uÐUH`*HH5JH81H蝹HH=J!1]ÐUHAUATSHHH;5*L-*IH;5Ϲ*u8L9t3H[Ãu'HtHH=!WM9tAD$@1H[A\A]]H*HњH5{H81ѸHSH= HӸ*H5uH8輗f.H;=Ѻ*tHw fUH *HH5 H81H]H%$]H=tD@UH;=*HtHG1PHt$]H*H]H5H81H̕H= 1]DH;=!*tHW8tHfDUH`*HH5JH81H蝷HݚH=1]ÐUHSHH;=*tHGPH诹Hu)HH]ÐH*HږH5H811HHH=nHH]fH;=A*tHW8tHfDUH*H5H5jH81H轶HH=1]ÐH;=*tHW@tHfDUH *H1H5 H81H]HH=E1]ÐH;=*tHW8tHfDUH*HuH5H81HH=&H=1]ÐH;=!*tHW@tHfDUH`*H"H5JH81H蝵Hݘ'H=R1]ÐUH-HATSHH0HEHEHEHnLIHM^HtHHtHUHGHHUH41L%jLEATAQIG\H H H|bH]fDH5V-H9sL%*L9_H@*HH5*H81耴HHH=h1fDHx HHHe[A\]IعH= 1H}HuHtHxHHtmHŐH=j1땐HuHtH]DL9H{ 讕A$tA$L9fKffDHHE4HEIعL> 'f1HH/pHO 1L%jHM1ATHuIdZY ff.H;=!*tHWHtHfDUH`*HMH5JH81H蝲Hݕ(H=1]ÐUfHHAWAVAUATIHSHH-HHH)EfHnfH:"HE)EHLOMHHtHIع1H=/ H}HtHx HHFH}HtHx HHH| H=K1qfHNtHMHtHMHWHHUH41L-jLEAUAQIXH @H"H|ݠbHHt H|ݠLLmH]M%L;-*L=-*AL;-Z*DVM9MLݣAƃQH5R-H9st L9[M9zL9q1Hs0EI|$0#H*tH}HtHx HHnH}HtHx HHiHe[A\A]A^A_]fHHLhAUtAULmHtH]ML=*E1Iع1L@SfDCfDEH*E1a1H}H/M9fDH*HUH5H811" H H=1xHE臅HEfDHEoHEfDL-؏jHM1AUHuIc`ZYIHL1DD諰Hbff.fUH;=*HtH0誊]HfDH*HH5H81H̋S H=H]UHس-HAUATISHHHHEHEHEHLIHMHtH:HtHUHGHHUH41L-HjLEAUAQITH H H|ݸLmH5iO-I9uHV*t I9 A$tA$I9I|$0cHc˃HHH=-Hu1LeHHELm'I$xHI$Hx HHHIUxHIUHe[A\A]]IعH=+"1H}HuHtHxHHt=H؉ H=ۏ1듐HuL.AEtAELm苂fHHEtHE.LHE\HE5LHEDHEIعLN'fH*HH5H8111ZLR1KH H=1@1H:LL1rL-jHM1AUHuI\ZYn@E1oUHh-HATSHH0HEHEHEHNLIHM>HtHHtHUHG~HHUH41L% jLEATAQIgQH H H|H]H讧fDH*tHHx}HHutHHE[HEbDIعH=~b1H}HuHtHxHHtmHOH=551He[A\]f.HuHtHH]Ҧ*Hs*&#ffDIعL?L%jHM1ATHuIsZZYff.H;=*tHW8tHfDUH*HH5H81H=H}3H=R%1]ÐUH-HATSHH0HEHEHEHNLIHM>HtHHtHUHG~HHUH41L%jLEATAQINH H H|H]H~fDH*tHHx}HHutHHE}HEbDIعH=1H}HuHtHxHHtmH[H=Ҋ1He[A\]f.HuHtHH]袛*H*&#}ffDIعL&?L%MjHM1ATHuIWZYff.H;=A*tHW8tHfDUH*H5H5jH81H轥H>H=1]ÐUHh-HATSHH0HEHEHEHNLIHM>HtHHtHUHG~HHUH41L%ZjLEATAQIgLH H H|H]H莣fDH*tHHx}HHutHHE[{HEbDIعH=b1H}HuHtHxHHtmHgH=o51He[A\]f.HuHtHH]貢*Hs*&#zffDIعL?L%jHM1ATHuIsUZYff.H;=*tHW8tHfDUH*HH5H81H=H}IH= %1]ÐUHSHHH=*H9GtHrHt\H VH5H8R1HqfˀXZE1HyxHH=JfdfHXWLHUDWHUL0WHN^H=ePfD}HEHVH3Gf.LHUVHUHHUL~HUHI;H@HHEH#I,H]H=(eHHE;|IHEAE1AN@|H{HUHEfDE1A&fH\H=dHfFIAE1 LHUjUHUIAIAyfH;=*tHW0tHfDUH*HcH5ڼH81H-~HP[#H=1]ÐUH-HAWAVAUATSHHXHEHEHEHHLIHM8HWHAHHULE1HUcjPAQE1$H 0HEHHEH*H9OHCHPHEHR1L{IHVHCH;-*t H;~*^tHEE1E1H}>HCH5~*H9sGL9WHCN4AtAIMtIExHIEAtAfLuE{HHH-HPtHEHuH=Dv-HHMHEkHMIIx HIRHx HHMIGI;G AMtAMIOL,HIGIExHIEH}MHEHIH}HtH *H1H9#fHx HHLfDMIx HIIxHIHtHx HHH}tH]Hx HHMtIExHIE"HYH=q`E1HEHxH]HHSHeL[A\A]A^A_]ÐHu#H|*tHEHEfDI11ҾH=`@1H}Hu%Ht HxHHu P@HXH=_E1]HPLPLP/LPHMLpPL`PZL9NtAfLLe\LmE1HPLOHO.HOH~*HeeH5H81xH^jHM1PHuE1*ZY5DHwHHt;H@IHHEHIxME1@H2OIyHigHEMME1HPE1fUH-HAWAVAUATISHH8HEHEHEHLIHMHtHHtHUHG HHUH41L-V]jLEAUAQIH H H|ݸLmDIEL=x*L9t H;I|*AEtAEE1E11MDIEM9}L9IEJtIHtHx HH M9|$ IT$ ID$HHH97H9.tIT$HHID$HMgHULLEALEHUHHqHUxHUHt H z*H1H9HUaHUIExHIEaL-Vx*AEtAEHfIعH=[1H}HuHtHxHHH`S6H=vE1莿HeL[A\A]A^A_]@HLLEiXLE@IExHIEuLuKuHRH= E1"HtHx HH)1H}HlHcHXHHFKDHLE|KLEM9|$DH=m-Hu1HLELeH]dHHHLEHHKLEf.HFL.AEtAELmDL9K\ f.JfDHJIعLLHUhJHUL-WYjHM1AUHuI[%ZYLqIHtAH@LMtNI HHULbHUHӾ?HP?H= 1۾?f.UH-HAWAVAUATISHH8HEHEHEHLIHMHtHHtHUHG HHUH41L-&XjLEAUAQIH H H|ݸLmDIEL=s*L9t H;w*AEtAEE1E11MDIEM9}L9IEJtIHtHx HH M9|$ IT$ ID$HHH97H9.tIT$HHID$HMgHULLEALEHUHHqHUtsHUHt H u*H1H9HUO\HUIExHIEaL-&s*AEtAEHfIعH=mV1H}HuHtHxHHH0NxH=nE1^HeL[A\A]A^A_]@HLLE9SLEIExHIEuLuFuHMH=E1HtHx HH)1H}HlHcHXHHF_FDHLELFLEM9|$DH=h-Hu1HLELeH]^HHHLEHHELEf.HFL.AEtAELmDL9K\ f.{EfDHhEIعLyLHU8EHUL-'TjHM1AUHuI+ ZYLlIHtAH@LMtNI HHU]HUHӾHKH=۷1۾f.UHp-HAWAVAUATSHHHHEHEHEHHLIHM8HtHHtHUHG(HHUH41L%SjLEATAQIH H H|ݸH]Hq-HCH9tIعLHLU>LUHLU>LULx>LU/ARIx HIIHIHtHx HHMtIExHIEMIHIL=@L9$OTAHLLUILUAQM8HFZfHh=cLX=MIE1AO 5cHDH =L=L=LHEH5zH81HXH5#H=赢1]ÐH;=Z*tHW@tHfDUH0^*H>H5H81HmXH5#H=RU1]ÐU1HATISHH5,H=*,uHL`HA$tA$H5n-H=w,HH--H5L D-Le-ZYHtLHx HHt He[A\]HHEl.HEHe[A\]HY*tHS5H=pHx HHt1@H.1ff.U1HATISHH5,H=J,HL`HA$tA$H5m-H=g,HHM-H5L o>-Ld- ZYHtLHx HHt He[A\]HHE\-HEHe[A\]HX*tHC4Y H=y<`Hx HHt1@H-1ff.U1HATISHH5q,H=b,tHL`HA$tA$H5l-H=W,HH]-H5~L -Lb-ZYHtLHx HHt He[A\]HHEL,HEHe[A\]HW*tH34gH=;PHx HHt1@H+1ff.H;=aW*tHWHtHfDUHZ*HEH5H81HTH2$H=Ş1]ÐH;=W*tHWPtHfDUH@Z*HQH5*H81H}TH1$H=e1]ÐH;=V*tHWXtHfDUHY*HBEH5ʒH81HTH@1$H=1]ÐU1HATISHH5A,H=B,sHL` HA$tA$H5j-H=',HH=,H5L -L`-˾ZYHtLHx HHt He[A\]HHE*HEHe[A\]HU*tH0%H= Hx HHt1@H)1ff.H;=1U*tHW`tHfDUHpX*H 9H5ZH81HRH/$H=蕜1]ÐU1HATISHH5,H=r,uHL`HA$tA$H5i-H=,HHu,H5 L H-LX_-[ZYHtLHx HHt He[A\]HHE(HEHe[A\]HT*tH/H=谛Hx HHt1@HP(1ff.H;=S*tHWhtHfDUHW*H7H5H81H=QH`.%H=%1]ÐUHATSHHIHH5Q,H=,1 uHHL`A$tA$H5g-H=5,HH,H5L -*-LV^-ٻZYHtRHx HHtHe[A\]fHHE$'HEHe[A\]HR*tH .g H=ſ(Hx HHtX1He[A\]DI11ҾH=51@HyxHH=r5茫1Hx&1@UHATSHHIHH5,H=,1tHHL`A$tA$H5$f-H=,HH,H5,L (-Lr-iZYHtRHx HHtHe[A\]fHHE%HEHe[A\]H!Q*tH,k H=}踘Hx HHtX1He[A\]DI11ҾH=R4p1@HyxHH=.41H%1@UHATSHHIHH5q,H=2,1+sHHL`A$tA$H5d-H=U,HH3,H5L ='-LZ-ZYHtRHx HHtHe[A\]fHHED$HEHe[A\]HO*tH++o H=5HHx HHtX1He[A\]DI11ҾH=31@HyxHH=_3謨1H#1@UHAUATSHHIHH5,H=,1iHHL`A$tA$H5,H=,1oIHHXtA$MetA$H5c-H=,LH,H5kYL DY-LuT-HIXZMtrIEx HIEtIx HIHx HHH0[A\A]A^]fIx HIdHxHHuHH]H=I܊H01[A\A]A^]DL Hp*L`HP^HHE<HEH0[A\A]A^]LHEHE  =IEDHI$6L)DH&H=赈1]ÐH;=@*tHtHUH0D*H%H5}H81Hm>H&H=ZU1]ÐH;=@*tHG f{'ff.UH(V-fHHAWIAVAUATSH)EH^)EfHnHpfH:"H-HE)EfHnfH:")EHHI"HHIUH]LeHH +E11jILLQ1PH HUcL-?*HSHMHHEHXHLuMHHHPM9XH`<o`HHHPAO opL9AW0t6IGHPLH5xF-HHPHPkL9t+IGH5T-HLHH*ЅIL9Xt/IGH5J-LHXHHЅ M9t+IGH5Q-LLHHЅE1H;HtHx HH8HL9uHeD[A\A]A^A_]DHL-=*AEƒAULm0AULmLmEAULmM9H`MH]5;Leo`LXA_ opAg0I11ҾH=(H]LeH;HtHx HHHI9uHH=A譄[fDH )(j1IQE1HLLPZY fAEtAEHELmLHXHAEtAELuLmLXMAEtAELmMf.AEtAELmLLmLmLmZsH]LeHG?*H58xH8H819HoH=Aip@9WLm9HPz9p9뢾뛾딾ff.@UHAVAUATSHH HGH57-HH3IMIEH5I-LHHIIEMhxHIEID$L59*L9A$tA$MI$xHI$hHCL9tHs0-LmH]HEHK0-HEAE @u tEC @u tEHC IUH}HTIIEMQxHIEHx HHH L[A\A]A^]H;7*]HPXHHIExHIEHjH=1E1H L[A\A]A^]L `L H H L[A\A]A^]Lh ,[3IK3IH;)7*uqLPXIMI$>HI$0L #fDx HIEtIDL L H;9*tH5^,LIxH;9*H5:,HHfUHAWAVAUATISHHGH5G-HHnHHxHCH;6*tIHx HHID$H58-LHHIMI@H;G6*AtALXIx HI{ID$H5OE-LHH4IMIGH;5*AtAMIx HI+ID$LPLH5@-HHLPIMxIFH;u5*AtAMIx HIID$LPLH5C-HHLPHHHCH;5*tIHx HH!ID$LPLH5?-HHLPHHvHCH;4*tIHx HHuH,-AU LhLEH`H6-L}HpHXLuHxHdC-LeHEH=?-HEHB-HEH?-HEH*-HE@u tEHXQ @u tEAP A@u#AtADEAW @u tEAV @u tEAT$ @u tE HXIULP H@D H`HD>IWI@  HTIVIT$HDLPHHIExHIEHXHx HHIx HIIx HIIx HII$xHI$NHĈH[A\A]A^A_]fHXDHLPALPDL(xLLPLPDLLPLPD,HHAfHDH=W1y%H;0*AHPXIM^E1E1E1AHDžXHx HH1MtIExHIEIHXHtHx HHtwMtIx HI~MtIx HItyMtIx HIttM IEHIEL@HLPLPnDLxuLhzLXHLPALPDLLP!LPD1E1E1AHDžXf*IH;.*LPLPXLPHXHXLE1E1E1A,HLPLPpD1E1E1ADS*IL@LPI@L(HLPLP5DL7L;L?H;-*LPXIMRLE1E1A6D1E1A<{)LPIS@H;Q-*LPLPXLPIMJLAE1f.E1Af )LPHQ@H;,*LP;HPXLPIMFAYAiD(LPH]@H;,*LPHPXLPIMRALAH;s/*H5,HIH;O/*NH5,LLP[LPHX@H;/*(H5,L,IH;.*sH5h,LLPIeH;.*H5=,HLPIH;.*H5,HLPIUHAWAVAUATSHH(L5mW-AfInfH:"tAH=D-Lm1HL)EIIx HI4MCID$L=?+*L9A$tA$MHCL9tfInAF H]fH:"!-)E@u tEC @u tEHC IVLHT>IIM?x HIHx HHtvI$x HI$tTH(L[A\A]A^A_]f.LMHmH= E1rLpfDH`fDLPH^bH;))*LPXIMkH+nH=E1Er"H;(*HPXHHAIxHIuLx HIt#HxHHuHvfDLH;+*FH5,LI8H;+*bH5,HHTff.UHAWAVAUATSH8H;=)*bLo8L=w(*IIEL9AEtAEID$H5C-LHHHHmHCL9tIHx HHID$H5E-LHHHHHCL9tIHx HHFH<-AU LmLuHEHB-LeHEHD-HE@u tEAV @u tEAT$ @u tEIU IFH} HT)IT$HIEHx HIEtfIx HItFI$x HI$tTH8H[A\A]A^A_]fHcHLfDLfDLfDH**HFH5{cH81$H 8H= 1n]H;Y%* LPXIMtfIExHIEuL6@+!H]H; %*HPXIM]IEHUD HgIEHIEVIynf.H;$*HPXIM7IEHIEHx HHtWMI1ۅHIthHHHHHzf.HfDIUHIHLfDx,HIELILW[Ix HILE@HE1LXH;w&*H5,LIH;S&*H5Ƽ,HfIH;/&*nH5,HBI`LaLiIIL|ff.fUHAUATSH(H;=$$*H_8L-"*IHCL9tID$H5&>-LHHIMID$L9A$tA$MI$xHI$H7-H]ȺLmHEH=-HEC @u tEAE @u tEIE HSH}HT(IHMix HHtLIEx HIEt"H(L[A\A]]@L0L H(L[A\A]]fHfDH%*HH5^H81! H[H=E1jH(L[A\A]]H; *HPXHHtHxHHuHxfDkIH;I *LPXIMHxHHuH)I$Hx HHIx HIIx HIZIx HIvIx HI"IExHIEHĘL[A\A]A^A_]L5Y,AAD$TXL 1-AAt$PMʅL,ADL,APNHLXLXEDAT$TMuOLpQL`HP`L@L0LLPLXLPLX}LLXLXoDHLHLPLX fDLLPLXLPLX{ HHHH=łYE1; IE1E1E1E1AHx HHMtIx HItuMtIx HIMtIx HIMtIx HIHDH= XM;E1)LLPLXjLPLXbLLPLX:LPLXKLLXLXBDLIHLHLPLXLHLPLXfMAL$PMʅH;y*LXLPXLXIAMIE1E1E1F@E1E1E1E1A fHMH=}HW I,H; *LPXHH.MAfH*HH5KE1AH81 E1E1E1lf.AWDL:H;*H5,LLXLXIH;W*FH5ʦ,LjH8fUHAWAVAUIATSHHHGH5) -HHQIMID$H5-LHHHI$H"xHI$`HCL= *L9|tIHx HH\H=!-L= II$MuxHI$KIEH5@-LHH]HH_HCL9rtIHx HH"IEH5 -LHHHH^HCL9tIHx HHH-AV LuLeHEH-LmHEH -HEH-HE@u tEAT$ @u tEAU @u tEIV ID$H} HTIU輬HI$Hx HI$t^IEx HIEtHtHHtHUHGHHUH41L%>jLEATAQIH H H|H]fDH5 *H9st H;*HnH0Hq*tHx HHHe[A\]IعH=\1H}HuHtHxHHt=HxH="wM1땐HuHtH]%D;fHHE$HEOIعL.\WfHH?H<]1DHH=evL1L%~jHM1ATHuI裴ZY9ff.H;=*tHtHUH0*H]H5AH81HmH&H=vUL1]ÐUHAVAUATSHL%*L9HFHHHH5-IX6IEH5-LHHIM;AEtAEH{H[tH=g$-Hu1HLmH]IIEsHIE5Hx HHIExHIEMIx HIA$tA$HL[A\A]A^]Ð1IHt+HHHIx HIH IEx.HIExHIEuLZf. HH=}txJH1[A\A]A^]fLHLLH*H5sH8* uHILIELfUH@-HAUATISHH8HEHEHEHyLIHMiHtHHtHUHGHHUH41L-jLEAUAQI肦H H H|5LmȐHA*IEI9t H;*3LLHH?Hx HHtHIU}HIUusLHEJHEa@IعH=IRW1H}HuHtHxHHt]HH=jr%H1He[A\A]]HuL.AEtAELm.fDvfDIعLVOHHH*HH5H811WHH=qnG1L-;jHM1AUHuI#ZYff.UHAVAUATSHL%b)L9HFHHHH5,I81IEH5,LHHIM;AEtAEH{H[tH=G-Hu1HLmH]IIEsHIE5Hx HHIExHIEMIx HIA$tA$HL[A\A]A^]Ð1IHt+HHHIx HIH IEx.HIExHIEuL:f. HH=oXEH1[A\A]A^]fLHLLH)H5nH8 uHILxIELgfUH -HAUATISHH8HEHEHEHyLIHMiHtHHtHUHGHHUH41L-jLEAUAQIbH H H|5LmȐH!)IEI9t H;)3LLHH?Hx HHtHIU}HIUusLHE*HEa@IعH=)2R1H}HuHtHxHHt]HH=mC1He[A\A]]HuL.AEtAELm.fD{vfDIعLQOHHH)HH5mH81m1RHH=lNB1L-jHM1AUHuIZYff.UHATISHt\LHH.Aąx7Hx HHt1A[A\]fHxfDHx HHt(HH=elA[A\]fDH0ff.UH0-HATSHH HEHEHEH^LIHMNHtHHtHUHGHHUH41L%jLEATAQI'H H H| H]fDHxWH=#-111]HXH=xe@Ht{HxtHHukHafDIعH=O1H}HuHtHxHHtMHH=?He1[A\]f.HuHtH]DkfIعLvN_HKDL%jHM1ATHuI+ZY@UH,HATSHH HEHEHEH^LIHMNHtHHtHUHGHHUH41L%jLEATAQIH H H| H]fDHXUH=!-111=H8S H=JiE>Ht{HxtHHukHafDIعH=2L1H}HuHtHxHHtMHQ H=h=He1[A\]f.HuHtH]DKfIعLVL_HKDL%ljHM1ATHuI ZY@UH(,fHHHAUATISHH)EfHnfH:"H-HEHEHE)EHLLOM?HHtHHtHUHGH] HL-4I1jHUJ4AUAQM譙H H}x@I~fDIIJ<uMLJLeH;HtHx HHHI9uH H=f;He1[A\A]]HHVtHUHVtHUIH>tHVH}tHUHVtHUH]RH=-111LeH H=)f:H;HtHx HHt,HL9uHe1[A\A]]fDfDs͐MH]H=_~IfHHlDL--jH1AUHuM,ZYDUH-HAUATSHH8HEHEHEHLIHMHtHHtHUHG<HHUH41L-jLEAUAQIH HTLdMA$PID$>tA$H=,fInHu1fH:"-H)EI$xHI$3HtHx HHI$xzHI$upLHEHE^IعH=G1H}HuHtHxHHt}H_H=u81He[A\A]]HuL&A$ЃA$ID$LeA$LVfDHHEHELHEHEIعLFID$Le9LfL-jHM1AUHuISZY@1HEGH/H=E7HEGLeA$Pff.UH,HAUATSHH8HEHEHEHLIHM|HtHHtHUHGHHUH41L-jLEAUAQIH HLdMrA$IT$tA$H=,fInHu1fH:"T-H)EI$xHI$HjI$xHI$uuLHEHEcfDIعH=D1H}HuHtHxHHtmHW*H=m51He[A\A]]HuL&A$ƒt|A$IT$LetA$L-ffDLHEHEIعLC'ID$LeyL- jHM1AUHuIsZY @1HEDHO4H=e4HEjLeA$ff.UH-HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIH H H|H]fDH5Y-H=-11IHH=^Q3HtwHxpHHugH]fIعH=B1H}HuHtHxHHtMH^H="^2He1[A\]f.HuHtH]%D[fIعLfA_L%KjHM1ATHuI3ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIH H H|H]fDH5,H=-11IHH=\Q1HtwHxpHHugH]fIعH=@1H}HuHtHxHHtMH^H=R\0He1[A\]f.HuHtH]%D[fIعLf?_L%KjHM1ATHuI3ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIH H H|H]fDH5)-H=-11IHH=[Q/HtwHxpHHugH]fIعH=>1H}HuHtHxHHtMH^H=Z.He1[A\]f.HuHtH]%D[fIعLf=_L%KjHM1ATHuI3ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIH H H|H]fDH5,H=-11IHH=6YQ-HtwHxpHHugH]fIعH=<1H}HuHtHxHHtMH^H=X,He1[A\]f.HuHtH]%D[fIعLf;_L%KjHM1ATHuI3ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIH H H|H]fDH51,H=-11IHH=nWQ+HtwHxpHHugH]fIعH=:1H}HuHtHxHHtMH^H=V*He1[A\]f.HuHtH]%D[fIعLf9_L%KjHM1ATHuI3ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIH H H|H]fDH5,H= -11IHH=UQ)HtwHxpHHugH]fIعH=81H}HuHtHxHHtMH^H="U(He1[A\]f.HuHtH]%D[fIعLf7_L%KjHM1ATHuI3ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIH H H|H]fDH5!,H= -11IHھH=SQ'HtwHxpHHugH]fIعH=61H}HuHtHxHHtMH^H=JS&He1[A\]f.HuHtH]%D[fIعLf5_L%KjHM1ATHuI3ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIH H H|H]fDH5,H=-11IHڼH=QQ%HtwHxpHHugH]fIعH=41H}HuHtHxHHtMH^H=zQ$He1[A\]f.HuHtH]%D[fIعLf3_L%KjHM1ATHuI3ZYff.UfHHATSHH8,HH@)EfHnfH:"HE)EHLIHMHHHIعH=2H}HtHxHHu OH}HtHxHHu*f.H+kH=PH#1He[A\]DHHtHMHtHMHW&HHUH41L%[jLEATAQI?H &H"H|HHt H|H-tH}Ht"HxHHuHE9HEDH}HHHHHEHEfH[HtHPHMtHUUIعL04L%CjHM1ATHuI裉ZYff.UH0,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L% jLEATAQIw~H H H|H]fDH5,H=J-11HJH=M HtwHxpHHugHd]fIعH=ir/1H}HuHtHxHHtMHηH=RME He1[A\]f.HuHtH]%DˬfIعL._L%jHM1ATHuI裇ZYff.UH0,HATSH HEHEHEH!LIHMHHAWHHULE1HjPAQE1|H xuHn)H}BtE1H}MuHtHxHAHHeH[A\]fI11ҾH=D-1H}Hu%Ht HxHHu N@HnH=pHe1[A\]DHuH)ƒtH]'DH]fDt܉BH]fDHjHM1PHuE1ąZYff.fUHP,HAVAUATISH0HEHEHEHLIHMHHA0HHULE1HjPAQE1zH LmMZID$H5,LHHHH4Hx HHDH;5)ID$H5C,LHHxIMA$tA$fLeEIHH ,HPtH=`,HuLHLmHI$HI$Ix HII$xHI$H2IExHIEPHeH[A\A]A^]Hu#L-)AEtAELmfDI11ҾH=,*1H}Hu%Ht HxHHu 6@HVjH=H1VHeH[A\A]A^]fDL$LLاfDI$xHI$x HI$ttH|H=H1DHhLXHeH[A\A]A^]ICa+HRL IHjHM1PHuE1ZYDLЦI$%UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%[jLEATAQIvH H H|H]fDH5 ,H=,11 HH=~FHtwHxpHHugH败]fIعH='1H}HuHtHxHHtMHH=FHe1[A\]f.HuHtH]%DfIعL&'_L% jHM1ATHuIZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%[jLEATAQItH H H|H]fDH5,H=,11 HH=DHtwHxpHHugH责]fIعH=%1H}HuHtHxHHtMHH=2DHe1[A\]f.HuHtH]%DfIعL&%_L% jHM1ATHuI}ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%[jLEATAQIrH H H|H]fDH5,H=,11 HH=BHtwHxpHHugH贡]fIعH=#1H}HuHtHxHHtMHH=bBHe1[A\]f.HuHtH]%DfIعL&#_L% jHM1ATHuI{ZYff.UH,HAVAUATISHH0HEHEHEHLIHMHtHHHtHUHGwHLmJ41L5(jLELAVAQMpH M J|Lu@t ?H=,1LH]HLu胸IHx HHLMH=t,1LH]HLe@Hx HHI$xHI$H=MIxzHIuqLHE(HE_fMH=2!1H}HuHtHxHHtmHH=1He[A\A]A^]fDIuL6AtALuLmLHE|HEkffDHXHHEDHEMLN f11w!Ho!1h!HH=Ư 1fL5jLm1AVHMMLxZYff.UH,HAUATISHH8HEHEHEHLIHMHtH"HtHUHG)HHUH41L-jLEAUAQImH H H|LmȐID$H5,,LHHHHstH=,Hu1H]HLm6HxHHx HHHMIUx|HIUurLHE!HE`IعH=*1H}HuHtHxHHt]HfH=1He[A\A]]HuL.AEtAELmHHE脛HE*svfDHHE\HHEIعLf711H=H= J1HGL-tjHM1AUHuIuZYff.UfHHAVAUATIHSHHn,HH0)EfHnfH:"HE)EHFLOM9HHHH=UIعVH}HtHxHHu H}HtHxHHufH H= ;1 HeH[A\A]A^]fDHNtHMHtHMHW.HHUH41L-jLEAUAQIiH LuL"H"H|ݰBHHt H|ݰ,H]A$tA$ID$H5,LHHIMIH=,Hu1HH]LeLmLurHI$xHI$IExHIEHH}HtHx HHH}HHHHr3hfDHL0AtAHXLutH]fDLIعH}D×afDL谗L蠗E111L1H H=8 [IlL-ajHM1AUHuISrZYff.UfHHHAUATSHHk,HH8)EfHnfH:"HE)EH[LOMNHHHH=ȨIعH}HtHxHHu mDH}HtHxHHuJf.H[H=71f HeH[A\A]]HNtHMHtHMHW.HHUH41L%jLEATAQIWfH HUHׅH"H|ݰRHHt H|ݰ<H]L-b,AEfInfH:"tAEHE)EIHQH,HPtH=,HuLHH]HIExHIEI$xHI$HH}HtHx HHH}HyHnHHa肔WDHH t HXHUtH]LIعVH}DbfDLLE111LLD1=HH="5L%ϥjHM1ATHuInZYff.UHh,HAVAUATISHH0HEHEHEHLIHMoHtHHtHUHGHLmH41L5DjLELAVAQI}cH H H|HH]@A$tA$H=,1LLeHH]HI$xHI$HHHx~HHuuHHEDHEcfDIعH=qJ1H}HuHtHxHHtUHH="1He[A\A]A^]fDHuHtH]Lmf蛑fLHE脑HE IعL?f1HEH`H=rmHE@L5kjLm1AVHMIL lZY fUfHHHAUATSHH;,HXH8)EfHnfH:"HE)EH[LOMNHHHH=ɢIعH}HtHxHHu =DH}HtHxHHuf.H+H=116HeH[A\A]]HNtHMHtHMHW.HHUH41L%jLEATAQI'`H HUHׅH"H|ݰRHHt H|ݰ<H]L-a\,AEfInfH:"tAEHE)E買IHQHg,HPtH={,HuLHH]葧HIExHIEI$xHI$HH}HtHx HHH}HyHnHHaRWDHH t HXHUtH]LIع&H}DbfDLЍLE111L1 H H=/L%ПjHM1ATHuIhZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIW]H H H|H]fDH5,H=*,11虬H*H=.HtwHxpHHugHD]fIعH=IR1H}HuHtHxHHtMHH=-%He1[A\]f.HuHtH]%D請fIعL _L%jHM1ATHuIfZYff.UfHHAWAVAUATISHHǷ,HxHH)EfHnfH:"HE)EHLIHMHHHIع1H=& H}HtHx HHH}HtHx HHHnH=B,1He[A\A]A^A_]@HHtHMHtHMHW^HHUH41L5sjLEAVAQIZH 4H}HUH"H|ݠHHt H|ݠLmA$tA$L5]U,AfInfH:"tAHE)EHHTH,HPtH=!,L}HHLLmIIx HIHx HH1M`H=I,1LLeHLm蕡I$xHI$GIUxHIUHH}Ht'Hx HHuHE~HEf.H}HHHHHEBHEfHHJLhAUtAUHLmtHUAfIع1L @HȇLHE贇HE裇!fD蓇fDL耇fLHElHEHtL-ղ)HUAEtAELmL-)AEtAELm3I$xHI$~IxHIu LfHZ~H=(1!L5#jHM1AVHuIaZY@I$xHI$uL~Ltuff.@UH ,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIgVH H H|H]fDH5,H=:,11詥H:H=~'HtwHxpHHugHT]fIعH=Yb1H}HuHtHxHHtMHH='5He1[A\]f.HuHtH]%D軄fIعL_L%jHM1ATHuI_ZYff.UfHHAWAVAUATISHHװ,HxHH)EfHnfH:"HE)EHLIHMHHHIع1H=6H}HtHx HHH}HtHx HHHH=%1He[A\A]A^A_]@HHtHMHtHMHW^HHUH41L5jLEAVAQISH 4H}HUH"H|ݠHHt H|ݠLmA$tA$L5mN,AfInfH:"tAHE)E HHTH,HPtH=1,L}HHLLmIIx HIHx HH1M`H=Y,1LLeHLm襚I$xHI$GIUxHIUHH}Ht'Hx HHuHE莁HEf.H}HHHHHERHEfHHJLhAUtAUHLmtHUAfIع1L@H؀LHEĀHE賀!fD裀fDL萀fLHE|HEHtL-)HUAEtAELmL-)AEtAELm3I$xHI$~IxHIu LfHjH="1!L53jHM1AVHuIZZY@I$xHI$uLLuff.@UH0,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L% jLEATAQIwOH H H|H]fDH5,H=J,11蹞HJH= HtwHxpHHugHd~]fIعH=ir1H}HuHtHxHHtMHΈH=r EHe1[A\]f.HuHtH]%D}fIعL_L%jHM1ATHuIXZYff.UfHHAWAVAUATISHH,HxHH)EfHnfH:"HE)EHLIHMHHHIع1H=FH}HtHx HHH}HtHx HHHH="1He[A\A]A^A_]@HHtHMHtHMHW^HHUH41L5jLEAVAQILH 4H}HUH"H|ݠHHt H|ݠLmA$tA$L5}G,AfInfH:"tAHE)E0HHTH,HPtH=A,L}HHLLm IIx HIHx HH1M`H=i,1LLeHLm赓I$xHI$GIUxHIUHH}Ht'Hx HHuHEzHEf.H}HHHHHEbzHEfHHJLhAUtAUHLmtHUAfIع1L)@HyLHEyHEy!fDyfDLyfLHEyHEHtL-)HUAEtAELmL-Ѥ)AEtAELm3I$xHI$~IxHIu LyfHzH=(1!L5CjHM1AVHuISZY@I$xHI$uLxLxuff.@UH@,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%jLEATAQIHH H H|H]fDH5,H=Z,11ɗHZH=^HtwHxpHHugHtw]fIعH=y1H}HuHtHxHHtMHށH=UHe1[A\]f.HuHtH]%DvfIعL_L%ˇjHM1ATHuIQZYff.UfHHAWAVAUATISHH,HxHH)EfHnfH:"HE)EHLIHMHHHIع1H=VH}HtHx HHH}HtHx HHH'~H=1He[A\A]A^A_]@HHtHMHtHMHW^HHUH41L5jLEAVAQIEH 4H}HUH"H|ݠHHt H|ݠLmA$tA$L5@,AfInfH:"tAHE)E@HHTH%,HPtH=Q,L}HHLLmIIx HIHx HH1M`H=y,1LLeHLmŌI$xHI$GIUxHIUHH}Ht'Hx HHuHEsHEf.H}HHHHHErsHEfHHJLhAUtAUHLmtHUAfIع1L9@HrLHErHEr!fDrfDLrfLHErHEHtL-)HUAEtAELmL-)AEtAELm3I$xHI$~IxHIu LrfHzH=81!L5SjHM1AVHuILZY@I$xHI$uLqLquff.@UHP,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%+jLEATAQIAH H H|H]fDH5ѵ,H=j,11ِHj{H=HtwHxpHHugHp]fIعH=1H}HuHtHxHHtMHzH=ReHe1[A\]f.HuHtH]%DofIعL_L%ۀjHM1ATHuIJZYff.UfHHAWAVIAUATSHH,HrHH)EfHnHfH:"HEHuHE)EHWLIHMGH HtH0HtHMHWLeLmHL=GM1jH4LAWAQIR?H xAH~ HHI<uIعLLLeH;HtHx HH^HI9uHjtH=E1bHeL[A\A]A^A_]H6HHtHMHHtHMHHtHMHHtHPHMtHULeLmAtAH=ڕ,L1LuHHE"IIx HIMIExHIEL-)AEtAELLeH;HtHx HHt!HI9ulfDlؐIعLeH=.@fLlHLlW1HrH=D@L=~jL1AWIL]GZYfDUH,IHAUATSHH8HEHEHEHYLIHMIHtHIHtHUHGHJ4HU1H?~jPAQMLE3HtHHtHUHG^HHUH41L%kyjLEATAQI8H H H|H]fDH5,H=,11HrH=^ !HtwHxpHHugHg]fIعH=x1H}HuHtHxHHtMH.rH= He1[A\]f.HuHtH]%D+gfIعL6_L%xjHM1ATHuIBZYff.UH@,IHAVAUATSHH0HEHEHEH7LIHM'HtH'HtHUHGHJ4HU1HxjPAQMLE6H LeL-)MHL9LshAfInfI:"tAH=,Hu1H)E~HIx HIHLHx HH AEtAELI$HI$uvLHEgeHEdMIta1H=w1l1H}HuHtHxHHtgHDkH=?1He[A\A]A^]L&A$tA$LeL-])L-Q)AEtAELmMdlfDLdHdHa)HsnH5KH81衍1HjH=1HvjHM1PHu??ZYUHФ,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%tjLEATAQI4H H H|H]fDH5!,H=,11YHmH=aHtwHxpHHugHc]fIعH= t1H}HuHtHxHHtMHnmH=rHe1[A\]f.HuHtH]%DkbfIعLv_L%[sjHM1ATHuIC=ZYff.UHТ,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%rjLEATAQI2H H H|H]fDH5!,H=,11YHkH=aHtwHxpHHugHa]fIعH= r1H}HuHtHxHHtMHnkH=He1[A\]f.HuHtH]%Dk`fIعLv_L%[qjHM1ATHuIC;ZYff.UfHHAUATSHH,HH8)EfHnfH:"HE)EHLIHMHHHH=HrIعH}HtHxHHu ]_DH}HtHxHHu:_f.H]eH=q1VHeH[A\A]]HHtHMHtHMHWHLeH41L-oqjLELAUAQID/H HUHׅH"H|ݰHHt H|ݰHML-..,AEfInfH:"tAEH=F,HML1H)EvHIExHIEHH}HtHx HHH}HHHH]@H H t HHHUtHMLe@LIعH}DK]cfDL8]*1HVcH=oQ @L-ojLe1AUHMIL8ZYAUH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{mjLEATAQI,H H H|H]fDH5,H=,11)|HfH=&1HtwHxpHHugH[]fIعH=l1H}HuHtHxHHtMH>fH=He1[A\]f.HuHtH]%D;[fIعLF_L%+ljHM1ATHuI6ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{kjLEATAQI*H H H|H]fDH5,H=,11)zHdH=N1HtwHxpHHugHY]fIعH=j1H}HuHtHxHHtMH>dH=He1[A\]f.HuHtH]%D;YfIعLF_L%+jjHM1ATHuI4ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{ijLEATAQI(H H H|H]fDH5,H=,11)xHbH=1HtwHxpHHugHW]fIعH=h1H}HuHtHxHHtMH>bH= He1[A\]f.HuHtH]%D;WfIعLF_L%+hjHM1ATHuI2ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{gjLEATAQI&H H H|H]fDH5,H=,11)vH`H=1HtwHxpHHugHU]fIعH=f1H}HuHtHxHHtMH>`H=BHe1[A\]f.HuHtH]%D;UfIعLF_L%+fjHM1ATHuI0ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{ejLEATAQI$H H H|H]fDH5,H=,11)tH^H=1HtwHxpHHugHS]fIعH=d1H}HuHtHxHHtMH>^H=zHe1[A\]f.HuHtH]%D;SfIعLF_L%+djHM1ATHuI.ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{cjLEATAQI"H H H|H]fDH5,H=,11)rH\H=&1HtwHxpHHugHQ]fIعH=b1H}HuHtHxHHtMH>\H=He1[A\]f.HuHtH]%D;QfIعLF_L%+bjHM1ATHuI,ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{ajLEATAQI H H H|H]fDH5,H=,11)pHZH=^1HtwHxpHHugHO]fIعH=`1H}HuHtHxHHtMH>ZH=He1[A\]f.HuHtH]%D;OfIعLF_L%+`jHM1ATHuI*ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{_jLEATAQIH H H|H]fDH5,H=,11)nHXH=1HtwHxpHHugHM]fIعH=^1H}HuHtHxHHtMH>XH=He1[A\]f.HuHtH]%D;MfIعLF_L%+^jHM1ATHuI(ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{]jLEATAQIH H H|H]fDH5,H=,11)lHVH=1HtwHxpHHugHK]fIعH=\1H}HuHtHxHHtMH>VH=R赾He1[A\]f.HuHtH]%D;KfIعLF_L%+\jHM1ATHuI&ZYff.UH,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%{[jLEATAQIH H H|H]fDH5,H=,11)jHTH=1HtwHxpHHugHI]fIعH=Z1H}HuHtHxHHtMH>TH=赼He1[A\]f.HuHtH]%D;IfIعLF_L%+ZjHM1ATHuI$ZYff.UHHt,fHHPHAVAUATISHP)EfHnfH:"HHEHEHE)EHJLOM=HHtH&HtHUHGH]HL5_I1jHUJ4AVAQMH Lmx>I~@IIJ<uMLLeH;HtHx HHIHI9uHMH=He1[A\A]A^]ÐH6HVtHUHVtHUIL.AEtAEHVLmtLfHUA$tA$LeH]IEH5]r,LHHЅIEH5t,LLHHЅHr)tLeH;HtHx HHt)HL9uHe[A\A]A^]SFfDHE?FHEfMH]H=\>HfHULeHLH=%1Df;ofDL5\jH1AVHuM ZYDoff.UH0,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L% VjLEATAQIwH H H|H]fDH5щ,H=J,11dHJOH=HtwHxpHHugHdD]fIعH=iUr1H}HuHtHxHHtMHNH=rEHe1[A\]f.HuHtH]%DCfIعL_L%TjHM1ATHuIZYff.UH0,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L% TjLEATAQIwH H H|H]fDH5q,H=J,11bHJMH=HtwHxpHHugHdB]fIعH=iSr1H}HuHtHxHHtMHLH=EHe1[A\]f.HuHtH]%DAfIعL_L%RjHM1ATHuIZYff.UH0,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L% RjLEATAQIwH H H|H]fDH5q,H=J,11`HJKH=FHtwHxpHHugHd@]fIعH=iQr1H}HuHtHxHHtMHJH=EHe1[A\]f.HuHtH]%D?fIعL_L%PjHM1ATHuIZYff.UH0,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L% PjLEATAQIwH H H|H]fDH5y,H=J,11^HJIH=vHtwHxpHHugHd>]fIعH=iOr1H}HuHtHxHHtMHHH=EHe1[A\]f.HuHtH]%D=fIعLֿ_L%NjHM1ATHuIZYff.UH0~,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L% NjLEATAQIw H H H|H]fDH5w,H=J,11\HJGH=HtwHxpHHugHd<]fIعH=iMr1H}HuHtHxHHtMHFH="EHe1[A\]f.HuHtH]%D;fIعLֽ_L%LjHM1ATHuIZYff.UfHHAWAVIAUATSHHi,HrHH)EfHnHrfH:"HEHuHE)EHZLIHMJH#HtH3HtHMHWLeLmHL=*MM1jH4LAWAQI5 H xHtHHtHUHG^HHUH41L%HjLEATAQIH H H|H]fDH5y|,H=,11YWHAH=aHtwHxpHHugH7]fIعH= H1H}HuHtHxHHtMHnAH="He1[A\]f.HuHtH]%Dk6fIعLv_L%[GjHM1ATHuICZYff.UHv,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%FjLEATAQIH H H|H]fDH5!p,H=,11YUH?H=aHtwHxpHHugH5]fIعH= F1H}HuHtHxHHtMHn?H=ZHe1[A\]f.HuHtH]%Dk4fIعLv_L%[EjHM1ATHuICZYff.UfHHAWAVIAUATSHHb,HrHH)EfHnHrfH:"HEHuHE)EHZLIHMJH#HtH3HtHMHWLeLmHL=EM1jH4LAWAQIH xHtHHtHUHG^HHUH41L%KAjLEATAQIH H H|H]fDH5t,H=,11OH:H=HtwHxpHHugH/]fIعH=@貱1H}HuHtHxHHtMH:H=b腢He1[A\]f.HuHtH]%D /fIعL_L%?jHM1ATHuI ZYff.UHpo,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%K?jLEATAQIH H H|H]fDH5h,H=,11MH8H=HtwHxpHHugH-]fIعH=>貯1H}HuHtHxHHtMH8H=腠He1[A\]f.HuHtH]%D -fIعL_L%=jHM1ATHuIZYff.UHpm,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%K=jLEATAQIH H H|H]fDH5f,H=,11KH6H=VHtwHxpHHugH+]fIعH=<貭1H}HuHtHxHHtMH6H=腞He1[A\]f.HuHtH]%D +fIعL_L%;jHM1ATHuIZYff.UHXY,fHHHHAUATISHH)EfHnfH:"HHEHEHE)EHGLOM:HHtHHtHUHGH]HL-v<I1jHUJ4AUAQMH x?I~DIIJ<uMLɫLeH;HtHx HHHI9uH20H=%蘜He1[A\A]]HHVtHUHVtHUIHtHUHVtHUHVtHUH]L%QT)A$tA$LmH;HtHx HHt0HI9uHeL[A\A]]f{(fDk(fMH]H=:nfL-:jH1AUHuM4ZY1ff.fUHh,HATSHH HEHEHEHNLIHM>HtHHtHUHG^HHUH41L%8jLEATAQIH H H|H]fDH5b,H=},11IGH1H=QHtwHxpHHugH&]fIعH=71H}HuHtHxHHtMH^1H=ՙHe1[A\]f.HuHtH]%D[&fIعLf_L%K7jHM1ATHuI3ZYff.H;=Q)t7uHO)t@HR)ufUHT)Hy8H5H81HNH,'H=Ř1]ÐUHAUATSHHIH.;IH=IEH5JX,LHHHH1H5"X,HL%Hx HHIEH5(f,LHHHHoH5f,HLe%Hx HHaIEH5\,LHHHH}H5[,HL %KHx HHIEH5b,LHHHHsH5b,HL$HxHHuH#H=b+H5e,HGHHOIM3GLHHA$tA$Lc LH7LhHX I$xHI$He[A\A]]fDH@#HH0#H #IH;I$<HI$E1AF Hx HHH(DH= MtE1@HN)HE1L &'H !H5rH8R1H6@KXZ1He[A\A]]@LHET"HEHe[A\A]]DH8"bHyxHH=?1H=(F H=]81I$F HI$nL!H'H=1>DGHqIExHLIEu~!H'K H=覔1I$G hG 5IEHIE HAK 7F H8'H=]81I$H H FHMHAF E1I$I I zD{FHWkFIH&H=莓1HHHHL ,LAK "UHHCHt@H&>H=]HE HEfDUHATISH tH=*V,Hu1HHELeA8HI$x HI$ttHt|HPJ)H9CH;t%HHx HHtH [A\]HHHHE HEH [A\]DLHuH%8H=H 1[A\]HxBHoHxHHuHDUHATSHH|IHA$tA$H=T,Hu1HHELe6HI$xHI$HHI)H9Cu|H;uvIHx HHxFHHL`^FHt9H :+fHnfH:"t@H[A\]HHAIHuHx HHHw$M H=1蔐1HIH>WfL(I$xHI$uL@I11ҾH=:1HHyxcHH=:ġ1$DH?ff.H;=!H)t7uHFF)t@HiI)ufUH@K)H$/H5*H81H}EH"(H=*e1]ÐH;=G)t7uHE)t@HH)ufUHJ)H.H5H81HDH ")H=1]ÐUHHHwH?GHtDH1&,H=HE褎HEff.UHATISCHtWHID$xHPtHSCHtH F)HXtHH [A\]fHx HHt H!yH=-[1A\]ÐHfDH;=1F)tHG fUHSH#Hr"H5dHcI)H81C2"H  H=L-苍2H]1ff.UHAWAVAUATSHH_H+HHHEH<IH}HAIHLHE11&@tIFJHEII9LIHI$HpH8EHHt$MtIExHIEuLuL%!$,H=L蕌LXH=职Ix HItIMtIEx HIEtBHH[A\A]A^A_]1fDAtAILDLfDLfD Ht#O1H=^HQ#RH==1ƋgUHAWAVAUATSHL5C)L9H0HP"HH>L-F)L9htIHx HH-H5+H=+1`\IHL`A$tA$H5W,H=+LH+H5 L +,L[I,.HXZHIx HIL9krtIHx HHI$x HI$txHeL[A\A]A^A_]fDHCIHHxHHu H @HBH=0E1HL{HYLHE)HH5s~H81?HBH=f豉|@AtAL-CH=jL肉ILCH=E1Y@HAIHHL-sxHHuHL-RCH=LIxHIyLl@MUHAWAVAUATSHL5A)L9H0HP2HH>L-C)L9htIHx HH-H5+H=+1`IHL`A$tA$H5T,H=+LH+H5 L ',LkF,>HXZHIx HIL9krtIHx HHI$x HI$txHeL[A\A]A^A_]fDH @IHHxHHu H@HzH=]@E1HL{HYLHB)H'H5{H81IHHL-xHHuHL-b{H=]L IxHIyLl@MUHAWAVAUATSHL5>)L9H0HPBHH>L-@)L9htIHx HH-H5+H=+1`WIHL`A$tA$H5 R,H=+LH+H5 L b%,L{C,NHXZHIx HIL9krtIHx HHI$x HI$txHeL[A\A]A^A_]fDH0=IHHxHHu H,@HgH=ռPE1HL{HYLH?)H7H5xH819H#gH=Vу|@AtAL-hH=ZL袃ILhH=E1y@HL-=)L9htIHx HH-H5+H=+1 SIHL`A$tA$H5O,H=+LH+H5AL B#,L@,^HXZHIx HIL9krtIHx HHI$x HI$txHeL[A\A]A^A_]fDH@:IHHxHHu H<@HuH=M`E1HL{H YL H<)HGH5uH816H3uH=ι|@AtAL-vH=ҹL貀ILvH=yE1艀@H9IHHL-xHHuH L-vH=ML-IxHIyL l@MUHAUATSH(H2HHNtH=/,Lm1HLHEH]*%IHx HHrMI$x HI$t[H;7)trHs L6HuH}Q8HHH}HEH9t HEHpkH(H[A\A]]DL fDH hH:)HAH5sH814sHH=~1DI11ҾH=1莍nfHyxHH=_12BD1葎H,H=nI~H}HEH9_HEHpk MH鴒ff.UHAWAVAUIATSHHGxLwE1AoF M~0H*IfH:L%6)L9IFM~L9Hx0L)EHpH86foEHIH{ M~0AF Ht HHC xHHu CxHL[A\A]A^A_]L%a5)L9IFH9Hx0E1W$fHnflfH:L9.A$tA$CxHHa8)H%H5KqH812Am I}`t\HZDH=Ky|E1@1虌H,H=vQ|Hu5Ak H7)H %H5pAl H812sH5)H5(H8fDUHAWAVAUIATSHHGxLwE1AoF M~0H*IfH:L%3)L9IFM~L9Hx0L)E.HpH8c4foEHIH{ M~0AF Ht HHC xHHuCxHL[A\A]A^A_]L%A3)L9IFH9Hx0E17"fHnflfH:L9.A$tA$CxHHA6)Hs%H5+oH810Ai I}`tZH:DH=YzE1@1yH,H=V1zHu5Ag H5)H%H5nAh H81/sH2)H5H8fDUHAWAVAUIATSHH(GxLw"E1AoN M~0)MHHEIL%1)L9*IFM~L9Hx0L,HpH8F2HHIFL9IvHx0HM HpH82HMHHEOU.HMHUHIHHfoUHP H{ M~0AV HtHHC x HHCxH(L[A\A]A^A_]DL%0)L9IFH9sHx0E1fHnfl)EHEL9A$tA$CxHyHx HHDHx HHtDAq I}`t XH DH=GwE1fDHpfDHI3)H{%H53lH81-H,H=hwgHAo V@H2)H%H5kHMH81%-HMHHH H@H2)H˅%H5kAp H81,fDHHU|HUH!,H=HMvHMHoHy/)H5|H8 DUHF,IHAVAUATSHH0HEHEHEHLIHMwHtHwHtHUHGHJ4HU1HjPAQMLE!H 9LeH-)MH9HCH-HtH=iL,Lu1HLHEH]IHx HHnMAEtAEH=$,1LLmHLe}IUx HIU/xHIUH|I$HI$uyLHEjHEg@MIta1H=m1l1H}HuHtHxHHtH2H=?t1He[A\A]A^]L&A$tA$LeH],)oLHEHE&H9,)tHEI;@TfDHLHElIUHEH9/)HH5#hH81y)HOH=as1f.fH#jHM1PHuZYcUH8,HAVAUATSHH0HEHEHEHjLIHMZHyHAHHULE1H2jPAQE1H RLeM HCH5K,HHH7HHtfH]E'IH^H7,HPtH=",HuLHLeyIHcHHIExHIEhHx HHDMI$xHI$EHeL[A\A]A^]DHu#L%))A$tA$LefDI11ҾH=01H}Hu%Ht HxHHu @HH=uE1pHeL[A\A]A^]DHHxHHx HHH)H=E1pIEH(LLHeL[A\A]A^]"HHhHjHM1PHuE1ZYSDHHUHAUATISHH(H`HEHC`H}HEHTHWHUȃtHG(L-))HEIuHtstlH9ujH_HtHx HH<HtHx HHH}Hx HHI$H([A\A]]@H9tHHuH}HUr HEIuHxH9t H}HtHx HHH}Hx HHH}H_HtHXHHKfD ;fDk~H}b~Hs&)tI$fHHEfHMHUHHuGfD{fDUHAUATSH(G|HEG|HwHHHt/H%)HMAC|HEAuNH([A\A]]H@HHGH9+HC|H([A\A]]@Eu.H;L%)tHHE6NHEHtHx HHt]1H([A\A]]H")H5H81fDH5$)HUH}A)DZfDH81@H{@HEHCHHtHHC@x HHt4HuH^LmHHULLA@|@UHAVAUIATSH G|G|IHwHHHtHLC|H [A\A]A^]Lw@ML;%#)tRfInH==,Hu1fI:"H)EHC|IEH [A\A]A^]LtIFLDH1!)H5RH82IEH [A\A]A^]LȺH{@HEHCHHtHHC@x HHt6*HuHLeLHLlLEzE4fUHSHUHHEVuHEH]H]uH;y")tHgKHu!1H]f.H$)H8HxHHuH1DUHH7HurH=+M,111HH=Mi1@H")HE1L H H5=FH8R1HkX1ZDHyxtHH={fDUHAWIAVAUIATSH8H5j+I9wL5_!)t M9LHEL`hI$Ht L9Md$MuHE1M9)IE HEIE(HEAE0EIE8HE HM9AG0Mw Mo(M8E HL9uu L9mL-)AEtAEHELH@hH8HHtHx HHMtI$xHI$|HMHtHx HHJH8H[A\A]A^A_]tLcA$tA$H^HEDHA#)H^H5+\H81L}H5J,I`$5I`IG`HtHx HHFL-)AEtAEHEH@hH8HHtHx HHMtI$xHI$H}tHUHx HHLH1LX1҅HHUTHULHU?HUoLm-HUBL9}U8UL-)AE@HEHMHLHxhYH H=Οf1LHff.t#t&H)tDSUHAVAUATS@IHHe)I9t^H)L5)I9AM9DuHL;%)t?LWAI$x HI$tZEx=ELHDËt[A\A]A^]ÐI$x HI$tE1@LfDLff.UHAVAUATSHH;=)4HG0IHp HxIH<ID$0xHuyL5)AtAHH)IT$8LhfHnfI:"tC HHt9Hx HH}H[A\A]A^]L5)AuHx HHt8H H=cHHH[HA\A]A^]HHfDHHE4HEH[A\A]A^]H)HH5WH81At@H,H=E cSIExHIEt.fDI-HI LLff.UHH?HuzH5C*,H= F,11{H H=pb1Hq)HE1L H mH5?H8R1H`CX1ZDHyxyHH=9sf.UHH?HuzH5),H=\E,11H\H=a1H)HE1L H H5e>H8R1HX1ZDHyxyHH=,sf.UHH?HuzH5(,H=D,11HH=x#a1H)HE1L VH H5=H8R1HX1ZDHyxyHH=|rf.UHH?HuzH5c2,H=C,11k HH=s`1Ha)HE1L H ]H5=H8R1HP3X1ZDHyxyHH=)qf.UHH?HuzH51,H=LC,11 HLH=x_1H)HE1L H H5U<H8R1HX1ZDHyxyHH=yqf.UHH?HuzH50,H=B,11 HH=_1H)HE1L FH H5;H8R1HX1ZDHyxyHH=lpf.UHH?HuzH5#&,H=A,11[ HH=xc^1HQ)HE1L H MH5:H8R1H@#X1ZDHyxyHH=of.UHH?HuzH5s%,H=,11H|H=Z1H)HE1L &H H57H8R1HX1ZDHyxyHH=Llf.UHH?HuzH5C,,H==,11;HH=CZ1H1)HE1L vH -H56H8R1H X1ZDHyxyHH=kf.UHH?HuzH5k+,H==,11HH=Y1H)HE1L H }H5%6H8R1HpSX1ZDHyxyHH=Ijf.UHH?HuzH5 ,H=l<,11HlH=X1H)HE1L H H5u5H8R1HX1ZDHyxyHH=H([A\A]A^A_]LHETHE{HpHtH8EHvM>eH}H}Hx HHEąuH}MuH(IULH5ۅH81@Htm@LHHtH8HEEHfDHXKGAlff.UHAWAVAUE1ATSHGxH}HuLHMwMyIFH(H9t H; (AtAE1E1MIFI9^I9IFJtIIIGHtHx HHtfH@uL-(AEtAEIxHIfHE@xHHL[A\A]A^A_]IGDLAH^tHtH(H2H9WIxHIuLL-(AEkAEbfI9}KDH(H2H5)HH81HEHx`t!HRcH=oAE1LLIHtH@LMtI.H6IxHIsLfff.fUH ,HAWAVAUATSHH8HEHEHEH(LIHMHtHHtHUHGHHUH41L%jLEATAQI豝H cH H|ݸLeID$fDA$tA$H=+fInLm1fH:"+LH)EXHI$xHI$HL=b(L5#(L9L9WH;(JHRHx HHA$tA$H=+1LfInfH:"+H)EHI$xHI$1H#L9L9/H; ("H"Hx HHA$tA$H=j+1LfInfH:",H)EHI$xHI$HsL9L9H;p(H:Hx HH~`A$tA$H=+1LfInfH:",H)E:HI$xHI$RHL9L9'H;(HAŅHx HHEH#,t@I$HI$uuLHEHEcfDIعH=K1H}HuHtHxHHtuHH=~<1He[A\A]A^A_]@HuL&A$tA$ID$LeLH("D^fDLdIعLJ@Hx!HHuH߉uuf.HH=};1fDH߉EUE/DnH߉E5EoDL DLfH1+ffDH߉EEODL%jHM1ATHuI転ZY@LH+~{fH+TQH7'pUIHII?L HAVAUATISHHH +LSL9QH52(I9AMXMaMXM~(1fDITH9H9HI9uAIB8HHH1HL[A\A]A^]@HIH +LSL9H5(I9MXM6MkM~(1fDITH9bH9YHI9uAt'IB8HfDHNMLHL[LA\A]A^]fDHSB LjE1 uLcH=s1LAHHH[A\A]A^]fHSBM1LjE1 uLcH=CuaLLSfDML5z+MaH= u+HLLAHEHg7H1RHH 0+LS@I9 HC0fDLDHH9tIFH5+HLHHЅ#HD(tLLeH;HtHx HHtHI9uHe[A\A]A^A_]@HEoHEfLEH]V1fH(tHELLMLELMLELLELE{LHY(tHEHLeL訙JHH=P 1LxIURL=AjL1AWHuIltZYHf(H5[LMH8苡LMIxHIuLIcfDs#ff.UHAUATSH8H IH>L-7+AEtAEHe+Hu1LHHEHELe[HIExHIE2HtH=q+Hu1HHEH]IHxHH9x HHMID$H5[+LHHHHHL迴Ht:IUxHIUHx HHHe[A\A]]DIExHIEjHx HHFHqH=~ 1f.L(HHHEHEHe[A\A]]DLHEHE7HЖHH(HE1L >H H5H8R1H˿X1ZfHy7HH=Ȳ`1fKHpIEHIELfHLUHAUATSH8H IH>L-G+AEtAEHb+Hu1LHHEHELekHIExHIE2HtH=+Hu1HHEH]IHxHH9x HHMID$H5k+LHHHHHLϱHt:IUxHIUHx HHHe[A\A]]DIExHIEjHx HHFH H={K1f.L8H(HHEHEHe[A\A]]DLHEHE7HHH (HE1L NH H5H8R1HۼX1ZfHy7HH=دp1f[HpIEHIEL.fHLUHAUATSH8H IH>L-W+AEtAEH_+Hu1LHHEHELe{HIExHIE2HtH=+Hu1HHEH]IHxHH9x HHMID$H5{+LHHHHHL߮Ht:IUxHIUHx HHHe[A\A]]DIExHIEjHx HHFH#H=H1f.LHH8HHE$HEHe[A\A]]DLHEHE7HHH(HE1L ^H H5H8R1HX1ZfHy7HH=1fkHpIEHIEL>fH(LUHAUATSH8H:HHnH;o(HCHPbHL-B+AEtAEHf[+Hu1LHHEHEH]fIIExHIEMA$tA$H=x+Hu1HHELeII$x HI$xHI$MHCH5`+HHHHHHLīHIUx HIUtaHx HHt9He[A\A]]fDL耎LpMlfHHETHEfDLHEH H5H8R1H˶X1ZfHyxHH=̩d1DH9(HH5#H81ydT#HCIE,HIELLUHAUATSHHHFHnHHL-[+AEtAEHCH5Ӵ+HHHHHHCH5+HHHIMHx HHjID$H;(A$tA$LI$xHI$jH3+~+HEC fH:")E@u tEHCH}HPbWIHHx HHHu1LLeHHE=HI$xHI$IExHIEHt111H;Hx HHt+H͑H=pB3He[A\A]]H؊fDHȊIExHIEuL覊HyDL萊H耊Lp=L`H(HE1L ֎H H55H:PH 1cXZHe[A\A]]ÐHHU贐HHU7HH=ǠDӯHHIEHIEL覉蛯I<H;y(uSLPXHH]IExHIEuL[I$DHI$6L9)H;U(tH5L+LlHUHAUATSHHHFHnHHL-+AEtAEHCH5+HHHHHHCH5+HHHIMHx HHjID$H;β(A$tA$LI$xHI$jHS+~+HEC fH:")E@u tEHCH}HPKTIHHx HHHu1LLeHHEmHI$xHI$IExHIEHt111HkHx HHt+HCH=>cHe[A\A]]HfDHIExHIEuLֆHyDLH谆L蠆=L萆H(HE1L H H5eH:PH:1蓯XZHe[A\A]]ÐHHUHHU7HH= DHHIEHIELօ˫I<H;(uSLPXHH]IExHIEuL苅I$DHI$6Li)H;(tH5H+L蜋HUHAUATSHHHFHnHHL-+AEtAEHCH53+HHHHHHCH5+HHHIMHx HHjID$H;(A$tA$LI$xHI$jH{+~F+HEC fH:")E@u tEHCH}HPM1PIHHx HHHu1LLeHHE蝼HI$xHI$IExHIEHt111H蛣Hx HHt+HsH= ;He[A\A]]H8fDH(IExHIEuLHyDLHLЂ=LH(HE1L 6H H5H:PHj1ëXZHe[A\A]]ÐHHUHHU7HH='BD3HHIEHIELI<H;٫(uSLPXHH]IExHIEuL軁I$DHI$6L虁)H;(tH5,E+L̇HUHAUATSHHHFHnHHL-+AEtAEHCH5c+HHHHHHCH5'+HHHIMHx HHjID$H;.(A$tA$LI$xHI$jH+~v|+HEC fH:")E@u tEHCH}HP_aLIHHx HHHu1LLeHHE͸HI$xHI$IExHIEHt111H˟Hx HHt+H]H=x7He[A\A]]HhfDHXIExHIEuL6HyDL HL=L~H!(HE1L fH ~H5H:PH1XZHe[A\A]]ÐHHUDHHU7HH=WrDcHHIEHIEL6~+I<H; (uSLPXHH]IExHIEuL}I$DHI$6L})H;(tH5\A+LHUHAWAVAUATSHXHFHrIHL5+AtAIEH5+LHHIMID$H5T+LHHiHHkI$xHI$eHCL=Z(L9tIHx HHIEH5+LHHCHHHCH5+HHHGIMIHx HH5IEL98AEtAELIExHIEHx+LeH]HEH+HEH+HEAD$ @u tEC @u tEHC IT$H}HTPGIHI$xHI$Hx HHHu1LLmHHEHIExHIEIx HIHt&111HHxHHuHzAb@HۀDH=+Heظ[A\A]A^A_]fDLzLxzQHhzLXzLHzNL8z*H(zbHzHI(HE1L ~H EyH5H:PH1XZ*@HHUtHHU;HH=D蓟IJ1AbE1Ix HIt}MtI$x HI$tFHtHx HHtAMxIElHIE^LyQLyfDHxfDLxvH;ɢ(HPXIMAb6fD諞HIxIHIE1AbfDE1Acf.[HI$zE1AbfD+IAcDH;(uXLPXHAcHrf.LwGH;(H5g;+H~IH;Ф(tH5G;+L}HfUHAUATSHHHFHnHHL- +AEtAEHCH5+HHHHHHCH5G+HHHIMHx HHjID$H;N(A$tA$LI$xHI$jH+~r+HEC fH:")E@u tEHCH}HP]BIHHx HHHu1LLeHHEHI$xHI$IExHIEHt111HHx HHt+H}'H=BHe[A\A]]HufDHxuIExHIEuLVuHyDL@uH0uL u=LuHA(HE1L yH =tH5H:PH1XZHe[A\A]]ÐHHUd{HHU7HH=wD胚HHIEHIELVtKI<H;)(uSLPXHH]IExHIEuL tI$DHI$6Ls)H;(tH5|7+LzHUHAUATSHHHFHnHHL-;+AEtAEHCH5+HHHHHHCH5w+HHHIMHx HHjID$H;~(A$tA$LI$xHI$jHö+~n+HEC fH:")E@u tEHCH}HP#>IHHx HHHu1LLeHHEHI$xHI$IExHIEHt111HHx HHt+HyH=)He[A\A]]HqfDHqIExHIEuLqHyDLpqH`qLPq=L@qHq(HE1L uH mpH5H:PH1CXZHe[A\A]]ÐHHUwHHU7HH=D賖HHIEHIELp{I<H;Y(uSLPXHH]IExHIEuL;pI$DHI$6Lp)H;5(tH53+LLvHUHAUATSHHHFHnHHL-k+AEtAEHCH5+HHHHHHCH5+HHHIMHx HHjID$H;(A$tA$LI$xHI$jH+~j+HEC fH:")E@u tEHCH}HP=:IHHx HHHu1LLeHHEMHI$xHI$IExHIEHt111HKHx HHt+HAuH=CHe[A\A]]HmfDHmIExHIEuLmHyDLmHmLm=LpmH(HE1L qH lH5EH:PH1sXZHe[A\A]]ÐHHUsHHU7HH=׃DHHIEHIELl諒I<H;(uSLPXHH]IExHIEuLklI$DHI$6LIl)H;e(tH5/+L|rHUHAUATSHHHFHnHHL-+AEtAEHCH5+HHHHHHCH5ץ+HHHIMHx HHjID$H;ޕ(A$tA$LI$xHI$jHK+~&g+HEC fH:")E@u tEHCH}HPj7IHHx HHHu1LLeHHE}HI$xHI$IExHIEHt111H{Hx HHt+HVqH= sHe[A\A]]HjfDHjIExHIEuLiHyDLiHiLi=LiHѕ(HE1L nH hH5uH:PHJ1裒XZHe[A\A]]ÐHHUoHHU7HH="DHHIEHIELhێI<H;(uSLPXHH]IExHIEuLhI$DHI$6Lyh)H;(tH5 ,+LnHUHAUATSHHHFHnHHL-˾+AEtAEHCH5C+HHHHHHCH5+HHHIMHx HHjID$H;(A$tA$LI$xHI$jH+~Vc+HEC fH:")E@u tEHCH}HPGA3IHHx HHHu1LLeHHE譟HI$xHI$IExHIEHt111H諆Hx HHt+Hl H=He[A\A]]HHffDH8fIExHIEuLfHyDLfHeLe=LeH(HE1L FjH dH5H:PHz|1ӎXZHe[A\A]]ÐHHU$lHHU7HH=7|RDCHHIEHIELe I<H;(uSLPXHH]IExHIEuLdI$DHI$6Ld)H;ő(tH5<(+LjHUHAUATSHHHFHnHHL-+AEtAEHCH5s+HHHHHHCH57+HHHIMHx HHjID$H;>(A$tA$LI$xHI$jH˧+~_+HEC fH:")E@u tEHCH}HPUq/IHHx HHHu1LLeHHEݛHI$xHI$IExHIEHt111HۂHx HHt+HmiRH=wHe[A\A]]HxbfDHhbIExHIEuLFbHyDL0bH bLb=LbH1(HE1L vfH -aH5ձH:PHx1XZHe[A\A]]ÐHHUThHHU7HH=gxDsHHIEHIELFa;I<H;(uSLPXHH]IExHIEuL`I$DHI$6L`)H;(tH5l$+L gHUHAWIAVIAUIATISHXHEvHNHH +HEHEMNMMMAMtIItHUIE9HK4HUHL=ljLELAWAQM0H hM J|LmDL;5Q(SIFLEH[L=,+AtAfInIfH:"HhAtAID$1HL0HEH=+HHE)EwHIx HI/I$xHI$9HHBHUHH5+HH&HUIHMqxHHuH^H$dHHH(I9FMNMFAfInfI:"tAAtAIx HIHuLǺLMHMLE)ELMLEIHMIx HIHx HHIx HIM\MtIExHIEHHHH]{MH=iE1H}MuHtHxHAHtsHx HHHbc# H=oE1HeL[A\A]A^A_]f.IfM/AEtAELmD\_fDLHU\HUMLIxHIl@% HbH=E1xHHuHK\fH8\L(\ZHLE\LE L\LHU[HUHuLHMHHELm蚔HMMILLELMHM)E[HMLMLEfoE!f.HQ(HqH5;H81葄$ LLEHM0[LEHML[I}HIpLZcL=fjHMHAWHuML5ZY軀HUIff.@UH`+HAWAVAUATSHHhHEHEHEHXLIHMHHHAHHEH +iHELEHjQ1AQE1*H HEHEHtHu1H]HH=,}+HErIHx HH0eMI$xHI$1ՀIHL=ʯ+AtAHCH5 +HHHIMHu1LLuHHEIIx HI@Ix HIMIEH; (t H;(9AEtAEHDžxMHEIExHIE1HxIGH e(HuI9O'H9IGL4AtAHEHtHx HHtHu1H='+HH]LupIHx HHaMpAEtAEfLmE]HHHr+HPtHEHuHHMH=+HE7pHMHIEHIE6Hx HHzIExHIE|HHLHUTmHUHIH x HH I$xHI$HxLMFHUHxLHUHI`HU-HUHt H M(H1H9HUkHUIx HIA$tA$MIDI$xHI$MtIx HIiHEHxH]HHmHeL[A\A]A^A_]IExHIEbIhxHIYMIExHIEJH[H=E15DI11ҾH=ad1H}Hu%Ht HxHHu 6U@HK[LH= E1UHuL-(HEHEAEtAELmLmfHHHHHUTHUqLHUTHUoLTHTMhIE1HHTL8TYH(T3LHpTHpHMLSgfHZH=e E1LSLSLSLSaHSHxSLhSLXSLHSH9MtAL-~(AEhHx HHtMwCDHRHHUkHU5Ig;fDxIOL(zIHH@HHxHHE@HkXgH= E1uI$L@HEH5a1E1HEHMjVH-ZYfDH XH=h LHUQHUaE1LgLE1gUHAWAVAUATI1SH(xHL5ͧ+IAtAID$H5+LHHIMHu1LLmHHEHIExHIE Ix HI HHCH;(t H;{(tHEIE1Hx HH1H}IFH s{(I9N)I9IFNAtAIHtHx HHA$tA$H=y+1HuHLULULehLUHI$xHI$nHIGI;G tIWHHIGHx HHH}LHUHELHUHI& {HUHt H *}(H1H9HUcHUIx HIHIHIIx HIHt!HxHHSMtIx HI HTAH=gE1H(L[A\A]A^A_]DHLUNLULxNLUHLU\NLUI9OTAHLLUaZLUWIHILMLMLMHM(LMIHHHHMLxMHHt|IoHIbL8MU+sII1ۅ0fDI3HI&LLHxtIHH@IHHEHIxiHI*LL@LHU|LHU6HHUdHUHH'1IHTHHGUHAWAVAUATSH1H8UsHFL-M+IAEtAEHCH5+HHHIMAHu1LLEHLEHEqLEIIx HIIExHIEMwIGH;y(t H;3v(AtAHEMHEIx HIkE1H}/IEH=u(HMI9}H9XIEL4AtAHEMtIx HItH=y+Hu1HH]Lu=cIHx HHNM-IGH5r+LHH_IMIx HIID$I;D$ AtAIT$LHID$Ix HIH}MLEHELLEHILE8uLEHtHXw(H2H9ufDHij(HE1L BH e=H5 H8R1HS;gX1ZafHyxHH=|S1<DcHL%Q+A$tA$Hu>+Hu1LHHEHEYvHI$xHI$uL\=Ht111Hi]Hx HHt!H =H=ff.UHAWAVAUIATSHHEHDž`HDžhHDžpHDžxHEHEHEHEHEHEHEDž\Ht>~ F\Hg(I9?AutgAEu:\t0IELHhIHHx HItHHĸ[A\A]A^A_]ML5j+IWLHHPLOIHH@HPHHeLLIHML5i+IWLHHPNHH!H@HPHHLHpHHH@H;i(eLOLALhtAAtAHLpx HHHu1LLMLPHEsHPH`IIHDžhx HI HDžpM@Ix HIHDž`>HMHUHxhHxIAMSIEL\H`HHHx HHAEHDž`tI~hHMHUHx)<1LH]H5 +THEII$xHI$MIEfHIEXLL9KL89.A$A$f.Hg(HNE1E1H5ՠjH81&bHI?HDžPH@H^HHL'LHP1 H@HHǫ1tHpQL`8LP8LP<8LPcHg(LH8nQI$xHI$uL8HpL`LhHPHK>kH@HfHHfHx$H}HDžxH}HEH5 +1L>HEII$xHI$eMIx HIUHEHpL`tHPHy=H@HHH6D6 fDHe(LE1H8PHDžPL64LpHuE1HHDžPE1E1f+;1IѹIhHMHUHDž`HuAOHEHMLHUHHPHHH@%MIhHMAEHUHup8HMHULHuHPLE1H0HE1:1HMHxHPHU(ff.@UHSHH;=H^(tNGHt CH]Hq$HuHEHHt\HxHHuw2DHQa(H5BHtGH81[H8H=yH]1ÐfUfHHAVAUATIHSHHl+HxH@)EfHnfH:"HE)EHvLOMiHHHH=FIع足H}HtHxHHu h1H}HtHxHHuB1fH7H=-h1He[A\A]A^]fHNtHMHtHMHWNHHUH41L5EjLEAVAQIWH LmL"H"H|ݰrHHt H|ݰ\H]L;%[(L1aHHHx HHIHCIEHH;_(0L1HEHHbHx HHHCIEHLHHyHH}HtHx HHH}H`HUHHHHEe/HE6@HL(AUtAUHXLmtH]@LIع6H}{D.fDHLHHH3IH](I|$`H0O_t111L5D#ZH8H=O+H{KHHtpH@?IEHLHH+HHt*HHyHHE.HEdx HHHa4H=+14@HE-HE;fD-fDH\(HBH5H81VfL5BjHM1AVHuIZY@HY(H5 H85JHL=SH(- HLS SH(ff.UHSHHHHH;SX(tyH1HHHx HHt;tHY(tH]H9V(uH]@c,tH1[(HAH5H81qUH2H=VY1DI11ҾH=2(1hHyxHH=q2԰1Dff.fUHSHHHHH;#W(tyH1HHHx HHt;tHZX(tH]H U(uH]@3+tHZ(H\@H5H81ATHd1H=V)1DI11ҾH=[11hHyxHH=71褯1Dff.fUHSHHHHH;U(tyH1_HHHx HHt;tH*W(tH]HS(uH]@*tHX(H,?H5H81SH40H=N1DI11ҾH= 0ȫ1hHyxHH=/t1Dff.fUHSHHHHH;T(tyH1/HHHx HHt;tHU(tH]HR(uH]@(tHW(H=H5H81QH/H=Fɛ1DI11ҾH=.蘪1hHyxHH=.D1Dff.fUHSHHHHH;S(tyH1HHHx HHt;tHT(tH]HyQ(uH]@'tHqV(H<H5[H81PH-H=>虚1DI11ҾH=:h1hHyxHH=91Dff.fUHAWAVAUIATISHHt,HH-HE1HL[A\A]A^A_]=HHtA$tA$L;-R(L1HHHx HHH+IHMmHIELMkH=IMuI]AtAtIExHIEHuкEIUHIUuzLuH"u=HJ=Ifx HIEtI$HI$LXH3=IH HE;L Ltff.UHR+HAUATISHH8HEHEHEH9LIHM)HtHHtHUHGyHHUH41L-+jLEAUAQIH xxH H|H]DHLHHtHxxHHuoHHEHE]IعH=5+1H}HuHtHxHHtMHH=zň1He[A\A]]HuHtH]5DKfIعLV_1HE腘HxH==HE@L-W*jHM1AUHuIZYff.UHAVAUIATSHH u#HGH HH;@(WH1mHH`Hx HH}LA$tA$LL>ÃI$x HI$tatH@(tH [A\A]A^]H=(uH [A\A]A^]DLA$zyfLtfHH5rH+HHIMxML$LA(MLM9MH *H9H=A(H9HXH=LFM~$1fHTH9jH9aHI9uA$tA$HHu1M91LH]LmKHHE,IHEȅxHIu LHEI$Ht3HI${LHElHEfI$xHI$HH=OrH 1[A\A]A^]HA(H\'H5yH81A;f.HDHH9t4HuH<(H9t#HH9tHuH9fDIVHH9BI$HI$Lq@Lu]uI\$IT$ttI$x HI$tDHuк?fMt$IFffD6IbLfUHL+HAUATISHH8HEHEHEH9LIHM)HtHHtHUHGyHHUH41L-4jLEAUAQIH xxH H|H]DHL@HHtHxxHHuoHHEHE]IعH=Z41H}HuHtHxHHtMHH=赂1He[A\A]]HuHtH]5D;fIعLF_1HEuHhH= -HE@L-|3jHM1AUHuIZYff.UHA+HAWAVAUATISHHXHEHEHEHLIHMHtHHtHUHGmHHUH41L-#jLEAUAQIH H H|ݘH]DHCH"4A$tA$H=<+Hu1LeHH]K&I$xHI$x HgH}HHutHHEG HEbIعH="R1H}HuHtHxHHHT H=^"!1He[A\A]A^A_]HuHtH]DA$tA$H=|>+L}1HLLeH]<%II$xHI$r MUH5Z+1L+IHXH;)9(L;55(LL;57(?Lg(Ix HI A$tA$H=;+1LLeHLms$I$xHI$v HIUHIULHEi HE[ 6fDIعLfL5a+AtAHCH;5(tI~+H7+fI:"HE)EAD$ @u LID$LHP IHI$xHI$KHu1LL}HHENCIIx HIIx HIMt,111LP*I$xHI$t HH=w:}1dIx HItHs fL PLHE HE&L fDL-)`+AEtAEH +Hu1LHHEHE)BIIExHIEMt$111L=)I$xHI$z fH H=j-|1fDLEEDL-LjHM1AUHuIZY@LHEHELiLs>LfZLYLLL?H;#2(ukHPXIMIHILIx HItI$fLH;4(tH5^*H IfUHATSHHGH5<+HHHHttH;a4(H;1(u8H;2(t/H#Aąx0Hx HHtXEtsH[A\]fDf.Hx HHHH H=v[A\]z@HfD,HFL%Q]+A$tA$Hu+Hu1LHHEHEY?HI$x HI$tDHt111Hq&Hx HHt1@H('LfDHfDUHAVAUATSHH0tH=>;+Lm1HLHEH]zIHx HHsM\L;%2(L;%I/(L;%0(L!AƅI$xHI$HEtfH]E-IHHC+H ~S+HPtH=JO+HMLLHHx HHI$xHI$Ht2H0[A\A]A^]DD1Hx HHthH H=wH01[A\A]A^]ÐI$x HI$tH(LfDHfDLLHEHE,HHEHEL%yZ+A$tA$H+Hu1LHHEHEa+IHMx HHH5 +L HHtHx HHIx HItH,(H9CmHu1HLeHHEILmLu6IIx HIOMHx HHRH}HtHx HH%H}HtHx HH(HeL[A\A]A^A_]fDIIDMvL-4'(AEtAELmL5T*(AtALu9x HH?HJH=ĺE1Tp%IxHIuLfDH(LdH@LfDHfDL.AEL-&(AEtAELm'LvAtAL.LuAEtAELm@ 3fD@fDHLCL{AtAAtAHx HHHu1ɺLLELELeLmLug4LEIIZHIML`@HsH=n=HjHM1PHu?ZYHLE LEUUHAWAVAUATSHHL=g&(HIAAL~tAtH=+Hu1HHEH]VIHx HH/MIExHIEL9RHC x4Aex AT$ 6H@I$HCHH5(@+HHIM>H#(I9EAIEHƒHmAEAI)LIIExHIE\I<$Mt$ID$HHID$(ID$AD$$tI|$Hx HHI\$HC0H8ID$01I\$8ID$@H[A\A]A^A_]f1fH'(H5`H.H81!"H=H lI|$HtHxHHuID$H[A\A]A^A_]DO+t MH+H I$LXHHL8+fDH!"(H5ZH8jdDI1fk#Hu IIExHIE f.LIHtHIIHILeHH)HHtBHt$LlIx@L(oEuAEII Z@EuAEII I5H=RM+111#DL-L+AEtAEHu+Hu1LHHEHEq/HIEx HIEt4Ht111HHx HHt!sL@fDH0ff.UHATSHH;=!(tH H<uKH[A\]fH$(H5]H H81HHH=[A\]hL%IL+A$tA$Hm*Hu1LHHEHEQ.HI$x HI$t4Ht111HiHx HHt!cL fDHff.UHATSHH?H5|*I1H=*CHH7H;H (tVH@LH= Hu_tIHx HHt HL[A\]HxHL[A\]@HI#(H'H53\H81H7H=VE1ng@L%J+A$tA$HU+Hu1LHHEHE,HI$x HI$tdHt111HHx HHtQH24H=fE1H6H=ffDLhfDHXfDUHATSHH?IH=*\HH`H qN+H@ H@(HHH(HC8tH9tTLHoHuatIHx HHtHL[A\]fHHL[A\]@Hy!(H%H5cZH81HeH=E1e@L%I+A$tA$H+Hu1LHHEHE*HI$x HI$tdHt111HHx HHtQHbaH= eE1HAcH=dfDLfDHH aH=dff.UHATSHH?IH=*lHH`H yL+H@ H@(HHH(HC8tH9tTLHHuatIHx HHtHL[A\]fHHL[A\]@H(H#H5sXH81H |H=E1c@L%!G+A$tA$H5+Hu1LHHEHE )HI$x HI$tdHt111H!Hx HHtQHrxH=NcE1HQzH=-bfDLfDHHxH=bff.UHATSHH?IH=)*|HH`H J+H@ H@(HHH(HC8tH9tTLHHuatIHx HHtHL[A\]fHHL[A\]@H(H!H5VH81HNH=&E1a@L%1E+A$tA$H+Hu1LHHEHE'HI$x HI$tdHt111H1Hx HHtQHJH=)aE1HaLH=mafDLfDHH)JH=5`ff.UHATSHH?IH=A*茭HH`H H+H@ H@(HHH(HC8tH9tTLHHuatIHx HHtHL[A\]fHHL[A\]@H(H H5TH81H*H=fE1_@L%AC+A$tA$H+Hu1LHHEHE)%HI$x HI$tdHt111HA Hx HHtQHH=Ϊ9_E1HqH=_fDLfDHH9H=u^ff.UHATSHHHHxnH5*I1H=k*60HHH;(tYH@LHHubtIHx HHtHL[A\]HHL[A\]@H(H*H5RH81 HJH=E1]@L%aA+A$tA$H*Hu1LHHEHEI#HI$xHI$Ht"111H] Hx HH HH=Q]E1fL%@+A$tA$H*Hu1LHHEHE"HI$x HI$t|Ht"111H Hx HHHH=r\WHH=M\2L8L(wHHH=@\HHqH=ݧ\UfHHHAWAVAUIHB +ATHhSH)`)p)EfHnH0&fH:"HHE)EfHnHfH:"HP)EfHnfH:")EHLOMIH XJcHHH(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWH`Le HL=TI1jJ4LAWAQMH xHxpH}%H}9L`I~IIrJ<uLM1iH;Hu@HL9t/H;HtHxHHuHL9ufH"H=YE1HeL[A\A]A^A_]IVII HDž8E1LxAtALxLhAUtAUHpLpH(ʉ0tL0H(AHhtAL`MH8JH`LeMH5G*I9vt L;5(DAEtAEAtAL;e(L;#(L;(LL0L0L0ABDH(E1H=4GXIExHIEH0Hx HHuDHI9>H;HtHxHHu@AtAL0Ix HIOIFH54 +LHH IML  H0L HH 'L HI[ LϺHHL LHI; Ix HIIx HIL;(L;Z (L;(LL L Ix HI` LH HL(M9 11LL jIH HL x HIZ M9 H5{+LL4iHH  LlL HH! L LH LHL LHL LHH ILx HIIx HIHH L}H  H Lx HH  H50+HLL : L L%*AtAL90\L011L LL HIa1ҾLLH L LHI5H (1LLMfInH=+LUHHEH(fI:"L(HEH8)EHEvHIdL L(Ix HIA Ix HI MaA[=DIL@(AtALEHp H8ʉ0tH8HM1L JL HH0H0 tH0H8HH+HL L HhLpLxLEH(HEH8HDž8E1E1"f.M1H=H`NaLeFDHI-+tH}HULr (AtALEfDH-+tHxt@DL! (AtALEH`Lef.H5,+H80tH8HEL=-+AtALxZfLE1LH LL LL fDLL L DIHL (AtAIALIExHIEM%1HLL0pBL0HI9H;HtHxHHuH5%++1LlL 2L3+AtAIGH;(o AtA~*H*fI:"HP)@AG @u L耘IGH@L8HPJkL8HIQ Ix HI/ 1LHuLEHL(L8HEL(L8IIx HI Ix HI Mt"111LIx HI& AXWLLH aLH @LHL 8LHL H׉ L 0AML׉ L=jH1AWMLյZY\IUADvADE11ME1IfIx HIMtIx HItGMtIx HItbMIHIL@LL(L8L(L8f.LL8L8LL L(L8L L(L8LLL sLL }ADE1E1E1Ix HItaE1E1MIx HItE1MLL(L8L(L8f.LL L(L8L8L(L hE1E1ADGE1AD9L C/+AtAH5A+LL8^L8HIH@H;(AAtAMIx HI\H0L(L8L8L(HHDRL8L(HI%H*L]LUHEH)+HEH*HEAC @u L諓ISIBLL HTUL(L8臣L8L(HL IIx HIIx HI1LHHHLHL(L8HDž@L(L8IIx HIIx HIMt"111LIx HIiAEHAL=H(H5OANH8ANL=,+AtAH8*Hu1LHHEHEIIx HIFMt"111LIx HIUAOAQLLL L L$AQE11AWL(L8L#L8iLpLH;'L(YL8LPXL8L(IME1AFcE1E1AFRAGE1E1AAE6LL L(L8jL L(L8}LL(L8:L(L8hLL8VL ]LL8LLL(L(L8HL8L8H;'L(H8HPXH8L(IME1IASLTLGE1ASH;'L8LPXL8IMoE1AYLE1AT]MMARMAXwH;'(H5]*HH8L(H8IH;'H5$*LL8L(L8IH;x'*H5*LL8Iff.UHAWAVAUATSHL%'L9_HH0HHP'H5y'1HH~HP@AŅt!IcHH[A\A]A^A_]ÐHCH5*HHHIM9H5+L9DIFH;I'I^HӃIxHIuL1hL%$+A$tA$H*Hu1LHHEHEHI$xHI$Ht"111HHx HH''H'H5r5H/H81"HH=ƌ@H1[A\A]A^A_]L% $+A$tA$H*Hu1LHHEHEHI$xHI$Ht"111HHx HH$KH;' LVIHtKH;'H;M'M9LIx HI IxHIuL;&(fDITHIGL:LH LI>HIx HIt$J1ffA.FE.LoLeUHATSHH;='tHG HxO<uKH[A\]fH'H53HH81QHHH=[A\]1>L%!+A$tA$H*Hu1LHHEHEHI$x HI$t4Ht111HHx HHt!cL`fDHPff.UHATSHHHY@(tiH 'H9 + 6IHH= +H苑HI$HxHI$HH[A\]D3[IHtA$H=*Hu1HHELe4HI$5HI$tkH+xHI$wL8HH[A\]@xHI$NH<;H=1<<.LHI$fL%+A$tA$HU*Hu1LHHEHEqHI$xHI$Ht"111HHx HHHw5H=1w;ifH^HM9H=O;+f.H9'H5A1H8HH;H=U;LL3HJH8H=1:fUHAVAUATSHHH%HPHHIx(vH'H9+MHHH=+H袎IHMLuЅx HHA$fIntA$H=Q+1L)EHiHI$xHI$@Ht{H; 'H_'HH5I.H81HH=9I$xtHI$ujWHxHHuHHH=89I$HI$1LHE1RH8WHHtH=*Lu1HLHEH]8IHHHMnHHMX-@x HH?H*OH=ԄG8HH=/8E1HL[A\A]A^]@HMHMH=t7HxHHuHDH'H5>H8H}OH='7NDLHH8L%+A$tA$Hu*Hu1LHHEHEHI$xHI$Ht"111HHx HHH2H=F6@HMH#L%)+A$tA$Hű*Hu1LHHEHEHI$xHI$H#IH111HHx HHHIH= 6@H5q*HqyHCLH(H0tHI$x HI$tFIHzHHmHQHL[A\A]A^]ÐI$xHI$uL&@L;HRLHHHLH=4UH;=0'Ht;H0H(&Ht ] HH=e41]@HI'H5:)HyH81 fUH;='Ht;H0H(Ht ] HH=@41]@H'H5(H H81 fUH;=P'Ht;H0H(FHt ]J HH=݀31]@Hi'H5Z(HH81I fUH;='Ht;H0H(Ht ]- H>H=`31]@H'H5'H)H819, fUH;=p'HtH0HHfHt(]H'HH5'H81H H=>21]ff.fUH;='HtH0HXHt(]H9'HpH5#'H81yHD H=a21]ff.fUH;='Ht;H0ZHHt]xHH=21]@H'H5&H H81wfUHSHH'H9tkHH0HCPH9ttH]@þHHtvH{PHx HHt HCP@HE/HEfH'H5%H1 H81AHH=)1H]1ÐfUHSHHH'H9tkHH0HCHH9ttH]@3HHtvH{HHx HHt HCH@HE_HEfH1'H5"%Ha H81qH7H=v~Y0H]1ÐfUH;='Ht;H0H vHt ]HH=M~01]@H'H5$H H81fUH;='Ht;H H@Ht ]HH= ~/1]@H)'H5$HH81ifUH;='Ht;H0H Ht ]fHH=} /1]@H'H5#H H81efUH;=0'Ht;H0H0&Ht ]pHH=}.1]@HI'H5:#Hy H81ofUH'HH9tPH (tH0Ht]fDt]DH!H=5}(.1]@H'H5"HH81f.UH*HAWAVAUATISHH8HEHEHEHLIHMuHtHHtHUHGHHUH41L-/jLEAUAQI變H H H|ݸQH]DID$H5*LHH1IMLH[IIEMxHIEL-B'L;5s'M9L;5'LADžIx HIEL%+A$tA$HZ*Hu1LHHEHEII$xHI$Mt$111LIExHIEHH={+1HHxxHHuoHHEfHE]IعH=Vr:1H}HuHtHxHHtMH8H=zzE+1He[A\A]A^A_]@HuHtH]D˷fDmL訷IعL9?H5+1HIHt@H;X'M9u;L;5't2LAŅy'Ix HI}DDIx HIEL;%x'HAAŃID$0IcHH8RH.L蠶eIYHIEKLj>DLX,L-XjHM1AUHuISZY"@L H'HH5H819;@{H $LյLȵUfHHAWAVAUATSHH**HHx)p)EfHnHfH:"H@HE)EfHnHfH:"HuHE)EHLIHMH`H %HcHHH tHMHHtHMHHtHMHHtHxHtHpHWLpnHL-M1jHUH4AUAQIH xlHx2H}H}H}LpH~XHHJI<uIع1L46LLe HI9t/H;HtHxHHuҳHI9ufH H=E1&HeL[A\A]A^A_]HH _$HcHfD11E1LhAMtAMLLxAtALpH?HbLpM*H=*tHU1HuHL`HhHEHhL`IHx HHMAtAfHEL}LE)E HHH*HPtH*H]HQ tH*LuHQ(tH=*HuLmHHhHhIIx HIHx HH1MHIx HI\LLeHL9H;HtHxHHu膱@E1HXtH]HP t HUfD1E1fLp AtALuLAtAH'LptHx1E1IH]*tHULxHUH]LuIع1H=Lp2fH'tHE6H)'tHE H*tHUH'tHx@LhLhBHq'tHEILpDH'tHEH@H蠯Ix HItLH H=E1"LXLHHhOL4fL-JjL1AUHuI4ZYDH5 H= E1-",UfHHAWAVAUATSHHJ*HHh)E)EfHnHXfH:"HHE)EfHnfH:")EHLIHMpHvH GHcHfDHHtHMHHtHMHHtHMHtHMHWLmLeHL=M1jH4LAWAQI_~H xgH}H}(H}>LEH~HHI|uIع1L/I}HtHx HHt7IM9uH[ H=GE1S HeL[A\A]A^A_]ÐfHHHE11HP t LHUAtALEMLmLeHjH=z*tHU1HuHLpHxHE+HxLpIHx HHMAtAfL}LE)EHHLH-*HPtH)*LuHQ tH=*LH]HHx\HxIIx HI.Hx HHMIxHIDI}HtHx HHt?IM9uHu:HXtH]LpAtALu*fIع1H=Lm,LehHULuH]H*tH}HUL52'AtAH}LuH'tHELx,LxH'tHEHLmLer@LAtAHS*LEtHU1L5'AtALuDH訩9Ix HItTH H=E1Lh1PfLHHxL4fL=ajL1AWIL5ZYSfDH5 H=!E1-UHATSH LFMHL%`*A$tA$H*Hu1LHHEHE`HI$x HI$tKHt111HxHx HHt8HuBH=vpH [A\]fLfDHfD11H=վ*H [A\]DHHU|HxHUHH=,yfUHATSH LFMHL% *A$tA$H*Hu1LHHEHE HI$x HI$tKHt111H8Hx HHt8H|H=i0H [A\]fLئfDHȦfD11H=(H [A\]DHHU MME1f.LؗfDLȗvBfDHLx街LxI9@L5)*AtAH*Hu1LHHEHE+HIx HIDHt"111HAHx HH*xLXLLDHH9HuHt'H9I9LHH9tHuH9LHH9|HuH;5'eH$|$BHM}M|Hx HHt%H H=]YE1= HѾzm׻HHǕJL躕H;'tjHϺHxHHxHHt=HpHx0HxHpAHx HHEy'z1+$f.ADAHx HHtEHHLH۔HΔHx轔Hx`M|fUH`*HAUATSHHHHEHEHEHLIHMHHAHHULE1HjPAQE1dH LmM\L%*A$tA$H4c*Hu1LHH]HEHEHI$xHI$HtH=¶*Hu1HHEH]1IHxHHjx HHML;%'SH5l*I9tID$H; 'AD$ H¼'I$xHI$lIUHIULHEƒHEHe[A\A]]Hu#L-,'AEtAELmfDI11ҾH=<1H}Hu%Ht HxHHu F@HfH=èh1He[A\A]]ffA.D$z DH'@HHA$tA$LLH谑bHΘH=+1fLHEtHEH(jHM1PHuE1llZY)DH;a'LְHHCH=HEAHEUH*HAUATSH(HEHEHEHLIHMH&HAHHULE1HGjPAQE1aH LeML-*AEtAEfHu1LH)EHIExHIEHt"111HHx HHH H=I$xHI$He1[A\A]]Hu#L%$'A$tA$Le,fDI11ҾH=41H}Hu%Ht HxHHu >@H^H=٥`He1[A\A]]LH LHe1[A\A]]HjHM1PHuE1iZYFDUHATSH LFMHL%0*A$tA$H*Hu1LHHEHE0HI$x HI$tKHt111HHHx HHt8H#O H=Ҥ@H [A\]fLfDH؍fD11H=H [A\]DHHULHxHUHH=c~yfUHATSH LFMHL%*A$tA$HL*Hu1LHHEHEHI$x HI$tKHt111HHx HHt8H H=H [A\]fL訌fDH蘌fD11H=eH [A\]DHHU HxHUHH=#>yfUHSH(~H;='tQHW*HWH9HXHtDHHH~[1HH9tGH;\uH;=Q'tHH]ÐHH9tHuH;P'tfDtH}Hu1HHHECHx HHt[Hu 1HMH=6m1ofDHV*HWH9 H;='<DHHEHEHH}ػ 蕓H}؅{@UfHHHATSHHŬ*HHH@)EfHnfH:"HE)EHLOMHHHIع1H=E` H}HtHx HH#H}HtHx HHH H=1He[A\]HNtHMHtHMHWHHUH41L%jLEATAQIZH ;H"H|*HHt H|H}H]Ht6H;=('H;=' H;='i)1HuHEEHHH}Ht'Hx HHuHE辈HEf.H}HHHHHE肈HEfHHHxtH}HtH]fDIع1LI @fDfD1@cHL%ɞjHM1ATHuIbZY)@1HE H H=~HEff.UfHHATSHH*HH0)EfHnfH:"HE)EHLIHMHHHIعH=|H}HtHxHHu 识H}HtHxHHu芆f.HqH=I1HeH[A\]f.HHtHMHtHMHWHHUH41L%jLEATAQIVH H"H|HHt H|L%S*A$tA$fHu1LH)EoHI$xHI$HH}HtHx HHH}HHHH&H+HtHPHMtHU-IعL˄vfDL踄=1HsH=H@L%+jHM1ATHuI_ZYq@UfHHHAWAVAUATSHH*HpHX)EfHnfH:"HE)EHoLOMbHHHIع1H=H}HtHx HHH}HtHx HHxHH=EGE1HeL[A\A]A^A_]HNtHMHtHMHWHHUH41L59jLEAVAQISH 1H}LmH"H|ݠHHt H|ݠmLeHHH<*tHCHHH=*|IHMx HH-H5*LVHHtHx HH=Ix HIL;% 'L;%ȫ'L;%~'LHIUHL5*AtAtHH5*LHIMH'H9CHu1HLuHHEILm.IIExHIEIx HIMHx HHEIx HIPH}HtHx HHCH}HQHFHH9詀/@HVHL`A$tA$L(LeAEtAELmfDIع1Lqr@H0#qfD~fD LHx HHHچH=CE1Hx HHHH=ICHx HHE1\IxHIuLHtL(AEtAEL%'LmA$tA$LeNL%'A$tA$LeH5*LHIMtkIUE1H~MfL~~fDLx~RLh~.HkH=BHHHyE1E1fDL59jHM1AVHuI#YZY@H}H}GӣI8LCL{AfInfI:"tAAtAHx HHtXHu1ɺLLELm)ERLEIIHILK}AIiHLE)E)}foELEff.UHATSH LFMHL%*A$tA$Hx*Hu1LHHEHE萵HI$x HI$tKHt111H訜Hx HHt8Hk|H=M@H [A\]fLH|fDH8|fD11H=KH [A\]DHHU謂HxHUHH=ÒyfUHATSH LFMHL%P*A$tA$Hw*Hu1LHHEHEPHI$x HI$tKHt111HhHx HHt8H+7H=Y`H [A\]fL{fDHzfD11H=ő H [A\]DHHUlHxHUHH=yfUHAUATSH(HGHIIH;N'H5*ue1HHHu1HLeHHEHx HHH([A\A]]f.HHHu~HH'H{`H0bt111HЀ;IEHPHܥ'H5=H81ˢH(1[A\A]]fDHHElyHEH([A\A]]XHnHGHPpHHhHtHBHt@HtHyt ?UHAWIAVIAUATSHhHGHEHEH5*HHEHEHEHFIHEML;-!'3IGH5*LHHHH]HHCH5@*HHHHHUHHx HHHBHUHH5-*HHHUHH]HWHx HH{IGHELH5*HHILeMSID$H5߭*LHH4HHUI$HvxHI$LHBHUHH5b*HHHUILeMHx HHIFHEHEHL_5IHLzHH}LHHhLfIH H;'HHHHEHELLHUHHEH HUHEŞHuHUHHEIm HPHp HEHEHEzHMHUHxhHuHx/:AtAHEH=*1L}HHHEHEELHEHUHdHU'H9BcH:Y6IHUHx HH'AtAHu1H=٨*HL}Lu躍LHEHEZIHUx HIHEHHHUE3HUHILHx HHH}HEH}HEH}HELHE HHLHHHL~dIHH;'LHIHNIE HIE@Hx HHLMtI$xHI$MtIx HItQHhH[A\A]A^A_]HHUdsHU<HPsxCHL0sfDH s_LsmLHUrHUHrHzE1E11HEH6A^HE@HUH}DMtIEx HIEtHE1LxrfDkIIFL%*A$tA$Hu1LLuHHEHEHI$xHI$JHt6111HH]HEHx HHOHEHxE1E11HEH5A`HEfDHxE1E1AbHEH5HEf[HAbHpxIE1HHEHg5HEIx HItSHUHuE1HtHx HHtCH:H/HH"HpDLpfDHHxpHx蛖HSHw1E1E1HEH4AbHE\[HUH[HnwE1AcHEHe4HEl@IkHUIHHoDHAcLHI$L fL%A*A$tA$Hu1LLeHHELuTHEHI$xHI$HEHQ˚HpfHVvE1AnHEHM3HET@E11LHUg1HEXH}O1HLxH5*HEI`Y!HMHUAgHxHuHxhqHuHEH2HEY@kHUI6H~u1E1AcHEHs2HE'fL(nSLnHU=HnkHHU謑HUHHEIH 'H5bH8vHtAoHEH1HEfHtgHHEH1HHEHMHULHufL=*AtAHu1LLuHHEIIx HIzMt"111LIx HI`L}AiHxHMHUHuHxh4oMfDHsAoHEH0HEtHplHE+HUߗHUHI15HEHNsE1AkHEHE0HEL@H9'H5H8JtHsAlHEH 0HEfLk\LkHEL}AhLkyLrkff.fUHAWAVAUATSHHHIHIEH5G*LHHTIM6L;='L;='L;=s'L=ÅIx HIg1IH<L%ݸ*A$tA$IEH;u't H;Ę'AEtAEHELHEME1E1IH}IEH $'I9MH]H9IEH؋tHEMtIx HI>A$tA$MtIx HIID$H;'H5*L7)HEH}I$xHI$L;5'MIFLLHPpHHhHHBHIM?AtAH=]*Hu1HLELEHEȁLEIIxHIx HIML]eL]HHtH^IGL^ I;G tIWH4HIGHx HHtEMILefD}Hѓ'tIHeL[A\A]A^A_]H hfDLL] hLEL]I@LgiLgLL]gL]LgLLEgLEH7Hy,I/H'HE1L kH fH5MH8R1H~{XZfE1I=1E1E11HHIMtI$xHI$HtHx HHtqMtIx HIttHtHx HHtwHmH=*UDHyE5HH=}`+HHuLfHuzLHu4fHuwH f|LHuHUfHuHULHuHUeHUHuH/fDËILEHELL]L]LEHHLmML]HUHt(H53'H6H9L]HUyHUL]Hx HH#I$xHI$"LL]H}fDH;)'LHEGf.LeL1E1I$x HI$tZLeIMtIx HIt^IIHMH9;I\ebfDLHuHUXdHUHufDLHuHU8dHUHufDHa'H5LmE1H8klHU1,LM1L1E1LxHHH@HHEHHEQLMDLHuoHuLE1DIfDILMD#AXD$~HExHL]cL]LL]bL]IE11IHL]HU{HUL]P1MLeLME1f.UHP*HAWAVAUATSHHHEHEHEHLIHMHHAs HHULE1HqjPAQE12H HEHEH9tfH]EmIHH*HPtHEH=ʫ*HuLHHEHzIHx HHYIx HIM HCH5*HHH HH HBHUHH5^*HH HUIHM x HHP1)IH L=*AtAHCH5*HHH% HH Hu1LH]HHEKHHx HHdIx HI8E1H HBH;'t H;h'tHDž`IHDžxHx HHLhE1LMMH`[ HAH5'H9q. HxH9 HAH؋H]EtHxMtIx HILMHMuHMLMHI IAH;)'t H;x' AtAHEM1E1H}HXLELLP-IEH ԉ'I9MH9 IEL4AtAHHtHx HHL="'M9ID$HHpHphHHAHLLHHL9aHGHuHPpHHhHHBHHpHpIMHx HH{H}LL^Ix HI`H}LHpHELHpHILEHXILPHpLELMLMLEHHpt6H'H2H9 LpLMHMqHMLMLpIExHIE LLELpHMoHuHhLEHMLp Ix HI\ L}Hu#H4'tHEHEfDI11ҾH=yk1H}Hu%Ht HxHHu N\@Hcb H= E1mHeL[A\A]A^A_]H\LHU[HUHHU[HUL[nHoH~dLLH>H[H[{[{fDLh[HHyHp`HpIH([?E, E1E1E1E1E1f.Hx HH<MtIx HICMtIx HIJMtIx HIMtIx HIuH`H=MtmI$xeHI$MtIExHIE@E1HEHHMHHH ZMtIExHIEuLYLLUYLU"LY+HLELUYLULELLELUYLELULLELU`YLELULHYMIEE1HIEMIHILX@H5)'HULm1LxLXH>H5gHULPLhaLEHUE1HxH1x HH1E. HEHx HHtGHtH x HH tHQ`@HLELU8XLELUfDHLpHxLUXLpHxLUf.H9%MtAE, E19LMLXHHULPE1LhE. HfDLLMHMpWLMHM[}H"E- E1HHU~HUHIH@HH`HHDžxfH5)'HUHLxLmLXH>H5fHULPLh_LEHUE1HxHLxHULUyVLUHULxD[|HUIRE- E1E1E1E11fDMLMLXHULPHLhcfDE. d@MLMLXHULP1Lh$HdjHM1PHuE10ZYDE/ E1E1fDs{HLMHH`HMHMLMHHEL}LhIM蹀LUHt Hق'H2H9LUiLUIx HILTAtAI$HI$IEfDLhIHME1E. E11@HxH9HtHuEfLLHDHpHpIDLLpHMLM{LMHMHLpIH@HHEHHHXLEILP|MLhIMLLpLMHM|SLpLMHMRLLMHMXSHMLME/ LLhMIMIEHIELSLRIELLURLULE. IMLhE1E11+HLpLMHMjHMLMLp1MLIMLhME11LHLUjLU8E1Mt'LU11E1E/ E1LRE/ #f.UHAWAVAUIATSHxHGH5z*HHHHcHCH5*HHHuIHMx HHcID$H;{'QA$tA$LI$xHI$[H=*H,{IH`Hx HH IEH5r*LHHNIMH=*1HxHHDžpLx蟉HH#Ix HIHCH;{'NtIHx HHIEH5{*LHHXHHHCH;z'ItIHx HHIEH5*LHHsHHUHBH;Jz'dtHhHx HHIEH5M*LHHIMtIEH;y'AEtAELIExHIEHp*AT$ LxLuHpHp*L}HEH8*H]HEH*HEHhHEH*HEHPp*HE@u tEAV A@u#AtADEAW @u tEHhQ @u tES @u tE IT$IFD HhHDIG HWHpHTHSIIMx HI2Ix HIHhHx HHHxHHI$x HI$tVHxL[A\A]A^A_]@HMHMHLCLLLLfDANHx1E1E1HHMI1ۅx HIMtIx HIHtHx HHHtHx HHDHnRE1H=ckME1f.HLLHhKHhVDHHhKHhDHKoLHhKHhDHK&LxKHhKHQNH=b舾!;qHg+qIH; u'LPXHHMANE1IE111BfDPHQH="bE1ppILJFAPLxJHhJLXJHHJH;)t'uHPXIMAPPH;;w'tH5 *HRPIDoHH;s'yHPXIM1AQH IE11AQDARD{oHH;Ys'%H`HPXH`HhHhvHAR1if.1fHhASYfDnI^H;r'LPXHHfLHhAS@HhAO fDQH;u'fH5 *LNHXH;u'zH5 *HNIlH;_u'H5 *HH`kNH`HhH;)u' H5 *L*LuH]HEHb*HEH3c*HEAF @u tEC @u tE HCIVH}HT HIx HI,HxdHHu[HHEAHEHH[A\A]A^A_]DII$x HI$tCH HyH=IX 1HH[A\A]A^A_]f.L@L@fDH@Hx@CLh@nIUHIt,H^HHQH,@DL@Hy)@LHE?HEeIeHH;i'HPXIHHMHHbIHILp?ceHHIVLC?IfDLH}EHIŅx HHt*MLfHMH>H;l'H5z*HEIfUHAVAUATISHHW*HX*1HHH5x.*HAH5>*HAH5 .*H˓3AH5@*H裓H5@*H聓H5@*H_!AcH5N*H7A;H5\^*HAL-*AEtAELL5*MHLIH?H=>*HfIHI$xHI$Hu1LLuHHEuIIx HIcIExHIEMt$111L\I$xHI$ HBH=耯E1DHx HHtHD[A\A]A^]H H= U1돐HuHtH]DHa'FCf7vfDIعLֹO1 H= H=v1f.HHEd7HEHJH脜mH褺1DL%NjHM1ATHuI+ZY@UH(`*HATSHH0HEHEHEH^LIHMNHtHHtHUHGHHUH41L%)NjLEATAQIH H H|*H]fDH5`'H9swHgAaHDn7Hb'tHx HHHe[A\]fIعH=gM1H}HuHtHxHHt]H; H=赨1돐HuHtH]DH _'FCf+5vfDIعL6O1iH&; H=!1f.HHE4HEHHHmH1DL%1LjHM1ATHuIZY@UHATISHH H^'H9Gu*:I$tH H[A\]fDHHHUHE`Le؅HEHu1HH]LlHI$x HI$tLHHCH;a'hH;{^'[H[HIąx HHtIL8fLX3fDH [A\]ZMt'fHu1H)EXH31UHAWAVAUIATSHhHGH5)[*HHIMID$H5l*LHHHI$HxHI$pHCH;\'tIHx HHH=q*L@\HHI$xHI$IEH5U*LHHIMIGH;g\'AtAMIx HIgIEH5V*LHHIMHEf1LHHHx)EYjIHIx HIQIFH;['AtAMIx HIIEH53j*LHHIM Hxf1LH)EiHHIx HIHBH;['.tIHx HHHQ*S H]LeHEH8T*L}HEHqU*LuHEHZi*HEHQ*HE@u tEAT$ @u tEAW @u tEAV @u tEHS ID$ HD!IV IGH}HT IHI$xHI$Ix HIIHIL.fD1I$AkxHI$:MtIx HIMtIx HIXHtHx HH/DH4E1H=计HtAHx HHHhL[A\A]A^A_]HH4gH=mhE1L.L.LHx-Hx.DH-tH-nAgI$'1E1E1HI$LHx-HxDLp-=L`-HP-LHx9-HxDLHx-HxTDL-RIRH,H;V'HPXIMFIAg1IHIL,fHx,Hx2iH=蘟E1KRI8L8,L(,H; V'ALPXIMAiHfDAj+DQI'AjI$1҅H;U'LPXHHteISDQIxH;aU'HxHPXHxIMXfDAhkDI$IAjfH1jH=@;H;X'H5)H*1IH;W'H5f)L1IH;W'H5B)L0HH;W'H5)HHx0HxIE1Ajjf.UHi*fHAWAVAUIATSHH)pfHnfH:"HE)EH LIHM HF HAHHUHU1jLpPAQE1@H HpH HLxM IEH5m*LHHIMAtAfHEL}EQIH Hn*HPtHn*H]IV tHELH=.s*HHH]HhyAHI HI Ix HI Ix HI H I}H5b*HGHHIMIGH;R' AtAMIx HI HCH;rR'tIH1g*LMLEHEHH*HEAA @u tEA@ @u tEI@ IQHhLXHT L`uL`LXHI Ix HIOIx HI+INIHeAtAIFL;%S'L8L;%P'L;%@R' L Cr H5G*LL |*AtAA$tA$H5b*LLh转LhHI1HLL`HhELhL`HHHLXL`HhHhL`LXH x HH   AtAMIx HI I$xHI$ 1LHuLUHL`LhHE%^L`LhIIx HI Ix HI M}ICH;O't H;7S' AtAHDžPMHDž`Ix HIy 1HPH@LhHML8LHLX;IEH ]O'I9MH`H9UIEL$A$tA$H`H螧H5gS*Hh苪IH L}1HLeHLHE\HH Ix HI H5]*H)IH} Hx HH| IFH;M'0 AtALIx HIV H5/L*HhéIH L1HHEHLe\IH Ix HIU H5Um*LeIH Ix HI3 9IHJ Hp*H5vV*H^# HO'H5h*L@# H5)LL6HHg Ix HI Ix HI HBH;L' tIHx HH fHnL}fH:"B*)EC @u HAG @uL HSH}IGHTIH Hx HH6 Ix HI/ HXL˨/ Ix HI HPLHPLIHH`LXL8LXLHH@LhLH`LXHHt4HN'H0H9hH`LhC5LhH`Ix HI H5B\*LHhHhHI 1LHH`Hh?LhH`HI Ix HI LHh HhAL I$xHI$ EN HhAHu;HI'tHpL%m*A$tA$Lx#@IH=K11Ҿ訡HpHtHx HHHxHtHx HHpHS%2 H=1^HeH[A\A]A^A_]@LL`L`DL=LLLhLhDHDžhH=?*Ls5IHH HHLMtIx HIMtIx HIHhHtHx HHHpHtHx HHHxHHHHI*L L E1MMAB 1E1E1E1E1HDžh11MtI $xHI $IMtI x HI MtI x HI MtIx HIHtHx HHHtHx HHH"DH= HHHE1HH*HL`sL`[sfDLHL8H( HH`H`0DH7LH@LHLPLXH`H@LHLPLXH`dDLHHLPLXH`tHHLPLXH`3LHPLXH`3HPLXH`fLHXH`HXH`HD'tHpC@1df1E1E1E1E1E11AB HDžh1{@I%H;YD'2LPXIM0ME1E1AF 1HDžhE1Ix HIt1E1LHPLXL`L`LXHP@vfDfDA$tA$MH׉XL`LhXL`Lhc?I1E1E1E1E1E1AF HDžhAH 1E1E1E1HDžhE1@HEjHuE1PHp1 ^_FfH;B'L`HPXL`IM1E1E1E1HDžhE1AF 91E1E1E1HDžhE1AG @LH;AB'{LPXHHfLhMHMLHLXE1AL H@M1E1DLL`LhL`Lh:LL`LhL`Lh LL`LhzL`LhGLLhQLh9L=pLLh)LhlHwLMMMHLhLHAL LXH@1E1E1E1AO dAI LLHDžh1E1AJ $MMMHLhLHAL LXH@EHDžhE1AJ IMLh1LHLXE1AL H@HDžhAJ E1H`H9MdA$~LH0H0_LH0H001E1E1E1HDžhAJ H]GHPLCL6H;RB'H5)LeIH;.B'4H5)HAL`I&fLLhq'jH0HPXH0IMAMHLhE1LHLXIAL H@1MMLh1MAK E1LHLXH@MHL8LHLXH@Lh+H;@'xH5d)LHjLHhHhH54*LHhۚHhHh1E1E1AN E1E1LHh<HhL(Hh4H;=@'H5)HH0IH0I{1AJ 1E1HhE1x11E1E1HhAJ \Hh1E1E1AM E1?Hh1E1E1E1AM "Hh1E1E1AM H`Lh*LhH`oHh1E1E1E1AJ UfHHAWAVAUATIHSHH,V*HXHXH)pfHnfH:"HEHMHE)EHsLOMfH;HtHeHtHpHWLp<HL=5M1jHUH4AWAQIH xZHxH}LpH~@HH I<uIع1LLeI>HtHx HHIM9uH H=E(ÃE1HeL[A\A]A^A_]fDHuPHHtHMHHtHxHHDHBIع1H=@4Lp ':fDHELxHPH5W)I9ut L;-:;' 16HXH ID$H5S*LHH HHX HCH5I*HHH IHMx HHIEH5eI*LHH HHl HL.HHXIx HIHx HHH; ;'H; g8'H; :'HHh*Hh Hx HH Hd*tA$tA$HE1LeH=D*HHHEH0&LIHhbMLhHE1HHHLmHELuH FHIx HIA Hx HH HHAH;a8't H;;'tHDž8HHDžHHx HH E1LHDž`HDžhL@L(H8 H 7'H9KHCHHaH9HCH<ȋtHHHGH;7't H;:'HWH H;:'LgA$tA$Lw AtAHx HH) L=7'M9M9Hh蔏H@舏IFH5G*HHLHH H;=8'H;=5'(L9Hh(HhA Hx HHe EH5F*LHH! H5Y*Hh +HhHIHxHHu1 L9 IUxHIUuLh hKA$tA$M9Mf)EfInfI:"F8)EZ3HHbHN*HPtH(H$G*HEHQ tHPH0HHhH=2*HE #LI豍HhHx HHqMM9H`xHXLYL@L`LhfDL(AEtAEHA5'LptHxINjtHEHPfD H4'tHERH4'tHx$@HDžPLxAtAL(LxAEtAEHPLp$Hk4'?fDHH1HPhtHPHuDHcIE1E11HDž`E1A HDžhIx HIJ1MtIx HIHtHx HHMtIx HIHtHx HHMtIx HI;DH E1H=tzHhHtHx HHH`HtHx HHMtI$xHI$HXHtHx HHHpLeH;HtHx HHt4HI9ufDLLPLPDfH1HALLH\LLLHHPjHPLH(HLPALPDLLP!LPDHLPLPDLHhHh DHHhHhHL-a\*MAEtAEH5?*LLhLhHI L% )HLPHhLH@LhLPHIS Ix HIu ~*)H{R*fI:"HE)EAG @u LIGH}LhHP/LhHI Ix HIk H 1LLMHLPLhHEB=LhLPIIx HI3 IExHIE8 Mt2111LLh-$I$LhxHI$ LhMA E1HhHW+HHI% Hx HH9 IELLAIH_ LAIH LA׾H> IEHIELffDL=M'jHuLAWI1Y^D1HLh#L7L/HP#+fDE11E1A HDž`HDžhHHhiHhDHhH`EH`f+fDHE1E1A HDž`HDžhf'HbA E11E1HDž`E1HDžhu@'INE1E11E1HDž`A HDžh@['HNHME1A MLhME1E1fHMA E1HH8HHELL@t,HHtH.'H0H9;THx HHL5)AfInfH:"XtAHE)E)HHtcHD*HPtH0HH=0*HLmLI蝃Hx HHM^E1A! E11E11HL@HHxHP|HPA E1E1L5mV*AtAH5D*LIHH59*HHHIx HIhL%)HHL>IHbHx HH;H5_9*LHH3L%)HtHLIHHx HHHR*L}LMHEH*HEAG @u L跺AA @uL衺 IWH}L`IAHTOL`HHhIx HIIx HILhHu1LHHEL}6HIx HIbIx HI_Ht"111HHx HHcA E11E1HDž`HDžhvH9gH|H5)LMA E1E1L@H5)LL#HI$tMt$AtAIxE1E1A HDž`E11E1A HDž`HDžhHq+'A E1HH5RdLhME1H81%LhE1MMLhMMA E1M*E1E1MMH5)LMMA 1L`M1E1A E1HDž`1E1A HDžh_HHh8#HhHHH@HH8HyHDžHH$'H5aHPH81v$HPeHMIA MMA 1LL@,LHE1LhMME1A ZHLhLhLLhLhpLz\HhiL\RLEL` H1LLPLPLhsLLhLhLLhLhLLhE11H11E1A HDž`DHfL@LhHIA MML@MAIx HILPLPtA ML@IE1L{LP1A E1E1H`E1Hh1E1E1E1H`A HhzLLPLPXE1A vMML@E1A UH1*HAWAVAUIATSHHEHEHEHLIHMHHA{ HHULE1HjPAQE1iH HEHxHNIEHELHEH5-*HHILeML;%Z$'L="'L;%!'M9LAƅI$xHI$HEE#LHhHM!M9t MMIMuHDžHE1Lp LpHHEIuHEM9k H5-*H 'I9E LLpLpIAEtAEDžDLHEHME1HXHEH`H8L0LPHpLhL(MDDHXE1HEH`HPHp<H]MtI$xHI$IEHEHLHPpHHhH9HBH,IMfA$tA$fLeEIHH-*HPtHxH==*HuLHHE HEII$pHI$:Ix HInI$xHI$HMRHhLH=Ix HIIjfHu+L='AtAL}LxfI11ҾH= Hv1H}Hu%Ht HxHHu @H)H=UE1 gHeL[A\A]A^A_]DA;L=L5I$xHI$H}LeHtHx HHuMtI$xHI$:LLDE1qfHxHRHxHH>H1fDHL0L(H8LhHtE1Hx HHLHMIx HIbHEHtHx HHHEHt'Hx HHx HHH}HtHx HH(H{`H5H*LpA=HEL=6L5"LpL=LA>eHMHUHHuLpH=nH*tH)1HuHLhHpHEHEO*HpLhIHx HHZMt2111LLpPIELpxHIE;A?DH{hHHLLrLeMQbAtAMDA$tA$ML$AtALLp LpHHfLx_ILXLHH@Hy5GVILoLLmfDLZIEA;L=L5$]LHpMH8L0L(HLhxHHuHLpCLpLLprH{hHHLHpfDLpLpLpLpLLp@HLpH}LpXHLhHpHpLhHfHHhLpZHhLpLH`HhLp#H`HhLpgfHLpLp(DMH8L0L(LhLfMHL0L(H8LhHHMLfH0jHM1PHuE1tZYHL0E1L(H8LhH 'HH5TH81JLpI611@HHULLpHEtL}Lp&1HuLLmHHEm%LpHIx HIHcHAH;'tPH;B'tGHLhHpHpLhIHx HHLHMHt:DžDE1bqILLp{LpHI1HEHE`LHhLpHhM1fHuLHLp)E;$LpHIHILHh*HhLpHLpLpff.UH%*HAWAVAUATISHxHEHEHEHLIHMHtHQHtHUHG^HL}J41L-WjLELAUAQMH MJ\HfDHEH]t ƒE‰H=_"*1LH]HHEHEIHx HHLHEMkHx HHHERH'HELhhMuI9t MMmMuHEE1H=C@*H9SLIHUMt)IEx!HIEuLLULUMt#IxHIuLLULUHMHt'Hx HHuHLULUHQ)IzH9tPH\1H'HH5@H81AHH=)L1fL-XjHM1AUHuIZY@뵐UHSHHHGtHCHHv*HH)HHtdHtNH@SH)HHx HHt H]HHEHEH]fCSHH CSHH HfDH@`Ht?HHt3HHt)H@H;'u2%Haf+Ht"HYHr`HHtH@H'H5H8ff.HGtkHGHHv#HH)HHt-HtfWH)HËGWHH fGWHH H#UH*fHHHHAWAVAUATSHHX)EfHnfH:"HHEHEHE)EH]LOMPH)HtHHtHUHGLeHL-5M1jHUH4AUAQI螦H LuxAH~HHI<uIعLWLLeH;HtHx HHHI9uH6H=:E1HHeL[A\A]A^A_]HHVtHUHVtHUHL6AtAH~LutHVH}tHULeIHdLL}HHH=e)HuHx HHAL-)AEfInfI:"tAEH=*Hu1H)EHIExHIEHgL;=&t=IGH;K'mHLHHHxHHutIHx HHLLeH;HtHx HHtzHI9u@{fDIعLeH=o~UfH߉E5EDL |fDH})H:.HHH)tHCHHH=*IHHxHHuHH5a)LyHHtHx HH"Ix HILdIHtTH=)HIH>Ix HI11LHIExHIEHH=EHx HHt@E1AIx HIH?DH=EDHuHhfDHDL-]jL1AUHuILZY+DHx HHtHH=Ŗ8DCH߉uuHH=Df.L%HaH=eCHHH&HH5H81H H="CE1DH H=pCH&LL L"HH="C-A&HyH=}Bff.UHP*fHHHHAWAVAUATSHHX)EfHnfH:"HHEHEHE)EH]LOMPH)HtHHtHUHGLeHL-ٔM1jHUH4AUAQInH LuxAH~HHI<uIعLPLLeH;HtHx HHHI9uHH=ZE1zAHeL[A\A]A^A_]HHVtHUHVtHUHL6AtAH~LutHVH}tHULeQIHdLL}HHH=5)HuHx HHAL-)AEfInfI:"tAEH=*Hu1H)EHIExHIEHgL;=h&t=IGH;&mHLHHHxHHutIHx HHLLeH;HtHx HHtzHI9u@KfDIعLeH=NNfH߉EEDL|fDH})H:HHH{)tHCHHH= *IHHxHHuHXH51)LIHHtHx HH"Ix HIL4IHtTH=)HIH>Ix HI11LHIExHIEHYH==Hx HHt@E1AIx HIHDH=e=HuH8fDHDL-jL1AUHuIZY+DHx HHtHH==CH߉uuHcH=<f.L%H1H=<HHH&HH5}H81}H H=Be6H[A\A]]ÐH@`HHHHIHtxH/&I9Eu;fLHIEHIE LLKIHuHJ&H5H83MYHH&H5HH8 |DUfHHAWAVAUATSHHJ *HHx)E)EfHnHfH:"HHE)EfHnfH:")EHpLIHM`HtH C3HcHfDHHtHMHHtHMHHtHMHtHMHWLmLeTHL5M1jH4LAVAQIH xWH}H}yH}H~fHHI|uIع1LSCI}HtHx HHt7IM9uH+ H=Ӈ&4He1[A\A]A^A_]DfH>HHRIع1H=LmBLeZf.L}H]LuHxH&LIHQHZ&H9CHf.HV#z@LppHHCHxLLfoMH  $foUT$}H H@I}HtHx HHtIM9uHe[A\A]A^A_]HxlHxC6fDE11LxAtAH8L}tH}HLmLeML5 *AtALuLmLeHi *tHUnH *tHUCLpAtALuHX t H]4E1H *tH]8L5}jL1AVILUZYfDH; D1yAH6H=411=DsHpSpH< pHh$pHhHf.: VfDUHp)HAUATISHH8HEHEHEHiLIHMYHtHHtHUHGHHUH41L-&jLEAUAQIbH H H|H]ȐL;%!&#H;HHVI|$04HpH8HOHHx|HHusHHE:HEa@IعH=iB>1H}HuHtHxHHtMH[ H=/1He[A\A]]HuHtH]D蛻fIعL=_HQ&H=#H5;#H811>HUe H=Or.1HEHuHH,H=]e8.fDL-;jHM1AUHuIZYff.UH)HAUATISHH8HEHEHEHiLIHMYHtHHtHUHGHHUH41L-}jLEAUAQIŠH H H|H]ȐL;%&#HHHVI|$0DHpH8HOHHx|HHusHHE蚹HEa@IعH=;1H}HuHtHxHHtMHXO H=zu,1He[A\A]]HuHtH]DfIعL;_H&H:#H5 H811rH ZLeMHCH5")HHHGHHH;&tfH]EIHH)HPtH=6)HuLHLe謹IHx HHIExHIEoM*Hx HHI$xHI$HeL[A\A]A^]@Hu#L%&A$tA$LefDI11ҾH=h"1H}Hu%Ht HxHHu @H.?H=zE1-HeL[A\A]A^]DHПHL谟HeL[A\A]A^]Hx HHHRH=E1@tIfLHHfQH=E1e~HHеjHM1PHuE1zZYSDHOff.UH)HAVAUATSHH0HEHEHEHrLIHMbHHAHHULE1H"jPAQE1nH ZLeMHCH5)HHHGHHH;&tfH]E}IHH)HPtH=)HuLHLe\IHx HHIExHIEoM*Hx HHI$xHI$HeL[A\A]A^]@Hu#L%&A$tA$LefDI11ҾH=1H}Hu%Ht HxHHu 辜@HޣH=HE1HeL[A\A]A^]DH耜HpL`HeL[A\A]A^]Hx HHHbH=̴E1a@tIfLHH=E1~HHjHM1PHuE1vZYSDH萛Off.UHATSHDHuH"HIHP(LޠH&tHe[A\]DHi&HE1L H eH5 H8R1H;XZ1DHyxtHH=1UH)HATSHH0HEHEHEHLIHMHHAHHULE1H&jPAQE1jH LeH&MtZH9HS z(Hz0FHeI$xHI$He[A\]fDHu#Hd&tHEIf.I11ҾH=t1H}Hu%Ht HxHHu ~@HH=4 He1[A\]D81fDLHE,HEHe[A\]H&H5HH819HH=! 1f.HjHM1PHuE1sZY_D뭐UH`)HATSHH0HEHEHEHLIHMHHAHHULE1HjPAQE1hH LeH&MtZH9HS z(Hcz,HeI$xHI$He[A\]fDHu#H4&tHEIf.I11ҾH=D1H}Hu%Ht HxHHu N@HnUH="p He1[A\]D81fDLHEHEHe[A\]H&H5HH81 _HH= 1f.H`jHM1PHuE1qZY_D`뭐UH0)HATSHH0HEHEHEHLIHMHHAHHULE1HƬjPAQE1fH LeHc&MtbH9HS z(fZB,!H`I$xHI$He[A\]fHuH&tHEIfI11ҾH=x1H}Hu%Ht HxHHu @H>H=@He1[A\]D=6fDLHE̔HEHe[A\]H&H5HH81ٽHH=1f.H0jHM1PHuE1toZY_D뭐UH)HATSHH0HEHEHEHLIHMHHAHHULE1HjPAQE1bdH LeH3&MtZH9HS z(Hz*赓HdI$xHI$He[A\]DHu#HԾ&tHEIf.I11ҾH=H1H}Hu%Ht HxHHu @H)H=He1[A\]D92fDLHE蜒HEHe[A\]Hi&H5ZHZH81詻3HH=1f.HjHM1PHuE1DmZY_D4뭐UH)HATSHH0HEHEHEHLIHMHHAHHULE1HfjPAQE12bH LeH&MtZH9HS z(z*膑HeI$xHI$He[A\]fDHu#H&tHEIf.I11ҾH=1H}Hu%Ht HxHHu 辐@HޗH=%YHe1[A\]D81fDLHElHEHe[A\]H9&H5*H*H81yHZH=Xa1f.HЦjHM1PHuE1kZY_D뭐UH)HATSHH0HEHEHEHLIHMHHAHHULE1H6jPAQE1`H LeHӺ&MtZH9HS z(z*HeI$xHI$He[A\]fDHu#Ht&tHEIf.I11ҾH=1H}Hu%Ht HxHHu 莎@HH=WHe1[A\]D81fDLHELI$HH=(H 1[A\A]A^]@Ht&HZH5sHKH81nLpEwHDHH9t4HuHp&H9t#HH9tHuH9fDIVHH9B{I$HI$LD@HCKR@H.KLuDuI\$IT$ttI$x HI$t4HuкfMt$IFefKjI2L;DfUH8)HAUATISHH8HEHEHEH9LIHM)HtHHtHUHGyHHUH41L-]jLEAUAQI2H xxH H|H]DHLHHtHxxHHuoHHE6CHE]IعH=W]B1H}HuHtHxHHtMHPIH=B 1He[A\A]]HuHtH]5DBfIعL_1HEHHH= 荵HE@L-y\jHM1AUHuICZYff.UHAVAUIATSHH u#HGH EH4H;Um&CDcCmHZELcXA$tA$LLLÃI$xHI$|HMn&tH [A\A]A^]H"HHuHE!HHt)HRHHE@;HSGH=H`lHHj&gH [A\A]A^]HH5v)HHIM8ML$Ln&MLM9H )H9H=n&H9HXHULFM~$1fHTH9H9yHI9uA$tA$HHu1M91LH]LmxHHE,IHEȅxHIu L?HEI$Ht3:HI$,LHEl?HEI$HHEI$HH= kH 1[A\A]A^]@Hm&HbTH5HfEH812hL>wHDHH9t4HuHpi&H9t#HH9tHuH9fDIVHH9B{I$HI$LY>@HDR@HDLu>uI\$IT$ttI$x HI$t4HuкfMt$IFefcI2L=fUHy)HAUATISHH8HEHEHEH9LIHM)HtHHtHUHGyHHUH41L-cWjLEAUAQI H xxH H|H]DHLHHtHxxHHuoHHEHH[A\A]]11H=GKHx HH1L-)AEtAEH-)Hu1LHHEHEsIIExHIEuL:Mt(111LZI$xHI$uLw:HA6H=$蟭?f.H1F:UHHtH)H e&HPHHPt]ÐUHAWAVAUATISHHHu#HGH HLkA L;-c&HCHƒHCAI)LI5He&I9ID$0LHp8H+p0HHciH~IT$0HcHHz0(IHH9HHL[A\A]A^A_]HH5Bh)LHvIMUH5 LIEHIEL8f.HA)tIEH;b&AEtAEHY)~5)HEAE fI:")E@u tEIEH}HP@IIEM:xHIEHu1HLeHHEpII$xHI$9Hx HHEMt(111LWIExHIE,@Hv>H=QE1蕪+bHuuIf.HhPHHtHHPIH{HHnH6aHe&HBH5H81`\HH)HHH HOI@fDH5)H)?1LHtdI}H;=F&C|[1A\A]A^]@HE&H8LEt뛐 yfDC|L@`IMtHH&IXL(HE&H0H9t I9ID$`IjHI]LPHx HHtPHD&IEH5rH8"C|[A\A]A^]HC&H5#H8"IE+fHCtp@tgHtJHXHHy1H~f.HTH9 I9HH9u]LHEHktMD$`ID$`M9LH@ HHH9HuHC&H9yHI9iHuI9Vff.UHATSHH0HGH9(HEHH;G&H5,A)1.IHfHu1LH)EvQHEHI$x HI$tuHH1HHt;H0[A\]DHuGH]HtFH؅xHHuH߉EEH0[A\]@L~HttIMIHF&I|$`H0YHt111L+CHu11 H"1j=IDUHHHuHEGt2H}HtHx HHt HB&f1ff.WxUHAWAVAUATSHHLx`IH@`MMwAtAMo(Mt AEtAEHuHHEH}HtHxHHu d@Mt M9o(I|$`M|$`HtHx HHMtIx HItyMtIEx HIEtBH[A\A]A^A_]CxtE1E17fDH(!cHL[A\A]A^A_]f.LzXfDLLUHAWAVAUATISHH(u#HGH HL-@&L9H1HHHx HHPHL5>&H;=A&L9L9$1LAEtAEH C&I9EMuAfInfI:"MetAA$tA$IExHIEHu1ɺL)EMHIx HII$xHI$HtMOME1@MEyfDL0 LMzAMtIExHIEHEHx`tO\H DH=|E1CxHWafLX0IH9H@LIMx HIRIDLMLALMH3HtH6&H2H9'IEx HIEtVL53&A=A5LHUMHUtL9~KDfDLfDHunAxHIuLA{-ILxtIxHIu L[ANH3&H5H8wLLM&LMHeAfUHAWAVAUATSHH8GxLgHuqE1LMl$ M|$(ID$ ML$0HlM H1&IEIMH9{L9*IEJtIE1I|$ID$Ht+Hx$HHuLMBID$LMfMT$fInfH:"AtAH=.)1HuHLULM)ELULMIIx HIuMMl$ H{ M|$(ML$0Ht$HHC xHHu CxH8L[A\A]A^A_]H;0&{L-[)AEtAEI|$H5@)HGHHwIM^Hu1LL}HHE=IIxHIuLIExHIEuLM?IFH/&H9t H;2&At*AMExMxM>MOME1@MEyfDLPLMzAJMtIExHIEHEHx`toWH* DH=9wE1CxHw afLx+IH9H@LIMx HIRIDLMLALMH /HtH01&H2H9'IEx HIEtVL5.&A=A5LHUMHUtL9~KDfDLfDHunA:xHIuLAI{(ILtIxHIu L{AINH.&H5{H8 wLLMFLMHAIfUH@)HAUATSHH(HEHEHEHLIHMHtHeHtHUHGHHUH41L%^jLEATAQI%H /H H|Le@H5(I9t$t L;%,&H=(iHHHZ)HC(HCH,&H9I9wIt$ HI"H{(Lk(Ht HPLk(HCLHO,HtIHx HHI$xHI$uL|HeL[A\A]]fDIعH=z1H}HuHtHxHHtEH-H=MsE1HuL&A$tA$LefIعLgH 1HLdBLmf.HxH=E1rH1.&HH8H5g1E1n(H6H=VrgL%jHM1ATHuIZYk@H-&HH8DHH=xE1qH钊UHAWAVAUATSHHG|G|_Lg@HIIIMtoA$tA$H)&H0L9ZL2I$xHI$H{@HCHHtHHC@x HHx1LLL HU1HHEC|t\H]uH;E)&tH3RHu1>f.HY+&H8aHxHHuHy1 DHEHH[A\A]A^A_]DLEMEDE8E2=Hi&&H5H8jHH1[A\A]A^A_]fLLE4ID$H9(LEHH;+&LEH5E)1ҹLhLEHIMmIALMH=lMLELM LMLEtLM1LLAIMLM(LmIx HIHEI$xHI$Ht,C|wLLLL/HEfH{@HEHCHHtHHC@x HHFHuHLmHUHL臾LA~C|AH]EH;&&|HOH~1LHEHEL&LMHuH^'&H5LH87LME1HEVLH4LEIM_HEHx`Hx)&H0(+tH}111I$xHI$%HH{@HCHHAHHC@.HH!LHu1LMHHELmLuL}2LMHEL1LLMLMIHq'&H8yxL.C|1}LEIUHATISHEHLMLEH5*HH(HEHEP1ZYt!HMHUILHujHe[A\]ÐHe1[A\]DUH5)HAUATISHH8HEHEHEHiLIHMYHtHHtHUHGQHHUH41L-jLEAUAQIH H H|5H]ȐH5(H9sL-#&t L9KM9jL9Hs I|$0SH$&tHx HHHe[A\A]]@IعH=y1H}HuHtHxHHteH H=j1fHuHtH]DH &A>f nfDIعLyGHHEHE1HEH[tQM9f.H%&Hx"H5k^H81H) H=i1Hy1H1%&H)H5^H81qL-jHM1AUHuI+ZY@UfHHHAWAVAUATSHHG:)HHH)EfHnfH:"HE)EH?LOM2HHHIع1H=YwH}HtHx HHH}HtHx HH`HH=1VhHeH[A\A]A^A_]@HNtHMHtHMHWHL}H41L-jLELAUAQIDH .H} LeH"H|ݐHHHt H|ݐ2H]H5G)HF6ID$HH;##&L1 HHHxHHuH;~&H5)HqQJMtH=)L}1HLHEH]\ IHx HHM|AHHHXtL H]A$tA$LefIع1LIu@tIL}A$tA$H=)1LLeHLu II$xHI$_ML%'(A$fInfI:"tA$H=%)1L)EH/ HI$xHI$HIx HIIExHIEH}HtHx HH~H}HHHHfDifDL A$tA$H!&LetHEH"H&tHELHHH4HH &H{`H0!t111H9fHL-G)AEtAEI|$L5(]HH$H:&H9CH)~(HEC fH:")E@u tEHCH}HP{菼IHHx HHxHu1LLeHHE(HI$xHI$!IExHIEHt"111HHx HH AHzDH=Wb1xLhxfDLp2HcfDLPL@L- jL}1AUHMIL8ZYqHI&H5VH8ZA7HH=bIx HIM1s@HjH=EaAL%$E)A$tA$H{L- (LHTHH~x(fH:"Hu))EHEC @u H7HCH}HPz,IHMx HHHu1LLmHHE&HIExHIEI$xHI$Ht"111H Hx HHAx HHtKAI$yHI$kL1HDH=C`fDHL%LLH{HIEx HIEt[AH4IExHAIEt3AHHHHE1AL0HunLHkIHx HHtPMRL7LKLTHHaA{Hff.UHAWI1AVAUATSHHIIGH;&t H;U&AtAHEE11H}IGH!&I9WL9IGN$A$tA$IHtHx HHID$H5%)LHHHHIEI;E  t IMHHIEHx HH,H}L:HELIH\HtH&H2H90Ix HIHHHHHDHL-MI$xHI$IExHIEYIx HI5HtHx HHH0H=YE1\HL[A\A]A^A_]HPH@O3HcL9OdA$L$HWLxIHH@IHHEHdIEHIEIHI1fLhLXIL@IEHIELH\Ht I1IE"IRHIEL8L1If.UHAWI1AVAUATSHHIIGH;&t H;U&AtAHEE11H}IGH!&I9WL9IGN$A$tA$IHtHx HHID$H51)LHHHHIEI;E  t IMHHIEHx HH,H}L:HELIH\HtH&H2H90Ix HIHHHHHDHL-MI$xHI$IExHIEYIx HI5HtHx HHH H=E1XHL[A\A]A^A_]HPH@O3 HcL9OdA$L$HWLx IHH@IHHEHdIEHIEIHI1fLhLXIL@IEHIELH\Ht I1IE"IRHIEL8L1If.UH)HAWAVAUATSHH(HEHEHEHLIHMHtH)HtHUHGHHUH41L% jLEATAQI衳H H H|ݸtLmL;-a&H= &I9}L*IHtH/(L=8(HCLMH=3HLLAHHCI$xHI$Mt}IExuHIEukL&a@IعH=2d1H}HuHtHxHHtMH > H=21UHeH[A\A]A^A_]ÐHuL.AEtAELmfLx.IعLcOH &H5rH8HgB H=1`T HuH &H5(2H8XI$xHI$uL@Hu1LmHHEIHdfDHLLZHH#@L%gjHM1ATHuI{ZYW@UHAWIAVIAUATSH(HHH@L- &H5&)HL91HIHtIID$H5)HL91LIHI$x HI$t1H(H[A\A]A^A_]LfD Ht1LIMHjLHHfI$xHI$uLvHHIMIH &I|$`H0z,111LLHIMH &I9L;-J&u[L;- &tRLuKI$xHI$uLTIEHIEL2DI9uIExHIEuL I$x HI$t7HHHvHifL'LfDLHLEIM@LMLEEIHc &I{`L]H0 LELMtH}111pLELMI$ILELEHE1M;GaH &LH5H81:Lb`HZ`LR`f18f[IGHEHL- &A$f.MIL9EMNID$KtLEHL91L)LEII$xHI$uLLMLE0LELM!IIH &I}`H0 >111L+I/ML$LEIL1LHHtAH=9".IHHHMdIWLEHuLLAIqMIExHIEIx HIHx HHI$xHI$H8L[A\A]A^A_]fIHoE1HuH&H5`*H8IExHIEIx HIHH=.LE18fDHMMLLLLHxI11ҾH=E1ZHkH=ͤE1uK+IIEHIELfLHHUHuHMHMHuHU[LLuIHd@HH= JLhIUH)HAWAVAUATISHH8HEHEHEHLIHMHtHHtHUHGHHUH41L-jLEAUAQI^H H H|ݸLuDL`AǃH=#)1&IHH@H5#)LHHHHNHCH5(HHH=$'HMHuOHuHM1HHEHEHHx HH~Hx HHZA$tA$IcIHH=)Hu1HLeHE5HI$xHI$Ix HI HOIExHIEMt|IxuHIulLbDIعH=W1H}HuHtHxHHtMHH=1GHeH[A\A]A^A_]ÐHuL6AtALukfHXHHEDHEmL0L IعL.VfHH=1GLgKH.DHH=1Fef{H,1H6H{DIܾI$YHI$KLu+u8L-HjHM1AUHuI#ZYB@롐{HuHW%H5$H80sff.UHAWAVAUATSH8HIHHyHA(HHHHHpHI}(7fHnfH:"t7HM@Me8IM0HMI IM@HMIMHHtHIG x HHAGxH([A\A]A^A_]fH(1[A\A]A^A_]H;%L5d)AtAMeMID$H;H%H=%t H9A4$tA4$HE@LAfDfDHEH9+I$xHI$2Ix HIH%tAGxLHEHEH([A\A]A^A_]LIH\H@HHEHPHE@HELHHfH=H%H2H9ukI$@HHMIx+HfHEwHEfDI\HuMILuHMHHMtI$xHI$$HtHx HHtwHEHx`t/HH=71ZJHLu1ۅrfMtI$xHI$uLqH`|LPL@H;Y%WL#HEf.HHEHMI$HI$LH%HH5GH81HEHrDHH%H5<H8@H%H5<1H8HEH@Hy%HH5<H81QI'HIL @HEHD4Y"AXF1HEgIyIHI LI$1wfUHh(IHATSHH0HEHEHEHLIHMHtHHtHUHGHJ4HU1H9jPAQMLEuH LeHF%M,H9dH[hfHnfI:"tH=)Hu1)EH3Hx HHH-I$HI$u{LHE4HEifDMIta1H=^14C1H}HuHtHxHHtoH H=ԍ41He[A\]@L&A$tA$LeH%%H%tHEI@kdfDHHETHEH)%H;H5(H81iHVH=Q31f.HLjHM1PHuZYUH)IHATSHH0HEHEHEHLIHMHtHHtHUHGHJ4HU1HjPAQMLEH LeH%M,H9dH[hfHnfI:"tH=)Hu1)EHHx HHH-I$HI$u{LHE褾HEifDMIta1H=1@1H}HuHtHxHHtoH|H=lw11He[A\]@L&A$tA$LeH%H%tHEI@۽dfDHHEĽHEH%HH5%H81HH=01f.HjHM1PHuwZYUH(HAUATISHHHHEHEHEHLIHMyHtH HtHUHGAHHUH41L-CjLEAUAQIRH H H|ݸUH]H5a(H9sL-%t L9SM9jL9aHR"Hs0HUEI|$0HEHENS"fEH%tHx HHAHe[A\A]]fDIعH=V>1H}HuHtHxHHt]H'GH=.1됐HuHtH]DH)%GDfKvfDIعLV=O1HHO t`M9fH%HoH5"H81!H[PH= .1fHHE贺HEH>1@L-jHM1AUHuI蛕ZY@UH((HAUATISHHHHEHEHEHLIHMyHtH HtHUHGAHHUH41L-cjLEAUAQIrH H H|ݸUH]H5y(H9sL-&%t L9SM9jL9aHO"Hs0HUEI|$0HEHEnP"fE=H6%tHx HHAHe[A\A]]fDIعH=v";1H}HuHtHxHHt]HG4H=2+1됐HuHtH]DHI%GDfkvfDIعLv:O1HHot`M9fH%HH5H81AH{=H=f)+1fHHEԷHEH3;1@L-0jHM1AUHuI軒ZY@UHH(HAUATISHHHHEHEHEHLIHMyHtH HtHUHGAHHUH41L-jLEAUAQI蒇H H H|ݸUH]H5(H9sL-F%t L9SM9jL9aHL"Hs0HUEI|$0HEHEM"fE]HV%tHx HHAHe[A\A]]fDIعH=B81H}HuHtHxHHt]HgBH=z)1됐HuHtH]DHi%GDf苵vfDIعL7O1HݿHt`M9fH!%HH5 H81aHKH=I(1fHHEHEHS81@L-PjHM1AUHuIۏZY@UHh(HAUATISHHHHEHEHEHLIHMyHtH HtHUHGAHHUH41L-jLEAUAQI貄H H H|ݸUH]H5(H9sL-f%t L9SM9jL9aHJ"Hs0HUEI|$0HEHEJ"fE}Hv%tHx HHAHe[A\A]]fDIعH=b51H}HuHtHxHHt]HH=€5&1됐HuHtH]DH%GDf諲vfDIعL4O1HHt`M9fHA%HϺH5+H81HH=i%1fHHEHEHs51@L-pjHM1AUHuIZY@UH(HAUATISHHHHEHEHEHLIHMyHtH HtHUHGAHHUH41L-ûjLEAUAQIҁH H H|ݸUH]H5|(H9sL-%t L9SM9jL9aH:G"Hs0HUEI|$0HEHEG"fE H%tHx HHAHe[A\A]]fDIعH=ֺ21H}HuHtHxHHt]HvH=U#1됐HuHtH]DH%GDf˯vfDIعL1O1HHt`M9fHa%HH5KH81H۷H="1fHHE4HEH21@L-jHM1AUHuIZY@UfHHHAWAVAUIH(ATHSH)E)EfHnHfH:"H¸HE)EfHnfH:")EHjLOM]IH JcHHNtHMHHtHMHHtHMHtHMHWLexHHUJ4ML=nHp1jAWAQMk~H Lux>I~@IIK<uML/LLpH;HtHx HHHI9uHmH=z HDžxHxHe[A\A]A^A_]fIVL0AtAHHLuHhډxtLHHhAHMtAHXLMtHEH]LeHp1L`HxH L`L; %xHw(IyH9t%H9YtHHH9HALt>I|$H4HID$Hx HHHH`MLPH`HLPHIH0HLIH`H`LPHt4H%H2H9LPH`茽H`LPI$xHI$LH`9,HX-,HxH0H`tHXM(胨#fDH%I|$ PPID$tTH %1HH8L(HELMH]HhnH5%H9BLHP!HP6L`H0MHML8ZfMLeH=)HEHpfDL`H0MML8H1A8MtIx HIE1A8Hx HHHtHx HHMtIExHIEHtHx HHHDH=>HxHt(H1HxHHHxMtIx HIH`HtHx HHHXHtHx HHLLpH;HtHx HHtHL9u@HDžx[L9 NlAE~}HxHh譥HhL蘥'H舥7HxGHHPHhZHPHh+H8dHHh!HhDLHhHh D19IH LhL? L`9AtAL0E1E1L@LLHDžXH(LPL8HPH9P= H@HЋtHH`'1IH HhH`H@H;%t H;U% HhtHDž`LhE1LE1MH H`MIIEH %I9ML9 IEN4AtAIL&HLkEL;5% HL)HH>IGI;G >t>IH4HIGHx HH&H`M7LHH`LLHHIFH L`MMHH?L`HHHHt4HR%H0H9 LHH`H`LHIx HI LH`%HX%HxL) LXH`HLHxHmLH fLHXL`躡HXL`LH`葡H`DM9Hh11L`IHL`tAEHp1LmHH=(LXHEйLH`q$IEH`LXxHIEH.H%H9BH:]H`Hx HHNIx HIUL`LL`L`HHH@HH@HHDžH|@H%I HHIGPH {%1H@DE1A,HDžXHDž`@LHHHPHh蛟HHHPHhHHEL=L1HpMHjAWzzZYH%H0H5L`HPMML8H8HhqHhHP1@L`H0MHML8DHDHH9HuH;d%fDL5A(AtAH?(Hu1LHHEHECIIx HIMt$111LYIExHIEE1A=>D L`I @A7DH`HH@H`HIL HhL`L(LPHL8HhL`HLPHtBH(%H0H9 HPL`LhұLhL`HPHx HH!AtAHxfLhL`LuHE)ELhHIH-(L`HPtH"(LMIW tHpLH=(HL`H].LHhIHhL`x HIHrHxHSL`E1sL`L8I1A81E1H@H؛HHH9'L|AH@H9pLHH˧HHbH`LL8LLPMfDLA2MHHHPHhHhHPHH&HH0LILLH`MLPL81L9=OtA75HhVH`HIH@HH`HILHLdLW/A.pH%H5LHLhLPMH8H`L8kHhHH1A/LHXL`ՙHXL`LLPH`謙LPH`L(L MHL8HH`H11LPL8E1HH`HLX4LXLLXLXHLPHX跼HXLPHH`41E11A0HDžXH%H5NH8A0H MM$LL`IL8sHhH`HIH@HH`HIHL8L`I1A9E1LX1IDHL`LhL`LhHxL`PL贗L`HhdM1E1A7HDžXHDž`zM1E1A7HDžXHDž`8LLHH`9LHH`LPL0IH(L8Ix HIAtAHxHELuHEL}cHH-H((HPtHpH=%(H]HH`;LHhH`HhHx HHHHxHL`ML`1A;HLPH`FH`LPL`LI1L8MjL`E1A;LH`L1LPL8E10LPLA31H`L8ILOLU]HPL`Lh膭LhL`HPL`1E1E1A7LHH`H5(HHxLxHH Ix HI:HBH9tIHx HH(H(LeLEHEHp(HEHu(HEAD$ @u L9FA@ @uL#F IT$H}LxI@HT@ VLxHIJI$xHI$Ix HIHu1LLuHHEXHIx HInIx HIgHt"111HZHx HHa@fDHHZծHE1E1E1H;%OLxLPXLxIM11E1LLxcLxELOnLHx;HxHLx LxL LxPLWLLއ1E11E1H轇H;%HxHPXHxIM 1E111۾LfHYH;u%H5J(LLx聍LxIH;C%jH5J(HHxOHxI\UHATSHH=gJ(HGHH;%u1ҹH茜Htg[A\]fHHHuXIHv%I|$`H0!t-I|$`ID$`HtHxHHu UD۱Ht1fH%HH5H81e1gfDlff.UHHSHHHWH=fI(HttH]DSHH]fDUHAWAVAUATSH8HnIH L;% % AL$Ha%tA$IޅH>%tA$HمH%tA$IڅH%tA$IۅH5ձ%A$H%tHA$-H%[E|$IA$EYHa%. I߅UHB%tHMLEHuHULUL]迬L]LUHHUHuILEHM#I$tI}I|$`tI} I|$@tI}(I|$HtI}0I|$htI}8I|$ptI}@I|$xfHnfI:"tAEHI|$PtI}XI$tIMhI$I}`MUpM]xIItIIL$ tIIL$0fHnfI:"tAIL$XfHnfI:"tAIT$8tIIT$(fHnfH:"tAH5(HFID$HP%H91LIH0L;5%HHeAtALqHLHM7HMHIGHx HHIExHIEMYDHi%HD%:A$HمHE8@LPp'L@psLLM,pLM|HpLpLoLoN1IE1E1AgfLoLHIHH@HHEHIAeDH%jHM1PHugJY^eE1E1E1AgL$oHoLMLoLnLM)Ln0Ln9HtiH=<AiI1AgE1E11AiMqMaAtAA$tA$Ix HIHxMsMuI]AtAtIEx HIEt{I1LAi5H:MtMAgE1@IE1Ag$E1E11AgLmCLmxfUHAWAVAUATSH(HIHL;%ۘ%=ID$LΘHEH@1zIH~ID$H5(LHHOHHIHBL ֗%L9t H;"%tIE1E1Hx HH1Mu{IEM9ML9IEJtIHtHx HH[IFI;F utIVHHIFHMtHULLEALEHUHL %HuHU莗HUHt H5%H6H9mHUiHUIExHIE\HtHx HH6H=ǭ(HHID$H5(LHHIMHHAtALj LrHUʓHUHIHXMHP HEfDHLEjL ݕ%LEIFI;F HLLE wLEL %HtHx HHIE11һHICHtHx HHBMtIExHIEHbpH=rMI$xHI$HEHe[A\A]A^A_]L9"K\mjfHLEiL %LE@Hi諏HHٕ%HE1L nH hH5}H8R1H.諒XZHEI@LPi8L@iLHU,iHUHiH%H~H5H811H oH=k@Hy\eHH=sBIy!HnH=iE1E1HhhLHUWhHUHHUHUL '%HItH@LMtIQIE1仦uHnH=M HxM1I޻%訍I6HxDMI޻HyMHHUHU{HMUH(HAWAVAUATSHHxHEHEHEHhLIHMXHwHA HHULE1H‚jPAQE1\7H PHEHEH1HEHL%ܼ(A$tA$HCH5$(HHH IM Hu1LLmHHEIIExHIEI$xHI$MIFH;,%t H;ː% AtAHDžhMHDžxIx HI}HEE1HDžpHhAID$H5]%I9t$2HxH9TID$L4AtAHxMtIx HItH=M(Lm1HLH]Lu}IHx HH^M}IGH5(LHHHEH}Ix HIHpHtHx HHH;%HCLHHPpHHhHHBHIMAtAfL}E覌HHH(HPtHELH=(HHpHE~|HpIIqHIHx HHIx HIdM{HUHtHx HHIHMHuEtHEIGAEtAEH}Mo HW HGHHH9H9AtAHMHQLLP`SL@`-HL`vL`H_kH_H_L__qfDH'HyI_H_Lp_L`_LP_L@_HhLIH諊HtHό%H2H9sI$xHI$uH=(IHH9%E1HI9]H]Ht1LLeH]rLHIExHIE.HpMHEH HpM HEHxH9"MtAf.H}L4jL MIL}@HpM E1HED諃HEfHEE1 HEH%H5 E1H8eDSIHEE1 HE{M L}:HE HEwfDE1 .HxjHM1PHuE17ZYDLPIHtBH@HHhHt+HDžxICLk\~M E1E1HEHE\L;\HpMHEMeI]A$tA$tIEx HIEt:I17H,tHpE1M HE L[ff.@UHAWIAVAUIATSHXHEHEHEt#`HEHXhL#Mt L;%ц%H[HuE1E1AtAHE1H=(HHL}LmHEsIIx HIMHEH@hH8L HtHx HHMtIx HIHtHx HHIExHIEOHXL[A\A]A^A_]DA$LetA$Mt$ALutALvHEHLLM ZLMM!1LMdHEH5(Hx`耊LMHEHx`H@`HtHxHHu LMYLMHEHLLLMHxh\H=^(|LMHHsHLLMmdLMATHxHHu H5YLMLME]HMHUHxhHuHwL5$(LMAtA1HuLLMHHELm詑LMIIx HIMIExHIEAtAHu1H=(HLML}LeqLIMHMHUHuLMmH{hZMM@LLMXLMLMWLM?fDLLMWLM=HLMWLM>A9 1LM"H{`H5O(BLEL}LuLM111HLE^H{hHMLLYL (AAHEHLLLM1A3 HxhYLMHLMH#^DH=o%BLMtA7 LLMVLMMLVLMMA: H{hLLLLM1%YLMxff.t#t&H%tDUHAVAUATSIHHu%I9t^H)%L5%I9AM9DuHL;%%t?LgrAI$x HI$tZEx=ELHDËt[A\A]A^]ÐI$x HI$tE1@LUfDLUff.UHAWAVAUATISHHH;1I|$Ln4L5d%L9L{XI|$H;=%LWIHH]HHH5(H9H%H9CH9FHSH H;V#F 8C HH H{ HM|HMx HH LL gHHuIHHt<A@I|$L-}%L'HHbL;-%L;-}%uBL;-c%t9L1pu HHHH[A\A]A^A_]f.H=Ѡ(IHH5(HHIHx HI!iIHH(H5B(HS"H5[%(LHIHHx HH@Ix HIIx HILHH>~H#~HxHH uHkRL^H:11HL xHHL=(AtAHCH;|%tI~D(H(fI:"HE)EAF @u L IFH}HP7IHIx HIHu1LLmHHE_IIExHIEIx HIMt$111L_qI$xHI$H4XH=mQHxHHuHP15HWH=l1H Q|%H9u$t HJHH=0H9uuHߺ:pHHt)HEH}Hx HH HxHHuHAPLL5(AtAH(L`HHHH~X(fH:"HUq()EHEC @u H HCH}HP#IHMxHHuHOHu1LLmHHEDHIExHIEuLGOIxHIuL/OHt"111HLKLKLzK#D{L^K01AH AIA1fDH(H;t%uQHPXIMIAtILIxIALA6L9u HAVXIH5=(HPIUHAWAVAUATSHH8H=(L%u%L9EHGI1HPXIHIL=+w%L9L;5s%M9LjfrIx HIH='(L9vHG1HP`IHL9L;5qs%M9LeADžIx HIH=(EvH=w(ZIH.H5(HIH#Ix HI_LH$TAǃI$xHI$BEL5"(AfInfH:"tAHE)EUqHHHZr(HPtHNr%H=ߍ(HuHHHE-aLIHxHHuHJHMH5"(LHYI$xUHI$uKLHE HHE9DL9WHG1HPhHaAE}tHx HHtwH8[A\A]A^A_]D SIx HIHOH=c袺H81[A\A]A^A_]ÐLEEGEODHHE,GHEH8[A\A]A^A_]fHu%HQaH5ۮH811pSpLF\LFMLFLFZ"fHqu%HbH5[H81oTHAu%H`H5+H81oK@tE1HX@VfDV{VI$~HI$pLEcZEZfUH~(HAWAVAUATISHHEHEHEHLIHM H<HA3 HHULE1H \jPAQE1H H]HL-p%tLHdIH L5n%H;q%M9M9LLEaLEAIx HIEt"H5|(H2 Hx HH`ID$H5lz(LHH IM L;=$q%M9 M9Lj`2 Ix HIFH;p%L9FL9=H` 0LegIH fHHHHpCHu3L-n%AEƒe AULLm&f.I11ҾH=YH1H}Hu%Ht HxHHu B@HJ{H= _E1 HeL[A\A]A^A_]DH51(HDADžHx HHE L %(AtAL%(HLMRHLHI1L?$@L?AEtAEMUHEHTID$H;Oj%teH;m%t\LfIH H@HHxH\ I?@L? L?A$tA$HDžxE1HE1HpHxID$Hi%I9\$L9 ID$N AtAIIAH;ki%t H;l%|IyH^H;l%MiAEtAEMq AtAIx HIHH}|H}LpXxH5x(Hp臓P]H=(轷HH5(HHELEHHIx HIIIEH;g%AEtAEM~:(H(fI:"HE)EA@ @u LJI@H}LEHP1; LEHIIx HIHPk%HuE1HH9C1HLMLhLEL`uH`HELhLUIx HI|Hx HHMKIxHIu LAIHbH+P%I9FqMHuE1H1LLEL@L]L8]ZH8HEHH֤L@HELHIx HIIExHIEHDžxM"I|$ Hx HHAML$ HEADŽ$tAH>O%I9FHDžHMHuH~HL1fH:" (L@)E`YHHHEIݣL@HDžxIx HI'MnI|$ 1L?IHIExHIELLHHELHAIx HIE AtAH%N%I9F+HDžPMHuH~P1LfH:" ()ENXHPHHˢIEHELHxHIEMI|$ 1LLP>LPHIIx HILLPLPAIx HIAE$tALuH M%I9FHDžPMHuH~P1LfH:"n ()E5WHPHH財IELHxHIEUHEMI|$ LκLP=LPHHEIIx HIPLظƒIExHIEGAHEA$tAHK%I9FHDžPMHuH~PL1fH:"_ (LH)EVHPHEI蔠LHIx HIM`I|$ LIHIExHIEH5U(LLPLPHHEI@Ix HI!I|$pHx HH#MD$p@HEIH0IT$XtIPIT$PtIP IT$`tIP(IT$ptI$IP0Hx HHM$H5:(H(HEIHH5F(H IH!IExHIEH50(LLPѝLPHHEIIx HII|$xHx HHMD$xH5Y9(HyHEIHH52b(HZIHXIExHIEH5K(LLP"LPHHEI)Ix HII$Hx HHM$H58(HĜHEIHH5}a(H襜IHIExHIE'I|$8HEHx HH!MD$8H5.8(HNIHH5 a(HHP,LPHHEIIx HI9H5(LIHIExHIE)I|$hHEHx HH:MD$hAD$ADŽ$DAtAHHXHLLIEHECLL8AD$Pi H=a(腎IH H5a(HHPӚLPHHEIL Ix HI ML$(IAH;>% AtA~OT(HxI(fI:"HE)EAA @u LIAH}LPHPqLPHHEI Ix HIXHB%E1۹I9EAL]LHLELPH@HE;LPLHHIH?Z(H5xa(H@HPtHȺHuLH)H?HtͰLH LHL@!H@HP=LHHDžxHPIx HII$HExHI$IUxHIUdHEHH0HH#H;fD+fDLLHLHLLHLHDLE1E1E1E1A>fDLLHLPLLE1HPHHהHDH=葄Hx HHtqHXHxHXHHt3MtIx HIt.LHĨH[A\A]A^A_]fDHfDLfDHfDE1E1E1E1E1A;fDLHLHLxLH0@LLHYLH'DA21諓I~`H5f(HDžx@HH{DA4HH@HHHH(HMHULHx&LxLmHEHXL=4;%M9[AD$PAtAIx HIHDžxIExHIEHXHEHx HHyI~hHpHEHhH`HHHHHDH3E1E1HDžXH@H:HHHhI~hLPH`HpHPLڑHXΑ1Ǒ1H@HHDzH&HE1/fDA3DE1E1E1E1A;IH<%HE1E1H5uA=H817E1E1E1H zL GL Lx Lh ZLPR PLLP1 LPDL HPl@LHP HPDLHP HPKDLLP LPDL LLP LPE1E1E1AVfE1E1ME1A?fM^MnAL]tAAEtAEILxx HIHuVE1E1E1E1A?1fE1E1E1E1ABfINMFHHHx@tAtAIx HITHufDE1E1E1AB@LLP1 LPDE1E1E1ABE1afLLP LPDL LLP LPDL kE1E1E1MAJE1E1fDINMnHPHMHtAEtAEIx HI!HuL`(AtAML$(LxIAH;o4% AtALM~"J(HC?(fI:"HE)EAA @u LIAH}LHLPHPH5(H{IHOIExHIEuL(HEH#%AI9G*fLeH])EHEIHEH8"(HPtHhHu(HEIU tHe%LLL)HELH?H HXJ4yLHEIwIEHExHIE*IHEx HIMALmMf.MtIExHIEuH}HtHx HHhMtSI$xKHI$uAL7H"%HE H5{[H811AfHDH=fHE1fKffD;sfDL(aLJcHDHH tHMHHtHMHHtHMHHtHxHtHpHWHpLU HL=I1jJ4LAWAQM}H xqHx'H}H}H}LpM~UDIIBJ<uM1LNLefDHI9t/H;HtHxHHu2HI9ufH;H=E1E?HeL[A\A]A^A_]IH S=JcHfDE1E1E1LxAtAL0LxAtALpM MHpMAtAAEtAEH'IGH9t2HXHHqH~y1DHH9tgH;TuL%$M9uTAtAI$xHI$c A$tA$Ix HI LMIfIFHJ?% IL;=$I L'AfInfI:"tAfɿ)ELhL`)MLhHIH(L`HPtH(LmIV tH= 'HuLHLhLUHhI5MIx HIMAIx HIIExHIELm HI9^H;HtHxHHuF@HH9HuH;$YfE1LPAtALULhAUtAULmE1E1LX AtAL]L0AtAL%+$LpA$tA$LxE1E1MA$tA$LeMfDLy'AfInfI:"tAfɿLhL`HE)M)ELhHIHD(L`HPtHI (L}IV tHA(LmIV(tH=A'HuLHLhLUPHhIJIx HI%ME1A8E1E1HDžhDLxLmLUL]M1H=Hp6IL%$A$tA$Le=L%a$A$tA$LeL%A$A$tA$LeL%!$A$tA$LxH=I(LXL`f@IHH5k'HHhLLhHIIL`LXx HIHx$HuE1HI9AL1LHLPL`LELXLuHXHhIL`LPLHIx HILHhjHhLXL`k`…ZHhL`LXHx9HHu0HLPLX`LPLX`L;=u$\L5(AtAH^'Hu1LHHEHEIIx HIO Mt$111LI$xHI$3 1AAE1E1HhE1fHhLPLXL`GH`GHXG1GDE1H%H=77LPMGIE1E1HDžhL@L%(A$tA$H'Hu1LHHEHEII$xHI$9M5 L111LhLhIx HIA<E1E1E1HDžh;M9L'AfInfI:"tAfɿ)ELhL`)MLhHIH(L`HPtHK'LmIV tH='HuLHLhL]HhI3CIx HIt]M E1ADE1E1HDžh;E1E1A?HDžhHDžhE1A?LNMAIQAtAtIx HIIHuE1E1E1A?A?E1E1E1H5'LLh]Lhu.H5'LLh3Lh L;= $0L%7(A$tA$1Hu1LHHEH'HE!II$xHI$ Md L111Lh*LhIx HI 1AXE1E1HhE1fM9AEM98tAELU1LmH='LL`HHE?LHh@LhL`M/AtAH=7'1LLMHLXL`LuLHh~@LhL`LXMcL5i'AfInfI:"tAH=C'1L)EHLPLXL`^LHh?HhL`LXLP\HhtHhH='1LHLPLXL`HEHEHhIz?ML`LXLPL`M9H5=(LLPLX/BLXLPHI LHLH>LXLHHHPI$L`xHI$ HPLXL`LHBVL`LXAHPLHHx HH&AEtAH='1LLuHLXL`LmoLI>ML`LXIx HIA$tA$IMxfHItoMtIx HItzHhtHhHxHhHHtbMqIfHIYLL@LL`ٹL`vDLyHh謹LLh蛹LhL臹tAEMLUAEE1E1E1HDžhM9H=n'93IHH$I9@AE1HLUL1L`K4"LXL]LPLuLmHPHh3LhL`A HHHx HH`AE|tAH=_'1LLEHL`LhL}ELI%MLhL`DžD11HhHHLLXE1L`HP%HP%HHx%Hhl%DHH=ƾ#LXL``L='AtAHW'1HuLHLpHEHElLpHxIx HIuHxqLx111LpL`ILpx HIAE1E1E1HDžxILLXL`LhLhL`LXxAE1E1E1HDžxH=y'LhLhHHxI H5'H&LhHIIx HIvH$I9AHDžpE1HHpL1LUL`LLxLhL}HhIT#LxL`Ix HIM LLx:LxV Ix HIltLl'AfInfI:"tALpLxHE)ELxLpHItxH'HPtH= 'LLLEHLxLp裷HpID"ILxx HIME11AE1E1HxLL`Lh}L`LhHDžh1E1E1HDžHHDžpDžDLHX#HXL`LhtALxLLpwHωXL`LhŝXL`LhHxLpE LpDžDHDžh1E1E1HDžHHDžpItIKHphtIHxLpHDžh1E1HDžHDžDE1E1AAE1E1E1HDžxHLXL`Lh虜LhL`LX@HDžh1HDžHDžDLL`LpLpL`HHhIx HILhLpLXIFLLALpHHH%LALpHH`LA׾H蓷LpH`UILXx HIHpLHHDžhHDžHDžDHDžh1HDžHDžDDžDE1HDžhHDžHE1E1E1AHxL`ĚL`LhdLLx袚LxHL`Lh耚L`LhRHeL`LhDžDE1E1E1HDžhHDžHHDžpLp pLxtHB$E1H5L`H81L`1E1DžDHDžhHDžHHDžpVHx!HhLp(HhLpE1E1E1E1LpE1DžDLhLHL/LxjHDžh1E1HDžHDžDItIsHphtIxE1E1ADžD1E1HhHHXHLXL`HpHpL`HHhLXHx HHHhLpL`HAHLALpHIHhALpHHHjHhA׾HLp#HhL`Hx HHHHMHpKE1E1AE1E1E1ADžD1E1Hh1MQMqAtAAtAIx HIML='AtA11HuLHHEHO'LpHELpHxIx HIHxLx111LpL蛶ILpx HI1AE1E1HxE11AE1E1Hxl1E1E1AHxRLL`LpL`LpH/$H5HXL`E1E1H8111L`HhE1HHHXDžDHp<DžD1E1Hh!HL`LpKL`Lp1E1E1E1DžDHpAHhHx HHLpzLpE111E1LhE1E1DžDHpnE1HhLXH`Lp舔LpH`LXLLhLxXLxLh/MHLp.Lp,LL`E1E1E111LpE1L`DžDHhE1E1E1ALÓLpHx諓Lp?E11E1E1DžDLp>AHhHx HHt&LpLpt'DžDHLp,LpLLpE1HhL`LpLpL`@UfHHHAWAVAUATSHH'HHpHx)EfHnfH:"HEHMHE)EHTLOMGH$HtH8HtHMHWLeHL-M1jHUH4AUAQIbH xIH}H~HHI<uIع1LLLeH;HtHx HHHI9uHH=}`E1HeL[A\A]A^A_]Hu:HHtHMHHtHMH&Ht8Iع1H=Le)@@UfDHptHuHHtH8HMtH}He LeLIHH}HGHGHHWH)H‰H K ֻHxHHEHpR AH=' HHKH5'HZIHuHx HH LLx*LxIxHIuL蒏 HS㥛 ILH?HH)HiLH)HH?HH!HiHH='6 HoH5v'HHxLxHIIx HIHS㥛 II?HL)HIHHDžxH"$I9FHxfLhEHELhHIH'HPtHغLmLH)H?ItLH LML`Lh HxHL`LhIx HI)Ix HI0Ix HI)H?E1A1H֔DH=\HtHx HH ME1HH)HHH,跫HƉH H.蹸H 諸H6YDH}^1"Hq$tHEH='HH H5'HIHH Hx HH L豌IHw H޺$I9G HxfEHEHHa H'HPtHغLmLH)H?ItLuH HhHxHUIHhxHIuLHx迋HxHxHHuH蠋IxHIuL舋H} H=X'sIH H@LxLH52'HH LxIM Ix HI H5]'1LIH Ix HIx HLݧIH Ix HI] HpH;57$A tAH=t'IH H5<'HHH Ix HIH5'HHxHxHI Hx HHfLxL}E蚲LxHI H8'HPtH='LLLUHLhlLHx LhLxIxHIuLwLxIxHIuLLxQLxMM AtAHpL1LMH='LxHHEšHxIf LxIxHIuL׈MIxHIuL趈AEAEHx HHLMfDIx HIMLLeH;HtHx HHHI9uH='4IHFH5q'HIHIx HI"L!IHHN$E1I9F fLxL}EOLxHH H%'HPtHغLmLH)H?ItLMH LhHxSLH LhHxIxHIuL"HxHxHHuHIxHIuLHcE11A"fH='HHfH5'H IHHx HHLLh誆LhHIVHд$I9AHxfLhEHEͮLhHIH'HPtHغLmLH)H?ItLH LhL}ՔHxH6 ILhxHIuLLx蠅LxIxHIuLLxzLxIxHIuL[HE1A@H$tHEGWHH ЉH Hɮ$H5H8JuH(HEHp@GWHH HH u1`H H=d'H H5'HHx LxHHIx HI"tLhHfH]HEHx)E讬LxHI]HD'HPtHpH'H 'HEIV tH=b'HMHuLHLxYHILxIx HIlIx HIeHx HH^M1ALHx&HxHLx LxHLhLh[H܂NLςHLx軂Lx裂PIAHx HH1E1MtIx HIE1MtIx HIE1MtIx HIMMtIx HIMVIKHI>L1L؁_HLxLx4DLLpLx蚁LpLx$LLpLxjLpLxLLxALxM fLLx!LxDL-jL1AUHuI\ZYDHZcH;DK IHH'IOHIBL腀5LxZLh{LXE1AH=MAE1"LxIE1E1AE1ADA9ME1AMME1AMAE1SE1AMIAPIE11AY1E1E1AE1AME1IE11AL=HMME1AME11AM1E1AHME1E11AE1E1A1MALx?IwI_HxhttIx HIlI1MM1LxE1AIqIYHxhttIx HII1M1MAME1M~I^AtAtIx HII1LLx}LxL}L}L5J'AtAL}IHH@H;Ч$AtAMIx HIa~'H'fI:"HE)EAG @u L&9IGH}HIIHJIx HIHu1LLUHLxHE}LxHIx HIIx HIzE1AH111HkHx HHSE1A1wL|E1E11AL{L{H{M1E1E1ASIvI^HxhttIx HII1M1ALxE1$E1E1E1AE1IAL9{LLx%{LxIL{LLhzLhbLzyHzLzLLxzLxLz#1E1ALA$H;m$u-LxLPXLxIM1AH;o$tH5='LLxLxIUfHHHAWAVAUATIHس'SH H@HX)EfHnfH:"HEHMHE)EHTLOMGI$MtI8HtHMHWH] HL=vI1jHUJ4AWAQMIH xIH}BLuI~IIJ<uM1L$LeH;HtHx HHHL9uH6H=•E1HeL[A\A]A^A_]fDIu:HHtHMHHtHMIfIt8M1H=XH]i@@+xRfDLhAUtAULmL`A$tA$L0LeAtALuH]MIT$A$HVA $HRtA$1wIHHL-IH1Ix HIL;N$L; $qL;¢$dLLE舓LEAIx HI=ELI$xHI$K1wIH$HLsIHIx HIL;$L;R$L;$LLEΒLEAIx HIErH='6IHH$HuE1HI9G1LLELELmLuήH}IRIx HIMM2DI$xHI$Le@HL9H;HtHxHHuvu@LeLmHH5 'L%1^uIHMI$THI$FLu9E1L-q$AEtAELmDDXtIHBHLHE6LEHIIx HIL;=S$L;=$L;=ǟ$L葐…Ix HII$xHI$L'AtAL-7'LLEPHLLEHIwH=u'H薝LEHIqIx HI1LHuLEHHELm:LEIIExHIEIx HIMt"111L6Ix HI}AP@HzDH=E1f.H='IHteH%$HuE1HI9G1LLELELmLu`H}IIx HIMA\T@L-ɝ$AEtAELmH]PLriH5ٝ'L*rIHI$xHI$Mf.LLEqLE>LqLq!Lyq@AL`qL'AtAL-4'LLE趁HL+LEHIKH=r'HLEHI!Ix HI1LHuLEHHELu蠩LEIIx HIIx HIMt$111L螐IExHIEoAWeDMAOI$HI$uLLE-pLEE1Mt3Ixf.HIMtIx HItnMfDLLEoLE(LoL=njjH1AWHuMJZYTDLo8LxofDLho`MiIE19V@I$xHI$eAOE1Ix HIt1MIHILnLLEnLEfDAYME1AO`AYMAYMDAZLU}nUbLUjnUeAR_MGIWAtAtIx HIIHuMGIWAtAtIx HIIHu;ASATAULmLE!LmLEULm\L}mvLHULEhmLEHU4LHULEKmLEHUXI1MAPMAPLmLEaLlhLlLlLEAWAWLlUHAWAVAUATSH8H='H;=$H;=G$H;=$ʈHEE1E11HE)E1E1LuHLLLH}{H}ruH sH=;,H81[A\A]A^A_]}ӗIH1kHHH='IH|H5'HIHIx HI-LHLkHx HH#Ix HIEkIHIH='HHH5J'HRIHHxHHuHjLLL`k0IxHIuLjIxHIuLxjjIHH=s'VIHZH5۞'HHH_Ix HIKHLLjIx HIiHx HHEjHHH=ؤ'IHOH5'HIHTIx HILHL"jHx HHIx HIhiIHH==' HHYH5'HuIH^HxHHuHhLLLiIxHIuLhIxHIuLh hIHH='yIHH5'HHH=Ix HIHLLhIx HI Hx HH&hHHH='IHDH5'H3IHIIx HI%LHLEhHx HH*Ix HI#gIH H=`'CHHNH5'HIHSHx HHLLLgIx HIIx HIfIHH=š'IH9H5-'HHH]Ix HIHLLgIx HI!Hx HHUfHHH=*' IHZH5'HbIHZIx HI&LHLtfHx HH8Ix HI eIHH='rHHLH5'HIHHx HH0LLLe!Ix HI>Ix HI eIHH='IHAH5'H,HHYIx HI(HLL>eIx HI'Hx HH  dHHH=Y'H5'LH?`IExHIE%H='eHEIHH5'HIHIExHIEH $E1I9NHfInLH)H?LEfH:"'H HM)EH41诗H}I3Ix HIMwH5Ϫ'LHD_IExHIE^H='jIHH5'HIHoIx HIH$I9EME1HfInLH)H?LEfH:"݈'H HM)EH41跖H}I;Ix HIM[H5ט'LHL^IExHIEBHLL ^Ix HIHx HH!f]HHausIH6H=*' HEIHH5V'H^IHnIExHIE H 5$E1I9N`HfInLH)H?LEfH:"'H HM)EH41WH}IIx HIMH5''LL\IExHIEH=/'HEIH:H5['HcIHIExHIE H :$E1I9NHfInLH)H?LEfH:"'H HM)EH41\H}IIx HI.MH5T'LL[IExHIE<H=4'IHvH5d'HlIHIx HI^HE$I9EME1HfInLH)H?LEfH:" 'H HM)EH41dH}IIx HIMH5'LLZIExHIEH=<'HEIHYH5h'HpIHIExHIE>H G$E1I9NHfInLH)H?LEfH:"'H HM)EH41iH}IIx HIMMH5'LLYIExHIE[LHLYHx HHIx HI@YIHH='HHH5ݔ'H%IHHx HHLLL7Y Ix HIIExHIE#{XIH%H=P'3IHH5@'HHHIx HIHLLXIExHIEHx HH(WHHH='IHH5'HIHIExHIELHLWeHx HHIx HIWAWIHH='HHH5'HNIHHx HHLLL`WIIx HIOIExHIE VIHH=y'\IHH5i'HHH5Ix HIHLLV0IExHIE Hx HH!"VHHH=ܐ'IHnH5̑'HIH<IExHIEuLHL$VHx HHIx HI'jUIHH=?'"HHH5/'HwIHHx HHhLLLUIx HIIExHIETIH'H='IHvH5'HHHCIx HIHLLTJIExHIEuLTHxHHuHT(THH?H='IH H5'H5IH*IExHIELHLETHx HHIx HI+SIH7H=`'CHHH5P'HIHHx HH LLLSIx HIIExHIE;,RIH H=Í'IHH5'HHHIx HIHLL SrIExHIEuL;RHxHHuH#RIRHH H='IHH5'HVIH)IExHIEuLQLHLbRHx HHIx HIQIH H=}'`HH H5m'HIHb Hx HH LLLQ IxHIuLPIExHIEuLPH6"'LeH='Ht'0"'{ \ ; HLH=!'mHHq I$xHI$x HxHHu HSPHq'tH8[A\A]A^A_]ÐL(PLPHPE1E1E1+HEHEDHEE1E11HEE1+tLO#HEE1E11HE-?fDLpO)H`OHEE11۾0HE@HE+E1E1HEHEE1E1+HEHEE1+HELNHEE1E11HE,_fDHNLNHE+E11HEfHEE1E1,HEHEE1,HEHE+E1E1HEHEE11۾-HEHEE1-HEtE1E1E1.HEHENDHE+E1E1HE)HEE1E1.HEHEE1.HELMHEE1E11HE/LLHLHE+E11HE|HEE1E1/HE\HEE1/HE?LvLHEE1E11HE0HGLL:LHE+E1E1HEHEE10HEHKLKLKE1E1E11HEHEoHE+E1E1HEOHEE1E11HE/HEE11HELIKHEE1E11HE2LKH KHE+E11HEHEE1E12HEHEE12HEmLJHEE1E11HE3>LuJHhJHEE11۾3HEHE+E1E1HEHEE13HEHIE1E1E1E1L]4L]LILIE1+E1E1LELEhE1E1E14LULUME1E14LMLM5LlI1E1E11H}5H} LCIH6I1E15HMHM1E1E1HuHu51Ҿ+E11HUHU1E1E11HE6HELHHHLHLH3LH1E11۾6HEHE21+E1E1HEHE1E16HEHE1E1E1E1HE7HEHHrLHLHDE17LmLmE1E1E17L}L}E1E1۾+E1E1L]L]oLG1E1:HUHUKLsLkAtAAEtAEHx HH11E1E1:HMHM1E1E1E1HuHu:1+E1E1H}H}1E1E19H}H}E1E11۾9LMLME1E1E11LU9LUnE1E19LELEVMwMoAtAAEtAEIx HI{1/HRFLEFL8F1+E1E1HEHE1E1E1HuHu:LEgLEMEMuAtAAtAIEx HIEt-1HE1W1E1<HMHMILLE|ELE1p1<HEHE1E1<HEHE1E1E1<HEHE1E1E11HE;HE1E1E1E1HE*HELD{LD11E1SHMHM1E1E1HuHuSg1E1E11H}SH}KHDX1Ҿ+E11HUHU%Hu1ɺHHuHLH1E1>HEHELDMFMnAtAAEtAEIx HItM1LCLLECLE1E1Hu>`1E1E1>H}JE1<E1LELE2H}hC?1E1=HUHU LDCMFMnAtAAEtAEIx HItM1LBNLLEBLEE1E1=LME1E1E1=LU|E1۾<E1L]L]dH}Bv1E1DH}H}?LvBE1BE1LELE1E1CHEHEE1E1CLML&BMFMnAtAAEtAEIx HItM1/LALLEALEE1E1E1CLUrH}AE1۾BE1L]L]L1E1BHEHE5E1BLmE1!LXAMFMnAtAAEtAEIx HItM1fLALLEALEE1E1BLuE11E1E1BHEHE1E1E1E1HEAHEmH}@1<E1HEHEHL@&1+E1E1HEHE!HX@1E1?HEHEL4@MEMuAtAAtAIEx HIEt1L?4LLE?LE11?HEHE1E1?HUHUj1ɾ<E1HMHMSL?V1+E1E1HEHE,Hc?X1BE1HEHEE1ELuLuE11E1EHEL?MFMnAtAAEtAEIx HItM1L>LLE>LE1E1E1EHUaH}>1ɾBE1HMHM<1E1DHEHE%1HuHuDLH>MEMuAtAAtAIEx HIEt1LL>LLE=LE1(1E1E1GHEHE1E1E11HEGHEsL=H=E1GLuLuE1ALx=E1۾+E11L]L]LQ=E1E1HLELEE1E11۾HLMLME1E1E11LUHLUL<1+E1E1H}H}LE1+1LuLuE1L=<1E1JHEHE1E1E1JHEHE1E1E11HEJHEH; 1+E1E1HEHEL;1E1E1IHUHU^1E1E1E1HMIHMA1E1IHEHE*Ha;-1E1HuHuL1E1E1LH}H}E1E1E1E1LELLEL;~E1E1KLULUL:E1ɾ+E1E1LMLMH:1ɾ+E1E1HMHMZH:4L:;Hw:1E1E1MHEHE1E1E11HUMHU1E1MHEHEL:[1E1E11HMPHMH91+E1E1H}H}L9cE1E1E1OLMLMnE1E1E1E1LUOLUPE1E1OLELE8Ho91E1E11HENHELF91+E11HEHEL 9tE1NLuLuE11E11۾NHEHEE1۾+E1E1L]L]L81E11۾QHEHEj1E1E11HEQHENL8Lx81+E11HEHELR8o1E1PHEHE1E1E1PHUHUE1E1E1RLULUE1E1E1E1L]RL]E1+E1LuLuE11E1QHEHErE1E1RLMLMZH7E1+E1E1LELE2Li7@UH=&HATL%2'SIT$LnBHHËtHCH5)'HHHIMt1Hx HHtL[A\]fH6L[A\]HA H= fD;KL賯HHnHHAH=E1輩f.k\I]UHAUATSHHGH5pb'HHHHIHHHUIHMt6x HHI$x HI$tkHL[A\A]]Dx HHI$xHI$H=H=>E1ƨHL[A\A]]Lh5HL[A\A]]f.HH5V;[HHxHH{H5nL5ZH44ff.UHAUATSHHGH5`'HHHHEIHHH9TIHMt6x HHI$x HI$tkHL[A\A]]Dx HHI$xHI$H<:H=E1FHL[A\A]]L3HL[A\A]]f.H3VYHHxHH{H3nL3ZHp34ff.UHSHH:HuUH5'H=&HSHc>HtVtH]I11ҾH=801@HyxtHH=81@cGH۫HuH9H=1f.UHSHH:HuUH4'H=&HSH=HtVtH]I11ҾH=8p1@HyxtHH=7 1@FHHuH9H=#.1f.UHSHH:HuUHQ'H=?&HSHL#HH<DH)fDUHAVAUATSHL%2a'H=S&IT$L4H}HËtHX$H9CHu1HHEHHEXbIHx HHtMt9HL[A\A]A^]HH)fD=LCHHvH20-H=0FE1LHL[A\A]A^]@LsLkAtAAEtAEHx HHtPHu1ɺLHELuaIIx HItLfDL(fDHp(ff.UHAVAUATSHL%o'H=&IT$Lf3H}HËtHV$H9CHu1HHEHHE`IHx HHtMt9HL[A\A]A^]H'fD;踢1wHyxHH='>d1SD4L[HHzf.HeHHXH KHxHHuHIE$HIEL fLUHATSHL%]'H=&IT$L*HHËtHx HHteE1H;J$tmHb]'H=&HSHo*HtMtI$xHI$H[A\]fHE1H;vJ$uH5&H=^'>IHH5\'H=?&HgVH$H=;ב1hLHEHEH[A\]2LsHHH9$H=;1&2H3HH#H=K;HE>HEDH#H=!;1UHATSHL%V['H=7&IT$L(HHËtHx HHteE1H;I$tmH ['H=&HSH(HtMtI$xHI$H[A\]fHE1H;H$uH5%&H=\'HLnH=N聈1]DHЉff.@UH;=@$HtHG x(fHt(]HC$HJH5|H81>HH=1]ff.fUH;=0@$Ht#H HHt)]HaC$HM*H5K|H81=H|H=艇1]DUH;=?$Ht#HG Hx6Ht)]HB$HH5{H811=HH=f1]DUHAWAVAUAATSH(L%]'H=.&IT$LHHËtIIHt{HA$H9CHu1HLmHHE&LIIEx HIEtyHx HHtYMt0H(L[A\A]A^A_]f.Hx HHH!H=E1HfDLz3'L請HHtfDL{LsAfInfI:"tAAtAHx HHtVHu1ɺL)EKIIx HIt L@LfDHH)EfoEDUH;=`=$HtcHt$]H@$HH5yH81:Hc_H=fɄ1]DUH;==$HtSHt$]HA@$HH5+yH81:HH=Fi1]DUH;=<$HtH*13Ht%]@H?$HKH5xH81:H_H=1]ff.fUHAWAVAUATSH(HFHJIH~L-7'H=&IULHHtH>$H9CHu1HHEHHEHIHx HHtSML;%;$tYI$Hx HHt9M$1ID$He[A\A]A^A_]HfDH>$H H5kwH818Ix HIMH,H=蕂}H;$HE1L H }H5%_H:PH%1S8XZHHUHUHxgHH=%ޓ@c#LۇHHhMf.L{LkAtAAEtAEHxHHuHxHu1ɺLHEL}9GIIx HItLH$(L(fDLUHAUATSHHIHL-D'H=`&IULHHtID$H5 U'LHH8IM(6IH$Lh6HtHXL` H[A\A]]fDHxHHuH8 I$xHI$"fH+H=H1@I11ҾH=*1HyxHH=*đ1\DC!L軅HHzf.HeHHXHp Kc2IHxAHHu8H@ IEHIEL fIEyL UHAUATSHHIHL-C'H=@&IULHHtID$H5KX'LHH8IM4IH$Lh3HtHXL` H[A\A]]fDHxHHuH I$xHI$"fH H=(~1@I11ҾH=(1HyxHH=g(褏1\D#L蛃HHzf.HeHHXHP KC0IHxAHHu8H IEHIEL fIEyL UHAUATSHHIHL-gA'H= &IULHHtID$H5+V'LHH8IM1IH$Lh1HtHXL` H[A\A]]fDHxHHuHI$xHI$"fH6H=|1@I11ҾH=k&؊1HyxHH=G&脍1\DL{HHzf.HeHHXH0K#.IHxAHHu8HIEHIELfIEyLUHAUATSHHIHL->'H=&IULHHtID$H5 T'LHH8IM/IH$Lh/HtHXL` H[A\A]]fDHxHHuHI$xHI$"fH H=y1@I11ҾH=K$踈1HyxHH='$d1\DL[HHzf.HeHHXHK,IHxAHHu8HIEHIELfIEyLUHAUATSHHIHL-<'H=&IULHHtID$H5Q'LHH8IM-IH$Lh-HtHXL` H[A\A]]fDHxHHuHI$xHI$"fH fH=w1@I11ҾH=+"蘆1HyxHH="D1\DL;}HHzf.HeHHXHK)IHxAHHu8HIEHIELfIEyLxUHAUATSHHIHL-_''H=&IULdHHtID$H5 ('LHH8IM+IH$Lhn+HtHXL` H[A\A]]fDHxHHuHI$xHI$"fH H=u1@I11ҾH= x1HyxHH=$1\DL{HHzf.HeHHXHK'IHxAHHu8HIEHIEL~fIEyLXUHAWAVAUATISH(L-2'H=&IULR HHËtL;%,$I|$ HPH} IHHJ/$H9CHu1HLeHHE9II$xHI$Hx HHMt:H(L[A\A]A^A_]LcyHH:H3 SH=E1esH/$Ht5H5gH81A)HxHHuHL@HDL{LsAfInfI:"tAAtAHx HHtFHu1ɺL)EO8IIx HIt L@LHfDH)E4foEff.fUHAWAVAUATISH(L-e0'H=~&IUL" HHËtL;%^*$ID$0Hp Hx*IHH-$H9C)Hu1HLeHHE]7II$x HI$txHx HHtXMt3H(L[A\A]A^A_]ÐLCwHHJH+ H=E1EqHfDL{H,$H]H5eH81'HxHHuH1 HJ,H=pL{LsAfInfI:"tAAtAHx HHtFHu1ɺL)E6IIx HIt L@LfDH)EfoEDUHAWAVAUATSHhH}HHA1$HHVHEH@H;*$t H;~'$XHEEtHuHELeE1E1HEH}HEoID$H53'$I9t$L9ID$N4AtAIMtIx HI6H )'H=p&HQHHMHMHIptAIFH5F'LHHIMH*$I9GHu1LLUHLUHEA4LUHIx HIfIx HI:HQHCH;C  t HKHHHCHx HH6H}MHELIHV&HtH z($H1H9~9I$xHI$L}L%&A$fInfH:"tA$HE)E"IHH>'HPtHEH=*'HuLHHELHEt}IHEx HI5HSIE1E1Ix HI.MHxHHA Mt%I$A 1HI$IMtIx HIMtIx HIuHPDH=ol1MI$xHI$He[A\A]A^A_]LHUHULHUHULHH$$HE1L &H H5HH8R1H!XZ1He[A\A]A^A_]HM H}^qIH|E1M{E1\fDL9vOtAfIPM_IGHxAfInfI:"tAHxEtIx HIHu1ɺLUHxL])E`0L]LUHIx HItLxfLHULU@LUHUfDHHHUaHUIE18f.E1LHEHEHe[A\A]A^A_]ÐL~H LELLLULUHyHH=X{1H[ H=xi1H}IHH@HHEHILLpL])EL]foELp!L$LHEI$xE1A H H=]Ih1JHA E1E1HyI$A x%1E1E1Hx rME1UH9'HAVAUATSHH0HEHEHEHLIHMHtH[HtHUHG"HHUH41L%jLEATAQIH %H H|LefL-&H=·&IULfHHtHCH5v;'HHHIHMx HH9HJ"$I9EHu1LLeHHE,IUxHIUH*MI$xyHI$uoLHEfHE]IعH=ru1H}HuHtHxHHtMHo.H= Ef1He[A\A]A^]fDHuL&A$tA$LefLHEHEHIعLt7fx HHtH0H=Pe1HH rH=`He1[A\A]A^]HfDLfDH$HE1L H H5m<H8R1HXZHe[1A\A]A^]f.HyoHH= qULeHHf.LsLkAtAAEtAEHxHHuHHu1ɺLHELuy$IIx HItLHlpLhfDUHX'IHAWAVAUATSH(HEHEHEHpLIHM`HtHdHtHUHGHJ4HU1H&jPAQMLEbH mH]HL- 'H=&IULIHtA$H$I9D$Hu1LHEHHE#II$xHI$eMt$111L2 IExHIELH)EH=Q$]HHHHMIMHH HHLHH?L qk MLHH$HH5b9H:APHL@1XZ1H}HuHtHxHHtTHQ=H=yL\He1[A\A]A^A_]HtH]:Ha$ufDLL+LaIHfM|$Mt$AtAAtAI$x HI$tnHu1ɺLHEL}!IIx HIt M@LfDHLjHM1PHuY^"LfDUHAVAUATSHHH?L%'H=!&IT$LHH@tH$H9CNHu1HHEHHE& IHx HHtSMt 111L@I$x HI$t>H;H=6ZHe1[A\A]A^]HfDLfDH$HE1L >H H56H8R1HXZHe[1A\A]A^]f.HyoHH=PkULK_HHf.LsLkAtAAEtAEHxHHuHHu1ɺLHELuIIx HItLHlpLfDUHAVAUATSH,IH@L-)'H=&IULHHBtLIHMID$H5'LHHVIMX IHt.LhLp | HHXL` [A\A]A^]fHUHHIExHIEMtIxHI fH{f H=W1@I11ҾH=hf1fHyxHH=i1BDL ]HHzf.HeHHXHK IHIE!HIEL{fDLhIEHIEL>fHxHHuHI$HI$LLQH+UH@'HAWAVAUATISHH8HEHEHEHLIHMHtH6HtHUHGHHUH41L- jLEAUAQIβH H H|ݸLmDL5A/'H=z&IVLHHtHCH5/'HHHIHMx HHIHHH/'H5('H"IFH5dz&LMH=P2HuJHuHLAIMIxHIuLHxHHuHIxHIuLA$tA$H=%.'Hu1LeHLm`I$xHI$zA HMIUHIUu}LHEPHEkf.IعH=Rb1H}HuHtHxHHH} H=v!S1He[A\A]A^A_]HuL.AEtAELmA HxHHuHIx HItbHDH=R1D[6fDHHIعLVaLfDLHEHEq HA 8fkLWHHA :@IxHHuHʐA DL-BjHM1AUHuI胹ZY2@HLIH(OH $H5V/H84UHAWAVAUATSH(H~IHL% 'H=l&IT$LHHtH3 $H9CHu1HHEHHEqIHx HHtvMA$tA$H=9'Hu1LeHLmI$xHI$x HI$t(HtTHe[A\A]A^A_]@HfDLHEHEfDkLUHHHO H=dO1LHEI$HEaH$HE1L H H5e,H8R1H.X1Z/f.Hyx9HH=$a1DL{LsAtAAtAHxHHuHHu1ɺLHEL}IIx HItLHDLff.UHAWAVAUATSH(H~IHL%k'H=̞&IT$LoHHtH $H9CHu1HHEHHEIHx HHtvMA$tA$H='Hu1LeHLmdI$xHI$x HI$t(HtTHe[A\A]A^A_]@H`fDLHELHEfDLCSHHH2d H=OM1LHEI$HEaH!$HE1L fH H5)H8R1HX1Z/f.Hyx9HH=t^1DL{LsAtAAtAHxHHuHBHu1ɺLHEL}IIx HItLHDLff.UH 'HAWAVAUATISHHHHEHEHEH=LIHM-HtHHtHUHG=HHUH41L-\jLEAUAQIިH pH H|ݸiLuDHq 'H=&HSH.IH2tAEL;%h$JIF)IFHHmAVH)HHcЉH9I|$0DHpH8IHH$I9E[Hu1LLeHHEHI$xHI$IExHIEHMt{IxtHIukLaIعH=X1H}HuHtHxHHHVH=1IHeH[A\A]A^A_]DHuL6AtALu3HH)HHFHLHcЉH9wHuHufDH#H5J(H8BmHug@fDfDIعLWfHq$HH5[=H81IExHIEuLWHcH=E1vH2L(L AFAVHH HcЉH9efDAFAVHH HHcЉH91KHMIHRfL(^HHH^HHHH߉u_u1WH,H=~qG@L--jHM1AUHuI+ZY@M}IEHEAfInfI:"tAHMEtIEx HIEtEH}Hu1ɺ)E HIx HItLmSLxL)EjfoEUHp'HAWAVAUATISHHHHEHEHEH=LIHM-HtHHtHUHG=HHUH41L-jLEAUAQI^H pH H|ݸiLuDH'H= &HSHIH2tAEL;%#JIF)IFHHmAVH)HHcЉH9I|$0HpH88IHHU$I9E[Hu1LLeHHE HI$xHI$IExHIEHMt{IxtHIukLbaIعH=SrS1H}HuHtHxHHHiH=61?DHeH[A\A]A^A_]DHuL6AtALu3HH)HHFHL HcЉH9wHuHufDHA#H5"H8Hug@fDCfDIعLNRfH#HH57H811IExHIEuLHJvH=1B2LL AFAVHH HcЉH9efDAFAVHH HHcЉH91HCHIHRfLXHHH$YHHHH߉uu19RHz,H=yA@L-jHM1AUHuI諩ZY@M}IEHEAfInfI:"tAHMEtIEx HIEtEH}Hu1ɺ)EHIx HItLmSLL)EfoEUH'HAWAVAUATISHHHHEHEHEH=LIHM-HtHHtHUHG=HHUH41L-\jLEAUAQIޝH pH H|ݸiLuDHq&H=&HSH.IH2tAEL;%h#JIF)IFHHmAVH)HHcЉH9I|$0DHpH8IHH#I9E[Hu1LLeHHEHI$xHI$IExHIEHMt{IxtHIukLaIعH=M1H}HuHtHxHHHdH=ޡ1>HeH[A\A]A^A_]DHuL6AtALu3HH)HHFHLHcЉH9wHuHufDH#H5JH8BmHug@fDfDIعLLfHq#HH5[2H81IExHIEuLWHqH=1v=2L(L AFAVHH HcЉH9efDAFAVHH HHcЉH91KHBIHRfL(SHHHSHHHH߉u_u1LH,H=sq<@L--jHM1AUHuI+ZY@M}IEHEAfInfI:"tAHMEtIEx HIEtEH}Hu1ɺ)EHIx HItLmSLxL)EjfoEUHp&HAWAVAUATISHHHHEHEHEH=LIHM-HtHHtHUHG=HHUH41L-jLEAUAQI^H pH H|ݸiLuDH&H= &HSHIH2tAEL;%#JIF)IFHHmAVH)HHcЉH9I|$0$HpH88IHHU#I9E[Hu1LLeHHEHI$xHI$IExHIEHMt{IxtHIukLbaIعH=SrH1H}HuHtHxHHHH=1?9HeH[A\A]A^A_]DHuL6AtALu3HH)HHFHL HcЉH9wHuHufDHA#H5H8Hug@fDCfDIعLNGfH#HH5,H811IExHIEuLHJH=172LL AFAVHH HcЉH9efDAFAVHH HHcЉH91HC=IHRfLMHHH$NHHHH߉uu19GHz,H=n6@L-jHM1AUHuI諞ZY@M}IEHEAfInfI:"tAHMEtIEx HIEtEH}Hu1ɺ)EHIx HItLmSLL)EfoEUH&HAWAVAUATISHHHHEHEHEH=LIHM-HtHHtHUHG=HHUH41L-\jLEAUAQIޒH pH H|ݸiLuDHq&H=&HSH.IH2tAEL;%h#JIF)IFHHmAVH)HHcЉH9I|$0DHpH8IHH#I9E[Hu1LLeHHEHI$xHI$IExHIEHMt{IxtHIukLaIعH=B1H}HuHtHxHHH1H=13HeH[A\A]A^A_]DHuL6AtALu3HH)HHFHLHcЉH9wHuHufDH#H5JH8BmHug@fDÿfDIعLAfHq#HH5['H81IExHIEuLWH>H=1v22L(L AFAVHH HcЉH9efDAFAVHH HHcЉH91KH7IHRfL(HHHHHHHHH߉u_u1AH,H=hq1@L--jHM1AUHuI+ZY@M}IEHEAfInfI:"tAHMEtIEx HIEtEH}Hu1ɺ)EHIx HItLmSLxL)EjfoEUH'HAWAVAUATSHHXHEHEHEH(LIHMHtHHtHUHGHHUH41L%jLEATAQIaH sH H|ݨ<LeH5&I9t$t L;%#L-~&AEtAEL5&H=&IVLHH tH#H9CqHu1HHEHHEIHfInfI:"x HHMH=&Hu1LeH)EyIUxHIU#Ix HIHqI$xHI$He[A\A]A^A_]ÐIعH=\r=1H}HuHtHxHHt=H(H=E.1두HuL&A$tA$LeAۺfH)EĺfoEf.LHE褺HE LHE茺HELHEtHEIعL~<fLC3HHIEx HIEtH H==-1pL@1HLJL7=1PHCL{HEAtAHMEtHx HHtuH}Hu1ɺHEL}IIIx HItH]GDL@fDL%FjHM1ATHuI;ZYWH f.UHAWAVAUATISH(L-E&H=^|&IULHYHËtL;%>#Md$ 6HI$LPPHpH8IH$H#H9C;Hu1HLeHHEII$xHI$~Hx HHMtDH(L[A\A]A^A_]H#HH5H81Hx HHtIH H=E1*@L蠷Hv~H舷qHxfDLs0HHtfD1:H,H=aq*S@L{LsAfInfI:"tAAtAHxHHuH)EfoEHu1ɺL)EIIx HItI$LpyL萶ff.UHAVAUATSHHHHtH=&Hu1HHEH]IHx HHlJM0I$xHI$8L- &H=by&IULIHtA$HCH5&HHHIMHCH5'HHHIMtKHHt9LhLp HL`HX He[A\A]A^]fI$xHI$IExHIEDMtIx HI;KHH=(1L谴H蠴IH#HE1L H H5eH8R1HX1Zf.HyrHH= 91fL-IH8fI$ HI$LγfIL訳L蘳I$xHI$uLvHHHHVvLI:@UHAWAVAUATISH8L-&H=v&IULBHHËtL;%~# I|$LmLHHuH} IH/H}HEH9t HEHp%H#H9CDHu1HLeHHEPII$x HI$t{Hx HHt[Mt6H8L[A\A]A^A_]@L3+HHHҸWH=E15%HfDLرxH#HH5H81HxHHuH虱14H:,H=[$H}HEH9tHEHp׳DL{LsAfInfI:"tAAtAHx HHtFL1ɺL)EIIx HIt LxDLذfDH)EİfoEHYDUHAWAVAUATISH8L-&H=t&IUL費HHËtL;%# It$ LmLHPXHuH}IH5H}HEH9t HEHp蛲H#H9CJHu1HLeHHEII$xHI$}Hx HHt]Mt8H8L[A\A]A^A_]fD+L(HHHdH=E1"HXfDLHvH!#HH5 H81aHxHHuH 1i2H,H=FY!"H}HEH9tHEHpGDL{LsAfInfI:"tAAtAHx HHtFL1ɺL)EPIIx HIt LrDLHfDH)E4foEH*WDUHAWAVAUATISH8L-e&H=~q&IUL"HHËtL;%^# It$@LmLHPPHuH}IH5H}HEH9t HEHp H#H9CJHu1HLeHHE6II$xHI$}Hx HHt]Mt8H8L[A\A]A^A_]fDL&HHHH=ME1 HȬfDL踬vH#HH5{H81HxHHuHy1/H,H=VH}HEH9tHEHp跮DL{LsAfInfI:"tAAtAHx HHtFL1ɺL)EIIx HIt LrDL踫fDH)E褫foEHTDUHAVAUATSHLHH`L-&H=n&IUL膶IHbtA$HCH5&HHHIMSHCH5X&HHHIMg}HHt5LhLp cHL`HX [A\A]A^]fI$lHI$IExHIEMtIxHIH[H=x1@I11ҾH=H,1_HyxHH=.1;DsL"IHzf.I$dHI$VL螩IfIgI$IEHIE LRDCIKL0IEI$xHI$uLHHHH֨LȨSL軨0fDUHAVAUATSHLHH`L-I&H=l&IUL観IHbtA$HCH5,&HHHIMSHCH5&HHHIMgHHt5LhLp HL`HX [A\A]A^]fI$lHI$IExHIEMtIxHIH{CH=%1@I11ҾH=h)1_HyxHH=,1;D蓻L IHzf.I$dHI$VL辦IfIgI$IEHIE LrDcIKLPIEI$xHI$uLHHHHLSLۥ0fDUHAVAUATSHLHH`L-&H="i&IULưIHbtA$HCH5&HHHIMSHCH5&HHHIMgHHt5LhLp HL`HX [A\A]A^]fI$lHI$IExHIEMtIxHIHH=u|1@I11ҾH=&1_HyxHH=4)1;D賸L+IHzf.I$dHI$VLޣIfIgI$IEHIE L蒣DIKLpIEI$xHI$uL6HHHHLSL0fDUHAVAUATSHLHH`L-y&H=Bf&IULIHbtA$HCH5L&HHHIMSHCH5@&HHHIMgHHt5LhLp HL`HX [A\A]A^]fI$lHI$IExHIEMtIxHIHaH=y1@I11ҾH=;#1_HyxHH=T&1;DӵLKIHzf.I$dHI$VLIfIgI$IEHIE L負DIKL萠IEI$xHI$uLVHHHH6L(SL0fDUHAVAUATSHLHH`L-&H=bc&IULIHbtA$HCH5<&HHHIMSHCH5&HHHIMgHHt5LhLp HL`HX [A\A]A^]fI$lHI$IExHIEMtIxHIHۥH= w1@I11ҾH=[ 1_HyxHH=7t#1;DLkIHzf.I$dHI$VLIf IgI$IEHIE LҝDIKL谝IEI$xHI$uLvHHHHVLHSL;0fDUHAVAUATSHLHH`L-I&H=`&IUL&IHbtA$HCH5\&HHHIMSHCH5&HHHIMgHHt5LhLp HL`HX [A\A]A^]fI$lHI$IExHIEMtIxHIH8H=Ut1@I11ҾH={1_HyxHH=W 1;DLIHzf.I$dHI$VL>If+IgI$IEHIE LDIKLКIEI$xHI$uL薚HHHHvLhSL[0fDUHAVAUATSHLHH`L-&H=]&IULFIHbtA$HCH5&HHHIMSHCH5&HHHIMg=HHt5LhLp #HL`HX [A\A]A^]fI$lHI$IExHIEMtIxHIHH=q8 1@I11ҾH=1_HyxHH=w1;D3LIHzf.I$dHI$VL^IfKIgI$IEHIE LDIKLIEI$xHI$uL趗HHHH薗L舗SL{0fDUHAVAUATSHLHH`L-&H=Z&IULfIHbtA$HCH5&HHHIMSHCH5H&HHHIMg]HHt5LhLp CHL`HX [A\A]A^]fI$lHI$IExHIEMtIxHIH;H=nX 1@I11ҾH=(1_HyxHH=1;DSLIHzf.I$dHI$VL~IfkIgI$IEHIE L2D#IKLIEI$xHI$uL֔HHHH趔L訔SL蛔0fDUHAWAVAUATASH(L-&H=W&IUL蒟HHËtEA A@htIcOIHH|#H9CHu1HLmHHEIIIExHIEIx HIMtYHx HHH(L[A\A]A^A_]fDHCH5&HHHJIMu HH=-lxHCH5&HHHIM` DL=LHВ;HCH5&HHH*IMGfHx HHt`H1H=]kE1Lc HHHH=$kE1lHfD IL{LsAfInfI:"tAAtAHx HHtcHu1ɺL)EIIHIL茑{IkIVH)EWfoEUHAVAUATSHHHFH4HFHHVH)HHcAH9}HEMA@A@@IA/L5s&AtADIH4H IHIExHIEH#H=&LI9H92IMI$xHI$Hu1LLmHHEIIExHIESIx HI/Mt$111LܯI$xHI$VHhDH=E1HH;#LkHH1[A\A]A^]DHH)HHHH蜭HcAH9+H螺H萺HHH=%h=fDH#HH5H81HsH=gH[A\A]A^]FVHH HcAH9r@H)#H5zH8誖չHLAwDnFII IIcEI9u蟹HE2jHxIHH@IEHHv{HH)HHHLHcAH9%IEHIEtL^gfLHAUH)HHcAH9tH#H5?H8oAIx HIt+IE>@HIE,LʌL轌IEy L訌9L蘌L舌LxSkI$IHIL@IxHIuL I$`iAEAUHH HcAH9jDAEAUHH HHcAH9?LBIHH>AIHIL{H״#H5yH8H,ܶH/ff.UHH&fHH HAWIAVAUATSH)PH^)`fHnHfH:"HHE)pfHnfH:")EHHI\HHRIUHPLpHHTHIH5F1jE1LLV1PZH HPHh7H6H;=#AH;=Գ#DH;=#VAƃ:HXyfDHL-P#AEtAEHPLhALpHH[[&DH`HH;=n#H;=,#L9賥@HhH5&#H9st L9M9LoUpfI(oxHEIw8AGAO AW0)EHH)LEH}Huo]fAG@oeHEH)A_PAg`IGHHtEL5z#AtAIGH5&LLHH~Ix HIhDIHYIGH56&LLHH@Ix HI"@4L5Ŵ#AtAIGH5&LLHHIKx HIL9t+IGH5&HLHHЅE1HHH;HtHx HHt!HI9uHeD[A\A]A^A_]fD fL5#AsqEomoufAG@HEAoPIGHAw`$fD‰@^fL5Y#ADž@-HXEHHGkHGHHw;WH)HHcЉDH9uf話H L-#w@HH)HHHtPKHcЉDH9tHuRHuDH#H5H8DžDuGWHH HcЉDH9SHAGWHH HHcЉDH9iH5j1IVE1LL#`ZY@L-y#AEtAELhLȄL踄L訄 L-!#@HĢHMHHHL9H;HtHxHHu>@H#H5 HRH81YH֊H=]A;fDHXAyfDSzfD뭐;fD;HA@HHH;HtHx HHtiHL9uH2DH=\A'I11ҾH=ALpSHPHHx f{WfDAMDk IH-HgDIEHIEL蟂|5IlHI_LDeDF<뾾fUfHHAWAVAUATIH&SHXHx)EfHnHfH:"HxHEHuHE)EH`LIHMPI-MtIOHtHMHWH]|HL5I1jHUJ4AVAQMQH xRH}H}`LmM~fIIJ<uM1L4LeH;HtHx HHHL9uHH=pZE1HeL[A\A]A^A_]fDIuHHHtHMHHtHMII IM1H=ћH]k2fD+BfDLuLeH 1&H=C&HQHHp'HpHItAHC#I9GfHEHEEECHHE1HH=&HytHxH=#&HEHy tH=&LmHy(tH=&LuHy0tHt5LLeLpHxLpHxIMtIx HIHx HHIx HIqMLmH;HtHx HHtHI9ufDs~L(AEtAEH#LmtHEIƋtHEIH]@Hp謒Hp IH*@HH=WE1%8Ha#tHEHA#tHE\E1LpAtAL(LuAEtAELmH]MQH#DL`A$tA$Le뤐L8}H(}^L}Hx3@L5jH1AVHuM XZYDMOIWAtAtIx HIfLMHhLpHEEE LpHhHHuvIx HIt%HOHHBH:|5LHx&|HxLLhHp|HpLhDI1`LUfHHAWAVAUATIH+&SHXHx)EfHnHfH:"HxHEHuHE)EH`LIHMPI-MtIOHtHMHWH]|HL5I1jHUJ4AVAQMKH xRH}H}`LmM~fIIJ<uM1LLeH;HtHx HHHL9uHH=8TE1HeL[A\A]A^A_]fDIuHHHtHMHHtHMII IM1H=pH] 2fDyBfDLuLeH &H=*=&HQHHpDŽHpHItAH#I9GfHEHEEEHHE1HH=&HytHxH=ñ&HEHy tH=S&LmHy(tH=K&LuHy0tHt5LLeLpHx裇LpHxIMtIx HIHx HHIx HIqMLmH;HtHx HHtHI9ufDxL(AEtAEH#LmtHEIƋtHEIH]@HpLHpIH*@H}H=]QE18H#tHEH#tHE\E1LpAtAL(LuAEtAELmH]MQH#DL`A$tA$Le뤐LvHv^LvHx3@L5-jH1AVHuMQZYDMOIWAtAtIx HIfLMHhLpHEEELpHhHHuvIx HIt%HOHHBHu5LHxuHxLLhHpuHpLhDI1`LUHAUATSH(HIHL-W&H=8&IULtHHt|tH#H9CHu1HLeHHEޭHx HHtHtBH([A\A]]fDHHEtHEfDKLHHtH{H=N1I11ҾH=S1fHyxHH='D1TDLkAEfInfI:"LctAEA$tA$HxHHuH)EsfoEHu1L)E責IUx HIUtLLHEsHEff.UHAWAVAUATSHHvHHL-;&H=6&IUL~IHtA$HIHHCH5&HHHIMt}HCH5 &HHHtSIMt\oHHtJLhLp Lx(QHL`HX H[A\A]A^A_]Ð苘IfDE1I$xHI$IExHIEQMtIx HIMtIx HIH*yH=,LG1`I11ҾH=1AHyxiHH=1DCLIHf{f.I$eHI$WLnqMFIE:HIE,LCqfD3I)L qMfLqLpI$xHII$aIjLpTff.UHAVAUATSHHxHHL-մ&H=3&IUL{IHtA$tH={&Hu1HHEH]IHx HHtwM^HCH5&HHHpIMrxHHt@LhLp ^HL`HX H[A\A]A^]Ho|I$\HI$IExHIEMtIxHIHfvH=}h1tI11ҾH=ˌ81THyxgHH=10DcLIHdzf.I$dHI$VLnIf{II$IEHIE LBnDL0nIEI$xHI$uLmHHHHmLmcLm@fDUHAWAVAUATISHHL-&H=1&IULxHHËtL;%#8It$0LuL~HuH}肙IHH}HEH9t HEHpoH#H9CHEHELe荕IHH&HPHuE1HH#HLHHE{IMtIx HII$xHI$IExHIEHx HHMtNHHL[A\A]A^A_]@H #H;H5H81IHxHHu HkHr/ H=%FE1H#LHHuHHEzI!@HkPLk,LxkLhkLcHHWf1Hu,H=aH}HEH9HEHpmHL{LCAfInfI:"tAAtAHx HHLEHE)E8LEHIt"HŮ&HPtzLLIx HItBLHx HHI$GHI$9L!j,@LLE jLEfDH#LLLǺLEHExH]I;fHLE)EiLEfoEHibHff.fUIHŭ&fHHXHAWAVAUATSH`H)E)EfHnfH:"H Hp)EfHnfH:"HE)EHLIHMIH JcH@HHtHMHHtHMHHtHMHtHMHW<HHMJ4HŌHxH]jHPAQMI19H LeKMLuMHEHhHLmMRL=+&H=+&IWL0sHHtHT#H9GHu1HH`HEHE莠H`IHx HHMAtAHpfLeHEL}HEEIHH|&HPtH&LuIT$ tHhH`&HEIT$(tH=&LHLmHIIHISI$xHI$Ix HIMLxI<$HtHx HHt II9uHeL[A\A]A^A_]DCfِIwH JcH1H=`1EHEH]HxLxI<$HtHx HHt.IL9uHmIH=8E1^DeːIxHItx HI#Hl^H=E1L`eHِ#tHEIċtHEE1IƋtHEHhHEH]HxMH#tHEIHEH]HxE1HX3HhxtHhHuLpAtAL LuA$tA$HhLeWH#7DHDžhE1L A$tA$LeH#LhAUtAULmIfD dvfDI$A^LcJLc&HI#tHEI@H)#tHEHhaH#tHEI)@H#tHEI@wLCHHHH=f詴He1[A\]fDL%&A$tA$HJ&Hu1LHHEHEyHI$x HI$tDHt111HaHx HHt1[JfDL@fDH@fDUHAWAVAUATSHH;= l#HwHHH}P0HEL=%a&H=&LeHXIWLHELmLuHP\KHH tL?@IHL+@IH_L@IHHX?IHHP?IHHn#H9CHh1HLMHLXHDž`LhLpLxL}0xLXI$xHI$IUxHIU}Ix HI9Ix HIIx HIHx HHHHĘ[A\A]A^A_]fcHx HHOI$xHI$qMtIExHIEvMtIx HI}MtIx HIHDH=]H^IHH=?J1?LHPLX=HPLXLHPLX=HPLXLHPLX=HPLXZLHPLXZ=HPLXHHX1=HXXDLHX=HX$DQLHHbDHk#H5HiHCH81eGL%Y&A$tA$HEF&Hu1LHHEHEAuHI$xHI$ Ht"111HU\Hx HH HHBL牵X,H=衦H}HEH9t HEHp5I$yf.H;]#uLLPXHIEH{HIEmL2`fDL2=H;_#tH5s%L9HH-fDUHAWAVAUATSH(HIHL;% ^#UID$LP]H[L-up&H=%IULz=HH^tH`#H9CHu1HHEHHEjIHx HHMAEtAEH=_&Hu1LmHLekJIUx HIUMxHIUHHe[A\A]A^A_]L{LsAtAAtAHxHHuH21Hu1ɺLHEL}iIIx HI|L@H0LHE0HEHH]#HE1L F5H /H5H8R1HOYXZ1f.Lx0wHyxHH=OT1DLHE<0IUHEH _#HEH5H81IYWH8H=9O11pf.kDLHHXUHAWAVAUATSH(HIHL;%[#UID$LP [H[L-m&H=%IUL:HH^tH]#H9CHu1HHEHHEgIHx HHMAEtAEH=d&Hu1LmHLe{GIUx HIUMxHIUHHe[A\A]A^A_]L{LsAtAAtAHxHHuHB.Hu1ɺLHEL}gIIx HI|L@H-LHE-HEHHZ#HE1L V2H -H5}H8R1HMVXZ1f.L-wHyxHH=Ld1DLHEL-IUHEH\#HBH5H81YVH5H=eLA1pf.{ALHHUHAWAVAUATSH(HIHL;%+X#UID$LXH\L-j&H=%IUL7HH_tHZ#H9CHu1HHEHHEdIHx HHMAEtAEH=9Y&Hu1LmHLeDIUx HIUNxHIUHHe[A\A]A^A_]@L{LsAtAAtAHxHHuHR+Hu1ɺLHEL}dIIx HI|L@H+LHE*HEGH!W#HE1L f/H *H5zH8R1H JSXZ1f.L*wHyxHH=It1DLHE\*IUHEH)Y#H?H5H81iScH?0H=Q1of.>LHHdUH]&HAWAVAUATISHHHHEHEHEH=LIHM-HtHHtHUHGHHUH41L-HjLEAUAQIH xH H|ݨLmDL;%T#KID$LTHRL5g&H=e%IVL 4HHMtH-W#H9C{Hu1HHEHHEkaIHx HHDMAtAH=p&Hu1LuHLeLm@IxHIDx HIHMIUx~HIUutLHE'HEbDIعH=NG1H}HuHtHxHHtUH-sH=F轚1He[A\A]A^A_]@HuL.AEtAELm1f;'fH('LHE'HEIعL/fLHE&IHEHU#HU<H5H81OH,H=Fə1xf ;L胟HHL-EjHM1AUHuIcZY@HCL{HEAtAHMEtHx HHtKH}Hu1ɺHEL}^IIx HItH]=DL%H%ff.UHHU&HAWAVAUATISHHHHEHEHEH=LIHM-HtHHtHUHGHHUH41L-DjLEAUAQIH xH H|ݨLmDL;%YP#KID$LPKPHQL5b&H=$%IVL/HHLtHR#H9CzHu1HHEHHE*]IHx HHCMAtAH=S&Hu1LuHLeLmDLx!Hn!ff.UH@U&HAWAVAUATISHHHHEHEHEH=LIHM-HtHHtHUHGHHUH41L-_@jLEAUAQI^H xH H|ݨLmDL;%L#KID$LP LHQL5^&H=%IVL+HHLtHN#H9CzHu1HHEHHEXIHx HHCMAtAH=`h&Hu1LuHLeLmw8IxHICx HIHMIUx}HIUusLHEbHEa@IعH=>j1H}HuHtHxHHtUH '@H=>=1He[A\A]A^A_]@HuL.AEtAELm1ffHLHEHEIعL螠/fLHETIHEH!M#H3H5 H81aGPH'&H==I1yf2LHHQL-h=jHM1AUHuIZY@HCL{HEAtAHMEtHx HHtKH}Hu1ɺHEL}AVIIx HItH]>DL8H.ff.UH Y&HAVAUATSHH0HEHEHEHJLIHM:HtHHtHUHGHHUH41L%h<jLEATAQI#H H H|H]fH%HCH9t&HAWAVAUATISHHHHEHEHEHLIHMHtHHtHUHGHLmH41L5)jLELAVAQIH H H|ݨ^H]f.A$tA$H=d-&1LLeHHE"II$xHI$:M3Ix HIL5G&H=#%IVLHHtH7#H9GAHu1H}HHEHE(BIH}Hx HHMAtAH=Q&1LLuHLeH]!IxHIx HImH-HH}HHutHHEHEbDIعH=(袊1H}HuHtHxHHt]HhH=(u{1He[A\A]A^A_]@HuHtH]LmLBvfDLIعL?;L賀HH;H H=a'z1k9fDLHETHE~LHE<IHERHGLHEAtAHMEtHx HHtpH}1ɺLHEL}?IIHIzLmfL58&jLm1AVHMILZYBfUfHHAWAVAUATIHSHHA&H`HH)EfHnfH:"HE)EHLOMHHHIع1H=d+H}HtHx HH:H}HtHx HH-H H=x1He[A\A]A^A_]@HNtHMHtHMHWHLmH41L=*jLELAWAQIH 1H}-LuH"H|ݠ(HHt H|ݠH]A$tA$H="(&1LLeHHEjII$xHI$9MYIx HIL=B&H=%IWLHHtH2#H9GHu1H}HHEHEH$L%(&H=%IT$LIHtAEH#I9EHu1LHEHHE#IIExHIEMpA$tA$QIH%tIEfInHu1HHH=a&fH:"n6&Lm)EqHI$2HI$IExHIE&I$xHI$ HHeH[A\A]A^A_]DM}MuAtAAtAIExHIEuLHu1ɺLHEL}!IIx HIMfI$x HI$zxHI$XHH=[1*fLxRIELPL@Hq#HE11L H kH8RH581HAXZf.L HyEHH=1lZfLH#H5H5kOH81Ls`IHfLHL8I$uff.@UHAWAVAUATSH(HHHH;{#HCHPnH$L%$&H=G%IT$LIHtAEH #I9EHu1LHEHHEJIIExHIEMpA$tA$ IH%tIEfInHu1HHH= &fH:"&Lm)EHI$2HI$IExHIE&I$xHI$ HHeH[A\A]A^A_]DM}MuAtAAtAIExHIEuL@Hu1ɺLHEL}IIx HIMfI$x HI$zxHI$XHH=X1*fLRIELLpH#HE11L H H8RH5?41Hq XZf.L HyEHH=E1hZfLH#HeH5KH81 +L\IHfLxLhI$uff.@UH&fHAWAVAUATIHH`SHHH)EfHnfH:"HE)EHLOMHHIعH=>dH}HtHxHHuH}HtHxHHufHZH=E1UHeL[A\A]A^A_]HtHUHGHHUH41L-jLEAUAQI訲H ;H}LuH"H|ݠHHt H|ݠL}L;%C #ID$LP5 HH&H=%HSHHHtH#H9G,Hu1H}HHEHEIH}Hx HHMAEtAEHELmLeLu HH8HA&HPtH=u&HuHHL}cIIEHIEHx HHIExHIE\MH}HtHx HHH}HHHH HL6AtAL=! &LuAtAL}fIعLaIEx HIExHIEnH~H=E1RH &tHUF+fDfDHLHqLMH #HeH5FH81m4+HWHH fLxLhIEL-jHM1AUHuI[ZY0@HGH_HEtHMEtHx HHtHH}Hu1ɺHEH]IHHHHff.UHAVAUATSHHHH; #HCHHL-u&H=Π%IULrIHtA$HCH5&HHHtyIMHCH5`!&HHHIMtsqHHtaLhLp WHL`HX [A\A]A^]DIfDI11ҾH=3^1@I$xHI$BIExHIEMtIx HItw2 H=H=|OO1bHyxsHH=`17DH #HmH5CH811 fL|LWLTIHPGfI$=HI$/LNLMHHH%I3LI$x HI$tHI@UHAWAVAUATSHH8L-% &H=>%IULHIċtA$H;#Hs0Lu1LHuH}HH3H}HEH9t HEHpIHSHXzHH~H#H5P&HpID$LMH=*GHLLAISMI$xHI$IExHIEHx HHIGH;#iAtAILx HI'H%~&HEC fH:")E@u tEHCLHPHHx HHH8[A\A]A^A_]CHuH#H5)H8I$HI$~HxHHMtIEx HIEtkHV H=sKH81[A\A]A^A_]fLHHEHE1LHv~L[LPIHlfH)LLHa#HH5K?H81I$ HI$L?f.1ZH,H=vQJH}HEH9t HEHpwI$yf.I$xHI$HtHHgHZDI$7HI$)L~fHHHHHL8HHLLIHLqH;"uTLPXHIHHILuHjHH]H;#tH5;%LHHff.UfHHAWIHq&AVHAUIHHATSH)E)EfHnfH:"H HE)EfHnfH:")EHLOMzIG*MtIyHtHMHWH]LeHL3I1jJ4LARLxAQMLxH xgH}\H}H}-LuM~IIJ<uM1L4V@H;HtHx HHthHI9uHH=\E1GHeL[A\A]A^A_]fIuXHHtHMHHtHM{fII|IM1H=H]cULe*f.HEHpHEHxHEHhAEtAEH=C%1LLmHHEIUxHIU HHx HHKL=&H=%IWLHHtH#H9GHu1HH`HEHE H`IHx HHM5AtAHpLuHEHEHxL}LmHEaIHH &HPtHhLLH=U&HHE:IIDHIIx HI[Ix HIWMtgfH;HtHx HHtHL9uFf.fIxHI;x HI HH=HE1C{L0AtAH"LuуHEHpHEHxtHEH]LeHh=@H"tH}HEH"tHEH"tHEHH1HxptHxHuHpHpʉhtL0HpAHMAH"Lu0VHxDHDžxH@3%fDILH`H`@DLLHQ"Lu0VKLLL=jH1ARMLLx覩ZLxY LsGHHfHGLOHXAtAHX`tHx HHHX1LLML`HEL`IIx HItHXDLLLIHEHx-HEHEHpHxL`YL`Aff.fUfHHAWIHA&AVHAUIHHATSH)E)EfHnfH:"H HE)EfHnfH:")EHLOMzIG*MtIyHtHMHWH]LejHLI1jJ4LARLxAQMLxH xgH}H}H}LuM~IIJ<uM1LN@H;HtHx HHthHI9uHqH=&E1>HeL[A\A]A^A_]fIuXHHtHMHHtHMKfII<IbM1H=H]3MLe*f.HEHpHEHxHEHhHP"I9IELP@HL=&H=%IWLHHtH"H9GHu1HH`HEHEH`IHx HHM0AtAHpLuHEHEHxL}LmHEuIHH&HPtHhLLH=i%HHENII0HIIx HIIx HIMtbfDH;HtHx HHtHL9uf. IxHIx HItHH=[E1 <L0AtAH3"LuуHEHpHEHxtHEH]LeHh@H"tH}HEH"tHEH"tHEHH1HxptHxHuHpHpʉhtL0HpAHMtwAH"Lu0VHxHDžx[9fDIL8L(H"Lu0VfDLjH1ARMLLxZLxYH"HeH5.H81L L?HHfLhLXI[HGLOHXAtAHX`tHx HHHX1LLML`HEL`IIx HItHXDLHEHx2fDHEHEHxHpL`qL`YDUfHHHAWAVAUIH &ATHSH)`)p)EfHnH fH:"HxHE)EfHnHJfH:"H)EfHnfH:")EHLOMIH 6JcHfDHH(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWH`Le;HL5I1jJ4LAVAQM膔H H`xKHx!I~%fDIIJ<uM1LEA @HI9t'H;HtHxHHuZHI9uڐH[DH=z6He1[A\A]A^A_]fIIIHHtHxHptHpHptH8HhtH`HH`LeLAƃHhH}HXHpHPHxHHHqlL<H}HgKL8HXH5N%H9pt H;"HPH9pt H;o"HHH9pt H;U"L=x%AtAL-&H='%IULHHtH"H9G~Hu1HH@HEHE)H@IHx HH{MIcJH@HPPIHcHH0tHHIVHXHHtHXHPHBXtHPHc FH!,H=>Hc H=rME1(L (HLH1"HE1L vH -H5H8R1HXZE1f;L HHH H=qDHyxqHH=R\f.L{LcAtAA$tA$HxHHuHHu1ɺLHEL}IIx HItLHQYLȒfDH"HH5H81H H=pMAALJUH@%HAWAVAUATSHH(HEHEHEH LIHMHtHHtHUHGHHUH41L%̲jLEATAQIabH SH H|ݸ4H]L%%H=U%HEIT$L譜HHtH}HGH5 %HH!IH}MHx HHHHEӰHHVq\HEHHLpL-%MM}MHL)I9H?uH"H9GSL苺IHH}fDIعH=`1H}HuHtHxHHH1H=nE1^HeL[A\A]A^A_]@HuHtH]MDAEtAEHx HHHEUHEIHLhH"H9CtILLyH}IHHx HHIEHExHIE_ID$LMH=#V1LLAI苪MI$xHI$|IxHIXHHHHH藎tf苎&fD{SfDIعLW I9EAu 8y@t @kK4>H}uMH}M1LLH}DtIH"H5\H8fH}E1E1HHxHHu舍I$xHI$ZMtIExHIEMtIx HIH5H=kE1c^H}E1HqfDI$xHI$uL@fDLЌÌifDL谌TL蠌]#LHEHH8fDLhLXwH HHHD#ILL%jHM1ATHuI gZY'@H:I$DRH萷IHLu1LL^IHfH}E1HI$HI$LNf˶HuH"H5PH8耓ff.UHAVAUIATSH@L%%H=pN%IT$LHHËtHCH5%HHHIHMx HH.A$tA$H=%Lu1HLLeLmHI$x HI$xHI$HH;"H;ճ"uVH;"tMH]AąxFHx HHE)HZ"tH@[A\A]A^]@DfHx HHth|HȏH=H@1[A\A]A^]fLh4HXLHI$H0fDH 9裝LHH_,f.|HEHH8H߉uȈu%軮IL%9%A$tA$IEH;"EAEtAELHD%~%HEC fH:")E@u tEHCLHP'KTIHHx HHHu1LLmHHEHIEx HIEtbI$x HI$t0Ht111H轧Hx HHt=}LxfDHhhLXfDHHH;/"uULPXHHI$xHI$uLI$xHI$uL}H; "tH5J%L Hff.UfHHHAVAUATSHHy%H0H@)EfHnfH:"HE)EHLOMHHHIع1H=o\H}HtHx HHH}HtHx HHHWH=1He[A\A]A^]HNtHMHtHMHWHHUH41L%jLEATAQIVH 7H}xLuH"H|ݰHHt H|ݰLeLHHHx HHL-T%AEtAEfHu1LH)E譽HIExHIEDHktH=%Hu1HLeH]Lu:IHx HHCM:I$xHI$tHHx HHdH}HtHx HH_H}H"HHH HEكHEHHuL`A$tA$L0LeAtALugIع1LH@Lh[UfDK7fD;DfDL(HL0AtAL%%LuA$tA$LeH%tHUoHHE贂HEHE蟂HEfDL%ǣjHM1ATHuI]ZY@HtH=1%fHmvH=_h1HMwH=?H1UH%HAWAVAUATSHHXHEHEHEHLIHMHtH)HtHUHGHHUH41L%΢jLEATAQIRH H H|ݸH]L%N%A$tA$L-5%H=D%IULBIHtAL5%H=nD%IVLIHtAEH4"I9EHu1LH]HHEvIIExHIEM=Hݮ"I9GHu1LLEHLEHELEIIx HIhIx HIDM,Hu1LLuHHE迸Ix HI;I$xHI$ HHHxyHHupHHEHE^IعH= 1H}HuHtHxHHtMHj H=se1He[A\A]A^A_]@HuHtH]D~fLLE~LENL~L~LHE~HELHE~HEIعLfےLSIHlI$x HI$twIx HIt]HB H=K=1JfD{LIHI$xHI$uL}L}L}|MuIEHEAfInfH:"tAHMEtIExHIEH}Hu1ɺ)EIIx HIt LmLLE}LEfDL%\jHM1ATHuI XZY@MoIGHEAEfInfI:"tAEHMEtIx HItkH}1HuLE)E_LEIIEx HIEtL})DLLEL|LEL)E:|foELLE)E |LEfoEwfUHAWAVAUATSH8L="L9HG0IH@Hx(HcHHL5|G%AtAL-J%H=+?%IULφHH+tH"H9GHu1H}HHEHE0H}IHx HHMLHH"~IHLIHAtAIPL:tHZH=z%1HuHLELELuLmLeaLEIIx HIIExHIEI$xHI$Ix HIMtiHx HH]H8L[A\A]A^A_]E1Ix HIIEx HIEt_MtI$x HI$t8HH=}XE1wyqfDLyfDLyfDLxyLELkHHIlHI_E1E1L)yM,H"H0H5H819HH=WE1fHxLxmLLExLEALLExLEHGLGHEAtAHMEtHx HHtYH}Hu1ɺLELEHELEIIx HItH}DLwfDLEwLE또UfHHAWAVIH%AUHPIATSH)P)`)pfHnHfH:"H8HE)EfHnHƐfH:"H)EfHnfH:")EHLIHMIH vJcHDHH(tHxHH tHpHHtHhHHtH`HHtHXHtHPHWHPLeHL=I1jJ4LAWAQMFH xyHpHx HPHHI~IIJ<uLM1H;Hu@HI9t'H;HtHxHHuuHI9uڐH{H=E1HeL[A\A]A^A_]IIIM1H=HPpLe`HXLpLxH"H8H`H@HhH0AtAAtAI9zIEH(LMH{H(I9I9H 4%H= 8%HQHH(H(HH8tHǢ"H9GoHu1HH(HEHEH(IHx HHMAtAH8LEL(HEH@HEHEHHLmHEH0LuL}HE:L(HHH%H5@%HPtH=%HuHLL@HHL@HHII5HIHx HH$Ix HI0MtIx HIIxHIufHI9H;HtHxHHurIx!HIIx HIfHxH=E1a@E1E1HpH0ʉHtH0HHHh1H@HtH@H`HpH8ʉHtHH8HXHH(tHHH%"HPM=HPLeMtHxIHPLeefDHќ"tHxHpH"tHxH@(tHx HHL@7fH8(tHx HHvL8f.E1Lp AtALp0fLx(AtALxtHpIL($pL(Lp,Lo@HHLHoLHDLoL=jH1AWMLJZY:fDLH@LHroH@LHGH9"HH5#H81yH(賃H('HHLnLLHnLH^HGLOH AtAH (tHx HHH 1LLML(HEQL(IIx HItH 4LL(9nL(HH(!nH(oH n*L(mL(VUfHHAWAVAUIHͤ%ATH ISH) )0)@)PfHnHfH:"H@HDž`)pfHnH fH:"H HE)EfHnHfH:"H)EfHnH@fH:"Hu)EHGLIHM7I H jJcHDHH@tH`HH8tHXHH0tHPHH(tHHHH tH@HHtH8HHtH0HHtH(HtH HWH  HL5I1jHpJ4AVAQMfDfDH)"H5H]H81i~HJ\H=3Q1f.HxQIE1E1HIMtIx HIMtIExHIEu LTzfDLHMTHMoLHMtTHMmH`TqHPTuLHEfDfDHy}"H5jHjVH81wHUH=n-1f.HxQIE1E1HIMtIx HIMtIExHIEu LMzfDLHMMHMoLHMMHMmHMqHMuLHEMHEHIم2?DLHM\MHMLHML8MHcjHM1PHuE14(ZYeDLHELIHE{aLHHI~0LIHHIE1l@LCLKAfInfI:"tAAtAHx HHLELMHE)EtLMLEHHt,H%HPtLL˿HudfIx HItILLMKLMHuLLEHMLmLMZH]HMLEIHLELM)EKLMfoELEUH@%fHH HAWAVAUATSHHH)EfHnfH:"HE)EHLOMuHHIعH=a$H}HtHxHHu JfDH}HtHxHHuJfHQH=Il1ֽHeH[A\A]A^A_]@HtHUHGHHUH41L-ajLEAUAQIH 8H}9LeH"H|ݠHHt H|ݠID$H5%LHH'HHHx HHEH;6u"Hh%H= %HSHTIHZtAEID$H5%LHHpHH tH=jl%Le1HLHEH]aIHx"HHxHHuHHMHJw"I9E=fHEEVqMIHHm%HPHE1HuLHLLELuhWLEHMtIx HIIx HIIx HIIExHIEjHH}HtHx HHH}HAH6HH)GDHL&A$tA$Hs"LetHEfHhGIعLvMIExHIEuL&GfDHFNH=h1FfDHir"tHEFfDHuLLLuHUHKMEMMAtAAtAIExHIEfLMLELEEnLELMHIt)H*k%HP@MͿLIx HIIxHIuLEIHILEkHLELEcLxE?HhEHaL- \jHM1AUHuIc ZY@L0EYH+IHf.LLMDLMjHLLLLELuLMSLmLEHPLLELMDLMLE0ff.@UHAWIAVIAUATSHHhHUtL-o"H5+%L9I9IGH;n"IGtHHRfHm"HHHUz\HUHIHx HHFHx HH"L-Sf%H=4%IULNHH,tHq"H9CRfL}HEHE)EkIHE1HH|%IWtH%LeIW tHEH_|%HEIW(tHD HLHHLELuQLEIMtIx HI8Ix HIHx HHM7I$xHI$HhL[A\A]A^A_]I9IGH;4l"IGtHHu AL%k"IEKHIE=LA0fLArHACLAADHn"@HAHALxAULsHHnHVIH=cE1uLCHSAfInfI:"tAtHx HHfɿHULEHE)M)EniLEHUHI]Ix HIHKHH>H@1fA.GLFfDL%Qm";@xHHu H;@IܾmH;Im"tL_HHtD(fA.G6HHULE)p?LEHUfop@LHU?HUH;l" L._IHYIܾkHH1ɾff.UHv%HAWAVAUIATSHHHEHEHEHLIHMrHtHHtHUHGBHHUJ41L5`jLEAVAQM;H M!NdMhA$HEHEtA$L-%H=%IULnIIHtAHl"I9FHu1LLeHHEvHEIHEx HIH}I$xHI$1dIHH; i"HE2H5s%Hg"H9CRHDHtDž\HEH`E1E1HhHEHxHEHEHpLPMD\LhHHxHpH`YLmMtIx HICHELuMtI$xHI$,HuL3\HEHHH;di"H;="f"7H;=g"*HHXHHA|Hx HHpHEEMM@MH=] 1H}HuHtHxHHtuHBs H=E1ڮHeL[A\A]A^A_]IuL&A$ƒA$LeLH;p;;^fDL(;qDML&IGI;G } AtAIWL4HIGLLFLPMME1MtIx HI'MtIx HIIcHIMtIExHIEkLuHtHx HHnMtIx HIe~ H AH=E1*HMHx HHt~I$0HI$"L99fDLeHEHE'Lp9L`9HP9uHMLPx HHLLx苼Hx f.LuMfDMLP9fL8L8]H8L8HLx8LxNLh8LLxQ8LxDLLCIHLe} fM~MnAfInL}fI:"tAAEtAEIx HIwHu1ɺL)EpHEIx HItMfL7fDL5`YjHM1AVHuMZY@H9f"HFH5#H81y`IE11ۅLuHHUHHEcLuHEHu1HH]LoHIx HIHzHCH;a"t0H;d"t'H5^HIƅx HHtpLH]HtDDž\1LeA$L)EI6foEsH]HIE1L6VH 6MfHu1H)EfUHAWAVAUATISHH(H%HFH9t=HXHHqH1HH9H;TutH=c%Hu1H]HLeNHx HHSHH([A\A]A^A_]fDHH9tHuH;_"~f.tL5t%H=Y$IVL?IHtAEHc"I9EJHu1LLeHHEamIIExHIEMH=b%Hu1H]HLeLHx HHtXI$x HI$tH|H([A\A]A^A_]ÐLHE3HEfDHHE3HEHHE3HELHLĬIHHx HHH9H=pU輦H(1[A\A]A^A_]L`3M}MuAfInfI:"tAAtAIEx HIEtNHu1ɺL)EkIIx HIt MoDL2H2=L)E2foEff.t#t&H^"tDUHAVAUATSIHH^"I9t^HI_"L5 \"I9AM9DuHL;%]"t?LNAI$x HI$tZEx=ELHDËt[A\A]A^]ÐI$x HI$tE1@L1fDL1ff.UHs%IHAWAVAUATSHHXHEHEHEHLIHMHtHHtHUHGHJ4HU1HEdjPAQMLEH LeMVL-n%H=X$IUL;IHtAH_"I9FeHu1LHEHHE]iIIx HIfMAtAHE1H=E4%HHL}LeHEHIIxHIx HIOML5n%H=h$IVL ;HH@tH0^"H9GfHu1H}HHEHEmhIH}Hx HHMAAtAHELuH]WIHHk%HPtHuLH=f%HLmGHIuHIIx HIdIx HI`HIExHIEI$HI$L.f.MIMH-H -HHLH2H?L )MLHHeZ"HH5~H:APHCaL@1CWXZ1H}HuHtHxHHtdH5 H= 1HeH[A\A]A^A_]L&A$tA$LeL%IW"A$ufDs-ofDL`-IHIx!HIIx HIxH359 H=e 1NRfL,{ALIH!H48 H= 1L,L,,fDILh,LX,LH,[IFMnHEAEtAEHMEtIx HI3H}Hu1ɺHELmdIIEx HIEtLuKDL+fDL+{L+W@L蓤HHJfH^jHM1PHuwY^UHGLHEAtAHMEtHx HHtVHuH}1ɺHEL}cIIaHITL*GL**ff.UHAVAUATISHH0H|U"H9Ft^tH=NS%Hu1H]HLe!CHx HHHH0[A\A]A^]fL5!e%H=$IVLF5IHtAEHhX"I9EHu1LH]HHELebIUxHIUuLHE)HEH\H/H= ÜH01[A\A]A^]@HHEd)HE=L[IHt?fDMuAfInfH:"I]tAtIEx HIEtHHu1HLe)EaIx HIt ILHE(HEL)E(foEUHAWAVAUATSHH8ƒHHHmtHx HHHC wL-f%H=$IULM3IH)tA$ID$H5O%LHHII$M5xHI$AEtAEH;7S"H5[%L5Q"HL9s^)IM-H5S%HL9siIM8H5c%HL9sdIMCfLELmLe)EOLEHH5HN%HPtHc%L}HQ tH=W%HuLEHLEHMs?HMLEIIExHIEjI$xHI$DIx HIIx HIHx HHIExHIEMRHx HHH8L[A\A]A^A_]H%HHHcfDtIfIZfH%KL%YHx%3LHMd%HMLLEHMH%LEHMLLEHM(%LEHMKI)H%L$(s9LIHA fDH,E1H=FfxE1E1A HI$MtIExHIEMtIx HItBMtIxHIyL1$l@L $LEHMLLE$LEfDLLE#LEaLLE#LEdHP"H5ZH8,IEA E1E1E1HIEtMI$@LLE\#LEfDIEE1E1A fDtL-E"H}AEtAE11LmEHHL5H"M9…OHPG"I9H9Hs0I|$0X2u|AEtAELHx HHH}HtHx HHH}H0H%HHHE5HE@AtALIعL&pH!H==1QL-D"AEtAELmHEHE;fDHHEHEUFUHHk!H=<荍1fDH!I"H5H%H81aCf.HH"H%H5ہH811CH H=<1>fL5H$jHM1AVHuIZYff.UfHHHATSHH;%H(H@)EfHnfH:"HE)EHLOMHHHIع1H=H;@H}HtHx HHH}HtHx HHHH=:1He[A\]HNtHMHtHMHWHHUH41L%:jLEATAQIH ;H"H|HHt H|H}LeHKH;=E"H;=A"H;=xC"E4ÃHUоL]EH6H}HtHx HHH}HHHHHEkHEfHH!HxtH}L A$tA$LefIع1L9@fDfD1@1HEHEfDL%8jHM1ATHuIZY1@1HEHH=8蝉HE@AHh-ff.fUHC%IHAWAVAUATSH8HEHEHEH`LIHMPHtHTHtHUHGHJ4HU1H7jPAQMLE2H ]H]HH;jB"H;(?"H;@"H1L-Z%H=$IULN IH*tA$HpC"I9D$H&l%Hu1LHHEHEMII$xHI$QMfDMIMHH HHLHH?L QMLHH@"HH5BdH:APH6L@1k=XZ1H}HuHtHxHHHHH=(1He[A\A]A^A_]H@"tL-QY%HEHH=+$IULIHtA$HA"I9D$Hj%Hu1LHHEHE+LII$xHI$M2IExHIEH>"tHHHHHEHEfDHtH]BfDHH=5Ѕ1@@Lx`Lh1LXM|$Mt$AtAAtAI$xHI$PfInHu1ɺfH:"7i%L)EJIIx HIM @M|$Mt$AtAAtAI$xHI$fInHu1ɺfH:"h%L)ESJIIx HIt MLHgL8fDH3jHM1PHu7Y^%LIHoJDs%LIH"LLUHAWAVAUATSHH8GxLgHuE1\Mt$ M|$(ID$ HAM;~KTtI|$IGIT$HEHtHxHHu DL-qA%H=$IUL.IHrtAHQ>"HuE1HI9GfIn1LLUfI:"D$)EHLUIMtIxHIu LfIx HIMMt$ HEH{ ID$(Ht$HHC xHHu /CxH8L[A\A]A^A_]H;:"CMt$M]AtAE1yf.Ix HIL-=:"AEtAECxH)s@L #L胇IHIx HIHEHx`taHvH=kE1{MufLGMWMoAtAAEtAEIx HItuMHuH\H9"H5 H8A@H;"HLH5CH816@L` LLUO LUvfDUHAWAVAUATSHH8GxLgHuE1\Mt$ M|$(ID$ HAM;~KTtI|$IGIT$HEHtHxHHu DL->%H=$IULIHrtAH:"HuE1HI9GfIn1LLUfI:"D$)EELUIMtIxHIu L fIx HIMMt$ HEH{ ID$(Ht$HHC xHHu CxH8L[A\A]A^A_]H;7"CMt$M]AtAE1yf.Ix HIL-6"AEtAECxHs@L LIHIx HIHEHx`t3^HMCH=}E1{MufL GMWMoAtAAEtAEIx HItuMHuH\Hx6"H5H8A@Hi8"HH5ӃH81A3@L LLU LUvfDUHAWAVAUATSHH8GxLgHuE1\Mt$ M|$(ID$ HAM;~KTtI|$IGIT$HEHtHxHHu = DL-:%H=$IULNIHrtAHq7"HuE1HI9GfIn1LLUfI:"D$)EALUIMtIxHIu LfIx HIMMt$ HEH{ ID$(Ht$HHC xHHu OCxH8L[A\A]A^A_]H;3"CMt$M]AtAE1yf.Ix HIL-]3"AEtAECxHIs@L+L裀IHIx HIHEHx`tZH{H=zE1{MufL(GMWMoAtAAEtAEIx HItuMHuH\H3"H5)H8A@H4"HlH5cH81/@LLLUoLUvfDUHAWAVAUATSHH8GxLgHuE1\Mt$ M|$(ID$ HAM;~KTtI|$IGIT$HEHtHxHHu DL-!7%H=:$IULIHrtAH4"HuE1HI9GfIn1LLUfI:"D$)E6>LUIMtIxHIu L2fIx HIMMt$ HEH{ ID$(Ht$HHC xHHu CxH8L[A\A]A^A_]H;90"CMt$M]AtAE1yf.Ix HIL-/"AEtAECxH s@L8L3}IHIx HIHEHx`tSWHm hH= wE1{MufLGMWMoAtAAEtAEIx HItuMHuH\H/"H5|H8 A@H1"H H5|H81a,@LLLULUvfDUHAWAVAAUATSHHHEHEHEtpHELhhM}Mt L;=."MmMuHEE1L%?J%H=$IT$L HHtH}H0"H9GJLEHu1H]HHELLx:LxHEIIx HIHEH}MHEEL$AtAfLULx)EHELe*LxHHEI9H9;%H rB%HPtHMLHuLHLx)LxHEHIx HIIHEx HIHEHHx HHFHEMtIExHIE}MtIx HIyHMHtHx HHqHH;+"%tIMtI$xHI$Hx HHHĘL[A\A]A^A_]DLAtAMoAEtAELHEUH= 9%yIHHDžxH."I9FHxLeH`HEHE(HEHHH(9%H=a@%H`HPtHH}LH)H?HtHpH HxHEH`dHpHEH`HxHHuHHxHxIHExHIuLHxHxHHDžxE1HE1HDž`HPH DžHhHDžpHXME1H\E1HDžxHPH~ HDž`DžHjHDžpHXHEHMLLL@HxhGL@H`LUE1LHx H}Hp1HPHHXpLbvHEHH譀1HE螀LuH5S%HEI~`-sH7_HHPH_HHXpHMHULHuML[H5$LHMLUH`HMHxL5~$AtA1HuLLpHHEH]05LpIIxHIuL.LpMHx HHLH`LpE1aHpHEMHxHE9HEHMLLHEHxh*;DHqLMHHUtHULHxYHxbDLH`9H`LxLHUHUnLHUHUrHHUHUzL_LGAfInfH:"tAAtAHLEx HHc1LHuL`Lx)E`3L`LxHEIIlHI_LLxDLxDH5$HHELUE1DžHlHDžpH`HEHxHHPHLHXH5$LH5(;%HLp1WLpH J$HptfLH)EHEH]!LHHIoH 3%H D:%HPtHpHMHuLHLHLHII$xHI$HpHx HHMHx HHLHE1E1E1HPHHDžxHDž`DžH_HDžpHX]LpLx)`(Lxfo`LphH:E1HDžxHPH\HDž`HDžpDžHhHXINIVHxHM`ttIx HII1HELUE1E1DžH`H`HEHDžpHxVHLp,LpHLpLpfLLHHLHLHHDžpDžHeE1E1LH`H`HDžpE1DžHbDžHcE1E1HDžpyff.UH/%HAWAVAUATSHHXHEHEHEH`LIHMPHoHAHHULE1H jPAQE1lH HHEHHEH6!"H9Lc A|$(I\$zH{XtHEL-s %H=$IULIHEAI|$0dIH{HPIHH}#"E1I9GfLmLe)EHHH@%HPtH@%LuHQ tHELHMH)HtݰHEHH?H ~MHMHtIExHIEI$xHI$Ix HIHx HHIx HIHHMHx HHHEHHuHHH@Hu#H4"tHEHEfDI11ҾH=D u1H}Hu%Ht HxHHu N@HnH=1nfHeH[A\A]A^A_]@I$DHI$&MtIExHIEMtIx HIMtIx HI|HH=deH}u1f1xfH=!:%dlIHH=#%LlIHH{PIHH "HuE1HI9FV1LLULUL]L]*H}ISuLUIx HI Ix HIMvH "HuE1HI9E1LLuL}Z*LHEtIx HIIExHIEH}H_H=1_d1f.tHHH"HH5X1H81HH=|cf.LHMHMELHM|HMAHhELXILHL8L(wLNL%I$HI$E1fDLMDLHMC#LhIHAHH=41b_H jHM1PHuE1dZYuDE1HEE1,E1:MoI_AEtAEtIx HII1@L LM^M~AtAAtAIx HIt]MHukMuIUAtAtIEx HIEt8IHuL-JLL]LULUL]LHUHUI|$0"IHIff.UH&%HAWAVAUATSHHhHEHEHEHLIHMHHAVHHULE1H jPAQE1H xLuH"M0H9#Lc A|$(M|$L--%H=$IUL$HHtHCH5$HHHIHMpx HH7H %H=$HQHHMHMHHtAWPH}It$,H}HuH}IHH}HEH9t HEHpH"H9C.Hu1HLeHHE$II$xHI$uLHxHHuHM*H"I9EHu1LL}HHEW$Ix HIIUxHIUHIHILHE HEHe[A\A]A^A_]DHu#H"tHEII11ҾH=l1H}Hu%Ht HxHHu @HH=u]1He[A\A]A^A_]H` fDx HHf.HFH=M]1fDH"H5QHH81!f.LHEHEXLHEHEVMeI]A$fInfI:"tA$tIExHIE+Hu1H)E)"I$x HI$tGIH HjHM1PHuE1ZYDLHEHEfDcLaHHf.IHM'H}aHHIExHIEuLh6fDH,H=x[H}HEH9t HEHpIEx HIEtHxHHuHfLfDLSHCHEAfInfI:"tAHMEtHx HHtGHuH}1ɺLU)Ea LUIIx HIt H]zLXHLU)pCLUfopL)E)foEHϐUH%HAWAVAUATSHHhHEHEHEHLIHMHHAVHHULE1H`jPAQE1,H xLuH"M0H9#Lc A|$(M|$L-&%H=$IULdHHtHCH5D$HHHIHMpx HH7H 8%H=Q$HQHHMHMHHtAWPH}It$0H} HuH}IHH}HEH9t HEHpH"H9C.Hu1HLeHHE II$xHI$uL HxHHuHM*HU"I9EHu1LL}HHEIx HIIUxHIUHIHILHE`HEHe[A\A]A^A_]DHu#H"tHEII11ҾH=8f1H}Hu%Ht HxHHu @H0H=W1He[A\A]A^A_]H fDx HH>f.HH=jV1fDH!"H5KHH81a ;f.LHEHEXLHEHEVMeI]A$fInfI:"tA$tIExHIE+Hu1H)EiI$x HI$tGIH`HjHM1PHuE1\ZYDLHE$HEfDLHf.IHMgH}ZHHIExHIEuL?6fDHA,H=݋TH}HEH9t HEHpIEx HIEtHxHHuH4fL(fDLSHCHEAfInfI:"tAHMEtHx HHtGHuH}1ɺLU)ELUIIx HIt H]zLHLU)pLUfopL)EifoEH UH%HAWAVAUATSHHhHEHEHEHLIHMHHAVHHULE1HjPAQE1lH xLuH= "M0H9#Lc A|$(M|$L- %H=$IULHHtHCH5$HHHIHMpx HH7H x%H=$HQHHM1HMHHtAWPH}It$0H}HuH} IHH}HEH9t HEHpH "H9C.Hu1HLeHHEJII$xHI$uLMHxHHuH5M*H "I9EHu1LL}HHEIx HIIUxHIUHIHILHEHEHe[A\A]A^A_]DHu#H "tHEII11ҾH=x_1H}Hu%Ht HxHHu @H>H=E@P1He[A\A]A^A_]H fDx HH$f.HH=ҼO1fDHa "H5RDHRH81!f.LHEDHEXLHE,HEVMeI]A$fInfI:"tA$tIExHIE+Hu1H)EI$x HI$tGIHHXjHM1PHuE1蜶ZYDLHEdHEfDL[THHf.+IHMH}THHIExHIEuL%6fDH,H=MH}HEH9t HEHpIEx HIEtHxHHuHtfLhfDLSHCHEAfInfI:"tAHMEtHx HHtGHuH}1ɺLU)ELUIIx HIt H]zLHLU)pLUfopL)EfoEHqUHP%HAWAVAUATSHHhHEHEHEHLIHMHHAVHHULE1HjPAQE1謩H xLuH}"M0H9#Lc A|$(M|$L-O%H=@$IULHHtHCH5$HHHIHMpx HH7H %H=ћ$HQHHMqHMHHtAWPH}It$0H}rHuH}EIHH}HEH9t HEHp_HH"H9C.Hu1HLeHHEII$xHI$uLHxHHuHuM*H"I9EHu1LL}HHEIx HIIUxHIUHIHILHEHEHe[A\A]A^A_]DHu#HD"tHEII11ҾH=TX1H}Hu%Ht HxHHu ^@H~H=I1He[A\A]A^A_]H  fDx HH f.HH=: I1fDH"H5=HH81f.LHEHEXLHElHEVMeI]A$fInfI:"tA$tIExHIE+Hu1H)E I$x HI$tGIHHjHM1PHuE1ܯZYDLHEHEfD#LMHHf.kIHMH}^MHHIExHIEuL( 6fDH,H=]~8GH}HEH9t HEHp^IEx HIEtHxHHuHfLfDLSHCHEAfInfI:"tAHMEtHx HHtGHuH}1ɺLU)E! LUIIx HIt H]zLHLU)pLUfopL)EfoEH|UfHHHAWAVAUATSHH_$HpHH)EfHnfH:"HE)EHLOMrHHHIع1H=jTH}HtHx HHH}HtHx HHH H={E1%EHeL[A\A]A^A_]HNtHMHtHMHWVHHUH41L%#jLEATAQIH 1H}LmH"H|ݠHHt H|ݠuLuIEH5f%LHHIMIGIGHƃH@AOH)HEH sNIHIx HIH%H=$HSHHHPtH!H9GnHu1H}HHEHE H}HHx HHzHH;!HCt H;0!EHHEIHwH;X!tHH/Ix HI L;5!L;5J!L;5!L@j}!H=g %IDIIHH5$HUIIEMxHIE%Hp!E1HuHI9GSfIn1LfH:"$)ELI,RIx HIMHxDE1HHMtI$xHI$MtIx HIH}HtHx HHH}HEH:HH- #HHLpAtAL(LuAEtAELmIع1LOj@HH)HH^H,LHÉEH HuHu@H!H5H8EkfD#fDfDL(AEtAEL5!LmAtALufL5!AtALuUDL|fDH!Et H !L-!f.AGAOHH ȉEH qAGAOHH HH E=EIHH5H$HPRIIEMxHIEH '!E1HI9OpfInHt1LfH:"%)EXLINIx HIMHSH=u>H2E1ӅxHIEHH=1>HE1E1E1Cx HIEtrH+L6L?LEEDs7fDL`RLPfDL%jHM1ATHuIKZY@IHH=8=E1H}IHHHpIHIx HIID$ H5%HFIEHH;d!1L/IHA$tA$H!H=$Hu1HLeHELuLI|LMI$xHI$MA$tA$HM5BD1AIx HIt(HDH=%;H@LxfDLQHH"HTEHHHvH1i@H+AHHHH=7;fLGLAtAAEtAHx HHHu1ɺLLELEHExLEHIx HItLKfLhfDH!H5p-AH8}ArHHH_!H#IH5D1AH81H{`H5b%5 HFL%hDLHH8-HhH`HH@]EL`AIWH;!AtAL0H0H5W$H=x}$裺H0Hx HHIx HIlH@ =LHDž@ =HhHDž`LxLeRE1 H!tHEH !H5y H81L`IHIrL誏eDH!!tHEIHpDLpLL`\L`LLXAL`LXIL L`@L5 jH1AVMLjZYfDHH=]pL` L`DLL`詎L`DLLXL`肎LXL`LrIHMXI@HXAfInfI:"tAHX`tIx HIt`Hu1ɺ)EHXL`L`IIx HIt LXLL`讍L`LLP)`菍fo`LPvff.UHAWIAVIAUIATISHXHE薣HoHH$HEHEMMOMMtIItHUIGQ HHUK4HHHULELjPAQMS]H LuM*A$tA$Hu1LeHH=ʯ$HE%II$xHI$MIx HIL-@$H=O$IULEHHytHi!H9GHu1H}HHEHEH}IHx HHM+AEtAEL=$H=O$IWL論HHtHϹ!H9G1HuH}HHEHE HH}Hx HHHaHAHMHH5$HH.HMIMHx HH HEH>DHH8H$tAHVtALv Hu跱HuHHH@H}HUH0H5$HUHx HHHCH}H HUH5M$LIHIx HI$HMHx HH$LMHELmLe.LMHHH$HPtHuH=$LMHLMHMLI LMHMIx HI5Hx HHIIExHIE#MA$tA$H=^$Hu1HLeL}yLI MIx HIqMIx HIjHHHHZDM_IM11H=OU E1H}MuHtHxHAHHx HHHeH=E1HeL[A\A]A^A_]fM6AtAHELuHE苇fDLx'L5$AtALuDK$fDH8ML(LLHMHMfDL51$A0.HȆLM11E1AwIEx"HIExxHIE>H}tH}Hx HHHtHx HHMtIx HIHtHx HHtHE1HtHx HHtHHDH=*MSE14fHHUE1HUH谅fDHuHMHU藅HuHMHU'fDHHuHUpHuHULHuHUPHuHULHuHMHU,HUHMHuLHuHMHUIEHUHMHu]DLHMLȄH踄AvD11AyLHHwAwE1ifHX7HGLHEAtAHMEtHx HHHuH}1ɺHEL}ռIIx HItH}fLȃfDKLHHAHE11E11HEHMHMH5HELjVH^ZYfHGLHEAtAHMEtHx HHHuH}1ɺHEL}HIHILHMނHMDHE11#賨HMILLM蔂LMHLM|LM111D11{GfDHM1HE11AwA{ ff.@UHH$HAWAVAUATSHHXHEHEHEHhLIHMXHwHA~HHULE1HfjPAQE1 RH PLeMH;Ԭ!&HCHPǬIH*L5<$H=D$IVLAIHtAHd!I9G*Hu1LHEHHE袹IIx HIM[AtAfLMLMELMHIHƺ$HPtHELH=#$HHLMLeHELMIIHI^Ix HIIx HIML=$H=OC$IWLHHtH!H9GHu1H}HHEHETH}IHx HHQMAtA苦IHtIAHu1LMHHH̴$H=$LML}HELu託LMHIHIIx HIIx HIHIIx HII$HI$L_~f.Hu#L%!A$tA$LefDI11ҾH=@1H}Hu%Ht HxHHu }@HH=E1HeL[A\A]A^A_]IxHPIHHGE1HIMtIx HIHkH=+ME1f.L(}=LLM}LM}fDLLM|LMIJL|sL|JIL|LMLLM|LMLx|I^zLcIHLHRH=of.H!HH5H81AH H=ɞ)@L{L{"IGMwHEAtAHMEtIx HIvH}Hu1ɺHELuEIIx HItL}fLLM4{LMfDLLM{LMJHjHM1PHuE1VZYDsLHH!HڂH=fHGLOHEAtAHMEtHx HHtwHuH}1ɺLMLMHE5LMIIx HItH}DL(zfDIy)Lz}LMyLMwM]UHAWAVAUIATSHH8tH=$Lu1HLHEH]UIHx HH8MdI$xHI$IEH;7!H;ʤ!H;%!IEHƒHKAEAI)LIHC0LHp(HHjHCHPHWH8[A\A]A^A_]ÐLxIEH;!^L=$H=<$IWL轃IHtA$Hߦ!I9D$Hu1LH]HHELmI$xHI$uLHExHEHA:H'~H=Y9H81[A\A]A^A_]HwUHH)HHHLԐI@Hy!HЁH5cH81蹠<cHuIRfL舐IHtHhIIEHIELwfDEeAEII @EeAEII If[LIHfL%$A$tA$H$Hu1LHHEHE豨HI$x HI$t|Ht"111HɏHx HHHwH=bQ1fDLhoLXoHHoL8owH5:$HwHCLH蘚Ht0IEx HIEt,H@Hn6IEyfDLnfDH)vH=uP1f HHHuH=7P1wH!H5bH8vAE1Hx HHtIHuDH=OCMIEHIELm1HmfDL%y$A$tA$HU~$Hu1LHHEHEaHI$xHI$Ht"111HuHx HHHtH=Oi1NfHtH=NH1-HtH=N(IEHIELlH1fDLl;HlUAbHIEMff.UHAWIAVIAUIATISHhHE薂HOHHӨ$HEHEMMOMMtIItHUIG HHUK4HHjLELPAQMWAtAL}fffDL=$Auf1DH\fDHa!H5RHRdH81衅Yf.Hx@E1HHuH5\MtIx HItPMtIEx HIEtIH}2HMH#HHH[ DL[fDL[fDL[HHU[HUWLHU|[HU'LHUd[HUHrjHM1PHuE1\6ZYDoL3HHFfHHEHU[HEHUHHEZHEӀIHEE1jLHUZHU%1LL[~HHf.nLsIHHHEE1@H HEfHLxLpAtAAtAHMHx HHt^Lu1HHEE1E1\fHy IHHuHHU{YHUDH}gYDUH $HAWAVAUATSHHHHEHEHEH`LIHMPHoHAHHULE1HojPAQE1|)H HLeHM!MH9Ls A~(H}$H=$HSHcIHvtAEIEH5$LHHHIEHxHIEiHCL=*$LMH=Je1LHAIsMHxHHuHWL=$H=@$IWLbHHhtHCH5$HHHqIMHxHHuH[WfI*F0^rHHH!E1I9GfHuLuEHHH$HuHPtHLHMH)H?HtH]H eMHMHtIx HIHx HHHx HHIx HIHHLHUFsHUHyIMxHIM[H xHH /I$HI$LHEUHEHe[A\A]A^A_]Hu#HD!tHEII11ҾH=Tl1H}Hu%Ht HxHHu ^U@H~\nH=e71He[A\A]A^A_]賀HuH!H58H8h]Hx HH|H \H=61DLTfDH!H5rHr\H81}xf.}IEx0E1HIEuLuKTuMtIx HItsHtHx HHt>M.I#HILuSuf.H߉uSuHSLuSuzDLHUSHU5HHUSHU HHUHMhSHUHME11E1IE}f.HijHM1PHuE14.ZY5DgH IH|f.HHERHELHEHURHEHUE1|0xH;LHU|RHUHM1LH+vIHiJf.fLCHHE1}f. xIMwIWAtAtIx HItDI1f.IEyHHIEuLHUQHU@LHUQHUff.UHAWAVAUATSHHHHHBHyO1HAXHAtALfL}A$tA$LvLeAtALuH]L-1p$H= $IULRIHtAI@LELH5$HHLEIMIx HI@Hu!I9ALHu1LMHHELeLMIIx HIM L%\o$H=E $IT$LQHH4tHGH5~$H}HH4H}IHMx HHHt!I9D$LHu1LuHHEMIIx HIFMIEH5$LHHgIMIID$H5$LHHGIMFLƺLLEHeLEIIMRx HIIx HIL; Qr!L; o!L; p!LLMaLMAtIx HIEL5$AtAH=a$IHAEtAEHE1LmH=gx$HHHELpHER]LHELMLpMDA$tA$Hu1LeHH=x$LhLpHE\LHELELpLhMHqr!HuE1HI9BL1LMLhLELELpL]L`|H`HELhLpLEIx HIIx HIIx HIH}HMHuLL}HHEHM1|HMIHx HHIx HIMvIExzHIEupLBffDB]fDx HH?AHHDH=$˵MtIExHIE0MtE1I$xHI$MLmH;HtHx HHHL9uMH]H=Ce.xfLLMALMLALAAPfDAofDLeLuDcLpAcAfDAbAZ@L8AE1AxHIM4Ix HIMtIx HIM9I.HI!L@LLp@Lp-LLULp@LULpLo@Lb@jHU@ILLMD@LMXLLULpLE!@LELpLUDLLpLM?LMLpDkTLIHOAE1E1fDLLM?LM;LLp?LpLEfL-bjH1AUHuMtZYDCeLEIE1E1E1A @L?MAAfInfI:"MatAA$tA$Ix HIHu1ɺLLE)EwLEIIx HItMfDL>fDSL{HHAE1KdH}IMD$AfInfI:"Mt$tAAtAI$xHI$Hu1ɺLLE)EvLEIIHIL=AM@AD{cIncIIE1E1A$IE1E1A IE1A MfLLE)pMtIx HItqMtIx HIt|MtIx HIt7MnIEbHIETLl0GLX0fDLL]LE@0L]LErLL]$0L]oLLpLxLULM/LMLULxLpLLpLxLULM/LpLxLULMLLxLELU/LxLELUDLpLxLULMM/LMLULxLp f+UIMHMLPME1E1ɻqLxfD.fD.LLUjVLUHIH@HHpHHEjfL I$AtAH5V$HLM۴LMHIoH5|h$HLMHE贴LULMHI4Ix HII@H;X!AtAMIx HIY~ M$H P$fI:"HE)EAB @u LIBH}LMLUHLULMHIIx HI1LHuLEHLELMHEfLELMHIx HIIx HIHt"111HMHx HHE1hfDMMLPHLxM˻qE1pfMUIUAtAtIExHIEI1@p6E1E1һt:fDLPHE1E1LxE1hHHjHM1PHu'ZYQI'E1E1E1һqDHxHHh8Hh6HLPE1ILxpNfE1E1E1E1qUf.E1yLLxMLP5LLXH`9+H`LXLLELM+LELMH=f$HZH5X$HHEQLMHIIx HI-H5f$HIH=HE4SLMHIHx$LHtIW HX!I9FHELmL}RIHHW$HPtHELLH)HtݰLMHEHH?H 8LHSILMx HIyIx HIvIx HIoHvpLLULM)LULMLLELMc)LELMLN)LM'L=).H0)HH;S!LMLELPXLELMIME1jE1E1E1jL(E1iME1E1E1һqLL](L]L(L(L{(Ln(L]vE1E1E1һvOLJ(LMvL9(}L,(E1E1һv#MsI[AtAtIx HII1PE1E1һttH @E1E1Lq\ME1ME1һvMnI^AEtAEtIx HIt:I1H;sT!+H5#LLE-LMLEIL'L'$ff.UHAWIAVIAUIATISHhHE&=HHH[m$HEHEMMMM MtIjItHUIE9HK4HUHL=IjLELAWAQMH 0M, NlMcAE@tAEL;%Q!ID$LQIHIEoLmL5c$H=E#IVL0HHtH T!H9GHu1H}HHEHEJ^H}IHx HHMOAtAH Lc$H=#HQHHMM0HMHHtHmS!H9G1HuH}HHEHE]H}HHx HHHHAHMHH57$HH<HMHEH}?Hx HH:IHHUH5j$HHE$LEHCHL 9LE/H5#H}LLE訩LEHIHuHx HHIx HILMHELuLe.LLMHHH`$HPtH=i$HuLMHLMHMHx;LHE衦LMLEHMIx HI`Hx HH7Ix HIMA$tA$Hx1H=Kk$HLELELeh;LI MLEIx HIHuHx HHIExHIEHHHH."|@MH=}E:E1H}MuHtHxHAHHx HH+H'@H=EE1HeL[A\A]A^A_]fDIfM/AEƒAULmT@IIH0AEtAEHD$MntIV sHHEH!H@L0IE0HIE"L Lm fDML֢H L Hx Lh [ fD1AoLIx HIHtHx HHMtIx HIHtHx HHt:H}tHMHx HHt/H%DH=C8@HfDHfDLHxLEHMyHxLEHM4DHLEHMPHMLE+LHM4HM,HMHMgfDHLELMLELM3LLMLM/LLELEHLELELLEHMLEHM@H(HaM!H4H5KH81GH|$iH=A艑LmE1DL=AjHMHAWHuML7ZY2LHHSH$mH==A^f.LAoE1wHGLGHEAtAHMEtHx HHH}Hu1ɺLELEHE9VLEIIx HItH}fL(fDHM1H}HHHE1E1Aof.HGLGHEAtAHMEtHx HH-H}1HuLELEHEaULEHIx HIt H}LHMTHMfDCBHMHEfDE1AoH="kH=h?JLmAEHE1E11LmAkLELEHEMAmgH!qH=>LEӎLELELELEoLEfDUfHHHAWAVAUIHrD$ATHpSH)EfHnHfH:"HEHMHE)EHqLOMdIA$MtIcHtHMHW HLEHU1L5>LXJ4jAVAQMH xZH}kH}@LeHXM~#IIJ<uM1LLHXLeH;HtHx HHHI9uH  H=O=E1HeL[A\A]A^A_]IuHHNtHMHHtHMIItIM1H=<HEHX#39fDHELuHD!HPHDžhAHDžpHDžxtAH8LxhfDMI9t MMMuHDžHE1L-q`$H=#L@IUL#L@HHtHxHF!H9G LxHu1HL0LL@HELePL@L0HhIHDžpIx HIkHDžxHhMHDžhMtIx HIMtIx HIHHHtHx HHH5#MD$L9t>IXHHJH1fHH9H;tuA$LptA$I9V H5C$LHDžpl HPH9 H5d$1H  L=#HDžhAtAHPHu1LHLxHELeHE0OHpIIx HI HDžxM I$xHI$ HDžpI9 L=]#HDžxAtA1HuLLEHLPLhHELuNLPHpIIx HIHDžhML Ix HIHDžpA$tA$MI$xHI$3IExHIE-MIx HI&HXLeH;HtHx HHtHL9uDfAtAMyAtALL@w0L@HHLHH9DHuH;5 ?!2fDI9L=#HDžxAtAHKa$Hu1LHLhHELmHELHpIIx HIHDžhMHE1ۻL HDž@H0H7HDžPH L A$tA$L5i?$LeAtALuH>!tHEH]HPHXH>!tH]H?$tHU|H=>$HDžxɌHhIH HA!HuE1HI9G 1LLEL@Lm[KH@HpHHѕIHHHDžxx HIHDžhH Ix HIHDžpI.HH1HPXtHPHMLpAtAL LuA$tA$HPLeVHEH!=!HX{DHDžPLL@iL@zL@%LYL@HHxHL@蓔1HDžh联1HDžpoL8H5g$HDžxI}`}AL@HE HH0H'4HH HpHxLHh'L@:tHhL@IǓHxHDžh谓HpHDžx虓H8HHLH@HDžpHxh}LLLL(H8LL@L@DH5#LL;"=!tH 9#HDžhH@HtH@H=R2$HxIHtH{=!HuE1HI9CL1LMLHL8LeGH8I1LHIx HIvMH@Hu1HHEL}UGHpIIx HIH@Hx HHHDžxM)HDž@E1HDžPH<N H0Hk1H fDLPHPDH@811L)H0H ME1pL LP@Lp Lc HHLHHH HH)HpLhF HPHxH@H8LLE1HHLE1HxhjLfDMHEL5G0M1HXHuHjAVAYAZ&L_LGAfInLpfI:"tAAtAHLxx HH1LHuL L0L@)EEL0L@HhIL IHILL0L@ L0L@HhLxE1W LPLE1 HP11HH=.~.LLPX LPLD qLLP0 LPMME11E1^ UH4E1ۻE HDž@H0HU.HDžPH HhLpZ LxLaHxLPJ LhH@HE1H0H-H lE11[ H5W$Lg3H5v2$Lg[H5f2$LghL=#HDžxAtAHV$Hu1LHLeHEHEyBHpIIx HIKMsHE1R LhH0H,L@LPH L@L( }E1E11X _MGIWALxtAtIHhx HIIHu.LL0L@) L@L0fo L+LwHj)H _$H@PtH@H5r0$LHx蛎HhIHH@H;}2!AtAMIx HI~mE$HV)$fI:"HE)EAD$ @cLH}ID$HP-HhIHcI$xHI$61Hu1L]HH}H@LP!@LPHpIIx HIuH@1HhHx HH^1HxM111L&I$xHI$1E1ۻT HpH@HP&HpE1HPyHpE1E1HP`MKM{AtAAtAIx HIttMHu@L(LH@LH LHH@'HpLhO HPHxH@ULLHLHqHpLhP HPHxH@ HpLhQ HPHxH@H;7/!LPLPXLPIM(HpHPH@ U H0Ho(H H 1E1ۻT H0HD(H@HPH LL~HHpE1HPdH;1!)H5 #LLP LPIL=SLLP)LPff.fUfHHHAWAVAUIH"-$ATHpSH)EfHnHfH:"HEHMHE)EHqLOMdIA$MtIcHtHMHW HLEHU1L5&LXJ4jAVAQMH xZH}kH}@LeHXM~#IIJ<uM1LHXLeH;HtHx HHHI9uH H=&E1uHeL[A\A]A^A_]IuHHNtHMHHtHMIItIM1H=%/HEHX#9fDHELuHQ-!HPHDžhAHDžpHDžxtAQH8LxhfDMI9t MMMuHDžHE1L-!I$H=#L@IULg L@HHtHxH}/!H9G LxHu1HL0LL@HELe9L@L0HhIHDžpIx HIkHDžxHhMHDžhMtIx HIMtIx HIHHHtHx HHH5d#MD$L9t>IXHHJH1fHH9H;tuA$LptA$I9V H5+$LHDžp@U HPH9 H5M$1H  L=#HDžhAtAHPHu1LHLxHELeHE7HpIIx HI HDžxM I$xHI$ HDžpI9 L=#HDžxAtA1HuLLEHLPLhHELu17LPHpIIx HIHDžhML Ix HIHDžpA$tA$MI$xHI$3IExHIE-MIx HI&HXLeH;HtHx HHtHL9uDkfAtAMyAtALL@'L@HHLHH9DHuH;5'!2fDI9L=#HDžxAtAH=$Hu1LHLhHELmHE|5HpIIx HIHDžhMHE1ۻ HDž@H0HHDžPH L A$tA$L5($LeAtALuH'!tHEH]HPHXHQ'!tH]H'$tHU|H='$HDžxyuHhIH H)!HuE1HI9G 1LLEL@Lm 4H@HpHH~IHHHDžxx HIHDžhH Ix HIHDžpI.HH1HPXtHPHMLpAtAL LuA$tA$HPLeVHEH%!HX{DHDžPLL@L@zL@L sL@HHxHL@C}1HDžh1}1HDžp}L8H5IP$HDžxI}`-*L@H HH0HHH lHpHxLHhEL@:tHhL@Iw|HxHDžh`|HpHDžxI|H8HHLH@HDžpHxh-LLLxLh(HX8LL@AL@DH5i#LqL;%!tH #HDžhH@HtH@H=$HxqIHtH+&!HuE1HI9CL1LMLHL8Le`0H8IzLHIx HIvMH@Hu1HHEL}0HpIIx HIH@Hx HHHDžxM)HDž@E1HDžPH H0H5H fDLzHPyH@y1yLyH0H iME1pL8LP@L LHHLHHHH)HpLh HPHxH@H8LLE1HHLE1HxhLfDMHEL5M1HXHuHjAVyAYAZ&L_LGAfInLpfI:"tAAtAHLxx HH1LHuL L0L@)E-L0L@HhIL IHILL0L@L0L@HhLxE1 LPwLE1wHPw1w1wH^H=\g.LLPLPLqLLPLPMME11E1 UHE1ۻ HDž@H0HHDžPH HhLp LxLHxLP LhH@HUE1H0HH lE11 H5f4$LvP3H5&$LVP[H5$L6PhL=V#HDžxAtAH3$Hu1LHLeHEHE)+HpIIx HIKMsHOE1 LhH0HL@LPH L@L}E1E11 _MGIWALxtAtIHhx HIIHu.LL0L@) QL@L0fo L+L'H)H G$H@PtH@H5"$LHxKwHhIHH@H;-!AtAMIx HI~.$H$fI:"HE)EAD$ @cL胬H}ID$HP,wHhIHcI$xHI$61Hu1L]HH}H@LP(LPHpIIx HIuH@1HhHx HH^1HxM111LI$xHI$1E1ۻ HpH@HP&HpE1HPyHpE1E1HP`MKM{AtAAtAIx HIttMHu@LLH@LHLHH@'HpLh HPHxH@ULLHnLHqHpLh HPHxH@ HpLh HPHxH@H;!LPLPXLPIM(HpHPH H0H9H H1E1ۻ H0HH@HPH L\LO~HBHpE1HPdH;H!)H5#LLPTLPILSLLPLPff.fUfHHAWAVAUATSHHj+$HhH)EfHnfH:"HE)EH?LIHM/HHHIع1H=Q WnH}HtHx HHbH}HtHx HH5H& H=bE1_HeL[A\A]A^A_]HHtHMHtHMHWN HHUH41L5jLEAVAQIH 4H}LmH"H|ݠSHHt H|ݠ=LegIH H$tIGLHH=+$HHIx HIH5V$HIHtAIx HIHx HHAtAH!ME1I9GLELMLMLmHELMLEHI!H($HPtHغLLH)H?LMH HELEH4LeHpLMLEHMtIx HIIExHIEuLLELEIxHIuLqHhHCH;!t H;D!H{H1HKH;}!HMEtHs HuEtH{(H}EtHx HH1,IHjL-?$AEtAEHE1LHEHHEHEHEHEHHXb!HIExHIEHYHCH;E!t H;!tHDžxHHEHx HH L`E11IHx.IGH5!HMI9w% H9IGH ȋtHEHAH;!t H;!8 HyH~ H;!Lq AtALi AEtAEHx HH5HtHx HHlMtIx HIsH\$H=#HSH9HH tH]!H9GK HX1LuHHELmHhHHhHx HHH IT$ ID$HHH9H9tIT$H HID$Hx HH\ML-HHL`A$tA$L(LeAEtAELmfDIع1Lh@LfDfDHLL(AEtAEL%!LmA$tA$Le&L%!A$tA$LeHLhLhDHhHhRHHLhLhyDLHLHhHh.HLL`Q 1E1HHHHHHhpHxLEHhpHxLENDE1E1HE1E1E1HEK E1HE1MtIx HIMtIx HIFHtHx HHHtHx HHHwH=VMt1Ix HIIHuHtHx HHHMHtHx HHHuHtHx HHMtI$xHI$MtIx HIMtIEx HIEtQH}HtHx HHH}HHHHR{DL@fDL0H H HL"L+HωxHUxHU2H׉uu1DLHhpHxLExLEHxpHhLHpxHU?HpxHUfLLEdHxcK 1E1HEE1E11HEE1HEmHeHH Hx HHHBHUHHHUHIHHEHULEHH HHEHULEHHEHM HӾH HULEHMHx HHHMLEHLrRfDLhHxLLhHHHhHLxL}L` HMLxHLhHtH81f"HH@Lh H@LhHLxLULxLULLxLUPHHUHUIMH˾P LML`LL`IڻHx HHHpLxLULULxHpMMM־P E1IIL1L`LLL}K )HHMLELEHM11Hx HHiHMLEDLEHMt]K 1HE1E1E1HEE1E11HEK HZLULxHpHHx1E1LEE1E1Y1LEK HEHx1HEHEMnI^AEtAEtIx HII1HHpLxLUHpLxLU4E1E1E1P 1 P E1E1E11HHMLEHHMLEzHhLxLUtLULxHhE1MM־P 1LLxLULULxLMML`MI޾P fUHAWAVHL AUATSHHHH`HƅHDžLHDžƅ ƅXH(H`HpHHhH9;HfHnfH:"pH9HHHH`HpHDžhLeHEHL9oEL9H HHH}HUHEEX0tw}H8HHƅXH9t]HHHpEȄtELmf.HH`HpH@}H}L9t HEHp8H`H9tHpHpH#H=#HSHIH&tAEL%$H=ݖ#IT$LHH$tHHhIHH!H9CKHDžHhHHHLhH`1 HIHtHx HHI$xHI$7Hx HHMsH$H=#HSHIHtA$HHvHHH!I9D$HDžHhHHLHhH`1 HHHtHx HHFHx HHI$xHI$\H/HDžH 1I9EfHDžxH`hIHH.$HPtH*#LhIT$ tHHLHpHH)H?H HH4LHHtHx HH`Ix HIHHx HHI$xHI$kIExHIEEHXHL9tH HpHHH9tHHpkHH[A\A]A^A_]fHEHHLmLuH8L9MH8HEHHL@LmHEEƅXH}EL9HEHpf.H8HHƅXH9HHHpDHUHtHLHUHHH}qfDHt HHqHhHHH`@HLeLeL f.HhLHLfDH8HtHx HHwDžKHfDIExHIE*MtIx HI!MtI$xHI$FHtHx HH=HH=2@HDž=@HhLXHuH80E L(HqHVLLHbL7LLHIEHDžKfDLhHXHSEIHDžKL#EHH1H,H=Mv(?DžLIEE1E1HKLsHtAtAHx HHHLHkDIHDžM1E1;H,H=u`>DžMIL$ID$HHtHtI$xHI$LHDHI]MetA$tA$IEx HIEt`HDžMDpHhHy@EHUH fLFLHsff.+ff.UHAWAVAUATSHHIHL-;#AEtAEH5#HFID$Hb H91L&HHL= L9HH<tHZHLHUHHUHIH%x HHdIExHIE>L- $H=@#IULHHtHM1HMHHIt$tHrH5@$tAHr tALz(HMHUHUHMHIHHHP AtAIMt$(x HISHx HHHeL[A\A]A^A_]@L8NHHrwHH H{`H0At111HHL= AtAL5A$H=ڊ#IVL~HHtHH#IL$tHJH $tAEHJ tAELj(HU~HUHIHXMLHP IEHILf.LHxHA xHH6HtHx HHMtI$xHI$HDH=E1I9IHIE1fHH HE1L NH H5H8R1HXZE1HyxHH=tJfLhHHHH5 H{`H0n111HKfDHHMHMLLMAf.xME11AVf;L=HHHH H=,7Iv~HHHuHLA H8L3=HHMLHMIAL@HxMI1LAhH|H=`6IEHIEL vfUHAWAVAUATSHHIHL-#AEtAEH5w#HFID$H H91LHHL={ L9HH<tHZHLHUHUHIH%x HHdIExHIE>L-_$H=#IULHHtHMHMHHIt$tHrH5$tAHr tALz(HMHUHUHMHIHHHP AtAIMt$(x HISHx HHHeL[A\A]A^A_]@LGHHr'HHE H{`H0t111H_HL= AtAL5$H=#IVL.HHtHH#IL$tHJH $tAEHJ tAELj(HU.HUHIHXMLHP IEHILOf.L8H(HA xHH6HtHx HHMtI$xHI$HDH=E12IHIE1fH舿H HE1L H H5]H8R1HXZE1HyxHH=$DfLHHHH H{`H0n111HfDHHMľHML谾L蠾MAf.xME11AVfLc7HHH H=o1Iv~HHHuHA HkL6HHMLHmMIAL@HxMI1LAhH,H=H0IEHIELA vfUH#IHAWAVAUATSHHhHEHEHEHLIHM}HtHHtHUHGuHLeJ41HbjLPAQMLE,H LmMH5 #LeI9ut L;- tH=#1LH]HHEIHx HH^MUIx HI4HCH5#HHH~IMH5 $L9 IFH; ?E~AIx HIH=~#EL=#IWLIHtAHCH5o#HHHIM>H I9FHu1LL}HHEHIx HIIx HIHu#f HH=1-IExHIEHeH[A\A]A^A_]fDMIMHH HHLHɾH?L !<MLHH] HH5 H:APHL@1;XZ1H}HuHtHxHHHH=Ŝ1,1L.AEtAELm$IHH=|#I L=#IWLIHtA1IHEHCH5"$HHHIMHr I9F0LEHEHEL}vLEHH^H$HPHE1HuHLLMLELEHMLMHMLEHMtIx HIIx HIIx HIHx HHIx HIJHk KfDL-q AEtAELm~˷fDL踷3H訷L蘷1HL"L1:H; |LHHt-HEERH}AHx HHbEzIxHIuLf ;fDI%HIL L谶L-) LeAELHMLExHMLEL`H=y#@KIzHjLe1PHMLDY^DLML)HuLLEHLEHMHMLEHlfDL踵LHMLE蠵HMLEMH舵eLHMtHM9MDIxHItHMtIx HItKM2I'HIL DLLELEfDLLELEfDH=Qx#[@SL-IHef.+L-IH?f{ILkIQMNIFHEAfInfI:"tAHMEtIx HIH}1ɺLLM)ELMHIx HItLufDLгfDMNMVAfInfI:"tAAtAIx HI<LMLULEHE)ELELUHLMHt,HE#HPMֿLfDIHILLULELELUIME1E1~E1ffA.FADE!賲LLLELpLEHMLULuHMLELpHLLM)E\LMfoE5LLMLULE)p3LELULMfopf.UfHHHAWAVAUATIH#SHHH)EfHnfH:"HE)EHLOMIIMM1H=\3H}HtHx HHH}HtHx HHHKH=h$1He[A\A]A^A_]HNtHMHtHMHW6 HHUJ41L5jLEAVAQMWH LmL.H]HM&J|IIt J|H]L%] L9H; H; H L5#H=s#IVL>HH tHCH5#HHH IHMx HH H" I9F Hu1LHEHHE`IIx HI MdL5 M9M9L;= LIx HI H5E#Lm5IHIH HLHEwLEHH Ix HI HIHx HH7IxHIuLE\EHctIHIH5#HF:IEH  H9 1LHH L9L9VH;g IH1Hx HHE UH=#'IHWH HuE1HI9@L1LELMLMLmL}5H}H0LEIxHIuL-HL9L9PH; CH[ J Ix HIN HfIIHXtL(H]AEtAELmfLM1.H}HCH5#HHHHH$H5u~#1H1IHMx HHL5 M9M9hL;=i [L3CIHIL裫vfD蓫NfD胫!fDH tH]ML%L L9fDHx HHH7H=1Rx HHtHH=$1H}HtHx HHUH}HHHHzHE藪HEhHA=HHM|IE1HIMXE11Ix HIH5DH=TMtIx HICH1HHHHHE̩HEL(AEtAEH1 LmtL% 1H]L9T@AtAI%HILU  IDE1AAfHH=8LHH蚭HH H{`H0d111HίH/ tL9HEgHEfDH=9#L"IHtqH HuE1HI9@L1LELMLMLmL}H}Hh+LEIxHIuLܧHHޮH=1@LLE褧LEOH萧H耧HH=>HX'LHfHHHLIHHx HH(LLEALE_Ix HIOIHHLHELLEHHIx HI HAHx HH!rHHHLIHHx HHLLE ALEkIlHI_LljE˥ELIE1AFL藥H߉E臥EMHIXAtAtIx HIMIHuHIH=1dMHIXAtAtIx HIIHufDHФLRL谤L5~jHM1AVHuMZY@HxpH߉EeEDIv~L8'軸L3HH I/IFI^HEtHMEtIx HI-H}Hu1ɺHEH]IHx HHt LuH舣E11RLtjH%HmH= 6L)HH7HH H{`H0t111H$HHAHDH=IeAaI}E1AcL:#AtAH I9EAEtAE1LHuLEHHELm)LEIIExHIEIx HIMt$111L%I$xHI$HH=HLEơLELljE財EAL藡Ix+E1IFA*LeAjH߉EJEL:LEL) L(LLM LMLLMLMHLELELLELEHIKAsUHP#fIHAWAVAUATSHHHH`H)EfHnfH:"HE)EH?LOM2HHHH=11P"H}HtHx HHc H}HtHx HHV HH=E1 HeL[A\A]A^A_]fHVtHUHtHUHG HJ4HU1HjPAQMLEoH LuL)H6 MLeM<I9L;%  L;%  HDž@HDžHHDžPHDžXHDž`HDžhHDžpHDžxHEHEHEHEuL.H@HPHxhHHH0bHCH5#HHH IM]ALhtAHE1L}H=#HHHEH8虶H`IILHI HDžhxHIuL藝MAEtAEH=#uIHH@H5#LHH ILhM|Ix HI2 H81H=*#HLML(Lm贵LHXIR L(Ix HIHDžhIExHIEHPHHHDž`H@MH0HxhH}HtHx HHH}HxHmHH`&VI.IMH tHEIL% A$tA$I9Le@E1E1LLX1L LLh1H`LLH0HH8H=#WHH LXHhH`L9R H" Dž(HH3H0L(HDžXHDž`HDžhMHآH=} H8LLH0謱D L`AtAL5- Ix HIh HhLHDžhHXHDž`H0HPHDžXHHH@HxhrfL=#H=b]#IWLIH:tAEH( I9EHu1LHEHHEfIIExHIEM$AtAHCH5#HHHIMHf#1H=#HL}HEHEHLmH8贱HhHIHI2IExHIE Ix HIHH`tfHEH]EIHHf#HPtH#LuIU tH8LH=#HLeհHHXIsIEHDž`xHIEHx HHHDžhMMHH=zE1 !fDL耗HDžhIECfDtHEILfA$tA$L6LeAtALuL;% DL6AtALuH f.L踖 L訖蛖fD苖fDH0HPHHH@Hxh֘H`E1HHx HHHhHtHx HHMXIMHI@L3fDHHHL 軕HHL 111L賵IHMHUHxhHuILuLxfLLLHpHH8W7Ix HII|$hHMHUHu蕗HMHxLHpHELXHDžpHDžxHEHEHEH0HPHHH@HxhM:IHILE1mH`H,K:fD; fDH(UL1L]L,LL(L(DLȓI H"jHM1PHunZYLL蘓L IHLXM?IE1f.LXMIxһIEMMH0AtAH08tIExHIErHu1ɺLMH0L8HEL8IIx HItL0fLxfDkI=[IHXHtHxHHu/Ix HItDLfDH0HDžXHDž`HDžhfDLXM3IH`HHE1QDLXMWIHUHMI$xHI$3HEE1E1E1HtHx HH1MtIExHIENHtHx HHmHtHx HH|MtIx HIH&bH="~HM1HYLYLYM<$A|zIT$tM<$HUAtAL}]fDLuHMHUeYHUHMuDH߉|HMLEHU6Y|HMLEHUL|HMLEHUX|HMLEHUH׉uHMLEXuHMLEpDHωuLEXuLEiDLljuXujDHLMtXLMLLM\XLM11E1~3XfD#XfDXfDXfDHGLGHEAtAHuEtHx HH0H}Hu1LELEHEyLEHIx HI>H}DHLMdWLM/LLMHMHWLMHMH0WH WLWHMoHUVHUfD|LMHHLEVLEHuH9\LLA!DHEE1111E1IHyjHMLPHuILh1ZYLHU4VHUHLLMHMUbHMLME1 fDHE1m@kjHHHHEE111Ҿ15@HGLGHEAtAHuEtHx HHH}Hu1ɺLELEHE)LEHIx HItH}4fLUfDHMiH}HH[HEE111ҾbfzHUIHE1ɾ-@HE1Ҿ1E11E11HEE11HELE11ҾH+ H_H51H81i}11E1?HLLEHM:LEHMsDHHE1jHy{HHtkH@HHEHtWHEE111Ҿ(LESLE LESLEHLUoSLU+11E1|HLUkLU11MXfDUHAVAUATASH L-Y#H=#IUL4^HkHËt!AHJcHDA|HJcHfDHCH5 s#HHHHHx HHH [A\A]A^]HCH5r#HHHHufHCH5er#HHHHw ^HCH5=r#HHHHG .HCH5r#HHHHHC\H=L51HHEdQHEH [A\A]A^]ËtIcrQIHtzH H9CHu1HLeHHEII$xHI$IUxHIUHH1Hx HHt`Ha[H=e41eLHHH([H=,41HHPHZH=3p1fLHEPHE5LHEOHEufDu6fDu6fDufDunfDfDLsLkAfInfI:"tAAEtAEHx HHtDHu1L)EI0HI#LHEOHEH)EOfoEff.fUHAVAUATSHHHFHHFHHwDVH)HAH #zHu~A.HiJcH@HH)HHVHHlHAH tHyHyHfHTH=M28H[A\A]A^]fDAeyHuH;Qy DcSH1[A\A]A^]AFVHH AH fDHIw H5H8UxHLAL5#AtAD IHH]IHIExHIENH=U#Hx LH9tI9kvIMI$xHI$4Hu1LLmHHExIIExHIEIx HIMt$111LxlI$xHI$zHS0H=W0jE1HfA;DA+DFVHH HH fE1FfDH`IHH@/IEHHHH)HHHLiHAH >IEHIEL>KfHz HQVH5H81Qt@AUH)HAH tHt H5QH89SAnfDLJyLJLJ0LJ LJsgIIHILHJIxHIuL(JIEHIELJIxHIuLII$AEAUHH AH TAEAUHH HH E1$L IHH(AIHILEIHr H5CUH8Q-H,tH/UfHHAWAVAUATIHSHH#HXH)pfHnHXfH:"HEHMHE)EHLOMvHK.HtHuHtHpHWLp HLulM1jHUH4ARLhAQILhH x\Hx H}LpH~fDHH I<uIع1LLeI?HtHx HHIM9uHM=H=k裺E1HeL[A\A]A^A_]fDHuPHNtHMHHtHxH H\ HIع1H= kLp'F:fDHxL-2r HHHEHPH5)#I9vt M9 M9y ID$LqHhHy 1mHXH ID$H5#LHHdHH6HCH5S#HHHIHMbx HH IFL`LH5 #HHL`HHLϺHL`5eL`HIIx HI Hx HH L;;r L;n M9LL`vaL`U Ix HIA HL2#AtAA$tA$HE1LeH=I{#HHL`HEH(Q]LHHL`tHE1LL`HHHEH]LuH }L`IHx HH Ix HI MI@H;n t H;6r IAtAHDž0MHDž@Ix HI E1L1HDž`HLL8H0 HCH cn H9KH@H9cHCH<tH@HGH;%n t H;tq HOH H;Yq LgA$tA$Lw AtAHx HH7 M9*M9wH-H`!IFH5&~#HH8LHHH;=vo H;=4l L9H`^H`AbHx HH EeH5v}#LHH*H5C#H`aH`HIHx HHLIx HIL-X#L8MIAEtAEH5{#LLHLPL`L`LPHLHIH#HQHHL`LPHLHIMIx HI~4#HS#fI:"HE)EAC @u LICH}L@LHHP/LPL` L`LPHLHL@IIx HIH 1LL}HLPL`LhHExLhL`HILPx HI$IExHIE0HtL111HLPL`Lh_HLhL`LPx HH|L`E1LAufDL0AtAL-j LpAEtAELxLHAEtAELmLPl@L-j AEtAELmL-aj AEtAELxA$tA$M9f)EfInfI:"F8)E'gHHH#HPtHHHz#HEHQ tHPH(HH`H=e#HEVLI~H`Hx HHMM9H8EHXL&L`LL8HpHPʉhtHPHMHH1HHhtL0HHAHxtAHPLpL-h HDžPHk HRH5ˤH81!fAiE1E1E1HDžX1HDž`f.MtIx HIWMtIx HI^DHBE1LhH=`螯LhHtHx HHMtIx HIH`HtHx HHHXHtHx HHtYHpLeH;HtHx HHtHI9uX;fDUH;fDHLhq;Lh'DLX;.HH;>LLh1;LhDLLh;LhDHL`:L`DL8MII1AtL`LE1ILhE1fDMtIx HIHhtHhHx HHMIHILLPLh3:LPLhpH: L8MIHIAt-DLL@LHLP9LPLHL@*fHL@LHLP9L@LHLPfHL`a9L` DLL`A9L`DLm]jHuIARL1Lh-^Lh_1HPL']LGHH;HP/Wf.L8H8HLL`q8L`ZDHL@Q8L@L`fDE1E1E11HDž`Amg 8fDLL`7L`5DE1E1E1AoHDž`]HLhE1E1E1HDž`1E1AoIE1E1E1HDž`E11AoI$HI$LL8L@LHLP%7L8L@LHLP\\IE1E1E1E1HDžhAoHDž`"\L`HIE1E1E1HDž`1Ao/HHH0HHH,L8HHIHLLPaLPLHHHt4Hc H0H9 LHLPJLPLHIx HI L #AfInfH:"XtALHLPHE)EA^LPLHHIt|Hy#HPtH(LH=e#HLHLPLuNHPI覸ILHx HIi ME1E1E1E1AzSIIL8HHHx!LPLhwLPLhLhE1E1AsL Z#AtAH5x#LLhLhHIH5n#HL`Hh蹺LhL`HIgIx HI>LH"L`Lh~DHHLhL`HIIx HI/H5n#LL`LhLhL`HIH/"HLPL`HhCHH_LhL`HLPIyIx HIHL#L]L}HEHKT#HEAC @u LAG @uL ISH}L`IGLhHTHLhL`HHIx HIbIx HIc1LHuLhHHEH]%kLhIHx HH5Ix HI5Mt$111L RI$xHI$E1E1E11HDž`ApH@H9H|_\H5"LHN:HIL8MHE1E1AsLVWHH5"LH9HdI $tMt$AtAIE1E1AsHDž`6E1E11AsHDž`0L`0`H_ L8H4<H5iHHE1LAwH81LPL`YLPE1E1LHHHWHHHIHx HH3IGHLLAHHILLAHHIkLHоHKHzIHILq/HL8MILL`LAwIE1ME1E1L8MILLMIE1IAx15H5"L7LL8MIE1AwE1HDžhE11AqHDž`LL`0VL`HIH@HH0HHDž@HW H5LPLhH81gWLhLP[LL8MIE1At.ILHL8LL`Lh-L`LhE1L`LE1MAv3LL`Lh-L`LhLL`LhW-L`LhLLPL`Lh'-LPL`LhLLh,LhH,LhL,H,HL,LPL`LhLLPL`Lhz,LPL`LhLL@LHLPC,L@LHLPL`8LLh,LhL+H+LPL`LhbE1E1LLP+LPLLP+LP|1E1E1ApHhH`IHL8HL`IIAsL8IAHLHx HHLHLPDLPLHAsIL8HE1L1LhE1E1H`E11As&1LhE1E1H`1E1AsHLHLPy*LHLPBLLPLHPLHLPBLPLHAsgIL8MHE1AsfUHAVAUATSHHtH"HsH9t\HXHHyH1@HH9H;TuI1DHH9CHtH9uH;T tIHx HH HL[A\A]A^]@HDHH9HuH;S fDH5ij#HyL%"A$tA$Hu1LH]HHEaI$IŅxHI$M,Hx HHEH"MeLL9I$XHHyHL-~#AEtAEID$H;R qA$tA$H=&G#LQIH6I$xHI$Hu1LLuHHE`IIx HIIExHIEhMt$111LGI$xHI$fH.H=KE1wfH('HL[A\A]A^]L%"A$tA$Hu1LH]HHE_I$IŅxHI$M8_IExHIEI$xHI$)fDH(/ IHH9HuH;P HfDH&L &L%hL% L%L%L%>nL%.L% LYH;O u9LPXIMIEHIEL\%H;xR tH5"L+IHfUHAWAVAUATSH(L-P L9H~IHL~AtAM9I$Hx HH*H{M$Ls AtAI|$`Hx HHH{Mt$`'Ls(AtAI|$@Hx HHH{Mt$@OLs0AtAI|$HHx HHH{Mt$HLs8AtAI|$hHx HH7H{Mt$h Ls@AtAI|$pHx HHH{Mt$p LsHAtAI|$xHx HH'H{Mt$x L{PAtAL5M L;=BP M9M9L?ƒ Ix HIAT$H7IHI|$PHx HH M|$P HIHI$Hx HH0M$ HIHH;hO M9M9L>Aƃ Ix HI&E$ HYIHHAƃq Ix HI=E$ HIHH̼Aƃ@ Ix HI|E$ HIHH胼Aƃ Ix HIE$H~IHBH:AƃIx HIE$H5IHI$Hx HHM$HIHI|$ Hx HHMt$ HIHI|$0Hx HHMt$0HIHNHFAƃ"Ix HI~E$HAIHI|$XHx HH,Mt$XH IHHƺAƃIx HIEt$HIHI|$8Hx HHMt$8HIHQI|$(HxHHu'Mt$(HUIHHAƃ7IxHIuLHCE$HH%AEtAELfDfD{fDkH{Mt$HL)fKfD6!IHt.HHs7IIx HIM H(H=e1H([A\A]A^A_]DufDfDHI H5"H8%1y IHmHH6IIx HIMB>DLUU DHK H?-H5ۄH811FIHIL@fDIHHH5IIxHIuL|M~fDcfD^IHRHH5IIxHIuLMfDLIHHH75IIxHIuLM{fDLH5G#LyH5G#L١IH tA$H߾HHH=:g#Hu1HLeHE3LIzHx HHXI$xHI$5MIHILffDLLH{fDI$xHI$t.x HI$t[fDL8fDL(I$fLwIH HHO3IIx HIMf.IHHH2IIx HIMf.LhfIHZHH2IIx HI@M*f.LEDUH fD3fDZfD;DH`DLuDHDCHlDCHTDCH<DL L3CHL`L \CHICHLHUHPX#HAUATISHH8HEHEHEHyLIHMiHtHHtHUHGHHUH41L-&(jLEAUAQIH H H|5LmȐHQB IEI9t H;E 3LLxHH?Hx HHtHIU}HIUusLHEZHEa@IعH=Y'b1H}HuHtHxHHt]H H=51He[A\A]]HuL.AEtAELm.fDvfDIعL趗OHHHA H,H5&H81>1ƘH H=~1L-K&jHM1AUHuI3ZYff.UHU#fHHHHAWAVAUATSHHX)EfHnfH:"HHEHEHE)EH]LOMPH)HtHHtHUHGLeHL-8M1jHUH4AUAQIH LuxAH~HHI<uIعLLLeH;HtHx HHHI9uHfH=E1چHeL[A\A]A^A_]HHVtHUHVtHUHL6AtAH~LutHVH}tHULe;IHdLL}HHH="HM6uHx HHAL-J"AEfInfI:"tAEH=M#Hu1H)E)+HIExHIEHgL;== t=IGH;{@ mHLHHHxHHutIHx HHLLeH;HtHx HHtzHI9u@fDIعLeH=5讓fH߉EeEDLPC|fDH})H :^8HHH#tHCHHH=1O# IHHxHHuHH5#LHHtHx HH"Ix HILIHtTH=E#HM9IH>Ix HI11LH>0IExHIEHH=0Hx HHt@E1AIx HIHoDH=HuHfD;HDL-3jL1AUHuI|ZY+DHx HHtHH=hCH߉uuHH=?f.L%HH=HHH: H&H5H817HN H=zŁE1DH) H=U蠁HVLIL< L/"HH=R-A&HH= ff.UHF#HAVAUATSHH0HEHEHEHLIHMHQHAHLeLE1H"$jLPAQE1H 'LmM tH=J0#L1H]HHE%IHx HHML;%c8 L5>7 AtAH,Y#Hu1LHHELeHEtEHIx HIHI$xHI$IExHIEHeH[A\A]A^]I11ҾH="H1H}Hu%Ht HxHHu @HH=1HeH[A\A]A^]fDHuL-47 LeAEtAELm`fL Lx HeH[A\A]A^]LX HH XA$tA$LL-6 AEutH.H=1.~fHH=~OH!jLe1PHME1LZYSf.UHPC#HAVAUATISH HEHEHEHLIHMHQHAHLuLE1H jLPAQE1H 'LmMA$tA$H=-#1LLeHHE~"HI$xHI$HH;5 tH=S#1LH]HHE"IHHHM …x HHIEHIEL HeL[A\A]A^]fDI11ҾH=1H}Hu%Ht HxHHu @HnH=E1{HeL[A\A]A^]DHuL-3 LuAEtAELm`fHHMtHMHUyH=\W{DHLNtHI܉@L-Y3 AEedHxH=E1zpHPjLu1PHME1LZYcf.UHAWAVAUATSHHGpHDžPHDžXHDž`HDžhHDžpHDžxHEHEHEHEHEHEHH H(L@hIHt H;12  M@MuHDžHELHDž8H@HHP-HHHX(H2HptH@1H]HH=G#HEHhIHx HHk HDžpMwH5T#L{%HpHHPI$xHI$ H;2 HDžhH;F/ H;0 H!AąHx HH HDžpE` H0L`hH0 @M<$I9t MNMd$MuHE1E1HDžxHHH]Lp(M ALhtAfLuED-HEHHHN#H5R#HPtHuH=6#HH@H H HpIIx HI HDžhHx HH HEMH8HtHx HHd HDžpMtI$xHI$n HDžxMtIx HI: HEHtHx HH HHHEHX fHnfI:"H H]tH@1)EH=P#HHpIHx HHkHEMsI$xHI$HDžpL8KDAL}tAMgA$LxtA$LyHDLpIx HI MtIExHIEv H0HDžpHDžhLh`H@`LmMt-IMHptIE(HhHt tH=3 #{IHG LpHhL9$H Dž HIC H0LL HDžpHEHDžhL-L5LLutH0HUHpHh'HhHx HH" HDžhH}Hx HH HpHE-HLLH0HDžpHxh"@HHEML HLULAH@HH M Ix HIHEHhHpHtHx HHNHDžhHtHx HHsH, L0HDžpH0H(Hx`?0L0H@H DL0rH(HUHhHpeLmL0f AEtAEH=fG#L0"yL0HIH@H5-#HH1 LL0IMI$xHI$ H/- HuE1HI9FR 1LLeL0HEg7LHIL0x HIq HIExHIE HpL@蟁LHDžp茁HhHExH(HHDžhH@HPHxhXHHHxHfHu1H)E6HhHHHx HHL%) HDžhA$tA$H8HtHx HHHtHx HHmHL[A\A]A^A_]HXtHSHPtHIHH`?H' HN!H5)H81%HhHtHx HHHpHp HHH@HH x HHH}HtHx HHA@H@H DE1Oof.HLALLmE1E1H(HLHPHxh%`HEHHEHDž`HHEHHEHDžXHDžPHEHEH0MtIExHIE~HEMtIx HIwHDžhMtIx HIFH{hH0LPLXHHL`HDžpLLLHHHHxHfHu1H)E;3HhHHHx HHH{hHMHDžhHUHuHPHXHH`1HEHDž`HDžXHDžPHEHEH\LH `@HHpH`LPL@H $ HH5|H81\"H}LhLpHtHx HHtDHEMtFKL}LULuLL|HLMMH@HAH H0HLLLHxhLLLH" LHH5n{AH81L0'!HLUL0H@H'H HH`L0L0LL0zHEHhHpL0PHL0IL0rE1LL}Lu1HEHHEHDžxqzLLxbz1[zHEH{hHMHUHHHH0LLLH L%IExHIEH{hHMLAHUHuHUHuHHxoH(HHEHHPHEHxhLhHDžxLpHEHDž`HHDžXHDžPHEHE}H LHH5yH81L@L@HL8AH@HHDžhH LHL8HLH0LL3HEHDžpHDžhLL0{LL0L0TgLL@L@IHM=x HHLLLIExHIExHH#L9HC [5HtxH=G#L9@HG1LP(HtHxSHHuJHHENHE8H8L5 L9H tH [A\A]A^]xHIE;HH=qcH 1[A\A]A^]H uHHiHHuHE色HHHHH`LPL8EL3h9HH)~DL hHHf.IHHHfDH H=]aHbf=fDHQ HH5;VH81H) HH5VH81iUHAWAVIAUATSHHHGxLOHuuIA0Mi(IA(HEIA8HEHH}IUH IMHuH9H9IULgfUfHHHAWAVAUATSHH#HxH)EfHnfH:"HE)EHlLOM_HHHIع1H=M fH}HtHx HHH}HtHx HHuHh*H=1WHeH[A\A]A^A_]ÐHNtHMHtHMHWHHUH41L%jLEATAQIwH 4H}0LmH"H|݀HHt H|݀}HEHxIEH5?)#LHHHHHIHHx HH=IkH=<#]IHH@LpLH5!#HH^LpIMIxHIuLH5z(#L"iHHH HuE1HI9D$1LL}H]QLIeHx HH2I$xHI$ M H5l0#I9IFH; A^Ix HI'L=p LxM9hH=q"[HH&HLAă`Hx HHEHx@IHH5,'#LgHHHPHBpHH@H{H5+"HIHTHx HHMLHHI$xHI$/I9H5k"H=d"1U)HHHxHHptH5 #H=F"HL |#H5ML#H?"tAYAZIHVHx HH'HEAD$|AD$|HULL;AD$|LEM%!I$xHI$LLpzLp5Ix HIFL%W6#A$tA$HS"Hu1LHHEHEWHI$xHI$"H%111HgHx HH!DžxdfE1E1E1E1HDžhE1E11HDžpfDE1MtIx HIMtI$xHI$MtIx HIMtIx HIMtIExHIEMtIx HI#xHXH=zQHtHj E1HH LMtIx HIN HpHtHx HH> HhHtHx HH. H}HtHx HH! H}HQHFHH9w/fHHHH1Hxp.L(HMAEtAELmIع1L1_e@HfDTfDL(AEtAEL=9 LmAtAL}LxfL= AtAL}DH=#dVIHH5"HHpbLpHIiIxHIuLLpLpH5##LLpcbLpHHBHI HuE1HI9Ar L1LpLuH]LI _HLpxHHuH{LpIxHIuL\ML LIHI$xHI$AtAfLuEIHH#H !#HPtHEHMH=Z"LHHH`vLH^I$xHI$2Ix HI+HAL911HHH5(#1HHpLpAnIx HIqEH= #TIHH5T#LHhU`LhHHpH 7 E1HI9I`H`LLeLpLhH41L}`LI\ILhx HIIx HIMVH=N#1SIHH5!#H_IHIx HIH5#LW_HhHH @ E1HI9L$HhH`LL}H]HuH41kLHp[HhHx HHI$xHI$|HpH=N#1RIHH5f#H^IHIx HIiH_ E1AI9A/LhLmHELe[LhHIHA#H ""HPtLLHMH?L)LLPH H`J4ZLHhZIELPxHIE3Ix HIHhYL "AtAH=#LPPLPHIHpHPHBpHH@HLHH5"LPHpLPLHHI*HSHBpHH@H L@H5C"HLHLPLPLHHL@IH@H;H5M$#+IEHu9HƒHH)AUHL@HxLHLPLPLHL@IMaIExHIEH E1AI9BfL8L@LHLELPLeLuELPLHHL@L8I2H#HPtHxH(#HEIU tLLLL)H?L]H H`L@LHJ4LPLxLIWLHLxLPL@Ix HIIx HIIExHIEIx HIFMiL-Ơ"fInAEfH:"h)PtAEHpHPHBpHrH@HeLxH5"HpLxHItA$H`1LeHH=B#LHHELHxVI$LHxHI$FHxHxfoP1HH=#LHHuH`)ULIHx HHsDžxcL%j!#A$tA$HN"Hu1LHHEHEjHI$xHI$HZ 111HzHx HHDžx\E1MME1E1DžxfE1E11HDžhHDžp LL#LlE1E1E1E1E1E1HnLE1E1E1E1HDžhE1HDžpDžxfzDžx]E1E1E1>L #AtAHxLpLpH7 HLx}LxH H5#LLxHpPOLxLpHI HPHBpH H@H LpH5"LLxLxLpHIIx HI LLhLpLxLxLpHLhH Ix HIa HLpLxgLxLpHI HV"IQH}LhHEH"LMHEH"LUHEIBLxHTL趓LxLpHLhH1 Ix HI Ix HI 1LHuLxHHEH]LxIHx HH Ix HI M 111LIx HI Džx^LS1ffA.FErE1E1E1E1HDžh1HDžpDžxfZHp>LhL*LHaH5E1E1H8\E1DžxcH#H5|?H84DžxgE1E1E1E1HDžhE1E1HDžpDžxcE1E1E1E1HDžhE1E11HDžpH\nLOTHBE1E1E1E1DžxgE1E1HDžhHDžpE1E1E1E1DžxVE1E1HDžhHDžpLwE1E1E1E1DžxgE1E1HDžhHDžpL-D#AEtAEH"Hu1LHHEHE,IIExHIEMt$111L@I$xHI$4Džxh1E1E1E1E1HDžhE1HDžpDžxkHpE1E1E1E1HDžhE1DžxkLLh~Lh|LjH]HPMaMqA$tA$AtAIx HIM1]LLLPE1E1E1E1HDžhE1HDžpDžxkE1E1DžxmE1E1E1HDžhE1E1E1E1HDžhHDžpDžxliE1E1E1E1DžxYE1E1HDžhHDžp2DžxlE1E1E1HDžhHDžpE1E1E1E1HDžpDžxlE1E1E1E1HDžhHDžpDžx])E1E1E1E1HDžhDžxmE1E1E1E1HDžhE1Džxl^HHRH5(LPL`IE1H81LxWHxL`DžxrLPLPE1E1E1HHRH5A(L`H81L`DžxpLPM|$IT$AtAtI$xHI$I1LL8L@LHLPLLxH;L@LHLPLL@LHLPIMbMjA$tA$AEtAEIx HIME1HH)HHHH*HL@LLHH@`LPPLPLHL@IHDžx_CLλE1E11E1E11HhHpDžx`E1E1E1E1Džxp-LLpLxkLpLxLP4LLxH@L0L H0HLH H]HxhsHtHx HH<HXLDHHt#HHHxHHHHu蛉1@H舉HxH(@H`HPhL@0L0H HHH5v H81HUHuƈHUHuLHxOHELhHELpHELPHDžxHEHEH0HLLPH Hxh?LPMtIx HIpMIHILv~HBLHH5LXH81LP}LXLPHkLHA;L-HHDžhHXHHL(HL(H8LHEHDžpHDžh蝄q蓄DLL@LPxL@LPLLPVLPHLX;LXL'LhH]A=LpLPILHHL($HL(HHMXM`AtAA$tA$Ix HI1ɺHuLL@L]LPHE,LPL@IIx HItMLLPLPHLPLPLH E1LXCHX7H+H@LLL LL@LP膂LPL@HhMLE1HXL8A7L-|LHL]LLXL8MLIA8HhHpH(ff.UH("fHHAWAVIAUIATSH8)EfHnH^fH:"HE)EHHI3HHqHVHoH=6IعoH}HtHxHHu!H}HtHxHHufH jH=ug(He؉[A\A]A^A_]fHiM}AtAI] L}tH]H5CK"I9wL%t M9tHCL9t H;|}M9I~PHx HHI^PH"tHN"Hu1HHHEHELuIHx HHMA$tA$H6"Hu1LeH=ճ"L}HHEfI$HÅx HI$xHI$SHHx HHF1H}HtHx HHOH}HOHDHH7-IM tHMIMtHMIT$HL-I1jHULE1AULPUOH L}LgHH|ݠt$HHtH|ݠtH]fLIعH}DC~fDH0~@L ~H~L~I$j}fD1HLBH}HtHx HHH}HHHH}HYHnH5CH81虦Hx HHkHKH=chL-jHM1AUHuIILXZYEfDlHHHHEH5H81hH|o|f.UHSHI$xHI$H/30H!Hu'H5H81\@H7E1M@(I@MxIXAtAtIx HII1r7LLEeLELeLLEeLE$LeLelLeLeLeLye_E1;H;Pu;LPXIMمxE1L;fML7E1SH;DtH5("L[kIfDUHAWAVAUIATISH8HFH;ƏH;=YL5L9[HFHƒHH)ЋVHII ID$H5"LHHLHHL9sHCHƒHCAI)LIFHx HHBLLHH!ID$LPH H8[A\A]A^A_]HH5"LHHHH;H;W H; H7Hx HHkycHHH5~"HiQAHERx HHEhH="HHteHUHuE1HH9C1HLuLeLm蔛LHEHHEx HHHa HH)HH&HHt{I @Hx HHHLhH=!ILH81[A\A]A^A_]HِH0lH5H81fHatHoHHbHaUfHa_ HuIf.HzHHtHxzIHHHH%aHHH)HHHtpHzIKkHIfDHyIHtHyIIjHI]L`PFVHH IDsCII /DFVHH IIDsCII If.H`H_HE_H_ӅHHHH߉u_u|L%)"A$tA$Hś"Hu1LHHEHE9HI$xHI$Ht111HMHx HHtnLsL{AtAAtAHx HHt=LHuHL^oH^H^ff.UIHAWAVAUATSHHXGxLgHuF%ID$@Mt$0ID$0M|$8HEHH}]L-IFIVL9 I9IFNAtAHEII@L9t H;%IxH H; IP tMh AEtAEIxHIuLHU]HUI|$IT$I|$(Ml$(Ml$AEtAEHE1LmH=m"HHHEHEuLHELEMML$(AtAHu1H="HLELMLMHEuH}I*MLELE?LEHL@HMLh Mt$0H{ M|$8IL$@HtHHC x HHrCxHX[A\A]A^A_]@HX1[A\A]A^A_]L-L9I|$ H5"HGHHIMM|$M9L5"AtAAtAI|$ H5"HGHHIMyH5j"LLELEHINIx HIH5k"LLMLMHIgIx HIHE1H=N"HHLULUL}HEsLIQLUIx HI!MM|$AtAI|$ H5"IHH5ܐ"HHELMHI`Ix HIH5u"LLUfInLUHIfH:"Ix HIiHu1H=L"HLM)ErLHEYLMLUIx HIE1E1E1M1HuLLUHLUHELmoLUIIExHIEIx HIIx HIMI@L-&L9H;nt|LLE踀LEHI[H@HIHMHx HIIDHELIHGL-AtAM8Ex IM8|ME1WfE1AyMfE1E1E1Ix HIiMtIExHIEMtIx HIMtIx HIMtIx HIMtIx HIHEHx`tH^DH=g1CxHHEaHEHX[A\A]A^A_]HEHt&HLEH2H9kf.Ix HIL-AEtAELvE1DAxDE1E1ME1E1E1LLELULMVLELULMrLVLLELULMVLELULMULLELULMdVLELULMFLLULM@VLULM?LLU$VLU@E1E1DLLEULuAyIx HIE1gfDLLE\}LEHHIx HIXHBHUHLAHUHI]LmHHEAHULEHI}HHEоH+qHULEHxx HHLx HHtAxHLEAxTLEnDLTLLMTLMYLTLLUTLUhI97ODAjhHAqE1nfLLU4TLUM8ELTyIAuHESHE|fDLSLULLM)ESLMfoEyfLLESLE1LLElSLELLETSLELUHx LELEAxE10f.E1E1E1fxIaH tLjAEtAEH-E1E1DE1E1E1E1E1E1DAx4H{H5:LEH81{LE3H~H5H8ZLHU4RHUHLERLEE1Hx HHtDLEE1AxkLE~LLEmALQHLEQLEE1AxHLEiLE8E1AxfUHAWIAVAUIATSHu#HGH HL;-|L1HHHx HHIGH5P~"LHHIMIEH5"LHHHHvHCH5r"HHHIMHx HHKID$H5"LHHHHI$xHI$pHCH5Q"HHH2IMtHx HHIEH5"LHHHHHCH5q"HHHIMHx HHlIEH5"LHHHHIExHIE:HCH5Y"HHHIM&Hx HHLLYÅIExHIEI$xHI$Ix HIuAH5z"LHHFHH[A\A]A^A_]@cNcfDH5p"LHHuAbfDLL5YAfDHNHNLMLM>HMLM LMsH\HH5"LH6IMH5Lq+IHIL9M@LA IIE1x/HI#LIMMtIEx HIEtKMtI$x HI$tDH7SDH=319LLLLfDLLfDA Ix HIoHpHHcHFLVH8LSH{HlaH5H81QuA 2fDqIA DA[DqHqI3AtAHzI9Ft{MHuE1H1LLmL}RLHI$xHI$)IAHHIL"KMnMfAEtAEA$tA$Ix HIHuUfpIpHLA{fpIpH2Ix^LAQcpILAyDCpIAYDL JIEALILIIfUH"HAUATISHH8HEHEHEH9LIHM)HtHHtHUHGyHHUH41L-}ejLEAUAQIH xxH H|H]DHLHHtHxxHHuoHHEHHE]IعH=d1H}HuHtHxHHtMHOH=/Ż1He[A\A]]HuHtH]5DKHfIعLV_1HEHxNH=2/=HE@L-djHM1AUHuI"ZYff.UHp"HAWAVAUATISHHHEHEHEHRLIHMBHtHHtHUHG* HHUJ41L-_ljLEAUAQMH Mf N\MAftAICtGL]nL]HI AtAIFLIx HIX M1L]mL]HIJ ICH;_qt H;t AtAL]E1HDžpE11HpL`HMH5qHAH9qI9v HAN$A$tA$IHtHx HHHCH52"HHHIMAtAHE1H=qw"HHLELxLeHh)^LxIIxHI#x HIjM9MtIExHIEH5"I9IBH;nEIBtHH/ IV IFHHH9H9AtAIVLHIFHpMLgHxH}HpHxHI{L`LpoHxLpHt4H qH1H9 HpLxXLxHpHuHx HH LHxL]FL]Hx LXKL]Hx tAtAI~ HEE1LxIHhLMMHpIM9o HIGLfHnN4AfI:"tAIHtHx HH$tHhL1)EH="[Hx HHHMHgHHZHHEBHEEDMH=g1H}HuHtHxHHt]HxHU H=)E1肵HeL[A\A]A^A_]IuLAƒ9AL]f.AvfDMLOLLxALx{DH;n@L׺Lx?aLxHI;HIULxxHIUHjfL="L`AtALLpL-"LxQLxLpHHHYkH9C H{"~6"HEC fH:")E@u tEHCHhLpLxHP LxLpHIHxHHuH;@LpLx1HuLLpHLxHELmxLxLpHIEx HIEuL?LpLxIx-HIu$LLpLx?LpLxHt>111HLpLx_HLxLpx HHME1 H0?VLLX?LxLXILLx>LxDL]LLLxJLx L`ME1 f.L` HEHxH1E1HMHHMtIx HI2HtHx HHQHLDH={%LxL]SML]Lxt1Ix HI%IMtI$xHI$/MtIExHIE<MtIx HIIx HItK1H}H:H1H&HHQ=H}HtL8=fD+cIqI9HENdA$ @L`E1 `@LL]HAtALHHO111191111111 11111111711111V11uL>AtALH(OL# IE.G11AHH=a/L@~LA#L4#%L'#fH-+H= JL"dIEIEL"H"L"HIEx HIEthQHHyZIx HIt ALQ"HHyEHL*H= iL"HHHuH!LAlf.UfHHHAWAVAUATSHHl"HHH)EfHnfH:"HE)EHLOMHHHIع1H=FzH}HtHx HHH}HtHx HHpH)~H=LF81He[A\A]A^A_]HNtHMHtHMHWHHUH41L-EjLEAUAQI'H 1H}`LeH"H|ݠHHt H|ݠH]A$tA$H5!I|$H9t7HXHHJ1HLHH9H;tuL=mKL9YHH5j"LHIMAEtAEHE1H=N"HHLmH]HE<8IIEx HIExHIEaMhL;59LL;5HlM9cL{;AŅIx HITA$PEumtA$Hu1H=F"HH]Le7HI$xHI$HI$xHI$IA$tA$LI$xHI$-H}HtHx HH8H}H=H2HH%HEHEfHtzHHXtL H]A$tA$LefDIع1LٟZ@fDYfDL A$tA$L=HLeAtAL}L fDH5Q!H9LH1 HH9tH9tu'L=HAtAL}If.H$H=B1NDH;=!f.L51?"H=!IVL'IHtAEHJE1I9EHMHEL}LeDIHHg"HMHPtHȺHtͰLH)H?LH]H *Mt)Ix"HIuLHEHEfIxHIuLHEHEIUxHIUuLHEHEHDIExHIEZMtIxHIuL3LHE$HEHI+L@I4LLML-$@jHM1AUHuIZY)@LLLIEHDHH9lHuH EH9WHL!H9GHHH94HuH9&mDHEHELt.LIHa[M}MuAtAAtAIEx HIEt M1;LUfHHAWAVAUATIHSHHT"H`HH)EfHnfH:"HE)EHLOMHHHIع1H=d>H}HtHx HHH}HtHx HHHH==1ӋHeH[A\A]A^A_]ÐHNtHMHtHMHWNHHUH41L5=jLEAVAQIH 4H}LmH"H|ݠHHt H|ݠH]L;%bC ID$LUCHL5U"H=.!IVL"HHtHEH9G Hu1H}HHEHE3PIH}Hx HHM@IFH5"LHH)IIMx HILL!AƃIx HIH==!ETL=MT"IWL!HHtHDH9CjHu1HHEHHE3OIHx HHMAtAH=E"Hu1HLuLeLm.LHeIx HIH4H}HtHx HHKH}HHHH@HHjHXtL(H]AEtAELmafIع1LY=@LfD YfDx HIHH=?:1IxHIuLfDL(AEtAEHA"LmtH]HA"tHUWL5qR"IVL}IHftAHBI9GHu1LHEHHELIIx HIMt[AtAH=C"Hu1HH]LuLeLmk,LHIx HIt_HDs6fDcfDLP\HCL6JL)L9f.L?L5q8jHM1AVHuIZY@LHAH](H5zH81;#'L蛋HHf.HGLHEAtAHMEtHx HHH}Hu1ɺHEL}JIIHILD7If&LފIH6H&LHHIGMOHEAtAHMEtIx HIH}Hu1ɺLMLMHEJLMIIx HIt L} LHCL{HEAtAHMEtHx HHtPH}Hu1ɺHEL}IIIx HIt H]NLUHLLMtLM ff.UHAVAUIATISH vHH@HMuHI"HEHEHEMLHMtIIMtHMIT$'HH M1jHULELQ1PAH LeM8H5!!I9t$L-:M9.1H^LtDMd$ M1L9aH`ffo ĥHP0HHH{<@@xHH{L`H@@L`(HǀLHǀ@LHǀ@H@8HH@X@hHCHtHPE1E1H}MuHtHxHAHAHeH[A\A]A^]fDMIu!MeA$tA$LeoM11H=E1H}Mu,Ht'Hx HAHu f.HH==ȀHx HHt`1;LؐfDM9DL-8AEtAELmI# fDH1 8IH HH=AgfH;H5tHH815!f.HjHMIRHu1MLZYUfHHHAWAVAUATSHHE"HH HX)E)EfHnfH:"H¸HE)EfHnfH:")EHzLOMmH2 H dHcHHHtHMHHtHMHHtHMHtHMHWHLEHU1L%0LH4HjATAQIH LUxJHH~ fHHH<uIعL!HLH;HtHx HH7HI9uHH=*0}HDžHHe[A\A]A^A_]DH LAtAHpLUHʉtLxHAHMtAHHL}HtHHEHEHHEH1LHDž8HDž@HDžHHDžPHDžXHDž`HDžhHDžpHDžx0HHL-4LM9E H!IH9t9HXHQHqHx1@HH9cH;TuH;=3t H;=L7 AtAHDž0MHDžHDž1MLLH IT$H0H 3I9L$ H9IT$L4AtAHLHH0HtHx HHHDžH HHXhDL;M9t MH[HuHDžE1L9IFH5B"LHHHHHHHHHZHHH@H x HH /HHDžHHt(Hx!HHuHHIHfHDž@Ht0Hx)HHu HHHf.Mt+Ix$HIuLHHDHHtHx HHHH"!HL=)"HHDžHIWH8LHHZtH@IFH5DQ"LHHILxM<HDžH4H9CHHHEHEHHEt.HhHHHP"HHPtHL}L@H)H?HH HLLH4hHH8HˆIHDžHLHx HIHDžxHx HHHDžhIx HIHDž@HHH$Hx HHHDž8L@fDAtAI_tLP HT@HHAHDH(HEL}HHEH H:0H5}H8K H@1HHCH8HDžH,HHDž8HH5GZ"HDž@Hx`#4$H HHH (HHvHH8HHH@8=H`HXHxhHPHfL9H=RM"H[!H|HpIHH5<"LHLHHxIBH0HuE1HI9@YL1LMLLL]L#;HHhH虅LHLIx HIUHDžxIx HIHDžpHHHHgHHHpIHx HHHLHDžhۄHPHDžpĄHXHDžP譄H`HDžX薄H@HDž`HHHDž@hH8\HLHHHDž8HxhDLLIعH=#&ÂHEHHEHHLaLODLH\LH1LHfD1a'HHL9LHDž(H5?6"HH$H0L^LHI$E1E1LHL(H0LMHH@HH8HDLLHHHKLL8uLL@HDž8[HLHDž@1H=""xHHIH HDžHuH-HI9F~1LfI:")EB7HH@H輁IHDž8x HIHDžHH# HHj HxHHuHHDž@MMHHHHLHHIH LLLL(LLHHt4H+H0H9MLLLLIx HI{AL8tAHfLULHE)Eh%LHH@IHA"HPtH 6"L}IT$ tHHLHH=,"LHEHHI$LHDž8xHI$HDž@MIE1E11HDžH9YMtAUSLHHLLHHLLLm;LLHDž0"LHIH@HHHFDžE11HDžH!E1E1E1HE1Hd HDžHDžHDžHDIx HIL8L@LHHhHpHxMtIx HI MtIx HIXMtIx HIHtHx HHMtIx HIHtHx HHHtHx HHHHtHx HHMtIx HIHHtHx HHHHlHt,E1HHxHHHLHtHx HHMtI$xHI$HHtHx HHMtIx HIHHtHx HHMtIExHIEHLH;HtHx HHtHI9u;fHL!LDHLHLH-L8LHHLHHHLH<HHLHKHLHLHHHH HHHDHHL!H1LLL8L@LHHhHpHxLLLLHHLH&LLHHLHLLHHLHLHHLHUDž111E1E1E1E1HDžE11HE1E1E1HHHDžHDžHDžHH@8H= LnH@HHDHME1E1HE1HFDžHDžHDžHDžHE11HEHMI1L%HHHjAT}A[A]OIHsHSHHHttHH@x HHt1H1HfHH9HuH;|fDL%YJ"A$tA$HU"Hu1LHL8HEHER,HI$xHI$ HDž8Ht"111H[Hx HHs Dž111E1E1E1E1HDžE11HMLDžHH5hlLMLH8HhLpLxLHLLLuHHDžhuHHDžpuLH5H"HDžxI}`"L$HHL2eHxHhLHpLHtLH1HH=("LHELm= LHtHLb 1LLHIH5y+"LLHwLLHHH@H;:t H;t HtHDž(LE1HHx HHGL1LHLLMLLMIL$H(H=AI9|$fH9 IL$L111LLLQ ILLx HI11ME1Dž E1HH[DH9aM|A7L[HDž I~I^HH8ttIHHx HIHI޺Dž111E1E1E1E1HDžE1HHE1E1H5PH81'E1E11Dž11E1HDžMDž111E1E1E1E1HDž8HDžLLxLjHDžE1E1LLCLLL(LMIHxE1E1HpHh1DžLHrME1MDžHDžE1E1HDžHDž[HME1MHE1H E1DžHDžHDžHDžHLL:L~LLHLLHLDž E1E1E1HDžHDž?MLMME1Dž111L8E1&LLL{'MILLHLnDž111E1E1E1E1HDž1LHLLHLLLL'LL111E1HE1E1IHHHH HDžHHHDž( LLHItH@HIHsE1]LLLLLLLLLLZLLLLLDžME1HLLLLHBE1ILzE1ME1E1LDžff.UH "HAUATISH(HELnHEHEHHH}HMtIIL$tHMHSrHL%gM1jHULE1ATHP H M J|1H}HuHtHxHHHe1[A\A]]IuIT$tHUfDMH=e1H}HuHtHxHHtmHH=rUHe[A\A]]DHHLL adAH H5W2H8AU1 XZr@;ffD+fDL%jHMIATHuM1HY^fDUHAVAUIATISH HH@HMuH"HEHEHEM LBHMtIIMtHMIT$GHH 6M1jHULELQ1PѱH LeMXH5!I9t$L- /M9N1H0L%FDMd$ MQL97Haffo TwHP0HH @HHfo BwH@xH{L`H@@L`(HǀLHǀ@LHǀǀHǀHǀH@8@X@hHCHtHPE1E1H}MuHtHxHAHAHeH[A\A]A^]DMIu!MeA$tA$LeOM11H=7xaE1H}Mu,Ht'Hx HAHuf.HaH=8RHx HHt`1!HIEHxHIEOHCH;t H; KH{HH; LkAEtAEL{ AtALs(AtAHx HHGLHEHIExHIELHHIx HILzIHIx HIA$ItA$L5!H=!IVLIHtAH}LELEHIHLEiLEHHLQLEHIHzHuE1HI9@pL1LELMLML}H]LuH}I1]ILEx HIiHx HH=Ix HIIx HIE1E11MH=!"Hu1HLeLmLH\IExHIEWAmHH}HtHx HHH}HtHx HHHeH[A\A]A^A_]@HIL A$tA$HXLetH]<@LIعZH}DHLAHAhf.H;DH=1XK HMH)HHڃtA$H}IHHIHH="1HuHLeLuHEHE_LH[ILEx HIIx HIApHQ$@LH;KfD+XfDHHuAHKfLLHLLLLE&L-DHH;FH}HtHx HHH}HbHWHHJ-1XfDHHu1ɺAHIL-jHM1AUHuIZYY@HxxXHxHHuHAjuDE1E1IExHIEAjHtHx HHE11MIx HIMtIx HItVMtIx HIt1HHHHHLfDLfDLLELE/HLELE6LLELE@LxLLEdLEHLELLEL8LEH LE1uHLAjE1pfkHIx HIA$DIMtM}AtAMuAtAIBDM1:LmLIHE11@MAmHIH^Hx HH&I@LELLALEHIULALEHHwLALEHIsLA׾HLEIx HII_17MHMhAtAAEtAEIx HItxMHuOHH57H81aTLE1ApLApLA$QHLELELLMLMsE1AjE11XNL 1E1Ix HIt=t"E1E1MfDALTAL>ff.UHAWAVAULmATISHXL5q"LmH=!HEIVLEHHztL;%Z,ID$HLeHpxHLeHu HL}HL'HEH}HUL9ZfHnfH:"EL9|HUHEEHoH}HUHEH}L9t HEHpHuH}aIHH~H9CHuE1H1HLuLeIMtIx HII$xHI$Hx HHMtNH}L9t HEHpHXL[A\A]A^A_]fDLkHHHvHSNH=]pBE1HtHYLHUH}HUH}HEELeLeLH(LLHHH5k6H81H.HH!Ha@1QH,H=xyAHCLsHEAtAHMEtHx HHtH]LHH=/jf.EHUH}Hx*xUHGHAVAULmATISHHPHHGGH~H5LmHEEHEH9tLLuu?HUHuLHuHHULeLeH-fID$HEHLeHLeHH}cHEH}HUL9fHnfH:"EL9HUHEEHH}HUHEH}L9t HEHpLuHLH}L9t HEHpHPH[A\A]A^]DIt$(HHH=gLuF?@HtHtELHUH}HUH}I@HEELeLeL-EЈHUH}DvHWvUH"HAWAVAUATISHHhHEHEHEHLIHMHtHFHtHUHG%HHUH41L-jLEAUAQI莛H H H|݈LmDHEL;%EHEHxHEE L5 "H=!IVLHH"tHHuE1HH9C1HL}LmIMtIxHIu LDHx HHMH}LOHEH]H}HUH9HxfHnfH:"EH9yHUHEEHlH}HUHEH}H9t HEHpHIHgx HII|$0HuHUHclHH=H}HxH9t HEHpMt{IExsHIEuiL_fIعH=K1H}HuHtHxHHtMH H=B1;HeH[A\A]A^A_]ÐHuL.AEtAELm[fHH?HEEH]H]HIعL6J/x HItcH H=;1@HtHHiHUH}HUH}L=LfDHaHH5K/H81i@L[@HHGf.L{LsAtAAtAHx HHtILHuL-jHM1AUHuIZYEHUH}HHqUHAWAVL}AUATSHXH;= L}HEE~L5"IIH=ډ!IVL~HH2tHHuE1HH9C'1HLuLmIMtIx HIHx HHEMH}L HEH]H}HUH9WfHnfH:"EL9HUHEEHH}HUHEH}H9t HEHpHIEHxHIE I|$0HuHUH}L9t HEHpHX[A\A]A^A_]HHGH5,H81HD H=7fxHIEuLHHEEH]H]HLXjHtHHHUH}HUH}LL=HH&fHCLsHEAtAHMEtHx HHtH]HuHfDEHUH}LHunDUH!HAWAVAUATISHHxHEHEHEHLIHMHtHfHtHUHGHHUH41L-jLEAUAQInH 0H H|݈LmDHEL;%%HEHpHEE`L= "H=!LuIWLHHftHHuE1HH9Cc1HL}LuLmHxMtIxHIu LHx HHHxH H}LuHEH]H}HUH9&HpfHnfH:"EH9HUHEEHH}HUHEH}H9t HEHpLuHHxHHlxHxHHLuI|$@LHc+HHCH}HpH9t HEHpRMtzIExrHIEuhL^IعH=LB1H}HuHtHxHHtMHxH=Z13HeH[A\A]A^A_]ÐHuL.AEtAELmyfHLu#HEEH]H]HtIعLA/xHxHHttHH=Lu21fHtH%HHUH}HUH}HLuD+HLu,{HHH5&LuH81=LLuwL7HH"fDHCL{HxAtAHxltHx HHtOHxHuHL-jHM1AUHuIsZYEHUH}HLu-H4iUH!fH0HAWAVIAUATSHH)PfHnLffH:"HHDž`HEHE)EHHIZIHI^>MtIIVtHPIELPc HL2M1jHU1LARL8AQMōL8H xbHXL`LPM9M~_ IIK<uM1L>LhI>HtHx HHIM9uHH=F/AHeD[A\A]A^A_]IuLIV(tH`IV tHXDIIDIt>M1H=LP >#˻5fDM~AtAL%!LPA$tA$LXL-AEtAEL`@HELEH0HpHEHDžxH8HEHEE0HHh Hx HHH;W AtAH{hHx HHH5!L{hH=J~!HVH(IHv tAHDž(HuHHI9Fj H(LL}HM1AH(IHtHx HH.Ix HIM HELHH(kHELuH}HUL9H8fHnfH:"EH9-HUHEEH H}HUHEH}L9t HEHp"HIHx HIHEH8HpHUH9SH0fHnfH:"EH9HUHpxHH}HUHEA$tA$H5 !LwyI$xHI$L諣IHHpHxHCH(HL`0LuH(LHAH}HL9t HEHpݺH@Hx HHE1H}H8H9t HEHp蠺HpH0H9t HEHp耺HPLhH;HtHx HHHI9u^Mn(AEtAEL`Mf A$tA$M~LXAtALPMH5 !I9uL;-1HLHPLhf.HI9H;HtHxHHu@E1@۶fDL`LXLDL-9AEtAEL`MLXH!tHX\@H5!L AI$ExHI$E^A$tA$H5="L f2I$xHI$`HpHxHCH(HL`8Lu3~L(1HLAHLH9HH=A(A#[JfDKjfDHtHLٶHUH}HUH}XLHt!HH8蕶HUHpHxH}fDH5"L\ AI$E xHI$uL膴EA$tA$H5!L I$xHI$HpHxDžHHCH(ƅLHL`8Lu~|H(HHHAH}HL9t HEHpQHt>fDL谳9HEELuLuLH5!!L, AI$E3xHI$+EH "tID$H;YA$tA$H=˴!LIHI$xHI$Hu1HLmHHEIIExHIEHx HHMt%111LDI$x HI$tv@L`1HxHHuHC빐HpxH8HEHEH8H@HL}LӽjL1ARHuMLL8ZL8Y@.fDHH~H5sH81Hp+I$HI$LA@H(7*IHwINIFH H(tH tIx HIL Hu2L褰M/%LX LtEHUH};EHUHplL>L'HeLHcE1DLHH5j%H8"HͲH=DHH=HH=HAHH5+E1H81~HIH=df afDHH=68H)H5$H8:H5qu!L聳I$-HI$A1vHH=Hwff.fU'HHHt HKKH=HEdHEff.U(HH>Ht H<H=IHEHEff.U"HHHt HH=HEHEff.U#HHHt H[H=HEtHEff.U HHNHt H H=HE$HEff.U HHHt HH=fHEHEff.U HHHt HkH=*HEHEff.U HH^Ht HxH=HE4HEff.UHHHt HˮVH=HEHEff.UHHHt H{AH=uHEHEff.U%HHnHt H+,H==HEDHEff.U HHHt Hۭ H=HEHEff.UHHHt HH=HEHEff.UHH~Ht H;H=mHETHEff.UHH.Ht HH=/HEHEff.UHHHt HH=HEHEff.UHHHt HKH=HEdHEff.UHH>Ht HiH=wHEHEff.UHHHt HNH=8HEHEff.UHHHt H[3H=HEtHEff.U1HHQHt f.H H=HE$HEff.UH!HAWAVAUATISHH8HEHEHEHLIHM HtHHtHUHG5HHUH41L-2jLEAUAQIsH XH H|ݸLuDL -AŃID$H5!HHLHHHH9CHCHƒHJCAI)LIHx HHIcLyIHL=M9RIt$0H]HHPH蠶H}HHtHfL9}ID$H5i!HHLIMM9?IcL'IH9I$xHI$uL衡IEH5!LHHSIIEMaxHIEOL9&H{@Hx HHnLc@tHHx HHjMIxHIuvLHEHEdIعH="1H}HuHtHxHHt]HWH=r1He[A\A]A^A_]@HuL6AtALuSHPCvfDIعLN"OfxHIEHgH=&1HdH=1fHHE褟HEHH5*H8I$HI$AgLZHuDH=)H{1@+ILLH#DLH˞fDKHIfDHطHHtHE跷H}IHHHcfDHH)HHBH(D{CII L- jHM1AUHuI#yZY@HHºH5H81HfH=1f.HˣeH=}1wH5j!HAlAeHx HHHzDH=.1(fL8IGHH"H5H81QH4IjD{CII ITAdhI1oHgH=1Hʎf.UH!HAWAVAUATISHH8HEHEHEHLIHM HtHHtHUHG5HHUH41L-jLEAUAQIlH XH H|ݸLuDL%AŃID$H5p!HHLHHHH9CHCHƒHJCAI)LIHx HHIcLIIHL=M9RIt$0H]HHPHH}HHt迥HfL9}ID$H59!HHLIMM9?IcLIH9I$xHI$uLqIEH5!LHHSIIEMaxHIEOL9&H{@Hx HHnLc@tHHx HHjMIxHIuvLHEřHEdIعH=1H}HuHtHxHHt]H H= 1He[A\A]A^A_]@HuL6AtALuSH vfDIعLOfxHIEH H= 1HÞ H= 1fHHEtHEHH5H8負I$HI$A L*HEDH=qT H{1@ILLؗ[H#DL谽H蛗fDHIfDH訰HHtHE臰H}IHHH3fDHH)HHBH(D{CII L-۾jHM1AUHuIqZY@HHH5H81HĜ H= 1f.H H=ŀ 1wH5b!HlA Hx HHHJDH=vY 1(fLIGHHH5H81!HIjD{CII ITA hI1oH H=1H鰇f.UHATSH GPL%!A$tA$Hr!Hu1LHHEHEHI$xHI$uLHt"111HHx HH<t,<th<t|<'"HH [A\]DH]HHH H}Ht HE7HEHuT軨Hu<SHu$ HtHH=0H 1[A\]DHؓHff.UHAWAVAUIATISHX4HhHL5H!HCALshtAH!HEM}HEHEMLH~MtI/IMtHMIT$HL-M1jHULE1AULPcH SM J|(L}fIM}AtAL}L-ĵ!H=V!IUL蹝IH=tA$HI9D$hHu1LL}HHEII$xHI$MM9L9H{hHx HHLkhM9HCxL0RIHChoH fH:)MHtH=X@HuLLmHEIH'Ml$ID$HLeHI$IEH@M|IWHRHuHAH}IHtH}HtݛMlI$xHI$&CPE1E1H}MuHtHxHAHAtlHeH[A\A]A^A_]ÐMLE1H}MuHtHxHAHtGHH=zHx HH1y@L 뎐 fDMH=ћWDӏfDLLIH=HAD$ IHt%H=7G PW u HPMg1H1V@fDˣLCIHHHH=yABDMD$AfInfI:"M|$tAAtAI$xHI$(Hu1ɺLLE)E{LEIIx HIt MC@LpfDH5[!L@IE$HIEL. fHHH5H81AL-ۙjHM1AUHuIMLhZYfDHH5HH81sLLE)E~LEfoELIMAD$ G HHHfUH!fHHAWIAVAUATSHH)EfHnLffH:"HE)EHHIpHI>I#M<M1H=nH}HtHx HH2H}HtHx HHHrH=vAgHeD[A\A]A^A_]DIVIbMw AtAMoLuAEtAELmLUHDž0HDž8HDž@HDžHHDžPHDžXHDž`HDžhHDžpHDžxHEHEL9 AEtAEH{hHx HHLkhM9AƒHMAMH(LPtA$H(H=!fIn1fH:"!L H)EiL HXII$xHI$HDžPMN L;=_L;=2M9)LL 蚦L  Ix HIWHDžXA$tA$H(fIn1fH:"!H=!LH)E}LHXH  H Hw H;LH;?L9HLH 赥H LA Hx HH HDžXEf L=%!AtAM9tlH=!HXIH HLH ܓAƃL Ix HI5 HDžXEH=!HXHe HLH sAƃG H Hx HH HDžXE H59!LXHCrH@HnLHH I蹘L LmHEHx HHuE1E1HHpL(HhH`HxhSvL(IhH@L(E1H8H0$vL(HL sL }E1E1bE1E1RLIsH;eH56!LxyL(IHsLskHrE1E1HyE1E1H Hb]HLrL(]LrdHr~kLL([rL(HeH!eH/eH@eH_eHneff.@UHAUIATISHHtSHHqHj!HCHShtLLHxHH[A\A]]ÐHx HHt1@H1qff.UHAWAVAUATSHHHL5IHALvtAM9IE0Hx HPHlH=,Gz HBH{I}8L9L8AtAM9/IG H5!HC(HGHHlHHH=!H H9JVHBjHƃHJH)HHHxHHUHIH?H=H 0HH)H?H!H)_pHUIHM|x HHCL.HHI$xHI$@HSI}0HCH諙HCIU0HCHB0H+B(HC$AEtAEH{Hx HHHBMe@Lk@C A$tA$L~HkHC0I$xHI$MeHA$tA$L~HHC8I$xHI$HC@L9s1Ix HIHH[A\A]A^A_]@z VHBHf.x HHtk"H=OYHwH{HtHx HHtuHCgIx HIHCDH nfDLn6Gz 1fE1mHCM}DHmmIU0 f.LHUmHULmBLpmnHiH5*H8uvDH)H5HuH81iH=WHuQH{H-Hx HHHC HH5HܔH81f.L%I!A$tA$L-=0!蠕HLIHf~q!fH:"Hn!)EHEAE @u tEIEH}HP'G8IHIExHIEuLkHu1LLuHHE譤IIxHIuLkI$xHI$uLkMt 111L襋IEx HIEtfLXkfDKHHHHUHUIDtHI@HE菖HUH"+I$IHI$;Luju(fDAHI)IHtqHtSHA`HUHHHUIK,fHP@LHjBJHH fDBJHH H &I$xHI$jLi]fUfHHAWAVAUATIH!SHH)EfHnHfH:"HEH]HE)EHTLIHMDI!MtI5HtHMHWLm HL5RM1jHUJ4AVAQM9H xGH} H]I~@ II2 K|uM1LLeI}HtHx HHIM9uHoH=1HeH[A\A]A^A_]DIu:HNtHMHHtHMIIt8M1H=7Lm)A@gTfDHHHPډXtHPH]L`A$tA$HLetHPH]FH5+!H=H2!f1)pFxIH2 H!H2!H{IEH9t;HXH?HqHb1fDHH9KH;TuHH5v!HH$ IH L=H;ƓL9mL;5>`LXD Ix HIXF tHH51!HXH9 HXID$H9t HXH9@ HPH; {L9HXH9zHPE1ADžPfAoL$ IID$()MHtH=#@HC(oS )UHtH=@HUHuDLlPfIH>MwIGHǎHIIF H@HxLpLxHtImH}Ht;mH}Ht-mHXI9zIEHpLȍH{AEtAEHMI$LafDHDHH9HuH;fDL=!H=2%!IWLlIHtAHYHh1HHh>HXHFHDžHHI9F~HHXHEfH:"!HE)E謉H@HHu!HPtHHtݰLL=H)H?H@H L}oHHHHXHx HH H@Hx HHIx HIHoH֋H5+!HXH9HhH5+!HDžHIx HIHHHtHx HHHX HXHx HH{1E1ARHELeHP@HDžPL=)AtAL}fD‰XfL=AtAL}LPfDL_H_L^ADHىMvHAG I~ Ht&HG PW uHPfM~ L5jL1AVHuM9ZY_DHP^oL@^?H0^xE11AKx1yHeH=1@1}L]MHHH5H81A\ fL]5H]Hx]@yfD@EAN1Ix HItE1fDL(]H?H51QLXAZ_qLIHVE11AR6E11AN&GHiA[L[eMAV7E1AXIvI^HH@ttIx HII1L%Ӳ!A$tA$Hwa!Hu1LHHEHEӔHI$xHI$5Ht"111H{Hx HHE11AOH[dH5$'!BIAP1.AXMIHILM[IvIFH@HH<tH@<tIx HIt}L@HuG 5fAG M1E1ARLZiLZHZAOE11LxZvIAR1L@AXH2LuHMHMHMf.UH!HAWAVAUATSHH8HEHEHEH`LIHMPHtHHtHUHGHHUH41L%فjLEATAQI!*H H H|ݸLeLXAHH ELiYIHH=!H;=HsIx HI5H5}!H=#!1iIHHĴ!L;5EIFHHEDHHEHUyvHuHULH}HtNc HHH9Z!LXIHH=9!LHXIExHIEAtALDIعH=-1H}HuHtHxHHH^H=1HeH[A\A]A^A_]DHuL&A$tA$Le fHH9J!LtWIHH=)!HHHAIx HIMaI$UHI$GLV:fVfDLEVEDIعLx HIEtkH]H=~AfDLPVBLCV&fDHC] H=_~1^fLVfDH9H5H8J^Ix HItH\H=~1Lu1UuH\H=}L%}jHM1ATHuI0ZYHH5H8]Ha\H=}}1|.HB\H=^}1]HHZH5H819~H\H= }!RHH5ZH8]2DH[H=|1HfHUH`!HAWAVAUATSHH8HEHEHEHpLIHM`HtHHtHUHGHHUH41L%N|jLEATAQI$H H H|ݸLeH5!L\~AALSHHH=w!L-~L9HmHxHHuH߉EIHH=!L9HXƉDIxHIuLQ>DHK!L9eHPX>HPIH\H=!LH>IHIuHP=dL=}L==L=L=L99HP=IH7H=l!HIIM<xHLIL1=LfHtH/L>HUH}HUH}{L<L%Zej1HuATH`IZYfHt!H4HXE>HUHpHxH}fDH{CH=d蘯1 HH<HKCH=dh1HEELuLuLH;HpxHXHEHEHXHOPHPôIH9AHBDH=dʮ)IvIFHPH8@tHP@tIx HILPHuAHPHiHH\H:OHiH1nH5H81dHAH=2c1UAINIFH8HP@tH8@tIx HI9L8HuLAHiHymH5H81XcH#AH=zb@MAMABEHUH}HfH5aH8BAHeH5ȟH8AAIHILr9EHUHpLO9HeH5ܲH8AAAL9AtH3-HH-H-ff.UfHHAWAVAUIATISHHEHHx HHML5*`!H= IVLBHHStHCH5o!HHHIHMsx HHHeHu1HI9G1LH]LmoIHtHx HHIx HI?MHS!H=8 HSHAIHtAA$tA$HE1LeH=(j!HHHEHXOHI$xHI$VHAEtAEHX1LmHH=i!HENIIExHIE M HDžPHuH5dHI9FHPLH]L}HM1tnHPH`Ht!HxHHuHi5fHx HH,Ix HIIx HIH`gHEfHE)EHEHEHtfopHEf)E)UH`HXH}BHhfoEf)MHxHtq?H}Htc?HEHtHXHH`HxH`HHWI$xHI$1IExBHIEu8L'4.Dx HIH<:H=7HEHtHpHHhHĘ[A\A]A^A_]@H3 L3H3aL3Lx3Lh3THX3IqyL83L(3H3L3H`2L2L2SGH˫IHD+GH裫IHx4f{XHfDLsL{AtAAtAHx HHLHuADFL+HHE1H48H=4I$xHI$MDž`E1Hx HHtMqMfH1fDW4fDI_MwtAtAIx HIMHu.H01L 1=Dž`Ix HIt`H%7H=%L0fDDž`MfDINIFH`HPLtH`LtIx HIt*L`HXDLH0L;0̋`H`6H=`M$Hr$Hv$UHxk!HAVAUATISHH0HEHEHEHLIHMHtHXHtHUHGWHHUH41L-WjLEAUAQIH "H H|ݸLmL;-)\fL;-X)EuL;-ZtLgKOOL;%xZIwIt$0H}FEfoEH}f)M)EHt9H}Hty9L14H}Hþ HH}HtI9M}IExuHIEukLV.a@IعH=Vb1H}HuHtHxHHtMH5 H=13HeH[A\A]A^]HuL.AEtAELm-f H4H=ؠ1 IعL覯?5HJ\HBH54H81VEL2 @L-UjHM1AUHuI3ZYH!@UfHHHAWAVAUATSHH't!HHH)EfHnfH:"HE)EHLOMHHHH=JIع藮H}HtHxHHuI,fH}HtHxHHu",fH+4H=EH1HeH[A\A]A^A_]@HNtHMHtHMHWHHUH41L%IjLEATAQI7H LuL!H"H|ݐHHt H|ݐL}H5 I9vL-Vt M9kH5 I9wM9HZH6H5H81BTfH 3H=%(1LHQL0AtALxLuAtAL}T@LIع辬H}"DM9VIFH5q!LHHHHKI8HIIHMx HH L;% WL;%SM9LMFÅI$xHI$-M9@I Mf *-IHLLI^IFHVHHIEH=|TH]LuAFH]HaH}IHt4MiM9A$tA$H=u!1HLeHHEAHI$xHI$=HJHx HHA$tA$I$LxHI$MtLe3H}HtHx HHt|H}HiH^HHQR(GD@HH3H+(&fD5H('zfDL'AL'1H`PL|H}HtHx HH1H}HHzHHmp'c1HyEL藌DE1I$x HI$tFH9/H=VY1pfL%EjHM1ATHuIZYY@L&fDH&LHgAFLDL&L%9}!A$tA$I_8L-PHCL9NtIFL96AtAHD'!H]LuHEHV!HEC @u H:AF @uL$ HSH}IFHT.IHHx HH}Ix HIvHu1LLmHHEj^HIExHIEI$xHI$ Ht"111HhEHx HH H?-H=Y\1DHSH/H5یH811NH,H=1=H,H=1H5d Ld-jRH,H=躗I$d$LW$LJ$H=$vL0$}H#$H;NaHPXHHI$ E1Af.HI$tNHtHx HHtqMIxqHIt0H+DH=Җ1L#fDLp#H{+DH=蚖1HH#fDHK+DH=gj1H; MLPXIMI$AI$AAH*DH= 1H;OH5D H(HH;OlH5 L(I^HHHH&EUH(D!fHxHAWIAVAUATSH)PH^)`)pfHnHfH:"H HE)EfHnHfH:"HHE)EfHnfH:"HHE)EHdHI(HPH7IT$HP\HH 8E11jHUILQ1PH LPM]H`xHhHXL%aLE1HH;=MAH;=uJDL9ЅIGH59W!LLHHЅIGHL9Ht(H5F!HHLHwхIG<L58JAtAHH5wi!LLHIx HI8L5IAtAIGH5J!LLHHOIx HI{4]L5~IAtAIGH58h!LLHHdIux HI,E1LmHL9H;HtHxHHu@HxDž<HDž8H}HDž4L5yEA~‰4fo]EA_@AGP5f.L5)EA%#L5 EA`^L5DAEY‰HHH5wH819A2];HJHHff.fUHW!IHAUATISH8HEHEHEH LIHMHtHHtHUHG)HJ4HU1H7jPAQMLEH H]HzL-k:L9M9AH]It$ H9H}UH]<:H2HHrLH5#HqHx HHHe[A\A]]fMIMH H HHLHH?L MLHHU:HH5 ^H:APH6L@137XZ1H}HuHtHxHHt|HF/H=`6He1[A\A]]HtH]HHE| HEL-8AEtAELmyK WfDL-c!AEtAEH!Hu1LHHEHEEIIExHIEuL Mt$111L,I$xHI$DfDH*H=I51fDHq;H5H5[tH815L@HxH]Ht{t 1fH{0HtH{I(H߾81dDBVfDH4jHM1PHuY^L I ff.UH(S!IHAUATISH8HEHEHEH LIHMHtHHtHUHG)HJ4HU1H3jPAQMLEH H]HzL-6L9M9AH]It$ H7H}UH]\6H2HHnLH5HqHx HHHe[A\A]]fMIMH H HHLHH?L 9MLHHu6HH5*ZH:APH2L@1S3XZ1H}HuHtHxHHt|HH=2}He1[A\A]]HtH]HHE HEL-5AEtAELmyk WfDL-_!AEtAEH!Hu1LHHEHEBIIExHIEuL Mt$111L)I$xHI$fDHH=1{1fDH7H_H5{pH811L뾒HH]Ht{t 1fH{0Ht"H{i$H߾81 dDVfDH0jHM1PHu'Y^LI;ff.UHA!HAWAVAUATSHHhHEHEHEHLIHMHtHIHtHUHG`HL}H41L%A0jLELATAQIH H H|݈LeDHEHEHxHEEA$tA$fIn1LuLfH:"WS!H=4!H)E}II$xHI$$M]LLLu8HEH]H}HUH9sHxfHnfH:"EH9HUHEEHH}HUHEH}H9t HEHpLu1HIEHxHIELuLLH}{H]Z1HƒHHHtHx HHH}HxH9t HEHpI$xuHI$ukLFa@IعH=.R1H}HuHtHxHHtUH @H=-1#xHeH[A\A]A^A_]ÐHuL&A$tA$LeL}D~fDHEEH]H]HGLxIعL膆/xHIEHI SH= -Lubw1HfHtHHHUH}HUH}LLuH f.HLLut1EHUH}{@LpLmMtA}iI}0Ht I}A8L@L%+jL}1ATHMILZYH9H9UHATSHH H#H;=4.>H]Hw H H}S]De.H-HcHHtVIcIHt&*Ht_HXL` H[A\]fDHxHHuHTH H=8uH1[A\]DHx HHI$xHI$uLI11ҾH=*ȃ1RHyxHH=x*t1.DHI0H)H53iH81*S4HPH]Ht{t1E1H{0Ht H{8Hlf.HICff.UHATSHH H#H;=$,>H]Hw H&H}S]De+H-HcHHtVIc~IHt&(Ht_HXL` H[A\]fDHxHHuHHH=(sH1[A\]DHx HHI$xHI$uLI11ҾH=(踁1RHyxHH=h(d1.DH9.HH5#gH81y(4H@H]Ht{t1E1H{0Ht H{ 8H\f.HICff.UH86!fIHAWAVAUATIHHSHX)EfHnfH:"HE)EHLOMHHHH=Q'11PH}HtHx HHH}HtHx HHHH=&1 qHeH[A\A]A^A_]f.HVtHUHtHUHGHJ4HU1H&jPAQMLEH H}H)H5~K!HL}Mf)Et1HIHH;)AH;&DL;-d(L.IUAHExHIEEtLOHEHHIH1HHIH4Ix HIpL;-1)L;-%L;-'LoAƅIExHIENEzHI݅x HH1AEtAEIExHIE.Hx HH H 'I9I9L$HHL$IHIt$0H}LHHP foEH}f)M)EHtH}HtH}>HH IExHIE*H}HtH}HtHx HHH}HHHHIILM.H5H!tHuHL=%AtAL} IEEhDAxHIUuLIݐH DH="m1LL LfDHtH]H5G!(@tHuH&H}_HIHMkDpIAfL~AtAHL}H56G!H]DM9L!HHIt$0H}HHHNP }HhLHHxLhHI݅DIAJf.+#fD0fDH]H5EF!L-N!AEtAEHM!Hu1LHHEHE0IIExHIEBMt$111LI$xHI$&IAHxHHuHXIEx HIEtIAHL(fDHx HHIxHIuLfH jHM1PHuZY|ADADH%HzH5{^H81A"H"H!L^LQH-%HH5^H81mA2!HJH Hff.fUfHHAWAVAUIATIH!SH"H)EfHnfH:"HE)EH LIHM IIMM1H=wH}HtHx HH H}HtHx HH HG H=1@hHeH[A\A]A^A_]fDHNtHMHtHMHWHHUJ41L5jLEAVAQM/H /H}( H]M"J|IIt J|LeH5ڷ 1H= HDž`HDžhHDžpHDžxHEHE8HXH8A$tA$L=)!H=M IWLIHmtAH"HuE1HI9F1LHEL}S,HMt+Ix$HIuLHPLHPDIx HIH L= L5L9L9H; HHPEHPHx HH  H;HHI9(HELH@HIEP HEH8HEHPH6M9M9 HHI9 L ; A$tA$LI$xHI$i H=J kIHHR E1HuHI9D$fIn1LfH:"1@!)E*LI uI$xHI$ M HXH52!HLp(N tHXH11H=M HX 5J L L,1!H=!萆HXZHHXHXHH@0tH5 1L G L0!H=M HXH!&IA_XMZAEtAEfInH@H=5!1fH:">!H)E LIsMCIx HI- H=9!#jIHcH5X !HxvH H~Ix HI H HFHDž(AH9XH(fEHE>HH H8!HPtLHLuH?L)H H H@J4NH(IrHx HH H Hx HH M HHHH&H(HAtAH@1L}HH=5!HE`LH HqHH Hx HH HyÃHDž0HcHH8IH(HH@HHXHHPH}tH]H@ qL,jHH(HH H:H0qAtAH@1L}HH=U"!HE0LIpMO LdÅ= IExHIE  HXHX(tH@1H]HH=b!HEHIRpM1 LÅ IExHIE H=5!fIH H52!HrIHI$xHI$ H1HuHI9EDfHn1LfH:"b:!)E%HIoIExHIE M1 I$HI$LI6IML`A$tA$HLetH]IfM1Lm @LHPaHP)DK,fD;fDHRDx HHDž8E1E1HDžHHDžPHDž0HDž@8H H=]1HHtHHHx HH#MtIx HIMtIx HIH0HtHx HHMtI$xHI$HXHx HHH@HtHHPHtHH}HtHx HHH}HHHHHtH5H]HHtHHHEI fDHHHXtHHHEHAEtAEH=,!Hu1HH]LmLeLH@lHDžPHDž@HuLE1E1E1HDž(HDž Dž8@=HhLXLHH8+`fDLHωPP5H=1 aHHH0tHHHHHfDHtL%=!A$tA$H4!Hu1LHHEH]HE HI$xHI$HqHXH1H=C HX H5 L s L&!H !`|YH^HDž8E1E1E1HDž@HDž(HDž HHH H(LH0HtHx HHt~MIE~HIEpL;cfDLE1E1E1HDž@1HDž(HDž Dž8PfDHuL5jMHMAVHu1_AX(H1tHDž@E1E1E1HDžP1HDž(HDž LDž8HX@LK^IHLHDž@HDžPDž8E1E1E11HDž(HDž DfM~IVAtAtIx HI1IHuLLH\HE1E1H5@LH81 HDžPDž8HDžHHHPLHDžPH@Dž8LLHDž@E1E11HDž(E1HDž Dž8M|$Mt$AtAAtAI$xHI$<H@MH[+HN9LAHDž@E1E11HDž(E1HDž Dž8cLCHDž HDž(L HHE1HDž@HDž Dž8 Dž8E1VLHeLe1eH{hHMHUHxdH`LpHLhLHH@LGH(cHXH{hHMHU@Hx}HpHhHH`HDž`E1HHHDžhHDžpHDžxHEHEHDž@HDž(LHPpHPH\LOLB=Dž8E1E1HHHDž@HDž(HDž bHDž@E1HHHDž(HDž Dž8(Dž8E1HDž@E1HHHDž(HDž Dž8Dž8ME1E1HDž@HHHDž(MI$HI$L|LDž8E1`HHHXH(0ttH Hx HHH E1Dž8E1E1E1HDž@HDž(HDž Dž8E1E1E1HDž@HDž(HDž HH0E1E1Dž8H H@1}H0E1E1Dž8H H@LLHpP L3H&hH H0H(GHX@AtAH@E11L}H=!LeHLH(%_H(H(Hx HHfHHt HHE1LHHL@H L%H?Dž8L@HXHX(fHnfH:" tH@1)EH=!HHIG^M(IExHIEH H0gLLLH;gHPXH H 1E1HHE1H@L(Dž8HH 11Dž8H@HHH(H LH01E1Dž8H@HHH Dž8E1H;H5( HHHOH/H ff.fUH!HAVAUATISHH@HEHEHEHLIHMHtHhHtHUHGgHHUH41L-1 jLEAUAQI@H 2H H|ݸH]H5 H;sHI97H9vLk(Ls MH==?AEHI|$ HULEHenHEHE ofEi!HtMtLE1H}MuHtHxHAHAHeH[A\A]A^]fIعH= Y1H}HuHtHxHHt=Hc ~H=\1cJ눐HuHtH]DfAEuIعLX_Hyf+IHs1YH E1fDHھH= I1DSfD1H Hw;H1YHH H5=H81A1jYH H= "I1CHH H5=H81H 9H= AHHD IE1HP1XL- jHM1AUHuIcZY@1XHW ;F,<72-(#ff.UH !fHH HAWAVAUATSHH)fHnfH:"HHDž HEHE)EHgLOMZH. HtH HtHHGL HL5 M1jHUH4AVAQI蚤H Lx;H~0 HH" I|uIعLUL(I}HtHx HH<IM9uH >H= FE1HeL[A\A]A^A_]fDHHVtH HVtHfHL&A$tA$H^LtL~HAtAL H5f I9t$t L;%8z L-L9k M9o H5!fLuEH@H= HDž8HVHH0H`ƅ@HHPHDžXƅ`LpHDžxH).IHb tAEHDžHuHAHI9E H1LH]HE HHt'HHxHHuHxIExHIEH HEHHHHEHMHpHHUH9fHnfH:"EL9HUHpxHH}HUHEHH}H9t HEHp7BHHHH x HH3HpH0HxL9HfHnfH:"EH9H@H08HHpHUHDžxH!H= HSH/IH tAEHQHuHI9E H1LL}HEHHtHHx HHIExHIEH HHHEHHpHUH93fHnfH:"EL9HUHpxHH}HUHEHH}H9t HEHpZeIHMz x HH5HpHPHxL9'HfHnfH:"EH9H`HPXHzHpHUL;%HDžxHHdHPHXHHCHZHHHHCHHHE]H0H8L}H}L}H;AoD$ L%fH:Ht M@HfH{xHC(HC0HMHHCHCHEHC C8HCPH{hK@CXL9HChHEHCxHKpHEHHL}HEL}EHH9HHEHHLHC(MC H[0MCHHHHHtSH5 H=ݗ 1NIHH(!L;%ID$HLHA$tA$MI$xHI$HpL9AHEHplHHtHtHHPHH9tH`Hp+H0HH9tH@HpHL(H;HtHx HHHL9uKfDIعH= LKMffDHt!HHHUHpHxH}fDLiXfDHL DHt H#L1HxH0H8Hp5@HPHpxHHEHEHH=@LHt!HHHUHpHxH}fDLIHHsfDH08LpLuLPHt H*L HxHPHXHp@1H: L_.mHL(HI9H;HtHxHHu@LHHkfDHH~LHDHcHxHpxHHEHEHHB@L5 jL1AVHuIDZY'DH LHA-`@HPXLpLuL~H3H/ LL, }@H@IHH~ nH= :HpL9t E11IfHHtE1YIMIEHHtHtIExHIELHuf.H nH= 9;AnHx+HHtBH DH= 9Hc DH= 9DH0H; DH= Z9D@rfDCMfD{H>IHH oH=* 8bIMI]HttIExHIElHIݺHt oH= 8AoH"H H5 -H81bH- qH=u J8DC H{0H4o )HPH sH=+ 8E1HH H5,H81H tH= 7]EHUHp|EHxH0EHUHpUEHxHPLBL 2駺馺饺駺驺髺魺鯺鬺鮺鰺鲺鴺鶺鸺麺鼺龺IغI鷺I黺* GUHAWAVAUATLeSHLH8H;HCHHLuHs0ILdL}H]MSHHEH]HELLHEH}H]H]A+DILMHHtAH]HuVH8[A\A]A^A_]DH1H H5*H81qHG H=6Y5H]1Ht{uH{0Ht HEHEH{HE8HXHEkLH]Ht {1fD+eL9tLLL}MAI0Ht*Iq8Lq{t:1QH{0HtH{1H߾81UDH{0HtH{H߾8TH]H靸H靸ff.UHAWAVAUATLeSHLH8`H;HCHPH&LuHs0IL3L}H]MRHHEH]HELLHEJH}H]H]rADI_LMnHQHt@H]HuUH8[A\A]A^A_]@HHE H5{'H81LH H=2H]1Ht{uH{0Ht HE&HEH{HEe8HHElL@H]Ht {1fDPeL9tLLL}MAI0HtI8L$r{t:1RH{0HtJH{H߾81VDH{0HtH{aH߾8H]HHff.UHAWAVAUATLeSHLH8H;qHCHeHLuHs0ILtL}H]MSHHEH]HELLHEH}H]H]ADILMHg HtAH]HuVH8[A\A]A^A_]DHH H5$H811 H H=F0H]1Ht{uH{0Ht HEHEH{HE8HHEkLH]Ht {1fD eL9tLLpL}MAI0HtI18L脾q{t:1QH{0HtH{H߾81BUDH{0HtzH{H߾8H]H鍳H鍳ff.UHAWAVAULmATSHLH8 tLu1H]H= HLHEIHx HHMI$xHI$H;bIAHs0LL}H]MHHEH]HELLHEH}AH]H]ADIMLHxH'H]HucH8[A\A]A^A_]L-HMH H=s-H]1Ht{uH{0Ht HEHEH{HE8HHE^@HjH4 H5T!H81L^fLXH]Ht {1fDfDL9tLL(L}MLAAI0HtI8L<{t:1H{0HtbH{H߾81DH{0Ht2H{yH߾8̺H]H]H]UH HAUATSHH(HEHEHEH LIHMHHAHHULE1H jPAQE1PH LeH!MH9Hs LmLH}H]Hƒ H@HH tHx HHI$xHI$HeH[A\A]]fHu#HltHEI?I11ҾH=| 81H}Hu%Ht HxHHu 膶@H OH=%1)HeH[A\A]]HH-HHHH LHeH[A\A]]ffHH5H½ H81\H H=v1(f]fLH]Ht{t 1fH{0HtBH{H߾81ڷDH jHM1PHuE1TZYH_DUfHAWAVAUATISHHH)EHBHR X(HH=ofHnBfH:")EHH^H= !L5*L9)HAHE(x HHEXH}fHnIHtAEH= Hu1H)EHIExHIE&HL9HH6 H5H81H 4H=Q &Hx HHE1IExHIEH}HtRHHL[A\A]A^A_]BH}fHnfH:")EH~Hr H=v HSHWIHtotA$fHn)E/f.HrLزLȲ3E1H赲 ;H+Iľ,HH H= %E1HH5H8躺A.E1Hx HHt!Hg DH= k%MyHfDL%!A$tA$H=U +HH6HuLu1LHP L)ILMHHuE1HH9C1HL}LmaLI4IExHIEHx HHMH= L4HHIx HIHu1LH]HHEIHx HHI$xHI$Mt$111LIExHIE{H /H= #DH 2H= #H~ 3H= #H5{ HyHCLHH2t Hx HHtI@fDHyI L[H賯bI$'HI$1L芯HHx HHt!H 0H= "@HHL>%H1SL$\LxI$xHI$jvHCL{HEAtAHMEtHx HHtSH]LA3LI$x HI$t/Ix HIt 0LhH^LTHx .H= z!HwHwDUHHH9t0H (ut]H0Huh'HH5H H81gH H= 1]DUH5 HAVAUATISHGHHoHH=HCH5 HHHSIHMRx HHOIHHLHHIExHIEqIx HIMH;L-GH;uu^L9tYHAƅxZHx HH^EM9ID$ x(AEtAELADf.Hx HH8HM H=1T1[A\A]A^]fIyaIExHIEuL߫DM9I|$ ([H@Hu=H蠫rHIuL臫DLxLhIHcxXHHx@H$:@H HHIHH5H H81<HH5zHz H819Xff.@UH;=Ht;H H@6Ht ]Hi H=up1]@H H5H H81IfUH;=Ht;H H0Ht ]H H=51]@HH5H H81fUHP HAVAUATSHH0HEHEHEHjLIHMZHyHAHHULE1H jPAQE1yH RLeL5M LmLL9!LuHs L HEH]HxHHEH]HELLHEH}H]H]Hƒ"HUHH tHx HHLmM.I$xHI$HeH[A\A]A^]Hu#L5lAtALuMDI11ҾH= )1H}Hu%Ht HxHHu 膧@H H= 1HeH[A\A]A^]fDHHH HHH LHeH[A\A]A^]ÃfA}I}0Ht觱I}8LA@HHg H5H81 H H=&1Of.L舶H]Ht{ti1f fH9tLL`H]H{vH{0Ht۰H{"8HuMH{0Ht貰H{H߾81JHD{t21H jHM1PHuE1贀ZYDH{0HtJH{H߾8H]H黝H黝ff.UHAWAVAUATSHH10HHL-HCHC AEHC(LktAEHoh L@MHEHHE芾L91C0tLu1H]H= HLHE9IHx HHAMI$xHI$]L=& H=g IWLSIHtA$L;%L;%M9L?ADž4I$xHI$NEL%Fq A$tA$HEf1LHHHE)EZII$xHI$MH{Hx HHL{HCH9C LHELeH%M,HELeHEHEL H}HCL9XH@HuLL H{LAH}Ht}8HEH:H= IH HuHHI9GLu1LHELu*LI%Ix HIML;%L;%AM9LRAƅI$xHI$LeDs0MA|$I|$0HtrI|$踽8L jfHaHi H5K H81AH DH=LeMuHx HH!1HHH[A\A]A^A_]DD+11H=׬ #묐LؠHȠaL踠R諠ffDAI$6HI$(LxLsIAH@@H}LeMpDH= IHH=A IHH5) HY&HEH4Ix HIHEHEHuHH H9H5~EH}1fH:" )E^H}I"HMHx HHM1HEHuHHI9D$&HE1LL}HEH}HEv"Ix HII$xHI$HMHtUHHHH賞fDI$xHI$uL莞Ix HIt>ALhHH5a 18H+fL8fD<L7LHL9H}L fDAmDA|$I|$0HtuI|$軹8LTfHaH H5KH81AfDLHH8L([I$HI$L{fLA|$"E1@IOMgHMEtA$tA$Ix HI MLADHHLxHMEtAtAHMHx HHL}LH*AiIL$ID$HEHMEtHMEtI$x HI$tZLeLI|$0HtsI|$蹷L8 LewL{HnMHuLtD3LgDOEHUH}LGDL=D3L0DOH=UH` HAWAVAUATISHHxHEHDžxHEHLIHMHtHHtHxHGHHUH41L-NE jLxAUAQIH HHxHxfDH5 H{f)EH9t4HXH@HJ1HQHH9H;tuL-}nL9HC0H}H@HHpHUPM9ID$@H}1HpH#F H\ HCH9t?HXHHqH61f.HH9H;TuL9LmHS It$ LTLzH}IHtLMH}HtLHx|HHusHAi@IعH=C 1HxHuHtHxHHHH H=s0E1˴HeL[A\A]A^A_]fHH9HuH; lfDL9LmHS It$ LZLUH}IHtKMDžlfDlHG H=/E1HHtHxffD@IعLH5 H9t(H1HH9H9tuL-kL9GHC0H}HPHp HUFfDHnHo H5ۧ H811iDžlfHDHH9HuHtjH9H H9_HH9LHuH9>fL5! AtAH5g HIHH@H;iAEtAEMIExHIEtH=U< LhIHI$xHI$PHu1LLmHHEwIIExHIE Ix HIMt$111L^I$xHI$ DžljE1Ix HIMDžlE1MtI$xHI$MtIx HIMIEHIEL=L-? j1HuAUHxIZY8fL=A AtAID$L-gL9~A$tA$L`H5 LIHH@L9A$tA$MI$xHI$H5 HxIHH@L9SA$tA$MI$xHI$H= H`LuLmHEHkk HUHEHo HEB @u HAF @u LƸAE @uLv H`H} HPIFHT/IUYH`IHMx HH&Ix HIIExHIEHu1LLeHHEtII$xHI$Ix HIMt$111L[IExHIEDžlWL@;:L0;L ;HiH3 H5 H81buYLPXIHH;Ve:H5Li>,H;5eH5LH>H;etH5L+>H;d=H5mL >/H1H1H1UfHAWAVAUIATSHHEHDž`HDžhHDžpHDžxHE)E ?;HxhHpHHhH`L*;bHH``HhHDž`IHpHDžh2HDžpL%h H=)IT$LAHHtHxLXHHIH HDžXHdHDžPH9CHXHELeHE^LxIH_HBz HPtHPHbLHEHH)H?H HEH4LHPDHXHEHI$HExHI$Ix HIIx HIHDžxHLHERHHpH}HULeM*H=rf IHI$H@H;cHEIT$HPHEIt$HKHPH}IHEH9t HEHp"7E1MLHDžHHbI9FR HEL}Le]HXHEHHx HPtHHH"aLHEHH)H?H HPH4HXBLHHHEWHDžxI$xHI$uL3HXHxHHuH3IHExHIuL3HHHS H=. HdPIHHHHx HH LHrIHEIH Ix HI Hx HHj HELIEHtS<<<{<< K < < < < K <c H=c 臬IHsLPLL NLILHxoNM`H`AHDžXI9D$KHXHELuHEZHEIH H+v HPtH^LLL)HELH?H HPJ4@HXHEIIx HItHDžxIExHIEsI$HExHI$EM HxHHuH$1H= HEHEHH0Hi_HuE1HH9C1HLeL}iLHEI-HxHHuH0HEMHEL@Lx0Lh0LX0H]H{`H0`UH< bH=Z ]HMHUHHxG}LuAt AHxHx HHe HDžxIx HIP H}HEHx HH IHEx HI H{hHpHhH`1rE1E1AkL謲H}裲H}蚲L蒲L芲Hl; DH=Y DE1HtHx HHt,H}Ht9HĘL[A\A]A^A_]fH.fDE1E1AhE11Vf.CL蓧HxHHE1E1E1Ah@LxE11AhHsHSHXHuPttHHxx HHHDžPf.H=y ԧHEIH& H-\HuE1HI9D$- 1LLmH]ofLHEII$xHI$uLf-HEM DHEGHPLdLSLAYL= AAPEEStAIcLx -IH Hu1LHEHHEH]eHEII$xHI$ Ix HIb E1E1A|HDžxMH= DHxIH HZHuE1HI9D$ 1LLmH]dLHEI]I$xHI$E1E1AHDžxMgnfH=Q HDžx虥IHtnHYHuE1HI9D$r 1LLmH] 1LLeHH]/II$xHI$MAEtAEH=9 1LLmHHEJ/IUIąxHIUx HIUtsM*Hx HHtjL$fL8HfH%E1H1M1LHfDLLIU>Hj H=1ΈkfHx@fD[;IHs( jHM1PHuWY^H(HI H5| AHCH819>Da-LyH H=HHx HH1yDLLeAMuH}HtVAtA|$uI|$0Ht4I|$ID$H9tID$Hp8LH H H=1;H4H4fDUHAVAUATSHHHHw4L%8?IL9HsHH@(H;R@u(LA$tA$LH[A\A]A^]H]HH}tHLu؉M}fDI11ҾH=B> H1@HyxGHH=> 1uDSHF H5z HAH81<++LCHu $H=ۅ1A~HI~0HtKI~.8LI UHAVAUATSHHdHHu|2L%=IL9HsH]HHP(H}LA$tA$LH[A\A]A^]I11ҾH=< 1@HyxwHH=< 蜖1H> H5]y H\@H81:)LH :H=胄1T@H`Lu؉Mu tA~uI~0HtI~-8LpIZ fDUfHHAWAVAUATIHSHHI HXHH)EfHnfH:"HE)EH,LOMHHtHIع1H=; {H}HtHx HH>H}HtHx HHH H= 91yfHNtHMHtHMHWHHUH41L=q: jLEAWAQI7H @H}0LuH"H|ݠKHHt H|ݠ5H]L-:H5cM9AI9vDL9H7HHHM/M9HMHElIt$LeIV0LHP H}HSAEtAELH}HtHx HH~H}HtHx HHIHe[A\A]A^A_]f.HtzHHXtL0H]AtALuIع1L9@ fD fDL0AtAL-S9LuAEtAEM9LmH5AI9vt@u<1Hk* Lr>.HM9HzfDHF@L-8AEtAELmHE' HEfDHE HEpfDL=7 jHM1AWHuIZYI@CH9 AH;H8H5t 15D%H12H^ H=& 1fHL) AHR;H8D1H/) LE1qL謏H褏1D7H/tL8LuAMuAI"LA~uI~0HtI~IFH9t IFHp98L,H&fUfHHAWAVAUATIHSHHdQ HHH)EfHnfH:"HE)EHLLOM?HHHIع1H=5 7H}HtHx HHjH}HtHx HH=H 7H= }1He[A\A]A^A_]@HNtHMHtHMHWfHHUH41L--5 jLEAUAQIH 4H}H"H|ݠ_HHt H|ݠIH}2HHH}H;=6H;=33H;=T5&!&E1Aƅk*L-,5IM9It$ LeDHLHPH}!LAEtAELH}HtHx HH H}HHuHHhHE HEVfHHHHtH8HMtH}fDIع1Lي@ADfD{fDH8tH2H}tHEBH1tHEHEHEfDL-2 jHM1AUHuI ZY@k3HDS3H DDH H=j z19fDHg= H5]o H\6H810L FL|LeMu tA|$uI|$0HtI|$ID$H9tID$Hp 8Lv Hff.UHA HAVAUATISHH0HEHEHEHwLIHMgHtHHtHUHGHHUH41L-&1 jLEAUAQIH H H|#H]L-1M9(H.HHSIt$hLuLH}{AEtAELHtHxxHHuoHHEHE]IعH=[0 貇1H}HuHtHxHHtMH HH=: x1He[A\A]A^]fDHuHtH]D fIعL_H3H H5l H81.H PH= w1fHE'0HUHL-M/ jHM1AUHuIZY LLuAMu AtfA~uI~0HtI~? 8LHUfHHAWAVAUATIH3Q SHHH0Hh)EfHnfH:"HE)EHLOMIIMM1H=u. 藅HUHtHx HHH}HtHx HHHZ -H= . E1RvHeL[A\A]A^A_]HNtHMHtHMHWHHUJ41L-- jLEAUAQMGH H}H1M"J|IIt J|+HEHLmE1MtLfAăH;-}HEHHEHHCPL}Lu-H"HEAAETG HX EtDIHH= H+IHI$xHI$uL{Hu1HL}HHE7:IIxHIuL<HxHHuH$Mt$111L1!I$xHI$}cH}zDIH}LPHH}HEHxH} E7,}I MHxHuIGHUIwH}PH}$H}tHu1H]HH=H HEIHx HHMMtL H}HtHx HHMIEHIELfDItIHHtHMH8tH} f.M1L艁HUHH; fDH] EH=* XrMtL E1IH}HpLHP(H}HEHxH}8EP*}I%MH}3K}H}Hx HHMtI$xHI$R=fK`H}mL}AMoAH}SHB H=( BqE1f.L-( jHM1AUHuMZY)@S)H`NDH,H}( H5{e H81&H EH=p( pi@HhLXHH*(HHZ UH= ( UpLH} HDžxH} HDžxH}XNAI0HtuIIGH9t IGHp 8LLH%H;HHHHHMHPUHAVAUATSHHIHID$H5x$ LHHHHCH;(L-i'H;%L9HAƅHx HHEuFRHM9AD$Pu]It$@LeLHHpHPH}HAEtAELHe[A\A]A^]@DwIt$ LeLHHpHPH}tL(LeAMcAAHX fDHx HHAH DH=% m1HfHxH&HE1H L H5MJ H8R1He% {#Z1YfHyxHH=>% 1D HH?SH H5a AH(H81#DA#LLeAMu_AA,A|$I|$0Ht:I|$ID$H9tID$Hp8LSA|$uI|$0HtI|$ID$H9tID$Hp8Lz[HHDUHAUATSH8HIHNL-3 H=0IULHHxtHx HHH#H9sI9H]HMLIt$ LMHLEH}H]ƒ~HHH|tHx HHLeA$ƒA$I$HI$A$tA$I$xHI$KLmAEƒAUIUhHIUAEtAEIExHIEuLCHt$fHnLh(fI:"@He[A\A]]DHx HHIExHIEI$xHI$HE H= iHe1[A\A]]HHHHwHxLhHXdLHL8cL(=HfI$YHI$(LfIUL|H!HE1L 6 H H5E H8R1H XZ1Zf.HyxHH= Tz1-D:Kf.rf L#nHHx2DL%K A$tA$HHu1LHHEHE-HI$xHI$uLHt111HHx HHtaHI#H H53\ H81tH`LeЉMutHA|$uI|$0HtI|$ 8L`IfDUHAWAVAUATSHxHIH:HHTH tHCHHH= 8 IH2Hx HHH5g LLM;LMHHctHx HHIx HIL;5{]HEHMLIv LMHHELEH}G L}Aƒ]AIOHIZAtAIx HILeA$ƒ8A$I$HI$bA$tA$I$xHI$uLLmAEƒ8AUIUXHIUAEtAEIExHIEuLtL;=;H5NLNxHHHE$HUHIHPAEtAEA$Mj tA$IFMb(LLUH56 HHLUIMjHH9CLxLULUHEHELULxHHH]E1H5v6 HqtH}HƺLMH)H?LhH H4H}HMLpLxiLpHMLxLhIMtIx HI$Ix HIIx HIHx HHhHMHx HH@MAtAHHH@Ix HIMMtI$xHI$~MtIExHIEsMtIx HIjHeL[A\A]A^A_]HLM$LMLL;5qHLMLMILLL@nffHqH H5[V H81AE111E1E1E1,fDIHIL0I$LgLuLLIUHHE1L 6 H H5= H8R1H XZE1/fHyxHH= TrffE111E1E1E1AH]IMtIx HIt{HtHx HHMtIx HIDHP H= `HuHtHx HHtjME1fLLxHU}LxHUbDHLU\LUaLHjH8fDHEE1E11E1E1AHHHHLpHxLMLMHxLpE111E1E1E1AMItHIgLLxHUHMzHMHULxHEtHEL}IfDIx HITMMtIExHIEFMtI$xHI$;HuHtHx HH.H]HtHx HH!HMHtHx HHHeL[A\A]A^A_]f.HHILL;=)9fL]LxJcfHAH} H5+) H81HEE111AE1E1E1HEHEIMtIx HIHtHx HH>HtHx HHMMtIx HILH& DH= 3ME1DIUHIUL^fI$@L0L LHHHLHpLxHM辿HpLxHMHHxLM荿HxLMDHLMlLMLXHHE1L H H5- H8R1H\ [XZE1HyxyHH=5 CfvfHEE111E1E1E1AHEHEDHEE1E1AHEHEHx HHt E1@H`fDHEE111E1E1E1AHEHEMIHILHMILhHpLxLhHpLxHMD|L訽|HEE1IA#tLxLA)IH@11HEIA#+fDHqH56 A"H8|E111HEE1HEHEDLLpHxڼLpHxLHx豼LpHxfDL萼HLxyLxDHEE111HEE1A"0E1E1E1HDžxLHELx1A#DLuHE11HEE1E1A"HH5j5 A#H8IE11HE1DHEE11IA#rDH}觞LmAMAKLMI`H{LSHxEtAtAHx HHt1IHLpLMLMLp1$fDE111E1A)E111E1A*A}4I}0Ht]I}IEH9t IEHp8LHfUHAUATSH8HJIH~L-?H=}IULDHHtHx HHHlH9I9*H]HMLIt$ LEHVH}3H]ƒHHHtHx HHLefHnA$fI:")Eƒ(A$I$HI$$A$tA$I$xHI$HtfoMHHe[A\A]]@HxHHuHI$xHI$H H=ϩ +He1[A\A]]DHHHH`HP`H@L0,L qI$ HI$LH)HE1L n H % H5 H8R1H) XZ1fHyxuHH= <1Df.NcfLc0HHH DL% A$tA$HHu1LHHEHEHI$xHI$uLܶHt111HHx HHta  HH H5s H81H蠙LeЉMutHPA|$uI|$0HtI|$M8L蠸I̱fDUHAUATSH8H*IH^L-H=`yIULHHxtHx HHH,H9I9H]HMLIt$ H H}HEȋуtBHHHt<tHx HHtKHe[A\A]]HxHHuHHEHEfDH@HHEܴHEfDH HE1L N H  H5 H8R1H XZ1_fHyxHH= t91:D'f.LS-HHxnH H=z _'He1[A\A]]fL% A$tA$HݦHu1LHHEHEHI$xHI$uL贳Ht111HHx HHtaoUHaH H5K H81s%HxLeЉMutH(A|$uI|$0Ht߽I|$%8LxI鴮ff.UH@HAWAVAUATISH8HEHEHEH0LIHM HHAHHULE1H jPAQE1H H]HH;4L-H;2L9)HoM9ID$LwHIt$0LeILHPXH})LAAEtAELHx HH%He[A\A]A^A_]fDHH(tH;PH]L-HIM9nIt$0LeLHPPH}`LAL}AMA>LDI11ҾH=Q 21H}Hu%Ht HxHHu 螰@H H= #He1[A\A]A^A_]HHE\HEHe[A\A]A^A_]fHV H= h#1HH H5 H81Af.Hm jHM1PHuE1ZYuD3H H5 AHH81D @L踒L}AMuAL%AuI0HtIb8L赱A'I0HtIIGH9t IGHp耱8LsH鴪H鼪fDUfHHAWAVAUATIHSHHHJHX)EfHnfH:"HE)EH/LOM"HHHIع1H= j0H}HtHx HH=H}HtHx HHH H=M (!1He[A\A]A^A_]HNtHMHtHMHW6HHUH41L- jLEAUAQI~H 1H}H}H"H|ݠ;HHt H|ݠ%H]1WIHHHuHEHEWIHHpII9It$ H}LLH}H}LAtHH}HtHx HHH}HHHH}HEZHEkHtzHHXtH8H]tH}f.Iع1L).@fD۫fDH8tHH}tH]vHtHU'HEwHEfDL- jHM1AUHuIkZY@HDHC H=z U1ifDH[H H5 HH81 3LKH}ۍLmAMu AtA}uI}0HtOI}IEH9t IEHp8LجHDff.UHHAWAVAUATISH8HEHEHEH0LIHM HHAHHULE1HM jPAQE1\zH H]HH;L-H;K2L9)HM9ID$LHIt$0LeILHPpH})L衮AEtAELHx HH%He[A\A]A^A_]fDHHtH;H]L-5HbIM9nIt$0LeLHPhH}`L衋L}AMA>L߭J DI11ҾH= X*1H}Hu%Ht HxHHu @H 4 H=m He1[A\A]A^A_]HHE輧HEHe[A\A]A^A_]fD H H= 1HaH H5K H81E f.H jHM1PHuE1TZYuD蓯H H5 AHH81ADi@LL}AMuALZG %AuI0Ht{I8LA'I0HtJIIGH9t IGHp8LӨHEHMfDUHAWAVAUIATSHHHDž@HDžHHDžPHDžXHDž`HDžhHDžpHDžxHEHEH8tH=Lu1HLHEH]3H0IHx HHuHDž8{MI$xHI$L;-HDž0HDž(L=oAfInL8fI:"tAH=O1L)EHH0IIx HIHDž8MHCH5uHHHIL0MLLLLHH8HIx HIH;HDž0H;H;jHH-HA Hx HHOHDž8ENHPHHHxhH@HgH0tHEH]LeHXHHHeHPtH H=LHHHE譻HH8IK&HHDž0Hx HHHDžXMDL;-" H@L%HHHDž@%HPHDžH%HDžPH(H8IHHDž8H;H)HC(oK H()MHtH="@L}LLH}LH}Ht~H2AEtAEMHx HHMtI$xHI$MtIExHIExHL[A\A]A^A_]L(tE1DDfDHؠ~LȠ"@fDHY E1L= 1DžH@Hx HH<HXHtHx HH,HLE1|HfDHё E1L=9 1DžH@Ix HIH8HTcLȟ{L踟PH訟%H H== E1E1DLHiHMDHPL@OH0#fDL0H DžL= HMp@KHæ H5 AHH81D!HL=Ť .HG DžL0HMvkIIE1L!L!1!H8HHXH0HHHI>H=HHL8H0LXI9I%HAIHLLH蝝LLHHLL薤HDž8HDžXHDž0EH E1DžL=S HHHP1LHHH@E1HxhyLnDH&LAH}Ht芧AHLL趣HDž8HDžXHDž0H L= LHHHHLHCHXHtH HtH5HR"IHH@H;H9AtAMIx HIID$H9A$tA$MHHAH9tHHHLmLEHEHzHEHHEHHEAE @u L)WA@ @u LWHC @uHV IUI@L LHT$HHPfLHH3IExHIEIx HIHHx HHHHu1HHEH]IHx HHwHHx HHiMt"111LIx HI}11E1E1DžHHLLpVHHHLH11H{hHMHUHxAH`LHHhHHI+HHx HHHH{hHMHUHx`HpHhHH`HEL0HDž`HDžhHDžpHDžxHEQH5eL)ME1DžL0H L0DžL=C HLHLHLH>HLAHLHLԖHS H= e1(fDI11ҾH= 01H}Hu%Ht HxHHu ֐@H H= He1[A\A]A^A_]L蘐UL舐!HHEtHEHe[A\A]A^A_]ÐfDHͻ jLu1PHME1LQkZY%f.苘H H5 AHH819DaLyCH H5 AHH81DX@LrLuAMu AtsA~uI~0HtHHULE1H jPAQE1 UH pH]HH;DL%ͯH;L9HʤIM9Iu L}L莌H}4LkA$tA$LHx HH'He[A\A]A^A_]HHPtH;xH]L%`*IM96Iu L}L讧H}`LkfL}AMA>L詈sI11ҾH=y 1H}Hu%Ht HxHHu Ƃ@H aH=o He1[A\A]A^A_]HHE脂HEHe[A\A]A^A_]ÐqH H= 1Hͭ jHM1PHuE1T]ZYD蓊H H5 AHH81ADi@[Hˉ H5 AHH81 D1LIvDLdL}AMu?AtAZI0HtGI莝8L1AuI0HtI^8L豃H}H}UHAVAUATSHHIHH}fHH蒡L;%SIIt$0HULuLH}L*tIHx HHtHL[A\A]A^]fDH`HL[A\A]A^]I11ҾH= hE1Hyx7HH= fH >H=Er E15r[H H5 AHH81 D1LE1FH AH=q fLbLuAMu AtA~uI~0Ht,I~s8LƁH|ff.UHPHAVAUATISHH0HEHEHEHLIHMoHtHHtHUHGHHUH41L-/ jLEAUAQI0OH H H|#H]L-M9(1H(HHRIt$0LuLqH}zAEtAELHHx{HHurHHE}HE`IعH=\ 1H}HuHtHxHHtMH H=p 1He[A\A]A^]fDHuHtH]DS}뉐IعLfgHH; H5 H81Q"H H=no 91fHEwHUH#L-V jHM1AUHuIWZY L_LuAMu AtgA~uI~0HtHI~菘8L~H.yUHAVAUATSHHIHH}SaHHҜL;%IIt$0HULuL-H}LjtIHx HHtHL[A\A]A^]fDH{HL[A\A]A^]I11ҾH=[ E1Hyx7HH=7 TfH[  H=m E1ur蛃H H5 AHH81IDqLE1膀H  H=sm  fL]LuAMu AtA~uI~0HtlI~賖8L}Hbwff.UHHAVAUATISHH0HEHEHEHLIHMoHtHHtHUHGHHUH41L-o jLEAUAQIpJH H H|#H]L-)M9(1H$HHRIt$0LuL豑H}zAEtAELHHx{HHurHHE1yHE`IعH= :1H}HuHtHxHHtMH H=k 1He[A\A]A^]fDHuHtH]Dx뉐IعLgHQH H5; H81葡 HW H=j y1fHE跣HUH L- jHM1AUHuISZY L[LuAMu AtgA~uI~0Ht舂I~ϓ8L"zHtUHAVAUATSHHIHH}\HHL;%ӢIIt$0HULuL͏H}L|tIHx HHtHL[A\A]A^]fDHvHL[A\A]A^]I11ҾH= E1Hyx7HH=w fH} H=Ui E1r~H H5= AH;H81艟D豎LE1{HA} H=h ^ fL8YLuAMu AtA~uI~0Ht謀I~8LFxHrff.UHвHAVAUATISHH0HEHEHEHLIHMoHtHHtHUHGHHUH41L- jLEAUAQIEH H H|#H]L-iM9(1HNHHRIt$0LuLQH}zAEtAELHHx{HHurHHEqtHE`IعH=ܟ z1H}HuHtHxHHtMH0{ H=g M1He[A\A]A^]fDHuHtH]Ds뉐IعLgHHF H5{ H81ќHz H=~f 1fHEHUHL-֞ jHM1AUHuISNZY LTVLuAMu AtgA~uI~0Ht}I~8LbuHoUHAUATSHHNHHufH;7t}{0tLeHsL臍H}tHH[A\A]]DI11ҾH=w 1@HyxtHH=w 81@HH5 H H81QH^~ H=&e 91rfLULmAMuAt@A}uI}0Ht|I}΍8L!tHnUHATS1H?u[A\]f.TÃuyH} H=d AD謉[A\]DUHfHAWAVAUATSHHH`H))fHnH@ fH:"H- HDž)fHnfH:"H-HDžH)H LOM H HGLHHb M1jHPAQE1@H HH9DAŃwHH#AăHH XHHt6H;=H;=v H;=, nƅPHHj H HpE1foTHH8 LH`HH(HHdHLHH)HDžhƅpDžnullHDžƅL HhHHhL`т\HH@E1HdHLLHH0H DDDžDžLDžnullƅHDžHHDžnullƅHDžƅL HhHHhHDLDDžDžnullHHHHHDžHHHHL9 HfoH9X HH)HH HHHDžL8H(H(L9H H8fo0H9 H8H()0H H(H8HDž0LXHHHHL9HXfoPH9 HXHH)PH HHHXHDžPHxHhHhH9HxfopH90 HxHh)pH HhHxHDžpLEHEHL9HfoEH99 HH)H) H}HUHEHuHEHH9@HfoEH9HH)HH}HUHEH}H9t)HELH Hp6mLH H}L9tHEH Hp mH HhH9tHxHplHHL9tHXHplH(L9tH8HplHL9tHHplHL9tHHpxlHH0H9tHHpUlPH;OXHL`LHs0HLLHX蘈H H@nL%H=,IT$LstHHtHhH`[IHHxH9CFHDžHE1LHDžLmHPH}HHPtHHHHHHH)H?H HXH4HPhwHXMtIExHIEu LBhfI$xHI$*HPHx HHHx HHHXHHH9tHHpJjHHH9tHHp'jHhHxH9tHxHpjHHHXH9tHXHpiH(H8H9tH8HpiHHH9tHHpiHH(H9tHHpxiH`H8H9tHpHpUiHLDHI9t&H;HtHxHHufHI9uHXHe[A\A]A^A_]HHE1AHoDžXtMtIExHIEHxHHuH fI$xHI$H l H=bY L`LHDžXI11ҾH= AwLLf.IM9t'I>HtHxHHuZeIM9uڐHkk DH=X zHDžXf.HeHeLdOHUHtDHNLHH cfHUHLHH HH}HUHt9HLHL eHUHHL HH}fHpHt.HYHH eHpHhH HpHh+HPHt HLZeHPHHHPHHqDH0Ht HLeH0H(H0H(DHHt HLdHHHHDH()0L(L8LH@H)LLL@Hh)pHhHxH@HH)PLHLXL@@H)HuHuHMfH)LELELfDžHdL`L]jH̐H H5 H81 5zH@L`L6g,H{AwDA~DHRuLcHHKfL8aL(a,讌ƅPHAxLi@Hk ,H=E HHHH`HCLkHPAEtAEHPHtHx HH8HDžHHPkHX jL1PHE1];ZYLHN@裋HuHH8H0H(yXHPHHxHpHhEHUHIEHUHHXBHAHu!AH2_{uH{0HtiH{HCH9t HCHpa8HraHE1H\H\UIHfHHAWAVAUATSHHhHH))fHnHfH:"H(HDž)fHnfH:")H LOM I H JcHDHNtHHHtHHHtHHtHHWHHJ4H1H HxjPAQMI".H LS MHWI9HL;%\ L;% Ј[LMmHHpH&HH`HH1foHHP LHHHHHHdHHHH)HDžƅDžnullHDžƅppHع HhHHhRpHxHعHH HDžHHHH@pDžnullfHHDžƅƅDždHHoHع HhHHhoHHDžƅHL9 HfoH9; HH)H+ HHHDžL8H(H(L9S H8fo0H9C H8H()0H3 H(H8HDž0HXHHHHH9 HXfoPH9 HXHH)PH HHHXHDžPHxHhHhH9 HxfopH9; HxHh)pH+ HhHxHDžpLEHEHL9 HfoEH9 HH)H H}HUHEHuHEHH9K HfoEH9 HH)H H}HUHEH}H9t)HEH0L8HpA[H0L8H}L9tHEH8Hp[H8HhH9tHxHpZHHH9tHXHpZH(L9tH8HpZHL9tHHpZHH@H9tHHp|Z[Džu%LHL3t\\ L%hHI9M9A4L;='LHLsAƅ HpHDH9L9AH;HpHL`sAƅb H`DHLAăe DHLkwIHhH;"d HhHLHxHLHp0YiH L[L5H=IVLiaIH tA$HHOIH HlI9D$1 HDžpE1LHDžL`~HHHHPtHpHLHHH)H?H HxH4H[dHMtIxHIuL7UIx HIHHx HHI$xHI$HdHHH9tHHp:WHHH9tHHpWHhHxH9tHxHpVHHHXH9tHXHpVH(H8H9tH8HpVHHH9tHHpVHHHH9tHHphVHHPH9tHHpEVLI<$HtHx HHt%II9uHHe[A\A]A^A_]fD{SfIw2H JcHf.>1H=. 1SHLH;HtHx HHt5HI9uHY H=~ HDž0@RĐMtIx HI?I$xHI$uLRIx HIAH~Y DH=S~ LHDžifDL8RL(R8HRHHt HLƅ[HDž`LDž\HDžpƅHxtHHIHp[HH`HxHH`tH`HHHxHHDž`HX HpʉtHpHLxAtAL LA$A$H}LI9HL;%Xz\ L;%| Ј[MHDžpHDž`ZDL E1HDžpHDž`A$RQfHH1H`򉵈tH`HHUHtDHH(L0H8cQHUHH(L0H8HH}HUHt9HtLH0L8PHUHH0L8HH}fHpHt.HHH8PHpHhH8HpHh HPHt HHZPHPHHHPHHfDH0Ht H%LPH0H(H0H(DHHt HLOHHHHDH)LLL@H)LELEL\f.Hh)pHhHxH@H()0L(L8L@HH)PHHHXH @H)HuHuHf.H5H`tH`HfDHtHHHpfDHtHHImf.H ayHtLƅ[Dž\Lƅ HtHHHp{fDHLmwHA HOfHL=wHQA HfHL wHA HfHLvHA HfHLSAHyH% H5 H81;tDccAHLLgP_fHwLI9HL;%gt\ L;%v Ј[LpJL`J^L[IHf.HT ,H=} XI$HI$LIxHH u 1HxHjQH$ZYF@ID$M|$HAtAHptI$xHI$HDžpL~HH98H0H(XHPHHqxHpHh EHUHEHUH2Hx+LAMu"AA:LHA~uI~0HtCSI~IFH9t IFHpJ8LJIEIEf.UH(wfHXHAWAVIAUATISH)@fHnH^fH:"HE)EHHI}NHHHHH=^ IعH@HtHxHHu hGHHHtHxHHu ?GHCN 9H=: `He؉[A\A]A^A_]f.HOMnAEtAEM~ L@AtALHL;-IrH5b//I9utHEfLuEH5H= LuHHVHpHDžxHEEH )PpQHHTtHDž HuHtHH9CH HL}HM1~H IHtHxHHu HEHx HHMLHELHH wHEH]H}HUH9,fHnfH:"EL9NHUHEEHAH}HUHEH}H9t HEHpGpHIHx HI+HEHpHUL9HfHnfH:"EH9HUHpxH H}HUHEt /XL;-ptHpHxH]H M|$H AoM fH:)`HtH=5o@L8H LH`LPLL`H8@HhHNH}E1H9HEHpGI0Ht"IIIGH9t IGHp@8L@H=1117^F`>Hy;Hy;H;H;UHaHAVAUATSHH0HEHEHEHzLIHMjHtHHtHUHGJHHUH41L%ci jLEATAQI H H H|>H]fH5A H9sL-ht L9C]IL9jHs0LmHUL.EH}L[BH}H]fH5yH9sL-6et L9C^ZIL9jHs0LmHULSH}L>H}9HHx HHHe[A\A]A^]IعH=Ge B1H}HuHtHxHHt=H? H=d 1댐HuHtH]D8fHHE8HEFIعL螺Wf1HOo H菝t YIH覻1@H@ H5 AHfH81AaDiPLA{=1TH> DH=c 1nL%c jHM1ATHuIZY@ALLuAMuAyA~uI~0Ht(BI~IFH9t IFHp98L9H5UH0}fHHHAWAVAUATSHHX)EfHnfH:"H-0"HEHEHE)EHXLOMKH( HtH<HtHUHGLeHL-b M1jHUH4AUAQIH xMH}6H}H~HHI<uIع1L$LLeH;HtHx HHHL9uH; -H=a E1HeL[A\A]A^A_]Hu:HVtHUHVtHUHNHt8Iع1H=a Lei@@+5UfDH^tH]LnAEtAEH>LmtH}HIf)EIHwLo]IHLuL}HLMLL6H}LsIĻIHH}Ht4?H]LmH;HtHx HHtHL9ufD+4fLmH]21fH_tHELH]AHGA51)H9 H=_ E1*@H_tHEH@L-_ jL1AUHuI|ZYD^H{Cx^HpDX{?H{0Ht=H{HCH9t HCHpf58HY5H0H0@UH\HAUATSHH8HEHEHEHlLIHM\HtHHtHUHG<HHUH41L%^ jLEATAQIH H H|H]@Hƃ#LeLYSH}HO]tHHx{HHurHHE1HE`IعH=] 袳1H}HuHtHxHHtMHz7 NH=2% u1He[A\A]]HuHtH]D0fIعL_[\HPL-{AEtAEHW1Hu1LHHEHEciIIExHIEMt$111LwPI$xHI$Aa1衳H^6 DH=$ [1V@L%d\ jHM1ATHuI ZYLLeAMu+AbAtL/PL/lA|$uI|$0Htf:I|$ID$H9tID$Hp18L1H-fUHAWAVAUATSH( 4HXhIL#Mt L;%ZH[HuE1E1OL}LHEDH}H}4L=[AtAIEhH8L HtHx HHtrHtHx HHtmMtIx HIthLH([A\A]A^A_]fDA$tA$I\$tLMJI9DK.fH8.fDL(.LNAHEHAH}3HZI}`H0^tJI}`IE`HtHx HHtZL=|WAtAI}hLLH0I}hLLH0H3 7H=Y 谠1d-럀xJHx0Ht HE8HEHxHEUIH}8/HI+f.UHwfHAWAVAUATIHH8SH)))fHnHfH:"H-!HDž)fHnH fH:"H()fHnfH:")HH LOM; H HGH(HH3X I1jHPAQE1H HHvXHHAŃHH еAƃHHt賵HHt6H;=oXH;=-U H;=V GuƅPHHa LH Hp1fo HH0 L`H`HH8HHdHHHH)HDžhƅpDžnullHDžƅ>Hع HhHHhH>KH1H@HdHLHHH(H DDžDDžLDžnullƅHDžHHDžnullƅHDžƅ=Hع HhHHhH=HDDžDDžnullHHHHHDžHHHHH9Y HfoH9 HH)H HHHDžL8H(H(L9H8fo0H9 H8H()0H H(H8HDž0LXHHHHL9 HXfoPH9q HXHH)PHa HHHXHDžPHxHhHhH9QHxfopH9HxHh)pHHhHxHDžpLEHEHL9HfoEH9 HH)H H}HUHEHuHEHH99HfoEH9HH)HH}HUHEH}H9t)HELH Hp(LH H}L9tHEH Hp(H HhH9tHxHp(HHL9tHXHp(H(L9tH8Hpi(HH9tHHpM(HL9tHHp1(HH(H9tHHp(PL;%QXHL`HIt$0HLHHX0DH H@*L-oVH=IUL,0IHtA$HhH`QIHH/SI9D$CHDžHE1LHDžL#MHPHHhHPtHHHIQLHHH)H?H HXH4HP3HXMt"IxHIuL#f.IExHIEHPHx HHI$xHI$HXHHH9tHHp%HHH9tHHp%HhHxH9tHxHp%HHHXH9tHXHp%H(H8H9tH8Hpl%HHH9tHHpI%HH8H9tHHp&%H`H0H9tHpHp%Lf.IL9t'I<$HtHxHHuI"IL9uHXHe[A\A]A^A_]f.HHE1DžXHEA KMtIx HII$xHI$uL!IExHIEAH) DH=N L`ÔHDžXI11ҾH=aM ApH{L fHI9t'H;HtHxHHu!HI9uڐH) DH=M :HDžXf.L *H L XHUHtDHsLHH #"HUHLHH HH}HUHt9HLHL !HUHHL HH}fH0Ht H~Lr!H0H(H0H(`DHHt HH*!HHHHDHpHt.HHH HpHhH HpHhHPHt HBL HPHHHPHHDHh)pHhHxH/@HH)PLHLXL@H()0L(L8L@H)HHHg@H)LELELfH)HuHuH4fDžHdL`H&AHLHl H5u H81FD5AHH@L`"HHjApDE1sHHArH1LIHLfL=L^HHƅPxfHa' ,H= ؏I$HI$LvID$Mt$HPAtAHPHtI$xHI$UHDžHLPlHH jH1PHE1ZYxGHeGHH!pKGH(AqHUXHPHHxHpHhRHH8H0H(|EHUH$EHUHHX(LAMu"AAcLA|$uI|$0Ht%I|$ID$H9tID$Hp8LDžXHIIff.UHeHAWAVAUATSHHHEHDžhHEHLIHMHtH HtHhHGgHHUH41L%^F jLhATAQIEH HHhLhfDL=cHELuEH=LuLpIWLHPHpHDžxHEER$HH&tHvGHuE1HH9C#1HL}LpLmQHXMtIx HIHx HHVHXH]HXLpHJHELeH}HUL9fHnfH:"EL9'HUHEEHH}HUHEH}L9t HEHpLpCHXHHHx HHHEHpHUL9^HPfHnfH:"EH9HUHpxHH}HUHELpLH?H}SHBtH}L9t HEHpHpHPH9t HEHpMIExwHIEumLcIعH=sC 1HhHuHtHxHHtrH H= 1ȉHeH[A\A]A^A_]fDHuL.AEtAELhfDHLp9@+^fDHEELeLeLLAIعLxHXHHxH H= Lpو1LfHtHUL)HUH}HUH}6HtH8LHUHpHxH}f.H=HpxLuLuLtfLpt)LHHHCL{HXAtAHXLtHx HHHXHuL%A j1HuATHhIhZYHLp1tEHUH}EHUHpH+LeMu'/HLpEA|$uI|$0HtI|$/8LIIfUHhBHAWAVAUATSHHHHEHEHEHLIHMpHtH9HtHUHGHHUH41L%? jLEATAQIH H H|ݨLH}HHU1HEHHHH@H9t:HXHHqH1DHH9H;TuL-=L9HC(oC )EHtH=2=@LeLuLL]>H})H}HtL=RH=fIWL IHtA$H<I9D$IT$ ID$HHH9hH9_tIT$HHID$I$xHI$AEtAELHx HH1H}HHHHHuzHEHEH}HtbIعH=}= 1H}HuHtHxHH H yH= у1He[A\A]A^A_]HH9HuH;; fDL-fAEtAEHHu1LHHEHEHIIExHIEMt$111L 0I$xHI$qDHH>tH}ffDHHEHEAIعL莑fLH@fDHLeI$xHI$H  H=4 /1H H=  1H=Hb H5v H817H H= Ɂ14fLxlL%; jHM1ATHuIsZYo@"LKIHl#H=s01LLeHH]&HHH|HHo eLLeAMu"H}HtAA|$uI|$0Ht\I|$)8LLk fL^ H H fUHX8HATSHH0HEHEHEHnLIHM^HtHHtHUHGHHUH41L%w9 jLEATAQIGH H H|H}fD蛖ƃ H]H H}mH7t1H}HHHxHHuqHE HEDIعH=8 1H}HuHtHxHHtEH H= ~1He[A\]fHuH>tH}D{ fIعL膍gE6uH@H@ H= `~1fL%7 jHM1ATHuIZYIHLeMu tvA|$uI|$0HtI|$&8L! I9 UHAUATSHH=HHHfLeHuLHCH}H;5t\HCHuH5HudtIHx HHtHL[A\A]]H HL[A\A]]fH8H"= H5q H813H H=> E1|@H H= E1|HL[A\A]]LLmAMu*A HZ H= E1w|A}uI}0HtI}4%8L Hff.fUHAUATSHH=|HHH,eLeHuLHC"H}H;&4t\HCHuH4HudtIHx HHtHL[A\A]]HPHL[A\A]]fH!7H; H5 p H81a1H) H= E1F{@H H= E1%{HL[A\A]]LLmAMu*A H H=W E1zA}uI}0HtMI}#8L Hff.fUHPEHAWAVAUATSHHHEHDž(HEHLIHMrHtHHtH(HGHLeH41L-3 jL(LAUAQIBH HH(bL(H1fL@HEL0LeHpHDž8ƅ@)p)EI9L=PH=IWL<IHxtA$H^4HuE1HI9D$r1LL}Lm>IMtIx HItI$xHI$^MLeLL7HEL}H0HUL9fHnfH:"EL9H@H08HH}HUHEH}L9t HEHp}0HIEHxHIEnH0H8L`HPLPH+HPL}HXL9HEH`HE}HMLPHDžXƅ`EHEH}HpL9(HpHEHEHxHpEIعH=0 "1H(HuHtHxHHFH- PH= 1vHeH[A\A]A^A_]f.HvL.AEtAEL(f.HpLHH7}HHHPL9tHH`HpHHLqH}tH0L9tH@HpQ}E1H(MHHHAHfD{fDHtHL HUH0H8H}f.L(IعL6HpHEEH9!HEHp[fDxHIE]H  H= t1HH LLH)HDL`H08L}L}Lf.L(LXHHLHHH}EL9HHEHpIHDL-- jLe1AUH(ILZYfDLyIHzf.ID$M|$HAtAHtI$x HI$tSLHu5L/LmAMu4_A+EHUH0{LA}uI}0Htz I}8LHdHTfUH(.fHAWAVIHHHAUATSHH)EfHnfH:"HHEHEHE)EHWLOMJH#HtHHtHUHGLevHL-> M1jHUH4AUAQIHH x?H~DHHI<uIعL葀LLeH;HtHx HHHI9uH H=* E1ZqHeL[A\A]A^A_]HHVtHUHVtHUH~HtH^HUtHVH]tHUHDž`HDžhHDžpHDžxHEHEtL%(M9A~0L9L5H=IVL9IHtAELxLHAƃIExHIE^HDžxEA$tA$Hx HH9H]LmH;HtHx HHt!HI9uASfDCؐIعLeH= N~fHCH5BHHHILxML;5(L;5%AM98LAŅuIx HIIHDžxE H=.8quHxIH[H5w5H迁HEIH]IxHIuL'H5X6LHDžxPAƅKIExHIEHEH5@HE7HEIH HτAƃs IExHIE0LmDHEL&LfLXHHKL9H`HpHxhHhI|IvH9LuHLH}L H`@}HhHDž`)}HpHDžh}HDžpofH]DLxAL  L=J fMu#5fAL | L=$ @Ix HIDLmHMMtIExHIEIHtHx HH`DLLE1kHMAL  L= Hq'HyH H5[` AL=v H81!L  L- jL1AUHuI\ZYD L3qHxIH%LmHMAL T L= LxAL - L= LLXLmHMLXDLLPHXLPHXHLXYLXDL@}HEIHH>AǃIExHIE3H=?HEpHEHH5\/HHX5}HXHIHx HHmHEE1H $HI9HLuL1LXI4LMLPHE'/HPHEIyLXHDžxIx HIMH5N)Lf|HHIExHIEHHXHE蝈HXHIt/Hx HHLLDLHX!HXHtHxHHuHNAL  L=B mLmHMAL y L=! IH#H! H5\ H81(HxLuLHMHLHXHPhH=&nHH LxHMHUL9HAHHLLHEHDžxHEEL L=: LLLH[gHXLLHP LHH]t I$xHI$Hx HHH}wHHE wHxHEvI}hHpHDžxHhH`5LPdE1AL L=< I}hHpLXHhH`LXLmHMAL G L= AL . L= LLHEHDžxHETHH8H@LHwH8H@LHLU{ALpAZIHLX"LXxLLHXHXHHLxALHHMAL L= LxAL L= DHMAL L=h zH;HMAL L== 9HHMAL j L= DLH0H8LHH@, H@LHAH8H0H6>AL L= MHMhALxtAAEtAEIx HIt(M1AL L=B >LLX&LX5Hf.UHHAUATSHH8HEHEHEHlLIHM\HtHHtHUHG<HHUH41L%l jLEATAQIH H H|H]@HXyƃ#LeLH}HtHHx{HHurHHEHE`IعH= p1H}HuHtHxHHtMHo EH=c a1He[A\A]]HuHtH]D;fIعLFp_HPL-DAEtAEHHu1LHHEHE&IIExHIEMt$111L I$xHI$AT1pHS DH=I `1V@L%> jHM1ATHuISZYLTLeAMu+AUAtLPLlA|$uI|$0HtI|$ID$H9tID$Hp98L,HfUHHHt@H H= HE_HEfDUHAWAVIAUATSHxH`HEHEHERHxHxL-HXhfL#M9t MH[HuHDžpE1H53H=JHVHuIHtAHEHuHHI9GHMLLuHM1J$HMHEHEHtHx HHIHEx HIH}6L=HEAtAHEfL})EHEHE~HEHEHH$H 7HPtHMHMHuLHHUHhHEHx HHIHEx HIHhHEWIx HIHEHtHx HHMtI$xHI$HpHtHxHpHHPLhH5 I^H9t5HXHHJH1 HH9H;tuALutAM9HEHp H5/Q HEH81}DžhME1HEDLm1MtIExHIEH}HtHx HHHtHx HHH}HtHx HHrH}HtHx HHhH H=~ [MHMHtHx HHHIx HIDMtLHxL[A\A]A^A_]DLA$tA$I\$tLHpffDL^H2LHEHixfHx.LhHpHuHHM:K5H(Z7L sH}`IHA1QjH}HE@j1HE1jLxH5[=I`JcH H= YHMHULHuI~H5订H54LCHHUEtfHE)ELuIH-HH 3HPtH}HMHuLHHEIx HIH}Hx HHyH}Ix HIqLuH}hH}HEhH}HEhHxHpLHHEHxhHEK@HLDžhHEHxHpLHHxh9E1E1fDE1I$x HI$t MLfDHpIIGHEH}H}htHUhtIx HIL}HuH@HH9|HuH;5jfDL-:HEAEtAEHCH;)LmtH=H IHHxHHuHsHu1LLeHHE/HEHI$xHI$uL.IExHIEuLHEHt.111HHxHHuHHEDžhE1E1HELt3IFHEH}LP(H]L}Hu+H`LHHxAEtAEMDžhMHEDžhHEHEJL}LXLDžhHEHEHEDžhHEH; ukHPXHHDžhE1E1HEdDžhE1E1HE<DžhHEHEgH;^tH5դHuH?HDff.@UHATSHGHHHLc(Mt=IT$IL$HH9trH= AD$PAT$H{8HtHHC8x HHtH[A\]xf[H[A\]oxID$I$LPI$LPfsf{HSHH9B0 H[A\]fL-UHATSHGHHHLc(Mt=IT$IL$HH9trH=z AD$PAT$H{8HtHHC8x HHtH[A\]IwfH[A\]/wID$I$LPI$LPfsf;HSHH9B0 HF[A\]fL-UHATSHGHHH\Lc(Mt=IT$IL$HH9trH=: AD$PAT$H{8HtHHC8x HHtH[A\] vfH[A\]uID$I$LPI$LPfsfHSHH9B0 H[A\]fLh-UHATSHGHHHLc(Mt=IT$IL$HH9trH=AD$PAT$H{@HtHHC@x HHtH[A\]tfH[A\]tID$I$LPI$LPfsfHSHH9B0 H[A\]fL(-UHATSHGHHHLc(Mt=IT$IL$HH9trH=AD$PAT$H{8HtHHC8x HHtH[A\]sf[H[A\]osID$I$LPI$LPfsf{HSHH9B0 H[A\]fL-UHATSHGHHHLc(Mt=IT$IL$HH9trH=zAD$PAT$H{8HtHHC8x HHtH[A\]IrfH[A\]/rID$I$LPI$LPfsf;HSHH9B0 HF[A\]fL-UHATSHGHHH\Lc(Mt=IT$IL$HH9trH=:AD$PAT$H{8HtHHC8x HHtH[A\] qfH[A\]pID$I$LPI$LPfsfHSHH9B0 H[A\]fLh-UHATSHGHHLc(Mt=IT$IL$HH9tjH=AD$PAT$H{8HtHHC8x HHt H[A\]oH[A\]oID$I$LPI$LPf{f@u7HH9P0"H[A\]ÐLHEHCff.fUHSHHHGHuNH{PHtHHCPx HHtHH]xHH]^fD@uHH9P0uHtH]uHCҐUHSH(H;=tfHwH]HH&H]Ht7HKHsHH9H=uhSJKHt(H]HH H5= H81 H [H= HH]1fDHHEHHCRHHRHEsfHHEtHEUH|UHSH(H;=tfHw0H]HH H]Ht7HKHsHH9H=uhSJKHt(H]HH# H5< H81H H= GH]1fDHHEHHCRHHRHEsfHHETHEUHrUHSH(H;=tfHw0H]HH H]Ht7HKHsHH9H=uhSJKHt(H]HH" H5s; H81H k H=& FH]1fDHHEHHCRHHRHEsfHHE4HEUHhUHSH(H;=xtfHw0H]HHf H]Ht7HKHsHH9H=uhSJKHt(H]HiH! H5S: H81Ht h H=6 EH]1fDHHEHHCRHHRHEsfHHEHEUH^UHSH(H;=XtfHw0H]HHF H]Ht7HKHsHH9H=uhSJKHt(H]HIH H539 H81HT L H=F qDH]1fDHHEHHCRHHRHEsfHHEHEUHTUHSH(H;=8tfHw0H]H.H& H]Ht7HKHsHH9H=ruhSJKHt(H]H)H` H58 H81iH4  H=V QCH]1fDHHEHHCRHHRHEsfHHEHEUHJUHSH(H;=tfHw0H]HHH]Ht7HKHsHH9H=RuhSJKHt(H]H H@ H56 H81IH H=^ 1BH]1fDHHEHHCRHHRHEsfHHEHEUH@UHATSHGHHH\Lc(MtAIT$IL$HH9H=6AD$PAT$H{8HtHHC8x HHtIH{@HtHHC@x HHtH[A\]e@H[A\]e밐ID$I$LPI$LPlfDOf.HSHH9B0H[A\]fL8UHSHHHGHHH{HHtHHCHx HHtIH{PHtHHCPx HHtHHH]f{fqHSHHH9B0\HLH]UHSHH;=HGoHfH:)EHtH=@HuH]Ht7HSHKHH9H=uyCPS2Hu,H]HqH H5[3 H81H]H 5H= >@@YfDDHHHCPHHPjH(\Hf.H9UHAVAUATISL7HMLoM}IUIMHH9H=upAEPAUHI$HHL3AoD$fI$AL$C[A\A]A^]fH>tLH_DDIELIEPIELPHk@HLHuA~t.E1cfDH9tDL'I~0HtjI~L8M4$IfDUHSH(H;=HG@H@0HH@8H@0ofH:)EHtH=3@H}蘸H]Ht7HKHsHH9H=uzSJKHt*H]DHHK H50 H81H H=V ;H]1f@UfDDHHEHHCRHHRHEafHHEDHECHUHSH(H;=HG@H@0HH@8H@0o@fH:)EHtH=@H}7H]Ht7HKHsHH9H=uySJKHt)H]@HIH H53/ H81HT H= q:H]1f@VfDDHHEHHCRHHRHEbfHHEHEDHUHAUATSHH;=$HLnHLg(HG M9tZMtH=zupAEMt=IT$IL$HH9H=Iu/AD$PAT$Lk(H[A\A]]f.DAELg(MuHH H5- H81 HH "[H= A\A]]8ID$I$LPI$LPUfDLBff.UHAUATSHH;=HLnHLg(HG M9tZMtH=*upAEMt=IT$IL$HH9H=u/AD$PAT$Lk(H[A\A]]f.DAELg(MuHyH H5c, H81HHh [H=q A\A]]7ID$I$LPI$LPUfDL@Bff.UHAUATSHH;=HLnHLg(HG M9tZMtH=upAEMt=IT$IL$HH9H=u/AD$PAT$Lk(H[A\A]]f.DAELg(MuH)H H5+ H81iHH ;[H=U A\A]]G6ID$I$LPI$LPUfDLBff.UHAUATSHH;=4HLnHLg(HG M9tZMtH=upAEMt=IT$IL$HH9H=Yu/AD$PAT$Lk(H[A\A]]f.DAELg(MuHHY H5) H81HH [H= A\A]]4ID$I$LPI$LPUfDLBff.UHATSHGHH4HLLc(MtAIT$IL$HH9H=&AD$PAT$"H{8HtHHC8x HHtiH{@HtHHC@x HHtPH{HHtHHCHx HHtH[A\]XH[A\]Xs됐kfID$I$LPI$LPLư4@I$xHI$uL覰IExHIEH H=1 #1|fDI11ҾH= 21WfHyxHH= $51+DHH H5 H819gsL(IH6fDL谯I$xHI$uL莯HxHHuHv@UHAVAUATL%SL9HLvHLoHHG@M9tVMtH=9uwAFMt9IUIMHH9H= u8AEPAULsHA$tA$[LA\A]A^]DAFLoHMuHH H5k H81H H=. ![1A\A]A^]fDIELIEPIELPKLH7UHATSHHHH9Lg fGMt=IT$IL$HH9H=u/AD$PAT$tH[A\]DI11ҾH=A /1@HyxLHH= D21ID$I$LPI$LPufDHH H5 H819H |H=֤ ! 1=f.LUHAVAUATSHGHHH{t Lc fE1CMIT$IL$HH9H=WAD$PAT$kEt MtLaLc MtAIT$IL$HH9H=AD$PAT$H[A\A]A^]C'nLc fAICM]ID$I$LPI$LP3fDrffID$I$LPI$LPH[A\A]A^]3C@uOH@H9P0VH莪F[A\A]A^]DLL# HCDUHATSHH HGHHUHuH}Hx HPHUHuH}JLcHMt9IT$IL$HH9t8H=(u^AD$PAT$H H[A\]8ID$I$LPI$LPH H[A\]D@u?HH9P0H.H [A\]DL萮cӾHCHff.fUHAVAUATSHGHHH{t Lc fE1CMIT$IL$HH9H=AD$PAT$kEt MtLLc MtAIT$IL$HH9H={AD$PAT$H[A\A]A^]g@'Lc fAICM]ID$I$LPI$LP3fDrffID$I$LPI$LPH[A\A]A^]?@uOH@H9P0VHF[A\A]A^]DLpL`裼 HCDUHATSHGHHLc0Mt9IT$IL$HH9tBH=uXAD$PAT$H{HHt HsXH)-H[A\]aID$I$LPI$LP뿐D@u7H@H9P0RHB[A\]ÐLXq蛻HCff.fUfHAUATSHHH;5}tpHF Lf(HMtH=uAD$LcHH[A\A]]fDAD$LoMtIMIEHH9ty(uL裪뱐AHYH H5C H81D輭H? DH= AqD虽HH[A\A]]IELIEPIELP'Iff.@UfHAUATSHHH;5MtpHF Lf(HMtH=uAD$LcHH[A\A]]fDAD$LoMtIMIEHH9ty(uLs뱐軬AH)H! H5 H81iD葼茬H'  H=1 AADiHH[A\A]]IELIEPIELP'Iff.@UfHAUATSHHH;5tpHF Lf(HMtH=uAD$LcHH[A\A]]fDAD$LoMtIMIEHH9ty(uLC뱐苫AHH? H5 H819Da\H߫ H=) AD9HH[A\A]]IELIEPIELP'Iff.@UfHAUATSHHH;5tpHF Lf(HMtH=PuAD$LcHH[A\A]]fDAD$LoMtIMIEHH9ty(uL뱐[AHH H5 H81 D1,H 9H= AD HH[A\A]]IELIEPIELP'I̡ff.@UHAUATSHnaHfH@HdL@MH;HITjH[7Lk L`HPHHHLcHC Mt9IUIMHH9tuH=u[AEPAULcLc(HH[A\A]]Ð11H=O "Hx HH1DIELIEPIELPLcfDHH H5 H81)H H=N q@H1辟:fLȤH.H:Iff.UHAVAUATSH0H8HHlf)EH;IHsLmH]HLHPH}L褤H}iH!HH]Ht;HKHsHH9H=SJK/He[A\A]A^]f HzHx H5d H81LH( H= H]1HZfzfHiHE1L H e H5 H8R1H ;XZ1CfHyxHH= "1DHHEHHCRHHRHEH=111讽@HHE蔢HEL萀LuAMuA)A~uI~0HtI~G8L蚟HHUHAVAUATSHL-rL9AHG0o@PfH:)EHtH=@LuLjLeHMtAIT$IL$HH9H=kAD$PAT$HL9)tH=1LH]HHE۴IHxIHHt(Mt@…x HHHL[A\A]A^]H؛MtHfDMuH΢  H= fHH H5k H81H  H=> E1HL[A\A]A^]fDHHHL[A\A]A^]@pfDtcHI܉ @f.ID$I$LPI$LPqfDL^HI܉H駛UHHAVAUATISHH0HEHEHEH'LIHMHtHHtHUHGHHUH41L- jLEAUAQIjH bH H|H}1QDHH5耺L-AIM9=AoD$fH:)EHtH=@LeHuHL衣H}ZH]E1H6HSHKHH9H=;mCPSaA\L蔞HƟ H= / 11H}HHHx{HHumHE跘HEƐIعH=$ 1H}HuHtHxHHtmH/ LH=R 1He[A\A]A^]fDHuH>tH}MDL訝AEtAELffD@bfDIعL/fHHHCPHHPvHZt۟HQ H5= H<H81߻]讯-fL- jHM1AUHuI3rZYL4zH]AHuH]H{uH{0Ht袡H{8H )H]1ÐCoR8Hr@)UHF"fHHHPHHPfHHEHHCRHHRHEfHHETHEH@gHaUHAVAUATSHL5L9HwLmLHP(L蘅LeHMtAIT$IL$HH9/H=AD$PAT$HrL9tH=A1LH]HHE IHxGHHt&Mt>…x HHtRHL[A\A]A^]fHMtHfDMuH H=X fHȐHL[A\A]A^]HI܉ifID$I$LPI$LPfDH9H7 H5# H81yH H= aE1fHҖ H=u 8fDLXHI܉H/ff.UfHHAWAVAUATIHSHHHJHh)EfHnfH:"HE)EHLOMHHHIع1H=F ZH}HtHx HHH}HtHx HHH .H= 1He[A\A]A^A_]HNtHMHtHMHWHHUH41L- jLEAUAQI_H 1H}PH}H"H|ݐHHt H|ݐH]18IHHHuHEHEp8IHt蟮H`II9It$ fH}MHULHx)E襙H}LeE1MtnIT$IL$HH9!H=qAD$PAT$Au'ELʒHU H=چ e1L訒tHH}HtHx HHH}H HHHHx辌HxfHtzH[HXtH8H]tH}Yf.Iع1L*@KVfD;)fDH8tH]H}tH]H9tHUHxԋHx\fL- jHM1AUHuIfZY)@HlA6H~BID$I$LPI$LPfD蓓H H5 HH81B߻FfHxnLeAMuLeM>zA|$uI|$0Ht耕I|$Ʀ8LL诏=HHf.UfHHAWAVAUATIHSHHHJHh)EfHnfH:"HE)EHLOMHHHIع1H= H}HtHx HHH}HtHx HHH H=m 1He[A\A]A^A_]HNtHMHtHMHWHHUH41L-@ jLEAUAQIYH 1H}PH}H"H|ݐHHt H|ݐH]1J3IHHHuHEHE 3IHtOHII9It$ fH}MHULHx)EEH}LeE1MtnIT$IL$HH9!H=!AD$PAT$Au'LzH H= 1LXtHH}HtHx HHH}H HHHHxnHxfHtzH[HXtH8H]tH}Yf.Iع1L9 *@VfD)fDH8tH H}tH]HtHUHx脆Hx\fL-p jHM1AUHuIcaZY)@ñHl6諱H~ID$I$LPI$LPfDCH H5 HH81߻HxhLeAMuLeM>zA|$uI|$0Ht0I|$v8LɇL_=HΆH҆f.UHAWAVAUATSHL-L9OHL~HLw(HG M9tZMtH=AGMt9IVINHH90H=uvAFPAVRL{(H>H{0H8IHtL9uQH{8Hx HHtLc8H[A\A]A^A_]f.;fDH5NHьuI$xHI$ HH H= [A\A]A^A_]AGLw(M&HH5 H H81Ѭ f.IHuLIFPILPHufLHLLHuTHuff.UHAVAUATL%SL9MHLvHLo(HG M9t^MtH=AFMt=IUIMHH9FH=AEPAU\Ls(Lk8fC0Mt9IUIMHH9H=duJAEPAUA$CXtA$[LA\A]A^]fDufDAFLo(MTIELIEPIELPyHHF H5 H81٪HƇ H={ [1A\A]A^]fDIELIEPIELPL`LPff.UHAWAVAUATSHL-L9OHL~HLw(HG M9t^MtH=AGMt9IVINHH90H=uvAFPAVRL{(HC HHxHS0IHt{L9uMH{8Hx HHtLc8H[A\A]A^A_]fD;fDH5JHшuI$xHI$.HH H=" [A\A]A^A_]AGLw(M&HH5 HX H81Ѩ,f.IHuLIFPILPHufLHLLHuTHuff.UHAVAUATSHHH]HCHBL@M}H;f8NH@ IH@(@0HHPH@HRIHqID$HPHAD$I$ID$IHMeIEHqHIEI$H@MtIVHtsRtlLc@LcHLkHMtAIT$IL$HH9H=AD$PAT$JCTH[A\A]A^]LIHHAE I~Ht$HG PW u HPMnC11H=G Hx HH1e?fID$I$LPI$LP$fDH٫Hl H5 H81H H=v i@AE DH1|fL訁G H'~fUHAWAVAUATSHH(H}ȅL%L9eHUHLsLj(HB M9tbMtH= .AFMt=IMIuHH9H=٦MAEHAMHELp(L;HELx0_HXhIL3M9t MH[HuHEE1L9%A({HH=eHHEBHMHIHx HHH=ΞL膞H=^LIHWH@H;ߧQIEhH8L0HtHx HHnHtHx HHHMHtHx HHPMtIx HIoHEHx8Hx HHHELH8H([A\A]A^A_]@IGM9t H; AtAM.AtAI^tLHE\HH5Y H8I}`H5VAtMI}`IE`HtHx HHdA$tA$ME1HXy>AmE1E1IEhH8L0HtHx HHHtHx HH^HuHtHx HH,MtIx HIH DH=s HMtIx HIH(HH= [A\A]A^A_]LMgxLM#HHHAx@LM/xLMfDH}LMxMLMHLMwLM^LLMwLM|AFHELh(M@H>lH=111H~ 譗HaH5R H Hv~ H81蚠IELIEPIELPxAqE1L9|]wHHH?Hf H5' AuH81!E1Lv,LvHLMvLMHLMvLMLMvLMbAs4M9HHHH H5 LMAsH81肟LMfUH財Hu]H#} _H=x ]?ff.@UHATISH~iHuH;Ut3I$HC@[A\]fDr[H| H=$p A\]@HyH5j H H81蹞sfUHATISHnHuH;ՠt3I$HCH[A\]fD[H=| H= A\]\@HH5 H H819fUHATISHiHuH;Ut3I$HCH[A\]fD[H{ H=h A\]@HyH5j H9 H81蹝fUHATISHnHuH;՟t3I$HCH[A\]fD?[H={ H= A\]\@HH5 H H819@fUHATISHiHuH;Ut3I$HCH[A\]fD![Hz H= A\]@HyH5j H} H81蹜"fUHATISHnHuH;՞t3I$HCH[A\]fD[H=z H=m A\]\@HH5 Hz H819fUHATISHHeHu0H;QtGI4$LeHLHsH H}uYH[A\]þMHHy H=Ym [A\]HaH5R H H81衛Nf.LxULeMu PtA|$uI|$0Ht|I|$ID$H9tID$Hp}t8LptHsfDUHATISHnYHuH;Et3I$HC@[A\]fD][Hx H=l A\]@HiH5Z H5y H81詚^fUHATISHٜHuH;Ŝt3I$HC@[A\]fD[H-x H=,l A\]L@HH5 H$ H81)fUHATISHnYHuH;Et3I$HCH[A\]fD4[Hw H=k A\]@HiH5Z H;| H81詙5fUHATISHٛHuH;śt3I$HCH[A\]fD[H-w H=tk A\]L@HH5 H{ H81)fUHATISHnYHuH;Et3I$HCH[A\]fD[Hv H=k A\]@HiH5Z H{ H81詘fUHATISHٚHuH;Śt3I$HCH[A\]fD[H-v H=j A\]L@HH5 Hz H81)fUHATISHnYHuH;Et3I$HC@[A\]fDk[Hu H=ܝ A\]@HiH5Z Hy H81詗lfUHATISHٙHuH;řt3I$HC@[A\]fDK[H-u H=z A\]L@HH5 Hzy H81)LfUHATISHnYHuH;Et3I$HC@[A\]fD([Ht H= A\]@HiH5Z Hx H81詖)fUHATISH٘HuH;Řt3I$HC@[A\]fD[H-t H=h A\]L@HH5 Hrx H81)fUHATISHnYHuH;Et3I$HC@[A\]fD[Hs H=th A\]@HiH5Z H+t H81評fUHATISHٗHuH;ŗt3I$HC@[A\]fD[H-s H= A\]L@HH5 H H81)fUHATISHnYHuH;Et3I$HC@[A\]fD?[Hr H=g A\]@HiH5Z Hs H81詔@fUHATISHٖHuH;Ŗt3I$HC@[A\]fD[H-r H=Κ A\]L@HH5 Hv H81)fUHATISHnYHuH;Et3I$HC@[A\]fD[Hq H=f A\]@HiH5Z Hr H81詓fUHATISHٕHuH;ŕt3I$HC@[A\]fD[H-q H= A\]L@HH5 Hq H81)fUHATISHnYHuH;Et3I$HC@[A\]fDb[Hp H=e A\]@HiH5Z Hq H81詒cfUHATISHٔHuH;Ŕt3I$HC@[A\]fD2[H-p H= A\]L@HH5 Hp H81)3fUHAWAVAUATSH(HHH*uH;6I=Hs@LeLHHpHPH}L noChfH:)EHtH=eu{@L?PH]Ht7HKHsHH9H=+u1SJK?H&He[A\A]A^A_]D@fH HE1L Nl H g H5 H8R1H ېXZ1DHyxHH= t1gDoHފ H55 H4H81肐LlH[m H=c [1@HHEHHCRHHRHEffHHEkHELIL}AMuA_AuI0HtPqI藂8LhHRhHZhUfHATSH0H‘)EH9]HwHEH譐foELef)M)EfH~MIT$IL$HH9H=ݐAD$PAT$LeMtAIT$IL$HH9{H=%AD$PAT$HEHH}IMgHH]Ht7HKHsHH9t+H=+SJKH0[A\]fHHEHHCRHHRHEH0[A\]DHHڞ H5 H81cHnk H=6a 1GftH4Vf.ffID$I$LPI$LPefDID$I$LPI$LPHEfHHEiHELhLhLHeUHAUATSH8H"HH>f)EAH;ILeHsH}L H]HPLhLЛHH]Ht7HKHsHH9H=u|SJK*H8[A\A]]KkHHi H5 H81#{L;hHi H=X_ 1Z@DI11ҾH=y 1gfHyxHH=M 41;DHHEHHCRHHRHE{H{0HtlH{}8HRd}DHHEfHEHcff.UHAUATSH8H"HH>f)E1H;ILeHsH}LH]HPLfLMHH]Ht7HKHsHH9H=u|SJK*H8[A\A]];iHHg H5 H81yL+fLHg H=p] 1Z@DI11ҾH=i 1gfHyxHH== $1;DHHEHHCRHHRHE{H{0HtjH{{8HBb}DHHEdHEHaff.UHAVAUATSHGHHhHhH{t ̄TLc fE1CMIT$IL$HH9H=AD$PAT$SEt MtL)gLc MtAIT$IL$HH9H=ÉUAD$PAT$Lc0MtAIT$IL$HH9H=yAD$PAT$H{HHt HsXH)`HHtHǃHx HHtQH[A\A]A^])f[y~Lc fAICM]H[A\A]A^]ID$I$LPI$LP9fDID$I$LPI$LPkfDff.fID$I$LPI$LPofDsrHSH`H9B0vH~\f[A\A]A^]DLaLaVLaff.UfHATSHH0)E5}H;IEHsH}HPfoEH]f)M)EHtHSHKHH9H="tCPSH]Ht;HSHKHH9nH=ކ CPSLFaH}HHH]Ht7HKHsHH9t/H=SJKH0[A\]fDHHEHHCRHHRHEH0[A\]DcHH H5 H81:csL{`Ha H=W 1-@Rf.ffHHHCPHHPoHHHCPHHPHHEd_HEHP_mH@_Hm\UfHATSH H)EH9HG o@0fH:HtH=؄@)EfH~DHH}AHH]Ht7HKHsHH9t0H=xSJK(H [A\]HHEHHCRHHRHEH [A\]DHH H5 H819H!_ H=&V !1Bf.tH'@Le)EMIL$ID$HH9t)(tkHEf.fID$I$LPI$LPHEf.HHED]HEL0]HvZfDUHAVAUIATISH vHHHCHEHEMuHCHd|HEMLO^HMtIIMtHMIT$HL-Cc M1jHULE1AULP'H M J|hLe)f.I.MeA$tA$LeH5*$I9t$L-ft M93L9JM987ZIt$ HI7eZIH Ml$ID$HHI$IEH@MtIVH RLk@LkHLcHMt=IUIMHH9)H=)AEPAUCTE1E1H}MuHtHxHAH"AtqHeH[A\A]A^]@MLE1H}MuHtHxHAHH[ H=R Hx HH1tLIH;HAD$ I~Ht#HG PW u HPfDMfTCfDMH=` DTfD1Hz LϹtyL9fHaHw H5K H81}HZ H=Q AAfDH1.T]fLzDIELIEPIELPHH H5 H81|S@L-_ jHM1AUHuIML.ZYMLXrfAD$ @G LHUHUDUfHAUATISHHtH=~vHu1HHEH]kIHx HHMIExHIEH;;~ HC Lk(I\$I$I9tYMtH=}AEHt7HSHKHH9H=_}u}CPSMl$HL[A\A]]L(RiHRM:f.H-X H=O -HL[A\A]]~f.AEI\$H2dHH.u H5k H81zwHHHCPHHPHhVHSff.UfHAUATISHHtH=~tHu1HHEH]iIHx HHMIExHIEH;+| HC@LkHI\$I$I9tYMtH={AEHt7HSHKHH9H=O{u}CPSMl$HL[A\A]]LPiHPM:f.HV H=M HL[A\A]]~f.AEI\$H2dHq~Hs H5[ H81xwHHHCPHHPHXTHRff.UHAWAVAUATISHXDxLoHuE1AuJAEHA]LEAEPDxH7D9>HOztAD$xLHE9XHEHX[A\A]A^A_]fDH E}0H=HQHHMYHMHItAIcE0HIEHHp HxxzIHdH|HuE1HI9Fj1LL]L]LULUІL]LUMtIx HIIxHIuLHEMHEIxHIuLHEMHEHMI|$ A]LE}PAMHHtID$ Hx HH0AD$xHX[A\A]A^A_]H;xIE8H9H@ IuIE@H@HP0HH8HX0IEH9MuIU(HH)L)H9KIU HL)IH9HkILD}IILuIHLmMLe\DAEMt7ID$I|$L9[H=cwAD$xA|$LkIHIIMnLcHM9tMtH=wtAELcIuIu IEHX8H+X0H]D9?HyV ,H= Ix HIHEHx`tHR H=Z 貾1HLuLmHOD}LeIL9HILmILeMI"KqsIM9I\$HtHKHsL96H=ut뺐IIHHLmID}MLePfAD$Ht1HSH{H9H=uSz{dMfIIIt2IUMeI^II9tMtH=9utAD$I^fLmD}LeHH8IU MuHX0IM)LH9u@HHH9oHCHtH=tt@f.H HHCQH HQIyLmLLeIux@f.fLHE4IHELUXHEIHEfDI$HULHuID$PI$LPHuHUI@HHEHHuHCRHHRHuHEH+HH9HHMHuKHuHMHL40H9u?AHHL9t'o HKHtH='stAfDIM I]HH9tuLeIHHU&fWDBDGIL9t3I|$HtHWLGH9t\H=rtºAfDHULeI]HtIu(HHUH)IHUIULMu(dHHGH}RH}HRHYDHkvDHuHN H5ή H81$pHLF/HMO[H}ƿIHV DM^IVAtAtIx HIIHuUHpKI3[KH`@LHUHu8KHUHuIHHEHuKHEHuHuLLLUHUL]EL]HULUH[A\]ID$I$LPI$LPfsfSHSHH9B0 H=[A\]fL(C-UHATSH HfH@HmL@MH;Ii[H}"gfoMLc f)EKMIT$IL$HH9H=whAD$PAT$SLeMt=IT$IL$HH9}H=-hucAD$PAT$HH[A\]Ð11H=H Hx HH1ffDID$I$LPI$LPfDID$I$LPI$LPfDHAkH.j H5+ H81eHLC yH=F: i9@L8AH1Lp>L`>AI <UfHAWIAVAUATISH([)Et HIW0IG(HH)HHMH9L5`d1E1LHHHH@HUH9t[HtH=c@Ht;HSHKHH9"H=cSJKHEM9H}H}1 HHIT$ ID$HHH9H9tIT$HHID$Hx HHHEII9IG(H]fDAID$IT$ AHLHH9yDHLCuHx HH<Hr? H=5 蔪1H]Ht;HKHsHH9H=.b8SJKH([A\A]A^A_]H6HHH9~ LH9L9f@H]fHeHC H5{ H81_ @HHE;HEHHEHHCRHHRHEfH(6HHEHHCRHHRHEH([A\A]A^A_]f.IWHIG@II)IH9tI1DHL9s7IG@HLHH<`HHtpHxHHus5L5`AtALfDHHEd:HE-H=111IUH+8fDUHATSHIH1-\HHL;%R`thID$ HHxHHtnHx HHt'tIHx HHtcL[A\]s4uf.HAcH= H5+ H81]HL< HH=Id E1f@H4L[A\]I11ҾH=*d (E1mHyxHH=d ԸfH; GH=c fDUH0fHAVAUATISHFH9t?HXHHyH1f.HH9H;TuH;5^H^(Lv HL-/^MC^HI|$M4$H9tCHt=I\$HSHKHH9MCPS[LA\A]A^]fHH9DHuH;<]2@^HI|$M4$Ht'=LID$[A\A]A^]fC]HI|$M4$H90Mu&CH@4fCI|$HHHHCPHHP[LA\A]A^]f.H6Hq`HD H5[ H81ZH8 H=/ 虤H8 H=/ |H8 H=/ _/IU4IE4IE4I=4I54fUHAWAVAUATSH(HHHtH=TLu1HLHEH]VIIHx HHMI$xHI$L-[L9CTHCHLP(L}H][IHPHEILLP H}OH}5AEtAEMHt7HSHKHH9H=ZudCPSHeL[A\A]A^A_]AEtAEMfDLp/ H`/DH[HE1H . L 3 H5% H8R1Hd_ SXZYE1^Hyx)HH=5_ fHHHCPHHPH4 ]H=^ fDH]H9 H5k H81WH4 _H=^ 詡T@H4 `H=^ 舡H/HSHKHH9t@H=(Yu&CPSH$3DHHHCPHHPfH2 LL}AMu0AH}3H3 bH=] 豠AuI0Ht'8InI8L/I0I0I0I0ff.@U@HAWAVAUIATSH(*HH'L5hXL97H@H}HPL}LeLXHkI}M}I9t'MtH=WAD$HtS7MeAtAHx HHtTMt9IT$IL$HH9tFH=FWulAD$PAT$H(L[A\A]A^A_]@H,fDID$I$LPI$LP뻐AD$I}CDH1 sH=[ E1zHZHmV H5k H81TH1 tH=[ 詞IxHIuLQ+Hu1 tH=[ pE1L80.......UfHHHAVAUATSHHwHHp)EfHnfH:"HE)EHQLOMDHHHIعH=Z 艬HUHt HxHHuH8*H}HtHxHHu*fH1 _H=fZ E15HeL[A\A]A^]DHNtHMHtHMHW.HHUH41L%Z jLEATAQI'H H}HH"H|݀JHHt H|݀4LeHLxf1L)EHxqHHeL1LXIHlL-}TL9HC0@(ƒt 2M9AoT$ ID$()UHtH=S@HC(o[ )]HtH=S@H}HUHu-foEH}f)M)EHt3H}Ht3H}Ht3H}Ht2H}蛹IH7HxHHuH'I$xHI$H]Ht;HSHKHH9H=RCPSH}HtHx HHH}H~HsHHfV'\HH8tL`H}A$tA$Le@IعL.HUDL&&VfDHHHCPHHPfL5Y}AtAHOBHu1LHHEHEC_IIx HIMt$111LYFIExHIEotfDH#- H=sV EHx HH#ME1H*6@$fD@8fDH, oH=V ؘfDpnfDL%U jHM1ATHuIZY@H9TH0 H5# H81yNHD, sH=U aIEE1DHSH/ H5ӌ H81)NuvH$L$hL$Ho(H(UHAVAUATSHL%PL9oHfH:HtH=^O@Ls(C Mt=IVINHH9H=$OAFPAVHLvLk8HC0M9tZMtH=NAFMt9IUIMHH9&H=NuH (H H|ݐH}DfHuEE)E)E(HH|BIHLI9H9{HC(~C HtH=L@H}fH:")EHt+])AuLDIJ9MPIt$0H}HU?foEH}f)M)EHtp+H}Htb+L&H} IHHx HHLLeMtAIT$IL$HH9@H=8KAD$PAT$LeMtAIT$IL$HH9H=JAD$PAT$|E1H}MHHxHAHupH}Mt`IعH=O 蚡1H}HuHtHxHHtUHP& H= 1kHeH[A\A]A^A_]fHuH>tH}}DfHrIعLG'AHMHY H5s H81GD6L $ H% H=. 衑E1f%f_f@fDID$I$LPI$LP4fDID$I$LPI$LPfDH$ H= U&AHLH0 H5s H81F@L-M jHM1AUHuIZY@ Lf"wLY" H.!ff.UHVHAWAVAUATISHHHHEHEHEHLIHMHtH^HtHUHGEHHUH41L-M jLEAUAQIH (H H|ݐH}DfHuEE)E)EHH|tH}}DfHrIعLƛG!AHiHH/ H5S H81BD1LA H_ H=6 职E1f%f_f@fDID$I$LPI$LP4fDID$I$LPI$LPfDH ? H= ؋U AHiGH+ H5S H81A@L-H jHM1AUHuIcZY@C LFwL9 H2ff.UHAWAVAUATSH(L5pCL9HL~HLo(HG M9t^MtH=BAGMt=IUIMHH9H=BAEPAUL{(HHC0o@fH:)EHtH=NB@H}賨LeIMtAIT$IL$HH9 H= BAD$PAT$nMtzM9uLH{8Hx HHtLk8H([A\A]A^A_]DffH51LAuIExHIEH(H H=` [A\A]A^A_]遉@fD3fAGLo(MbID$I$LPI$LPfDHDH5} H@ H81>MIEHuLIEPIELPHuLL`LHulHuHff.UHAWAVAUATSH(L5@L9HL~HLo(HG M9t^MtH=?AGMt=IUIMHH9H=?AEPAUL{(HHC0o@fH:)EHtH=~?@H}LeIMtAIT$IL$HH9 H=:?AD$PAT$nMtzM9uLH{8Hx HHtLk8H([A\A]A^A_]DffH5aLquIExHIEH(H H= [A\A]A^A_]鱆@fD3fAGLo(MbID$I$LPI$LPfDHAH5z H> H81)<MIEHuLIEPIELPHuLLLHuHuHff.UHAWAVAUATSH(L5=L9HL~HLo(HG M9t^MtH=#=AGMt=IUIMHH9H=<AEPAUL{(HHC0o@fH:)EHtH=<@H}LeIMtAIT$IL$HH9 H=j<AD$PAT$nMtzM9uLH{8Hx HHtLk8H([A\A]A^A_]D ffH5LuIExHIEH(H8 H= [A\A]A^A_]@fD3fAGLo(MbID$I$LPI$LPfDH?H5 x HN; H81Y9MIEHuLIEPIELPHuLLLHuHuHff.UHAWAVAUATSH(L5;L9HL~HLo(HG M9t^MtH=S:AGMt=IUIMHH9H= :AEPAUL{(HHC0o@fH:)EHtH=9@H}CLeIMtAIT$IL$HH9 H=9AD$PAT$nMtzM9uLH{8Hx HHtLk8H([A\A]A^A_]D;ffH5LuIExHIEgH(Hh H=h [A\A]A^A_]@fD3fAGLo(MbID$I$LPI$LPfDHI<H5:u H~8 H816eMIEHuLIEPIELPHuL L LHuHuHWff.UH;=@8HAVAUATSHLnHLg(HG M9tbMtH=7FAEMtAIT$IL$HH9H=W7AD$PAT$3Lk(HCH5H=5 ixFfDbfD; HnIHIEA:L~!H ?H= hHTHGL%KA$tA$HHu1LHHEHE-HI$xHI$Ht"111HHx HHH ;H= gK\H <H= g$A<E1HiH H5m H8A?|L%JA$tA$HHu1LHHEHE,HI$xHI$Ht"111HHx HHH =H= fLLLcLkA$tA$AEtAEHx HHtPLHuA?LDUH7oL*:HTHHIEt A>RLHUHfHAVAUATISHFHH9t0HXHt|HqH~f1HH9tRH;TutH;HC Lk(I$MtH=auGAEMl$Hx HHtm[LA\A]A^]ÐHH9tHuH;t@AEMt$MtINIFHH9tm(uLfH[LA\A]A^]@H H H5Y H81H qH= d/ILIFPILP HDUHfHAVAUATISHFHH9t0HXHt|HqH~f1HH9tRH;TutH;pHC Lk(I$MtH=uGAEMl$Hx HHtm[LA\A]A^]ÐHH9tHuH;@t@AEMt$MtINIFHH9tm(uLkfH8[LA\A]A^]@H HE H5W H81IH ZH= 1c/ILIFPILP H*DUH`fHAVAUATISHFHH9t0HXHt|HqH~f1HH9tRH;TutH;HC Lk(I$MtH=AuGAEMl$Hx HHtm[LA\A]A^]ÐHH9tHuH;t@AEMt$MtINIFHH9tm(uLfH[LA\A]A^]@HyH: H5cV H81H @H=F a/ILIFPILP HDUHfHAVAUATISHFHH9t0HXHt|HqH~f1HH9tRH;TutH;PHC Lk(I$MtH=uGAEMl$Hx HHtm[LA\A]A^]ÐHH9tHuH; t@AEMt$MtINIFHH9tm(uLKfH[LA\A]A^]@HH H5T H81)Hj ,H= `/ILIFPILP H8DUHpfHAVAUATISHFHH9t0HXHt|HqH~f1HH9tRH;TutH;HC Lk(I$MtH=!uGAEMl$Hx HHtm[LA\A]A^]ÐHH9tHuH;t@AEMt$MtINIFHH9tm(uLfH[LA\A]A^]@HYH H5CS H81H CH=v ^/ILIFPILP HDUH0fHAVAUATISHFHH9t0HXHt|HqH~f1HH9tRH;TutH;0HC Lk(I$MtH=uGAEMl$Hx HHtm[LA\A]A^]ÐHH9tHuH;t@AEMt$MtINIFHH9tm(uL+fH[LA\A]A^]@HH H5Q H81 HJ H= \/ILIFPILP HFDUfHAWAVAUATSHH(H1HHHDžHDž HDž(HDž0HDž8HDž@HDžHHDžPHDžXHDž`HDžh)p)EHIHbHDžHOHtHHEE1E1H"H9H]HHHHLmAEtAEH]tHMtIx HINMtIx HIEH;fHDžt/ID$I;D$ YAUtAUIT$L,HID$HIM@H9HH5mM H8MtIx HIZMtIx HIQHDžE1HDžE1E1I$xHI$HLtHHx HHHHtHx HHH HtHx HH`H H= YMt1I$xHI$IMtIx HIHHtHx HHMtIExHIE_MtIx HI6H}HtHxHtH(L[A\A]A^A_]f.LLHHxHHHLhLhI|$HDžoL5HL9L-fInLfH:"AEtAEH1)EH=mHLHIDhHDžMJH5!)HkHIHzHL:HHHIEH2xHIEbHHDžSAŅHHx HH5HDžEL9HH}LmHB Hr(HE\HpL|HDžHHIH7HWHDžIHZ;LfHHHHpH)EHH}HeH}HtH HHHAEtAEALktALs HDžZfDHMLLHiL9Lp LLIE3IMf+fDffDH3LLLE1E1E1HDžHDž@HH9HH}LmE1HB Hr(HEHpLzHDžf.E1HDžE1E1bfH51HgHIHH|AŅIx HIHDžE+ HxhH8IH0H(HH tHHEL}HE HIHCH$HPtH5 HLHH=HEHHHocHDž IExHIE(HHDžHHHHDžHLmLxH}HtX H HpLxH(bH0HDž(bH8HDž0bHDž8_I߻LHL-q5AEtAEID$H;( LA$tA$MH=$L|HHH Ix HI!HHu1LHHEH]HIHx HHHDž IExHIEHDžM111LIx HI HDžE1\@x HItE1E1E1Lx㻔$E1HHLIHDž(LM뻻H H H5D H819LH H H5D H81E1nLԿH߉H}HtXTHHHHHwL8H' LHDž1n_H HDžW_HDž 1E_H9_HH LHHHHHOH=-UIHHDžHL9IExHIEH HLHHHDžHDžHDž H H=q $NHHLHHHtH[1HtH5H`IHH@HH9=AEtAELIExHIEIGH9AtAMHHBH9etHHHKHLmHEH$HUHEHHEHHEB @u H贕AE @u L螕HB @uH肕 IEH HHVHT&HHP[HHEHHx HHIExHIEHHx HHHHu1HHEH]IHx HH>HHx HH0Mt$111LIExHIE11E1HHHHH[L[Hs[1l[H`[1Y[HHhH`HXHxhH@LHHHHPHLHHHx HHLHhH`HXI}hHPHHLH@JHDž@HDžHHDžPHDžXHDž`HDžhI~hH8H0H(JHE1E1HULL-=-AEtAEHHu1LHL HEHE>HHIExHIEHDž Ht-111H@Hx HHHDžH;LPXIǻH3LrH4LUL^H~mLHL[HNHAH4+L'4HBH;LPXHH1HHHLHH'1һHHeH;}HPXHH4|H;Gu~LPXIHV1H;_GH5җLr9H;>H5LQH;hH5H,ZH;uH5kL gIHHff.UHAWIAVIAUIATISH8HEHoHHSHEHEMMOMMtIIUtHUIGHHUKtHH jLELPAQMuH LeMHLL.I$xHI$Hx HH He[A\A]A^A_]DMIM11H= uTE1H}MuHtHxHAHHx HHH! oH={ .EHe1[A\A]A^A_]DMeA$tA$LefDLHEHE L%!A$ufDDHIHAtAAMt$tAM|$ HDžMtIExHIEHtHx HHbMtIx HI9MtIx HI@H}HtHxHtHL[A\A]A^A_]@DLDžE1E1I$xHI$JH8HtHx HH:Ho H= >E1fDžE1E11fDHHxHHHLMVgLHLLXIF Iv(H}LeHE~HpLc:IF Iv(H}LeE1HE}HpLucH8L(fDH LHH} H51 H81 E1E11E1DžDžE1E1E114fDDž@Dž@cfDLHDžDžHLHHDžLH8LHHLH8HHHH=H=yBHHLDžI9Hx HHHH8LLHDžHDž8HDžHg H= y;HHLH,L8A$tA$HHtH5D LDNHH4H@L5-L9EtHHx HHmIEL9VAEtAELID$L9qA$tA$LHHH]HEHoHuHEHHEHHEF @u H#C @u HHB @uHH HC HHRHT&HHP˒IHHHx HHtHx HHmHHx HH_HHu1HHELuHIx HI-HHx HHHt"111HHx HHHDž1HDžHDžDžK1IHHHHHHHHH1HI~hHhH`HX0H@HPLHHHHHHEI$xHI$I~hHhH`HXCHPHHLH@HDž@HDžHHDžPHDžXHDž`HDžhIhH0H(H HHE1E1HH"DžE1HHHmH9Dž@Dž@H1DžX軦HLHDžHDžL(BHHL[RHHHLHHHHHL6HDžHDžDžH;XHPXHHHDžDžH;LPXHDžHDžHiH;u{LPXHHDž6pDž"H;CH5FH5H;dH5%LVH;xH5LjH_Hcff.@UH(IHATSHH0HEHEHEHLIHMHtHHtHUHGHJ4HU1H jPAQMLE5H LeM$LHaI$xHI$He[A\]fMIMHs H u HHLH H?L BMLHHEHH5 H:APH L@1#XZ1H}HuHtHxHHt|H H=i 2He1[A\]fL&A$tA$LeLHEdHEL%A$ufD;WfDH jHM1PHu7Y^UHfHAVAUATISHFHH9t0HXHt|HqH~f1HH9tRH;TutH;0HC Lk(I$MtH=uGAEMl$Hx HHtm[LA\A]A^]ÐHH9tHuH;t@AEMt$MtINIFHH9tm(uL+fH[LA\A]A^]@HH H5% H81 HJ H= 0/ILIFPILP HDUfHAWAVAUIATSH(H1HHDžHDž HDž(HDž0HDž8HDž@HDžHHDžPHDžXHDž`HDžh)p)EHIH HDžLVHAEtAEHELE1HDžH!H9H]HHLHH]tLeHA$tA$L MtIx HIJHHDžHtHx HH/L;%PHDž t'IGI;G tIWHHIGLLI2H9HH5_! H8KMtIKx HIHtHHx HHgHDžE1E1Ix HI"MtIExHIEME1E1fDHHtHx HHH HtHx HHH H= -Mt1Ix HI IHHtHx HHMtI$xHI$MtIExHIEMtIx HInH}HtHxHtH(L[A\A]A^A_]fL訹H蘹IExHIELHIHz HSAI$E xHI$ HDžE-H5>H>HIHm HSAI$E xHI$FHDžE 蔼HxhH8H0HH(|H=1HIH HHuE1HI9F 1LHELe8LH I:Ix HIHDžM AEtAEHHELmHEHHEHIH H HPtHHLHH=LHESLHI9IxHIuLiHDžIExHIEuLDHDž Ms HLHDžHLmLsCH}HtHkHpLHCH(<9H0HDž(%9H8HDž09HDž8gfDL耵LpL`\LP1H@L0HL]H}ILJfD>fD۴NfDLȴL踴H褴HDžE1E1fDL耴?HH9HLeH}HB Hr(HEgLHpE1AHDžHKHIHH輘HDžIHLfHHHHpH)EH}H ʸH}Ht\HHHHAEtAEALktALs HDžJE1E1E1HDžjfHLeH}HB Hr(HEpfLHpE1N@HHo H5 H81UE1E1E1L蟲L蒲[LJJ\E115HDžL5H5H 5HHHH HHHH9&H=+IH>LDžI9IExHIEOLLHH LHDžHDž HDžH} H=z $HHLHPL AtAHHtHLh8IEH;cAEtAEHHCH;> tHHIFH;AtALHLmHEHHEHHEHOHEHHEAE @u LYlH@ @u H=lHC @uH!l HIU HH@HT$HHP{HHIExHIEsHHx HHeHHx HHWHHu1HHEH]*IHx HH%HHx HHMt$111L%IExHIEHDž^E1HDžHDž聳1H#2H2L2H2H111HHhH`HXHxh[LPHHHH@LHH9Ix HIdLHhH`HXI~hhHPHHLH@HDž@HDžHHDžPHDžXHDž`HDžhHH8H0H(HxhLMMzME1@fDL8L%A$tA$IGH;L hAtALLH=xHIH^Hx HH'Hu1LLmHHEHDžqHHIExHIEI$xHI$HDž Ht-111H]Hx HHHDžNE1E1E1S9E1E1U)E1fMUME1gnE1M[E16E1E1VH{HI H5e H81dE1E1E1HDžMVME1AL%A$tA$HWHu1LHHEHEHHI$xHI$Ht-111HHx HHHDžWE1E1E1E1[%H葪L脪LwLjMfMnA$tA$AEtAEILx HIHMH E1E1["H߉H}Ht覴=HMj] L衩H;LPXHHHOE1E1E1HDžHP3HL^L-H HHLLHߨH;ALPXHH_ H;HPXHH_HDžL_2H;CuLPXIH_HDž_HDžYHHLH2_-H;WH5kL'IH;tH5fkLfH; H5EkHH;H5 kLHЭH֭I鵭UHAWIAVIAUIATISH8HEvHoHHHEHEMMOMMtIIUtHUIGHHUKtHHp jLELPAQM5wH LeMHLLI$xHI$Hx HH He[A\A]A^A_]DMIM11H= 5(E1H}MuHtHxHAHHx HHHѭ .H=˧ He1[A\A]A^A_]DMeA$tA$LefDLHElHE L%A$ufDCHXHHJ1Hf.HH9H;tuH=pIHH͵HuE1HI9EfIn1LH]fH:"q)ELH IExHIEgH.L-wL9A{LE"L-AEtAEHHu1LHHEHEqIIExHIEMt$111L腦I$xHI$HU H=. wE1HtrHHxtH}HtH]fIع1L @˅fD軅fD1@H51QH9t(H+1HH9H9tutL-L9uHAH跈oC IfI:MtH=#AEHfID$HuID$ HUI|$0HAL$0ID$ID$AD$(ID$@I$)E{MtLnIHMeIEHHIEID$ H@H}LeLmHtH}IHHx HHtH}HtH}HtHx HHthH}HVHKHH>΃4fKHAH蘃t苃fHMd$HAE I|$ HtHG PW uHPMl$ DL%' jHM1ATHuI3^ZY@HDHH9tHuHH9_HdNHH9THH9H*fDL萂4H5NH9fDL% A$tA$HHu1LHHEHE HI$xHI$Ht"111HHx HHeH H=Ȳ E1Hӈ H= HH H5y H81ϪH H=n E1L=AEQHBHs H5, H81肪HM H=! jMuM}AtAAtAIExHIEMHuH5lLH蔉AHx HHtH DH= H蓀L艀tH|LoLbG AE L;BAeERL9kP菃oC IfI:MtH=AFIEfHuHѪIE HUI}0HIEIEAE( IE@IEEeHAM0)EWMtLJIHMl$ID$HmHI$IE Ht$@tH}LmLeHH!MmHu`AD$ I} Ht!Hu7G PW uHPMe f.AFG fAD$ H颅H鼅HH…Hff.@UH@HAWAVAUATSHHHHEHEHEHLIHMHtHqHtHUHGxHHUH41L% jLEATAQIqNH ;H H|ݘLeH5AAH=ZHf1)EsHHHH5!HI|$HCH9t7HXHHJ1HHH9[H;tuL5mH=@IVLJIHJtAEHlHuE1HI9EYfIn1LLefH:")E蟵IMtIx HIIExHIEML5M9HUH H5? H81蕥L=` L-K LLwMI$E1HI$Hx HHH}HtņM1H}HHHHHuq{H}HtaIعH= 1H}HuHtHxHHtUHp H=V E1HeL[A\A]A^A_]HuL&A$tA$Lea {fIعLWH5iFH9t(Hc1HH9KH;tuA$tA$L5 M9LGAH}AoD$ IfI:MtH=YAEIGfHuH_IG HUI0HIGIGAG($IG@IAO0)EMtL譄S}IHAM}IEHҥHIEIG H@H}L}LmHtTL9HCHuHHeI$IޅH)H}HtI7HyLyLxSL= L- 1E1FLLHMH|AE I HtHNG PW uHPMo H5DL(AI$xHI$dL=O DL-7 LLhHE1 f.H}H#΂fI$IޅHH}H@AEoDL=~ L- LLHupL% jHM1ATHuIRZY@HDHH9 HuHH9HBHH9lHH9THuH9H>f.LvHH H5 H81L=} L- LLZfDLvH5BH9L- AEtAEHzHu1LHHEHE IIExHIEMt$111LI$xHI$L=| L-ݦ LL OLIHL=| L- LL`MuM}AtAAtAIEx HIEtMMHufG AE ~LuLu$LuH|H|H|fUHAWAVAUIATSHHL%H=>8IT$LHHËtL贶IHAoMfH:)MHtH=rt@LuLhL}IMt=IWIOHH9}H=-?AGPAW;MHkH9CHu1HLeHHELm詬II$x HI$tTIEx HIEtRHx HHt"MHHL[A\A]A^A_]HhsfDLXsfDLHsfDHx HHI$xHI$6BHy H=v E1;mfD@fDf[LHHAILIGPILPHxHHuHxrfDL{HCHEAfInfI:"tAHMEtHx HHtmH}L1ɺLm)EIIx HItH]0fDLqfDLqLvH)EqfoEHqtHyUHATSH0HHHf)E#H;I#Hs0H}|foEH]f)M)EHtHSHKHH9H=CPSH]Ht;HSHKHH9H=͛CPSL5vH}`] HH]Ht;HKHsHH9H=jSJKJH0[A\]Ð8fxH H H5 H81JsLu\ Hw H=s #1N@wf.I11ҾH=Ƞ 1WfHyxHH= t1#DHHEHHCRHHRHEHHHCPHHPtHHHCPHHPHHEtHEHt.HsHvUHATSH0HHHf)ESH;I#Hs0H}foEH]f)M)EHtHSHKHH9H=ACPSH]Ht;HSHKHH9H=CPSLesH}Z HH]Ht;HKHsHH9H=SJKJH0[A\]Ð8fuH:Hd H5$ H81z装Lr H1t H=pp S1N@wf.I11ҾH= 1WfHyxHH=ĝ 1#DHHEHHCRHHRHEHHHCPHHPtHHHCPHHPHHEDqHEH0q.H qHtUfHAUATSHL%`)EL9HG HPHBhHZpHEHtH=CH]HEH'H=07+HHHHC HC(HCL9HuHՖHtIHx HHH]Ht;HSHKHH9H=CPSHL[A\A]]f.CLmMIMIEHH9#(Lo@HpjOA$?A$6fafH!H H5 H81aH,r H=m IE1HHHCPHHPHL[A\A]]HHr H5 H81Hq H=m E1uHq H=l fDIELIEPIELPH`ncHgqUfHHAVAUATSHHtH(H@)EfHnfH:"HE)EHLIHMHHHIع1H=ؙ HUHtHx HH_H}HtHx HHRHmo H=z 1HeH[A\A]A^]HHtHMHtHMHWHHUH41L% jLEATAQIw8H H}H,H"H|ݠ#HHt H|ݠ ÃH}HAŃgf)E&XjDHI茅jHHLcHCHHHID$ H@LeLeH]MtAIT$IL$HH9H=ˑmAD$PAT$H}HHH;LeMtXIT$IL$HH9H=_AD$PAT$FL5Fm L-X HH}HtHx HHH}HHHHeHtH HHtHMH8tH}f.Iع1LHUHqMd$HC I|$ HtHvG PW uHPI\$ -fDHe efDH5/HmdHxHHu HdSL5k L- LLLe1M'11 LLaD{dofDE1ffID$I$LPI$LPfDL%H jHM1ATHuI?ZY!@{HFH}Ht&f)EL%|A$tA$HHHu1LHHEHEdHI$xHI$Ht"111HxHx HHQof.ID$I$LPI$LPgfD蓎HYL hLh4C wG LbGHba0HHjHjHjf.UfHHAVAUATSHHH(H@)EfHnfH:"HE)EHLIHMHHHIع1H=/ HUHtHx HH_H}HtHx HHRHh H=ђ 1HeH[A\A]A^]HHtHMHtHMHWHHUH41L%w jLEATAQI1H H}H,H"H|ݠ#HHt H|ݠ ÃH}HAŃgf)E X dDHIlcHHLcHCHHHID$ H@LeLeH]MtAIT$IL$HH9H= mAD$PAT$H}^HHH;SLeMtXIT$IL$HH9H=AD$PAT$FL5f L- HH}HtHx HHH}HHHH_HtH HHtHMH8tH}f.Iع1LHUHMd$HC I|$ HtHvG PW uHPI\$ -fDHX^K^fDH5(HfdHxHHu H^L5e L-? LL2Le1M'11JLL aD]ofDE1ffID$I$LPI$LPfDL% jHM1ATHuI[8ZY!@軈HFH}Ht4&f)EL%A$tA$HxHu1LHHEHE褕HI$xHI$Ht"111H|Hx HHof.ID$I$LPI$LPgfDӇHYLMaL@a4C wG L[GH[apHHUdHidHwdf.UfHHAVAUATSHHH(H@)EfHnfH:"HE)EHLIHMHHHIع1H= LHUHtHx HH_H}HtHx HHRHa H=' 1HeH[A\A]A^]HHtHMHtHMHWHHUH41L%͋ jLEATAQI*H H}H,H"H|ݠ#HHt H|ݠ 8ÃH}HAŃgf)EXL]DHI茁2]HH LcHCHHHID$ H@LeLeH]MtAIT$IL$HH9H=KmAD$PAT$H}HHH;LeMtXIT$IL$HH9H=߃AD$PAT$FL5_ L- HH}HtHx HHH}HHHH]XHtH HHtHMH8tH}f.Iع1L)HUHMd$HC I|$ HtHvG PW uHPI\$ -fDHWWfDH5!"H1`dHxHHu HQWL5V^ L- LLrLe1M'11LLJaDVofDE1ffID$I$LPI$LPfDL% jHM1ATHuI1ZY!@HFH}Htt&f)EL%A$tA$HHu1LHHEHEHI$xHI$Ht"111HuHx HHof.ID$I$LPI$LPgfDHYLZLZ4C wG L7UGH*Ua谀HH]H]H]f.UfHHAVAUATSHH4H(H@)EfHnfH:"HE)EHLIHMHHHIع1H=ۅ HUHtHx HH_H}HtHx HHRH-[ VH=} 1HHeH[A\A]A^]HHtHMHtHMHWHHUH41L%# jLEATAQI7$H H}H,H"H|ݠ#HHt H|ݠ xÃH}H[AŃgf)ELXVDHI,UrVHH`LcHCH}HHID$ H@LeLeH]MtAIT$IL$HH9H=}mAD$PAT$H}HHH;}LeMtXIT$IL$HH9H=}AD$PAT$FL5Y L-[ HH}HtHx HHH}HHHHQHtH HHtHMH8tH}f.Iع1LiHUH1|Md$HC I|$ HtHvG PW uHPI\$ -fDHPPfDH5aHqYdHxHHu HPrL5W L- LLLe1M'11LVLaD;PofDE1ffID$I$LPI$LPfDL%K jHM1ATHuI*ZY!@;{HFH}Ht&f)EL%<A$tA$HHu1LHHEHE$HI$xHI$Ht"111H8oHx HHpof.ID$I$LPI$LPgfDSzHYLSLS4C wG LwNGHjNayHHWWHkWHyWf.UHIHATSH0HEHEHEHnLIHM^HtHbHtHUHGVHJ4HU1H: jPAQMLE8H kH}H#HGHGHHWH)HHcЉH9fP)EPfH@IĿH@ H@H@@(H@@@0H\wA\$HHI$JPHH8LcHCHwHHID$ H@LeLeH]MtAIT$IL$HH9H=cwUAD$PAT$H}HH]Ht;HKHsHH9H=wSJK1H}HHHHHHEKHEH}Ht@M+ImMHJ H J HHLHO H?L IMLHHwHH5: H:APH| L@1ctXZ1H}HuHtHxHHxHR H=j| 1He[A\]DHH)HHFH iHcЉH9\HuvHufHItH5Ҝ H8RuH;f)E芛H1H@Q H={ `1fH>tH}|HtMd$HC I|$ Ht%HG PW uHPI\$ fDGWHH HcЉH9Q{IWfDGWHH HHcЉH9DMf.HHEHHCRHHRHE%ffHHENHEcIH]HI$tHI$fLHYfDID$I$LPI$LP/fDHy jHM1PHuo#Y^LXMC GfDG NHWQHkQUHpHAUATISHHHHEHEHEHLIHMyHtHHtHUHGHHUH41L-\ jLEAUAQIH H H|ݸ5H}[Ã@fL;%r)ECIt$0H}ЉgfoELef)M)EfH~MIT$IL$HH9[H=qAD$PAT$zLeMtAIT$IL$HH9aH=qAD$PAT$=HEH`H}~HH]Ht;HKHsHH9zH=q<SJK1H}HHHHHuvHEEHEf.IعH="[ 1H}HuHtHxHHtMHxM H=v 蕸1He[A\A]]HuH>tH}DEfIعL&_L%A$tA$HHuH=*dHnIHHx HHHu1LLmHHEV}HIExHIEI$xHI$Ht111HTdHx HHtDH*L H=u L1I$xHI$uLCfHCfDffF H=q 91[fHF H=q H6HSHKHH9t@H=ju&CPSHD1DDHHHCPHHP1LhOLmMtA}t0E1DHXE H=p S1@I}0HtII}[8LdAfHHECHEIYHInHI{HIIHff.UHwIHAWAVAUATSHHHHEHEHEHLIHMHtH HtHUHGEHJ4HU1Ho jPAQMLEH L}Mvf1)E'eIH+L5LiL9x1AHs0HIB_M9H5ҋL5]HHH;jjH;(gL9HYAƅHx HH=ELeHHHLdSLu]HIEL}LLLPH} HaBH}L~HHIT$ ID$HHH9iH9`tIT$HHID$HjHH]HUAtAL}L5fAtALuMlfK;gfDDHLeGAHx HHHA DH=l ,E1I$xHI$H]Ht;HSHKHH9H=eCPSMt IELP1H}HHHHHF:H}HtA#DL:@H:ZfHHHCPHHPBLHUHuOH>?AH? H=^k ȬH]E1E1HzuHz0HtHUE%DHUEHzEHU^UH}8;EiHhHU H5 H81AbE1AH8Hj jHM1PHuY^ADA$tA$MADH=L51AtAH_qHu1LHHEHEqHIx HItQHt111H5XHx HHt8Af.{cHAL7H7HAHAHAHAHAHAHAff.UfHHAWAVAUATIHCcSHHX)EfHnfH:"HE)EHLIHMIIMH=h MH}HtHxHHu6fH}HtHxHHu6fHb= H={h ȩ1He[A\A]A^A_]HNtHMHtHMHW>HHUJ41L-#h jLEAUAQMH H]H߅!I"J|IIt J|LeH5H9sL-Nat L9H5I9t$M9xHdHb H5k H81^HC< H=\g 詨1,fIQHtL`H]A$tA$LeT@LM>H}"DM9WID$LuLLP(L}Leh`HUHEL9Hs0HMLELLNH}H}":Hc}H}4HMtAIL$It$HH9H=Z_|AT$JAL$H}HtHx HHt=H}HHHHrHE3HE`fDHE3HE봐f1Hj HH}HtHx HHH}HHHH`3I$HELID$RI$LRHEfD1H&e LWcf.L-d jHM1AUHuMZY@H9 H=d MNIT$IL$HH9tFH=]u,AD$PAT$L719DID$I$LPI$LP1@:H aH: H5 H81J[sJH}7H8 H=c 1]fH8 H=c 15LHE6HEeLH]AHuAzn1{uH{0Ht%8IEIF"kDOfHm3 H=9_ hIE2HIE$L-HHHCPHHH@H([A\A]A^A_]DH2 H=^ L{LkAtAAEtAEHx HHLHu@LkHH*H|2 H=H^ w fH]2 H=)^ X)LcL{A$tA$AtAHx HHtXLHuIEI^HIEL+xDH+H+fDH(H[A\A]A^A_]0,6'6"66666 665555555555555555DUfHAVAUATISHHtLu1H]H=NHLHEPCIHx HHMOIExHIEtH=M1LH]HHEBIHx HH>MIExHIEH;kUHC0Lk8I\$I$I9t]MtH=TAEHt;HSHKHH9H=TCPSMl$HL[A\A]A^]f.LH)H!XHX[ H5 H81aRHI/ H=, IHL[A\A]A^]fL(H(ZH(AEI\$*fHHHCPHHPH-HT3ff.UfHHAWAVAUIATSHH'PHHH)EfHnfH:"HE)EHLIHMHHHIع1H=K2 H}HtHx HHH}HtHx HHH- ~ H=R+ 赚1He[A\A]A^A_]@HHtHMHtHMHWHHUH41L%1 jLEATAQIH 4H"H|ݠHHt H|ݠH}H]HH;=SL5=RAH;=jPDL9BAăM9IELQH#M}0LmHLA;LuH]QH[MFH 1HEE.LLHMLEHEfE*H}Au+EDHRtHt;HKHsHH9dH=PSJKH}HtHx HH_H}HHHHHEA%HEHH:HxtH}HtH]*fDIع1L @EC$)fD$fD1@HQNtHH9N HЃ HASH9 H5+ H81MH\* H=( i1fL5OE1HE$HEfDUf.H) H=' HtHSHKHH9tDžxE11DC H{ Hbo WHPLHEE11E1HEDžx<;Hl@HEHHx HH7LuLLOHEHxHEHEw@HEDžxE11E1hHEE11E1DžxE11D:HHEE11E1HEE1Džx ^:IHEE11E1DžxE1/:HH)DžxE1HH.HLLuE111HEDžxzLpHPAtAtHuHx HHHUHu}HEE11E1HE1Džx HEE11E1HEDžx59HHBH H5z H81NHHUJ41L=]? jLEAWAQMH @H}XLmM"J|KIIt J|5H]H5I9ut L;-E8_fHuHEE)EhIHHELHHpHEH]Hx7~xIfH:"HH})EH,H7HxI9I9It$IU0HMHpHPH}HxktIxOHI6Mt=IWIOHH9H=6AGPAWLeMtAIT$IL$HH9H=V6(AD$PAT$DH}HtHx HHH}HtHx HHHeH[A\A]A^A_]fDIIHXtL(H]AEtAELmfM1L蹌@;+H5HxI9OH>9Hb7 H5(r H81~3"AHxH DH=d O}I1ۅ71 ]fD 0fDL(AEtAEHI5LmtH]H)5tH]L s YfDc ffD1H@& LnL觌H1蝌0f}fL=-; jHM1AWHuMZY@ILIGPILP=fID$I$LPI$LP\fDHJ H= {1fH" H= {II1ۅmuH 7H % H5o H81J1s AcL L XHpLeAMuAA{A|$uI|$0Ht`I|$#8L HIIIfUHAHAVAUATISHHPHEHEHEHLIHMHtHHHtHUHGHHUH41L-9 jLEAUAQI@H H H|ݨH]H5H9st H;1LmfHL)E)EH]Lu1fHnfI:"HH])EHHSHKHH9uH=0CPS{&L;%Q1HGIt$0HULO/foEH}f)M)EHt`H}HtRH H}HH]Ht;HKHsHH9dH=D0SJKH]Ht;HKHsHH9H=0SJK1H}HuHtHxHHGHe[A\A]A^]f.IعH=6 貆1H}HuHtHxHHHd _ H=6 w1DHuHtH]D$L;%/HCn AH2Hx H5k H81-DDH\ H ~ H=5 v@1AffDIعL覅HEgHEfDaf.fDHHE6HE-DHHEHHCRHHRHEHHEHHCRHHRHEf1H5 Hg9H1HHHCPHHPHk | H=4 uMIVINHH9t@H=(-u&AFPAVZL"1DILIFPILP1_L- 4 jHM1AUHuIZY@H H=3 t1 qHHEHE6HrxH H UfHHAWAVAUATIHSHH4=HHHh)EfHnfH:"HE)EH,LOMHHHIعH=2 ĂHUHtHxHHu HsH}HtHxHHuRfH} H= 1vsHeH[A\A]A^A_]@HNtHMHtHMHW~HHUH41L->2 jLEAUAQIgH H}H$H"H|ݠ"HHt H|ݠ H]3(IHfH(IHL;%*HELHEHID$PL}Le*HHL1[+HHEH HEHxILLLEH}LPPH}L}?EW*}I,HxM7M9~H}LfFH]tH=HHtHx HH+MtAIT$IL$HH9H=))kAD$PAT$&H}HtHx HHH}HHHHfHH8tHXH}tH]IعLHUDHPCVfDHM H= HpMt5IT$IL$HH9tJH='u AD$PAT$tx1DfI$L1ID$PI$LPw@ID$I$LPI$LPQL1lBHt H= oof.H'HH/ H=o 1(ok'HqH H=? 1nH*H}& H5{c 1H81$H H= nmfL-- jHM1AUHuIsZY@Hu H= pnHP H= KnfDH} LuMtA~tE1 LI~0HtI~8L.HvHeHfHsH@UfHHAWAVAUIHeATISH$H)pfHnHXfH:"HEH]HE)EHLIHMvIK.MtIuHtHpHWLpHL, M1jHUJ4ARLHAQM/LHH x\HxbH}7LpM~fDII K<uM1LT{LeI>HtHx HHIM9uH zH= 1!lHeH[A\A]A^A_]IuPHNtHMHHtHxIIIM1H=* Lpz'C:fDLxH]H5vI9wt L;=#{H4EEHE HEHEEIEHEHEHDžX\IEHHAUH)HHcЉH9]H"I9VIGL`LLP(L`Lh"HnHHI9yIt$HMLLLXH`HHtMt=IUIMHH9 H=!AEPAU9LeMtAIT$IL$HH9H=!-AD$PAT$LpLmI<$HtHx HHtIM9uLD#携HH)HHHdLdHcЉH9\Huk!HufDHH5JH H8E!H&Hi H=4 h1L8AtAL-CLpAEtAELxH tH] H tH]HqCtHx@HXtH]LhAUtAUL8LxAtALpH|T@1@AEAUHH HcЉH9fDAEAUHH HHcЉH9{f.pfL& jL1ARHuMLHZLHYkID$I$LPI$LPgfDIELIEPIELP1H & LXlLvLvH1vL|IHH~IEHIEL H!H$ H5Z H819H H= !f11f.H H=] e1H!H, H5tZ H81 HHLL{L~L`AMu At4A~uI~0HtI~68LH H-HfUH-HAVAUATSHHPHEHEHEHLIHMHtH HtHUHGJHLeH41L-# jLELAUAQIH H H|ݨCHufL)E)EH]LmfHnfI:"HH])EHHSHKHH9FH=(CPSQLmHuLHL H}HLHH]Ht;HKHsHH9#H=3SJKH]Ht;HKHsHH9H=QSJK~1H}HHHHHu{HEHEH}HtcfDIعH=! q1H}HuHtHxHHtMH H= eb1He[A\A]A^]fDHuH6tHuLefIعLp_{LmHuLHL %vfffHHHCPHHPHHEeHEm@HHEHHCRHHRHEBHHEHHCRHHRHEfHZ H= aMt1IUIMHH9tDH=u*AEPAUt14L1%@DIELIEPIELP1DH H= h`1L- jLe1AUHMIL ZYHHE HEL LuAMu>AVHNH8 H=s _1HHA~uI~0HtMI~8LHHHUHH(HAVAUATSHHPHEHEHEHLIHMHtH HtHUHGJHLeH41L-4 jLELAUAQI@H H H|ݨCHufL)E)E4H]LmfHnfI:"HH])EHHSHKHH9FH=(CPS LmHuLHLKH}HXLpHH]Ht;HKHsHH9#H=SJKH]Ht;HKHsHH9H=OQSJK~1H}HHHHHu{HEHEH}HtcfDIعH=F k1H}HuHtHxHHtMH H=z \1He[A\A]A^]fDHuH6tHuLeKfIعLVk_ LmHuLHLu%vfffHHHCPHHPHHEHEm@HHEHHCRHHRHEBHHEHHCRHHRHEfH H= h[Mt1IUIMHH9tDH= u*AEPAUt14L1%@DIELIEPIELP1DH H=} Z1L- jLe1AUHMILZYHHEmHELlLuAMu>AVHH H= FZ1HHA~uI~0HtI~8LGHLHAVHH H= T1HHwA~uI~0Ht I~T8LHHHUHHAVAUATSHHPHEHEHEHLIHMHtH HtHUHGJHLeH41L- jLELAUAQIH H H|ݨCHufL)E)EH]Lm fHnfI:"HH])EHHSHKHH9FH= (CPSqLmHuLHLK H}HLHH]Ht;HKHsHH9#H=S SJKH]Ht;HKHsHH9H= QSJK~1H}HHHHHu{HEHEH}HtcfDIعH= `1H}HuHtHxHHtMH H= Q1He[A\A]A^]fDHuH6tHuLe fIعL`_LmHuLHLu %vfffHHHCPHHPHHEHEm@HHEHHCRHHRHEBHHEHHCRHHRHEfHz H=- (PMt1IUIMHH9tDH=u*AEPAUt14L1%@DIELIEPIELP1DH H= O1L- jLe1AUHMIL@ZYHHE-HEL,LuAMu>AVHnHX H= O1HHA~uI~0HtmI~8LHHrHUH0(HAWAVAUATSHHXHEHEHEHLIHMHtHyHtHUHGpHHUH41L%j jLEATAQIaH CH H|݈H]H5AH{f)EH9tHeL[A\A]A^A_]HuHtH]eDIعLMhf.H5YH9t(H1HH9H9tutL-L9H;HC(oS )UHtH=aC@H}HufoEH}f)M)EHtH}HtH}HtH}~[IHL9uMHH]HHLDH5aHQuAI$xHI$L=| L5 DLLH}HtHx HHt/H}HPHEHH8{.qIHH/I H4UHAWAVAUATSH(L5L9HHLnIHG H(I9t&MtH=rAEHtLk(I$HC0o@fH:)EHtH=@L}L$QLmIMt=IUIMHH9H=}AEPAUMJM9QH{8Hx HHLc8tHCH5HHH^IM`H=1LH]HLmIHx HHIExHIExMID$H;t M9H{@Hx HHPLc@tHCH5HHHIMH=1LH]HLmIHx HHIExHIEMID$H;t M9H{HHx HHLcHH([A\A]A^A_]@Hx HH.H(H H=W [A\A]A^A_]0fDHx HHtx/;fDL({Lc@L H%HؼHȼ{H踼/@fD.f苼fDAEH{(HIELIEPIELPHH5 $ H H81Y+-fDH5L-@I$MHI$?Lu賻u,IIKL HHHH5 H H81.sHHH}H5l H H81e/CH&UHAVAUATSH,{HH@ HH@(H1HCHf~L@ML-H=3~IULIHctA$I$xHI$zL;%]L9HC0L0ӽIKHH@HtH=?A@ID$ HID$HIT$ID$AD$(I$LeHEfIHTPMeIEHLmHIEID$H#@xHuHALeMtAIT$IL$HH9H=xAD$PAT$HHH[A\A]A^]fD11H= K;Hx HH1Ly@fDufHH H5 H81Hҿ H=6 +y@Md$H=eAE I|$Ht&H=nXG PW u HP@Ml$fDL;1IHiDL-IAEtAEHHu1LHHEHEIIExHIEuL贷Mt$111LI$xHI$ID$I$LPI$LP fDH1NfLXMd$MDAE DG fLXHHHff.UH0IHAWAVAUATSHHXHEHEHEHLIHMHtHHtHUHGHJ4HU1H2 jPAQMLE迆H LuM>Af)E)EEAHuLEE)IHIx HIL}LLHELuHE"~EIfI:"HrH})EH4H;IHs0HULHP@foEH}f)M)EHtH}HtL虺H}HH$IExTHIEMtAIT$IL$HH94H=AD$PAT$(LeMtAIT$IL$HH9H=rAD$PAT$LeMtAIT$IL$HH9xH=(ZAD$PAT$E1H}MHHHAHȳH}Mtf.MIMHӲ H ղ HHLH H?L i5MLHHHH5Z H:APHP L@1XZ1H}HuHtHxHHH3 H=Ÿ 1>&HeH[A\A]A^A_]@L6Aƒt$ALu@L5IAƒuLuf)E)EHuLEE`&胲?fD3H;IκH=H& H5' H81}L辷HI XH=۷ V%IEa1LAL{f!ffID$I$LPI$LPfDID$I$LPI$LPfDID$I$LPI$LPfDHS UH= `$IxpE11M @H# VH= 0$IEM1ۅf.H ZH=} #IEE11 fH jHM1PHu觋Y^efDL舵LxOLhHHHff.fUHIHAWAVAUATSHHXHEHEHEHLIHMHtHHtHUHGHJ4HU1H jPAQMLEH LuM>Af)E)EEAHuLEE"IHIx HIL}LLC{HELuHEr~EIfI:"HrH})EH脹oH;0IHs0HULHPPfoEH}f)M)EHt?H}Ht1LH}pHH$IExTHIEMtAIT$IL$HH94H= AD$PAT$(LeMtAIT$IL$HH9H=AD$PAT$LeMtAIT$IL$HH9xH=xZAD$PAT$E1H}MHHHAHH}Mtf.MIMH# H % HHLHa H?L .MLHHHH5 H:APH L@1XZ1H}HuHtHxHHH L H=E 1HeH[A\A]A^A_]@L6Aƒt$ALu@L5AƒuLuf)E)EHuLEEӫ?fDH;DIHH H5w H81LH v H=[ IEa1LHAL8{f!ffID$I$LPI$LPfDID$I$LPI$LPfDID$I$LPI$LPfDH s H=e IxpE11M @Hs t H=5 IEM1ۅf.H; x H= HIEE11 fH jHM1PHuY^e;fDLخLȮOL踮HAH2H#ff.fUHHAWAVAUIATSHHHHEHEHEHELIHM5HtHHtHUHGHHUH41L% jLEATAQI^yH H H|ݸLeDL;-kHELHEHIEP LuLmHL=yH=kIWLvHHtHE1HuHH9C1HL}LeIMtIxHIu LݧDHx HHMtL;%<ID$H5HH2LHH1H)IH<HxHHuHTL;%7ID$ x xHXHEIHLH}HpLHPH}TL}cA{DHPH}H^LHH:I$xHI$$MtLgE1H}MHHHAHuq_H}Mta@IعH=Q b(1H}HuHtHxHHtMH: H= 13HeH[A\A]A^A_]ÐHuL&A$tA$Le)軥fH訥IعL'OLx1?fLcHHHt &H=T o1HH H5 H81AH. $H= )1KfH $H= MtIUIMHH9tMH= "1HhHuHtHxHHtZHգ H= E1HeL[A\A]A^A_]DIuL>AtALh`kvfDLXMLiB@ IExHIEI$xHI$oH H=/ *LxHpE1H}L9t HEHpCL9tuIfAD$PAT$t=HI9tELcMtID$IT$L9H=ytuLHuI9uHpHtHuHH)赝1HhHtHkH`HHNHhHt8ID$I$LPI$LP fDH0IHTH}L9fL舚HM @LnIHf G '@L0賮L+IHP DHtHL虛HUH}HUH}bLș辿xHIEuL裙L虙n uL- j1HuAUHhMtZY%HEEL}L}LHCVHXLLHXH<HH H5 H811IL$Ml$HXPtAEtAEI$x HI$txMHux IEHIE~LuqLhEHUH}o G = L-{HH5B H8rH$DUHAWAVAUATSHXH>HHzfHE)Ef)E}H;>ImHs0H}`L}H]LHEL}H]HE1ɾIH I9cMLuID$A~$HtH=M@H]fH:")EHt;HCHSHH9H= CPSLdHHt\IEI;E tIUHHIEHx HHAL}IM93H]Mf.IExHIEf. Hf H=p L}H]E1H}HtL9tvI!fDAT$JAL$t9HI9tELcMtIT$IL$L9t]H=túuLHI9u@L}MtHuLL) HeL[A\A]A^A_]fDID$I$LRI$LR`fDHXRHVE@fDHHHCPHHPHL58IEHvHHiH\@L谔KHHE1L & H ݓ H5 H8R1H 賽XZE1fHyxyHH=~ Df諜HH H5 H81Z胬L蛙 H}H;HIELٓHff.UfHAWAVL}AUATSHxH;=(L}H`HhHEHEE)p-HH=VLmHSHIHotA$HHuE1HI9D$_Hh1LLuLmHEHMtIx HILI$xHI$HLeHLmL HELmH}HUL9fHnfH:"EL9HUHEEHH}HUHEH}L9t HEHp轔LmĽHHHx HHH`LmLLHp@芫LuHELeHELLpL)LxM9HL;HH8H;0RH}L9tHEHp M9tvIAEPAUt8IM9tGMl$MtIEIUL9t`H=HtƸuLIDM9uLpMtHuLL)}HxH[A\A]A^A_]IELIEPIELP_LLm贐HEELmLmL2L舐HtHCLHUH}HUH}HH/H!H H5 LmH81]AH DH=g Lm6H}Lx1LpL9@HLm[HIHt~Mt$I\$AtAtI$xHI$IHu\AHPHHCHLmG2L%A$tA$HhHu1LHHEHEHI$xHI$uLHt"111HHx HHAH=HHH5HIHM#x HH_H5`1LHI$HxHI$9Hx HH2L%A$tA$HhHu1LHHEHEHI$xHI$Ht"111HۭHx HHA@xHI$uL肍AgA\LLm`AH5XHAEHUH}HOHLHLߌ HҌ&H DUHAWAVAUATSH8H;=0IH IuIUfHEII)E)EI)HL9/L̏IuIUfHnILe)EH9H)HAHHH9t/o HJHtH=tAHHH9uLeHuHULLёLs0LeLuM9ttI@AEPAUtHHtRHx 1HC@ҒHC(H{PHC HC0HC8fC@HCH*H[A\]If.UHATS>HfHHx8 @@(1HC8@BHCHH{pHC@+HCPHCXfC`HCh蚦H@L@M H[A\]f11H=/ kHx HHt 1H1}Iff.UHATS$=HfHHx8 @@(1HC8@bHCHH{pHC@KHCPHCXfC`HCh躥H HtH@L@M H[A\]11H=7 sHx HHt 1H1|I2@UfHAWAVAUATSH8H;=|HE)EzHGH1LL1MM)LuHELIHH\II$ItxHI$Mt@L谜IH,HtHuHH)}H8L[A\A]A^A_]fDHEt H L%DyD@H H= Lu,H]E1|LzMWDHI$uLz@HLuL9ruL~HM9tLLH/|J;H]HEfDHIH1 H53 LuH81腣8+fDHJff.UfHHAWAVAUATSHHZHH)p)EfHnHƘfH:"H( HH)EfHnHfH:"HEHMHE)EHLOMHH # HcHfDHH tHMHHtHMHHtHMHHtHxHtHpHWLp> HL= M1jHUH4AWAQIXIH xlHxzH}H}H}LpH~HHI<uIع1LtLLe HI9t/H;HtHxHHuxHI9ufH~ ' H= 1&HeH[A\A]A^A_]@H1H HcHfDHDžHpHʉtHHuHH1HtHHuLxAtAL(LxAEtAEL5LpM9HHaHsH5BI9wtv AfHDž`)PtAHH H0tHCHHH=pIHMB x HHH5LRHH tHx HHI$xHI$tHHlAHDžH9C HfLmL}HEH)EHEQIH HްHPtHHsHEIU tHHLL)HELH?H HEJ4H7HIHtHx HHIExHIEHHx HHM ID$HH9t H;[ I|$H It$HH9 tMl$ AEtAEIt$(HtI$xHI$M9 Ix HIYHH;5H;5ѝfL9]HQ~QM9M H|IH fHE)EAoM IE()0) HtH= @L@HLH L0L}LqHHIHt ~H(Ht}H耊H8Ht}M Hx HHLHHtHx HHHHtHx HHIExHIEiLXLPM9t}I#f.AEPAUtH&HtHIع1H=8 LefDUfD0vLuLHIL `H}@LeHELhH}HtHPH]H7]A褀DHymHLeHEMaXHH}HKHDžhLcHHCHHH*Hr_H}foM)MHt[_LZH}jHI1L!J$@Ht(HHHpKHUH}HpHUH}hf.LILIL-V jL}1AUHMIL$ZYfHEEHMHMHHXIbLHIOL8IL(I{HxHP H5 H81ArIOMwHpltAtAIx HIMHu0cHwHO H5o H81q2]L~IH.Xn?IOMwHpltAtAIx HItKMHu?EHUH} LG*HGLGLGHQ[ff.fUHAWAVLpLPAUATSHH;=sH0H8L@HDžHƅPL`HDžhƅpQL%H= IT$LVRHHbtHzuHuE1HH9C_H81HLmHEIMtIExHIEHx HHtMIH]LHxHELmH@HUL9fHnfH:"EL9:HPH@HH*H}HUHEH}L9t HEHpHqHI$HxHI$H0HHHH@Hp0gH}HULeLmLeL9HMH]HUH`LmHMH]HHEEL9fHnfH:"L9CHpH`hH3HEHMHEH}L9t HEHpGH]HH}HEH9tHEHpmGH]HkpHHhH`pHHH`L9tHpHpGH@L9tHPHpFHĨH[A\A]A^A_]fDx HI$tbH]K G H=L z1H(DH@HLmLmLfLC;LCfDHtH!LyEHUH@HHH}vf.H]HHLL4EH]H`LmHEEH;HHLDHEH`HhHE@L C/H`hLeLeLf.HqHH5 H81lz@H8@CWL軻HHMf.LkLcAEtAEA$tA$Hx HHLHuZfHXRLeEH`Le1fD{.H{0HtLH{^8HjDDHL ,H=- qHAYEHUH@f.EHEH`:IUIUf.UHHAWAVAUATSHHHEHDžXHEHjLIHMZHtHHtHXHGOHHUH41L%zt jLXATAQIUH HHX5LXfDL%qH=HpHDžhHHIT$LH`ƅpvKHH*tLeLLRdH}'HUL}HML}H9HuLmHUH`HMHuLmHHEEL9 HHfInfH:"H9+HpH`hHHEHMHEH}L9t HEHpALmMH}HEH9tHEHpALmMhjIHHhH`LkIHHimH9CHHu1HLmL}wIMtIExHIEiIx HI5Hx HH1MsH`HHH9tHpHp@MIx~HIuuL<>kf.IعH=q B1HXHuHtHxHHtZHD +H={q E1HeL[A\A]A^A_]DHuL6AtALX=vfDH`hL}L}LfIعLv/1HG ,H= aHx HHHD =H=p 5E1mDLmLHtHLH@y>H@LmH`HMHEEMItmLL=>HEH`HhHEfDL`<HP<L@<H0<EHEH`PLHHfLLL}EH`L}1LfDA}I}0HtFI}W8L>d@L%9o j1HuATHXIZYfHCLkH@AEtAEH@<tHx HHtH@L)H;HNHNUfHHHAWAVAUATSHHHHx)EfHnHfH:"HEHMHE)EHLLOM?HHtH0HtHMHWLeK HL5m M1jHUH4AVAQI H Lmx=H~fDHHI<uIع1LLLeH;HtHx HHHI9uH@ `H=Nm E1ŬHeL[A\A]A^A_]Hu:HNtHMHHtHMH6Ht8Iع1H=l ELe@@9UfDHxtH}HXtL(H]AEtAELmHH;=eH;=hbH;=dTd$ HEf1LLx)ELHxIH~L1HIHH5H=1HIHH%H5>kLIEIFHHHhHhL%UH=>IT$LBHHtHhH8WIHHx HHL;%YdL;%a\L;%bOLSÅI$xHI$OH=TIHHhHVHHI$xHI$:H;cH;p`H;&bHRAąHx HHEH=9T\HHIHhHUIHHx HHL$ÅI$xHI$,H=SIHHhHpUHHdI$xHI$HAą Hx HHEH=SbHHHhHTIHHx HHUL*ÅI$xHI$:2H=cSIH'HhHvTHHjI$xHI$ HAąHx HHEH=RhHHHhHSIHHx HHL0ÅI$xHI$8H=yRIH-HhH|SHHpI$xHI$GHAąHx HH-HhHx HHEL%A$tA$HLNHu1LHHEHElHI$xHI$Ht"111HSHx HHfD‰dFfHhHx HH-L;5&^L;=^:p61ɃdIW HIv H2]LeHLSH=NUtĸuHIJ/M9uDMtH@LL),HH/1FQIHLpL9xL`IID$A~$HtH=T@HhfH:")`Ht1HCHSL9xH=xTCPSLaHHIEI;E VtIUHHIEHx HHAIL9x3LuH]I9twI"AD$PAT$t=HI9tELcMtID$IT$L9!H=StuLH-I9uH]HtHuHH)*HhHt3LxHpI9t{I#AD$PAT$t=HI9tELcMtID$IT$L9IH=RtuLH,I9uHpHtHuHH)%*1HXHuHtHxHH)HeL[A\A]A^A_]MIMH& H & HHLH+ H?L MLHHUSHH5 w H:APH3Z L@13PXZ1HXHuHtHxHHeH. WH=. E1,DID$I$LPI$LPpfDID$I$LPI$LPfDIExHIEf.lH6. H=. XE1 HHHCPHHPID$I$LPI$LPXfDH%If.H>tHX1H=QtHX'@[%gfDK%fD1Ht HHkHH臨ef@cfDHHHCPHHPHL1IE,HHHyH$l@H)3L$NfDPHhf5HASHxs H5+ H81Mg HH)jH94H]fHE)EHU{H{0Ht.H{HCH9t HCHpJ&8H=&HV jHu1PHXY^&HIEL#I~7I~7f.UH\IHAWAVAUATSHHHEHDžXHEHOLIHM?HtHCHtHXHGz HLeJ41HU jLPAQMLXPH CLXMLH5-LeI9ut L;-NvffHEHE)p)`)EtH=E1LH]HHE:IHx HHM<Ix HIL IHBH;KMHHcHs0LL73H}HEoEHEfMHE)ELuH]I9trIfAD$PAT$t=HI9tELcMtID$IT$L9H=)LtuLH%&I9uH]HtHuHH)h#H]H5F)A^LDH39HHEfoUfILpLx)EH@HE)pMHEHEM9u"ifCPStfIHHE)EL9HvH;5(=H3>H ؃HEitH}Hu1HHHEHE1KIHx HHMt$111LG2I$xHI$H %H=F 9$@HyH9t8HXHHyH71HH9#H;TuHKHHHHIHH5IHgAIEEmxHIEuLGEHC Hs(H}HEM9I|$8foMAL$0Ht14fH9H8fAD$0Ht1H}HtHPHH[A\A]A^A_]DH>LmHULEHHE7H}H]HEH]H}HtHPL;HM9HEHI|$8HXI\$0HPH=ID$8HHH!fDIEy(H )H= fDHIEuL@H5IH IHtH5]H-eAIEExxHIE/EL%fA$tA$HCHu1LHHEHEGHI$xHI$Ht"111H /Hx HHH *H=  f.H:HNHB H5 H817HO #H= 赁HQ=H H5;v H817H &H= yd@L(H=HD H5u H81D7H +H=9 H](HH߻H}fHDHH9HuH;T8fDL%1dA$tA$H]Hu1LHHEHE1FHI$xHI$Ht"111HE-Hx HHH -H=F 9$@2YfDH;H H5t H816H !H= @LH]HEH1Lt 7Hg QHZ LM 7L@ =H3 WH5H51 H8s@H%!HtH8Rf.;vfDIعLFOx HIHxHHuHAH DH=a s1JDID@fDAGfoP) fDHp1L` *Hf)@)P)`)pL=UAtADHHH}~NfH:"H<)EHEHCHPIHaHx HHHu1LLeHHEg7HI$xHI$Ix HIHt"111HgHx HHANL(L- j1HuAUH8IZYTAH,H1 H5e H81'D*AH<AA|$:I|$0HtEI|$ID$H9tID$Hp8LfDXHIKL#>fDA3D#tfDI AHIuLHHHHHL-L4HHyAI6AwIAf{L@ff.UfHHAWIHq,AVHAUATSH)`)p)EfHnHƘfH:"H( HH)EfHnHfH:"H HE)EfHnfH:")EHLOMI H Q[ JcH@HH(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWH`LmHL I1jJ4LARLAQM7LH L`xmHhHpHxOH}$M~fIIJ<uM1LDhA| @HI9t/H;HtHxHHuHI9ufHDH= X1HeH[A\A]A^A_]fDIH Y JcHfD1HX 3HtHH]LhAUtAULxHX HʉtHHpLxAtAL0LhAtAHL` MHeHH;=H;=kH;=! H5I9wt L;= AfHDžP)@tA IH HtID$LHH=<$'HHI$H xHI$ H5gHHHY tHx HHHHx HHtHatHHE1HHDžH9C fHELeLu)E)E IH Hb'HPtH!L}IV tHHHEIV(tH LmIV0tHH&HEIV8tHLmLHHH)HEHItH?H CHMtI$xHI$ HHx HHIx HIHHx HHHH H@HH9t H;  HHyH HHvHH9) tHHH HtHHH(HtHHx HHL% L9J Ix HIHH; H; [L9RH L9 H5 IH HfHE)EoH fH:)) Ht L0H LLLL $H8HHtH(HtLuLeM9KI$AEPAU IM9Ml$MtIEIUL9H= tHDž1fDHDž1E1HDž+HDž1E1L0AtAL% L`A$tA$LhE11MHDžA$tA$LpLDHx(tH},f.‰fHIfHpH}LhLxHHEHHDžDL% A$tA$LeL% A$tA$LxL%a A$tA$Lp[L%A A$tA$Lh-M1H= A|H`_LmpL%A$tA$LeLw@L%A$tA$LxMBDHtHHEHEHHErIHH'!HPtHLLH=. HHEKHH_I$xHI$NHdHx HHHHHtHx HHHHtHx HHqHHx HH6LHL@M9tzI AEPAUtLHLAHHE1AI$x HI$tc8t4HDžAHDžHDž(E1E1LU1AE1HHLBLAo1LAHHHWHhH6@UfHHHAWAVAUATSHHHHH)E)EfHnfH:"H HE)EfHnfH:")EHRLOMEH H E HcHHHtHMHHtHMHHtHMHtHMHWLeLmHL5M1jH4LAVAQIoH HMH(xH(HtHx HH.IExHIEIx HIH}HH9t HEHpMtL2HHtHL@L`I<$HtHx HHtWIM9ufHuJLpAtALxLhAUtAULp˱fIع1H=5L`3&fHhLpLxfDH5uH=|1;HHHHHHP1HHP|H(HL%M9<AEtAELIExHIEHXLDžXƅ\$H0HtIx HIHEH0HH |HELuHHoL9(H(H@0H(u%HHEH@AK L9Hq H=HEH@)HH H\E1HuHH9C7 HE1HLmL}H@ILHEH@3Hx HHM H HELH@HH}HH@AuHiII$M1xHI$H&JA `耲HHfInfH:")Ht H袻H(o` fI:)MtL{HuHUHEL HEHL wHjHCH{LHCHHDkHfofok8sP蹱HDHHHXHPHLH~(HHH^ HF(HtϸH HHHA HA0H( tHHHx8Hx HHHHH(Hp8 t HHHHL0L|DL%A$tA$HpLhxL%A$tA$HxLp]L%A$tA$Lx=fDL%qA$tA$LxM"DLL谬H蠬H萬H耬L8AtAL%L`A$tA$LhE1LA$tA$LpMrfDE1$HxHI$L0LDž E11ۋ HٲH=HE1f.L5$jHuIAVL1褆^_DL%*@HDžE1Dž HDž(HDžHHDž0HEH@H0MADL6LHjHتHtH@H0褪L%XA$tA$H$Hu1LHHEHE@HI$xHI$Ht"111HTHx HHHDžE1Dž LHDžE1HDž(HDž0Dž HHHHMHH@xH蔩`L臩HEE1HDžHDž(HDžHDž H@ H0HEE1HDžHDž(HDžHDž H@HEE1HDžHDž(Dž H@HEHH@质%HEE1HDžHDž(HDž0Dž H@MHEE1HDžHDž0Dž H@HELE1HDžDž H@ VLHELL0HDžH@LDž HDž0HHIH5~ H8HEH@1HEL0Dž H@LHtHHu1HHHEHEHEH@IHx HHMt/HE111LH@I$xHI$L0LE1HDž0Dž vHHH5p H8HEH@1HEL0Dž H@LzLKHEH@1L0E1Dž H0LfHHDžHEDž HDž(HDžHH@HEL0Dž H@LHDž0vLkLcAEtAEA$tA$Hx HHH LH8L0LE1HDž0Dž HEHH@HELH@HEL0Dž H@LHEHH@謤CIJIlIuI鈼I雼H鴼I雼I鶼UfHAWAVAUATIHSHH(HGA$H5HHIHL5L9HC H[(HHHCI|$I$H9'HCH肮IEI\$xHIEHt?HSHKHH9H=wCPSuHsH(L[A\A]A^A_]ÐH5qHHHH;H;$L9HSAHE|x HHEH]LHH}0fLuH]E+HI|$M4$H9HHxx HHHbJH=IE1X@I\$I$HtrH1IEID$VfDCfDHD@HȡEI\$1I$Hu1IEHHIEL聡@ f.HHHCPHHPHKHH=phfDCI|$HFFIEI\$MHIE?Lɠ-@H踠\HHIEEHIEt6fH蘰H]HumH}E1HtW.L}MAI0HtIIGH9t IGHp螢8L葢lgIE11HKH=( IE=HIE/L辟"I\$1I$HIEFHIE8II!I3I+IDI*ISI]IkIHI鄸I钸I頸I鮸fDUfHAWAVLpAUEATISHLHH@SJK:1H}HHHHHuxHEHEH}Ht`IعH=l1H}HuHtHxHHtmHH=r 1He[A\A]A^A_]@HuHtH]%DLH}$f.;ffDIعLF?HHEHEDHHEHHCRHHRHEL%aA$tA$H]Hu1LHHEHEaHI$xHI$Ht"111HuHx HHHLH= if1f蛽HH H=Ǜ *1cLH]HiH}E1H?膜LeMA|$I|$0Ht^I|$褭8LfLHsH=- H'HSHKHH9t@H=0u&CPSH,1DDHHHCPHHP1OHӗH= 1)fL%.jHM1ATHuIkZYAIE11IE11LMH@HYIdIfff.@UHHAUATSHHXHEHEHEH<LIHM,HtHHtHUHGHHUH41L%#jLEATAQI`H H H|ݨH}@f1)E9HHH]HYH}fLmH]E艺HXLeLmH]MIT$IL$HH9H=AD$PAT$H} HH]Ht;HKHsHH9H=d&SJKV1H}HHHHHuxHE HEH}Ht`IعH= 1H}HuHtHxHHtEHH= 1He[A\A]]HuH>tH}5DkfIعLvgH}ffofID$I$LPI$LPTHHEHEfHHEHHCRHHRHEef+HH]1HĮfH萜LmMLe1MIT$IL$HH9t{H=;uaAD$PAT$oLeMA|$I|$0HtÖI|$ 8L\DID$I$LPI$LPLeDHH= Ht/HSHKHH9tDH=du*CPSt1H]1fDDHHHCPHHP1wHH= 1QfL%ujHM1ATHuIeZYKLďL跏M1E1mHH=p 1I鿤I餤I鹤fDUfHHHAWAVAUATIHSHH0Hx)EfHnfH:"HEHuHE)EHdLOMWI4MtIVHtHMHWH]L}HL-3I1jJ4LAUAQMYH xVH}H}LuM~fDIIJ<uM1L$ LeH;HtHx HHHI9uH֐"H=sE1HeL[A\A]A^A_]fDIuHHHtHMHHtHMIfIIM1H=H][ 2fDBfDH]H}H;=fH;=)E H;=k ʋ t (1Ʌ|H;4L-H=KIUL輒IHtA$ID$H5LHHII$MtxHI$LH7AIEATxHIEdEL- H=mJIULIHotA$ID$H5VLHHII$MxHI$HAE1I9E}HELeH]HpH-HHPtHLLL)HpHELL}H?I4H HhMtI$xHI$CHpHx HH3IExHIE HhHx HHHh|HLL踟H}]fLuLmEH}HtLeM轰IHAH}LuLmH|׏H}~IHlHxHHMtL衏H}Ht蓏H]LeH;HtHx HHtHL9uD苄fL0AtAHLutHEHHtfH;2HE)E|[fDL}xHI$-H9H=DHE1gE1HIEH8H=TfH}fH9tHE3HtHEHxtH}HXtL0H]AtALuHfD1@HH;H=HME1fL訂qL蘂L苂H<H=.HE1L-jH1AUML]]ZYfD軭HoH-6H=ʶJ-DLlLH8H=LA9HʼnDH=dL萁H老L{IHrf.|ME1E1A|$I|$0HtI|$48L臃fLLmMuE1H؀PA8fHI$t6MIEHIEL苀fDLxfDkLiIHHX9H=uHE17fmA9MZI$A95CMeM}A$tA$AtAIEx HIEt ME1FLH4HH=nu$CPSH8L[A\A]A^A_]øDHHHCPHHP@H{H=8E1bC H{0Ho HPHzH=I$xHI$uLsMtIWIOHH9tBH=ru(AGPAW\LlxODILIGPILPHHRH5H811HyH=ߧH+fHyH=I$E1@Hw1I鮍I鏍I騍ff.UHHH IHAWAVAUATSHXHEHXxHMHEHLOMHtHHtHUHGAHJ4HU1HڦjPAQMLEKBH LeMH53<I9t$t L;%H55H=<f1)E:HHHL5ȜHCM9AoL$ fH:)MHtH=@LeHuL芁H}fL}LeEH}Ht{LmMH}Ht{AIHH}L}LeHt_{L9HCHuHIHHtHI݅xVHHMtAIT$IL$HH9H=&(AD$PAT$LLeMtAIT$IL$HH9H=ٚAD$PAT$E1H}MuHtHxHAH*HeH[A\A]A^A_]MIMHnH nHHLHsH?L )MLHHeHH5H:APH,L@1CXZ1H}HuHtHxHHt\HuyH=ۣ13DL&A$tA$Le LcA$uf{nwfDHhn[nfD@IIt J|(L}H54I9wL-t M9f)EM9ID$0HEM9rM MBHCHH.(HHNID$0HH@HpHH+p@HHc聸HH4olIH#LkÃ{LmHuLL;H}fLuH]EH}HtsLmMc耔IHH}LuH]HsH}QHHoI$xHI$oMtLbsH}HtTsH}HtHx HHGH}HtHx HH:HeH[A\A]A^A_]IILxAtAHL}tH]@LM1 H}Mt$8AfInfH:"tAH=Hu1H)ETIIx HI}MH51LIHH;HH;M9L芃AIEx HIEL-AEtAEHu1LH]HHE詟HIExHIE^Ht"111H轆Hx HHDHnNH=p Jcf}fDSfPx HIHHnMH=Zp eI$xt1E1fL-AEtAELmMf)EM9uwfHHH5H81HmGH=o 1fHtL-H]AEtAEfLm)EM9tID$0HEwIDH}םfID@L(eefD efD1HL/tOf)EM9ID$0HE@LjHM1ARHuMLU?ZLUYAH1L;IHHlIH=n 1DLHdΏHDH;lPH=Mn X1LdLcvHkTH=n I$I1ۅ&PHwHkTH=m uM1E1A}I}0HtInI}8LeiLvsLuMu16HQkUH=cm nI$1L%A$tA$H``Hu1LHHEHE輛HI$x HI$taHt111HԂHx HHtHHjRH=l 1HjLH=l 1L^bHTbLJbH=bI}I}I}I}fDUfHHHAWAVIHܘAUH8HhATSH()`)p)EfHnH8fH:"HHE)EfHnfH:"H()EfHnfH:")EHLOMI H JcHHH(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWL`H]+ HL=M1jJ4HAWAQM&1H xHx H} H} L`I~II K<uLM1DI<$HuIL9t/I<$HtHxHHu_IL9uHgs H=j E1HeL[A\A]A^A_]Iv IIHDžHDžHpHډtHHxHpHʉtHHHHpHډtL(HAEHhtAEHL`Ha HBHH9H HHH5+)H9st HH5)H9ptHH9 Hf)))) IHH HNH=!HSH+iIH tAHNAE1I9G HELuLmQIHeHH HPtLH]HML)H?J4LH LalIMtIx HIuIExHIEIx HIkM HI9 L5;H=t IVLhIH tAEH:HuE1HI9E H1LLuHEvIMtIx HI:IExHIEuL`\M6 HI9L-H=IUL]gIH3tAHHuE1HI9F H1LLmHE輔HMtIExHIE& Ix HIVHHHH9 HHHP^LHLH}Ht fۆIHr LH`LL9{HM9~ HI9 HH9 foH)@HtgHIO Mt$ L@ HoP fH:)0Ht!HLMgHLHLHLH@H0P LPXHZL&}H LHHHXHtdHtH,_H8HtdHHHtdEbZI,rM HLL H!_LIH+ HI9( AtAH=1HLuHHEqLHH Hx HHVAtAI$MHI$MMtIx HIHHtHx HHMtIExHIEH(HtScHHtBcHHt1cHHt cH`LmHI9~H;HtHxHHuX@IHp(HډtHHMHX 3HtHH]MLWLWdHDžHDžHDž.f.M1H=KL`nH]6DHhHxHHMHHpH9HHHuHHHFH5QHtHHEIH !HtHHEH5HtHHxMtIx HIIx HIsE1E1 HDžDH^H=H` #MI$vE1fDHtHH]HfHtHHMHfH HtHHxH}f.HDž1HUTLT_LTLTLT~H1HT`.H`LefDHI9H;HtHxHHufT@H1H[苹랐L8TH5L\HDžM E1Ix HItFE1yhLIHHDžE1 HSLSfDLSLS\L=zjLHAWM1.Y^fDE1hLHSsHHI9>HI9eHH9foH)@Ht_HLIW It$ L@HHH `LPHLuH LHHHXHtJ]HzHWHHHt)]t HW7}H E1E1E1 HDž fHIHE1E1 HDžMwI_AtAtIx HIIE1LQHDžE1 yH5 L ZVM E1E1HDž4eL=IHPE1E1 HDžMuM}AtAAtAIExHIEMH޺HxH<|HhH9HHpHHMHH]HHHMM{IFMnHAEtAEHtIx HI%LH޺oXH~HXH5ȷH81yGh E1 H5qHmXL HDžWHc~H1XH5MH81xg E1 MH5LW M  LOaLN!LNQWH}HWH5H81x)g oWH}HWWH5sH81wf 8VHR}H WH5<H81wf H;jIiIwjHjHzjfUfHHHAWAVAUATSHHpH!Hx)pfHnfH:"HE)EH$LOMHHHIعH=HpHtHxHHuHPMHxHtHxHHu /MH3UpH=W P1He[A\A]A^A_]HNtHxHtHpHWHHUH41L%jLpATAQI6H HpHH(HpHHtHpLxfH5Q)E^HHH5iQL^IHlIL}LuHHxLLL~%zHEfH:"bwHE)EUH}*fL}H]EHEHt LLSAwDIcMCH}L}H]H~)VLPH}؃HH]Ht;HKHsHH9 H=vMSJKIHpHtHx HHHxHHHHHhJHhHH8tL`HpA$tA$LxfDIعLnHpfHh$JHh=HHhHHCRHHRHhLhOH}_f.HHhNHhuHH5NL3\RfDtHJHeQxH=S 肼f1fLNH3Q}H=S PHtHSHKHH9tH/[Ht[H|[H[H[H[Hw[H\[H[Hk[H[Hy[H[H[@UfHHHAWAVAUATSHH`H!HX)EfHnfH:"HE)EHLOMHHHIعH=r藿HUHtHxHHuHF=fDH}HtHxHHu"=fH+EH=G H1He[A\A]A^A_]HNtHMHtHMHWHHUH41L%>qjLEATAQI7 H H}H!H"H|ݐHHt H|ݐH]fH5A)EOIH0H5jAHNHH=\LuLHIL_H}fL}H]ESDAkgID@TM'H}L}H]Hb}FL5AH},tHsH]Ht;HKHsHH9H=of1SJK-H}HtHx HHH}HHHHHE;HEHiH8tHXH}tH]pIعLּHU:DHE:HETfDHHEHHCRHHRHE fL?H}rf.HHE6?HEDeHRH5,?HLfDkeHHAH=D f.1fL(?HAH=eD HtHSHKHH9t1DDHHHCPHHP1tLIH]H6LeE1M IT$IL$HH9tzH=cu`AD$PAT$LeMA|$I|$0HtJCI|$T8L:vfDDID$I$LPI$LPLeDH+@H=B H1nL%ljHM1ATHuIZYIL<-:@ARcIE11IE11H?H=uB Ъ1IaUIAUI[Uff.UfHHHAWAVAUATSHH'HHx)pfHnfH:"HE)EHlLOM_HHHIعH=ekHpHtHxHHuH6HxHtHxHHu o6Hs>H=eA E1荩HeL[A\A]A^A_]HNtHxHtHpHWpHHUH41L%jjLpATAQIvH HpHH(Hp[HHtHpBLxf1)E)EIH|LuLLELmH]`HMUfInHhfH:")EHtH=`CE1HULL=H}fL}LeEL}LeMtL?LmMH}Ht~?LmMH}Htc?HpHtHx HH}HxHhH]HHP3FHH8tLxHpAtALxIعLfHp}f.1LIHaSLLLIVLeLLULmLLFH}Ht=L0[LeMK;A6^DI KMLuLLL 8LLejIHEM'L"=DC2yfD.f.HHHCPHHPCLmf{]HvH9H=< E1fH9H=< HtHktHxf.-vfDYHI$H}LP0foEH}f)M)EHt%8H}Ht8NIM9LuIu0HUL>H}ofL}LuELmMtJIUIMHH9H=WAEPAULmMg5l4XlIEMH}L}LuHtG7L1H}dIHRHtH7H}Ht7H}Ht71HxH@H7H,HH+HxHtIعL@H5H9t(H 1HH9H9tuL5 WL9L(Lg MtH=oVuHAGVfInHfI:"HH})EHt6KCAGD8fHDHH9dHuH UH9OHH97HHH9$HuH9fL%AA$tA$HCH;Tt~HKfH:"HE)EC @u HaHCH}HP\VIHEHx HHHu1LLmHHEbHIExHIEI$xHI$Ht"111HIHx HHH1fH=^贜@E1L%^j1HuATHxI`ZY8f1AH XH@xH5H81IRDqAL.H1lH=O^!E1~IELIEPIELPLmL8L}MuAE1L.H0lH=]訛MtL+3vME1E1A}I}0Ht3I}IEH9t IEHp*8L*TH0mH=^]0HVH:H5H81 QH/bH="]?H/bH=]ךHsVH:H5]H81PH~/dH=\蛚H;HO/dH=\lML1L.,HH'L&&L&/H&II$x HI$tCHx HHt#H.gH= \ۙ&fDH&fDLx&H;_PuAHPXHHI$x HI$t7HT.hH=[qH;MStH5Hd,L &IEIDIEI"EIFEI"EIEIDIDI EIDIDUH8nHAWAVAUIATSHHXHEHEHEHLIHMHtH6HtHUHGHHUH41L%ZjLEATAQIH H H|ݘLeDL5YPf)EM9IELPAPHH511LIH=HEHEM9sLuIu0IT$ L-H}fLuL}E,EO}I??>>>> ?>>>>>>>UfHHAWAVIHWAUATSHH)E)EfHnHfH:"HHE)EfHnfH:")EHLIHM}IH  JcHHNtHMHHtHMHHtHMHtHMHWL}LeD HL:YM1jJ4LARL(AQML(H xiH}H}H}hLmM~ f.IIK<uM1Lԟ@I?HtHx HHt8IM9uH% H=( 1襐HeH[A\A]A^A_]KfIII<HDž(E1HH1H tL(H AEHutAELmHTHMI9H(H5PI9vtH`HHT6L=?H=f)0IWL'IH tA$HJHuE1HI9D$1LL}LmTIMtIx HII$xHI$AMI9LeH(HLHEL}H(5GHHI9H9  :<~(H fI:"I9~ )PMtH=OFAGAoV fH:)@HtH=#F@LPIu LIH@L]>H`HN HpHmH(%HUH`HH HH(6 o]H`fHEhELBLHHHt)%HXHt%H HLHEU(H}u*ohHpMHtH=E@LLL,DHDž(mLhH}HLv#L8<IE-6H}WHL5#fLOjLLARM1L(YL(^1Hk LyH]LeH;HtHx HHHI9u1@Hp]LL]Mo(LKIHE1E1<HDž(HDžfDHH=0 3MtIExHIEL1mf.A|$KI|$0HtuI|$ID$H9tID$Hp8L fD@rfDID$M|$HAtAH tI$xHI$LHuH5LME1E1<Ix HItHDž(HDžLfDL(>E1HDžyLxHkfD@EfDAG L1HDž(MA~fI~0HtI~IFH9t IFHph8L[,LuHS=HMHuI9H H(HchtHHu1HHHEHEOJIHx HHMt$111Le1I$xHI$HDž(BH5HMHDž(NLHH?HH5xH819 )H 4HDž(EHUHHuxd1LjMH9HgtH"Hu1HHHEHEHIHx HHCMt$111L0I$xHI$ 1һHH(4H>HqH5wH818 (H HDž(Ls;H1IH(RHUHHu+x1H5L(H9Hx0HtH(H(HxH( +H(8XHE2LHHx0HtH(pH(HxH(*H(8HEHHH .HR.HJ.HP.Hv.H2.H-HR.H7.DUfHHHAWAVAUATIH8:SHH)P)`)pfHnHfH:"H`HE)EfHnHXHƈfH:"H˜Hu)EfHnfH:"HE)EHLOMIu H  JcHDHH0tHMHH(tHxHH tHpHHtHhHHtH`HHtHXHtHPHWHPHL5GI1jHUJ4AVAQM H xVH`d H}9 I~ fDII J<uM1L7H;=3H;=5& L}H5I9wt L;=5 H5ID$f)) )0H9t HI$HtHx HHMtIx HIH8Ht0H(HtHHtHPLeHL9lH;HtHxHHu@HH9dHuH;50RfDEL-P1LLLL7IH H5\L95HS\ H5<HH9DHuH;502fDH='DIH& HDžH3HDžI9F HHEH]HE-HH H1>HPtHL}LLHH)HtH?LH HHIx HIIx HIHF L9=H5H )IA1IxHIu LDH DH=g :wMiE1I$E1.7f.HH9HuH;l.fDL5aZAtAHHu1LHHEHEKL\ M1E1ATH1AH6HHHHtHHx HHMHHx HH1fDL-*AEtAEL`MDL-Y*AEtAELmH!LLE1E1DHp1YLaHPHCzL6RHAL5 9jHuHAVM1Y^D1HqMLcHPLefHI9H;HtHxHHu@HVHx!HL[fD(H2AHP*L(9H,HH5dH81D&HH=Y ,pH+HH5dH81&Q(H[q;(HAHPHHqIA1CHQ+HH5;dH81%H\H= yoC@L%RA$tA$H4Hu1LHHEHE4HI$xHI$tHt"111HHx HHZHH= nE1 HH= nL,M1E1A$H5HAH:H= Wn$HHHLMA{HH=6 n+HH= mH+HH= mfDIvIFHHtHtIx HIHDžLHH=g :m1E1HpLhHtAEtAEHHx HHtqLHDž L6LRW q@ LL\HOLBH1M1E1ALAE1AHbHlHHHHYUfHHAWAVAUATIH?SHrHZHx)E)EfHnfH:"H HE)EfHnfH:")EH^LIHMNI+MtI;HtHMHWLmH]HL5-M1jJ4HAVAQMH H}xMH}"I~MII8K|uM1LyI}HtHx HHIL9uHu?H=,E1jHeL[A\A]A^A_]DIu6HHtHMHHtHMItSItfUfHHAWAVAUIH7ATSHHx)EfHnH@fH:"HEH]HE)EHWLIHMGI$MtI8HtHMHWLu+HL=&M1jHUJ4AWAQMH H]xELeMI~IIK<uM1LrLeI>HtHx HHIM9uHH=5&cE1HeL[A\A]A^A_]fDIu:HNtHMHHtHMIIt8M1H=%Lu9r@@RfDL`A$tA$LeLpAtAHLutH]MH5HI9t$t L;%"f)EtLkIHLHxHHHCH9t:HXHHqH1DHH9H;TuH;Ls(Lc MtH=AFjHL}HxLLLHpH}fLmL}ExxIMH}LmL}Ht$HpH}&IHHE1x'HHMtLMtLMtLH}HtH]LeH;HtHx HH{HI9u5DHH9HuH;LfDL51H=IVLIHtAHDžhHHDžpI9GHpHEH]HEIH1HU&HPtHhLLeHH)HtͰLH?H HpIHtHxHHu H@Ix HIEIx HI>M%Hx HH.L?C{fDE1ULeLutL%A$tA$LeILuaDL%qA$tA$Le?HptHpHx HHt_Ix HItYE1E1HH=/!^HE1FNf.HX7HKLAL7L*HL= jL1AWHuMZYD1Hq:LP;H7nL/nL'n/f;H3E1E1fH,E1E1E1HIHfH53RH81E1E1E1fDAFFDE11MMIxLLmM+H}E1HLeM8A|$,I|$0Ht~I|$8LfHpLE1^E1E1LuL^bIHE1E1E1IwMwHphtAtAIx HItDHDžhMNAfDI;E1E1MME1E1LH H H H H H H H H H H UfHHHAWAVAUATSHH'3H H`H)EfHnfH:"HEHuHE)EHaLOMTH1HtHOHtHMHWLeHL=YM1jHUH4AWAQIH xVH}LELuMH~L@HHbI<uIع1LDiLLeH;HtHx HHHI9uHH=ZE1HeL[A\A]A^A_]HuDHHtHMHHtHMHFH|Ht>Iع1H=$Leh6f.;EfDL0AtAL-LuAEtAELmMAEtAELmAf)p)EtASIMLoIHH#|Hh1LHhHHIx HIL9BL}HLHELmHX~XfI:"HHx)pHtHpLLLHXH}kfL}LeEH}HtLmM^+ACDIMwH}L}LeHtYHX H}IH`HE1x'HHMtLMtLH}HtHxHtH]LeH;HtHx HHtHL9uf.fLEL}H5aI9pL->t M93Af)p)EtAM9M` L-AEtAELmH%L}\fDL-AEtAELmH5iH=HVHX:IHtAHDžXHuHNHI9GHXLHEHM1HXHPHtHxHHu HfIx HIHPIExHIEHP@E1LxAtAL0L}AtALuM?L- L@AtALEL`HrLJLafL=ejL1AWHuI褼ZYD1LH0LXFLXt#Af)p)EALdLdHXdA HHtHx HHIM9uH H=UE1x>HeL[A\A]A^A_]fDIuHHNtHMHHtHMII,I2M1H=LuL2fDBfDHELuHhHx]HEL}H`H8H HI9I|$ A HH@8IWIwHhH;=HX@H;=@ H9߉LʈKu ?HX1HHEH E1HPaI\$ IppIM_HA H@0tMgIWLHLPLXHxH}:L}ADHHLKuHhRLLNM[AtALIH~Hx1H= HLuHEGLHKIExHIECHHx HH3AtAIMx HIH`HtHH]LmH;HtHx HHtHI9uDfL-H=BIULHpHHpPtHXIHHpH HDžPHDž0H9HdHPfLm)EHEH@HHjHPtH& H@LuHP tH0HHpHEHH)H?H HxH4H@HPIHtHx HHxIExHIE+H@Hx HH0HpHx HHMtgI9HHH5-H81HH5. H= 09Ix8E1IxHIuLH+ H=8E1fH0tHMHutHEHhHtHEH]IHxfDHtH]uHtHEJE1HHHhډxtH0HhH]tHEHuHxM1@DLpAtALuLdH}LLt{H}IHM2I"fHm' H=Bh7rLHH{; HH=7MDHEL=L1HxHMjAWžY^HyHqH5c+H81H# H={6@1#: VfDL8H(H2 L1 HxH]Ht {1E1^L;HpH&H( H=5HDž@, @HpHxHpHHt*MtIEx HIEt#L@OH0fDL HPtHPHx HHt + sHHpH@H@HP0tH@0tHpHx HH H@HDž0Hp(HHTH5%;H81H> H=U{4fDLp> L@H5YL IF x txtH@HP;HDžP+H> H=3< H{0HtlH{HCH9t HCHp8HHpdH H=a3H`E1HHJH`HHgHDUHpHAWAVAUATISHHHHEHEHEHLIHMHtHfHtHUHGHLmH41L5jLELAVAQIH -H H|ݨLuf.A$f)EtA$H=1LLeHHEHI$xHI$SH Hx HHL;%?!ID$LLP(L}Le&HMLLbHELuHE~EHfI:"HH})EHtIIHULLPH}LHEHx?HH3LmMt=IUIMHH9H=AEPAUMtAIT$IL$HH9kH=MAD$PAT$E1H}MHtHxxHAHuiGDIعH=nR?1H}HuHtHxHHteH*dH=1#0HeH[A\A]A^A_]ÐHuL6AtALuLmH蠼蓼nfDL耼IعL>7f|ffID$I$LPI$LPfDIELIEPIELP*LLVDHqH=.LmE1M1"fHqHH5[#H81HrH=.LmMtE11LfDHmrH=]h.MIT$IL$HH9t>H=u$AD$PAT$5E11@DID$I$LPI$LPfL5jLm1AVHMIL蠕ZY"fHtH=-MlIVINHH9t@H=8u&AFPAV7L10DILIF1PILPHxH=,1LɾL̜L}AMu/AbLHwH=,^AuI0HtIc8L趻Lm1M+1HIIIIIIIIIff.UHHfIHAWAVAUATIHHSHx)`fHnfH:"HE)EHdLOMWHHHH=^11]:H`HtHx HHMHhHtHx HH=HH='1+HeH[A\A]A^A_]ÐHVtHhHtH`HGHJ4HU1HjPAQML`H H`I#H5H!LhMXf1L)p)EHHuH;AH;D6H;g)H1AHE"x HHQE@H)I9(I9L7HH:L"IH5AoL$ fH:)MHtH=N@E1LeHuLHLH}fLmLeELmLeMtLH]HH}HtH]HH}HtHHHxfLpLx)EHtXHplHH@HxHt/H`HtHx HHHhH\HQHHD:DIIMH5$tH`IL5RAtALhHE@x HHHH='1M9LHHBAoT$ fH:)UHtH=;@LeHuHLH}o]fE)]LmHuLWH}Ht謾H}uH}Ht藾LH}Ht聾AtAL`H5dNtH`ILvAtAL>LhAt?AH5L`f軲fD諲fDL`H5dD@UfDHpL%A$tA$HHu1LHHEHE HI$xHI$Ht"111HHx HHHH=#%1Zf.@LuyfHj1HuPH`贌ZY2DHiH]H5SH81HH=$1f.HHHOH=\J$1H(H=:($1h{ H{0Ht蘻H{HCH9t HCHp.8H!@LE1E1}D{HWHKH5AH81HH=#1H]H=jX#1HLL f)ELeHȯHHHH,Hff.UHIHAWAVAUATSHHhHEHEHEHLIHMHtHHtHUHGHJ4HU1HfjPAQMLEH LeL5`M&f)EL9HCL}HLP HELmHE,H{M9 L2HH0HEIEHLHpLHPH} fLuLmE襶ADHHYH}LuLmHtӸH}芳H}HHeHEHtH褸H}Ht薸I$HI$L褭MIMHH HHLHH?L Q/MLHHHH5BH:APHL@1kXZ1H}HuHtHxHHttH1QH=1* HeH[A\A]A^A_]L&A$tA$LeL5=L51AtALuMf苬_fDsXtH=}1LH]HHEHEHx HHH}utH=1LH]HHEIHx HHkMH]LHþHHxHHtqx HHIx HILxL-HHIHxHHHI@xHMHHeIx HIH?H==1fDH= $IHtH=@1LH]HHEhHI .dMiHEHuHHI9FL}1LLmL}2LH-IExHIEuL-IxHIuLH'H9dH=41DHHH5H81 H_H=F1f.L蘩H}臩fHxFHhINI^HMxttIx HIZILHE_H=@HEHBH1蹳oHHxHH\xHxHHuH譨HڮeH=*1fDL耨iHjHM1PHu_AXlH}GfLXLuMLH}E1HH]H{H{0HtH{HCH9t HCHpW8HJDH}GHjH=4ML1\HlH=1|HHgH=ϲz1NHEHtHMHHcH}UmADHZE1E1LE1E1LɦHUHHyHHHHHHHHrHjHbff.UHIHAWAVAUATSHHHEHDž8HEH7LIHM'HtH+HtH8HGHJ4HU1H<jPAQML8CvH .L8MH;fƅPƅ\HT)@L-H`HDžhHDžpHEEL9HCHIHL}LYEfoEfHpPHE)`HTE\HEMHpHvoUEH}ExHtVM9HH`Hs0HPLIH}fL}LeE蕬ADH肼HHHL@LHH趮LnH@‹HHpHt;HKHsHH9H=TSJKHHHt;HKHsHH9kH=[SJK{1H8HHHHHH(H(H8HtMIMHH HHLH9H?L $MLHHHH5H:APHL@1XZ1H8HuHtHxHHHX H=e1He[A\A]A^A_]@L6AtAL8ofDLxH@̉L-QAEtAEL8M&D裡7fDo]ExEHaHH5K H81H|; H=1yfffHH(HHCRHHRH(qHH(HHCRHHRH(HH(ѥH(jDH59kLQtIF HH> H=1LإHcA H=pMIT$IL$HH9tFH=u,AD$PAT$L1DID$I$LPI$LP1@L踯L}MH}E1HFH]H?f{,H{0HtH{_8H財DHCC H=ͪP1@fH~jHu1PH8zY^>DHH(H(;D#A;fDLE15HHHH̐UHIHAWAVAUATSHHXHEHEHEHLIHMHtHHtHUHGHJ4HU1HUjPAQMLE_nH LeM&L5'f)EM9 IM8IL9LuHs0LLYH}fL}H]E詥ADI薵M H}L}H]HӧL苢H}HH]Ht;HKHsHH9H=oSJK}1H}HHHHHHEgHE뾐MIMHH HHLHH?L MLHHUHH5 H:APHL@13XZ1H}HuHtHxHHttHע H=+1He[A\A]A^A_]L&A$tA$LeL5AtAfLu)EDS_fDf.L踠H}(f.HHEHHCRHHRHEDfH5yeL董tMd$ =NIH5H H= f.1fHZHH5DH81òL۟HV H=s 1C@HHEHI1L聍$@Ht(HHHp HUH}HpHUH}hf.L(LL-=jL}1AUHMILhZYfHEEHMHMHH踌bL訌OL蘌L舌{HaHhH5KH81衵IOMwHpltAtAIx HIMHurcHHH5H81%tfLIH.踱?IOMwHpltAtAIx HItKMHu?EHUH} LN*HAL4L'Hff.fUH HAWAVAUATISHHhHEHEHEHLIHMHtHVHtHUHG=HHUH41L-%jLEAUAQI[H  H H|݈H}DcAŃgf)EwHcOIHID$H5LHHHHHL膩IIMx HIHx HHL;5L;5Q6L;5)LѥIx HIL;%ǴIIt$H]DHHP0H}6fL}LmEqA艴HD^HuH}L}LmH`蛓LSH}HH~H}HtpE1H}MHHx}HAHunlH}Mt^IعH=r 1H}HuHtHxHHtMHߎuH=1CHeH[A\A]A^A_]ÐHuH>tH}DˇfIعL _x HIHLH=1LH}f.IDx HILHx HHAH׍DH= ?1JHAL؆[Hf)Ef.L=iAtADfQHHWH}~vfH:"H)EHEHCHPRIH-Hx HHHu1LLeHHEHI$xHI$Ix HIHH111HHHHlHnH=1DL者(LpPH`@L-jHM1AUHuI[`ZY蟍HH H5H81NwL菊HH='12HL}MVH}E1H+膏H]H{H{0HtaH{訠8HpfDLH*H=]ML1 HH=%X1cHҊH=81CfDIAHIuL较HHHHH蕃{AHE1E1LE1E1H_)LRYLE`H8IASDIA8MHĉH=*15LۂըШ˨ƨ鼨鷨鲨魨騨飨鞨陨锨鏨鮨Ioff.UfHHHAWAVAUATSHHH!Hx)pfHnfH:"HE)EH$LOMHHHIعH=HpHtHxHHuH谁HxHtHxHHu 菁HH=1He[A\A]A^A_]HNtHxHtHpHWHHUH41L%@jLpATAQIQH HpHH(HpHHtHpLxfH5)EWHHH5ɅLtHVH}tHUHVtHUAǃ3L5,fLmH])P)`M9!I|$ HHH5'HCH9t9HXHHJH1@HH9H;tutL9HHcH5H813Ha H=hLHHhHteHXHtveLeLmI<$HtHx HHiIM9u/HH9QL1QL$QLQL QLPDžH E1IE1x$HIMtI$x HI$tmMtIx HItxMtIEx HIEt1HHVH=]Hf.LXPfDLHPfDL8P_L(P{DžH MIE1'4DžH H@ODžH MHHOTDžH MIA 1HrxHzxUHHAWAVAUATISHHXHEHEHEHELIHM5HtHHtHUHGuHHUH41L-k`jLEAUAQIH H H|ݘH}DÃhf)EkoL;%,zIcIt$0LeLHPHH}fL}H]EVAyIDfMH}L}H]HFYLSH}@HOH]Ht;HKHsHH9{H=xESJKA1H}HHHHHuHEMHEH}Htgf.IعH=^1H}HuHtHxHHtmHXSe H=zZe1He[A\A]A^A_]@HuH>tH}-DLxRH}f.LffDIعL?HHEQHEDHHEHHCRHHRHE~wHDTH{HiH5H81Ru{dLQHR H=@Y+1@L[L}MiH}1H@VLeM>A|$2I|$0Ht_VI|$g8LMLPHQ H=X萾H\HSHKHH9t@H=0vu&CPS)H,P1DDHHHCPHHP1HP H=X1fL-\jHM1AUHuI%ZYRAuI1E1M1E1H`sIksIgsfUHhyfHAWAVAUATIHHSHH)EfHnfH:"H-HEHEHE)EHRLOMEHHtHHtHUHGLmHL5jM1jHUH4AVAQIH H}x?H~@HHI|uIعL(LeI}HtHx HH?IM9uHN H=3V1HeH[A\A]A^A_]fHHVtHUHVtHUHH>tHVH}tHUHVtHUGAǃ3L5sfLmH])P)`M9!I|$ HHH5HCH9t9HXHHJH1@HH9H;tutL9HcvH1PH5MH81pH~MT H=T苺LHHhHtQHXHtQLeLmI<$HtHx HHiIM9u/HH9rHuHDž@HH9Hv~@HC81HHfI:"HE)Eb|H@IHHHx HHMMM9H5LKA] IExHIEH.IDH=zP=HsnH{DHqHXH5H81kHHM H=Pٵ1ZfLBpL5{jL1AVHuIZYDL=AtAH5gnHIHHL5RHLIHrIExHIE,H5nLPIHaHL%rERHLIH[IExHIEH\LuLeHEHYfHEHbHEAF @u L{AD$ @uLd IVH}ID$HTiQ IHIx HIXI$xHI$OHx1LLxHHDžpyIIExHIEIx HIMt$111L`I$xHI$HFU H=M萳H@@HAHoHBhH5H81QiDyXAa HHEHFDH=^M!IEHIEL?rHrHIAP 1qA` LOLef)`MHA|$WI|$0Ht'JI|$ID$H9tID$HpA8LAHCEc H=LP*H?LGsA[ HDR H=HL 1HHH@H0H8,tH0,tH@Hx HH H0HuH@HmD] H=KzHHH@H8H@0tH80tHHHx HHH8HuHHL=L=L=L=L=Lz=Lm=DžHW E1IE1x$HIMtI$x HI$tmMtIx HItxMtIEx HIEt1HHCH=eJ(Hf.LtHxf.9vfDkeHqI$H}LP0foEH}f)M)EHtuDH}HtgDRZIM9LuIu0HULCH}WfL}LuEH}HtDLmMAldlIQM%H}L}LuHtCL>H}{IH(HtHCH}HtCH}HtC1HxHxHoHdHHR|8HxHtAHdHRH5H81^DNL;H;H=C豨E1ME1E1A}I}0Ht@I}IEH9t IEHp78L7f.L(ELuMuE1Lx:H;H=uBMWL?JH:H=GBH~cHGH5hH81]H:H= B覧aH|:H=A艧H%cHBGH5H81e]H@:H=AMH#:H=A0ML>H; H3%L3UL3^H3xH;}]HPXHHsI$x HI$t}H~9H=@苦FfDI$x HI$t>Hx HHtH99H=@FH2fDL2L2vH;_EH5mH 97IB\IG\Ia\IW\I\I\I[IF\IP\I[I[fDUfHHHAWAVAUIHvATHSHH)0fHnfH:"HMHDž@HE)pHpLOMcI;MtITHtH0HWL0QHL=9hM1jHpJ4AWAQMH xTH@JH0I~IIK<uM1L4LHI>HtHx HHIM9uH7H=tgE1HeL[A\A]A^A_]IuBHNtH@HHtH8DI^It@M1H=gL0n5f+0EfDLpAtAL@LhAUtAUHL8tH0ML%W[H5`M9I9uH5I9vt M9LfL) [H5 HCH9tH=8+c1@H0-H]H#H}E1H;'LmM A}I}0Ht'I}88L1@L0"H%>H=*ȏH\HSHKHH9t@H=hGu&CPS)Hd!1DDHHHCPHHP1Hz$@H=)(1[IE11HHE HEu#$A;GIE11FFFFIgFuFpFkFfFaF\FWFRFMFfFCF>FfDUHAWAVAUATSHHH.HHbf)E;H;FILk0/H]HLHR$H}fL}H]E2#AJFID3MH}L}H]Htu`%L H}%HH]Ht7HKHsHH9H=REu@SJKvHe[A\A]A^A_]LH}%DDH1FHE1L vH -H5iH8R1HPCXZ1DHyxHH=~P蜞1_DHHEHHCRHHRHE3f!H:HH!H5$H81zB1LH!CH=P'S1@H )H]H#H}E1H;#LmM A}I}0Ht#I}48L!@L H !CH=&踋H\HSHKHH9t@H=XCu&CPS)HT1DDHHHCPHHP1Hj EH=&1[IE11HHEHEu A+CIE11BBBBIBBBBBBBBBBB{BvBfDUHZfIHAWAVAUATSHHHHx)EfHnfH:"H-H HEHEHE)EH5LOM(HHtHHtHUHGLeHJ4HU1HDMjPAQMMH H}H}HƅH}HH;=CH;=?H;=AQ2E1L}H5{L5\AI9wt M9f)EL9HCH6AIHM9Mw ML}HLe*HEH]Hp@H`H 6HpMLAHhH-H}fLuLmEH}HtLeM]Au@DIJ-MIH}LuLmHtHh?H}IHLmMt=IUIMHH9FH=v?hAEPAUHt;HSHKHH9H=4?6CPSH]LmH;HtHx HH@HI9uHeL[A\A]A^A_]DH&HVtHUHVtHUI.MIH>tH}L5>AtALuH;=9@H;=<H;=>z/>Hu}ƅ@IuRHNtHMHVtH>HUtH}HoMffD1H=oI1軔LeLLeH;HtHx HHHI9uHvH= 胅E1T=HufDA7DffrfDH@He'H5yH81:H`H=لLmM1E1fL5=AtALu)D1xfHHHCPHHPIELIEPIELP1H`L7v*H]LeDHI9H;HtHxHHu@L51<AtALubDL/H_;HHdH=荃H[fH=hHlHSHKHH9tHH=;u.CPSt1OfH17DHHHCPHH1P"IHh HhH=褂MtL'E1L`LuE1M#ME1A|$,I|$0HtI|$%+8LxHEjL1PHuZY~HkH=LmE1ME1I:I :I.:IQ:IM:IV:I9I[:Ia:I9ff.UHAWAVAUATSHXHVHHfH;9)E)EHC Hx HtH=8GHC HS(fHnfH:"HtH=8BH])EHt;HSHKHH9zH=8LCPS%.H]HuIH!H}7fL}H]EA8DI%MfH}L}H]HLH}HRH]Ht;HKHsHH9VH=7SJKNH]Ht;HKHsHH9:H=z7SJK"He[A\A]A^A_]LH}7GffBH])EHeDGfD;fofH 8HE1L NH  H5[H8R1H}B4XZ18fHyxiHH=VBt1DHHEHHCRHHRHEHHEHHCRHHRHEfHHHCPHHPH9HH5rH814HH=F}1fL8HH=}HtHSHKHH9ttH}eDH}WH} &fffDIعL趂?Lx*f\ffIELIEPIELPID$I$LPI$LPSfDILIFPILPH4H=6r1H.HJ9H5{gH81(HS6H=e6rHxE11E1DH"6H=46rI$E11ۅ1L%6jHM1ATHuI3ZY@H}H8H=5'rI$MYbLL}MHDžxH}Hn LmMA}I}0HtH I}8LvDH9H=,5qI$E1@L@.L3kL&lE)HDžxI HDžxME1:H[*He*Hm*He*Hj*H6*ff.UH0KfIHAWAVAUATSHHHH`H)fHnfH:"HDž@)0HNLOMAHHHH=n(11'HHtHx HHHHtHx HHHH=3E1oHeL[A\A]A^A_]f.HVtHHtHHGp HH'J41jH0PAQMLH HIH HHH9H;b'EH0ݒHDž8@HEHHPHEƅDDžHƅLHDžXHDž`HDžhHDžxHEHHEHEHEHEHEHEpEHCHP&IHL=5H=_IWLIHtA$I$xHI$fL;%'&L%'HK$M9HAI9D L;5%ЈM9SƅLE1D9EoK IHC() HtH=!%@H LHH0LHLH^HH(HtLGHƒ#HHHItHx HHHHL9H9H; $H1!HCH5)HHHIHH5FHVIIMx HIHM9I9L;5,$LAIEwx HInEuotH1H= "HHDž(H HI{M(Hx HHL@tIII ML%$A$tA$LMH f!HtHHH@LbƅLLADž"HHBH=#._jf.xHIu LHH=- jHx HHH}H}HHuH9t H&HPjHPHHXH9t HHHtHx HH7HHHHH*%HIL HHL9H9nH; _!aH%]ƅLABK_Ha$H H5K]H81HlH=M,hE1uL8H(WfDL6AtALIfDL%!A$tA$LMDHNHtHL6HAtALfDHHkH=L+gH8@fD_fD /fDIDm@LkLlIH HH=*faf.&fHL%AJA$tA$HM1LH(HHDž H(,HI$xHI$Ht"111H,Hx HHHH=) fH:jH1PH0ZYfL%iIA$tA$H1LH(HHDž H(H+HI$xHI$Ht"111H\Hx HHH3H=)PeLL#HAHu@H(HtA LQHH=(d[{uH{0Ht`H{HCH9t HCHp8HH_SUOLH$H;>L.H!HHH@UHAWAVLuAUIATSHH}HDž8H0ՇƅD@HEHHPDžHƅLHDžXHDž`HDžhHDžxHELuHEHEHEHEHEEpEtH1H=[HHHHDžHIHx HHMI$xHI$L=*H=IWLIHtA$I$xHI$[L=M9L;-<L;-M9L~ &EIL9oK HC()HtH=@LHHH0LLH]HHt\LHtH1HH\tHx HHHC H=?)"hIHH@H56LHHIIEMnxHIEuLL9H5L=HL9{GIHH5|!HL9{"IHHHDžHHI9D$H1LLL H&HHpIExHIEAIx HIMI$xHI$'HUHx HH%HtIHx HH>H}MH}HuL9t HHP+HPHHXH9t HHL[A\A]A^A_]LqLHM'HH=_@fDH\IExHIEuL~I$x HI$t\H!H=A^E1@H@HC zLfDHH H=^E1J[LcIHFHH=]DL%YAA$tA$He1LHHHDžH0#HI$xHI$_Ht"111HD Hx HHHH+H=8]L%@A$tA$H71LHHHDžH"HI$xHI$uLHt&111H HxHHuH`H{H=5\kHHH5QH81ZLH!H=1\@C7fDLHLLLHHIELZDKPfDLhHAHu%HHtAx{uH{0HtH{HCH9t HCHpV8HIHH5RaH8 'DfDIL$ID$HHtHtI$x HI$tLHL!H:HHUH5IHATSHH0HEHEHEHLIHMHtHHtHUHGHJ4HU1HjPAQMLEH LeM$LHAI$xHI$He[A\]fMIMHCH EHHLHH?L gMLHHHH55H:APH'L@1XZ1H}HuHtHxHHt|HH=aXHe1[A\]fL&A$tA$LeLHE4HEL%A$ufD WfDHbjHM1PHuY^UfHAWAVHEAUATSHH8H1)0)PfHHDž@HDž`HHEHEE) IH H;EH=A^HIH HH3Aăz Ix HIPEtH=HHu1HHEH]HHI%gM H5=H=1w0HHZ HHPtH5}#H=HL |H55LHϷwHY^H# Hx HHHL=HHH Hx HHHHx HH{1$HHP AtAHDž1E1HDžI;FIVH‹tHHHHCH9t H;A H{HMLcH9A$tA$Lk AEtAEHx HHHHtHx HHMtIx HIHLLHMI;FIxHIuL{HdLdHHDžHHtHDžHDžHH9 HELpHHHLHc LpAEtAELeA$tA$HdHdH=+ZIHHHu1HI9G&fHn1LfI:")E%HHcIx HINHIExHIEuLHHÅjHHHtHHCA$tA$Lc HLf7Hx HHG L1tHDH0-H =LFHDž-HLMLHDžHDžHDž/DL1HDžHDžHDžLaLaDž E1E1E1HDžHDžHtHHx HHHHtHx HHHtHx HHgHHtHx HH7HHtHx HHHHtHx HHHH=PDžMtIx HIHHtHx HH[MtIExHIE0HHtHx HHMtI$xHI$MtIx HIHHtHx HH|H}HH9t HEHpH(Ht>LPLXLM9t*H;HCH9t HCHpH I9uMtH`LL)L0L8LM9t#H;HCH9t HCHpgH I9uMtH@LL)GHe[A\A]A^A_]fI$tMl$AEtAEIwfHtPEl ^ufDHHxH8MH(HwLGLHLHLhHHHHxHhcHX3HHH-Hx HH LIELHIH"LLIHiHHǾ HHHHHHDžE1E1E1HDžHDžHDžDžHDž1HDžHDžHt H HH H= 5LHx HHDž E1E1E1HDžHDžHDžOHDžDžE1E1E1HDžHDžHDž HDž1E1E1HDžHDžHDžH#Dž E1E1E1HDžHDžHDžHDžHDžLHDžE1HDžHDžHDžDž HLHDžH.1E1E1E1HDžHDžDž HDžHDžHDžHLLMHDžHDža1HHx HHM)LM1LLHDžHDžHH5c<H8H1E1LHDžLHDž HDžHHHxHHHI^H HH: 1HAtAHDžHE1HDžH9IFHȋtHCHH9t H;\H{HXL{H9AtAHK HtHx HHLzXHnXH=gNHHH?H5HE1HH9q HHLeL}H41{ LHXHHx HHHLHLH}L>LfHH8Hx HHpHuH0H=vNHHHH WE1HH9N?HHLeHHuH41 LHWHHx HHHNLHLH}LFLnHH~Hx HHrHuHPHHMIVHHH9TIx HI0JHH`foPffo0HLHHE1H`H@)UHE1H@)P)p)00L HLLHHH;/HLHGHHMLLHDž 1HxHDž1HDžHDžHDžLDž H4TH1E1LHDžLHDžHDž IGI_HtHtIx HILHHH5IHxH9t tsHH8t`7HHH9P1HIHt/HL\IExHIEoHDž1E1Dž HDžHDžHDž~H=L-&AEtAEH\Hu1LHHEHEHIExHIEtHt"111HHx HHH1E1LHDžHDž HDžHDžE1Dž HDžHDžHDžuHHHH]fHnHIVH@)0H8HL1LHDžHDžDž LcgHƋtLL8L+L1MLLLtHH1LMLLHHDž uHHItIwHtIEHHHHx HHLIGLHHHLHH'LHǾIx HIHLH1LLHHDž HH1E1LHDžHDž HDžHDžHDžHDž1LDž HLLLLHDžDž HDžHDž-LLHDžLDž NLfH^A$tA$tHHx HH:H1uL1LHDžHDžDž }MHMLDž LLH1H1HHHlLaHYA$tA$tHHx HHH1HH50H81b1E1LE1HLDž LH=#L#HH9H51H81H1MDž HLHLHHHHH5;/H81^H1MLHLHHDž HHHM1LDž LHNHHx HHt@KtAHM1LLLHDž BHxHKHM1LLLH1Dž HHH1BH 3H7H}II9H9ff.UHAWIAVAUIATISH8HELvHHHHEHEML%HMtIIMtHMIT$HH M1jHULELQHP賗H LeMuL%A$tA$LeHLLI$xHI$Hx HHHe[A\A]A^A_]MtIuMeA$ufDM11H=EHE1H}MuHtHyHHx HHthH;H=]X9Heظ[A\A]A^A_]@HAHuf.LEE DHfDH߉EEHe[A\A]A^A_]H=qjHMHWHuIML蕠ZY_ff.UfHHHAWAVAUATSHHHxH)PfHnfH:"HE)EHILOM<HHHIع1H=FHPHtHx HHtHXHtHx HHDH=H=E17HeL[A\A]A^A_]HNtHXHtHPHWPHHUH41L%@jLPATAQI莔H HX$HPH0H(HPRHHtHP9LXfHEL;% HE)pfH8HEHEE)`AID$H;t H;' A$tA$HDž@HDžH1H@H I9L$ID$HHH9ID$L4AtAHHHtHx HHL- H=IULHHtHHuE1HH9C11HL}LuIMtIx HIHx HH?M.H}LZHEH]H}HUH9H8fHnfH:"EH9HUHEEHH}HUHEH}H9t HEHpHIExHIEHxH;}1HGHUHHuH躉Hx H@L#H@LIHNHtHH2H9wI$xHI$NIfHFHL`A$tA$HLXH0HH0HP@Iع1LyB@;fD+fDHpHHUHDHtHQHHUH}HUH})HȿL踿QHEEH]H]HH舿LxPHH0HtH0HPHtHXHEfE1HEH8HEHEE)pf)`H]L`HH0HpMH*H}HFLIHMtIx HIH}H8H9t HEHpHhHt,LxHpI9t2fH;HCH9t HCHpH I9uHpHtHuHH)HPHtHx HHHXHjH_HHR趽HH1tHX@L6HHI$ZE1HZH=z0E1H9PMtA`^L{LkAtAAEtAEHx HHLHuZI$E1x!HI$t~MtIEx HIEtWH!H=/E1f.I$Zy븐Lh[sfDLHfDL8uH+:LIHH@HH@HHDžHH0HP;DL%j1HuATHPIȖZYEHUH}^L{衞AHA\HYH=iz.E1YUHp,I޻Y8E1 IHff.UffHAWAVHEAUATSHHHHH~HHEHHEHDž(HDž0HEE)@)p)PNC  HH9H;HDž \H5lHH8H薅HHHDžHDžH8HDžHH0HH(HH HDžHDLHHHH+YHL(HLH(IHHHtHH0H9 Ix HINHLHDž0HHHML9~OdA$-,L=TAtALL(L-0pHLx>IH ~,fH:"HY)EHEAE @u LZhIELHPPxIH@ IExHIE Hh1LLhHHDž`H0II$xHI$Ix HIHDž(Mt/111LIExHIEHDž0Dž E1E15HDžE1E1HDžE1HDžHDžDž EHUH}HDžE11E1HDžE1HDžDž fHHWH5H81Dž 1E1E1HDžHDžHDžrHDž(E1E1E1HDžHDžHDžDž Hx HHL%YHDž0A$tA$H5HL(?0HH$HEHE1LHHHEHuIHx HHEI$xHI$<HDž(E11MIGH;t H;+AL(tAHDž8HDžIx HIE1HL(H8IT$H5I9t$lH9IT$L1H1L$L!H LcAHHH5 H81D9HMDž 1L褤E1HLDž HHHLbRHLIHHHtHH0H9谸I$xHI$HLMHDž(HHHLDž HLHHHHH51H8HLDž HHH]H9.M|AHLDž HHHE1E1LL0L٢7Dž tHDž HL蠢2&HLdHDž(1Dž HL1Dž HHLLDž HHDžE1E1E1HDžHDžHDžDž LsLkAtAAEtAEHL0x HHLHuHDž8LH(IHH@HHH:HLLE1Dž HHHDž E1HE1Dž H֠8c1E1E1MHHHHDž zHLLDž HHH褸'1ML:+HSJK:1H}HHHHHuxHE"HEH}Ht`IعH="1H}HuHtHxHHtmHآ H=J1He[A\A]A^A_]@HuHtH]%DLH}f.[ffDIعLf?HHE6HEDHHEHHCRHHRHEL%A$tA$H}Hu1LHHEHEHI$xHI$Ht"111H蕺Hx HHHl H=ީ f1fHH- H=J 1cLH]HiH}E1H?覤LeMA|$I|$0Ht~I|$ĵ8LfLH H= H'HSHKHH9t@H=Pu&CPSHL1DDHHHCPHHP1OH" H=e 1)fL%NjHM1ATHuIsZYAIE11IE11LmH`HII!ff.@UHHAWAVAUATSHHXHEHEHEHhLIHMXHtHHtHUHGHHUH41L%?jLEATAQI!hH H H|ݘH}f1)EAHHLmHIL>H}kfL}H]E~AIDkMLmL}H]MIUIMHH9H=AEPAUL(H}H>H]Ht;HKHsHH9H=bDSJKs1H}HHHHHu~HEHEH}HtffIعH=1H}HuHtHxHHtMH H=Z1He[A\A]A^A_]@HuH>tH}D[fIعLf_L踚H}蟄f.fIfIELIEPIELP/HHEHExf.HHEHHCRHHRHEGf H-(LHc H=Ht/HSHKHH9tDH=$u*CPSt1H1pfDDHHHCPHHP19LУL}MH}1H_LmMoA}dI}0Ht9I}耯8Lӕ;fDHS H=p1fL%jHM1ATHuI#nZYLOZArI1E1M1E1FHә H=u1#III~ff.@UHHAWAVAUATSHHXHEHEHEHHLIHM8HtHHtHUHGHHUH41L%xjLEATAQIqbH H H|ݘH]L%fHL)E薭^LHCHH2LeHIL耲H}fL}H]E谙AȼID蝩MDH}L}H]H?ڛL蒖H}}HH]Ht;HKHsHH9tH=̻>SJK:1H}HHHHHuxHErHEH}Ht`IعH=r1H}HuHtHxHHtmH(EH=E1He[A\A]A^A_]@HuHtH]%DLXH}|f.諏ffDIعL?HHE膔HEDHHEHHCRHHRHEL%A$tA$H͗Hu1LHHEHEHI$xHI$Ht"111HHx HHHTH=f1f HH}WH=G1cLhL}MiH}1H@LeMA|$I|$0HtϘI|$8LhLhHZH=H'HSHKHH9t@H=u&CPSH蜒1DDHHHCPHHP1OHC\H= `1)fL%jHM1ATHuIhZYWAoI1E1M1E1L轌H谌HѼIܼI޼ff.@UHHAWAVAUATSHHXHEHEHEHhLIHMXHtHHtHUHGHHUH41L%jLEATAQIq\H H H|ݘH}f1)E!6HHPLmHIL螬H}kfL}H]EΓAID軣MLmL}H]MIUIMHH9H=AEPAULxH}wH>H]Ht;HKHsHH9H=DSJKs1H}HHHHHu~HEXHEH}HtffIعH=ӾR 1H}HuHtHxHHtMH%H=%1He[A\A]A^A_]@HuH>tH}D諉fIعL _LH}ovf.fIfIELIEPIELP/HHE3HExf.HHEHHCRHHRHEGf[H}(L8H.H=Ht/HSHKHH9tDH=tu*CPSt1Hm1pfDDHHHCPHHP19L L}MH}1H诒LmMoA}dI}0Ht艒I}У8L#;fDH/H=1fL%jHM1ATHuIsbZYLdO誏A²I1E1M1E1FH#,H=@1#IgIiI;ff.@UfHHAWAVAUATIHSHHܵHHX)EfHnfH:"HE)EH<LOM/HHHIعH=TH}HtHxHHu fDH}HtHxHHufHX H=$1HNtHMHtHMHWHHUH41L-jLEAUAQIVH 7H"H|݀QHHt H|݀;LuLGAŃH]H5PL=H9st L9f)E)EL9-HC(~C HtH=ׯY@H}fH:")EHt|gIM9SH]It$0HMDHH}fL}H]EӌAIDMH}L}H]HbL赉H}qHH8LeMtAIT$IL$HH9H=LAD$PAT$LeMtAIT$IL$HH9XH=AD$PAT$H}HtHx HHH}HtHx HHHeH[A\A]A^A_]HL0AtAHPLutHUfDIعLfLXH}of.諂GfD蛂TfDff@fDH7)DID$I$LPI$LPfDID$I$LPI$LP8fD1HzH'tf)E)EL:H10yHHʩH5H81٪Hv H=ݸ1jf.L-ӸjHM1AUHuIs\ZY@賉H"HLH5 H81b苙L裆Hy H=W;1@HH]HVH}E1H,薋LeMQA|$EI|$0HtnI|$贜8LfLHy H=HHSHKHH9t@H=@u&CPSH1:DDHHHCPHH1PH{ H=1Lф0LĄ A"I1E1-IE11IIIff.UHPHAWAVAUATISHHXHEHEHEH=LIHM-HtHHtHUHGeHHUH41L-1jLEAUAQI>OH xH H|ݘH}DÃXf)EL;%ܩISLuIt$0LhH}fL}H]E舆A蠩IDuMH}L}H]H?貈LjH}jH@H]Ht;HKHsHH9lH=6SJK21H}HHHHHuxHEJ}HEH}Ht`IعH=J1H}HuHtHxHHteH9 H=P1He[A\A]A^A_]@HuH>tH}5DL0H}if|nfDIعLGHHEfHEDHHEHHCRHHRHE蛧HDcHҪHH5H81;LSH΂T H=1@L踋L}MiH}1H@GLeMMA|$AI|$0HtI|$e8L}L踀H3T H=PH\HSHKHH9t@H=u&CPS)H1DDHHHCPHHP1HV H=1fL-ڱjHM1AUHuIcUZY观A迥I1E1M1E1IIIfUfHHAWAVAUATIHSHHHHX)EfHnfH:"HE)EH<LOM/HHHIعH=tH}HtHxHHu &yfDH}HtHxHHuyfH  H=u1&HNtHMHtHMHWHHUH41L-4jLEAUAQI'IH 7H"H|݀QHHt H|݀;LuLgAŃH]H5CL=H9st L9f)E)EL9-HC(~C HtH=Y@H}fH:")EHt蜂臘IM9SH]It$0HMDHӎH}fL}H]EA IDMH}L}H]HbL|H}{5 H=[1@H(H]HVH}E1H,~LeMQA|$EI|$0Ht~I|$ԏ8L'vfL(yHz5 H= HHSHKHH9t@H=`u&CPSH1ZxDDHHHCPHH1PHz7 H=m 1Lw0Lw*{ABI1E1-IE11I鳣I難I鵣ff.UfHHAWAVAUATIHSHHx)EfHnfH:"HE)EHLIHMIIMM1H=}H}HtHx HHH}HtHx HHHRxYH=E1HeL[A\A]A^A_]HNtHMHtHMHW~HHUJ41L-ǨjLEAUAQMAH H]H߅.L}MGM&J|IIt J|L}H5;I9wt L;=0LxfL)E)EL5MM9tMg(H5;HCH9t8HXHHJH1HH9H;tutL9ՐHhL9LuHsLLH}fL}LeEH}HtzLuM'xdAƒAL}fDL8TIU H}mfDTfDTHfDLSLS'IعL@@Huf.LSBH9I\fHQH{H5;H81|DžxME1HDžhI$HDž`xHI$eMtIx HI\H`HtHx HHLHhIHtHx HH9xHYH=yE1MtIExHIEMtIx HIIx HIH}Ht]LuH]I9tvIfDAEPAUt;HI9tGLkMtIEIUL9H=|tøuLHVI9u@H]HtHuHH)0T1H}HHHHHvQH}HtIELIEPIELP'fL})EfHE)EH5HYMILPQLPZLP^LPLPHPHxP{HuH|H5H8XDžxI$HDžh f.LPdHhIHHDžhDžxI$HDž`E1LWwIHH@HHpHHDžxxHX{H`H%DžxfcHSIHWDžxE1E1ifH`1LrHhHf.Džx1E1HDžhLN{H5MHhqWMLhOL%mjHM1ATHuI)ZYLhNHdyH[HAD$ H{ HtHG PW uHPLc DžxE1OL}AHhDžxLM,DžxE1E1Džx1E1HDžhHeDžx1LHhG :AD$ HHIff.@UfHAWIAVIAUATSHHGH;O{HPHHHE)pt H;w3AtAHDžXE1HXHDžhfIGH wI9O[I9IGJtIHwH`H9Hh8HhH&HhHHZH`H9IvI;vLoK HC(HtH=vE@HIvHXHh$HXLHH?7wHtH[yH2H9] `Ix HIHvHPH`H9kH IVI+HH9 HPH@H;ky H;vHPrHPHdHPH@LM4IDHJHS L,d@IvfL%MHsI9t;HXHHJH1fDHH9L;duHhHhHHxH"rH5۱H811sH`E1A1HhIx HIHtHx HHHPDH=Zռ1HhHtHx HHtgMtI$x HI$t`HpHt HuH)KHĨH[A\A]A^A_]I9K\fHIfDLHfDLHHH(H!tI~I+>HmIHL Hu1HHEHHE`II$xHI$(Hx HHE1AMf1LHEHE)E)E`HH[ HIGH;rVH;5vILoIH H@HHXH I*@CoIHH@HHXH IHDHI9HuL;%r fDHysHVH5֬IL$H81_pE1A9HPXtE1E1HPE1MHGH qH9O I9HGJtIMtI$xHI$jHCyHCHH¸H)ЋSHHAH9DeAHHHpH;pD&H@HPIM0AHHTqHtHsH2H9 oZHPHxHHuHEH`XtH` AtAHDžXME1E1HXIFH UpI9NkL9IFJtIMtI$xHI$RHCaHCHH¸H)ЋSHHAH9A$HMHEHPH9,D HHEHXI0HXLHHKpHHtH4rH0H9XIx HIHuH}MtI$xHI$H}Ht HuH)FHEHUHMHpHuHpHxHMHtH)\FgoIIMKx HIBHHHpTHbHAH92HH?mH5p)H8KEnHAHHHU`L CHCHIHtHPAIHILBzI9HPJ\H oH5GH8JALrBHEfHnHHE)EGHDBL7BHzZE1AIc16HDžhE1ACfDHP`HAH9H}HkH5'H8J;mH:AHH}H)H0H8H9H8HDž@Ht-HH?HH9HFH9HBH@H@DH8HD$LdH*H0.H@HMLeHHM"L@HCH@`HHHwHHPHbH@H;cjzDHPHAHH¸H)ЋQHHAH9HPH1HH$H?DL9K\H0HsCHHPH0H8H)#BH8LPIAI1Lm?Iܻ:Ix HIHIH=|OwHP]HAH9HHhH5%H8VGHPH4HH'HP>HPJHRHH@H@AHlHH_Hx>RE1AL]>1AL%A$tA$HRHu1LHHEHEvHI$xHI$Ht"111H^Hx HHE1AL=dHdH4H=M۰111iH E1AVHDžhE1A=LN=hHuL.=4H!=NhH^HGiH5<H8XECHPHPH'HPH@_HULPALPE1AwE1AT 9 H=¾PHPHHHdgH!2E19HF9H=HLCHnnnHnHoH6o@UfHHHAWAVAUATSHHdžHH)0fHnfH:"HE)EHqLOMdHHHIع1H=,sdH0HtHx HHH8HtHx HHHAH=rE1HeL[A\A]A^A_]HNtH8HtH0HWHHUH41L%frjL0ATAQI H H8TH0H(H0HHtH0H8HPfHpHDž`HHEH H()P)pHHHx HHPHELeLmffopH@LLfoPHEHH`HEHDž`HE)M)p)U)P>HHHIHt;HSHKHH9H=dSCPS1L}H]I9txI#AD$HAL$t=HI9tELcMtID$IL$L9H=ctuLH=I9uH]HtHuHH):H}Ht HuH): MZHpHt HuH):LXHPI9}I%f.AD$PAT$t=HI9tELcMtID$IT$L9H=btuLHHHUHXH(HH;0HH OIع1H=`L`辫fA_AGHH HDA_AGHH HnfHHH*)IGfH@`H HH H}HLHH H=RH9xb HHHXQHHHHHHEHHs(fDHLHAIHHEHSHt#HUH2H9 HEH&LHH@I9t,H;HCH9t HCHp&H I9uH@HtHPHH)%H HtH0H)%HHt .LH`H;HtHx HHtHI9uo"HIHoNHHtHPH0H9O7HHx HHH=]蘜IHH5eHII$MxHI$uHPAE1I9E]HfLu)EHEJIHUHmOH >UHPtH eHMH IT$ tLHMLH?L)LH HEJ4H0LH I$xHI$ IExHIEHHHx HHH5[H袧HHLH5doLGAIEx HIEay5HLLHATHHL@L L0H}XZL%L1IHHMXA4@4L[HH6LAHKtHxHOL9BHN|ALcLsA$tA$AtAHx HHLHuHELHAHHxHHHt[L3HSXHFfHHyFLAE1LL HH=LAgx HI$tAAMYmLHEHL-UjHuLAUI1Y^7LfEHUH}HELHEIHH@LMIHEHIHlHDžL~HHEHbEHHHH@HHHdIL| LoeHHEH9HHw>@H$8HMHH\5HELIAHcMuMeAtAA$tA$IExHIEME1bHHAHUL%6sA$tA$HZHu1LHHEHEUII$xHI$PMt$111L2HtHHMLpAtAHxLuHʉtHHHH}9HtHHHxHtHHHpk HfH`HDžXHHPƅ`)fHDž HDž@))0tHtIFH;cEt H;B AtAE1E11lHH)HHH\L45HHHHH; HHHLMIFH gAI9NL9IFN$A$tA$IHtHx HHID$ID$HHAD$H)HHH9tAH HHH; $HH;M1H=LHp讗fA\$AD$HH HA\$AD$HH HvH(ID$fDH@`H HH LHH H=>H9x< Hq=HHHHHHfLAIH3 @HtH-BH2H9@ (Ix HI HH;?H@H;qBt H;?% HtHDžE1HHH=>HBH9zI9 HBN$A$tA$IHtHx HHL-^H= IULHHtHAHuE1HH9C1HLuLeLIMtIx HIHHx HHDMmH}LOEHEH]HPHUH9CHfHnfH:"EH9H`HPXHH}HUHEH}H9t HEHp=HIExHIE+H8H;@HGHXHHPHH8 HLHHIH5p=HHtH?H0H9 P&HHxHHuHH=L蕋IHH5THIH" IxHIuLVH?AE1I9D$E HHELmHE9IHHg>H 8DHPtLHMLH?L)LH HEJ4HLI(IxHIuLI$xHI$uLMHHx HHH=sKVIH H5SSH論IHIx HI}HDžHy>E1I9EhHHELeHE{8IH)H(=H BHPtHHMLHH)H?H HH4LLHIx HIIExHIEHHHx HHH5IL耕IHH5E]H0AIE[x HIEH5HIH$IHH5\HAIEBx HIEk#HLH0LATLLLPHL)H}XZV LFLIHLHMRA.fL9{OdA$rqH H0HHPHGfHtH$H)HUHPHXH}f.HxLuHHEHHEHwL HPXH]H]HbfH LHDžL HA8tHEr2!L誅HH&LAIE1HIMIELE1lAH7tHEHuI9XHNdA$GFf.AMtIExHIEMtI$xHI$H.DH=k~E1HtHx HHpHHx HHbHHx HHQHPHH9tH`Hp L8H0I9t/fDH;HCH9t HCHpw H I9uH0HtH@HH)P HHtH H)5 HHttHpLmHI9H;HtHxHHuf L\ LsLkAtAAEtAEHx HHLHuH L 0L L dAHHLL3fDH pLAL-@jHuHAUM1Y^EHUHPL0IHH@LMI4HHDž H0HHHH@HHHIHII$xHI$1Mt$111L%IExHIEHLAHH1H5H8 ?E1A1AutWLIAAHLL$LL"LLAL AHLAHL|LoHk99H9H9ff.fUfHHHAWAVAUATIH8SHHrH)p)EfHnfH:"HHE)EfHnfH:"H(HEHU)EHLOMzIPH xJcHHH tHMHHtHMHHtHMHHtHxHtHpHWHpHL-P:I1jHUJ4AUAQMH xTH}u HpHI~ @II J<uM1L̄LefDHI9t'H;HtHxHHujHI9uڐH H==E1uHeL[A\A]A^A_]I IHp >HtHHMLpAtAHxLuHʉtHHHH}9HtHHHxHtHHHpk HfH`HDžXHHPƅ`)fHDž HDž@))0tHtIFH;/t H;+ AtAE1E11lHH)HHH\LHHHHH; HHHLMIFH +I9NL9IFN$A$tA$IHtHx HHID$ID$HHAD$H)HHH9$+H HHH; $HH%M1H=w6Hp^fA\$AD$HH HA\$AD$HH HvHID$fDH@`H HH LHH H=w(H9x< H!'HHHHHHGfLAIH3)HtH+H2H9@ Ix HI HH;r)H@H;!,t H;(% HtHDžE1HHH=(HBH9zI9 HBN$A$tA$IHtHx HHL-GH=IUL]HHtH+HuE1HH9C1HLuLe5IMtIx HIHHx HHDMmH}L.HEH]HPHUH9CHfHnfH:"EH9H`HPXHH}HUHEH}H9t HEHp'HIExHIE+H8H;@HGHXHHPHJH8 HLHHIH5 'HHtHA)H0H9 HHxHHuHQH=b6EuIHH5B>H蚁IH" IxHIuLHo)AE1I9D$E HHELmHEj#IHH(H -HPtLHMLH?L)LH HEJ4Hs LI}IxHIuLPI$xHI$uL6MHHx HHH=#5tIH H5=H[IHIx HI}HDžH)(E1I9EhHHELeHE+"IH)H&H ,HPtHHMLHH)H?H HH4L1LH|Ix HIIExHIEHHHx HHH5P3L0IHH5FHAIE[x HIEH52H~IHH5FHAIEBx HIEk HLH0LATLLLPHL[H}XZV LL^IHLHMRA.fL9{OdA$rqHhH0HHPHfHtH$HHUHPHXH}f.HxLuHHEHHEHwLHPXH]H]HbfHLHDžLxH!tHEr LZoHH&LAIE1HIMIELE1lAHr!tHEHuI9XHNdA$GFf.AMtIExHIEMtI$xHI$HDH=ChE1HtHx HHpHHx HHbHHx HHQHPHH9tH`HpYL8H0I9t/fDH;HCH9t HCHp'H I9uH0HtH@HH)HHtH H)HHt$HpLmHI9H;HtHxHHuL LsLkAtAAEtAEHx HHLHuHL0LLdAHHLL3fDHHpLAL-f*jHuHAUM14Y^EHUHPLIHH@LMINHHDž H9HHHH@HHHIHSH@H;Ht H;X tHDžE1HHH HBH9J I9HBJtIMtI$xHI$L-Q3H=ZIULIH tA$H HuE1HI9D$ 1LLuH]b!IMtIx HI6I$xHI$M? H}LHELeH}HUL9bfHnHfH:"EH9HUHEEHH}HUHEH}L9t HEHpGRHt IExHIE3HxH;}HGHUHHuHHx I HHHH9HH8HHHH0Iع1Li@fDfDHeCAI)LL(IH^HXIH;`mfDH(HP ]DcCII L(fDDcCII If.LHCH@`HHHHHHH H9H HAHIH^HHQHgDfI9K\fHHtHH0HtH8HfDHqtH8x@LsHtH LYHUH}HUH}HpHHUH*DLhLXkHEELeLeLPL(AL1E1E1HfH%H IHn H@LMH IJHV HDž(HHHHHHtH1H0H9 HHx HHH=VL6]IHH53&HiHH~IExHIEwH5 HRiIHvH5H7iIH.IExHIEHH AE1H9HfLeL})E HHPHH HPtHP%HHMH HP tLHMLuL)H?K4HHH LIMeIx HIHHx HHHHx HHM\H5 HgHHL@HLLHHLpLPATrH}YL^MHHx HHbLHH\f.HHxHHHHHHtHx HHMtIExHIEH}HH9t HEHpLxHpI9t-@H;HCH9t HCHpH I9uHpHtHuHH)HPHtH`H)pHHHtH0HtHx HHH8HHHHIExHIEE1AHHtHx HHHDH=UxRHzHDž:f.HEH\LgfDLLHe>LWIHLAkHH8HHH0OI9HJ\96L%NjIHuATH01=_AXL qHDžE1AHHx HHt5MfI[HINLAHMt$Ml$AtAAEtAEI$xHI$MHuE11AHDžAE1IEx HIEtE1H,fLH[E1AHDžAIE11HDžH R3HtIGH;?AtAH=LYHHIx HIJHHu1HHEH]IHx HHHHx HHMt$111LI$xHI$E11AhE1AZEHUH}LLv| HHfHH@HHH0IALqHLHRL LHcHH @HLLE1E1HDžAlAHIH;-LPXIHE11AHDžMxMAL`LhA$tA$AEtAEHHx HHLE1#ANE1AtA5LAHDžAHH5H8kAL`A HE1AHLE1E1ALE1AHb1LE1E1HAH;fH5>LXE1AHHHff.UfHHHAWAVAUATSHHHHX)`)pfHnH@ fH:"HxHE)EfHnfH:")EHLOMHH LHcHDHNtHxHHtHpHHtHhHtH`HWL`dHL-M1jHUH4AUAQI軧H xgHp Hx H`HH~fDHHI<uIع1LXLLeH;HtHx HHt=HI9uHH=1IHeH[A\A]A^A_]KfH H Hr Iع1H=^L`0XOHpLhLxHHH5vH9pt H;IfHE ,HDž)) )@fHDž0HDžPHHEHEE))IFH;t H;"TAtAHDžE1E1HEHHIFH I9NI94IFJtIMtI$xHI$HCHCHHHH)HHHYHHHILIHH;L&HHHI HLHHHHHEHVHt#HzH2H9HEH.Ix HIx H HI9IGH;t H;O"AtAE1E1HEHM@IGHI9WI9)IGJtIMtI$xHI$HCHCHHHH)HHSH)HHHILIH(H;0L&HH(IMHLHAHH$HEHHt#HH2H9HEHyIx HI HHH9 H@H;t H;HtHDžE1HE1HHH HGHIH9W_ L9 HGNHHHHeHH8H.HH0Iع1Lq9@HL9I$&/fD fDrfDHUCAI)LL(I2JHnHXIH;`fDH(HP DcCII L(fDDcCII If.L(HC6H@`Hq HHa HIHP HI9Gr LyIIHIL覵L9wK\tqfHHtHH0HtH8HfDHtH8h@LSHpHHUH蚾DHtH LyHUH}HUH}hL訴HEELeLeL@Lx)LhLXlLHpDžE1HDžE1HDžIx HIiHDžE1Mt3fDIx HILMtIx HICHHtHx HH3HHtHx HH#HH=&Ht,E1HHxHHH[LHtHx HHKHHtHx HH;MtIExHIE0H}HH9t HEHpCLxHpI9t)H;HCH9t HCHpH I9uHpHtHuHH)HPHtH`H)شHHHtH0HtHx HHt;H8HHHHffHرHȱH踱L許L蘱L舱LxHhHXLKHH0HL%VjHuIATH01'Y^>HDžE11HDžDž3HLHHYIHHtHjH0H9D )Ix HI H=y*IH>H5vH6HHJIx HIH5+H6IHHH}AE1H9PHEL}LmHHH-H HPtLHHMH?L)HH HEJ4H腾LH2IExHIEIHx HHBHHx HH4H3H=4)HHyHH5 Ha5IHwHx HHH5H.5IHdHAHDžI9FHHEL}HEHHHH HPtLHMLH?L)HH HJ4HI}1Ix HIeHx HH^Ix HI0MH59H%4IHDHH@MLHpSLLPPHLH}XZL色Ix HI}HݻIHLL,&IHDžE1HHDžE1HDžDž"H9#I\=:L蟬DžE1E1HDžHDžRMeM}A$tA$AtAIExHIEMHu2#pDžE1E1HDžHDžILIHI LͫDžDžE1E1HDžHDžHDžMHnHDžE1HDžDžIHHHHeHH8H.HH0Iع1L@HLɦI$&/fD蛛fD苛rfDHxUCAI)LL(I2HnHXIH;`fDH(HPM DcCII L(fDDcCII If.L踚HC6H@`Hq HHa HIHP H[I9Gr L IIHIL6L9wK\tqfHHtHH0HjtH8HfDHAtH8h@L蘙SHpHHUH*DHtH L HUH}HUH}hL8HEELeLeL@L)LLlLؘpDžE1HDžE1HDžIx HIiHDžE1Mt3fDIx HILMtIx HICHHtHx HH3HHtHx HH#HH=: Ht,E1HHxHHH[LHtHx HHKHHtHx HH;MtIExHIE0H}HH9t HEHpәLxHpI9t)H;HCH9t HCHp觙H I9uHpHtHuHH)胙HPHtH`H)hHHHt觡H0HtHx HHt;H8HHHH莖f{fHhHXHHL8L(LLHHLەHH0HL%jHuIATH01pY^>HDžE11HDžDž3HLHHYHHtHH0H9D 蹩Ix HI H=& IH>H5H^HHJIx HIH5H'IHHH AE1H9PHEL}LmHHHH HPtLHHMH?L)HH HEJ4HLHvIExHIEIHx HHBHHx HH4H3H= HHyHH5HIHwHx HHH5BHIHdHAHDžI9FHHEL}HE蟻HHHLH HPtLHMLH?L)HH HJ4謡HI Ix HIeHx HH^Ix HI0MH5ɼHIHԦHH@MLHpSLLPPHL辭H}XZLIx HI}H}IHLDL IHDžE1H肷HDžE1HDžDž"H9#I\=:L/DžE1E1HDžHDžRMeM}A$tA$AtAIExHIEMHu2賶pDžE1E1HDžHDžILIHI L]DžDžE1E1HDžHDžHDžMHHDžE1HDžDžI̵HhtHHHHAH;HtLH=L_IH%Ix HIHu1HLeHHE II$xHI$Hx HHMt$111L IExHIEDžE11HDžHDžxHDžE11HDžDžNHu9EHUH} LIHoH@HHH(I-譹HHDž(L.L H~IHlH@HHH%HDžfL蟍H蒍H腍HDžE1E1DžMLE1HDžHDž)H5L(HLHDžE11DžLIHzfDHČ^DžE1LHDžHDžaDžE1LHDžHDžH豤1E1E1LHHDžL)LHHDžLDžLxHXAtAtHHx HHHE1H;HPXHHDžE1E1E1HDžLPvLC)DžE1E1HDžDžE1LHDžDžE1LHDžDžE1LHDžHDžGHDžLDžcHDžE1LLE1DžMINI^HttIx HIwIE1HZH5H8kE1E1LE1LE1DžLR11E11HHHDžDž1LH_E1E1LE1DžE1LL11E1LHHDž HclHATA1DžE1LE1LsH451E1E1LHHDžL譈|H;ɵH5qHf.@z L5ܚL5HDž`E1E1HDžXHDžHDž+HH9BM|ALsLkAtAAEtAEHx HHLHuHDž`E1HDžXHDžHDžHxHH谗IH H@LMd I]HHaH HDž[HotLoHHHoSL58!HHHIHH@LM I_HH蠚H HDžRE1H\HDžXE11HDž`E1E1HDžXHDžHIE1HHHHeHH&HXnHXHHpəHHtHH0H9$詂HHx HHi HxbHEH`1LHHHEH]H@蝦IHxH`HH IExHIE2 M%LÅ I$xHI$?L-yAEtAE1腔HXHHhH@H;[t H;HhtHhE1HDž`HHDžxH`HmHGH H9OI9HGJtIHxH5HIH'H5H9H@H;-IFHHHuu A~HHIx HILHXL%Ix HIaHxI9HJ\HIE1E1HDž`HDžXHDžHMl$Mt$AEtAEAtAI$xHI$MHuNHDžHDž`E1E1HDžXHDžH`HHGIHH@HH`HHDž/H;*HIHRHHH{HIE1E1HDž`HDžXHDžHDžH3H H`tHxmHH 5IH~fH fH:"H) H0IEHP6}5IHQIExHIEH`Hu1HHELeHI$xHI$H`Hx HHHt"111H܈Hx HH-HHHtHHhHHH袀HIE1E1HDž`HDžXHDžHDžHZH5HXtHx蔇HH23HHH~eH fH:"H) H0HCHP7H3IHHx HHHXHu1HHELeHI$xHI$HXHx HHqHt"111HHx HHTHHDžE11HDžLf&HE1E1E1HDž`HDžXHDžHDžHHE1E1E1HDž`HDžXHDžHDžHOHLHeHH5_eH8HHnHeWLeeL~etteHgeHVeLIeOHH(1HHHDž`E1eI9HJ\c`I߻1IE1E1H`HX1HHHHHdHdHsdHH5cH8HHl>H`HH軏HHtHܑH0H9 xHHx HH HxTHXE11LH@LEHH]藜IHxHXHH IExHIEY MLÅNI$xHI$5 Z 1蓊HxHhHpHpH@H; t H;Y tHpE1HX1H@E1H@ HXH5HAH9q L9wHAJtILH=HIHHH5vHHIx HI~ 1H=AH`HH9xH`E1H]LuHE薊IHHCH HPtLHMJtL)H?HLH pH`IIx HIHHx HHM3HxLIExHIE&IJfHp贈HHKHH@HHXHC IH;6LPXIHE1E1E1L`LXE1LXE1E1L`Hi`LL\`ULO`LB`L5`FI߻@H; u\HPXHH$1E1E1E1H`HX5H_H_H;ߌtH5V#HewE1E1E1L`LXE1LLI߻1H`HHHLxE1E1L`LE1E1LL_HPLhH`tAEtAEHHx HHtLE1H^L^H^1E1H`-11E1H`HHHtHH0H9 rHXHx HH LHpHx HHI 1@HpHHhH@H;t H;  HhtHhHX1H@H`1H@HXH ]HFH9NH`H9(HFL$A$tA$H`HH=;HHHSH5HlHH#Hx HHHH:A1H9P1H]HELe@IH.HH HPtLHMJtL)H?HLH OkHIIx HIHHx HHMHpLuoIExHIELRE11E1E1L`LXHHLHxLpE1Hp1H`HH11HHE1HE1LH`L:[H-[L [8HXLhtAEtAEHHx HHtLE1HZ1E1H`11E1H`HH`H9~kHXLdA$;:HXH@HHt LׅHHtHH0H9nnHXHx HHHtHhHx HHnHLHATAUH]LpLHxHHPP@mH H}H^LlIHpHhHxHpM1E1E1H`HX1HHHY@HYHY)yMoI_AEtAEtIx HItI1lI]M}tAtAIExHIEM1cHaH5H8=1LE1AHE1E1LE1AL;HDžLALE1AHDžHDž1LAH1LAHHE1LAE1L1LL!E1E11ALLLL1LE1E1HE1AHH1LE1AHE1E1LE1LAE1LLu1LE1E1HAHHLE1MAH_H56H8;1MLE1HAE1LE1AeLU3HtHf8WLE1AOLE1AL3H;`H5H.9L2tH}D&fIعL֨_L(,HH&HaUHYH5KH81OH|,H=8艙N@HJ+DHHHCPHHPcQHF-Lh+H+H=%8Ht3HSHKHH9t4H=PuCPSE1DHHHCPHHP@Lh5H]HH}E1H/LeMA|$I|$0Ht/I|$A8Lg'TfH*H=-7;L%NYjHM1ATHuIZYH),PI<1E1IE11IH}*H=6芗Ic`HB`I]`ff.fUH`]IHAWAVAUATSHHXHEHEHEHuLIHMeHtHiHtHUHGHLuJ41H[jLPAQMLE H oLmML=NH5LuM9EI9ut }f)EtH=jF1LH]HHE;IHx HHMjI$xHI$}Mm M\`CIL9Hs LL%IH}fL}H]EH}Ht,-LmMw*AMDI:MH}L}H]H,L'H}s6HH]Ht;HKHsHH9&H=LSJK61H}HHHHHHEx!HEH}HtfDMwIMH H HHLH%H?L MLHHUMHH5 qH:APHYYL@13JXZ1H}HuHtHxHHH&}H=E31He[A\A]A^A_]L.AEtAELm,L&H}4_fL=KAtAL}MEfD3 ?fDH @1HoLGLgBfL'L=aKLuAxv@fHHEHHCRHHRHEfHHE$HEH%H=1萒1OJIHHS%H=1`1f{'HMH&H5ԆH81*HS7Lk$H$H=X11@31IL.H]HE1!L$H$H=0訑HHSHKHH9t@H=HIu&CPSHD#1#DDHHHCPHHP1IE11A}~I}0Ht(I}98L) U@HUjLu1PHMLY^DH#H=/蠐1_IYIYIYؐUfHAWEAVAUATSHHH; HHhH`LX)p)E%HA Hq(H}HEPHEfH;IHLm)EHPHTEIHL%HYH= IT$L'HHtHCH5JHHHIHMx HHID$H5MLHHHI$HvxHI$HUHHHCLMH=l(HH1HAI'7MVHx HHL;%kHL;%)E‰L;%FL7ÅI$xHI$;IHPLmHEMtH=FjAE]H]HMLXH`HhHLuD}EH}fL}LuEH}Hth%#hFhH2H HxLpLxH %LHpH8H@H)HXHp.HH'H}Ht$HxHt$MtL$HĘH[A\A]A^A_]~HDžPE1H;3EIfEHHfI$xHI$Hu!+H=,蒌1;LDHHxHHuHHLHiLi[QHHH 3H=l+1LoAED -L胑HHf[>fDK>@fDHH1H;IHfDCHsH (H=*21H(L}MH}E1H"H]H {H{0Hth"H{HCH9t HCHp8H@LHk.H= *舊ML1" LE1E1rHCH5HHIHIx HIHDžHM9L蛮H{H5)M9AH5L^H輙H8IH9tAHE1H=AHHLELL}H +HHHHPLLIxHIuLLLHDž8MLL虭LAoIxHIuL_HDžHPE,H8tHcIHfHH]L})E:LHI H%VHPtH)KLEIT$ tHEH LHH=P9LHEP*HHHILHDž8IxHIuLTI$xHI$uL:MHx HH}LtIHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžL MH HHדH˓H迓H賓H觓H蛓H菓H胓HwHkHcL[H(OHXL[A\A]A^A_]f.LMM9DžDH5Y2Hm  H=)BdIH&H=HuE1HI9@H(L1LeL HEHH]L}HEGLHHIaL Ix HI6 ML E1ME1HDžL8HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžL L L HDžE1E1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžL fLLLJH>H2LE1'HHHHHHH=DDLLI LDLL) LLfD7HHDžE1E1E1HDžE1MHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžD@HDžE1E1E1HDžE1MHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDž DžgH5)-Hg) AM9tAHE1L}H=,HHHEH "LIHHHAMY"tHH 1H]H=,HHEQ"HHHHLM1IAH;P4t H;7$IyH IqH;7H|!tIq HtIx HIL-AEfInfH:"tAEHH 1)EH=7<HHE\!LHHHH HDžHM9H5USHHHIHU$LHH'LHI$Ix HIHDžHLAą&IExHIEEH=T*跁IHC'H5T/HHLHH8I'Ix HI Hc IHM(H5E1AI9E)fLMLLL})E/LLHHPH H%KHPtH)@LEHQ tHELLL)LHELH?H H H J4~HI߉LHDžHH Ix HIHx HHHDžPIExHIEHDž8MHHx HHLHIL MHDžHDžHDžHDžHDžHDžHDž@MMDHDžE1E1E1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžL L E1MLHHDžE1L8DžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžLtAHELH HDžE1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžL HvDžE1E1E1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžL K-H6L E1MLHHDžE1L8DžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDHDžE1E1E1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžL DžL E1MLHHDžE1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDž:f.H5!H\h AM9tAHE1L}H=!HHHEH zLIHHDž8M$tHH 1H]H=H!HHEHIHDž8MIEH {,H9t H;)'I}H!IUH9$H8tIU HPtIExHIEfL-}H8HDž8HPfInHfH:"AEHtAEHH 1)EH=0HHELH踀HHDžP!M9OH5HH胃IH.&LHHHPH^'IExHIE~ HΗAą'HHx HHY HDžPEH=xvH8IH'H5$HƂIH(IExHIE1"HcH8IH)H~*AHDžI9@)HfLL}HE)Ek$LHHHH#H?HPtH4LmHQ tHELHL)HELH?H H L J4J HHPI~IEL HxHIE""HDž8Hx HH%"HDžHIx HI!"M%"HHHHHfL E1ME1HDžIHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžfDL E1ME1HDžE1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžfDIL E1MMHDžE1DžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžL E1ME1HDžE1DžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžFfDE1KL\L!L E1MLHHDžE1L8DžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžBL E1MLHHDžL8HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžhM`MhA$tA$AEtAEIx HIMHuH9HHPHHHHx HHHDžPH4L9(H(HHPH&H}&HHx HH{ HDžP'H(H4H蝩HHHHP-H(Hx HH. HH(HNHHPH$4tM9EH=.mHHPH#H5+HyHHIH(HHx HH=H5LLyLHHHP%Ix HIHHHDžHAŃ+HHx HH HDžPEL9(i@H5O+HxIH:6H=x-HTlLHHHI}5H5*HLHxLLHHH8a6Ix HI4H5,HL:xLHHHIDHHx HH61H8Ix HIDIExHIED1HHM9&H5*HwHHIHQHP1HHHPH(I$xHI$DH5gHSwHPIH CHHx HHCE1LLPH(L9H5HvHHPH=GH=+bjHHIHHxELkYL^HQnE1E1E1L MME1HDžDž HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžL E1MLHHDžE1L8Dž HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžLLT LHH8IvIx HItI@LLHDžHLALHHhLALHHLAվH LIx HIHDž8L E1ME1HDžL8HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžOL E1ML8HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžL}H5LhH8IHb'&HLHHHI)LǺHHLLHH=(Ix HII1H8x HIH1HH|…Y'HHx HHM9P*E1LHL HH(A%HHo)HDžHHDžHDžL E1ME1HDžL8DžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžLmFL E1ME1HDžL8HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDž L E1ME1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDž +H ?L E1MMHDžE1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDž lL E1MLHHDžE1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžMMMeALHtAA$tA$IEL8xHIE ME1 HE1H5BLH81[L E1MHDžL8DžLHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDž\LDuH7I H 1L E1MH1LHE1HHHH1DžHHHHHHHHHHL E1MLHHDžE1E1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžLE1]L E1MHDžL8DžLHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžLLLH tHRH8tHPL E1MLHHDžE1E1HDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžHDžDžLHHL HL L L1E1HHP1L MLHHLHHL8DžHHHHHHHHH1L E1MHLHE1HL8HH1DžHHHHHHHHHHH11L E1MHLHE1HL8HHHHHHHHHHHHHDž11L E1MHLHE1HHHHHHHHHHHDžkLIH&IExHIEqI@LLHHLHH8ILHLHHHP3LHҾHLT'IHIL1L E1MHLHE1HHH1HHHHHHHDž1L E1MHE1E1LHHHH1DžHHHHHHH1E1L E1MLLHE1LLLLHHHHHHHDž"LLLqHLLLHlHHHHE1L LHMLME1LLLLLLLLLLLDž!E1L LHMLE1LLLLLLLLLLLDžLLLLuLLIpM`HtA$tA$Ix HIME1%1E1L MH1LMHLDžHHHHHHHHHHHHH)T1E1E1HLHHHH1L ME1LDžHHHHHHHHHHH,H56H81111L E1ME1HLHDžHHHHHHHHHHHHHHAL)+1L E1MHE1HHHH1HHHHHHHHHHDžE1E1L E1MLLHE1LL8LLLLLLLLLLLLDž%1L E1MHLHE1HL8HHH1HHHHHHHHHHDž!y1L E1MHLHE1HL8HH1HHHHHHHHHHHDž1E1L E1MLLHE1LL8DžLLHHHHHHHHHHHD11L E1MHL8E1HHHHHHHHHHHHHDž%鸿HL L L%*#A$tA$HE1Hu1HLLHLMHE$HHPI$xHI$E1HL8LH.L111L IExHIE11L E1H1ME1DžME1HHHHHHHHHHHHHHHKE1E1L E1LML8LLLE1LLLLLLLLLLDž%齽A$tA$LPzE1E1E1L LME1E1LLHLL8DžpLLLLLLLLLLLLLLLLLHH5~LPHH*OL9rNLE1dAPL EHHHH(HHHHPHHx HHMH=&1HHCIH$OH5]I9u90HHuE1H)H?LLULPH 1H H4LELzHHH8KIEE1LPxHIE&OHHNtH5 LNIH.HfH)EHEHHELHHPI/H HPtH LEIU tHEH LHH=@ LHEHHHHHJLIx HI/IExHIEm(HE1LPHx HHU(E1HL8.1HHH11L E1MHE1E1HL8Dž%HHHHHHHHHHHHlE1E1L E1MLLHE1LL8LLLLLLLLLLLLLDžиLLLtAIx HI1E1E1L LME1E1LLE1DžLLLHHHHHHHHHHE1=H=L9>HGH1P0HH8H>H_AŅE?HHx HH=1H8EM9 H51LJHH8H9H5LJHH8H:9H5HiJHH8H:H5LCJHHPH:HHTIH:HHx HH>H1H8Hx HHC;E1LL LPP^L A]Ix HI=^EVH5HnIIHv\L9[HMHLL H(D~L HHH8\Ix HI]1H8DHhH`HxhHXHφH=SHHPLAx=Ix HI>1HHEH5?H=p ;IHn>tAEH5mHu;HH8H>HH1LmH=L}HHuHuHEtLHHH8HLHx HHa>1H8IExHIE>M@IQH;9t H;AIyH?H;mIA?tII H8tIIx HIH5L9HHIHE&HpLHHH8EHLϺLLHI%DIx HI(>H1HHHx HHE1LH8M…EIExHIEEM9 E1L LAH(1H3HH E1L8LL%A$tA$1Hu1LHHEHHEHHPI$xHI$rHL8~L111LIExHIE1L E1MME1LE1Dž'E1E1LLLLHHHHHHHHHHHڰHPE11E1L E1ME1HHHHHLLLLLLLLDžz\LD1L LHMHE1HHHHHHHHHHHHHHDžL詯LE1I2E1E1E1L ME1LLE1DžLLLLLLLLLLLLLLHPE1E1L Dž7MLHH1L8HHHH1HHHHHHHHHHpLX2E1E1L MDžMLHE1LLLLLLLLLLLLLLՠ1L E1MHLHE1HHHH1HHHHHHHHHHDž,BHL#Lb111L HME1LHHHHHHHHHHHHHHDž+镟LLvLLL[LLGL11L E1MHL8E1HHHHHHHHHHHHHHDž1鿞L%PA$tA$H$E1Hu1HLLPLmHEJHHHI$xHI$i E1HLPL8 L111L2IExHIE} 111L HME1MDž0E1E1HHHHHHHHHHHHHHx1L E1MH1E1L8HHHH1Dž/HHHHHHHHHHL˩Ϻ1L E1MH1E1L8HHHH1Dž1HHHHHHHHHHAE1E1L E1MLLHE1LL8LLLLLLLLLLLLDž/鬛11L E1MHL8HHHHHHHHHHHHHDž/#E1E1L E1LML8LLLE1LLLLLLLLLLDž/镚11L E1MHL8HHHHHHHHHHHHHDž/ E1E11L HME1E1LL8LLLLLLLLLLLLLDž8uHPE1E1L DžmMLHE1H1HHHH1HHHHHHHHHߘH5ppL耮>HPE1E1L DžmMLHH1L8HHHH1HHHHHHHHHH'L%A$tA$HlE1Hu1HLLPLmHEHHHI$xHI$tE1HL8LPL111LIExHIE#111L HME1MDž4E1E1HHHHHHHHHHHHHHE1E11L LME1E1LMLLE1HLLLLLLLLLDž4QH511L E1H1ME1Dž3L8E1HHHHHHHHHHHHHH騕L%QA$tA$HE1Hu1HLLmHE:HHHI$xHI$ HL8L111L,IExHIE111L HME1MDž2E1E1HHHHHHHHHHHHHHrE1E1E1L LME1E1LE1MLLLLLLLLLLLLDž21L E1MH1L8E1HE1HHH1Dž3HHHHHHHHHHJL2L%HE1E1E1L LME1E1LE1MLLLLLLLLLLLLDž0鏒Hsr1L E1MH1E1E1HHHH1HHHHHHHHHHDž+L՞LȞH軞HHH5E1H81HP11L E1MLHHL8Dž9HHHHHHHHHHHHHHL HPE1E1E1L LL LHMHL8DžaLLLLLLLLLt111L HME1E1HE1MHHHHHHHHHHHHHDžE11L E1MHE1E1HHHLLLLLLLLLLDž;WE1E1L E1MLE1E1Dž<E1LLLLLLLLLLLLLʎE1E1L E1LME1E1LLLE1LLLLLLLLLLDž<=1E1L MLE1LLLLE1HHHHHHHHHHDž<鰍L蘚邮MhIPAEtAEtIH8x HIt&1׭HL DL 鹮L01驭1L E1MH1E1E1HMHHH1HHHHHHHHHDž'鬌H萙IUMeHPtA$tA$IEx HIEtM18LBL5111L HME1E1HLHHHHHHHHHHHHDžs鵋IUIMHPttIEx HIEt I1LH YH 1E1HHP11ML E1MLHHL8DžsHHHHHHHHHHHHH麊L袗J1L E1MHL8E1HHHH1HHHHHHHHHHDž<LLLL1L E1MHE1E1L8HHH1Dž:HHHHHHHHHHpHX;HPE11E1L ML8HHHHHLLLLLLLLLLDž:ˈHPE1E1E1L E1ML8HLLLLLLLLLLLLLLDž:/11L E1MHL8HHHHHHHHHHHHHDž:馇L莔?1L E1MHLHHL8HHH1HHHHHHHHHHDž8LL ZL֓!Lɓ*1L LHMHME1HHHHHHHHHDžbf11L E1MHLHE1HHHHHHHHHDžbLޒLH5L3IHL9NE1L LAH(1HgHH8HGIExHIE%H=[1H85 HPIHH E1ɸI9H1LPHHuHUH?H)LLMH H 1H4LLHHHILIx HI1HPMAEtAEH5 LHPIHHHfLmHE)EŹHHHLHPtHOLEHQ tHEH HLH=kHHEsLHH8 LHIx HIH1HPx HHIExHIE1HHHt1H8ȤE1HP1E1L DžjMLHH1L8HHHHHHHHHHHHH靂H腏"Lx+LH dH 1E1L MMLE1HHHHHHHHHHHHHDžjE1E1E1L LME1E1LE1LLLLLLLLLLLLDžjUMHIPAtAtIHPx HI11L E1MH1E1E1HHHH1HHHHHHHHHDžj鍀LL nL 1WH5XHHPE1E1E1L ME1LLLLE1HDžiLLLLLLLLLLHPE1E1E1L E1ME1HLLLLLLLLLLLLLLDži)HP11E1L E1ME1HHHHHHHHHHHHHHDžh~L肋LuLL11L DžME1MHLE1HHHHHHHHHHHHH}HPE1E1E1LLHLLLE1L ME1HLLLLLLLLDžAQ}HPE1E1E1L E1ME1HLHLLLLLLLLLLLLLDž@|111L HME1E1LHHLHHHHHHHHHHDžB2|HP11E1L E1ME1HLHHHHHHHHHHHHDžB{1L E1MHLHLHHH1HHHHHHH1HDžB&{HL L HPL E1MDž9L8E1H1HHHH1HHHHHHHHHHqzHPL E1MDž9L8E1H1HHHH1HHHHHHHHHHyLL踆LEH褆,HPE1E1L Dž>MLHE1H1HHHH1HHHHHHHHHyHH;H5E1H81'HP11L E1MLHHL8Dž>HHHHHHHHHHHHHHYxHPE1E1L Dž>MLHH1LHHHH1HHHHHHHHHHwHL 虄L E1DžMMHHPH8E1LPE1LE1L8HHLHLH5I}`谴H H=b/HHHPLH8HHHHPHH8HL9H=HIHH5H HHGIExHIEH5H HIHH5rHz HHIExHIEHL%FHFL9K t HHHHHx HHiHHFL9 t HLHrHLEHpH1HxHEHHEF @H1>A@ @L> LHpL IUI@HML HHhIExHIEIx HIlHH5AE1H9pHE1ɿLEL HEHLMHEҩL HIH(H5aHPtLLHuL)H?HLH HEJ4H ɏHI*HHx HHIExHIEHHx HHDMUI$xHI$2H=CHHH5 HHIH$H5HnIHIExHIEH1H5<HH9p8H1ҿLELHHUHE)LHIHHǸHHPtHEHLH)HEHH?H H H4L HH}LIx HII$xHI$HHx HHHLXH`HhHHHHH1HLHHHHHxh€"L1LH`HLXHHhDžUHLLE1HxhcHP1L HMLHHL8HLHHHHHpHpL`HtA$tA$HHx HHL1tH"}L}1E1HHL|LH|4L|=L@L`AtAA$tA$HHx HHtELE11HH1LDž\HHJHL 7|L LLXH`HhL|L{H{(1LXE1Dž]HH`HHhE1LXDž\LH`LHhLE1s1LXDž]HH`HHh?HL,{LH{H5EHs1L E1MH1E1E1HE1HH1DžrHHHHHHHHHHHtm1L E1MH1E1E1HE1HH1HHHHHHHHHHHDžrl1E1E1L LME1E1LE1LLE1LDžsHHHHHHHHHHJlL2yͰ1E1E1L LME1E1LE1LE1LHHHHHHHHHHDžqk)H"E1E1E1L LME1E1DžrE1E1LLLLLLLLLLLLLL kLwKHP11E1L E1ME1HDždHHHHHHHHHHHHHHfjHPE1E1E1LLLLE1L ME1HLLLLLLLLLLDždiLvaHP1E1E1L ME1H1HHHHHHHHHHHHHHDže+iHvLHPE1E1L LME1H1H1HH1HHHHHHHHHDžfhLLguLHPE1E1E1L E1MLHHL8DžgLLLLLLLLLLLLLLgLtLtHtL(AUtAUHPtH8mHPHGH11L E1MHE1E1DžeHHHHHHHHHHHHHfHPE1E1E1L E1ME1HLLLLLLLLLLLLLLDže;fLL輚LHHIx HIH1HHHFHHHIHLHHHHH8HOHHѾHcHHHtHHgH=rZHPE11E1L E1ME1HHHHLLLLLLLLLLDžedL LL 11L E1MHE1E1DžeHHHHHHHHHHHHHdHVH5L H81)L HLpHPL E1MDžeIE1H1HHH1HHHHHHHHHHQcAHHxHHuHp觉HPH8H1L MI1HE1E1DžeHHHHHHHHHHHHHbE1/LH 1E1E1HHHH1L MLDžeHHHHHHHHHHaHP11E1L MLH1HHHHHHHHHHHHHHDžgFaHPE1E1E1LLLLE1L ML8HLLLLLLLLLLDžg`HP11E1L E1ME1HHHHHHHHHHHHHHDžg`HmBLlZHPL E1MDžgE1E1H1HHHH1HHHHHHHHHH__LGlL-AEtAEH߇11LHHuHuL8HEޤIIExHIE"1LHH8Mt6111LL ۋI$L HI$111L HME1E1DžCE1HHHHHHHHHHHH'^LL kL 11L E1H1ME1DžCE1HHHHHHHHHHHH]H;g]HPXHHE1LDžWLXE1H`Hh!E1LLE1LLDžULXE1H`HhHiE1LLLvuHHHHp1Dž_H8HPHH1LXE1H`HHhHHH-DžPHiH;5H5,HDoHH;ђucHPXIMpE1LXDžXLH`LHhHhL H;tH5,HnI뉸U8LLXE1H`HhDžVLhHHoMEIUAtAtIEHPx HIEt:1DžN1E1H%DžM1H LL {gL 1鳥HegH餦HQg髦LDg齦H3gH51HH oL  1E1E1L LMLHE1LLLE1LDžKHHHHHHHHY1L E1MHLHE1HHHH1HHHHHHHHDžKYHPE1E1E1L LHME1HLLLLLLLLLLLDžJXke銣E1E11L HME1E1LLHDžBLLLLLLLLLLLWLd鶡Ld1LdfDUfHHAWAVAUATIHSHH)P)`)pfHnH@fH:"HHE)EfHnHfH:"HHE)EfHnHXfH:"Hu)EHLIHMIH *JcHDHH0tHMHH(tHxHH tHpHHtHhHHtH`HHtHXHtHPHWHP@HL-I1jHUJ4AUAQM3H x~HXH`vHhHHpH}M~DIIJ<uM1LALmHI9t'H;HtHxHHuJbHI9uڐHKjDH=jE1HeL[A\A]A^A_]DIH kJcHfD1E11LpAtALhL`A$tA$L`LhAUtAUL8LXATALPMMMMH]HPHpH;=>AH;=DH;=LHv}LHAH}H5+H9wt H;=sHLLLWLLeJIXZ@HI9H;HtHxHHu`@1E1E1E11fD1E1E11f1Hx(tHxL@ AtALpF11fEHxLPLXL`LhLpHAfHQtHEH1tHp@HtHh@HtH`n@HъtHX@M1H=AHP<HtHEHatHpI[HAtHhI2H!tH`I LPE11E11E1DHtHXIfLP@HH0tHMf.L8AtE11E11E1E1\L-cjHuHAUM18Y^D1HQL8D@HHHHD@L8LefHL9IH;HtHxHHuV]@L@HΈDHL@H$Aff.UfHHHAWAVAUATIHSHH)`)pfHnHfH:"HHE)EfHnfH:")EHLOMIIMM1H=L`xLeI}HtHx HHIM9uHDc>H=FE1HeL[A\A]A^A_]ÐHNtHhHtH`HWL`Q HL52M1jHUJ4AVAQM+,H 7Hh Hp HxH3 M~fIIzK|uM1LCfD[fDIIzHH1HtL8HAHh# H,AL`Hpt ƒE‰HxHAf)E)EHE)) )0tAHtLHH1DžLHH7IH IExHIEvHDHH H?tI9qIFH5ڌLHHV IHR YHHr HLxII$M xHI$ HHx HHL;-L;-I9}LEuAą< IExHIEt EAtAHx HHdIFH5LHHi IH! Ix HILMLzfIH H;/H;I9LqtAą IExHIEEHEI9V11L5IH H9 H@ It$(H8L0H0 H}LH9HH; cH; !AHsAŅ Dmx~IH AtAIEL8Ix HIwHfoMHE)MHtH=؁@HEL}HLLLHEEfEEEH@HHEWH@ HHfHHPHHHPHtaHc[H}Ht`^襁HsnHHF y[H (H| HHpH(H 7 H 1L&WH} HEfHHEEHH}Ht?`LZHH? HHHHHHt_HHH\ HH9 H$fHnHfH:"tH1L)EH=HHE\mHHH HHx HHtM! HDžMHfI$xHI$IHtHHx HHHHtHx HHIx HIIx HIrHHtHv^HHtHb^H8HtQ^HHtH=^H(Ht,^HHt^H}Ht ^H`LmH;HtHx HHtHI9u @SL8AtAHs~L`PHhH*HxHhL`H5<HHpHH9s H;}1HH蟷LeIM9=I}HtHxHHu%RH}tHxL`MHhHHpHfHQ}tHpQ@H1}tHh#@DE1DHTQyL@QH0QIL QMLQHQHLiIH[Ix HIgMz@HP8AYH |L`LhPsL5jMHuAVL1d+_AX@H0PH P LPHDžE1LE1HDžHDžHDžDžnDHDžMtIEx HIEt.HVH= MU15DLhOfDLXOLHOL8O=zHgDžoE1E1HDžHDžHDž/HDžE1HDžDžvHDž@HhHpHHDžE1HDžDžrHDžHHDžE1HDžHDžDžvq,tHDžE1HDžHDžDžrH-I$x HI$tVHDžE1HDžHDžDžrHHDžxHI$uL}MHtHHxHHuHTMwHDžE1HDžHDžLDžtUsHDžHDžHDžDžH\H@HHiHDžX3RHMHDžDžHHDžHDžLZLHHVH)HiH=111HlHDžMDžDžME19L\HDžHEHHULPUwHHDžHDžHHDžME1DžwH?HDžE1HDžDžHDžHHIMHDžHDžE1HDžHDžDž|&HDžME1DžHyHhUH5H81sHDžHDžDž}HDžE1HDžHDžDžwHDžHDžHHiHH H,HHAHH陇HHHɇHHUfHHHAWAVAUIH2ATHhH8SH8)`)p)EfHnHfH:"HH HE)EfHnfH:"H)EfHnfH:")EHLOMIH JcHHH(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWL`H] HL5D^M1jJ4HAVAQMH H`HxHf.foHHM) HtH=qis@LLH0H HH$gfo0Hf)0)HtHH8HtHH(HtHHULmL9tfH#fDAGHAOIL9t3M}MtIGIOH9H=ht@LmMtHuLL)?L-hL9HHP HHJHrHx`HHXH@HHIT@HpHL`LHPHsgHHHHtGHGBH;uIHL9#A$tA$H="1HLeHHE"ULHǿHHx HH=A$"A$MtIx HI*MIHLIGPILPHHfH;!L;L5}QjL1AVMHZYLAC1A6IPxxHxHxHxff.UfHHHAWAVIHTqAUHhATSHh)`)p)EfHnH0&fH:"HHE)EfHnHfH:"HP)EfHnfH:")EHLOMI[ H ̮JcHHH(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWL`H]kHLdNM1jJ4HARLAQMLH Hx H} H} L`I~ fDII K|uLM1I}Huf.IL9t'I}HtHxHHu7IL9uH?H=JȪ1HeH[A\A]A^A_]@I If I| HDž1HH1H򉵰tHHxLhAUtAUHpLpHʉtL8HAHhtAHL` Hr H H5:I9wt L;= b/ fHDž)) fHDž0))tL%_H;&cL9u1H;at(HpRyHAEf.etHHx HH! IGH5qLHHIHHIUHH8HHHLUHIHx HI HHx HH H; bAL9DH;`HMQAƅ?Hx HHEH5gL&HHH;aL9H;`HPAą_Hx HHpH5oLE趺HHLSHH!07IHHHSHH' Hx HH*Ix HI LLÅIx HIHPtH5(oLHHH8H@H;]t HHHHHx HHLRHHqHHHQHHEHWHuHEHHEHTHEF @uHLH}HIWH@HTJIHcIx HIHHx HHHH1HLHHHDž@jII$xHI$Hx HHMt$111LQIExHIEA E1HDžHDž1E1E1HDžHHHLIHtHx HHHHtHx HHMtIExHIEMtI$xHI$H9DH=C%1MtIx HIHHtHx HHHHtHx HHHHx HHHHt.;HHt;L(L M9tyIfDAEPAUtHH%IHH=HLuHEHuKH]HEH?HEC @uHHH}IFHSHTHHHHx HH~Ix HI{L1LHHHHDž@LHWHIx HI=I$xHI$8Ht"111H>Hx HHA$(HLLHAE1E1E1HDž4H3L:HL@HHMLq9Aow fH:)Ht*HHH]LILHHHH&HLXLZ|HHt'HHt'L)H?LH?;H7UH}HHtb'HH9L9Ht HL1HH=hHHEL}4LI蓟MI$xHI$HtHHHH HHDžE11AHDžH;E5HPXHHE1E11ALHDžAE11HDž1E11AkL HqLxHLH^BHHLIEHHxHHL{$HnNH]HP LCFH6M1E1A"E1HE1E1L1E1E1A H1HdLA(E1+1E1E1A(HH1LE1E111E1LLA%H1nE1E1L1LE1A(LH;,CLPXHH11A%HHV11A&1HE1E1HHOH;BHPXHHp1E1E1E1H1A!HH51H-!1A2E11HE11E11E1HA211E1E1HE1A!HHwLE1A E1E1LE1reCHA11E11E1HH 4CH$CHfA/HdFH%"H5NH81@HA/E1E1H1E1LH1LA3L 11A$HSHE1A$E1E1LE1m11A,E1H1E1H'E1E1E11LE1A,L.1LE11HE1A,?H;uCH5HH;PCH5LcH;/C.UHLUITUIH]\UHUH`UUfHATSHP~(HE)E)EH]H}H]v-Etn<<<<WUHuH}AHUvIH}HUH9tuE0HeAA1HDH='躇U1;H}HA=fDH}>HA?fDH,H=uPACnTUfHHHAWAVAUATSHH`HHHH)p)EfHnH`fH:"HHE)EfHnfH:"HuHE)EHLOMHH HcHDHH tHMHHtHMHHtHMHHtHxHtHpHWLp HL5MM1jHUH4AVAQIPH xeH}H}H}LpH~DHHI|uIع1LsLeDIM9t/I}HtHxHHuIM9uH l H=E%(E1HeL[A\A]A^A_]HH6HHDžHDžHH1HtHHMHH1HtL8HAHxtAHLpL%<HL9H]HHH5H9qt HH5mH9pt L9 Hf))HH L-3H=IULIH tAH>AHDžI9F\ HHEL}HE8IH H[H DHPtLHMLH?L)LH HEJ4HHIHtHx HH?Ix HIIx HIM M9 L=2H=IWLIH tAH=HuE1HI9F9 H1LL}HEGHMtIx HIIxHIuLHH L9HHHwHEL}H:IHL9j%/~HfI:"M9, L9 )0MtH=-9AGHIU0HH0HoH fH:) HtH=8@HPHIHH L0Hj6HPXZHE oXfXUH@HHX0HHHH迚HHHtHH5HWHPuH`HtH0H(HtH8HtI^8H0%H HHHH%HEHH< L9A tH1H]HH=XHE%HI詏M I$xHI$tIEI܅fHIEMHtHHx HHHtHx HHHHtrMtLeMtLXHHtGHpLef.HI9nH;HtHxHHu6 @HuzHH 1HtHHuHH1HtHHMAL DL Iع1H=ELp辌FfHDžHDžHDžf.HxHEL%5HMHHuL9HHHL%5A$tA$LedL%i5A$tA$Le9L%I5A$tA$LeA$tA$LeLA$tA$LeLSfDA$tA$LeLLHDž-L( /H GH P)~HfI:"M9L9)0MtLHIu0HPIL0HHHP0X&HPHEoXfX]H@HH5+HHHH蜕HHHtHH|0H4 HPuH`HtH H8HtA fH4 1fHDH=zMIEE1kDH`H1Hl`HpLefDHI93H;HtHxHHu@H1H #lfLH5tHpHE1A HDžHx HH1E1M1A E1@xAG-H!5HXUH5 nH81a/A _L5AjHuLAVI1 Y^9DHZE1K1HE1E1E1A HDžL~IH1E1A E1HDžE1HtHHx HHt5Ix HIt51E1E1A HDžgHfDLINMnHtAEtAEIx HIME1ZILmH58L8 LE1E1HDžA LT}IH1A E1E1HDžz H2H+SH5kH814-]A 2IFM~HAtAHtIx HILHkHxHEL%.HHuL9HHHuHNE1A H5H A E1A gA LLHHH YL,HHWHBH4CHCHBHCHBH.CH&CH HDžkLlIH1E1A@ E1HDžE1HtHHx HHt5Ix HIt51E1E1A@ HDžgHHfDL8INMnHtAEtAEIx HIME1ZILmH5LLE1E1HDžA@ ,LkIH1AA E1E1HDžzHD!H{AH5.ZH81 AI 2IFM~HAtAHtIx HILHkHxHEL%LHHuL9HHHuHNE1AO H58H8AO E1AP gAG LLDHHH\YL,HH7WH2H2H2HE2H2H"2H}2Hu2H2H2H2f.UfHHHAWAVAUATIH6SHHHH)`)p)EfHnH8fH:"HHE)EfHnfH:"H()EfHnfH:")EHLOMI H eJcHHH(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWH`L} HLA*I1jJ4LARLAQM迿LH }Hx H}; H}S L`I~fDII J<uLM1pH;Hu@HI9t/H;HtHxHHurHI9ufHk H=aHDžHHe[A\A]A^A_]I.  IIHDžHDžHpHʉtHHxHpHʉtHHHHp1HtL0HAHhtAHL`L-H L9HH HH5H9qt HH5H9pt L9 Hf))))HH HH=HSHIH tA$HA1I9D$ HEH]LuIH' H%7H HPtLHMLL)H?L}LI4H LHHtHx HHEIx HI9I$xHI$HH! L9 HH=HSHIHS tAHDžHE1I9F HHELeHEHHh H5H xHPtHHMLHHH)I4H?H HMtI$xHI$HxHHuHIxHIuLuHHyL9} H= PdHHW HHuE1HH9C~ H1HLeHE"IMtI$xHI$e Hx HHMn M9r HHLLLL͌H}Ht_HHS HL蟌L9: HL9i L9\ M9S foH) HtHMF0HH0HL`0HoP fH:)Ht!HLHLH@LHLHHH jP8H@Y^HE oHfH]L0LL7 HLHHuH8HtLL=H@uHPHtHHHtH(Ht/DIM HHHtH H HH L9 tH=31LH]HHEHIjMp IExHIEitHIHHHHLHtHHx HHMtIx HIHtHx HHHHt3HHt"HHtHHtH`LeHI9H;HtHxHHu@IHH(1HtHHuHp HʉtHHuLLxHDžHDžHDžf.M1H=+ H`NgL}DHhHxL-HMHHpL9HHHuHHfDL-9AEtAEH}LmL-AEtAELmL-AEtAELxRAUtAULmL AEtAELxLAUtAULmLHDžHHLHHH1H H]H`LefDHI9H;HtHxHHu@H1HCHLGA fDHDžE11HDH=gUHHHxE1LfDHDžLjjMHAR1LLn_LAX+H0THL9L9M9foH) HtHH@HIN0HLL HP0HHp0jH@XZHEoHfHmL0LLGHLHHnH8HtL LMH@uHPHtH&H(Htd;A fHTJ H HDž1E1A HDžHYIHHDžA 1E1HDž|I\$M|$tAtAI$xHI$aME1HtHx HHthHDžA I$x HI$t5MIHILLfDHL~H5*H&HA E1HDžHDžHx HHt1QH1AHXIHHDž1A KAH H-H5FH81D!A A MfMfI^A$tA$tIx HIHDžIHhHxL- HuHHpL9HHHMHHH,E1A H5HhHA E1HDžlLcLsA$tA$AtAHx HHLL>1A H5LwLA E1A 1NAH H.,H5DH817D_A A H5HA ^LA A L)H HL HLHHH[HHf.UfHHHAWAVAUATIH0"SHHHH)`)p)EfHnH8fH:"HHE)EfHnfH:"H()EfHnfH:")EHLOMI H tQJcHHH(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWH`L} HLI1jJ4LARLAQM?LH }Hx H}; H}S L`I~fDII J<uLM1T\H;Hu@HI9t/H;HtHxHHuHI9ufH H=MHDžHHe[A\A]A^A_]I.  IIHDžHDžHpHʉtHHxHpHʉtHHHHp1HtL0HAHhtAHL`L-MH L9HH HH54H9qt HH5H9pt L9 Hf))))%HH H^H=HSH;IH tA$H]A1I9D$ HEH]Lu`IH' H"H . HPtLHMLL)H?L}LI4H LmHHtHx HHEIx HI9I$xHI$HH! L9 HCH=|HSH IHS tAHDžH8E1I9F HHELeHE:HHh H!H  HPtHHMLHHH)I4H?H GHMtI$xHI$HxHHuH IxHIuLHHyL9} H=OHHW H-HuE1HH9C~ H1HLeHEiIMtI$xHI$e Hx HHMn M9r HHLLLLMxH}HtHHS HLxL9:HL9i L9\ M9S foH) HtcHMF0HH0HL`0HoP fH:)Ht!HLHLH@LHLHHH jPH@Y^HE oHfH]L0LLHLHHaH8HtmLLH@uHPHtBHHHt%H(HtIM HHHw`HH HH L9 tH=n1LH]HHEnHIVMp IExHIEitHIHHHHLHtHHx HHMtIx HIHtHx HHHHtHHtHHtHHtH`LeHI9H;HtHxHHuv@IHH(1HtHHuHp HʉtHHuLLHDžHDžHDžf.M1H= H`RL}DHhHxL-HMHHpL9HHHuHHfDL-AEtAEH}LmL-AEtAELmL-qAEtAELxRAUtAULmL AEtAELxLAUtAULmLHDžHDH0L HHH1H#4]H`LefDHI9H;HtHxHHu@H1HL3LqGA fDHDžE11H[DH=zAHHHxE1LfDHDžLjMHAR1LL_LAX+HTcHL9L9M9foH) Ht)HH@HIN0HLL HP0HHp0j(H@XZHEoHfHmL0LLHLHH.ZH8Ht}LLH@uHPHtRHH(Ht5O;A fHH HDž1E1A HDžHEIHHDžA 1E1HDž|I\$M|$tAtAI$xHI$aME1HtHx HHthHDžA I$x HI$t5MIHIL,LfDHLH5HHA E1HDžHDžHx HHt1QH1AHCIHHDž1A AH9HpH5#2H81yDA A MfMfI^A$tA$tIx HIHDžIHhHxL->HuHHpL9HHHMHHH,E1A H5H hHA E1HDžlLcLsA$tA$AtAHx HHLL>1A H5LwLA E1A 1N AHwHH5a0H81DA A H5 H A ^L/A A L )H HL HLH H H HT H% f.UfHHHAWAVAUATSHHHhH)PfHnfH:"HE)EHLOMHHHIع1H=4IHPHtHx HH HXHtHx HHH`H=D9E1HeL[A\A]A^A_]HNtHXHtHPHWD HHUH41L5jLPAVAQIΖH LPLLXM8H/HPHHtHPLXH5mI9ut L;-HDfLHE)Ef)`)p耰HHHID$H;t H;[A$tA$E1E1E1MID$H *I9L$I9ID$JtIMtIExHIEHLkL9t9IXHHqH1@HH9H;TuH}HfoELxf)M)pMIEIUHH9H=aAEPAULmMt=IEIUHH9H=MAEPAURHHuH;ufopHxHtH=@HHuIMZLAHH~HHtH:H0H9I$xHI$BH]HHHuIHL}HLLpLLPH}HtHmH%`AxDHMHH`LH2PLJHBIHxLHHMAf.HfHMLhAUtAUL LXA$tA$LPH5֌I9uemLLIع1,DHPHpH}P/fZf@HufIELIEPIELP0IELIEPIELPNLDHH9|HuH;jfDL=AtAIEH;cOAEtAEH9~HEAE fI:")E@u tEIEH}HP3讌IHYIExHIEHu1LLuHHEIIx HIOIx HIUMt$111LIExHIE9AI$xHI$u LĿ@HxHHHDH=42E1HtHx HHHHHtHDžE1E1E1HDžHDžsLLHDžE1HDžLDž:ID$I$LPI$LPH,HE1LLHDžHDžHDžDžLpH]E1H1H5mLDžM1LLE1DžE1HHQLE1E1HDžHDžLDžLE1E1HDžHDžE1DžHLE1E11HDžDžHDžH{LcHtA$tA$Hx HHt&LE1HDžHDžkHנ 81LLDžHLE1HL譥CIHIIH"IHIWff.UHAWAVAUATSHhHvHHfH;)EHCHwIHLuHL輴H]LeOHqLmHHxL諤H}HE oMfEMfI~H]EH}Ht,LmMLmMH}HtLmM蒧ADIMH}L}H]HtHxtH}kIHH]Ht;HSHKHH9kH=CPSMtLNHeL[A\A]A^A_]@LL荬H}oLjL}1MME1A}I}0HtI}38L膠HHH5H81!HH=α E1E1fDf.HHE1L H ՜H5}H8R1H<XZE1HyxIHH=D"fHHHCPHHPH;H= HM6Lǧ)fHxtHH=Ѱ Ht3HSHKHH9t8H=uCPSE1@DHHHCPHHP@A}&I}0HtI}V8L詞@H;H= HoHhHOfL}H]EIII#H=IIIIEINIWIIOIIff.UfHHHAWAVAUIHzATSHxH)`)p)EfHnH fH:"HxHE)EfHnHfH:"H()EfHnfH:")EHLOMIH JcHHN(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWL`WHHUJ4ML5HH1jAVAQMrjH HhPHpgHx~H}H}H`H0M~fDIIK<uM1LlHH IL9t'I<$HtHxHHu IL9uH nH=1& HeH[A\A]A^A_]@IH JcHfDE1HX 3H8HtH8H]HX3HHtHHxHX H@ʉHtH@HpHX HʉHtHHH0HhHt H0H0H@HZH`b HGH8qMPHffHDžHH)P)`HDžHDž)))H0HPHDžHHfH@ƅP)pH)tH@HtH9@ E1I9HH90H9@-H98 HEH8HHHHUHHLpL9H}Ht!HH^H`L]91vIHH0H@H;t H;G2H08tH0HDžHDžH(E1HLH(H5HAH9qHH9aHAL,AEtAEHMtI$xHI$BH=>H8HHDž HuH HH9HH H81LmHEH IHH8Hx HH-M IGI;G A$tA$IWL$HIGI$xHI$[HMH(HIHѿHHtHH0H9豨H(Hx HHLnH0Hx HHIGH;Ⱦt H;AtAHDžMHDž(HHHDž H01H5gI9t$ID$H(=H9KID$H H8tH(H LHH8LH0Lu H}Htǝ肾HHzHPH0HH 5 LPMHH;HXfInfH:"HtH=@HHH8HH HLH8H輽HHtHݿH0H9#蜦I$xHI$HH9H@H;#t H;¼$Ht1LH0H8H0HDžIEH qI9MH8H9IEH4ȋH(tH8HH=) IHHDžH vHI9L$HHLHMHHHuH41HH(#I$xHI$H(H3LHHLH@L\VL脬IHH(Hx HHzH@HHH0H}H0LHHxHHtHH0H92&XIExHIE/HE1E1HHH9&fo`H9fH:)=&Ht-H E1IHHHH8H H8HH8HHHHHiHHH8H8HHt蔙HHH1HUۜH}u*oH]HtH=b$@HHH8WHH8HH0H(Ht HH蝶HHQ謹H8H#H0HHA#H9#Ht HHHH11H=WHEHH]`HH8H8!H8Hx HH#HHtHL0HDžE1HDž8f.HDž8E1wDHDž@E1HDžHDž8HH0Ht H0H0H"H`tHhE1HDž8HDžHtHpH@Lx(AtAL}{H@I9Y 1YIH Hx HHIGH;&t H;ŶAtAHDž@E1HDžH\fHI9EIU IEHHH9H9AtAIUL4HIELHH@IGH $I9OI9#IGN4AtAIHHHZHOHHBHڊHõI9E:fH= Hu1HLmLu\H HHF H*HHHi@LL蕖DžH1E1HDžHDžHDžHDžHDž(HDž8HDžHDžHDž L@E1L9 H8- H(! H H H H H HH~H=1L L H H L H H0 H@z H@HH9tHPHpgHHt覓HxHt蕓LL&LލLLM9tzI AEPAUtM1H=L`HEHHVfH舄H9@L%,A$tA$HhHu1LHHEHEHI$xHI$ Ht"111H(Hx HH DžH1E1E1HDžE1HDžHDžHDžHDž(HDž8HDžHDžHDž tHxH@tH]ItH]H8vLLHHH9H(LlAENMf.L%iA$tA$HHu1LHHEHEQHI$xHI$Ht&111HeHHHDžH1E1E1HDžE1E1HDžHDžHDžHDž(HDž8HDžHDžHDž DHEL5M1HHLHjAV\_AXf.HpL`H tA$tA$H8Hx HH]L8HHLLGvL8VHDž1E1E1HDžE1HDžHDžHDž(HDž8HDžHDžHDž DžHL%/A$tA$HsHu1LHHEHEHI$xHI$Ht&111H+HHHDžH1E1E1HDžE1HDžHDžHDžHDž(HDž8HDžHDžHDž H5JH8#DžH1E1E1HDžE1HDžHDžHDžHDž(HDž8HDžHDžHDž DžH1E1E1HDžE1HDžHDžHDžHDž(HDž8HDžHDžHDž HDž(E1HDž8L@1E1E1HDžHDžHDžHDžHDž(HDž8HDžHDžDžHH8}L}WL}H}DžH1E1E1HDžE1E1HDžHDžHDžHDž(HDž8HDžHDžHDž IL貤IHKH@HH@H I)H H<^H0[H(HJH(H@HHHHDž@HH81E1L0HDžME1HDžHDžHDžHDž(HDžH HDž8DžHHHHtH5H8,HHHH@H;Ht HHHHx HHH=YxHAHHHx HHBHHuHHHEHM1޳HHHx HHHHx HHHt&111HҚH:HH%11L01HME1H1HHH(HHH8DžHH H8_L(zH9ItH8HyHyDžH1E1E1HDžE1HDžHDžHDžHDž(HDž8HDžHDžHDž Lby?HUyJHHy`H苑011E1L@H1E1E1LHHHHH(H8HLL DžHHx[L@1E1E1HDžE1HDžHDžHDžHDž(HDž8HDžHDžHDž DžHfLϟIH H@HHH HDž(SHw&HwE1E1E1L@L1E1E1DžHE1LLLL(L8LLL HmwH81L0MHDžE1HDžHDžHDžHDž(HDžHDžH HDž8DžHHv1E1H8.Lv!HvyE11L0MHE1H1LLL8E1DžHH81E1E1L0ME1HHHH(HH L8DžH;W1MH8QH;ןHPXHHHthHAH8E11L0HME1H 1H1L(LLE1H8DžHH8E1E1E1L01ME1LE1LL(LH L8DžH0LtIt$ID$H(HtH(tI$xHI$L(1H8H9ILH(1L01MHE1E1H1HHH(H8DžH:H@H@H;t H;8{H@8tH@E1L(HL0E1E1H(LGHH5|HAH9qTH0H9\HAL$A$tA$H0HID$SMH;k^A$tA$L8H81LHHH8Hx HH}H99L(LI9HH;AoU IE(HtH=@HH(LHH(IHHHtHH0H9|袆HHx HH1LHDfA$tA$I9,L2M IU H*=@+w111L0HL1HLHHH(H8HHDžHYH0H9HLdA$HݟHH5H81111L0HL1HHHH(H8HDžHH5<H4yE1E1E1L0LL1LLL(L8LDžHIHcHH5H81;1L01LHH1HHH(H8H1HDžHH5';LOx111E1L01LHHHLH(H8LDžH]H&o*H81E1E1E1L01LHHLH(L8LLDžHL藚H8H1E1L01HLHH(H1LLHDžHHHnvH;dUH51HstGi1L01MHE1E1H1HHH(HHDžHLm HBIHH@HH0Ht^HDž8H@HHDHH@HH(HHDž0l1L01MHE1E1H1HHH(H81HDžH111L0H1E1E1HHHH(H8HHDžHE11E1L0H1E1E1LHLLL(L8LDžH>E1E1L01LE1E1E1LLLL(L8LDžHE111L0E1HH1HHH(DžH1L01MHE1E1H1HHH(H8HH DžH?11L01HE1E1HHHH(H8HHH DžH1E1L01LE1LHHH(H8DžH1L01E1HH1HHH(H8DžHK@H55Hr1L01LHH1HHH(1HDžHHi31L01MHE1E1H1HHH(H8HHDžHHYHtuH E1IHHHH8H^HH9KHH97H=RH9H8HL~HHH7HH1HHI謏HHHH1tHVH HH9HHx HH%H=HH16H(HH5?H1۸H0H9qHH]H(H?H)HH HHHuH41VHHH(Hx HHuHHx HHHgH8E1H0L(H9pcH(1H}HEHHEHHEkH0HrHHPtHH0H)H8HEHH?H HHH4luH(HHHx HHHHx HHH0Hx HHH8Hx HHtRH1HH(H81H1L0E1HHDžHHeHHHXH(0ttH8Hx HHH81MHhH5eH(eHe HAHYHtHtHHx HHtpHH1 E1E1L01LE1LL(LDžHH8sdHfd0HUd1L01E1H1HHDžHN11L01HE1HH(HDžHHcHc~E11L01LE1LHH(DžH11L01HE1HHH(HDžH{E1E1L01LE1LLLL(LDžH0H(H]15HHH=HH1H8HH H1۸H0H9NCH8H]HHH)HHMHH?H4H 1"HHH8Hx HHHHx HHbHH(1H0H8H9sHHH)H8H(HMHH?HuH HHH]H41]H8HHHx HHHHx HHH(Hx HHL0HDžH1E1HHHHH(H8HHKH[H80ttH(Hx HHtcH(1Ht`7Hg`E1L01E1HH1H8HDžHVH(`L`Z11L0E1H1HH8HDžH1L01E1HH1HH8HDžH1L01E1HH1HHH8HDžHuH>_!HFH^HtHtHHx HHtHH1cH^E1E1L01LE1LLDžHH^H^.HoH H_HrHϥPHff.UfHHHAWAVAUIHJATH(HSH)`)p)EfHnHfH:"H !HE)EfHnfH:"H )EfHnfH:")EHLOMI H JcHHH(tHMHH tHMHHtHxHHtHpHHtHhHtH`HWL`L}{ HL5M1jJ4LAVAQMf-H H`xPI~@IIK<uLMI<$HuIM9t'I<$HtHxHHuI\IM9uHKdH=}p1fHeH[A\A]A^A_]@I. HtLhH`AUtAUHxLhtL`HpA$tA$Hp LxHʉ(tLp(HAHutALuf)@)PtHHp LHH L;-L;-քKL;->LVwAŃH81HDž8D<8H(HxHx HHH(H;H} HSH=HeIHC tAEH(H5 HGHH IH HHDžHI9E HHELeHE膂IHoHˤHPtHL}LH)H?I4LH LuhHHIxHIuLvYI$xHI$uL\YIExHIEuLBYHH; H=e| H H H(H5ڥHGHH IH H HAE1H9H HHELmHE>HHHHPtLK4LeL)H?HH H MgLII$xHI$HHx HHH Hx HHML;5n H(LhLPLLOH}HtbH~@HHI<uIعLiLLeH;HtHx HHHI9uH(JEH=|E12HeL[A\A]A^A_]HHVtHUHVtHUHnH>tHVH}tHUHVtHUTH]H5]fLe)`HCH9t9HXHmHJH1@HH9sH;tutL5tnL9LH5iID$H9t;HXH/HJHJ1fDHH93H;tuA$tA$M9M6cHXM9M9L9aIu0oK H)MLH8HC(HtH=7m@AoT$ ID$()pHtH= m@LmTHpLELAH}ufLuLmEHxHtLH}HtvLJT&mTIYMHhL`LhHa,LHXFH`4IHrI$xHI$HxHHMtLKHhHtKH]LeH;HtHx HHHI9ufDHH9HuH;5TkfDH=h脺IHHnHuE1HI9FfIn1LfH:")EyHMtIx HIIx HI HL5kL9H5 HHIAs1I$xHI$HEDH=xHE1@HH9HuH;5,jfDH=n\HXHHCH59HHH%HHHHAHXH ymHuHDž@HH9H~@HX1fI:"LH)ELewH@II$xHI$HXHx HHMM9H5 LGMAxr;> fDIعH=wBLefHXCH`؁= HXHx HHHCxH=vE1E1HwDH=mLp=Lf=A@1fD@KfDhHDL5vjL1AVHuI,ZYDL<8H<(KEAHkHYH5H81eD!UHX5BHB{H=ouͯE1I$xHI$ME1fDAH9kHjdH5#H81yeDTHXAH@B|H=tM{L;^DAHjHCH5H81 eHDIAq1LbDAvHXAHA{H=Mt諮fDLxKLmMH}E1HvFL}MdAYI0HtEIIGH9t IGHpv=8Li=H:]HH:1H@~H=sL:(H@sH=fsĭH@sH=Is觭IFM~HXAtAHXHtIx HILXHu`HHLxH@PtAtAHXHx HHtPLXHuH?xH=trҬE1ME1E1SLt9QHXc9+&!9 HނH鲂ՂЂ˂ff.UHlHAWAVAUATISHHXHEHEHEHELIHM5HtHHtHUHGuHHUH41L-IjLEAUAQIH H H|ݘH}DCÃhf)EXL;%cIcIt$0LeLHP(H}fL}H]E7@AOcID$PMH}L}H]HFaBL=H}p{HOH]Ht;HKHsHH9{H=SbESJKA1H}HHHHHuHE6HEH}Htgf.IعH=2H1H}HuHtHxHHtmH<#H=2Kũ1He[A\A]A^A_]@HuH>tH}-DL;H}/zf.+6ffDIعL6?HHE;HEDHHEHHCRHHRHE~;aHD>HrdH[RH5\H81^ML:H~;AH=I苨1@LXEL}MiH}1H@?LeM>A|$2I|$0Ht?I|$Q8LX7LX:H:AH=]IH\HSHKHH9t@H=_u&CPS)H91DDHHHCPHHP1HC:CH=HP1fL-dEjHM1AUHuIZYGH~@HHI<uIعL艴LLeH;HtHx HHHI9uHH8H=kE1RHeL[A\A]A^A_]HHVtHUHVtHUHnH>tHVH}tHUHVtHU觻TH]H5}fLe)`HCH9t9HXHmHJH1@HH9sH;tutL5\L9LH5ID$H9t;HXH/HJHJ1fDHH93H;tuA$tA$M9MVQHXM9M9L9aIu0oK H)MLH0HC(HtH=W[@AoT$ ID$()pHtH=-[@LmTHpLELAH}ufLuLmEHxHt:H}Ht:18TF[TIHMHhL`LhHaL:HX5H`TsIHrI$xHI$HxHHMtL9HhHt9H]LeH;HtHx HHHI9ufDHH9HuH;5tYfDH=V褨IHH]HuE1HI9FfIn1LfH:")E8H$L'HK(H=6XMIT$IL$HH9tFH=Lu,AD$PAT$L&1}DID$I$LPI$LP1B@L1L}ME13IbHYjHM1PHu_Y^HK' H=5X1HlHkHkfUH0ZIHAWAVAUATSHHXHEHEHEH%LIHMHtHHtHUHG=HJ4HU1HDjPAQMLEH "LmML%KH5M9AI9utf)EL9HCHrKIHEMm ME{@L}Hs0LILAH}BfL}LeEH}HtL*H]H-'AJDH7HFH}L}LeH*L$H}cHH]Ht;HKHsHH96H=ISJKF1H}HHHHHHEHEH}HtfDMIMHH HHLH"H?L 9MLHHuJHH5*nH:APHAL@1SGXZ1H}HuHtHxHHH$H=21He[A\A]A^A_]L.AEtAELmyL #H}wa_fL%IA$tA$LeMAYf.K7fD1HlLo&L菠Jf.HKH2H5ۄH811FH #H=11ffHHEHHCRHHRHEfHHE!HEHIHH"H=G1蒏11LE1{H{0Ht&H{A88HL!H"H=0(MIT$IL$HH9tFH=Fu,AD$PAT$L 1}DID$I$LPI$LP1B@Lp+L}ME1-IbH>jHM1PHu/Y^H!H=/(1HfHeHefUHTIHAWAVAUATSHHXHEHEHEH%LIHMHtHHtHUHG=HJ4HU1HUMjPAQMLEH "LmML%wEH5M9AI9utf)EL9HCHBEIHEMm MEK:Hs0IH]LHHPHH}AfL}LeEH}Ht$H]H,!ADDH1HEH}L}LeH#LH}\HH]Ht;HKHsHH95H=CSJKE1H}HHHHHHEgHEH}HtDMIMHsH uHHLHH?L MLHHEDHH5gH:APH#KL@1#AXZ1H}HuHtHxHHH\H=P1He[A\A]A^A_]L.AEtAELmyLH}G[`fL%BA$tA$LeMAYf.7fD1HfL?|&L_Jf.HEHu,H5~H81@HH=O1ffHHEHHCRHHRHEfHHEtHEAIHHUH=>Ob12LE1{H{0Ht H{28HdL`HH=NMIT$IL$HH9tFH=@u,AD$PAT$L1~DID$I$LPI$LP1C@H@%L}ME1'IbH&HjHM1PHuY^HH=M1H_H_I_fUffHAWAVHEIAUATSHHHH~HHEHHEHDž(HDž0HEE)@)p)PNC  +*HHL;5L?HDž  H5 JHH8L6IHNHDžHDžH8HDžHH0HH(HH HDžHDLLHHH/gHH(;H0HHDž(HH5WHHDž0fHnIfH:"H.H(tALe1)EH=DHL*LHH0薕HDž(IxHIuLHUHYHHDž0J$ HH@H;<t H;?uHH0t HHDžLE1H IGH5G<I9w L9A IGN$A$tA$L(IHHtHx HHHLHHDž(LdDžE1HDžE1Ix HI5L(MtI$xHI$#HHtHx HHH0HtHx HHMtIExHIEH=H=,%OE1HtHx HHCHHtHx HH3HHtHx HH#HHtHx HHHHtHx HHMtIx HIzHXHtH}HH9t HEHpLxHpI9t2fH;HCH9t HCHpwH I9uHpHtHuHH)SHHHtHHL[A\A]A^A_]DH;=<t H;=9zAtAHDž E1E1M)H IVH K9I9N1H9BIVH‹tHH(H MtI$xHI$L%sXH=|HDž(IT$LHtH0H54<H9pL0HuE1H1LLeH]pFHH(MtI$xHI$wIExHIEHHDž0HH}?HELeH}HUL9WfHnHfH:"EH9HUHEEHuH}HUHEH}L9t HEHp4?8H0XHHx HH HDž(HxH;}HGHUHHuHHx IMLAH(HH7HHtH9H0H9 Ix HIB HDžLE1HDžHDžHDž{,HHH;.7$ HLeHpLHp0"L`LL*LPLL.HhHtL%2LmX L@LLHLNIHHDž(fDHpHHUH}DL jHtHLQ HUH}HUH}Hx HEELeLeLLH 9H`tH0L%HLIHH=RDH3HH IExHIE LHu1HHHEL}BH(IIx HI Hx HH HDž0M0111Lu)IExHIE HDž(E1E11DžHDžHDžHDžHDžL|LyH0H@HHHLxKLhLXHH;fDH(H9I\fLH0HhSfDL`LhA$tA$AUtAUHL0x HHvHuDHDžE1E1HDžHDžHDžDžHLH(IH2HHtH4H0H9@ Ix HI HHHDž0HHHL9~OdA$rqL=I]AtAHL(L-%HLmIH' ~!fH:"HNA)EHEAE @u LOIELHPEIH IExHIExHh1LLhHHDž`>H0II$xHI$8Ix HIHDž(Mt/111L%IExHIE HDž0DžE1HDžE1zHDžE11HDžHDžHDžDžEHUH}GHDžE1E11HDžHDžDžEH3HHH5slH81-DžE1E11HDžHDžHDžHDžL(MHDž(E1E11HDžHDžHDžDžIx HIBL%6ZHDž0A$tA$H5w?HL(IHuHEHE1LHHHEHRH@LMlDžE11HDžHDžHDžHDž_DHE1DžH:DžE1HDžE1HHDžHHHH&H0IHWH@HHHIxHLHSLLqLLL0L9AHU-H>H5?fH81'DHDžE1HDžH"H L;LHdLHDžE11HDžHDžDž:LE1(LLs{LfH9~SM|AHLIH(HHtH*H0H9I$xHI$WHIHDž(HHHHH(H5OvH8HHE1DžHHH'HHE1E1DžHHHDžE1HHDžHHHHDžMNHDž(DžeL]HDžE1E11HDžHDžHDžDžHsLsHtAtAHL0x HHLHuHHE1DžHHHy&HPL1HDž8La"H(IHH@HHHHHE1DžHHHfDHHDžHHH_q11E1E1HLHHHHDž!DžE1E1DžHhLHHDžHHHBE1IH EHHEEHDUH`3HAUATISHH8HEHEHEH9LIHM)HtHHtHUHGIHHUH41L-/jLEAUAQI"H xxH H|H]DHLHH~HHuuHHE,HEcfDIعH=O/2z1H}HuHtHxHHtMHH= k1He[A\A]]HuHtH]5DfIعLy_L-.jHM1AUHuIcZYff.UfHHHAWAVAUATSHHw;HH)@fHnfH:"HE)EHLOMHHHIع1H=/xH@HtHx HH\HHHtHx HHLHokH= |iE1HeL[A\A]A^A_]HNtHHHtH@HWHHUH41L%/jL@ATAQI^H L@LHHH0HH6H@=HHtH@$HHH0L= H0H5L9'H9qtfIEH;`#HE)Ef)P)`)pt H;AEtAEHDž8E1E1HEH8H(DIEH I9M+I9IEJtIL9M3I$'HI$L9HuH;u oS HC(HtH=![@HHuH8INH8LHHiiHtH!H2H9LIExHIEuL'SH0HxHA Hq(HpHhffop)p)`HtH8fo`Hh)]HtH=$@LmHUHuLH}fL}H]EH}HtLH}Ht*ABDI MJHXLPHXHKH8HPS6IHcMI$1L0H(HS x HHMHHH08L(HHAEtAEL@e@Huf.HHH{H9t;HXHHqH1fDHH9H;TuMI$fH HH5XH81QIEMAx)1HIEHtHx HHHDH=dMI$1E1HI$1MHtHYHxHtHHhHt7HXHt&LuH]I9tuIDAEPAUt;HI9tGLkMtIEIUL9eH=tøuLHI9u@H]HtHuHH)@H@HtHx HH(HHHWHLHH?s5fDI9K\f.LIع1YqH@DfDfDL(AEtAEL=iL@AtALHL0ƅ'DL=1AtALHHL0ƅ'TH01H)S4LqH0qHEH9EtHHhHPHpH`薡LIHt'H@HH8HIHH=afE1/MIELIEPIELPWsfDL`HPtL@KH0N@L%R&j1HuATH@I(ZYGH8HP0HUH5H8.IEAHDHH9LHuH;D:fDHHJH5RHWH81@BH8HcH=up_MI$E1qzL+L}1ME1HH=!_MI$1L-yBAEtAEHHu1LHHEHEa$HIEx HIEthHt111Hy Hx HHtlHdH=vq^kHt[IExA E1LHH='"^HIO7I7I7I7H77fDUfHHHAWAVAUATSHH#HH)PfHnfH:"HE)EH!LOMHHHIع1H=C#$lHPHtHx HHlHXHtHx HH<HH="\E1HeL[A\A]A^A_]HNtHXHtHPHWhHHUH41L5}"jLPAVAQI边H LPLLXMPH/HPDHHtHP+LXH5]I9uL=:t M9GfHE)Ef)`)pM9IE H@H@ID$H;t H;>(A$tA$HDžHE1E1HEHHH8ID$H I9L$9L9ID$JtIL9MxIElHIEnL9UHuH;ugoK HC(HtH=@HHuHHIKHHLHHiHtHH2H9I$xHI$uLH]H@HuIH H}oUfE)ULpHuLH}Ht{HHADHHH`LHLHx(IHY7fL8H8HS HHLhAUtAUL LXA$tA$LP @HuNfHHAH{H9t;HXHHqH1fDHH9H;TuMIEfH1HH5MH81qI$MHI$uL H&H=96XE1MtIExHIEXHxHtHhHtLmH]I9t}I DAD$PAT$t=HI9tMLcMtID$IT$L91H=atuLH]I9uH]HtHuHH)HPHtHx HHHXHOHDHH7-fDL9K\fLIع1eHPDsfDcfDHsH=VE1MGDID$I$LPI$LPfDL A$tA$L=yLPAtALXfHE)Ef)`)p14@L=)AtALXH@LxknfD1H1LGfHE)Ef)`)pL IHpH@HHHHIDL5#j1HuAVHPIZYL!eLe/ H@H,HH=TE1H H5pH8I$xHI$Hx HHtfHHHH9HuH; fDH! HJH5~FHWH81 jHf)EL6HH=SHII$ANI$xE1'LH(IHHx HIL;=zHtH Hx HHH CfDIVH tH HEI^tM&HxA$tA$L5LpL9H ,H ^H tH HMHDž uL(H)L AHE1E1x HHtrM%IE1ۅx HIEteM^oH HxH HHtAXHfDHpfDL`fDLPH@L= jLHuAWH(IL4ZYD1H"H78HpLe@H;HtHx HHtHI9uE1fH H7mf HE1A-@E1AHxL5HML9H HAaE1"L H5 L'Å8I$xHI$L-(AEtAEH L9HDDHËtH=YHIHHx HHHu1LLeHHE- HI$xHI$`IExHIE#Ht"111H+Hx HH A@LIHH@HHHI@H/L6LL~,LqBA*H}HEDmDe]EDuEEEEEEfLAE1AIEE1kAAnAcHAH ?Hf)`AH JkH 9B1E1AE1AH^ALHHcLA1MKumIHUHAWAVAUATSHxHHEH;=HEHHxHHGHP HELmHEHHIIEHxLP8H}HEfHEHEEHEWAoDHECH}LP HHH}H};HpHkHEHuH}6HpH8IHL5H=АIVLtIH8tA$HuH}HpH8TIH8HqI9D$HEHuHHMLL}HM1HMIHtHx HHIx HIFI$xHI$ MLLHqIx HI IExHIEHEHEH9ptHxsE1I>HEE1HH=B?HtHE1HHLH}t H}zMtLmHEHtH\HEHtHKHeH[A\A]A^A_]fLXLHL8L(HVHY1?fIExHIE*MtIx HItE1LfDHHE1H5L H H8R1HL^_1f1MH ,H=t=HE?HyxHH=2L1 ODLCIHIEE119MHz,H=tfDAFDAGWDHHEE1E11E1f.HH=j0HxH~I1U#HHEE1E11E1HQE1E1E1H59%H-1H81HEd@LuE1E1E11۾GL%jHM1ATHuIZY@MHEE1LL}MH}HEHqLeMGA|$;I|$0HtII|$8LDHEE11۾qHEL[1H}HHEHEMHEE1ZH I I I= H HX I I8 ff.UfHHAWAVAUATIHSHHTH0H)`fHnfH:"HE)EH&LOMHHHIع1H=1=H`HtHx HHHhHtHx HHqH,H=~1-HeH[A\A]A^A_]DHNtHhHtH`HWP HHUH41L5VjL`AVAQIΊH !HhL`H(H`)HHtH`LhHEL}L;%RHDžxHPHpEL}HEE AEtAEI|$xHx HHH5ZMl$xH=|HVHX~HH tHDžXHuHHH9C_ HXHLmHM1HXIHtHxHHuHϸHx HHDM HELHHXHEH]H}HUH9fHnfH:"EL9HUHEEH H}HUHEH}H9t HEHp診HIEH xHIEHEHpHUL9HPfHnfH:"EH9HUHpxHH}HUHEAtAH5L/ iIx HI AD$PE1 HXHpDHHH}Q fLuLmEH}HtHX*eDzDH8HH8HH+ NID$1MHPIFLmHDHEMtH=UAEHXLH}HHt;HHx HHNID$HLuLmMtH=9AEHXLH}HHtH Hx HH,Mt$hI|$pLZiH[Xt H GH>H}L9t HEHp HpHPH9t HEHpMtLCH`HtHx HHCHhHHHH&zHHLpAtAL(LhAEtAEL`f.Iع1L6@諴5fDHtHQH9HUH}HUH}'Hh[ufDKfDL(AEtAEL5AL`AtALh2H5aL AIEex HItEnAtAH5L\ IxHIuL膳AD$TA!fHtHh@@HtHLHUHpHxH}qf. fDH5ALAIExHIuLȲE9AtAH5LPIxHIuLzHHAID$PLXRHEEH]H]HHpxL}L}LifH51L\H5?LAIEx HIE7L%jA$tA$IFH;AtAH=*LbHXHIx HIyLXHu1LHHELuIIx HII$xHI$Mt111LIExHIEfH?H=}#H}E1L9HpHPH91f.AE?DLXI$x HI$t)IvHIiL!\@LfDL5j1HuAVH`IZYHHH5H81H-H=~"fH}L9E11f4IXHItHH='"LHfDHX?(HHHP2H=K"^fDHH2H="H}1L9,@H踮HKHCHHHXDtHHDtHx HHJHHHu=@L@AEDM2HEH=C!^HpHPH9fE11P7XHXLmE1MHX۲DE1#HBH=P ML:HDH=" 1fDEHUH}EHUHpH:L9HXLڬLͬzLH;uuLPXIHI$HI$L~H?H=6HEH=1H;^tH5oLutHHHHHHHHHHH{HHHzHHHHZUfHHHAWAVAUATSHHHH)`fHnfH:"HE)EHLOM|HHHH=Iع!-H`HtHxHHuЪHhHtHxHHu 诪HհH=HDžXHXHe[A\A]A^A_]HNtHhHtH`HWHHUH41L%jL`ATAQIzH L`LH(H`{HHtH`bHhH8L%HEL}EH=mL}IT$LH@HpHDžxHEE蔴HHtHHuE1HH9C 1HLeLpLmHPMtI$xHI$Hx HH6HPHEHPLpHHHHEH]H}HUH9fHnfH:"EL9PHUHEEHCH}HUHEH}H9t HEHpªLpHPHHXHHx HHHEHpHUL9H@fHnfH:"EH9HUHpxHH}HUHELpH8BHHLp9HHHLH8pH}mHEfLeEHP詯4HË4萿H8H蛬H5vHX8tHXfHu1H)EHXHHx HHHCAEtAEH{xHx HHH<HPLkxHCPHCHHPHALeHDHEMtH=CAD$HHHH}IHtMIExHIECHCHPHHuLeMtH=zAD$HHHH}IHtwMIExHIEHPH{pLHChXtHXHx HH=H}L9t HEHp跧HpH@H9t HEHp藧MtLگH`HtHx HHHhHUHJHH=轤3HL(AUtAUHHL`H8XtH8HhfLIعv&H`Pf.HEEH]H]HLHPHH$HH=ɹ H}L90HDžXE1h@HLp虣@HtHH)HUH}HUH}HtHXLHUHpHxH}zf.H H fDH7HpxL}L}Lf転8fDL訢L蘢 EHUH}AD$E@LsHHnfAD$@HmH=%hWHCLcHXA$tA$HXPtHx HH7HXHuDHLp象@L%6jIHuATH`1|_AX~ HHH=WDۦHx H=0sMLE1H}L9HpH@H91HXDHHHEHPH H}E1H胫H]Hh{^H{0Ht^H{HCH9t HCHp8H$fH"H=EHDžX&HXH=X1HXf.'EHUHpN4cHDžPHE1HPE1HDžPHLp蔟HpH@H9}1E1HXCH}1HXL9 :HoHHHaHHHH=HHUHAWAVL}AUIATISHH8荿LHLI蜿H}iHEfH]EHEE }ILML5M9$ID$HMAD$PHHMH]HtH=BCLLH}IHtMI$x HI$t\AtAMHt3HSHKHH9tjH=uPCPSH8L[A\A]A^A_]@L蘝AufDCNfDDHHHCPHHP@L`H]HH}HEH>LmMo@A}`I}0Ht迧I}8LY7@[HH=زHt3HSHKHH9t7H=uCPSE1DHHHCPHHP@H!H:H5 H81aHNH=.I@H-H= (KdI:HE16HР0HIHE1~H-IKIXImI]IwI|IIIRIWff.UHAWAVAUATSH8H.HmH;=~H_@D%1Ht HH5H1HHu EGrLuHLI`H}%fL}H]EE}IݲLMQL-gAEtAEfHu1LH)EIIExHIEMAD$TID$H@L}H]HtH=CLLH}IHt茤MIExHIEA$tA$MI$x HI$tsHt7HSHKHH9H=[uiCPSHeL[A\A]A^A_]DCIfDLLfDLNDHHE1L VH H5H8R1H+XZE1YHyxHH=tfHHHCPHHPH1HĻH5H81qH^H=fY t@蛝H8H=@3 HJHSHKHH9tCH=u)CPSHϜ f.DHHHCPHHPL舧H]HH}E1HLmMfA}I}0HtI}.8L聙w@H%H=- E1]HH= &IE11sH踛TIE11H=111~HH= HIIII IIII8IIfUHAWAVAUATISHHXHHDrlHELmDLLH}HEcoMfEMfI~LeEH}Ht'LmMLmMH}HtLmM荝E}IzML-L9H{HL{@LcHHtX諟H}bAECTDs\tAEHXL[A\A]A^A_][HEE1H}D3֐ۜHJHݷH54H81芽賬H}ʙHgH=bMt9IT$IL$HH9tDH=u*AD$PAT$1HX[A\A]A^A_]DID$I$LPI$LP1A}kI}0HtOI}薯8LB@ME1E1A}I}0HtI}U8L訕LeLLAH}t)L"LeMuE1L1fL}LeEH+HHf.UfHAWAVAUATSHHx\H`HEHEHE)EHPHXhL-ɽL#M9t M_H[HuHDžhE1L=_AfInL}fH:"xtAHE1)EH=HHHp航HEIIx HI-HEM5M9HEHtHx HHMtI$xHI$HhHtHx HH\Hx4HEHHL9H@HpHP HEL}Hxr~xIfI:"HH})EHt腛M9M~ 3H5HpHHUL/H}HEfL}EHxH}HtHEHͻHMtH=/AGHxH}L}HELHt+̚HEHxHEHEE1HxHEH`HxH~HH9tbHtH=>@Ht;HOHwHH9H=rWJOH`HAAEAEHLxHHMtIx HIMtLԙMtLǙH}Ht蹙HxHĈ[A\A]A^A_]A$tA$I\$tL蝪HhHLxWLx]fLxHEMLLPH5HEI~`?HeH=`HMHULHu>AEtAEH}^H}HEMH}HE<HPHhLHHEHxh'MhH萍L耍$Hp4@H`HzAG/L@*H0E1E1AH}HtHx HHH}HtHx HHH}HtHx HHHDH=SHtHDžxH`hfHDžxVH5 ZL1HEHH5/H81腵E1E1AMAE14G HHpHGHxRHxHRHp]Hx֐HxEE1A}E1AoHp袛HEE1HxHHxHDžxx Hx0HtHp HpHxHPH9tHPHpHr蒍Hp8H~AHPHhLHHxhVE1E1E11AHKH,HaHIHQfDUHAWAVAUATSHHHHut*HELxhfM/Mt L;-ٵ{MMuE1E1L%]H=MIT$LQHHtHuH9GRHu1H}HHEH]H}IHx HHMHx HHMtIx HIMtIExHIE MtIx HIHULHHlHx HHtDHtI$x HI$trHH[A\A]A^A_]+fDۈfAEtAEM}AtAL蜤Ih@H蘈LHE脈HEHH[A\A]A^A_]ÐLhLXLHΜLFHHLeH5I|$`赸I|$`ID$`HtHx HHHELLLIHxhMwuHH=n1LWHGHEAfInfH:"tAHMEtHx HHt}H}Hu1ɺLU)E*LUIIx HItH}[f.LHELLLIHxh}p0LU)E܆foELUhff.UHXHAWAVAUATSHH(HEHEHEHHLIHM8HtHHtHUHGHHUH41L% jLEATAQIVH H H|ݰLeH5IH=Uf1)E HHWLmLL8IH\HxHI$bH}LI胣L-LeL9OH{LcHHPLtHx(IE1HH=Mt I$LPLLeMtAIT$IL$HH9RH=4AD$PAT$PE1H}MuHtzHxsHAHud貄IعH=n1H}HuHtHxHHtMH/H=1HeH[A\A]A^A_]ÐHuL&A$tA$Le!fL\HIعL?LXcfID$I$LPI$LPL覈HBH=19H"H=HxE1f蛋AH HH5H81IDqL艈HH=~!IEE1DL%jHM1ATHuI]ZYHuH^ff.UHfH@HAWAVIAUATSHHX)EfHnLffH:"HE)EHHIӈHIiINMgH=֘MH}HtHxHHuH}HtHxHHu袁fH͇H=MHe؉[A\A]A^A_]fIiM~AtAMn L}AEtAELmH5I9uL%Nf)EA$tA$Hu1LLmHHE͹II$xHI$M1L}IHUH;6xHELHEHID$P HEL}HEfInIfH:"EHxH})EHt&L;-׫M} ЫHWҔH}HHULϐH}fL}LuE菫HEH}H;q%HCH@L}LuMtH=ΪAFHuHH}IHtqMIx HII$CP!E11HI$vMtIExHIEkMtLH}t H}MtLH}HtۉH}HtHx HH&H}H^HSHHF~<IN tHMINtHMIUHL5ZM1jHULE1AVLPNH L}LpIJ|tIItJ|t LmfLM6H}"DL}L}}L}}HHH5H81ߦE1HH=BMtI$ffDIE{E11f.HL\H}HtHx HHJH}HbHWHHJ|@L|/E1E1E1HEDL5ijHM1AVHuIMLWZY fDHEE1E1AFzDHHʵH5H81QHEE1E1ifE1E1PHEE1;3AHHH5H81D H H={ADE1$MHEE1H}hLuMH}E1HtmHEHxHx0Ht HEхHEHxHPH9tHHHEHq_}HE8HN}1MLE1E1zHHHHHhHHfUHfH@HAWAVIAUATISHX)EfHnH^fH:"HE)EHHI賀HHaHFH_H=IعH}HtHxHHuyH}HtHxHHuyfH#H=]AHeD[A\A]A^A_]HiM~AtAMn L}AEtAELmH5I9u=HFf)EtHu1HLmHHE豱IHx HHMaLuLLBHHHx HHL;-I] HL}HLHLYyH}HEfH]EHE赣IML;%\ID$HMH@HMH]HtH=CLLH}IHt藂M-IxHIuLwAD$TIEE1xPHIEMt=IVINHH9TH=dAFPAVQHtHH]Ht;HSHKHH9H=kCPS H}HtHx HHH}HeHZHHMvCDIN tHMINtHMIUEHL5BI1jHULE1AVLPFH L}LxHH|ݐt%HHtH|ݐtLmf.LIعH}"DHuILu7ufDHuf.'fH{)H=MIEIA1ۅfDHHHCPHHP(fILIFPILPL zHyH6LH}HtHx HH\H}H"HHH mtCvfDH}z%H=-xADL5jHM1AVHuIIL%OZYfDH%z(H=Պ IEE1A9f+|HH{H5H81ڜ{Hy H=u݋1fDHy*H==IEAE11@L@H]HH}HEH}LuMA~I~0Ht}I~8L=uHHH5{H81ћHx,H=nIEA HEI+IHE1O6rIIIIIIIIff.@UHfH"HAWAVIAUATSHHh)EfHnLffH:"HHEHEHE)EH,HI!xIHIMtI6IVtHUIELu HLM1jHU1LARLxAQMALxH L}H}`I~EDII2K<uM1LInIV(tHUIV tHUII,IV(tHUI~ tM~H}AtAL}HAă5LuH52=I9wt L;=]/H5h:I9vtL-CM9jEL-*M9IF HxHx M97HELHIGHpHP L}LuߚfInfI:"HKHxHMIc)EHpI%wH}fLuLeEH}HtywHL9HCH@LuLeMtH=2AD$HpHH}IHt_yMIExHIECPE1MtL)yH]LeH;HtHx HHHI9uHeD[A\A]A^A_]f.M1H=ڄ%LuLeI>HtHx HHt-IM9uHsEH=لA@m̐1nfmQfDH}yL-AEtAELmL-јAEtAELm5H`sKH=@[MtLwALكjL1ARHuMLLxGZLxY@LlKCHD1H|LH]LeDHL9H;HtHxHHuNl@1HѻLwtEf.L%A$tA$H]Hu1LHHEHEHI$xHI$(Ht"111HՋHx HH3HqJH=v@AD$HxHHqLH=l4fH!HڤH5 H81aHNqMH=.I@{}HxaHqMH=MIVINHH9tGH=u-AFPAVA:LoxfDDILIFPILPCHpezLeMH}E1HtL}MAI0HttI8LglHØHH5H81HoOH=ЀA:LiH}HME1E1XHfiHHHHHH[H[H>H[HbH HUHfH"HAWAVIAUATSHHh)EfHnLffH:"HHEHEHE)EH,HIQoIHIMtI&IVtHUIELuHL%M1jHU1LARLxAQM8LxH L}H}PI~5DII"K<uM1LI^IV(tHUIV tHUIIIV(tHUI~ tM~H}AtAL}HIAă%LuH5b4I9wt L;=H51I9vtL-sM9ZEyL-ZM9IF HxHxM9'HELHpHIGP(L}LufInfI:"H>HxHMIc)EHpooH}fLuLeEH}Htp豑HL9HCH@LuLeMtH=,AD$HpHH}IHtpMIExHIECTE1MtLcpH]LeH;HtHx HHHI9uHeD[A\A]A^A_]@M1H=|eLuLeI>HtHx HHt-IM9uH9kH=I|4A@d̐1~fdWfDH}L-1AEtAELmL-AEtAELmEHjH={MtLoAL{jL1ARHuMLLx:?ZLxY@LdQ胏HD1HsLH]LeDHL9H;HtHxHHuc@1HLtEf.L%A$tA$HTHu1LHHEHEHI$xHI$ Ht"111HHx HHHiH=z v@AD$?HxHHhH=y4fHaHH5KH81衋HhH=y@tHxqH\hH=lyWMIVINHH9t?H=u%AFPAVLf~@DILIFPILPKHpqLeMH}E1H;lL}M*AI0HtlI\}8LcH HH5H81KH8gH=Hx3AHL`H}HYH`ME1E1KHHHHSHߵHHHHHfUHAWAVAUATSH(HIHH5#H=*1uHHĀL;-IIuLmLHPH}xL}HELmMtL苁L.bLmMY hA$DIwMH;toLkL{MtL2LaLdH{2tHxHHuH!_HeH[A\A]A^A_]sgAHH H5H81!DIwLadHeH=>vHxHHDMtLcLa1^HHE11L bH ]H8RH5O1H;聇XZf.HyxHH=1DHdH=uu01fKfAHHH5H81D!vL9cHkdH=uHHHHq]1If.LxmLmE1M|A}I}0HtgI}Fy8L_s@H=1111}HcH=kt&PH\4H飲鱲鬲鯲颲靲防铲鎲鉲鄲zupkUHHAWAVAUATSHH8HEHEHEHLIHMHtHiHtHUHGHHUH41L%jLEATAQI,H 3H H|ݸLeH5QH=J&1 HHL1IH;H; >H@L}LLP HELmHEIHh |HEoHuHLZH}XLuHEL}MtL|L~]L}M6\cEt}IIsMPH;QcH{LsHtH}}|H}]H}&`H{ktHIޅxHH[MtI$xHI$0MtL|L\Mt=IUIMHH9FH=(AEPAUE1H}HHt~HxwHHuiY@IعH=1H}HuHtHxHHtMH?`<H=qE1HeL[A\A]A^A_]HuL&A$tA$Leq+YfLYHYIعL?fIELIEPIELPL]fEIE1E1E1uHO_H=HtHE1fE1ELE1E1뱐H!HڑE1E1H5H81[EMfL%jHM1ATHuI3ZY@EME1IfLgL}M1AI0HtrbIs8L ZEQH}]M_AH9HbH5#H81yDoEPL=!AtAHSHu1LHHEHEÏIIx HIt2Mt111LvIx HItETE1LVLVE1fH铬H饬H鲬H鼬H鹬HhfUfHHAWAVAUATIHSHHHH0H)p)EfHnfH:"H HE)EfHnfH:")EHLOMIH 6JcHDHHtHMHHtHMHHtHxHtHpHWLpLu{HLKjM1jJ4LARLAQM%LH xhH}H}bHpHI~fIIK|uM1LI}HtHx HHt7IM9uH@[H=lE1HeL[A\A]A^A_]ÐKTfIIIM1H=iLp0LuWHxLeLuHHH5dH;p2H5CI9t$tL=5M9tf) )0-hAL= tAM9Ml$8AL$IT$AD$$AoD$(MtH=P~RAEAoL$@Ed$PML9H{HK(HS,C4LkHC8Ht]oUDc`H HSPfL(IHHxHIEHLDžƅlHHIx HILPHLHPLXH}~fI:"HH8)0Ht\r~ HHfI:"H )@MtH=|AD$HK(H@LL0(iHPpH`fLXXHHHHtI\Y|IiMHLPHXHtH=8|@H{t vH{ foP[Ht[H|VAL(tALHDžIx HIHHtHp[HHtH\[MtLO[H8Ht>[MtL1[LpLmI<$HtHx HHtIM9u#PE1E1HH1HtH0HHxHtHHpMML=8{AtAL}MfL={AtAL}DHQ!tHUZLpAtALuL`A$tA$Le E1L% A$tA$Le;LN/LN'LNSLcjL1ARMLL)ZLYH1H軳HpLefDHI9H;HtHxHHu6N@1HXYL_tf) )0bAzAEDAD$@H|HXH5H81vE1E1%HDžHDžHRTH=2eE1DhQnH{ foPIcHtXM@LpU3H@H{H3XH5۴H811vHDžL(%HDž:HDž&HDžHDžE1(L)LE1HDžHQLL(E1HDž,LR\HPHHH`E1HtZVLPMmA}bI}0HtVI}IEH9t IEHpDN8L7N(HHH$ THDžLE1HDžvHɡHHHHʡH$HHHHNH鑡ff.fUfHHAWAVAUATIH[SHHHH)PfHnH0fH:"HMHDž`HE)EHhLOM[I3MtILHtHPHWLPHL5Q_M1jHUJ4AVAQMH xPH`-LPI~IIK|uM1LLhI}HtHx HHIM9uH`PaH=kaƼE1HeL[A\A]A^A_]ÐIuBHNtH`HHtHXDIFIt8M1H=%^LP66HOfDL`A$tA$L`LpAtAL8LXAtALPMH55I;v;H5I9t$tL-tM9f)0]L-sM9ID$8At$IL$AT$$H(AoD$(HtH=,s@AoL$@AD$PML9@s(H{HLc(H(HK,S4HsHC8Ht(R(oUC`H0LSPN[HHHx HHIhH(fo0IV H8)@HtH=cr@HpH@LHHjHp}fLxLexHHHtQgO$|r$IN_MLpLxMtH=qAD$H{t lH{ fopcHtPQH(LAEtAEMtL*QH8HtQHPLhH;HtHx HHtHI9uD FfLXL`IDE1HtH`@L%A$tA$L`EfDL5ZjL1AVHuM ZYND@ fD1HhL自HPLhHI9H;HtHxHHuD@AD$>@C`AeH{ fopIkHtOM0LL#1HOLϩHf)0YfH(@EH9sHyOH5#H81ymHJfH=\aE1fHrH3OH5۫H811mHJfH=[H(tH(N렐HJgH=[HSLpMH}E1HENLpMXA~MI~0HtNI~c_8LE$H(HHIiH=ZMMLMHHHRKME1E1jHH%HHH&HH1HGH0HOff.@UfHHHAWAVAUATSHHOfHh HX)EfHnfH:"HE)EHLOMHHHH={IعH}HtHxHHuAfH}HtHxHHuAfHRHH=Y踴17HNtHMHtHMHWHHUH41L-ZzjLEAUAQIH LeL1H"H|ݐHHt H|ݐLmH5i I;t$L}LLgLuLe:lfInHfI:"H)EMtH=k3AD$HuLLf^H}[HEfLmEHEH}Ht KkIMH= LHHfH;k@{HELmHEMtH=j$AEHELk HCtHx-E1HHH0MtLkJMtL^JMtLQJMtLDJH}HtHx HHH}HtHx HHHeH[A\A]A^A_]H!L A$tA$LhLeAEtAELmLIعH}DAEH{t dujHEHUH{ HSHC HPIs>fDc>fDS>fDAD$@Yt^H{ foMIKHtHMtH}D8fIعL_CHxt /^uKHEHUI} IUIE HeiC[@L8pfSt"YI} foMIAMHtCMLv@HI=Q@HHHCPHHP.cH H>H=Pf.E1LGLuMH}1HpgBLeMA|$I|$0Ht?BI|$S8L9H=xOsHZHSHKHH9tCH=bu)CPS'H<f.DHHHCPHHPHr=H=NةE1}HqeHojH5[H81_H3=H=N虩+@L%jjHM1ATHuISZY>aIN1E1nM1E1uImI^H銎INI>I6I.IJIUH8iHAWAVAUATSHHHHEHEHEHhLIHMXHtHHtHUHGHHUH41L%ijLEATAQIH H H|ݨH}1iHHUL}HLIv_H} fLuH]E=E.`}IMLMG:H=IHfH;_@LuH]HtH=H_zCMuI] AEtAEMIExHIEHt;HSHKHH9H=^jCPS1H}HHHxHHuq3H}HtaIعH=h蚵1H}HuHtHxHHtUH:_H=KE1jHeL[A\A]A^A_]HuH>tH}D2fIعLWCHxt XuKHEHUI} IUIE H`Y=V@Lx2kfMtSI} foMIAMHt=MLf:H97L@HHHCPHHP){]HH8mH=GJ f.E1LALuMH}1HpW#YL1#L$#H;MALPXIMBHDž`DžlA$L"!H"/L"]L"fHE1E1E1"E1Džl@HDž`HDžxHDž`E1DžlAHDž`DžlBH;+LLPXH`H`DžlBIDžl@:Džl@E1E1HDžxHDžpH;NH5eL(IH;NkH5AL'H`]HzIzH{H9{HzH {={H {IT{zff.UfHHAWAVAUATIH]SHHH H)fHnHfH:"HMHDž HE)pHLOMIX8MtIHtHHWLHLn5M1jHpJ4ARLAQMLH xcHH {LM~"f.II K<uM1LL(I?HtHx HHIM9uHZ&H=U8E1HeL[A\A]A^A_]IuPHNtH HHtHDI.IIM1H=4L '=fDLL L-KJH5LM9I9t$H54I9wt M95Džp@3H}HEHxHEHEfEHEkG>AD$It$(pID$ HxHEHHAD$@AoL$PAoT$`ffEID$HMHEUL9>oeH{HHs8foxp)EHHsXS8HE[@cPHtH)HHomHChLoufs`kp.IHLc@Lc(LL菒HHHx HH=L0HLHL )H0HDžPKo8f8XfI~L`XH`HtS'LPML0M|H@Ht"'L0M[$GI4MLPLXMtH=GAD$H{t XA8H{ foPHP{Ht &HCHH8!AEtAEMtL^&H}Ht HuH)HL(H;HtHx HHtHL9uD;fL0AtAL%LA$tA$LL-FAEtAEM9H5rL MI9t$51H%LjƅDL-FAEtAEL eHItH;@LxAtAL L`A$tA$L0LAtALM:E1fDL.jL1ARHpMLZLY@5V:H{ foPI[HtI$MtL!HCAD$`@1HhL~HL(HI9H;HtHxHHu@HGH$H5H81BH H=1E1#1H#L}`ƅHiGH#H5SH81ACH H H=1z|DH H=0XZHHH=0/E1LA~I~0Ht"I~38L8qME1E1A~,I~0Hta"I~38LLPLL%HPtLr'LPMuE1fLXL`XHqHVqHbqHfqH3qHqH!q@UfHHAWAVAUIHATSHH$GH8H)P)`fHnH fH:"HHE)pfHnfH:")EHLOMHH ԌHcHHNtHhHHtH`HHtHXHtHPHWLPLpJ HL*M1jH4LARL(AQI6L(H xwHX9 H`R Hhi HPH(H~uDHHbI<uIع1LD@I<$HtHx HHt7IM9uHQH=-E1HeL[A\A]A^A_]ÐfHv HVH1E1HH1H (tH HXH0H(tH(L5?HPH0M]L9H5AH9sD H5I9t$t M9 Džp@y(H}HEHx_HEHEfEHECCS%a*I} fo0A}HtH H HEH"8HHLHHxh@ HWH="|H(H1E1h@ 7fDLjL1ARILL(vZL(YH8 1HXL_n/fH LHH7HH5pH8HEH11HxTH=!{H(1E1HcE1|1HHmE1XH17HsH5pH81q1vH5LI$xHI$uLAlHDH= {E1b3H5HUH= zH(1HyHZ[H= zIwIGHHtHtIx HILH0 2H'IaLH01HHL > HDžAhL: AcLH0HDžH*L  1HDž)PLCH _H=+fyyI`H`I`I`I`I`I`Ip`I`ff.fUHAWAVAUATSHHIHIFfLHE)EfH5UAH)`)pHHHHaAăHx HHL}LmIcHHLL)HH9HHH9HHIM9LfDH{HtHI9uLm_;0HHHjxHHuHE11AH> DH=wE1MtL&HtHHhHtLmH]I9twI"AD$PAT$t9HI9tELcMtID$IT$L9t]H=.tøuLHI9u@H]HtHuHH) HeL[A\A]A^A_]fDID$I$LPI$LP`fDHH}H) $H@H.H8EHME1E1HPI90 AEPAULmMLmMtJIEIUHH93H=-AEPAULmM< \.\IMMILmM}M}L9t]HtH=P-CMt=IGIWHH9H=-AGPAWI]IL9HgIIvHPDHP0H}ufL}H]EMIEIUHH9H=,{}LLmMu@A}I}0Ht I}V8L@hfIELIEPIELPZ H/H4H5hH81 *2E11AH@;*fDCM}TfIELIEPIELPLmLxAfHPd1E1f.fHILIGPILPH),HE1L nH %H5OH8R1H8(XZE1LHyxHH=]8脄fLxIH8H9moH fH:)MHt HEHUHuHHP- H}^fHELmEHpLxMtL LPL%LH}Ht =AU*DI*ML`HpLkH@LwBLxIHAf[$fDLhG1E1I9H-H99H5eH81O'x1E1MA>`AH,HkH5eH81'D6HP E11AHXIXI/YICYYIXIYI YfUHAWAVAUIATISHSHDž8H0HEHHPHE@ƅDDžHƅLHDžXHDž`HDžhDžp?HDžxHEHHEHEHEHEE?HEHEEI$L5'ID$PID$ I$ID$A\$AD$AD$AD$ID$(ID$0ID$8AD$@?ID$HID$PID$XID$`ID$hID$pAD$x?IDŽ$IDŽ$AƄ$M9; H5 :L L9H;p!ˆL9HHx HHH5C>LAHHL9H; ˆ[L9RHrHx HH=H5;LBqHHc L9H;x ˆL9HEHx HHH5 LDHH)L9H;AL9H}ADžHx HHH=2D>oHHH5E$H=|IHMx HH-H5V'L|HIH/x HI~H51H-{IHMnx HHLUIx HIvH5-L?豼HH%L9H5M-HJH0HHPI|$ AD$LI$H8AD$IT$@AT$DAT$ HuI|$X EA$DHx HH,H}H}HHuH9t HHPHPHHXH9t HwHL[A\A]A^A_]fV.H4H"wH(fIx HIt`HVH= xfH(AHHLHH=5 fHH%qHxHH5lH8HH^H5ټHAHx HH\HDH=[ 6e{HoHj[HAf.H+HAgHxHdA7HHHHAH58HFK$L5GAtAHCH;L[tI~HfI:"H )AE @u L責IEHHPi褼IH5IExHIEH1LLHHDž)IIx HIlIx HIeMt$111LIExHIEIHH= bT@H+HAgHxH{H=b1tfHA H+ H=mHbLuADkHA HfL}+HA gH H=aHQA 'HA H+H=mHaHAHH=-awLPLLLH;duuHPXIHIx HItpH[H=x`Ix HItIExHIEuL LH;tH5H5tLHH=#_mHH=_PH H=_3H H=_Hm H=_HPH=m_H3H=uP_HH=X3_HGHGff.UHAWIAVIAUATSHxHHCHDžHH@HHHxƅDžƅ HDžHDž HDž(Dž0?HDž8HDž@HHHHDžPHDžXHDž`Džh?HDžpHDžxƅUHHHxHHHpHIGH;HDžƅDžƅHDžHDžHDžDž?HDžHDžHDžHDžHDžDž?HDžHDžƅ HDžHDžHDžt L;=%GH0HHHhH0LPL}LLHHH8LH@DHLLH EL H}HEHuH9t HQLHPHEHXH9t H)4HH$ HHLHHH GHHH8 H53LIFHH% IH IFH5"LHHA HH H;t H 'HH;H;EH;H) HtHHH9PHE1H8H1HL0L8LIUjHx HHQ MXHIHxH;HHFH5?L'D AEtAEHh1H= HL0L8 LHHiHHj=fHnfH:"tfɿ)0)@IH H HPtHHH@IT$ tHkHhLHH=*HHDHIhI$xHI$ MJ E1Ix HIMHHtHx HHMtIExHIEHHtHx HHHHtHx HHuMtI$xHI$jHn HHpHH9t HH? HHxHH9t HHH HHHHPH9t HH HHHH9t HnHxL[A\A]A^A_]ftH5L&jHIH HHMHL-HHIEHxHIED Hx HH LLA~ÅIExHIE  L-WDH1:tHh1H=HHDž8H0wHIfM L}Å I$xHI$ tƅMFH5L譞H5^L薞^ H蒹HHb IH5bBHH;  HH5x+H H9GrIH H|Å=I$xHI$ HtIExHIE IHXHHH HIH5mH81m DždE1E1HDžHDžHDžE1䋵dHH=m TME1xHH{ H, t H IExHIEr L- H7fHnfH:"tfɿHDžP)@)0IH Hw HPtH#L@IT$ tHH HHIT$(tH HhLHH=%HP]HIcI$xHI$ M IH5`賛H5*LeHHH Hx HH HH; aH5j LreIH7 H5HWeHHU I$xHI$ LH5LV4I$h xHI$t HHR HtLID$LHH=kVHI$H/ xHI$* H5HHHH tHHx HH Hx HH HtH5(LcHIH HH HH9K HhH1L8HL@HH0HH`I$xHI$` HHx HHR H Ix HI HIHAtALL;fL@HxSLh^HXnHH~L8HDžL-1E1HDžDžd@HLHMtI$x HI$tDLLHHHHHLfDHxDžd1E1E1HDžE1HDžHDžHDž*f.HDž1E1E1HDžHDžHDžDždDfDHDž1E1E1HDžHDžDždfD;L;5IAoV I~()0Ht HHhLHLHHHCH8HtLDHDž1E1HDžDždfDtHH 1H8HH9H,L1H0L8LGHH\Ix HIKH-IExHIEL@1HDžE1DždHDž1HDžDždfHDžL-61E1HDžDždLLpL`HxhHHHH袜AtAHh1H="HHDž8L0LI[[MHcHxHUHHH$[HHDž [HHDžZHDžfDHDž1E1L-HDžHDžDžd4@L`HXA$tA$tHHx HHHhfDL;5\I5Ao^ I~()0HtHHhLHLHHH`裹HAH8Ht'DždAALHDž!HHHLWHDž1HDžHDžDždfDHDž1E1HDžDždnfD1HDžE1Džd IfHDžL-E1DždHHxHHHtLE1.@HDždL-WE1f.HDž1E1HDžDždfDLL- 1HDžHDžDžd[HPTHH5MH8DždHSH LHHDž1HDžDždHHDž1E1DždLL|WHDž1Džd[H5HH5;H81uDždLQH{1jVH{`H5)111HH{hHHH6L1E1Džd HpHpH5Z:H81DždHXL`tA$tA$HHx HH#LHhHDž1E1DždHHH HDž1LDžd LHL1Džd j蕴HAH8HtDždA.Džd 1LNL1E1Džd Džd I1LDžd H{hHHH/HDžL-%DždLDžd xHH[H@HHtHtHHx HHt21LE1Džd HHH+H+I+H+I+H+UfHHAWAVAUIATISHHHPHX)EfHnfH:"HE)EM<M|$M.HHHIع1H=!FQH}HtHx HH9H}HtHx HH HH=yB1He[A\A]A^A_]HvtHuH0tHuIL$H4Lu)HHHi1jILELPLAWH (H}L}H"H|ݠHHt H|ݠLeAEtAEH=H1LLmHHEHIExHIEHHx HHLLLHH}Ht"HxHHuHEaHEDH}HH~HHqHE*HE_HtzHL`A$tA$L8LeAtAL}LuH9fDfDLL8AtAL%L}A$tA$LeLuiDL%A$tA$LeI 6LHMHM1HHu7D0t0HHL)HD5HHI9HtrH0LHUHMHMHUHuHUHMNHMHUHt@1 OHH=<>1I92LL9uu$fHH9UHLHUL8LHUtՃHeLH!H5lH81JDUfHHAWAVAUIATISHH$HPHX)EfHnfH:"HE)EMM|$MHHHIع1H=qLH}HtHx HHH}HtHx HHH7H=9T=1He[A\A]A^A_]HvtHuH0tHuIL$H4HHH1jHUILEPLAW=H +H}vLeH"H|ݠHHt H|ݠH]HI9IELPHHLLQHH}HtHxHHuHEHEfH}HHHHHEHEfHtbHHXtL H]A$tA$LeHc2fDSfDL A$tA$HLetHEHHtHEqHELH 0HEHMIgILE1HuEf.0t0HUHIH)HD5HAHHM9H0LHMHMHuHMHMHtH)HH5/H81i1JH(H=-H:1M9_L}L9}uPIL9}AILL0L1t݃NHLHH5H81'ff.fUHhHAWAVAUATISHHHEHDžXHEHLIHMHtHPHtHXHG HHUJ41L-DjLXAUAQMrH MJXLXfIFfH;HE)`)M)pt H; AtAHDž8HDž@E1H8VH #I9NIFH@H9kIFLHEH)H9?HMAHHHHH4H=( LhIHH@LMIw'H&7f H HH5H8輼H}>=HEHHEH@H|99E1H9H=5'H=HHff.@UHAWAVAUATSHxH}H"HYf= HE)Eu@HtH}Ht HuH)۵HeH[A\A]A^A_]fL%!H=vIT$LUHH9 tHCH5eHHHJ IHMI x HH@H9Hu1HI9EG 1LHEH]yIHtHx HHeIExHIEMH=?R,HHNH@H5HHHx IHz HxHHuHHkHuE1HI9F1LHELmLH/5IxHIuL觱I$HxHI$`Hx HH<I91HEH7H=HK+IHgH@H5LHHIHI$xHI$H=*IHH56HF7HpHVI$xHI$FIHBLxHpIF AtAIx HIHDžh1HhILHpdt3H=),*HHH5YH6IH Hx HH HZHu1HI9GfHn1LfH:"p)EHI3Ix HIMH={~)IHH5˿H5IHIExHIELLIHIx HILJÅIExHIEuLI$xHI$GHhHDžhHpCfL蘮,H舮HHE1L H H5]H8R1HXZ1fHyxHH=f1"3DHH='IH H5QHQ4IHIExHIE|LL_IH&Ix HILHÅ IExHIEvH5LIHHGHÅIExHIElI$xHI$I2HpH}4EE1E11E1Hp,0MtI$xHI$1MtIx HI(HtHx HHH}tHMHx HHMtIx HIMtIExHIEuHkH=3F1EE1E1E1HE$MnI^AEtAEtIx HIIHuDL舫BLxbLhLXHHH8L(LIx HIHp`.HuH}CfoMLe)pLe)MVHuHHH^x HHH#H9][HEfopHEHEHxHp(PL`(HH)ԬL@>H0L EE11E1HDžp1fL3kL"HHEL谩?fDHEE1EE1E1I]MetA$tA$IExHIEMHutEE1E11HDžpE1E13LXHEE1E11HDžpE1fDfDHEE1E1EfD{WfDEE11E1@LpE11E1HDžpEjfL('HqEE1E1E13EE1E1fDI_MgtA$tA$Ix HIMHuDEE1E11@LxEE11LZ!EE1E1L;wHHjH5H81WELoLKL}EE11 E1L车 L谦L裦HfDUHATSHPHIHH5_I9t$fH}LHE)EfoMLe)MLe)MHuXH;t0H{(foUHs8Lc8S(HtH)~1HP[A\]HHH5 H81HH=H}LH)Ht%fDH޲L HH5}H8ĭHf.UH8HAWAVAUATISHHHEHDžXHEHLIHMHtHPHtHXHG HHUJ41L-jLXAUAQMBuH MJXLXfIFfH;UHE)`)M)pt H; AtAHDž8HDž@E1H8VH I9NIFH@H9kIFL}9}H鞵HɵHL L@q遶HAH鿵HL@UHbH1ff.@UHAWAVHEIAUATSHH HEHG0HH`HHPHFH;~HHEHEHEHEHEHGHGHGHG(HG0HDžXƅ`EG t H;AtAHDž HDž(1HEH HDIFH }I9NH(H9IFL,AEtAEH(HtHx HHHpLHH0HpLeHPHxL9HfHnfH:"EH95H`HPXH%HpHUHDžxHpL9t HEHpuT}HHPHXLpH0HCH}HpLx\H]HOL8I HH,L9{uHsMtLLzyuLL8L9t HEHpSH LAH LIHk|HHtH~H0H9eIx HIHHgIMfHPHH9tH`HpSHawH}HHuH9t HRHH[A\A]A^A_]LL8iL^LE1HIH}H8HELMM;LMIHpLLxMIO(MII*I7HlHN(1MHHI9TIL9uM;OuMtZIwLLLLLHwHLLLLoLMMMI;MfD0RHxHIHxHxHpL9MIGHEIGHEHUIOH}HuLpHDžxEHHvsHքH8HuI_(H HH HIHL8HEHpLMMM'Ht HxLOHxHPHXHp@HPXLpLeLHM>HHHZH1HuH8HHLHDOHHEL}IHtH@(1HuL@H=0LL=@H=HHHiHyH5NLH81fALHDžPHDžxfDL`=XHP=L@=yH0=NHXH9MtA&$fIT$I\$HpttI$xHI$HIܺXDH<L<HDHDžPAf.L8:LL$:HiHgH5H81@cHDžxA]HhHUgH5H81 cHDžxA(H9LA>H8HtWDAH?HAHxLT9HG9\A1E1AA1E1HLSQ1MH9QXM1A_HқHHۛH H麛fUfHHAWAVAUATSHHҀHHHh)E)EfHnHfH:"HXHE)EfHnfH:")EHPLIHM@H6H HcHfDHHtHMHHtHMHHtHMHtHMHWLeLmTHL=[rM1jH4LAWAQIH LuxCH~pHHZI<uIعLaI<$HtHx HHIM9uH%=H=q21He[A\A]A^A_]ÐHL0AtAHXLutLxH]AtAL@L}AtALELeLmH5H9st H;aLLHLI<$HtHx HHt1IM9uHe[A\A]A^A_]f6fDHx6HxH]L}LEbIعLeH=pLmD1HRHLxؚLxfI<$HtHx HHt?IM9u1gL= pjL1AWILUZYfD#5뺐UfHAWAVH@AUATSHHL-`)pfHHEEHDžHDžHDžHH0HDž8ƅ@HDžHDžHDžHDžHDžHDž) L9HG HHH@HaV HLpÃfHDž`)PM7Lp}HELuLuELpHLVHLxfLuHpHEE)ELuLV8HHXhfDL#Mt M9H[HuHDžE1LLSLPHLL\FHPfoXXH() Ht=LPMH`Htr=LPMLU^HH P}IHHHLHHDžHxh4H(HtpLHH HHlIx HIHHqSAHDžI9EV HHEHEHHE^MHH7HoHPtHHLL)HELH?H HEJ4H_3HIHtHx HHHHx HHaHHx HHfIExHIE@MWHHx HHtpHHNH9AHQ HAHHH9 H9 AtAHHVL4HHFMLHX#fDHH#L-yAEtAEH=4Hu1LHHEHE[IIExHIEuL"Mt$111LBI$xHI$DžU.@HpfEHH`HEHDžhƅpHDžPHHEHE))@) AHHL;-Mo HHtLmHu1LHHELZHIExHIEFHH}H|HEHHEHMHHx HHH# L;%LtLAHEH $HHH0HH8HtL-LM\@HEfE1)EHHEH0LeHHH&4$H% I~HXIHPHMIFHHHtR+H H8Ht5+AtALE1H}HH9t HEHp"H(Ht*MtL*LHH@I9MI%fAD$PAT$HI9LcMtID$IT$L9H=Jt@LDžTHDžE1E1HDžHDžHMtIx HIGHHtHx HHH,%H=Y>Ht"HE1HHLHtHHxHHHtoMtI$x HI$thHHtHx HHt\HHt;)HHX[A\A]A^A_]fHHeH8L(fDHfDHDž)HLLLLDžZHDžHDžHHx HHtiMtIx HItdHHtHx HHtXMIEHIELHfDLfDHfDH Hy efHLfDHDžE1HDžDžZE1DL%sA$tA$H%Hu1LHHEHEUHI$xHI$HG111HH^HHHHtH/HLOm HHHH9 L^fDDžX#H@fLHH@LH)HEH)EHH9q HHHfHnHU)EI9 I)IfBHHL9oHSHtMtBHH1LuH= 4HHEj*HHHHH@HlHLMHv論fDHDžE1DžE1E11E1HDžHDžHDžHTHHH HHH0HH8HtHLfE1L]L)EP fHnLHHHU)EFHHH9t!o!Hq HtH=0tFHHUHH0t HLH]H8Ht Ht HHE1HHSHCHHtHtHx HHH1;Dž8E1Dž'E1E1E11E1HDžHDžpE1E1E11LE1LDž(EE1E11E1LDž'$ HL$HbHLLMLDžYHHDžE1E1HDžHw?HjE1E11E1Dž1_1E1E11HE1Dž2<Dž1E1HUM1E1E1HHq11H= HfHfHmgHegH|hHfHMgHugIgIgIgIgHfHEgHgHgHf gHfff.UfHHHAWAVAUIHZ<ATHxH SH)E)EfHnfH:"HHE)EfHnfH:")EHLOM}IH xJcHHHtHMHHtHMHHtHMHtHMHWLuL}4HL*<M1jJ4LARLAQMLH xiH}H}H}H]M~f.IIK<uM1LĂ@I>HtHx HHt8IM9uH H=,sE1HeL[A\A]A^A_]f;fIIvI HDžE1LpAtAHLutHH]L%T+TMH*H9Ct L9 fAHDžp) f)`tAHtL9 HCH&HDžHIFHHH9t7HXHHqH1fHH9 H;TuH=%L1HH|H5KH/IHH5<1HbHHIEHxHIE HHx HH AtAHHx HHb A$tA$Ix HI4 LMHLLHL IH& HCHB HH;HqIEH;(t H;+AEtAEHDžMHDžHDžHPIGHM(I9W3HH9hIGHȋtHL9HtHHx HH,HHJHH9L91 HhH;pmoK HC(HtH='n@HHhH IuzLxAtAL}HX;HtHHu=HHHH9.HuH;&M1H=6Lu~L}HHELuL}L%E'HHCL(AEtAELTHHIEH :HIE,L^fL%&A$tA$H}LeJL%&A$tA$H}Le2L%&A$tA$LeDHDžHA$tA$LeMHtL%&H]A$tA$LeE1MA$tA$LeLDHS H` E1@HhHLHH%HHtH'H0H9/ kIx HI) LhH`fHE)@M)EI)L HL9 LfHnIL})EI9I)J DBHHH9oHSHtH=+$tBf.H5HHHDž Hx HHHDžE1HDžHDžHDž9Dž E1HDžHDžHDžHDžMtIx HIHHtHx HHHHtHx HHHHtHx HHNHHtHx HH>HH=jE1HtHx HHHHtHx HHMtIExHIE~MtI$xHI$sIx HIoHHx HHdLhH`I9txI DAD$PAT$t=HI9tELcMtID$IT$L9H=!tuLHI9uH`HtHpHH)H(Ht1H]LeH;HtHx HHt9HI9uID$I$LPI$LP0fDHZHjLuLLHHHLx%Hh5HXEHHHfHnHHp)`afHH95I\H=KHtHHH1HHnHHHHH@H;t HHHHHx HHHHEHHEH@AHEHHE@ @u tEHHH}HVH@HT)IH#HHx HHHHx HH'H1HXHHDžPLX-,HI$xHI$HHx HHLMt$111LI$xHI$Dž E1HDžHDžHDžHDž@H!HOH5kZH81Dž E1HDžHDžHDžHDžDž E1HDžHDžHDž 5fDL,jLMARL1L^L_H5H,HVH]LeHI9 fH H tA$tA$Lm1LeH=HLHEq~HfH:"I$) xHI$ Hz fo 1LH= H)e HHHx HHS HHx HH Hc HH H9 H IH9tltH1LH]H="'HHEgHI ]M H I9 Hx HH AtAI) LE1E1HIMtIx HIHxMtIExHIELI$xHI$wHHx HHlHtHLmH]I9tvI!fDAD$PAT$t=HI9tELcMtID$IT$L9YH=ituLHeI9uH]HtHuHH)HhHtHXHtH@HtHx HHHHHHHHuk@HHHp>H ^L HHA$tA$L@fIع1LiY@+fDfDID$I$LPI$LP`fDL A$tA$H YL@H tH HHH.H=PHH HLAHA x HHEtbA$tA$H= Hu1HHELeLHYH I$xHI$P IID$H;tGH;(t>LvHHz H@HHHM I$fDA$tA$HDžLE1HDž E1H HCH5KH9sI9*HCN,AEtAEIH HtHx HHIE~AEtAEHrH I9MQIx HI}MH I9*HuH;uAo_ IG(HtH=,@HHuHL HHIHHHtHH0H9 Hx HH3 LH8Dž8ƅ<LGHHM Ix HI( LmHLLpLL_H}HtdH HPL_ foPHXI)uHtHUHEfHE)EHH)HHH6HH9] HuHfHnHH)EHUHH9rH)HHAHHH9Uo*HJ(HtH=tAfH=tLHH"HI9ECAEtAELHH1WHHQHHx HHAHHx HHHeH H9.L1ULDH1H tH HHHxdLh|HXK`fDL8 L(LIW H}fDHL]HHHHHDžE1E1IސHH= CHDžM$I @HufL8v1,fL HA$HHDL- jIHuAUH@1_AXDžE1E11%fI9NlAE^]HL5!&AtAHHu1LHHEHE#IIx HIMt"111L9Ix HIDž&E1L HDžHDžHDžHx HHtxHtHHx HHtgHHtHx HHt[HHHHHHSfDH@{H0fDH H5L=M-MLDžE1E1E1HDžH5dHDžE1HDžE1E1HDžHDžDžE1E1H5LDžLIHHDžE1HDžDž"HFQLHHHDžE1Dž"DžE1E15Dž"E1DžE1LH5$HHDž"1E1HH?LV%HHuHULLKHb LpL`LhHPH}HhHHMt=INIVHH9H=|AFPAVLH}HtwH58H=11IHH;qH@H`LPH2AtALL HL-Dž&E1L HDžHDžHDžDžE1E1J1HLE1Dž$HDžHDž|HDž)L HL 1Dž*ILIFPILPkHL LDž.tHHH51H81)1HL HDž.@HL 1Dž-_o1L E1Dž HHHDž E1Dž E1E1LSqH'1Hy1H1H1H11HGf.Hf.HGhf.HHH`@fDHHH`HfDH0H`fDH0H`fDHHDUHHHSHHH6HH]f.@HHHHH? f.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.Df.DHHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.f.DHGHWHHf.Df.DHGHWHHHHtH`f.D1f.f.DHGHWHHf.DHGHWHHHHtH`f.D1f.f.DHGHWHHHHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.HHtH`f.D1f.1f.1f.f.DHGHWHHf.DHHtH`f.Df.DHHtH`f.Df.DHHtH`f.DffDVfDFfD6fD&fDfDfDfDfDfDfDfDfDfDfDvfDhffD@VfDFfD6fDP&fD`fDfDfDfDfDfDfDfDfDfDvfDffDVfDFfD6fD&fDfDfDfDfDfDfDfDfDfDfDvfDffDVfDFfD6fD&fDfDfDhfDfDֿfDƿfD鶿fD`馿fDP閿fD醿fDvfDffDUHSHH_HtH6HH]4@H]f.Ht &fDf.DHyHHf.UHSHHHMHHѽHH]鯾f.Df.ttt"1H)H1H71fHHttt"1HYH1H71fHHUH;5(HATSHt!H~H5H9tE1?*t uLcL[A\]þƽfDh鶽fD@馽fD閽fDh醽fDUHAUATSHHHLfH;LnLeIw7Iu!AECLcHB'H[A\A]]fMt%fHHu1HHHEHCLL)LeH;UHATSHH~H5H9tE1?*t uLcL[A\]fUHATSHH~H5H9tE1?*t uLcL[A\]fUHATSHH~H5H9tE1?*t yuLcL[A\]fUH;5HHATSHt!H~H5H9tE1?*t 0uLcL[A\]UH;5HATSHt!H~H5H9tE1?*t uLcL[A\]UH;5HATSHt!H~H5ZH9tE1?*t uLcL[A\]UH;5HATSHt!H~H5H9tE1?*t puLcL[A\]UH;5HHATSHt!H~H5H9tE1?*t 0uLcL[A\]UH;5HATSHt!H~H5H9tE1?*t uLcL[A\]UHSHHϷofH:HtH= u@HH]D@HH]fUHSHH/ofH:HtH=u@HH]D@HH]fUHSHH_ofH:HtH=lu@HH]D@HH]fUHAUATSHLgMMl$ I\$I9t.H;HCH9t HCHpwH I9uI\$HtIt$(HH)TMl$I$I9t,fDH;HCH9t HCHp'H I9uI$HtIt$HH)HL0[A\A]]fDH[A\A]]f.HGHtUHH]f.D7Wf.197t fH 9wDf7fW1f97t f9wD@7Wf1@87u 8G‰f.@7Wf1@87u O8‰f.f7fW1f97t f9wD7Wf.197t fH 9wDH7HW1H97t H9WH7HW1H97t H9WUHAVAUATISHH0Hx&IH9VhHH0L[A\A]A^]fLuL4H}-H55 H}HÿH}H5nH]LHLHھLGH}HEH9tHEHpYH0L[A\A]A^]fLuLH}#H5d5 H}H#H}H5g5 IuhH}H}H5H]LHLUHھL腽9HIL.H6H.L&fHGHGHI HG(fGHG0HG I HGHfG0HGPHG@I fGPf.DUHSHHCPHH@H9t HCPHpH{ HC0H9t HC0HpH;HCH9tHsH]H´fH]f.UHSHHHHH9tHHp聴HHH9tHHp^HHH9tHHp;H{xHH9tHHpH{XHChH9t HChHpH{8HCHH9t HCHHpH{HC H9tHs H]HȳH]f.UHHAUATSHHLWHLFHRLH0J M9H9OsLPL9LPI9soH?L)H9H{IH;HMl$L9tUHID$HCID$HCHM,$ID$AD$H[A\A]]L11HIT$HHtLID$AADH7LPL9!%H=1 UHSHHHPH=u,C PS tH]HHH]H@C f.fHHWH9t-H=}uGPWtE@HOUHHHHGH}PH}HH@;f.UHSHHHuH]f{uH{0Ht謹H{HCH9t HCHpBHH]80UHAWAVAUIATIHSHHHLL~pPLI9}#MH}HI9IMHHPHEHugM~7HD1fDHH4HHHI9uLH`I$HL[A\A]A^A_]fDI$f.UHAWAVAUIATIHSHHHLL~pPLI9}#MH}HI9IMHHPHEHugM~7HD1fDHH4HHHI9uLH I$HL[A\A]A^A_]fDI$f.UHAVAUIATISHHHHLvpPLI9}$MH}LI9IMHI$PHEHuwI$LfH)EHHHI$I$HH9tfDfoMHHH9uLLHHH[A\A]A^]@HHH[A\A]A^]DUHAVAUIATISHHHHLvpPLI9}$MH}LI9IMHI$PHEHuwI$LfH)EHHHI$I$HH9tfDfoMHHH9uLLcHHH[A\A]A^]@HHH[A\A]A^]DUHAUATIHSHHHLnpPHI9}'MH}HI9IMHHPHEHHHHfoA HCPHHPHHHIH?H=HHHS0H)H +  ~C`LfH:"Ch~KPfH:"KXffC`KPI$H[A\A]]fDI$HL[A\A]]fDUHAUATIHSHHHLnpPHI9}#MH}HI9IMHHPHEHu|HHH HCPHHPHHHIH?H=HHHS0H)H * LHCPHChI$H[A\A]]@I$HL[A\A]]fDUHAUATIHSHHHLnpPHI9}#MH}HI9IMHHPHEHu|HHfHCPHHPHHHIH?H=HHHS0H)H ) LHCPHChI$H[A\A]]fDI$HL[A\A]]fDUHAUATIHSHHHLnpPHI9}'MH}HI9IMHHPHEHHHffo> HCPHHPHHHIH?H=HHHS0H)H )  ~C`LfH:"Ch~KPfH:"KXffC`KPI$H[A\A]]I$HL[A\A]]f.@UHAWAVAUATLeSHLH-H}H5I) LmLLٶLLh*L LZH}LuL9t HEHppHLHHhHt"xHĈH[A\A]A^A_]LLE1LLuHpHDžp%HHX{HpfoL= Hstatus: HEHUfo?= @HHHULEHUH}I L9HEHH9MsL}L9\HuH9'HH?L)H9LLm躿LpIHM|$L9HpID$HEID$HxID$AD$M<$L}HXpHpL9t HEHpH}L9t HEHpѧH}L9t HEHp軧HhHcTfDHx0HtHXۯHXHxHXHX8cfDH11LYHXLmH%fDIT$HHLL/ID$DHuHHcL}L9FQH==& HHLOHGL/H7UHSHHH_ HHHt/HSHKHH9t!H=u?CPStAH]HHHCPHHH]H@fDDHH]铨UHSHHpH_HHHt/HSHKHH9t!H=9u?CPStAH]HHHCPHHH]H@fDDHH]UHHHATSLg HHMt5IT$IL$HH9t6H=uLAD$PAT$tJH߾0[A\]fID$I$LPI$LPǐDLHfDUH(HHATSLgHHMt5IT$IL$HH9t6H=uLAD$PAT$tJH߾ [A\]9fID$I$LPI$LPǐDL蘦fDUHHHATSLg HHMt5IT$IL$HH9tfH=6u|AD$PAT$tzH{HtH=u'G PW t [A\]@H[A\]H@G @ID$I$LPI$LP뗐DL踥yUH(HHATSLg HHMt5IT$IL$HH9tfH=Vu|AD$PAT$tzH{HtH=1u'G PW t [A\]@H[A\]H@G @ID$I$LPI$LP뗐DLؤyUHHHHATSLg HHMt=IT$IL$HH9tvH=vAD$PAT$H{HtH=Iu/G PW tH߾0[A\]頡HPG @ID$I$LPI$LP돐wfLqUHXHHATSLg HHMt=IT$IL$HH9tvH=AD$PAT$H{HtH=Yu/G PW tH߾0[A\]鰠HPG @ID$I$LPI$LP돐wfLqUHATSLgHMtAIT$IL$HH9H=AD$PAT$H[Ht3HSHKHH9t$H=\ujCPS[A\]HHHCPHH[A\]H@ID$I$LPI$LPrfDDEf.Lء7H[A\]ġ@UHATSLgHMtAIT$IL$HH9H=pAD$PAT$H[Ht3HSHKHH9t$H=,ujCPS[A\]HHHCPHH[A\]H@ID$I$LPI$LPrfDDEf.L訠7H[A\]锠@UHHHATSLg8HHMtAIT$IL$HH9H=2AD$PAT$HLc HHMt=IT$IL$HH9tnH=AD$PAT$H{HtH=u'G PW t [A\]@H[A\]H@G @ID$I$LPI$LP뗐ID$I$LPI$LP fDWf.fLL)UHHHATSLg8HHMtAIT$IL$HH9H=$AD$PAT$HLc HHMt=IT$IL$HH9t~H=NAD$PAT$H{HtH=!u7G PW tH߾@[A\]xHPG @ID$I$LPI$LP뇐ID$I$LPI$LPfDGf.fLxLhUHAWAVIAUATSHHHHt IvXH)藚I^0Ht;HSHKHH9H=%CPS!MnI^I9tzI%f.AD$PAT$t9HI9tELcMtID$IT$L9t]H=}tøuLHyI9u@I^HtOIv HHH)[A\A]A^A_]骙f.ID$I$LPI$LP`fDH[A\A]A^A_]fHHHCPHHPHʛDUHpHHATSLg@HHMtAIT$IL$HH9H=bTAD$PAT$nLc0MtAIT$IL$HH9H=AD$PAT$HHHH[Ht7HSHKHH9tvH=CPS[A\]ÐID$I$LPI$LP@fDID$I$LPI$LPbfDHHHCPHH[A\]H@f.SffH[A\]@LLUHHHATSLg@HHMtAIT$IL$HH9H=dAD$PAT$~Lc0MtAIT$IL$HH9H=8AD$PAT$$HLcHHMtAIT$IL$HH9H=AD$PAT$H߾H[A\]+ID$I$LPI$LP(fDID$I$LPI$LPJfDID$I$LPI$LPzfDfMffL7LLuUHHHATSLgHHHMtAIT$IL$HH9H=AD$PAT$Lc8MtAIT$IL$HH9H=HZAD$PAT$tHLc HHMtAIT$IL$HH9H=AD$PAT$ H{HtH=üu)G PW t [A\]fDH[A\]H@G @ID$I$LPI$LPfDID$I$LPI$LPfDID$I$LPI$LPBfD%f.kffLULؕLȕUH`HHATSLgHHHMtAIT$IL$HH9"H=bAD$PAT$Lc8MtAIT$IL$HH9H=jAD$PAT$HLc HHMtAIT$IL$HH9H=AD$PAT$H{HtH=u9G PW tH߾P[A\]f.HPG @ID$I$LPI$LPfDID$I$LPI$LPfDID$I$LPI$LP2fDf.[ffL訓EL蘓L舓oUHATSH聖LfMtAIT$IL$HH9H=AD$PAT$LfMt=IT$IL$HH9t:H=¸AD$PAT$f[A\]fDID$I$LPI$LPf[A\]ID$I$LPI$LP=fD{ffL( LUUHAWAVAUIATSHHHHHHt;HSHKHH9H=CPS8IHt;HSHKHH9HH=`CPSHѷMI]xHIEI9tuI DAD$PAT$t=HI9tELcMtID$IT$L9H=ٶtuLHՐI9uI]xHtIHH)I] Ht;HSHKHH9H=qCPSH[A\A]A^A_]fID$I$LPI$LP fDHHHCPHHPfHHHCPHHH@H[A\A]A^A_]DHHHCPHHPIf(fHH[A\A]A^A_]|HtHgfUHAWAVAUIATSHHHHHHt;HSHKHH9H=CPS8IHt;HSHKHH9HH=CPSH!MI]xHIEI9tuI DAD$PAT$t=HI9tELcMtID$IT$L9H=)tuLH%I9uI]xHtIHH)eI] Ht;HSHKHH9H=CPSH[A\A]A^A_]fID$I$LPI$LP fDHHHCPHHPfHHHCPHHH@H[A\A]A^A_]DHHHCPHHPIf(fHH[A\A]A^A_]̌HČH跌fUHAWAVAUIATSHHUHHHHt;HSHKHH9H=GCPS/IHt;HSHKHH9XH=CPSHqMI]xHIEI9tuI DAD$PAT$t=HI9tELcMtID$IT$L9H=ytuLHuI9uI]xHtIHH)赈I] Ht;HSHKHH9H=CPSHL[A\A]A^A_]VfDID$I$LPI$LPfDHHHCPHHPfHHHCPHHPpHHHCPHHPIf(fH*HHf.UHAWAVAUIATSHHHHHHt;HSHKHH9H=CPS/IHt;HSHKHH9XH=PCPSHMI]xHIEI9tuI DAD$PAT$t=HI9tELcMtID$IT$L9H=ɮtuLHňI9uI]xHtIHH)I] Ht;HSHKHH9H=aCPSHL[A\A]A^A_]馅fDID$I$LPI$LPfDHHHCPHHPfHHHCPHHPpHHHCPHHPIf(fHzHmH`f.UHAWAVAUIATSHH-LHHHI9~IAD$PAT$t=HI9tMLcMtID$IT$L9H=tuLH譆I9uIHtIHH)IHt;HSHKHH9H=;CPSHMI]xHIEI9tpIAD$PAT$t=HI9tELcMtID$IT$L9H=tuLH赅I9uI]xHtIHH)I] Ht;HSHKHH9H=QCPSH[A\A]A^A_]fID$I$LPI$LP(fDID$I$LPI$LPfDHHHCPHHH@H[A\A]A^A_]DHHHCPHHPf8f>Hz:HH[A\A]A^A_]_f.DUHAWAVAUIATSHH-LHHHI9~IAD$PAT$t=HI9tMLcMtID$IT$L9H=tuLH譃I9uIHtIHH)IHt;HSHKHH9H=;CPSHMI]xHIEI9tpIAD$PAT$t=HI9tELcMtID$IT$L9H=tuLH赂I9uI]xHtIHH)I] Ht;HSHKHH9H=QCPSHL[A\A]A^A_]fDID$I$LPI$LPfDID$I$LPI$LPfDHHHCPHHPpHHHCPHHPf8f>Hz:HmUHAWAVIAUATSHLoHI9tsI@AD$PAT$t9HI9tELcMtID$IT$L9tUH=ݦtøuLHـI9u@IHtHIvHHH)[A\A]A^A_] ~ID$I$LPI$LPhfDH[A\A]A^A_]ÐHHtHwHH)}ff.DHHtHwHH)}ff.DUHAWAVIAUATSHLoHI9tsI@AD$PAT$t9HI9tELcMtID$IT$L9tUH=tøuLHI9u@IHtHIvHHH)[A\A]A^A_]|ID$I$LPI$LPhfDH[A\A]A^A_]ÐUHAWAVIAUATSHLoHI9tsI@AD$PAT$t9HI9tELcMtID$IT$L9tUH=tøuLH~I9u@IHtHIvHHH)[A\A]A^A_]{ID$I$LPI$LPhfDH[A\A]A^A_]ÐUfHAUIATISHH^H+HGHH9HF|fHnHI\$A$IMIUH9tsH)H4f.AHHH9t,o HJHtH=otAHHH9uIt$H[A\A]]1sfHIt$H[A\A]]ؠHHtHwHH)yzff.DUHAWAVIAUATSHLoHI9tsI@AD$PAT$t9HI9tELcMtID$IT$L9tUH=}tøuLHy|I9u@IHtHIvHHH)[A\A]A^A_]yID$I$LPI$LPhfDH[A\A]A^A_]ÐUfHAWAVAUATISH8HLnHE)E)E4zfHnHPHEfI:"HUMtH=FAEH]HULHUHLuH]I9tqIAD$PAT$t=HI9tELcMtID$IT$L9H=tuLH{I9uH]HtHuHH)XxMt=IUIMHH9H=AEPAUH]Ht7HSHKHH9tnH=vCPSH8[A\A]A^A_]AEDID$I$LPI$LPfDHHHCPHHPH8[A\A]A^A_]IELIEPIELP!f3Hy/LyHI8H}HuH)HtvMtLH}HtHVHL苋fHHtHwHH)vff.DUHAUIATSHLgHI9t*@H;HCH9t HCHp7vH I9uI]HtIuHHH)[A\A]] v@H[A\A]]f.HHtHwHH)uff.DUHATSL'Mu!HHHtHPL#Mu[A\]fA|$uI|$0Ht}I|$ID$H9tID$Hp\u[L8A\]Kuf.H?HtH`ff.DUHAWAVAUATISHHH(HHtfLHH}APHEHpHHP x HS SxIH@HCI$H(L[A\A]A^A_]HKHS0LmL褋H}LuHELuMPVuIHD HEMuIEH5HH=IEAEL_|H{fInfI:"HtB|LmMu)H}HHPLmMfA}I}0Ht{I}IEH9t IEHps8Ls1I$AEL}L{H{fInfI:"Ht{M6ILP(f.H{fHI$LL~H]Hu H}HHPH]H{H{0HtzH{38HrH HH} LȆHUHAVAULuIATLISHHHEHuS I$LH9HLHHKHEHu"HLL$HL[A\A]A^]@IEHL[A\A]A^]f.fUHAWAVAUIATSHHhLb IE8LEHRLvpHxI}PHMHJL<H}HA+EHPLELI9}%K6H}HH9HLHPHEHHcELIHEIHL9E1H}\Kc4CTDHHE)HHHcHHUoHCPHUH b HHHHPHIH?IH=HHHS0H)HCPHChL9uHHLHMMHEIELHƒHA*DHCPH HHPHHHIH?IH=HHHS0H) ~C`~KPfH:"ChfH:"KXf f  C`KPL9u7HxHHxHh[A\A]A^A_]ÐHLH}L9HHM1葓HEH@@HxH@HEHHp}H}H5 ؐH} xH} H5 赐H}LwLuHpL{HpJHpLvvH}HEH9t HEHpnHEH?LuL[HHLHHpٖHUHAVAULuIATLISHHHEHuCJHL7HEHuLHLHL[A\A]A^]IEHL[A\A]A^]f.fUHATSL'Mu!HHHtHPL#Mu[A\]fA|$uI|$0HtuI|$ID$H9tID$HpLm[L8A\];mf.H?HtH`ff.DUHAWAVAUIH}ATISHH8HV(&H}HH{(HLsI|$I$I9t+MtH=4VAFHttMt$I$HLcfMtAIT$IL$HH98H=ؔAD$PAT$<fC IEH8L[A\A]A^A_]fHP HSHHH)ʀx t xtHxH1rHf.HKHS0Lu1L~H}L}HEHEL}L}MlIHn H}M~LIFH0HITLsI|$foMA $HtsLeMu*H}HHPLeMf.A|$oI|$0Ht5sI|$ID$H9tID$Hpj8Lj1fDLsI|$I$I9DH}1I|$foUA$H55fAFI|$HI}ID$I$LPI$LPfDLlIELLuH}uH}HtHPLglH HH}QLuH1}UHAWAVIAUIATLeSHHƐHHL~`HHHH9HfL)0D<H0H)@)PɁHEHH@HL衁HEHHCP1fHsCPLHHHPHC@^HEHXH~PHC`fH:"H()EHtH=Gfo0H8)]HtH=@fo@HH)eHtH=u@f0HE)EhHp0HELHufDAHHMHH9t+foHJHtH=+tAf.HChL`HuHLH HPhHEE1LL(H HpHH谍fopI~f)pAHtkoHxHtZoHhHtIoHULuL9H@AGHAOt;IL9t_M~MtIGIOH9mH=%tøuLH(IiH(HL9u@LuMtHuLL)HfHLuM~IMt3IGIWH9,H=AGPAWM9uHHH@ H;kHfHt nHfHtmfIEHHHXHtmHtHmH8HtmHL[A\A]A^A_]@IH(LIGPILPH(H9fILIGPILPH*fGQfD@kfD@fDHLH(H9HL1襈HEH(HHEu&HEH(HfHH(H}H(HEfH(IEIEIEHHqLxfHfIEHH7HHEHH8HhHtkHmLmI}IHtkM9uHXHtkHHHtkH8HtkHvHHH}HuH)Ht cfUHAWAVIAUIHATLcSHHHHL~pPHI9}'MH}HI9IMHHPHEHgHHH HE~AHM<u.HFHGfHHFFHGHH]fDHgfHH]UHAWAVAUATSHHHH_LoHOII9t{IAD$PAT$t9HI9tMLcMtID$IT$L9tmH=]tøuLHHMU[HMI9u@I^HtHqHH)XIHuHH[A\A]A^A_]fI$HMLID$PI$LPHMHfD{uH{0Ht|`H{HCH9t HCHpXHH߾8[A\A]A^A_]WHH>uoFfNGÐUHwc]DUHAWAVIAUATSHLoHI9tsI@AD$PAT$t9HI9tELcMtID$IT$L9tUH=tøuLHYI9u@IHtHIvHHH)[A\A]A^A_] WID$I$LPI$LPhfDH[A\A]A^A_]ÐUHAWAVAUATSHHHH_LoHOII9t{IAD$PAT$t9HI9tMLcMtID$IT$L9tmH=~tøuLHHMXHMI9u@I^HtHqHH)VIHuHH[A\A]A^A_]fI$HMLID$PI$LPHMHfD{uH{0Ht]H{HCH9t HCHpUHH߾8[A\A]A^A_]wUUHSHHH>u.HFHGfHHFFHGHH]fDHbfHH]UHSHHH>u.HFHGfHHFFHGHH]fDHhbfHH]UHAVAUATSH?Ht wLcfE1MIT$IL$HH9H=|AD$PAT$'Et MtLYH[Ht;HSHKHH9H=|CPS[A\A]A^]l4qLcfAIM)j@ID$I$LPI$LP?fD"fhfHHHCPHH[A\A]H@A^]H[A\A]A^]ULUUHAWAVIAUATSHLoHI9tsI@AD$PAT$t9HI9tELcMtID$IT$L9tUH={tøuLHUI9u@IHtHIvHHH)[A\A]A^A_]KRID$I$LPI$LPhfDH[A\A]A^A_]ÐH?HtH`ff.DUHATSL'Mu!HHHtHPL#Mu[A\]fA|$uI|$0HtYI|$ID$H9tID$HpQ[L8A\]{Qf.UHAVAUATSH?Ht GtLcfE1MIT$IL$HH9H=yAD$PAT$'Et MtLVH[Ht;HSHKHH9H=AyCPS[A\A]A^]ki4nLcfAIM)j@ID$I$LPI$LP?fD"fhfHHHCPHH[A\A]H@A^]H[A\A]A^]xRLhRUHSHHH>uVHVHGHoNHFHOH]HFHGHV HFHF HWDH\fHCH]f.fUHAVAUATSH?Ht rLcfE1MIT$IL$HH9H=[wAD$PAT$'Et MtLeTH[Ht;HSHKHH9H=wCPS[A\A]A^]+g4~lLcfAIM)j@ID$I$LPI$LP?fD"fhfHHHCPHH[A\A]H@A^]H[A\A]A^]8PL(PH=vuGÐGf.H?UHSHH_Ht/HSHKHH9t5H=uuCPStMH]DHHHCPHHH]H@fDHH][Of.UHAWAVAUATSHG H}<m<<oHEHHL HML9u9fDI<$It$HtH)JLf.I(L9eAD$ 0H>MuIEI}1HDIEIEH[A\A]]f.UHSHHXH bH{XHHs`H9t H=H{ HPaH{HsH9tH]Hv=fDH]f.HHwH0H9tHHD=@f.DUHAWAVAUATSHHH8LwL'LL)HH9M9HѺIHEIHHEM)HHE1K<H1HQHGH}HHL9IL$LKM$fIHIPH I@I L9tEIxHAI8HQH9uHHtHLMLEHMd;HMLELMHAfIM)MI L9HKMVM DIHI@H MHI L9tUHAIxLII8H9uLHtHLUL]LMLEHM:HMLELML]LUfDI)MMtIuLL]L)j;L]HEM}M]HLIEH8[A\A]A^A_]HHuHMLE%f.fUH HAVAUATSHH0F L'HcHAD$ <JA$H0[A\A]A^]AD$ <HI$H0[A\A]A^]fDAD$ <t<tAD$ HAD$ I$AD$  A$H0[A\A]A^]fDA|$ H6HSLmLuLLuHEA|$ vL1AD$ LLuJAD$ }2H}L9%HEHp+fD<tAD$ HAD$ I$fD<t~AD$ AD$ A$H0L[A\A]A^]Q@<t$v"I<$ID$H9tID$Hp*fDAD$ AD$ A$eI<$ID$H9pID$Hp*]I<$ID$H9 ID$Hp* I<$ID$H9"ID$Hp`*LLH?UHSHH_Ht/HSHKHH9t5H=RuCPStMH]DHHHCPHHH]H@fDHH];,f.H?UHSHH_Ht/HSHKHH9t5H=QuCPStMH]DHHHCPHHH]H@fDHH]+f.H?UHSHH_Ht/HSHKHH9t5H=-QuCPStMH]DHHHCPHHH]H@fDHH]*f.H?UHSHH_Ht/HSHKHH9t5H=}PuCPStMH]DHHHCPHHH]H@fDHH]+*f.HUHAWAVAUATSHH(HwL'HL)HH9I9IIHEHM)HHVE1E1ofH:CTHtH=wO @L9 HK11L)HHfAoHADHH9rHL)ILH9tWH1H)Hx1HHo H HH9rH)HMuM.INM~H([A\A]A^A_]DIvLHML)-&HMILHULEHu'HuLEHUIIHH@L9fH90^HH9HGHIH= 6f.fH?UHSHH_Ht/HSHKHH9t5H=MuCPStMH]DHHHCPHHH]H@fDHH]'f.H?UHSHH_Ht/HSHKHH9t5H=-MuCPStMH]DHHHCPHHH]H@fDHH]&f.H?UHSHH_Ht/HSHKHH9t5H=}LuCPStMH]DHHHCPHHH]H@fDHH]+&f.HUHAWAVAUATSHH(HwL'HL)HH9I9IIHEHM)HHVE1E1ofH:CTHtH=wK @L9 HK11L)HHfAoHADHH9rHL)ILH9tWH1H)Hx1HHo H HH9rH)HMuM.INM~H([A\A]A^A_]DIvLHML)-"HMILHULEHu#HuLEHUIIHH@L9fH90^HH9HGHIH= 2f.fHUHAWAVAUATSHH(HwL'HL)HH9I9IIHEHM)HHVE1E1ofH:CTHtH=I @L9 HK11L)HHfAoHADHH9rHL)ILH9tWH1H)Hx1HHo H HH9rH)HMuM.INM~H([A\A]A^A_]DIvLHML)= HMILHULEHu!HuLEHUIIHH@L9fH90^HH9HGHIH= 0f.fHUHAWAVAUATSHH(HwL'HL)HH9I9IIHEHM)HHVE1E1ofH:CTHtH=G @L9 HK11L)HHfAoHADHH9rHL)ILH9tWH1H)Hx1HHo H HH9rH)HMuM.INM~H([A\A]A^A_]DIvLHML)MHMILHULEHu"HuLEHUIIHH@L9fH90^HH9HGHIH= .f.fH?UHSHH_Ht/HSHKHH9t5H=EuCPStMH]DHHHCPHHH]H@fDHH]f.H?UHSHH_Ht/HSHKHH9t5H=MEuCPStMH]DHHHCPHHH]H@fDHH]f.H?UHSHH_Ht/HSHKHH9t5H=DuCPStMH]DHHHCPHHH]H@fDHH]Kf.H?UHSHH_Ht/HSHKHH9t5H=CuCPStMH]DHHHCPHHH]H@fDHH]f.H?UHSHH_Ht/HSHKHH9t5H==CuCPStMH]DHHHCPHHH]H@fDHH]f.H?UHSHH_Ht/HSHKHH9t5H=BuCPStMH]DHHHCPHHH]H@fDHH];f.H?UHSHH_Ht/HSHKHH9t5H=AuCPStMH]DHHHCPHHH]H@fDHH]f.H?UHSHH_Ht/HSHKHH9t5H=-AuCPStMH]DHHHCPHHH]H@fDHH]f.H?UHSHH_Ht/HSHKHH9t5H=}@uCPStMH]DHHHCPHHH]H@fDHH]+f.H?UHSHH_Ht/HSHKHH9t5H=?uCPStMH]DHHHCPHHH]H@fDHH]{f.H?u:UHSHH_Ht H6HH]fDH]ff.DH?UHSHH_Ht/HSHKHH9t5H=>uCPStMH]DHHHCPHHH]H@fDHH]{f.H?UHSHH_Ht/HSHKHH9t5H=>uCPStMH]DHHHCPHHH]H@fDHH]f.H?UHSHH_Ht/HSHKHH9t5H=m=uCPStMH]DHHHCPHHH]H@fDHH]f.H?UHSHH_Ht/HSHKHH9t5H=<uCPStMH]DHHHCPHHH]H@fDHH]kf.Ht{HUHHAWAVIAUATSHHHGHWIL+'H)LHHH)H9r;HfHHH9uIFH[A\A]A^A_]ÐH9 L,3H9IH6H9LLEHLEI>fIIVIvIJ HHH9uH9}HJ11H)HHo HA HH9rH)LELEIM>MMFM~H[A\A]A^A_]IM9MFI;HtHH9HGHIH=s V#fDUHAWIAVAUIATSHH(H?HEH[Ht[M7MtcII~MfIIFIL9tHEIFHpHEMfHSHHsHGH([A\A]A^A_]Ð0fHIHxH@IFHSHsH@HC(1IMIF(MuIuIEH L#M@HH{HKIHCHH9tHEHCHMHpHEHMHCIT$HIt$HID$(1IHC(IuIEHH8tTM$$MIIHp0vHHHxH@HCIT$It$HN@L0HWHt7HHf.@UHAVAUATISHHHIH<L4LU L1HIEMT$0It$E1ML$ID$Ht-H1H6HA(HIDH8HtAHHHHHuI<$It$L9t HI\$M,$[A\A]A^]I|$H9IL$LH9tKLI{DLo0HG0ML@H=t-HIEID$(b!H HfUHAWIAVAUATSHH9cHIIDM'HCfH+ID$A $@HIH9BHHfHnIMl$A$HCH3II)H9tHLHLIL$C H(AD$ I(I9AD$ Lk ItH̐HCfH+ID$A$HIH9H#HfHnIMl$A$HsH;ID$C [ID$HSLI$H3HIHL[A\A]A^A_]1E11fHy+fDHy+HHLL&HM9tLI(%BHHfUHAUATISHHG Ln IMHFfH+HG'IHL91LHfHnILkID$I4$II)H9tHLHLHKAD$ C H[A\A]]fDC H[A\A]]DLnfL+.HGHL9LHfHnILkIt$I<$HCHGIT$HH6HAD$ C H[A\A]]D1E11f))I IHH+$LHHat leastat mostexactlycannot pickle '%.200s' objectfunctionan integer is requiredUnknown exception_cython_3_1_2Bad call flags for CyFunction__debug____pyx_capi____loader__loader__file__origin__package__parent__path__submodule_search_locationsbuiltinsboolcomplexdatetimetimedeltaint (arrow::Status const &)maybe_unbox_memory_poolPyObject *(PyObject *)make_streamwrap_functimeunit_to_stringstring_to_timeunitpyarrow_unwrap_metadatapyarrow_wrap_metadatapyarrow_wrap_bufferpyarrow_wrap_resizable_bufferpyarrow_wrap_data_typepyarrow_wrap_fieldpyarrow_wrap_schemapyarrow_wrap_scalarpyarrow_wrap_arraypyarrow_wrap_chunked_arraypyarrow_wrap_tensorpyarrow_wrap_batchpyarrow_wrap_tablepyarrow_unwrap_bufferpyarrow_unwrap_data_typepyarrow_unwrap_fieldpyarrow_unwrap_schemapyarrow_unwrap_scalarpyarrow_unwrap_arraypyarrow_unwrap_chunked_arraypyarrow_unwrap_tensorpyarrow_unwrap_batchpyarrow_unwrap_tablepyarrow_internal_check_statusint (PyObject *)pyarrow_is_bufferpyarrow_is_data_typepyarrow_is_metadatapyarrow_is_fieldpyarrow_is_schemapyarrow_is_arraypyarrow_is_chunked_arraypyarrow_is_scalarpyarrow_is_tensorpyarrow_is_sparse_coo_tensorpyarrow_is_sparse_csr_matrixpyarrow_is_sparse_csc_matrixpyarrow_is_sparse_csf_tensorpyarrow_is_tablepyarrow_is_batchneeds an argument%.200s() %stakes no keyword argumentstakes no arguments%.200s() %s (%zd given)takes exactly one argumentkeywords must be stringsMissing type objectcannot import name %Sarrow_arrayarrow_device_arrayarrow_schemaused_dltensorarrow_array_stream__enter__dictionary_encode__arrow_ext_scalar_class____arrow_ext_class____arrow_ext_serialize__pyarrow/lib.pyxpyarrow.lib.cpu_countpyarrow/memory.pxipyarrow/table.pxipyarrow/io.pxipyarrow.lib.io_thread_count_is_ge_v21pyarrow/pandas-shim.pxi_is_ge_v23_is_ge_v3_is_ge_v3_strictlogging_memory_poollogging_poolpyarrow/ipc.pxipyarrow.lib.Message.__repr__builderpyarrow/builder.pxipyarrow/types.pxiown_filepyarrow/scalar.pxiarrow.bool8arrow.fixed_shape_tensorarrow.opaquearrow.uuidarrow.jsonpyarrow/public-api.pxilist_typelist_view_typedict_typerun_end_encoded_typetensor_ext_typewrappedsp_chunked_arraydictionary_decodepyarrow/array.pxipyarrow.lib.OSFile.filenototal_bytes_allocatedmax_memorynum_allocationssp_statisticsstppyarrow/tensor.pxipyarrow.lib.Scalar.__hash___init_is_cpusp_arraypyarrow.lib.Array.lengthpyarrow.lib.Field.__repr__pyarrow/device.pxipyarrow.lib.Schema.__repr__pyarrow.lib.Schema.__str__pyarrow.lib.Array.__str__pyarrow.lib.Tensor.__eq__generator already executingpyarrow.lib.box_memory_pool_is_initialized__bytes__.0genexprinit_rzpyarrow.lib.Device.wrapinit_schemahandleis_readableset_memcopy_threads_get_valuepyarrow.lib.Buffer.getitempyarrow.lib.Buffer.to_pybytespyarrow.lib.Schema.equalsothersp_schemapyarrow.lib.Device.__eq__sp_typepyarrow.lib.Array.tolistto_numpy_ndarrayis_writableis_seekablepyarrow.lib.NativeFile.isattyreadallc_optionspyarrow.lib.UnionType.__len__pyarrow.lib._is_primitiveduration_typets_typetime_typemap_typedecimal32_typedecimal64_typedecimal128_typedecimal256_typepyarrow.lib.Table.__cinit__pyarrow.lib.Table._to_pandas__del__pyarrow/compat.pxipyarrow.lib.frombytesenable_signal_handlerspyarrow/error.pxipyarrow.lib.MemoryPool.initpyarrow/lib.pxdpyarrow.lib.Array.__len___ssize_t_shapepyarrow.lib.set_memory_pool_ssize_t_stridespyarrow.lib.Field.equalspyarrow.lib.Schema.__len__pyarrow.lib.Schema.appendpyarrow.lib.is_boolean_valuepyarrow.lib.is_integer_valuepyarrow.lib.is_float_valuepyarrow.lib.DataType.__hash__pyarrow.lib.Scalar.__str__get_total_buffer_sizefind_physical_offsetfind_physical_lengthpyarrow.lib.CacheOptions.init_stop_tokenpyarrow.lib.DataType.__eq__pyarrow.lib.Table.equals_loose_versionpyarrow.lib.Schema.__hash__pyarrow.lib._Tabular.__len__pyarrow.lib.Buffer.__len__pyarrow.lib.MapScalar.keys_pdpyarrow.lib.Array.to_pylistappend_valuesfrom_struct_arraywritelines__call___types_api_compat_modulepyarrow.lib.Schema.__iter__pyarrow.lib.Array.__iter___categorical_type_datetimetz_typeitems_extension_arrayiterchunksitercolumnspyarrow.lib.alloc_c_arraypyarrow.lib.alloc_c_schemapyarrow.lib.alloc_c_stream_extension_dtype_array_like_types_is_extension_array_dtypepyarrow.lib.DataType.__repr__pyarrow.lib.Array.__repr__pyarrow.lib.Tensor.__repr__pyarrow.lib.Codec.__repr__print_statsbenchmark_PandasObjectIsNullpyarrow/benchmark.pxiobj_lock__setstate_cython__Expected %s, got %.200spyarrow.lib._Tabular._columnremove_columnpyarrow.lib.encode_file_pathpyarrow.lib.tobytes__arrow_ext_deserialize__pyarrow.lib.NullScalar.as_pypyarrow.lib._Tabular.columnpyarrow.lib._Tabular.fieldappend_column_reconstruct_record_batchpyarrow.lib.Table.drop_reconstruct_tablefrom_dense_numpy__exit__pyarrow.lib.NativeFile.read1truncatepyarrow.lib.create_memory_maphas_sparse_pd024_is_v1pyarrow.lib.__defaults__pyarrow.lib.Codec.unwrappyarrow.lib.Buffer.hex__arrow_c_stream__pyarrow.lib.Field.__hash____reduce_cython___detect_compressionpyarrow.lib.CacheOptions.wrappyarrow.lib.Message.serialize_assert_seekable_assert_writable_assert_readablepyarrow.lib._normalize_indexpyarrow.lib.Schema._fieldsuper(): empty __class__ cellpyarrow.lib.Table.__sizeof__pyarrow.lib.Array.__sizeof__pyarrow.lib._Tabular.__init__pyarrow.lib.Array.__init__pyarrow.lib.Scalar.__init__pyarrow.lib.DataType.__init__pyarrow.lib.Message.__init___assert_open_tried_importing_pandasget_rangeindex_attribute_check_import_have_pandas_internalis_sparsepyarrow.lib.Schema.fieldpyarrow.lib.Table._assert_cpupyarrow.lib._Tabular.__repr____dataframe__sp_batchfrom_bufferspyarrow.lib.Array._assert_cpuchunkpyarrow.lib.decompresspyarrow.lib.compresspyarrow.lib.Buffer.__init__pyarrow.lib.Tensor.__init___handle_arrow_array_protocolpyarrow.lib.Bool8Scalar.as_pypyarrow.lib.Scalar.as_pypyarrow.lib.Schema.__init__pyarrow.lib.Field.__init__pyarrow.lib.ensure_metadata_get_pandas_tz_typepyarrow.lib.Device.__init___as_py_tuplepyarrow.lib.Buffer.__repr__pyarrow.lib.Scalar.__repr__supports_compression_levelis_availablepyarrow.lib.RecordBatch.casttarget_schemapyarrow.lib.type_for_aliaspyarrow.lib.Array.equals__pyx_unpickle__Tabularfrom_network_metricskeyset_memcopy_thresholdset_memcopy_blocksizeread_pandaspyarrow.lib.UnionScalar.as_pypyarrow.lib.ListScalar.as_pyrelease_unusedpyarrow.lib.Int64Scalar.as_pypyarrow.lib.Int32Scalar.as_pypyarrow.lib.FloatScalar.as_pypyarrow.lib.Int16Scalar.as_pypyarrow.lib.Int8Scalar.as_pypyarrow.lib.UInt8Scalar.as_pypyarrow.lib.Array.__eq__pyarrow.lib.Schema.__eq__pyarrow.lib.Scalar.__eq__pyarrow.lib.Field.__eq__pyarrow.lib._Tabular.__eq__serializedinfer_dtypeis_datetimetzis_data_frameis_indexis_categoricalis_seriespyarrow.lib.DataType.fieldpyarrow.lib.UnionType.fieldfield_by_namepyarrow.lib.StructType.fieldpyarrow.lib.proxy_memory_poolproxy_poolthrowfrom_stream_reconstructNo module named '%U'pyarrow.lib.UnionArray.childpyarrow.lib.Array.formatselfreadlinesreadlinepyarrow.lib.Tensor.equalspyarrow.lib._from_pylistpyarrow.lib.Buffer.equalsname '%U' is not definedto_struct_arraypyarrow.lib.Table.__reduce__to_pydictpyarrow.lib._as_c_pointerpyarrow.lib.get_valuespyarrow.lib.MapScalar.as_pypyarrow.lib.Schema.__sizeof__pyarrow/config.pxipyarrow.lib._build_info_have_pandaspyarrow.lib.Array.__array__aggregatepyarrow.lib.tablepyarrow.lib.record_batch_datetime_from_intpyarrow.lib.unionpyarrow.lib.large_utf8pyarrow.lib.utf8pyarrow.lib._pcpyarrow.lib._pacpyarrow.lib._wrap_alignmentempty_tablepyarrow.lib.NativeFile.filenopyarrow.lib.Schema.__reduce__add_metadatavalue_parent_indicesvalue_lengthspyarrow.lib.Tensor.dim_namefrom_storagepyarrow.lib._unwrap_alignmentincluded_fieldspyarrow.lib.Scalar.__reduce__pyarrow.lib.Scalar.castpyarrow.lib.DataType.__str__pyarrow.lib.Table.group_bypyarrow.lib.Array.from_pandaspyarrow.lib._wrap_read_statspyarrow.lib._wrap_write_statsopaque_ext_typepyarrow.lib.Device.__repr__pyarrow.lib.Array.drop_nullpyarrow.lib.Array.is_validpyarrow.lib._Tabular.takepyarrow.lib.Array.fill_nullpyarrow.lib.Array.takepyarrow.lib.as_bufferpyarrow.lib.ChunkedArray.takepyarrow.lib.Field.__reduce__value_countspyarrow.lib.Array.uniquepyarrow.lib.Array.is_nanpyarrow.lib.Array.filterpyarrow.lib.Field.__str__pyarrow.lib.Array.indexvalue_offsetsnull_bitmappyarrow.lib.ChunkedArray.castpyarrow.lib.Array.castto_dict_make_shape_or_strides_bufferpyarrow.lib._check_is_filepyarrow.lib.memory_mappyarrow.lib.Codec.detectpyarrow.lib.Table.join_asofpyarrow.lib.Table.joinpyarrow.lib.Array.diffpyarrow.lib.UuidScalar.as_pypyarrow.lib._codes_to_indicesget_allpyarrow.lib.Buffer.__eq__pyarrow.lib.wrap_array_outputpyarrow.lib.ensure_typepyarrow.lib.DataType.equalslog_memory_allocationspyarrow.lib.get_native_filepyarrow.lib._get_pandas_type_upload_nothreadspyarrow.lib.ChunkedArray.sortpyarrow.lib.Array.is_nullpyarrow.lib.Array.__getitem__pyarrow.lib.Array.sortpyarrow.lib.Array.sumtranscoding_input_streampyarrow.lib._Tabular.sort_bypyarrow.lib.output_streampyarrow.lib.input_streampyarrow.lib.runtime_infocombine_chunkspyarrow.lib._to_pandas_dtypepyarrow.lib._empty_array__reduce_ex__pyarrow.lib.StructArray.sortpyarrow.lib.Table.castpyarrow.lib.as_native_file__pyx_unpickle__PandasAPIShimwrite_queuecleanuppyarrow.lib._is_array_likefrom_numpy_ndarraypyarrow.lib.NativeFile.uploadpyarrow.lib.Message.equals_ensure_integer_indexstorage_typeuses_string_dtypedrop_columnsmaps_as_pydictspyarrow.lib.asarraypyarrow.lib._Tabular.filterpyarrow.lib._from_pydictpyarrow.lib._normalize_sliceget_field_indexstruct_typepyarrow.lib.OSFile.__cinit__cython_runtime__builtins__does not match__orig_bases__init pyarrow.libpyarrow.lib.primitive_typepyarrow.lib.string_viewpyarrow.lib.binary_viewpyarrow.lib.large_stringpyarrow.lib.large_binarypyarrow.lib.stringpyarrow.lib.float64pyarrow.lib.float32pyarrow.lib.float16pyarrow.lib.date64pyarrow.lib.date32pyarrow.lib.int64pyarrow.lib.uint64pyarrow.lib.int32pyarrow.lib.uint32pyarrow.lib.int16pyarrow.lib.uint16pyarrow.lib.int8pyarrow.lib.uint8pyarrow.lib.bool_pyarrow.lib.nullpyarrow.lib.Table._columnpyarrow.lib.wrap_datumpep3118_formatsp_fieldpyarrow.lib.map_pyarrow.lib.durationpyarrow.lib.time64pyarrow.lib.time32pyarrow.lib.timestampwith_nullabletypsp_tensorpyarrow.lib.Tensor.__dlpack__pyarrow.lib.Array.__dlpack__pyarrow.lib.string_to_tzinfo__dlpack_device__pyarrow.lib.Table.slicedownloadpyarrow.lib.Scalar.equalspyarrow.lib.Scalar.unwrappyarrow.lib.opaquetype_namevendor_namepyarrow.lib.Scalar.wrap_download_nothreadsminimum_compression_levelmaximum_compression_leveldefault_compression_levelpyarrow.lib.NativeFile.readpyarrow.lib.Array.slicepyarrow.lib.RecordBatch.slicepyarrow.lib.StopToken.initpyarrow.lib.StructArray.fieldpyarrow.lib.convert_statuspyarrow.lib.check_statuswrite_tableresizeget_random_access_filepyarrow.lib.NativeFile.seekpyarrow.lib.NativeFile.closesp_sparse_tensorto_scipyto_pydata_sparsepyarrow.lib.Tensor.to_numpypyarrow.lib.Table.validate_export_to_cpyarrow.lib.Array.validate_debug_printpyarrow.lib.Scalar.validate__arrow_c_schema__pyarrow.lib.Schema.to_stringget_record_batch_sizepyarrow.lib.get_tensor_sizepyarrow.lib.foreign_bufferset_io_thread_countpyarrow.lib.have_libhdfspyarrow.lib.Array.to_stringunregister_extension_typejemalloc_set_decay_msset_timezone_db_pathpyarrow.lib.set_cpu_countpyarrow.lib.get_writerget_output_streampyarrow.lib.Scalar.initpyarrow.lib.Device.initpyarrow.lib.RecordBatch.initsp_tablepyarrow.lib.Table.initpyarrow.lib.ChunkedArray.initpyarrow.lib.Array.__reduce__release_registrypyarrow.lib.Device.unwrapsp_memoread_next_batch_export_to_c_devicepyarrow.lib.Field.initpyarrow.lib.Array.initpyarrow.lib.DataType.initpyarrow.lib.UnionType.initjson_ext_typepyarrow.lib.JsonType.inituuid_ext_typepyarrow.lib.UuidType.initpyarrow.lib.OpaqueType.initbool8_ext_typepyarrow.lib.Bool8Type.initcpy_ext_typefixed_size_binary_typepyarrow.lib.DurationType.initpyarrow.lib.Time64Type.initpyarrow.lib.Time32Type.initpyarrow.lib.StructType.initpyarrow.lib.MapType.initpyarrow.lib.ListViewType.initpyarrow.lib.ListType.initgetvaluefinishpyarrow.lib.Array.bufferspyarrow.lib.NativeFile.flushpyarrow.lib.get_readerpyarrow.lib.run_end_encodedwith_metadatapyarrow.lib.Buffer.initpyarrow.lib.Field.with_name__arrow_c_device_array____arrow_c_array__pyarrow.lib.list_pyarrow.lib.large_listremove_metadatapyarrow.lib.decimal128pyarrow.lib.decimal32pyarrow.lib.decimal64pyarrow.lib.decimal256pyarrow.lib.binarypyarrow.lib.UnionArray.fieldpyarrow.lib.NativeFile.sizepyarrow.lib.Table.to_batchespyarrow.lib.write_tensordestpyarrow.lib._cb_transformrandom_accesswrite_batchpyarrow.lib.Field.with_typenew_typeread_atserialize_tosinkfrom_tensorpyarrow.lib.list_viewpyarrow.lib.NativeFile.tellpyarrow.lib.large_list_viewset_input_streampyarrow.lib.Tensor.initreplace_schema_metadatareadintopyarrow.lib.Field.flattenpyarrow.lib.Schema.initget_all_field_indicespyarrow.lib._allocate_bufferpyarrow.lib.allocate_bufferpyarrow.lib.tzinfo_to_stringpyarrow.lib.dictionarypyarrow.lib.Table.to_readerstrpyarrow.lib.Codec.__init__pyarrow.lib.Table.from_pandaspyarrow.lib.fieldpyarrow.lib._ndarray_to_typepyarrow.lib._ndarray_to_array_ndarray_to_arrow_type_import_from_c_capsule_import_from_cpyarrow.lib.infer_typepyarrow.lib.from_numpy_dtypepyarrow.lib.bool8pyarrow.lib.uuidpyarrow.lib.json__flattened_field_import_from_c_device_capsule_import_from_c_devicepyarrow.lib.Array.copy_topyarrow.lib.Array.viewpyarrow.lib.arangepyarrow.lib.repeatpyarrow.lib.nullspyarrow.lib.as_c_bufferpybufout_bufpyarrow.lib.Codec.decompresspyarrow.lib.Codec.compresspyarrow.lib.NativeFile.writepyarrow.lib.Buffer.sliceread_bufferpyarrow.lib.Schema.serializepyarrow.lib.py_bufferget_batchpyarrow.lib.read_record_batchdictionary_memoto_tensorpyarrow.lib.read_tensorpyarrow.lib.Array.to_numpyvector::reservepyarrow.lib.Tensor.from_numpyrename_columnspyarrow.lib.Schema.setpyarrow.lib.Schema.removepyarrow.lib.Schema.insertpyarrow.lib.read_schemapyarrow.lib.unify_schemaspyarrow.lib.structpyarrow.lib.sparse_unionpyarrow.lib.dense_unionfrom_pydata_sparsevalue_typefrom_scipypyarrow.lib.Array.getitemunify_dictionariespyarrow.lib.arraypyarrow.lib.scalarpyarrow.lib.concat_arrayspyarrow.lib.chunked_array_from_arraysread_allpyarrow.lib.Table.set_columnpyarrow.lib.Table.add_columnpyarrow.lib.Table.flattenfrom_batchespyarrow.lib.concat_batchespyarrow.lib.concat_tablespromote_optionsdetachget_streamcreatepyarrow.lib.get_input_streampyarrow.lib._get_input_streamopen_streamset_output_streamread_next_messagepyarrow.lib.read_messagepyarrow.lib.Array._to_pandas_init_signalspyarrow.lib.Table.selectpyarrow.lib._restore_arrayfrom_densechildrenfield_namestype_codesfrom_sparsepyarrow.lib.table_to_blockspyarrow.lib._sanitize_arrayspyarrow.lib.Table.from_arrayspyarrow.lib.schema_cython_3_1_2.generator__name__name of the generator__qualname__gi_frameFrame of the generatorgi_runninggi_yieldfromgi_code__module____weaklistoffset__send__dictoffset____vectorcalloffset__func_doc__doc__func_namefunc_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__kwdefaults____annotations___is_coroutineCythonUnboundCMethodpyarrow.lib.__pyx_defaultsnum_record_batches_use_legacy_format_metadata_versionpyarrow.lib.MessageReader__next__pyarrow.lib.BufferReaderpyarrow.lib.MockOutputStreampyarrow.lib.OSFilepyarrow.lib.MemoryMappedFilepyarrow.lib.PythonFilepyarrow.lib.StringViewBuildernull_countpyarrow.lib.StringBuilderpyarrow.lib.Bool8Arraypyarrow.lib.OpaqueArrayrun_endspyarrow.lib.LargeBinaryArraytotal_values_lengthpyarrow.lib.LargeStringArraypyarrow.lib.Decima32Arraypyarrow.lib.DurationArraypyarrow.lib.Time64Arraypyarrow.lib.Time32Arraypyarrow.lib.TimestampArraypyarrow.lib.Date64Arraypyarrow.lib.Date32Arraypyarrow.lib.Bool8Scalarpyarrow.lib.OpaqueScalarpyarrow.lib.ExtensionScalarpyarrow.lib.UnionScalartype_codepyarrow.lib.DictionaryScalarpyarrow.lib.MapScalarpyarrow.lib.StructScalarpyarrow.lib.ListViewScalarpyarrow.lib.LargeListScalarpyarrow.lib.ListScalarpyarrow.lib.StringViewScalarpyarrow.lib.BinaryViewScalarpyarrow.lib.LargeStringScalarpyarrow.lib.StringScalarpyarrow.lib.LargeBinaryScalarpyarrow.lib.BinaryScalarpyarrow.lib.DurationScalarpyarrow.lib.TimestampScalarpyarrow.lib.Time64Scalarpyarrow.lib.Time32Scalarpyarrow.lib.Date64Scalarpyarrow.lib.Date32Scalarpyarrow.lib.Decimal256Scalarpyarrow.lib.Decimal128Scalarpyarrow.lib.Decimal64Scalarpyarrow.lib.Decimal32Scalarpyarrow.lib.DoubleScalarpyarrow.lib.FloatScalarpyarrow.lib.HalfFloatScalarpyarrow.lib.Int64Scalarpyarrow.lib.UInt64Scalarpyarrow.lib.Int32Scalarpyarrow.lib.UInt32Scalarpyarrow.lib.Int16Scalarpyarrow.lib.UInt16Scalarpyarrow.lib.Int8Scalarpyarrow.lib.UInt8Scalarpyarrow.lib.BooleanScalarpyarrow.lib.NullScalarpyarrow.lib.DenseUnionTypepyarrow.lib.SparseUnionTypepyarrow.lib.UnionTypemodepyarrow.lib.ProxyMemoryPoolpyarrow.lib.LoggingMemoryPoolLoggingMemoryPool()pyarrow.lib._PandasAPIShimcompatpyarrow.lib.SignalStopHandlerpyarrow.lib.StopTokenpyarrow.lib.CodecReturns the name of the codecpyarrow.lib.CacheOptionshole_size_limitrange_size_limitlazyprefetch_limitpyarrow.lib.RecordBatchReaderpyarrow.lib.NativeFileclosedpyarrow.lib.ResizableBufferpyarrow.lib.Bufferaddressis_mutabledevice_typepyarrow.lib.MemoryManagerpyarrow.lib.Devicedevice_idpyarrow.lib.RecordBatchnum_columnsnum_rowsnbytespyarrow.lib.Tablepyarrow.lib._Tabularcolumn_namespyarrow.lib.ChunkedArraynum_chunkspyarrow.lib.ExtensionArraypyarrow.lib.DictionaryArraypyarrow.lib.BinaryViewArraypyarrow.lib.StringViewArraypyarrow.lib.BinaryArraypyarrow.lib.StringArraypyarrow.lib.UnionArrayGet the type codes array.pyarrow.lib.MapArraysizespyarrow.lib.ListViewArraypyarrow.lib.LargeListArraypyarrow.lib.ListArraypyarrow.lib.BaseListArraypyarrow.lib.StructArraypyarrow.lib.Decimal256Arraypyarrow.lib.Decimal128Arraypyarrow.lib.Decimal64Arraypyarrow.lib.Decimal32Arraypyarrow.lib.DoubleArraypyarrow.lib.FloatArraypyarrow.lib.HalfFloatArraypyarrow.lib.UInt64Arraypyarrow.lib.Int64Arraypyarrow.lib.UInt32Arraypyarrow.lib.Int32Arraypyarrow.lib.UInt16Arraypyarrow.lib.Int16Arraypyarrow.lib.UInt8Arraypyarrow.lib.Int8Arraypyarrow.lib.IntegerArraypyarrow.lib.NumericArraypyarrow.lib.BooleanArrayfalse_counttrue_countpyarrow.lib.NullArraypyarrow.lib.SparseCSFTensorndimdim_namesnon_zero_lengthpyarrow.lib.SparseCOOTensorhas_canonical_formatpyarrow.lib.SparseCSCMatrixpyarrow.lib.SparseCSRMatrixpyarrow.lib.Tensoris_contiguouspyarrow.lib.Arraypyarrow.lib.ArrayStatisticsdistinct_countminis_min_exactmaxis_max_exactpyarrow.lib.Scalarpyarrow.lib.Schemapandas_metadatapyarrow.lib.Fieldpyarrow.lib.KeyValueMetadatapyarrow.lib._Metadatapyarrow.lib.JsonTypepyarrow.lib.UuidTypepyarrow.lib.OpaqueTypepyarrow.lib.Bool8Typepermutationpyarrow.lib.ExtensionTypepyarrow.lib.BaseExtensionTypeextension_namebyte_widthbit_widthpyarrow.lib.RunEndEncodedTyperun_end_typepyarrow.lib.Decimal256Typeprecisionscalepyarrow.lib.Decimal128Typepyarrow.lib.Decimal64Typepyarrow.lib.Decimal32Typepyarrow.lib.DurationTypepyarrow.lib.Time64Typepyarrow.lib.Time32Typepyarrow.lib.TimestampTypepyarrow.lib.DictionaryTypeorderedindex_typepyarrow.lib.DictionaryMemopyarrow.lib.StructTypepyarrow.lib.FixedSizeListTypevalue_fieldlist_sizepyarrow.lib.MapTypekey_fieldkey_typeitem_fielditem_typekeys_sortedpyarrow.lib.LargeListViewTypepyarrow.lib.ListViewTypepyarrow.lib.LargeListTypepyarrow.lib.ListTypepyarrow.lib.DataTypenum_fieldsnum_buffershas_variadic_bufferspyarrow.lib.MemoryPoolbackend_namepyarrow.lib.Messagebodypyarrow.lib.IpcReadOptionsensure_native_endianensure_alignmentuse_threadspyarrow.lib.IpcWriteOptionsallow_64bitemit_dictionary_deltaspyarrow.lib._Weakrefablebg_writemonth_day_nano_interval_get_pandas_type_mapdefault_cpu_memory_managersupported_memory_backendstotal_allocated_bytesmimalloc_memory_pooljemalloc_memory_poolsystem_memory_pooldefault_memory_pool_gdb_test_session_ensure_cuda_loadedis_threading_enabled%.200s() takes %.8s %zd positional argument%.1s (%zd given)need more than %zd value%.1s to unpackShared Cython type %.200s is not a type objectShared Cython type %.200s has the wrong size, try recompiling%s() got an unexpected keyword argument '%U' while calling a Python objectNULL result without error in PyObject_Call%s() got multiple values for keyword argument '%U'__int__ returned non-int (type %.200s). The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__int__ returned non-int (type %.200s)value too large to convert to intvalue too large to convert to int32_tvalue too large to convert to enum arrow::Type::typevalue too large to convert to enum arrow::TimeUnit::typevalue too large to convert to enum __pyx_t_7pyarrow_3lib_Alignmentvalue too large to convert to enum __pyx_t_7pyarrow_3lib_MetadataVersionmetaclass conflict: the metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its basescan't convert negative value to uint64_tInterpreter change detected - this module can only be loaded into one interpreter per process.can't convert negative value to size_tbase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base type%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectPyObject *(arrow::Status const &) arrow::MemoryPool *(struct __pyx_obj_7pyarrow_3lib_MemoryPool *)PyObject *( arrow::MemoryPool *)PyObject *( arrow::Datum const &)PyObject *(PyObject *, bool, std::shared_ptr< arrow::io::InputStream> *)PyObject *(PyObject *, bool, std::shared_ptr< arrow::io::RandomAccessFile> *)PyObject *(PyObject *, std::shared_ptr< arrow::io::OutputStream> *)struct __pyx_obj_7pyarrow_3lib_NativeFile *(PyObject *, bool)std::shared_ptr< arrow::io::InputStream> (std::shared_ptr< arrow::io::InputStream> , PyObject *, PyObject *)native_transcoding_input_streamstd::shared_ptr > (PyObject *, PyObject *)struct __pyx_obj_7pyarrow_3lib_DataType *(PyObject *, int __pyx_skip_dispatch, struct __pyx_opt_args_7pyarrow_3lib_ensure_type *__pyx_optional_args)struct __pyx_obj_7pyarrow_3lib_DataType *(enum arrow::Type::type)PyObject *(enum arrow::TimeUnit::type)enum arrow::TimeUnit::type (PyObject *)std::shared_ptr< arrow::KeyValueMetadata const > (PyObject *)PyObject *(std::shared_ptr< arrow::KeyValueMetadata const > const &)PyObject *(std::shared_ptr< arrow::Buffer> const &)PyObject *(std::shared_ptr< arrow::ResizableBuffer> const &)PyObject *(std::shared_ptr< arrow::DataType> const &)PyObject *(std::shared_ptr< arrow::Field> const &)PyObject *(std::shared_ptr< arrow::Schema> const &)PyObject *(std::shared_ptr< arrow::Scalar> const &)PyObject *(std::shared_ptr< arrow::Array> const &)PyObject *(std::shared_ptr< arrow::ChunkedArray> const &)PyObject *(std::shared_ptr< arrow::SparseCOOTensor> const &)pyarrow_wrap_sparse_coo_tensorPyObject *(std::shared_ptr< arrow::SparseCSCMatrix> const &)pyarrow_wrap_sparse_csc_matrixPyObject *(std::shared_ptr< arrow::SparseCSFTensor> const &)pyarrow_wrap_sparse_csf_tensorPyObject *(std::shared_ptr< arrow::SparseCSRMatrix> const &)pyarrow_wrap_sparse_csr_matrixPyObject *(std::shared_ptr< arrow::Tensor> const &)PyObject *(std::shared_ptr< arrow::RecordBatch> const &)PyObject *(std::shared_ptr< arrow::Table> const &)std::shared_ptr< arrow::Buffer> (PyObject *)std::shared_ptr< arrow::DataType> (PyObject *)std::shared_ptr< arrow::Field> (PyObject *)std::shared_ptr< arrow::Schema> (PyObject *)std::shared_ptr< arrow::Scalar> (PyObject *)std::shared_ptr< arrow::Array> (PyObject *)std::shared_ptr< arrow::ChunkedArray> (PyObject *)std::shared_ptr< arrow::SparseCOOTensor> (PyObject *)pyarrow_unwrap_sparse_coo_tensorstd::shared_ptr< arrow::SparseCSCMatrix> (PyObject *)pyarrow_unwrap_sparse_csc_matrixstd::shared_ptr< arrow::SparseCSFTensor> (PyObject *)pyarrow_unwrap_sparse_csf_tensorstd::shared_ptr< arrow::SparseCSRMatrix> (PyObject *)pyarrow_unwrap_sparse_csr_matrixstd::shared_ptr< arrow::Tensor> (PyObject *)std::shared_ptr< arrow::RecordBatch> (PyObject *)std::shared_ptr< arrow::Table> (PyObject *)pyarrow_internal_convert_status%.200s() keywords must be stringsinvalid vtable found for imported typemultiple bases have vtable conflict: '%.200s' and '%.200s'join() result is too long for a Python stringunbound method %.200S() needs an argument__annotations__ must be set to a dict object__qualname__ must be set to a string object__name__ must be set to a string object__kwdefaults__ must be set to a dict objectchanges to cyfunction.__kwdefaults__ will not currently affect the values used in function calls__defaults__ must be set to a tuple objectchanges to cyfunction.__defaults__ will not currently affect the values used in function callsfunction's dictionary may not be deletedsetting function's dictionary to a non-dictCannot convert %.200s to %.200stoo many values to unpack (expected %zd)dictionary changed size during iteration'NoneType' object is not iterableraise: arg 3 must be a traceback or Noneinstance exception may not have a separate valueraise: exception class must be a subclass of BaseExceptioncalling %R should have returned an instance of BaseException, not %Rexception causes must derive from BaseException'%.200s' object is unsliceablegenerator raised StopIterationhasattr(): attribute name must be string'NoneType' object has no attribute '%.30s'pyarrow.lib.SignalStopHandler.__dealloc__pyarrow.lib.pycapsule_array_deleterpyarrow.lib.pycapsule_device_array_deleterpyarrow.lib.pycapsule_schema_deleterpyarrow.lib.dlpack_pycapsule_deleterpyarrow.lib.pycapsule_stream_deleterArgument '%.200s' has incorrect type (expected %.200s, got %.200s)cannot fit '%.200s' into an index-sized integerpyarrow.lib.default_memory_poolpyarrow.lib.system_memory_poolpyarrow.lib.total_allocated_bytespyarrow.lib._Tabular.num_columns.__get__pyarrow.lib._Tabular.num_rows.__get__pyarrow.lib._Tabular.schema.__get__pyarrow.lib._PandasAPIShim._is_ge_v21.__get__pyarrow.lib._PandasAPIShim._is_ge_v23.__get__pyarrow.lib._PandasAPIShim._is_ge_v3.__get__pyarrow.lib._PandasAPIShim._is_ge_v3_strict.__get__pyarrow.lib.logging_memory_poolpyarrow.lib.StringViewBuilder.__len__pyarrow.lib.StringViewBuilder.null_count.__get__pyarrow.lib.StringBuilder.__len__pyarrow.lib.StringBuilder.null_count.__get__pyarrow.lib.UnionType.__getitem__pyarrow.lib.NativeFile.__cinit__pyarrow.lib._RecordBatchStreamWriter._use_legacy_format.__get__pyarrow.lib._Tabular.shape.__get__pyarrow.lib.ExtensionType.__reduce__pyarrow.lib.DictionaryScalar.__reduce__pyarrow.lib.pyarrow_wrap_data_typepyarrow.lib.ListType.value_type.__get__pyarrow.lib.LargeListType.value_type.__get__pyarrow.lib.ListViewType.value_type.__get__pyarrow.lib.LargeListViewType.value_type.__get__pyarrow.lib.FixedSizeListType.value_type.__get__pyarrow.lib.DictionaryType.index_type.__get__pyarrow.lib.DictionaryType.value_type.__get__pyarrow.lib.RunEndEncodedType.run_end_type.__get__pyarrow.lib.RunEndEncodedType.value_type.__get__pyarrow.lib.BaseExtensionType.storage_type.__get__pyarrow.lib.FixedShapeTensorType.value_type.__get__pyarrow.lib.Scalar.type.__get__pyarrow.lib.ChunkedArray.type.__get__pyarrow.lib.DictionaryArray.dictionary_decodepyarrow.lib.CacheOptions.hole_size_limit.__get__pyarrow.lib.CacheOptions.range_size_limit.__get__pyarrow.lib.CacheOptions.prefetch_limit.__get__pyarrow.lib.MemoryPool.bytes_allocatedpyarrow.lib.MemoryPool.total_bytes_allocatedpyarrow.lib.MemoryPool.max_memorypyarrow.lib.MemoryPool.num_allocationspyarrow.lib._RecordBatchFileReader.schema.__get__pyarrow.lib.DataType.num_buffers.__get__pyarrow.lib.DataType.has_variadic_buffers.__get__pyarrow.lib.ArrayStatistics.null_count.__get__pyarrow.lib.ArrayStatistics.distinct_count.__get__pyarrow.lib.SparseCSRMatrix.non_zero_length.__get__pyarrow.lib.SparseCSCMatrix.non_zero_length.__get__pyarrow.lib.SparseCOOTensor.non_zero_length.__get__pyarrow.lib.SparseCSFTensor.non_zero_length.__get__pyarrow.lib.Table.num_columns.__get__pyarrow.lib.StructScalar.__iter__pyarrow.lib.ChunkedArray.is_cpu.__get__pyarrow.lib.Array.offset.__get__pyarrow.lib.BinaryArray.total_values_length.__get__pyarrow.lib.LargeBinaryArray.total_values_length.__get__pyarrow.lib.Tensor.is_mutable.__get__pyarrow.lib.SparseCSRMatrix.is_mutable.__get__pyarrow.lib.SparseCSCMatrix.is_mutable.__get__pyarrow.lib.SparseCOOTensor.is_mutable.__get__pyarrow.lib.SparseCSFTensor.is_mutable.__get__pyarrow.lib.MemoryManager.is_cpu.__get__pyarrow.lib.Schema.__getitem__pyarrow.lib.SparseCSRMatrix.__eq__pyarrow.lib.SparseCSCMatrix.__eq__pyarrow.lib.SparseCOOTensor.__eq__pyarrow.lib.SparseCSFTensor.__eq__pyarrow.lib.ChunkedArray.__str__pyarrow.lib.NativeFile.__iter__pyarrow.lib.RecordBatchReader.__next__pyarrow.lib.UInt8Scalar.__index__pyarrow.lib.Int8Scalar.__index__pyarrow.lib.UInt16Scalar.__index__pyarrow.lib.Int16Scalar.__index__pyarrow.lib.UInt32Scalar.__index__pyarrow.lib.Int32Scalar.__index__pyarrow.lib.UInt64Scalar.__index__pyarrow.lib.Int64Scalar.__index__pyarrow.lib.HalfFloatScalar.__float__pyarrow.lib.FloatScalar.__float__pyarrow.lib.DoubleScalar.__float__pyarrow.lib.Table.is_cpu.__get__.genexprpyarrow.lib.Table.is_cpu.__get__pyarrow.lib.MonthDayNanoIntervalScalar.value.__get__pyarrow.lib.MessageReader.__next__pyarrow.lib.KeyValueMetadata.__iter__pyarrow.lib.RecordBatch._is_initializedpyarrow.lib.BinaryScalar.__bytes__can't send non-None value to a just-started generator'NoneType' object is not subscriptablelocal variable '%s' referenced before assignmentiter_batches_with_custom_metadatapyarrow.lib.pyarrow_wrap_resizable_bufferpyarrow.lib.pyarrow_wrap_bufferpyarrow.lib.BinaryScalar.as_bufferpyarrow.lib.MemoryManager.wrappyarrow.lib.Buffer.memory_manager.__get__pyarrow.lib.MemoryManager.device.__get__pyarrow.lib.Buffer.device.__get__pyarrow.lib.pyarrow_wrap_schemapyarrow.lib.Table.schema.__get__pyarrow.lib.RecordBatch.schema.__get__pyarrow.lib.pyarrow_wrap_fieldpyarrow.lib.ListType.value_field.__get__pyarrow.lib.LargeListType.value_field.__get__pyarrow.lib.ListViewType.value_field.__get__pyarrow.lib.LargeListViewType.value_field.__get__pyarrow.lib.FixedSizeListType.value_field.__get__pyarrow.lib.KeyValueMetadata.wrappyarrow.lib.pyarrow_wrap_metadatapyarrow.lib.Schema.metadata.__get__pyarrow.lib._RecordBatchFileReader.num_record_batches.__get__pyarrow.lib.Codec.compression_level.__get__pyarrow.lib.MemoryMappedFile.filenopyarrow.lib.NativeFile.closed.__get__pyarrow.lib.FixedSizeBufferWriter.set_memcopy_threadspyarrow.lib.MockOutputStream.sizepyarrow.lib.SparseCOOTensor.has_canonical_format.__get__pyarrow.lib.ArrayStatistics.min.__get__pyarrow.lib.ArrayStatistics.is_min_exact.__get__pyarrow.lib.ArrayStatistics.max.__get__pyarrow.lib.ArrayStatistics.is_max_exact.__get__pyarrow.lib.Buffer.size.__get__pyarrow.lib.Buffer.address.__get__pyarrow.lib.Buffer.is_mutable.__get__pyarrow.lib.Buffer.is_cpu.__get__pyarrow.lib.Array.null_count.__get__pyarrow.lib.StructScalar.__len__pyarrow.lib.Device.device_id.__get__pyarrow.lib.Device.is_cpu.__get__vector.to_py.__pyx_convert_vector_to_py_int8_tpyarrow.lib.UnionType.type_codes.__get__pyarrow.lib.Scalar.is_valid.__get__pyarrow.lib.Date32Scalar.value.__get__pyarrow.lib.Date64Scalar.value.__get__pyarrow.lib.Time32Scalar.value.__get__pyarrow.lib.Time64Scalar.value.__get__pyarrow.lib.TimestampScalar.value.__get__pyarrow.lib.DurationScalar.value.__get__pyarrow.lib.UnionScalar.type_code.__get__pyarrow.lib.FixedShapeTensorScalar.to_numpypyarrow.lib.FixedShapeTensorArray.to_numpy_ndarraypyarrow.lib.Table._is_initializedpyarrow.lib.NativeFile.readablepyarrow.lib.NativeFile.writablepyarrow.lib.NativeFile.seekablepyarrow.lib.NativeFile.readallfree variable '%s' referenced before assignment in enclosing scopepyarrow.lib.NativeFile.download.cleanuppyarrow.lib.NativeFile._download_nothreads.cleanuppyarrow.lib.ChunkedArray.num_chunks.__get__vector.to_py.__pyx_convert_vector_to_py_int64_tpyarrow.lib.SparseCSFTensor.shape.__get__pyarrow.lib.SparseCOOTensor.shape.__get__pyarrow.lib.SparseCSCMatrix.shape.__get__pyarrow.lib.SparseCSRMatrix.shape.__get__pyarrow.lib.Tensor.strides.__get__pyarrow.lib.Tensor.shape.__get__pyarrow.lib.FixedShapeTensorType.shape.__get__pyarrow.lib.Tensor.ndim.__get__pyarrow.lib.SparseCSRMatrix.ndim.__get__pyarrow.lib.SparseCSCMatrix.ndim.__get__pyarrow.lib.SparseCOOTensor.ndim.__get__pyarrow.lib.SparseCSFTensor.ndim.__get__vector.to_py.__pyx_convert_vector_to_py_intpyarrow.lib.IpcReadOptions.included_fields.__get__pyarrow.lib.UnionType.mode.__get__pyarrow.lib.DataType.num_fields.__get__pyarrow.lib.StructType.__len__pyarrow.lib.CacheOptions.unwrappyarrow.lib.Table.num_rows.__get__pyarrow.lib.RecordBatch.num_rows.__get__pyarrow.lib.ChunkedArray.null_count.__get__pyarrow.lib.ChunkedArray.lengthpyarrow.lib.DictionaryType.ordered.__get__pyarrow.lib.DurationType.unit.__get__pyarrow.lib.TimestampType.unit.__get__pyarrow.lib.Time32Type.unit.__get__pyarrow.lib.Time64Type.unit.__get__pyarrow.lib.FixedSizeListType.list_size.__get__pyarrow.lib.MapType.keys_sorted.__get__pyarrow.lib.Decimal32Type.scale.__get__pyarrow.lib.Decimal64Type.scale.__get__pyarrow.lib.Decimal128Type.scale.__get__pyarrow.lib.Decimal256Type.scale.__get__pyarrow.lib.Decimal32Type.precision.__get__pyarrow.lib.Decimal64Type.precision.__get__pyarrow.lib.Decimal128Type.precision.__get__pyarrow.lib.Decimal256Type.precision.__get__pyarrow.lib.Field.nullable.__get__pyarrow.lib.DataType.id.__get__pyarrow.lib.ChunkedArray.equalspyarrow.lib.RecordBatch.__cinit__pyarrow.lib.pyarrow_wrap_batchpyarrow.lib.pyarrow_wrap_tablepyarrow.lib.ChunkedArray.__cinit__pyarrow.lib.IpcWriteOptions.allow_64bit.__get__pyarrow.lib.Tensor.is_contiguous.__get__pyarrow.lib.Tensor.size.__get__pyarrow.lib.SparseCSRMatrix.size.__get__pyarrow.lib.SparseCSCMatrix.size.__get__pyarrow.lib.SparseCOOTensor.size.__get__pyarrow.lib.SparseCSFTensor.size.__get__pyarrow.lib.BooleanArray.false_count.__get__pyarrow.lib.BooleanArray.true_count.__get__pyarrow.lib.RecordBatch.num_columns.__get__pyarrow.lib.FloatScalar.__int__pyarrow.lib.DoubleScalar.__int__pyarrow.lib.HalfFloatScalar.__int__pyarrow.lib.IpcWriteOptions.use_legacy_format.__get__pyarrow.lib.IpcWriteOptions.allow_64bit.__set__pyarrow.lib.IpcWriteOptions.use_legacy_format.__set__pyarrow.lib.NativeFile.__next__pyarrow.lib.CacheOptions.lazy.__set__pyarrow.lib.IpcWriteOptions.use_threads.__get__pyarrow.lib.enable_signal_handlerspyarrow.lib.IpcWriteOptions.use_threads.__set__pyarrow.lib.IpcWriteOptions.emit_dictionary_deltas.__get__pyarrow.lib.IpcWriteOptions.emit_dictionary_deltas.__set__pyarrow.lib.IpcWriteOptions.unify_dictionaries.__get__pyarrow.lib.IpcWriteOptions.unify_dictionaries.__set__pyarrow.lib.IpcReadOptions.ensure_native_endian.__get__pyarrow.lib.DictionaryScalar.as_pypyarrow.lib.IpcReadOptions.ensure_native_endian.__set__pyarrow.lib.IpcReadOptions.use_threads.__get__pyarrow.lib.IpcReadOptions.use_threads.__set__pyarrow.lib.StructType.__getitem__pyarrow.lib.Field.type.__get__pyarrow.lib.Array.type.__get__pyarrow.lib.Array._name.__get__pyarrow.lib.Tensor.type.__get__pyarrow.lib.Tensor._ssize_t_shape.__get__pyarrow.lib.Tensor._ssize_t_strides.__get__pyarrow.lib.SparseCSRMatrix.type.__get__pyarrow.lib.SparseCSCMatrix.type.__get__pyarrow.lib.SparseCOOTensor.type.__get__pyarrow.lib.KeyValueMetadata.__repr__pyarrow.lib.StructScalar.__str__pyarrow.lib.Array.get_total_buffer_sizepyarrow.lib.RunEndEncodedArray.find_physical_offsetpyarrow.lib.RunEndEncodedArray.find_physical_lengthpyarrow.lib.SparseCSFTensor.type.__get__pyarrow.lib.ChunkedArray._name.__get__pyarrow.lib.CacheOptions.lazy.__get__pyarrow.lib.SignalStopHandler.stop_token.__get__pyarrow.lib.ChunkedArray.get_total_buffer_sizepyarrow.lib.RecordBatch.get_total_buffer_sizepyarrow.lib.Table.get_total_buffer_sizepyarrow.lib._PandasAPIShim._loose_version.__get__pyarrow.lib.ChunkedArray.__len__pyarrow.lib._PandasAPIShim._version.__get__pyarrow.lib.KeyValueMetadata.__len__pyarrow.lib.ListScalar.__iter__pyarrow.lib._PandasAPIShim._pd.__get__pyarrow.lib.StringBuilder.append_valuespyarrow.lib.StringViewBuilder.append_valuespyarrow.lib.Table.from_struct_arraypyarrow.lib.NativeFile.writelinespyarrow.lib.ListScalar.__len__pyarrow.lib.Transcoder.__call__pyarrow.lib._PandasAPIShim._types_api.__get__pyarrow.lib._PandasAPIShim._compat_module.__get__pyarrow.lib.StructType.__iter__pyarrow.lib._PandasAPIShim._data_frame.__get__pyarrow.lib._PandasAPIShim._index.__get__pyarrow.lib._PandasAPIShim._series.__get__pyarrow.lib.ChunkedArray.__iter__pyarrow.lib._PandasAPIShim._categorical_type.__get__pyarrow.lib.UnionType.__iter__pyarrow.lib._PandasAPIShim._datetimetz_type.__get__pyarrow.lib.KeyValueMetadata.keyspyarrow.lib.KeyValueMetadata.valuespyarrow.lib.KeyValueMetadata.itemspyarrow.lib.StructScalar.items.genexprpyarrow.lib.StructScalar.itemspyarrow.lib.MapScalar.__iter__pyarrow.lib._PandasAPIShim._extension_array.__get__pyarrow.lib.ChunkedArray.iterchunkspyarrow.lib._Tabular.itercolumnspyarrow.lib.RecordBatchReader.iter_batches_with_custom_metadatapyarrow.lib.alloc_c_device_arraypyarrow.lib.ExtensionType.__repr__pyarrow.lib._PandasAPIShim._extension_dtype.__get__pyarrow.lib._PandasAPIShim._array_like_types.__get__pyarrow.lib._PandasAPIShim._is_extension_array_dtype.__get__pyarrow.lib.CacheOptions.__init__pyarrow.lib.ArrayStatistics.__repr__pyarrow.lib.SparseCSRMatrix.__repr__pyarrow.lib.SparseCSCMatrix.__repr__pyarrow.lib.SparseCSFTensor.__repr__pyarrow.lib.ChunkedArray.__repr__pyarrow.lib.NativeFile.__repr__pyarrow.lib.MemoryPool.print_statspyarrow.lib.benchmark_PandasObjectIsNullpyarrow.lib._PandasAPIShim._lock.__get__object of type 'NoneType' has no len()pyarrow.lib.__pyx_unpickle__PandasConvertible__set_statepyarrow.lib._PandasConvertible.__setstate_cython__pyarrow.lib.__pyx_unpickle__Tabular__set_statepyarrow.lib._Tabular.__setstate_cython__pyarrow.lib.StructScalar.__contains__pyarrow.lib._Tabular.remove_columnpyarrow.lib._Tabular.add_columnpyarrow.lib.StopToken.__setstate_cython__pyarrow.lib.SignalStopHandler.__setstate_cython__pyarrow.lib.MemoryPool.__setstate_cython__pyarrow.lib.LoggingMemoryPool.__setstate_cython__pyarrow.lib.ProxyMemoryPool.__setstate_cython__pyarrow.lib.Device.__setstate_cython__pyarrow.lib.MemoryManager.__setstate_cython__pyarrow.lib.DictionaryMemo.__setstate_cython__pyarrow.lib.ExtensionType.__arrow_ext_deserialize__pyarrow.lib._ExtensionRegistryNanny.__setstate_cython__pyarrow.lib.ExtensionScalar.as_pypyarrow.lib.ArrayStatistics.__setstate_cython__pyarrow.lib.StringBuilder.__setstate_cython__pyarrow.lib.StringViewBuilder.__setstate_cython__pyarrow.lib._Tabular.append_columnpyarrow.lib._reconstruct_record_batchpyarrow.lib._reconstruct_tablepyarrow.lib.Tensor.__setstate_cython__pyarrow.lib.SparseCOOTensor.from_dense_numpypyarrow.lib.SparseCOOTensor.__setstate_cython__pyarrow.lib.SparseCSRMatrix.from_dense_numpypyarrow.lib.SparseCSRMatrix.__setstate_cython__pyarrow.lib.SparseCSCMatrix.from_dense_numpypyarrow.lib.SparseCSCMatrix.__setstate_cython__pyarrow.lib.SparseCSFTensor.from_dense_numpypyarrow.lib.SparseCSFTensor.__setstate_cython__pyarrow.lib.NativeFile.__exit__pyarrow.lib.NativeFile.__setstate_cython__pyarrow.lib.PythonFile.truncatepyarrow.lib.PythonFile.__setstate_cython__pyarrow.lib.MemoryMappedFile.__setstate_cython__pyarrow.lib.OSFile.__setstate_cython__pyarrow.lib.FixedSizeBufferWriter.__setstate_cython__pyarrow.lib.BufferOutputStream.__setstate_cython__pyarrow.lib.MockOutputStream.__setstate_cython__pyarrow.lib.BufferReader.__setstate_cython__pyarrow.lib.CompressedInputStream.__setstate_cython__pyarrow.lib.CompressedOutputStream.__setstate_cython__pyarrow.lib.BufferedInputStream.__setstate_cython__pyarrow.lib.BufferedOutputStream.__setstate_cython__pyarrow.lib.TransformInputStream.__setstate_cython__pyarrow.lib.Transcoder.__init__pyarrow.lib.Codec.__setstate_cython__pyarrow.lib.IpcReadOptions.__setstate_cython__pyarrow.lib.IpcWriteOptions.__setstate_cython__pyarrow.lib.Message.__setstate_cython__pyarrow.lib.MessageReader.__setstate_cython__pyarrow.lib._CRecordBatchWriter.__exit__pyarrow.lib._CRecordBatchWriter.__setstate_cython__pyarrow.lib._RecordBatchStreamWriter.__setstate_cython__pyarrow.lib.RecordBatchReader.__exit__pyarrow.lib.RecordBatchReader.__setstate_cython__pyarrow.lib._RecordBatchStreamReader.__setstate_cython__pyarrow.lib._RecordBatchFileWriter.__setstate_cython__pyarrow.lib._RecordBatchFileReader.__exit__pyarrow.lib._RecordBatchFileReader.__setstate_cython__pyarrow.lib._PandasAPIShim.has_sparse.__get__pyarrow.lib.CacheOptions.__reduce__pyarrow.lib.StructType.fields.__get__pyarrow.lib.ChunkedArray.chunks.__get__pyarrow.lib.KeyValueMetadata.__reduce__pyarrow.lib._PandasAPIShim._pd024.__get__pyarrow.lib._PandasAPIShim._is_v1.__get__string.to_py.__pyx_convert_PyBytes_string_to_py_6libcpp_6string_std__in_stringvector.to_py.__pyx_convert_vector_to_py_std_3a__3a_stringpyarrow.lib.SparseCSFTensor.dim_names.__get__pyarrow.lib.SparseCSFTensor.dim_names.__get__.genexprpyarrow.lib.SparseCOOTensor.dim_names.__get__pyarrow.lib.SparseCOOTensor.dim_names.__get__.genexprpyarrow.lib.SparseCSCMatrix.dim_names.__get__pyarrow.lib.SparseCSCMatrix.dim_names.__get__.genexprpyarrow.lib.SparseCSRMatrix.dim_names.__get__pyarrow.lib.SparseCSRMatrix.dim_names.__get__.genexprpyarrow.lib.Table.__arrow_c_stream__pyarrow.lib.RunEndEncodedScalar.as_pypyarrow.lib._Tabular._is_initializedpyarrow.lib.CacheOptions.__eq__pyarrow.lib.DictionaryMemo.__reduce_cython__pyarrow.lib.BufferOutputStream.__reduce_cython__pyarrow.lib.StringBuilder.__reduce_cython__pyarrow.lib.SparseCSRMatrix.__reduce_cython__pyarrow.lib.RecordBatchReader.__reduce_cython__pyarrow.lib.IpcWriteOptions.__reduce_cython__pyarrow.lib._RecordBatchStreamReader.__reduce_cython__pyarrow.lib.PythonFile.__reduce_cython__pyarrow.lib.BufferReader.__reduce_cython__pyarrow.lib.SparseCSFTensor.__reduce_cython__pyarrow.lib.ArrayStatistics.__reduce_cython__pyarrow.lib._RecordBatchFileReader.__reduce_cython__pyarrow.lib.Tensor.__reduce_cython__pyarrow.lib.MemoryPool.__reduce_cython__pyarrow.lib.MemoryMappedFile.__reduce_cython__pyarrow.lib.OSFile.__reduce_cython__pyarrow.lib.SparseCSCMatrix.__reduce_cython__pyarrow.lib.CompressedOutputStream.__reduce_cython__pyarrow.lib.MemoryManager.__reduce_cython__pyarrow.lib.FixedSizeBufferWriter.__reduce_cython__pyarrow.lib._CRecordBatchWriter.__reduce_cython__pyarrow.lib.StringViewBuilder.__reduce_cython__pyarrow.lib.ProxyMemoryPool.__reduce_cython__pyarrow.lib.SparseCOOTensor.__reduce_cython__pyarrow.lib.MockOutputStream.__reduce_cython__pyarrow.lib.CompressedInputStream.__reduce_cython__pyarrow.lib.StopToken.__reduce_cython__pyarrow.lib.NativeFile.__reduce_cython__pyarrow.lib.Device.__reduce_cython__pyarrow.lib._ExtensionRegistryNanny.__reduce_cython__pyarrow.lib.LoggingMemoryPool.__reduce_cython__pyarrow.lib._RecordBatchStreamWriter.__reduce_cython__pyarrow.lib.TransformInputStream.__reduce_cython__pyarrow.lib.Message.__reduce_cython__pyarrow.lib.IpcReadOptions.__reduce_cython__pyarrow.lib.Codec.__reduce_cython__pyarrow.lib.SignalStopHandler.__reduce_cython__pyarrow.lib.BufferedOutputStream.__reduce_cython__pyarrow.lib._RecordBatchFileWriter.__reduce_cython__pyarrow.lib.BufferedInputStream.__reduce_cython__pyarrow.lib.MessageReader.__reduce_cython__'%.200s' object has no attribute '%U'pyarrow.lib._detect_compressionpyarrow.lib._CRecordBatchWriter.writepyarrow.lib.NativeFile._assert_seekablepyarrow.lib.NativeFile._assert_writablepyarrow.lib.NativeFile._assert_readablepyarrow.lib.ListScalar.__getitem__pyarrow.lib.ChunkedArray.__array__pyarrow.lib.NativeFile.mode.__get__pyarrow.lib.BaseExtensionType.bit_width.__get__pyarrow.lib.BaseExtensionType.byte_width.__get__pyarrow.lib.DataType.bit_width.__get__pyarrow.lib.ArrowCancelled.__init__pyarrow.lib.RecordBatch.__sizeof__pyarrow.lib.ChunkedArray.__sizeof__pyarrow.lib.MessageReader.__init__pyarrow.lib.ProxyMemoryPool.__init__pyarrow.lib.LoggingMemoryPool.__init__pyarrow.lib.RecordBatchReader.__init__pyarrow.lib.ArrayStatistics.__init__pyarrow.lib.MemoryPool.__init__pyarrow.lib.RecordBatch._to_pandaspyarrow.lib.ChunkedArray.to_pylistpyarrow.lib._Tabular.columns.__get__pyarrow.lib._Tabular.column_names.__get__pyarrow.lib.string_to_timeunitpyarrow.lib.Buffer._assert_cpupyarrow.lib.NativeFile._assert_openpyarrow.lib.ChunkedArray._assert_cpupyarrow.lib._PandasAPIShim._check_importpyarrow.lib._PandasAPIShim._have_pandas_internalpyarrow.lib._PandasAPIShim.get_rangeindex_attributepyarrow.lib._PandasAPIShim.is_ge_v3_strictpyarrow.lib._PandasAPIShim.is_ge_v3pyarrow.lib._PandasAPIShim.is_ge_v23pyarrow.lib._PandasAPIShim.is_ge_v21pyarrow.lib._PandasAPIShim.is_v1pyarrow.lib._PandasAPIShim.data_framepyarrow.lib._PandasAPIShim.seriespyarrow.lib._PandasAPIShim.extension_dtype.__get__pyarrow.lib._PandasAPIShim.datetimetz_type.__get__pyarrow.lib._PandasAPIShim.categorical_type.__get__pyarrow.lib._PandasAPIShim.version.__get__pyarrow.lib._PandasAPIShim.loose_version.__get__pyarrow.lib._PandasAPIShim.pd.__get__pyarrow.lib._PandasAPIShim.compat.__get__pyarrow.lib._PandasAPIShim.have_pandas.__get__pyarrow.lib._PandasAPIShim.is_sparsepyarrow.lib._PandasAPIShim.is_array_likePyObject_GetBuffer: view==NULL argument is obsoletepyarrow.lib.BinaryScalar.__getbuffer__pyarrow.lib._Tabular.__dataframe__pyarrow.lib.Buffer.__getbuffer__pyarrow.lib.RecordBatch._assert_cpupyarrow.lib.pyarrow_wrap_tensorpyarrow.lib.pyarrow_wrap_sparse_csr_matrixpyarrow.lib.pyarrow_wrap_sparse_csc_matrixpyarrow.lib.pyarrow_wrap_sparse_coo_tensorpyarrow.lib.pyarrow_wrap_sparse_csf_tensorpyarrow.lib.pyarrow_wrap_chunked_arraypyarrow.lib.RunEndEncodedArray.from_bufferspyarrow.lib.DataType.byte_width.__get__pyarrow.lib.get_scalar_class_from_typepyarrow.lib.pyarrow_wrap_arraypyarrow.lib.get_array_class_from_typepyarrow.lib.ListArray.values.__get__pyarrow.lib.LargeListArray.values.__get__pyarrow.lib.ListViewArray.values.__get__pyarrow.lib.LargeListViewArray.values.__get__pyarrow.lib.MapArray.keys.__get__pyarrow.lib.MapArray.items.__get__pyarrow.lib.FixedSizeListArray.values.__get__pyarrow.lib.DictionaryArray.dictionary.__get__pyarrow.lib.DictionaryArray.indices.__get__pyarrow.lib.ExtensionArray.storage.__get__pyarrow.lib.DictionaryScalar.dictionary.__get__pyarrow.lib.RunEndEncodedArray.run_ends.__get__pyarrow.lib.RunEndEncodedArray.values.__get__pyarrow.lib.ListScalar.values.__get__pyarrow.lib.ChunkedArray.chunkpyarrow.lib.SparseCSFTensor.__init__pyarrow.lib.SparseCSCMatrix.__init__pyarrow.lib.SparseCSRMatrix.__init__pyarrow.lib.SparseCOOTensor.__init__pyarrow.lib.ChunkedArray.__init__pyarrow.lib._handle_arrow_array_protocolpyarrow.lib.UnknownExtensionType.__arrow_ext_deserialize__pyarrow.lib._get_pandas_tz_typepyarrow.lib.MemoryManager.__init__'%.200s' object is not subscriptablepyarrow.lib.MapScalar.__getitem__pyarrow.lib.StructScalar._as_py_tuplepyarrow.lib._Tabular.to_pylistpyarrow.lib.StructScalar.__repr__pyarrow.lib._ensure_compressionpyarrow.lib.Codec.supports_compression_levelpyarrow.lib.Codec.is_availablepyarrow.lib.MemoryPool.__repr__pyarrow.lib._Tabular.to_stringpyarrow.lib.StructScalar.as_pypyarrow.lib.TableGroupBy.__init__pyarrow.lib.__pyx_unpickle__Tabular__pyx_unpickle__PandasConvertiblepyarrow.lib.__pyx_unpickle__PandasConvertiblepyarrow.lib.CacheOptions.hole_size_limit.__set__pyarrow.lib.CacheOptions.range_size_limit.__set__pyarrow.lib.CacheOptions.prefetch_limit.__set__pyarrow.lib.CacheOptions.from_network_metricspyarrow.lib.KeyValueMetadata.valuepyarrow.lib.KeyValueMetadata.keypyarrow.lib.FixedSizeBufferWriter.set_memcopy_thresholdpyarrow.lib.FixedSizeBufferWriter.set_memcopy_blocksize__mro_entries__ must return a tuplepyarrow.lib._PandasAPIShim.pandas_dtypepyarrow.lib.ExtensionType.__eq__pyarrow.lib._ReadPandasMixin.read_pandaspyarrow.lib.UInt16Scalar.as_pypyarrow.lib.HalfFloatScalar.as_pypyarrow.lib.UInt64Scalar.as_pypyarrow.lib.DoubleScalar.as_pypyarrow.lib.UInt32Scalar.as_pypyarrow.lib.RecordBatch.__arrow_c_stream__pyarrow.lib.ChunkedArray.__eq__pyarrow.lib.UnknownExtensionType.__arrow_ext_serialize__pyarrow.lib._PandasAPIShim.infer_dtypepyarrow.lib._PandasAPIShim.is_datetimetzpyarrow.lib._PandasAPIShim.is_data_framepyarrow.lib._PandasAPIShim.is_indexpyarrow.lib._PandasAPIShim.is_categoricalpyarrow.lib._PandasAPIShim.is_seriespyarrow.lib.ExtensionType.__cinit__pyarrow.lib.BooleanScalar.as_pygenerator ignored GeneratorExitpyarrow.lib._PandasAPIShim.is_extension_array_dtypepyarrow.lib.BooleanScalar.__bool__pyarrow.lib.KeyValueMetadata.equalspyarrow.lib.RecordBatchReader.from_streampyarrow.lib.StructType.names.__get__pyarrow.lib.Schema.types.__get__argument after ** must be a mapping, not NoneTypepyarrow.lib.CacheOptions._reconstructpyarrow.lib.ChunkedArray.formatpyarrow.lib.ChunkedArray.data.__get__pyarrow.lib.Schema.pandas_metadata.__get__pyarrow.lib.PythonFile.readlinespyarrow.lib.PythonFile.readlinepyarrow.lib.SparseCOOTensor.equalspyarrow.lib.SparseCSCMatrix.equalspyarrow.lib.SparseCSRMatrix.equalspyarrow.lib.SparseCSFTensor.equalspyarrow.lib._PandasAPIShim.__reduce_cython__pyarrow.lib.Table.to_struct_arraypyarrow.lib._Tabular.to_pydictpyarrow.lib.KeyValueMetadata.__eq__pyarrow.lib._PandasAPIShim._import_pandasstrings are too large to concatpyarrow.lib.TableGroupBy.aggregatepyarrow.lib._datetime_from_intpyarrow.lib._get_pandas_type_mapEnumTypeToPy.__Pyx_Enum_230530__7pyarrow_3lib_enum__dunderpyx_t_7pyarrow_3lib___etc_to_pypyarrow.lib.Array.is_cpu.__get__pyarrow.lib.RecordBatch.is_cpu.__get__pyarrow.lib.JsonType.__arrow_ext_scalar_class__pyarrow.lib.JsonType.__arrow_ext_class__pyarrow.lib.UuidType.__arrow_ext_scalar_class__pyarrow.lib.UuidType.__arrow_ext_class__pyarrow.lib.Schema.names.__get__pyarrow.lib.Bool8Type.__reduce__pyarrow.lib.UuidType.__reduce__pyarrow.lib.Tensor.dim_names.__get__pyarrow.lib.StructType.__reduce__pyarrow.lib.DataType.__reduce__pyarrow.lib.IpcReadOptions.ensure_alignment.__get__pyarrow.lib._wrap_device_allocation_typepyarrow.lib.Device.device_type.__get__pyarrow.lib.Buffer.device_type.__get__pyarrow.lib.RecordBatch.device_type.__get__pyarrow.lib.Array.device_type.__get__pyarrow.lib._wrap_metadata_versionpyarrow.lib._RecordBatchStreamWriter._metadata_version.__get__pyarrow.lib.IpcWriteOptions.metadata_version.__get__pyarrow.lib.Message.metadata_version.__get__pyarrow.lib._PandasAPIShim.__init__pyarrow.lib.JsonType.__reduce__pyarrow.lib.ListViewType.__reduce__pyarrow.lib.ListType.__reduce__pyarrow.lib.LargeListViewType.__reduce__pyarrow.lib.LargeListType.__reduce__pyarrow.lib.FixedSizeBinaryType.__reduce__pyarrow.lib.Device.type_name.__get__pyarrow.lib.Field.name.__get__pyarrow.lib.Schema.empty_tablepyarrow.lib.ArrowKeyError.__str__pyarrow.lib.NativeFile.readlinepyarrow.lib.NativeFile.truncatepyarrow.lib.NativeFile.readlinespyarrow.lib.Schema.add_metadatapyarrow.lib.BaseListArray.value_parent_indicespyarrow.lib.BaseListArray.value_lengthspyarrow.lib.SparseCSCMatrix.dim_namepyarrow.lib.SparseCOOTensor.dim_namepyarrow.lib.SparseCSRMatrix.dim_namepyarrow.lib.SparseCSFTensor.dim_namepyarrow.lib.Bool8Array.from_storagepyarrow.lib.Codec.name.__get__pyarrow.lib.ChunkedArray.__reduce__pyarrow.lib.Message.type.__get__pyarrow.lib.MemoryPool.backend_name.__get__pyarrow.lib.BaseExtensionType.extension_name.__get__pyarrow.lib.MapType.__reduce__pyarrow.lib.FixedSizeListType.__reduce__pyarrow.lib.Decimal64Type.__reduce__pyarrow.lib.RunEndEncodedType.__reduce__pyarrow.lib.Decimal128Type.__reduce__pyarrow.lib.Decimal256Type.__reduce__pyarrow.lib.TimestampType.__reduce__pyarrow.lib.Decimal32Type.__reduce__EnumTypeToPy.__Pyx_Enum_7pyarrow_3lib_enum__dunderpyx_t_7pyarrow_3lib_Alignment_to_pypyarrow.lib.IpcReadOptions.ensure_alignment.__set__pyarrow.lib.IpcReadOptions.__init__pyarrow.lib._Tabular.from_pylistpyarrow.lib._Tabular.from_pydictpyarrow.lib.DataType.to_pandas_dtypepyarrow.lib.UnionType.__reduce__pyarrow.lib.KeyValueMetadata.__str__pyarrow.lib.DictionaryType.__reduce__pyarrow.lib.OpaqueType.__reduce__pyarrow.lib._RecordBatchStreamReader.stats.__get__pyarrow.lib._RecordBatchFileReader.stats.__get__pyarrow.lib._CRecordBatchWriter.stats.__get__basic_string: construction from null is not validpyarrow.lib.OpaqueType.type_name.__get__pyarrow.lib._Tabular.drop_nullpyarrow.lib.ChunkedArray.is_nanpyarrow.lib.ChunkedArray.is_validpyarrow.lib.ChunkedArray.drop_nullpyarrow.lib.ChunkedArray.fill_nullpyarrow.lib.ChunkedArray.filterpyarrow.lib.FixedShapeTensorType.__reduce__pyarrow.lib.IpcWriteOptions.compression.__get__pyarrow.lib.ChunkedArray.value_countspyarrow.lib.ChunkedArray.uniquepyarrow.lib.Array.value_countspyarrow.lib.RecordBatch.__reduce__pyarrow.lib.ChunkedArray.indexpyarrow.lib.StringArray.from_bufferspyarrow.lib.LargeStringArray.from_bufferspyarrow.lib.MemoryManager.__repr__pyarrow.lib.TimestampType.tz.__get__pyarrow.lib.KeyValueMetadata.to_dictpyarrow.lib.Tensor._make_shape_or_strides_bufferpyarrow.lib.UnionArray.type_codes.__get__pyarrow.lib.Time32Scalar.as_pypyarrow.lib.Time64Scalar.as_pypyarrow.lib.KeyValueMetadata.get_allpyarrow.lib.BaseListArray.flattenpyarrow.lib._Tabular.__getitem__pyarrow.lib.log_memory_allocationspyarrow.lib.TimestampScalar.as_pypyarrow.lib.Decimal32Scalar.as_pypyarrow.lib.Decimal256Scalar.as_pypyarrow.lib.Decimal128Scalar.as_pypyarrow.lib.Decimal64Scalar.as_pypyarrow.lib.ChunkedArray.dictionary_encodepyarrow.lib._ensure_cuda_loadedpyarrow.lib.Array.dictionary_encodepyarrow.lib.UnionArray.offsets.__get__pyarrow.lib.NativeFile._upload_nothreadspyarrow.lib.ChunkedArray.is_nullpyarrow.lib.RunEndEncodedArray.from_arrayspyarrow.lib.ChunkedArray.__getitem__pyarrow.lib.pyarrow_wrap_scalarpyarrow.lib.Date32Scalar.as_pypyarrow.lib.Date64Scalar.as_pypyarrow.lib.transcoding_input_streampyarrow.lib._Tabular.__array__pyarrow.lib.Schema.from_pandaspyarrow.lib._PandasConvertible.__reduce_cython__pyarrow.lib._Tabular.__reduce_cython__pyarrow.lib.ChunkedArray.combine_chunkspyarrow.lib.Bool8Array.to_numpypyarrow.lib.TimestampScalar.__repr__pyarrow.lib.Bool8Array.from_numpypyarrow.lib.Buffer.__reduce_ex__EnumTypeToPy.__Pyx_Enum_7pyarrow_3lib_enum__dunderpyx_t_7pyarrow_3lib_MetadataVersion_to_pypyarrow.lib._unwrap_metadata_versionpyarrow.lib.IpcWriteOptions.metadata_version.__set__pyarrow.lib.__pyx_unpickle__PandasAPIShim__set_statepyarrow.lib._PandasAPIShim.__setstate_cython__pyarrow.lib.__pyx_unpickle__PandasAPIShimpyarrow.lib.StringScalar.as_pypyarrow.lib.BinaryScalar.as_pypyarrow.lib.NativeFile.download.bg_writepyarrow.lib.FixedShapeTensorArray.from_numpy_ndarray.genexprpyarrow.lib.FixedShapeTensorArray.from_numpy_ndarrayvalue too large to convert to int8_tpyarrow.lib._Tabular._ensure_integer_indexpyarrow.lib.NativeFile.upload.bg_writepyarrow.lib.UnknownExtensionType.__init__pyarrow.lib._PandasAPIShim.uses_string_dtypepyarrow.lib.DurationScalar.as_pypyarrow.lib.Buffer.__getitem__pyarrow.lib._PandasAPIShim.get_valuespyarrow.lib._Tabular.drop_columnspyarrow.lib._PandasConvertible.to_pandaspyarrow.lib.StringBuilder.__cinit__pyarrow.lib.BufferReader.__init__pyarrow.lib.StringViewBuilder.__cinit__pyarrow.lib.OpaqueType.vendor_name.__get__string.from_py.__pyx_convert_string_from_py_6libcpp_6string_std__in_stringpyarrow.lib.Schema.get_field_indexpyarrow.lib.KeyValueMetadata.__contains__pyarrow.lib.StructType.get_field_indexUnable to initialize pickling for %.200sModule 'lib' has already been imported. Re-initialisation is not supported.compile time Python version %d.%d of module '%.100s' %s runtime version %d.%dbest base '%.200s' must be equal to first base '%.200s'pyarrow.lib.month_day_nano_intervalpyarrow.lib.RecordBatch._columnpyarrow.lib.BufferReader.__cinit__pyarrow.lib.PythonFile.__cinit__pyarrow.lib.Tensor.__getbuffer__pyarrow.lib.make_streamwrap_funcpyarrow.lib.Field.with_nullablepyarrow.lib.ExtensionArray.from_storagepyarrow.lib.IpcWriteOptions.__init__pyarrow.lib.ChunkedArray.slicepyarrow.lib.Tensor.__dlpack_device__pyarrow.lib.Array.__dlpack_device__pyarrow.lib.NativeFile.downloadpyarrow.lib.Table.nbytes.__get__pyarrow.lib.Array.nbytes.__get__pyarrow.lib.RecordBatch.nbytes.__get__pyarrow.lib.ChunkedArray.nbytes.__get__pyarrow.lib.MonthDayNanoIntervalScalar.as_pypyarrow.lib.ExtensionScalar.value.__get__pyarrow.lib.UnionScalar.value.__get__pyarrow.lib.RunEndEncodedScalar.value.__get__pyarrow.lib.DictionaryScalar.index.__get__pyarrow.lib.MonthDayNanoIntervalArray.to_pylistpyarrow.lib.SignalStopHandler.__cinit__pyarrow.lib.NativeFile._download_nothreadspyarrow.lib.Codec.minimum_compression_levelpyarrow.lib.Codec.maximum_compression_levelpyarrow.lib.Codec.default_compression_levelpyarrow.lib.default_cpu_memory_managerpyarrow.lib.BaseExtensionType.wrap_arraypyarrow.lib.RecordBatchReader.__arrow_c_stream__pyarrow.lib.RecordBatchReader.closepyarrow.lib._CRecordBatchWriter.closepyarrow.lib._CRecordBatchWriter.write_tablepyarrow.lib.ResizableBuffer.resizepyarrow.lib.MemoryMappedFile.resizepyarrow.lib.SparseCSFTensor.to_numpypyarrow.lib.SparseCSCMatrix.to_scipypyarrow.lib.SparseCSCMatrix.to_numpypyarrow.lib.SparseCSRMatrix.to_scipypyarrow.lib.SparseCSRMatrix.to_numpypyarrow.lib.SparseCOOTensor.to_pydata_sparsepyarrow.lib.SparseCOOTensor.to_scipypyarrow.lib.SparseCOOTensor.to_numpypyarrow.lib.RecordBatch._export_to_cpyarrow.lib.RecordBatch.validatepyarrow.lib.ChunkedArray.__arrow_c_stream__pyarrow.lib.ChunkedArray.validatepyarrow.lib.Array._export_to_cpyarrow.lib.Array._debug_printpyarrow.lib.Schema.__arrow_c_schema__pyarrow.lib.Schema._export_to_cpyarrow.lib.Field.__arrow_c_schema__pyarrow.lib.Field._export_to_cpyarrow.lib.DataType.__arrow_c_schema__pyarrow.lib.DataType._export_to_cpyarrow.lib.SignalStopHandler.__enter__pyarrow.lib.pyarrow_internal_check_statuspyarrow.lib.ChunkedArray.to_stringpyarrow.lib.ExtensionType.__init__pyarrow.lib.get_record_batch_sizepyarrow.lib.set_io_thread_countpyarrow.lib.unregister_extension_typepyarrow.lib.register_extension_typepyarrow.lib.jemalloc_set_decay_mspyarrow.lib.mimalloc_memory_poolpyarrow.lib.jemalloc_memory_poolpyarrow.lib.set_timezone_db_pathpyarrow.lib.SignalStopHandler.__exit__pyarrow.lib.pyarrow_internal_convert_statuspyarrow.lib.Message.metadata.__get__pyarrow.lib.ListViewArray.sizes.__get__pyarrow.lib.LargeListViewArray.sizes.__get__pyarrow.lib.ListViewArray.offsets.__get__pyarrow.lib.LargeListViewArray.offsets.__get__pyarrow.lib.ListArray.offsets.__get__pyarrow.lib.LargeListArray.offsets.__get__pyarrow.lib.ResizableBuffer.init_rzpyarrow.lib.MapType.key_field.__get__pyarrow.lib.MapType.item_field.__get__pyarrow.lib.MemoryManager.initpyarrow.lib.ArrayStatistics.initpyarrow.lib.Schema.init_schemapyarrow.lib.KeyValueMetadata.initpyarrow.lib._reduce_array_datapyarrow.lib.NativeFile.set_output_streampyarrow.lib._ExtensionRegistryNanny.release_registrypyarrow.lib.KeyValueMetadata.unwrappyarrow.lib.MemoryManager.unwrappyarrow.lib.DictionaryMemo.__cinit__pyarrow.lib.RecordBatchReader.read_next_batchpyarrow.lib.Field.metadata.__get__pyarrow.lib.RecordBatchReader._export_to_cpyarrow.lib.MapType.key_type.__get__pyarrow.lib.MapType.item_type.__get__pyarrow.lib._RecordBatchFileReader.metadata.__get__pyarrow.lib.RecordBatch._export_to_c_devicepyarrow.lib.Array._export_to_c_devicepyarrow.lib.NativeFile.set_input_streampyarrow.lib.MockOutputStream.__cinit__pyarrow.lib._datatype_to_pep3118pyarrow.lib.BaseExtensionType.initpyarrow.lib.FixedShapeTensorType.initpyarrow.lib.ExtensionType.initpyarrow.lib.RunEndEncodedType.initpyarrow.lib.FixedSizeBinaryType.initpyarrow.lib.Decimal256Type.initpyarrow.lib.Decimal128Type.initpyarrow.lib.Decimal64Type.initpyarrow.lib.Decimal32Type.initpyarrow.lib.TimestampType.initpyarrow.lib.DictionaryType.initpyarrow.lib.FixedSizeListType.initpyarrow.lib.LargeListViewType.initpyarrow.lib.LargeListType.initpyarrow.lib.BufferOutputStream.getvaluepyarrow.lib.Message.body.__get__pyarrow.lib.StringViewBuilder.finishpyarrow.lib.StringBuilder.finishpyarrow.lib.RecordBatchReader.schema.__get__pyarrow.lib.Buffer.parent.__get__pyarrow.lib.FixedSizeBufferWriter.__cinit__pyarrow.lib.NativeFile.get_input_streampyarrow.lib.NativeFile.get_output_streampyarrow.lib.NativeFile.__dealloc__pyarrow.lib._ExtensionRegistryNanny.__cinit__pyarrow.lib._append_array_bufferspyarrow.lib.pyarrow_unwrap_metadatapyarrow.lib.NativeFile.set_random_access_filepyarrow.lib.Schema.with_metadatapyarrow.lib.Field.with_metadatapyarrow.lib.SparseCSFTensor.initpyarrow.lib.SparseCSRMatrix.initpyarrow.lib.SparseCSCMatrix.initpyarrow.lib.SparseCOOTensor.initpyarrow.lib.pyarrow_unwrap_fieldpyarrow.lib.pyarrow_unwrap_chunked_arraypyarrow.lib.pyarrow_unwrap_tablepyarrow.lib.pyarrow_unwrap_bufferpyarrow.lib.c_mask_inverted_from_objpyarrow.lib.pyarrow_unwrap_sparse_csc_matrixpyarrow.lib.pyarrow_unwrap_sparse_csr_matrixpyarrow.lib.pyarrow_unwrap_data_typepyarrow.lib.pyarrow_unwrap_tensorpyarrow.lib.pyarrow_unwrap_sparse_coo_tensorpyarrow.lib.pyarrow_unwrap_batchpyarrow.lib.RecordBatch.__arrow_c_device_array__pyarrow.lib.RecordBatch.__arrow_c_array__pyarrow.lib.pyarrow_unwrap_arraypyarrow.lib.Array.__arrow_c_device_array__pyarrow.lib.Array.__arrow_c_array__pyarrow.lib.pyarrow_unwrap_schemapyarrow.lib.pyarrow_unwrap_sparse_csf_tensorcannot create std::vector larger than max_size()pyarrow.lib._wrap_record_batch_with_metadatapyarrow.lib.Field.remove_metadatapyarrow.lib.Schema.remove_metadatapyarrow.lib.Array.statistics.__get__pyarrow.lib.NativeFile.get_random_access_filepyarrow.lib.RecordBatch.equalspyarrow.lib.pyarrow_unwrap_scalarpyarrow.lib.ExtensionScalar.from_storagepyarrow.lib._CRecordBatchWriter.write_batchpyarrow.lib.NativeFile.read_atpyarrow.lib.Message.serialize_topyarrow.lib.SparseCOOTensor.from_tensorpyarrow.lib.SparseCSRMatrix.from_tensorpyarrow.lib.SparseCSCMatrix.from_tensorpyarrow.lib.SparseCSFTensor.from_tensorpyarrow.lib.TransformInputStream.__init__pyarrow.lib.NullScalar.__cinit__pyarrow.lib.Table.replace_schema_metadatapyarrow.lib.RecordBatch.replace_schema_metadatapyarrow.lib.NativeFile.readintopyarrow.lib.Schema.field_by_namepyarrow.lib.StructType.field_by_namepyarrow.lib.Schema.get_all_field_indicespyarrow.lib.StructType.get_all_field_indicespyarrow.lib.FixedShapeTensorType.permutation.__get__pyarrow.lib.RecordBatch.from_pandaspyarrow.lib.supported_memory_backendspyarrow.lib.BufferOutputStream.__cinit__pyarrow.lib.StringBuilder.appendpyarrow.lib.KeyValueMetadata.__getitem__pyarrow.lib.StructArray.flattenpyarrow.lib.ChunkedArray.flattenpyarrow.lib.IpcWriteOptions.compression.__set__get_batch_with_custom_metadatapyarrow.lib._RecordBatchFileReader.get_batch_with_custom_metadatapyarrow.lib.RecordBatchReader.read_next_batch_with_custom_metadataread_next_batch_with_custom_metadatapyarrow.lib.native_transcoding_input_streampyarrow.lib.DictionaryScalar._reconstructpyarrow.lib._ndarray_to_arrow_typepyarrow.lib.DataType._import_from_c_capsulepyarrow.lib.DataType._import_from_cpyarrow.lib.StructArray._flattened_fieldpyarrow.lib.MapArray.from_arrayspyarrow.lib.Array._import_from_c_device_capsulepyarrow.lib.Array._import_from_c_devicepyarrow.lib.Array._import_from_c_capsulepyarrow.lib.Array._import_from_cpyarrow.lib.FixedSizeListArray.from_arrayspyarrow.lib.DictionaryArray.from_arrayspyarrow.lib.NativeFile.read_bufferpyarrow.lib.RecordBatch.serializepyarrow.lib.StringViewBuilder.appendpyarrow.lib._RecordBatchFileReader.get_batchpyarrow.lib.RecordBatch._import_from_c_device_capsulepyarrow.lib.RecordBatch._import_from_c_devicepyarrow.lib.RecordBatch._import_from_c_capsulepyarrow.lib.RecordBatch._import_from_cpyarrow.lib.RecordBatch.from_struct_arraypyarrow.lib.RecordBatch.set_columnpyarrow.lib.RecordBatch.remove_columnpyarrow.lib.RecordBatch.add_columnpyarrow.lib.RecordBatch.copy_topyarrow.lib.SparseCSFTensor.to_tensorpyarrow.lib.SparseCSCMatrix.to_tensorpyarrow.lib.SparseCSRMatrix.to_tensorpyarrow.lib.SparseCOOTensor.to_tensorpyarrow.lib.RecordBatch.to_tensorpyarrow.lib.FixedShapeTensorScalar.to_tensorpyarrow.lib.FixedShapeTensorArray.to_tensorpyarrow.lib.ChunkedArray.to_numpypyarrow.lib.KeyValueMetadata.__init__.genexprpyarrow.lib.KeyValueMetadata.__init__pyarrow.lib.RecordBatch.rename_columnspyarrow.lib.Field._import_from_c_capsulepyarrow.lib.Field._import_from_cpyarrow.lib.Schema._import_from_c_capsulepyarrow.lib.Schema._import_from_cvector.from_py.__pyx_convert_vector_from_py_int8_tpyarrow.lib._extract_union_paramspyarrow.lib.SparseCOOTensor.from_numpypyarrow.lib.SparseCSRMatrix.from_numpypyarrow.lib.SparseCSCMatrix.from_numpypyarrow.lib.SparseCOOTensor.from_pydata_sparsepyarrow.lib.fixed_shape_tensorpyarrow.lib.SparseCSCMatrix.from_scipypyarrow.lib.SparseCSRMatrix.from_scipypyarrow.lib.SparseCSFTensor.from_numpypyarrow.lib.SparseCOOTensor.from_scipypyarrow.lib.DictionaryScalar.value.__get__pyarrow.lib.ChunkedArray.getitempyarrow.lib.ChunkedArray._import_from_c_capsulepyarrow.lib.ChunkedArray.unify_dictionariespyarrow.lib._sequence_to_arraypyarrow.lib.DictionaryArray.from_bufferspyarrow.lib.Array.from_bufferspyarrow.lib.ArrayStatistics._get_valuepyarrow.lib.ListArray.from_arrayspyarrow.lib.LargeListArray.from_arrayspyarrow.lib.ListViewArray.from_arrayspyarrow.lib.LargeListViewArray.from_arrayspyarrow.lib.RecordBatch.to_struct_arraypyarrow.lib.StructArray.from_arrayspyarrow.lib.RunEndEncodedArray._from_arrayspyarrow.lib.RecordBatchReader.read_allpyarrow.lib.Table.remove_columnpyarrow.lib.Table.unify_dictionariespyarrow.lib.Table.combine_chunkspyarrow.lib.Table.rename_columnspyarrow.lib.Table.from_batchespyarrow.lib.NativeFile.metadatapyarrow.lib.BufferedInputStream.detachpyarrow.lib.NativeFile.get_streampyarrow.lib.MemoryMappedFile._openpyarrow.lib.MemoryMappedFile.createpyarrow.lib.OSFile._open_readablepyarrow.lib.BufferedOutputStream.detachpyarrow.lib.OSFile._open_writablepyarrow.lib.MessageReader.open_streampyarrow.lib.CompressedInputStream.__init__pyarrow.lib.CompressedOutputStream.__init__pyarrow.lib.BufferedInputStream.__init__pyarrow.lib.BufferedOutputStream.__init__pyarrow.lib.MessageReader.read_next_messagepyarrow.lib._RecordBatchFileWriter._openpyarrow.lib._RecordBatchStreamWriter._openpyarrow.lib.RecordBatchReader.from_batchespyarrow.lib.RecordBatchReader._import_from_c_capsulepyarrow.lib.RecordBatchReader._import_from_cpyarrow.lib.RecordBatchReader.castpyarrow.lib._RecordBatchStreamReader._openpyarrow.lib._RecordBatchFileReader._openpyarrow.lib._RecordBatchFileReader.read_allpyarrow.lib._convert_pandas_optionspyarrow.lib._array_like_to_pandaspyarrow.lib.ChunkedArray._to_pandaspyarrow.lib.RecordBatch.selectvector.from_py.__pyx_convert_vector_from_py_intpyarrow.lib.SignalStopHandler._init_signalspyarrow.lib.IpcReadOptions.included_fields.__set__pyarrow.lib._reconstruct_array_datapyarrow.lib.FixedShapeTensorType.dim_names.__get__pyarrow.lib.UnionArray.from_densepyarrow.lib.UnionArray.from_sparseset.from_py.__pyx_convert_unordered_set_from_py_std_3a__3a_stringpyarrow.lib.StructScalar.__getitem__pyarrow.lib._schema_from_arrayspyarrow.lib.RecordBatch.from_arraysqualified name of the generatorobject being iterated by 'yield from', or Nonesend(arg) -> send 'arg' into generator, return next yielded value or raise StopIteration.throw(typ[,val[,tb]]) -> raise exception in generator, return next yielded value or raise StopIteration.close() -> raise GeneratorExit inside generator._cython_3_1_2.cython_function_or_method_cython_3_1_2._common_types_metatypepyarrow.lib.__pyx_scope_struct_24_iter_batches_with_custom_metadatapyarrow.lib.__pyx_scope_struct_23_uploadpyarrow.lib.__pyx_scope_struct_22__download_nothreadspyarrow.lib.__pyx_scope_struct_21_downloadpyarrow.lib.__pyx_scope_struct_20_genexprpyarrow.lib.__pyx_scope_struct_19_genexprpyarrow.lib.__pyx_scope_struct_18_genexprpyarrow.lib.__pyx_scope_struct_17_genexprpyarrow.lib.__pyx_scope_struct_16_genexprpyarrow.lib.__pyx_scope_struct_15_itercolumnspyarrow.lib.__pyx_scope_struct_14_iterchunkspyarrow.lib.__pyx_scope_struct_13___iter__pyarrow.lib.__pyx_scope_struct_12_genexprpyarrow.lib.__pyx_scope_struct_11___iter__pyarrow.lib.__pyx_scope_struct_10___iter__pyarrow.lib.__pyx_scope_struct_9_genexprpyarrow.lib.__pyx_scope_struct_8_itemspyarrow.lib.__pyx_scope_struct_7___iter__pyarrow.lib.__pyx_scope_struct_6___iter__pyarrow.lib.__pyx_scope_struct_5_itemspyarrow.lib.__pyx_scope_struct_4_valuespyarrow.lib.__pyx_scope_struct_3_keyspyarrow.lib.__pyx_scope_struct_2_genexprpyarrow.lib.__pyx_scope_struct_1___iter__pyarrow.lib.__pyx_scope_struct____iter__pyarrow.lib._RecordBatchFileReader The number of record batches in the IPC file. Current IPC read statistics. File-level custom metadata as dict, where both keys and values are byte-like. This kind of metadata can be written via ``ipc.new_file(..., metadata=...)``. pyarrow.lib._RecordBatchFileWriterpyarrow.lib._RecordBatchStreamReaderpyarrow.lib._RecordBatchStreamWriterMessageReader() Interface for reading Message objects from some source (like an InputStream)pyarrow.lib.TransformInputStreamTransformInputStream(NativeFile stream, transform_func) Transform an input stream. Parameters ---------- stream : NativeFile The stream to transform. transform_func : callable The transformation to apply.BufferReader(obj) Zero-copy reader from objects convertible to Arrow buffer. Parameters ---------- obj : Python bytes or pyarrow.Buffer Examples -------- Create an Arrow input stream and inspect it: >>> import pyarrow as pa >>> data = b'reader data' >>> buf = memoryview(data) >>> with pa.input_stream(buf) as stream: ... stream.size() ... stream.read(6) ... stream.seek(7) ... stream.read(15) ... 11 b'reader' 7 b'data'pyarrow.lib.BufferOutputStream An output stream that writes to a resizable buffer. The buffer is produced as a result when ``getvalue()`` is called. Examples -------- Create an output stream, write data to it and finalize it with ``getvalue()``: >>> import pyarrow as pa >>> f = pa.BufferOutputStream() >>> f.write(b'pyarrow.Buffer') 14 >>> f.closed False >>> f.getvalue() >>> f.closed True pyarrow.lib.FixedSizeBufferWriter A stream writing to a Arrow buffer. Examples -------- Create a stream to write to ``pyarrow.Buffer``: >>> import pyarrow as pa >>> buf = pa.allocate_buffer(5) >>> with pa.output_stream(buf) as stream: ... stream.write(b'abcde') ... stream ... 5 Inspect the buffer: >>> buf.to_pybytes() b'abcde' >>> buf A stream backed by a regular file descriptor. Examples -------- Create a new file to write to: >>> import pyarrow as pa >>> with pa.OSFile('example_osfile.arrow', mode='w') as f: ... f.writable() ... f.write(b'OSFile') ... f.seekable() ... True 6 False Open the file to read: >>> with pa.OSFile('example_osfile.arrow', mode='r') as f: ... f.mode ... f.read() ... 'rb' b'OSFile' Open the file to append: >>> with pa.OSFile('example_osfile.arrow', mode='ab') as f: ... f.mode ... f.write(b' is super!') ... 'ab' 10 >>> with pa.OSFile('example_osfile.arrow') as f: ... f.read() ... b'OSFile is super!' Inspect created OSFile: >>> pa.OSFile('example_osfile.arrow') A stream that represents a memory-mapped file. Supports 'r', 'r+', 'w' modes. Examples -------- Create a new file with memory map: >>> import pyarrow as pa >>> mmap = pa.create_memory_map('example_mmap.dat', 10) >>> mmap >>> mmap.close() Open an existing file with memory map: >>> with pa.memory_map('example_mmap.dat') as mmap: ... mmap ... A stream backed by a Python file object. This class allows using Python file objects with arbitrary Arrow functions, including functions written in another language than Python. As a downside, there is a non-zero redirection cost in translating Arrow stream calls to Python method calls. Furthermore, Python's Global Interpreter Lock may limit parallelism in some situations. Examples -------- >>> import io >>> import pyarrow as pa >>> pa.PythonFile(io.BytesIO()) Create a stream for writing: >>> buf = io.BytesIO() >>> f = pa.PythonFile(buf, mode = 'w') >>> f.writable() True >>> f.write(b'PythonFile') 10 >>> buf.getvalue() b'PythonFile' >>> f.close() >>> f Create a stream for reading: >>> buf = io.BytesIO(b'PythonFile') >>> f = pa.PythonFile(buf, mode = 'r') >>> f.mode 'rb' >>> f.read() b'PythonFile' >>> f >>> f.close() >>> f Builder class for UTF8 string views. This class exposes facilities for incrementally adding string values and building the null bitmap for a pyarrow.Array (type='string_view'). Builder class for UTF8 strings. This class exposes facilities for incrementally adding string values and building the null bitmap for a pyarrow.Array (type='string'). Concrete class for bool8 extension arrays. Examples -------- Define the extension type for an bool8 array >>> import pyarrow as pa >>> bool8_type = pa.bool8() Create an extension array >>> arr = [-1, 0, 1, 2, None] >>> storage = pa.array(arr, pa.int8()) >>> pa.ExtensionArray.from_storage(bool8_type, storage) [ -1, 0, 1, 2, null ] Concrete class for opaque extension arrays. Examples -------- Define the extension type for an opaque array >>> import pyarrow as pa >>> opaque_type = pa.opaque( ... pa.binary(), ... type_name="geometry", ... vendor_name="postgis", ... ) Create an extension array >>> arr = [None, b"data"] >>> storage = pa.array(arr, pa.binary()) >>> pa.ExtensionArray.from_storage(opaque_type, storage) [ null, 64617461 ] pyarrow.lib.FixedShapeTensorArray Concrete class for fixed shape tensor extension arrays. Examples -------- Define the extension type for tensor array >>> import pyarrow as pa >>> tensor_type = pa.fixed_shape_tensor(pa.int32(), [2, 2]) Create an extension array >>> arr = [[1, 2, 3, 4], [10, 20, 30, 40], [100, 200, 300, 400]] >>> storage = pa.array(arr, pa.list_(pa.int32(), 4)) >>> pa.ExtensionArray.from_storage(tensor_type, storage) [ [ 1, 2, 3, 4 ], [ 10, 20, 30, 40 ], [ 100, 200, 300, 400 ] ] pyarrow.lib.RunEndEncodedArray Concrete class for Arrow run-end encoded arrays. An array holding the logical indexes of each run-end. The physical offset to the array is applied. An array holding the values of each run. The physical offset to the array is applied. Concrete class for Arrow arrays of large variable-sized binary data type. The number of bytes from beginning to end of the data buffer addressed by the offsets of this LargeBinaryArray. Concrete class for Arrow arrays of large string (or utf8) data type. Concrete class for Arrow arrays of decimal32 data type. Concrete class for Arrow arrays of duration data type. Concrete class for Arrow arrays of time64 data type. Concrete class for Arrow arrays of time32 data type. Concrete class for Arrow arrays of timestamp data type. Concrete class for Arrow arrays of date64 data type. Concrete class for Arrow arrays of date32 data type. Concrete class for bool8 extension scalar. Concrete class for opaque extension scalar. pyarrow.lib.FixedShapeTensorScalar Concrete class for fixed shape tensor extension scalar. Concrete class for Extension scalars. Return storage value as a scalar. Concrete class for Union scalars. Return underlying value as a scalar. Return the union type code for this scalar. pyarrow.lib.RunEndEncodedScalar Concrete class for RunEndEncoded scalars. Concrete class for dictionary-encoded scalars. Return this value's underlying index as a scalar. Return the encoded value as a scalar. Concrete class for map scalars. Concrete class for struct scalars. pyarrow.lib.LargeListViewScalarpyarrow.lib.FixedSizeListScalar Concrete class for list-like scalars. Concrete class for string-like (utf8) scalars. pyarrow.lib.FixedSizeBinaryScalar Concrete class for binary-like scalars. pyarrow.lib.MonthDayNanoIntervalScalar Concrete class for month, day, nanosecond interval scalars. Same as self.as_py() Concrete class for duration scalars. Concrete class for timestamp scalars. Concrete class for time64 scalars. Concrete class for time32 scalars. Concrete class for date64 scalars. Concrete class for date32 scalars. Concrete class for decimal256 scalars. Concrete class for decimal128 scalars. Concrete class for decimal64 scalars. Concrete class for decimal32 scalars. Concrete class for double scalars. Concrete class for float scalars. Concrete class for int64 scalars. Concrete class for uint64 scalars. Concrete class for int32 scalars. Concrete class for uint32 scalars. Concrete class for int16 scalars. Concrete class for uint16 scalars. Concrete class for int8 scalars. Concrete class for uint8 scalars. Concrete class for boolean scalars. NullScalar() Concrete class for null scalars.pyarrow.lib._ExtensionRegistryNannypyarrow.lib.UnknownExtensionTypeUnknownExtensionType(DataType storage_type, serialized) A concrete class for Python-defined extension types that refer to an unknown Python implementation. Parameters ---------- storage_type : DataType The storage type for which the extension is built. serialized : bytes The serialised output. Concrete class for dense union types. Examples -------- Create an instance of a dense UnionType using ``pa.union``: >>> import pyarrow as pa >>> pa.union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())], ... mode=pa.lib.UnionMode_DENSE), (DenseUnionType(dense_union),) Create an instance of a dense UnionType using ``pa.dense_union``: >>> pa.dense_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) DenseUnionType(dense_union) Concrete class for sparse union types. Examples -------- Create an instance of a sparse UnionType using ``pa.union``: >>> import pyarrow as pa >>> pa.union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())], ... mode=pa.lib.UnionMode_SPARSE), (SparseUnionType(sparse_union),) Create an instance of a sparse UnionType using ``pa.sparse_union``: >>> pa.sparse_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) SparseUnionType(sparse_union) Base class for union data types. Examples -------- Create an instance of a dense UnionType using ``pa.union``: >>> import pyarrow as pa >>> pa.union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())], ... mode=pa.lib.UnionMode_DENSE), (DenseUnionType(dense_union),) Create an instance of a dense UnionType using ``pa.dense_union``: >>> pa.dense_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) DenseUnionType(dense_union) Create an instance of a sparse UnionType using ``pa.union``: >>> pa.union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())], ... mode=pa.lib.UnionMode_SPARSE), (SparseUnionType(sparse_union),) Create an instance of a sparse UnionType using ``pa.sparse_union``: >>> pa.sparse_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) SparseUnionType(sparse_union) The mode of the union ("dense" or "sparse"). Examples -------- >>> import pyarrow as pa >>> union = pa.sparse_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) >>> union.mode 'sparse' The type code to indicate each data type in this union. Examples -------- >>> import pyarrow as pa >>> union = pa.sparse_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) >>> union.type_codes [0, 1] ProxyMemoryPool() Memory pool implementation that tracks the number of bytes and maximum memory allocated through its direct calls, while redirecting to another memory pool._PandasAPIShim() Lazy pandas importer that isolates usages of pandas APIs and avoids importing pandas until it's actually neededCodec(str compression, compression_level=None) Compression codec. Parameters ---------- compression : str Type of compression codec to initialize, valid values are: 'gzip', 'bz2', 'brotli', 'lz4' (or 'lz4_frame'), 'lz4_raw', 'zstd' and 'snappy'. compression_level : int, None Optional parameter specifying how aggressively to compress. The possible ranges and effect of this parameter depend on the specific codec chosen. Higher values compress more but typically use more resources (CPU/RAM). Some codecs support negative values. gzip The compression_level maps to the memlevel parameter of deflateInit2. Higher levels use more RAM but are faster and should have higher compression ratios. bz2 The compression level maps to the blockSize100k parameter of the BZ2_bzCompressInit function. Higher levels use more RAM but are faster and should have higher compression ratios. brotli The compression level maps to the BROTLI_PARAM_QUALITY parameter. Higher values are slower and should have higher compression ratios. lz4/lz4_frame/lz4_raw The compression level parameter is not supported and must be None zstd The compression level maps to the compressionLevel parameter of ZSTD_initCStream. Negative values are supported. Higher values are slower and should have higher compression ratios. snappy The compression level parameter is not supported and must be None Raises ------ ValueError If invalid compression value is passed. Examples -------- >>> import pyarrow as pa >>> pa.Codec.is_available('gzip') True >>> codec = pa.Codec('gzip') >>> codec.name 'gzip' >>> codec.compression_level 9Returns the compression level parameter of the codecCacheOptions(hole_size_limit=None, *, range_size_limit=None, lazy=None, prefetch_limit=None) Cache options for a pre-buffered fragment scan. Parameters ---------- hole_size_limit : int, default 8KiB The maximum distance in bytes between two consecutive ranges; beyond this value, ranges are not combined. range_size_limit : int, default 32MiB The maximum size in bytes of a combined range; if combining two consecutive ranges would produce a range of a size greater than this, they are not combined lazy : bool, default True lazy = false: request all byte ranges when PreBuffer or WillNeed is called. lazy = True, prefetch_limit = 0: request merged byte ranges only after the reader needs them. lazy = True, prefetch_limit = k: prefetch up to k merged byte ranges ahead of the range that is currently being read. prefetch_limit : int, default 0 The maximum number of ranges to be prefetched. This is only used for lazy cache to asynchronously read some ranges after reading the target range.RecordBatchReader() Base class for reading stream of record batches. Record batch readers function as iterators of record batches that also provide the schema (without the need to get any batches). Warnings -------- Do not call this class's constructor directly, use one of the ``RecordBatchReader.from_*`` functions instead. Notes ----- To import and export using the Arrow C stream interface, use the ``_import_from_c`` and ``_export_to_c`` methods. However, keep in mind this interface is intended for expert users. Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([('x', pa.int64())]) >>> def iter_record_batches(): ... for i in range(2): ... yield pa.RecordBatch.from_arrays([pa.array([1, 2, 3])], schema=schema) >>> reader = pa.RecordBatchReader.from_batches(schema, iter_record_batches()) >>> print(reader.schema) x: int64 >>> for batch in reader: ... print(batch) pyarrow.RecordBatch x: int64 ---- x: [1,2,3] pyarrow.RecordBatch x: int64 ---- x: [1,2,3] Shared schema of the record batches in the stream. Returns ------- Schema pyarrow.lib._CRecordBatchWriterThe base RecordBatchWriter wrapper. Provides common implementations of convenience methods. Should not be instantiated directly by user code. Current IPC write statistics. pyarrow.lib.CompressedOutputStreamCompressedOutputStream(stream, str compression) An output stream wrapper which compresses data on the fly. Parameters ---------- stream : string, path, pyarrow.NativeFile, or file-like object Input stream object to wrap with the compression. compression : str The compression type ("bz2", "brotli", "gzip", "lz4" or "zstd"). Examples -------- Create an output stream which compresses the data: >>> import pyarrow as pa >>> data = b"Compressed stream" >>> raw = pa.BufferOutputStream() >>> with pa.CompressedOutputStream(raw, "gzip") as compressed: ... compressed.write(data) ... 17pyarrow.lib.CompressedInputStreamCompressedInputStream(stream, str compression) An input stream wrapper which decompresses data on the fly. Parameters ---------- stream : string, path, pyarrow.NativeFile, or file-like object Input stream object to wrap with the compression. compression : str The compression type ("bz2", "brotli", "gzip", "lz4" or "zstd"). Examples -------- Create an output stream which compresses the data: >>> import pyarrow as pa >>> data = b"Compressed stream" >>> raw = pa.BufferOutputStream() >>> with pa.CompressedOutputStream(raw, "gzip") as compressed: ... compressed.write(data) ... 17 Create an input stream with decompression referencing the buffer with compressed data: >>> cdata = raw.getvalue() >>> with pa.input_stream(cdata, compression="gzip") as compressed: ... compressed.read() ... b'Compressed stream' which actually translates to the use of ``BufferReader``and ``CompressedInputStream``: >>> raw = pa.BufferReader(cdata) >>> with pa.CompressedInputStream(raw, "gzip") as compressed: ... compressed.read() ... b'Compressed stream'pyarrow.lib.BufferedOutputStreamBufferedOutputStream(NativeFile stream, int buffer_size, MemoryPool memory_pool=None) An output stream that performs buffered reads from an unbuffered output stream, which can mitigate the overhead of many small writes in some cases. Parameters ---------- stream : NativeFile The writable output stream to wrap with the buffer buffer_size : int Size of the buffer that should be added. memory_pool : MemoryPool The memory pool used to allocate the buffer.pyarrow.lib.BufferedInputStreamBufferedInputStream(NativeFile stream, int buffer_size, MemoryPool memory_pool=None) An input stream that performs buffered reads from an unbuffered input stream, which can mitigate the overhead of many small reads in some cases. Parameters ---------- stream : NativeFile The input stream to wrap with the buffer buffer_size : int Size of the temporary read buffer. memory_pool : MemoryPool The memory pool used to allocate the buffer. The base class for all Arrow streams. Streams are either readable, writable, or both. They optionally support seeking. While this class exposes methods to read or write data from Python, the primary intent of using a Arrow stream is to pass it to other Arrow facilities that will make use of it, such as Arrow IPC routines. Be aware that there are subtle differences with regular Python files, e.g. destroying a writable Arrow stream without closing it explicitly will not flush any pending data. The file mode. Currently instances of NativeFile may support: * rb: binary read * wb: binary write * rb+: binary read and write * ab: binary append A base class for buffers that can be resized. Buffer() The base class for all Arrow buffers. A buffer represents a contiguous memory area. Many buffers will own their memory, though not all of them do. The buffer size in bytes. The buffer's address, as an integer. The returned address may point to CPU or device memory. Use `is_cpu()` to disambiguate. Whether the buffer is mutable. Whether the buffer is CPU-accessible. The device where the buffer resides. Returns ------- Device The memory manager associated with the buffer. Returns ------- MemoryManager The device type where the buffer resides. Returns ------- DeviceAllocationType MemoryManager() An object that provides memory management primitives. A MemoryManager is always tied to a particular Device instance. It can also have additional parameters (such as a MemoryPool to allocate CPU memory). The device this MemoryManager is tied to. Whether this MemoryManager is tied to the main CPU device. This shorthand method is very useful when deciding whether a memory address is CPU-accessible. Device() Abstract interface for hardware devices This object represents a device with access to some memory spaces. When handling a Buffer or raw memory address, it allows deciding in which context the raw memory address should be interpreted (e.g. CPU-accessible memory, or embedded memory on some particular GPU). A shorthand for this device's type. A device ID to identify this device if there are multiple of this type. If there is no "device_id" equivalent (such as for the main CPU device on non-numa systems) returns -1. Whether this device is the main CPU device. This shorthand method is very useful when deciding whether a memory address is CPU-accessible. Return the DeviceAllocationType of this device. Batch of rows of columns of equal length Warnings -------- Do not call this class's constructor directly, use one of the ``RecordBatch.from_*`` functions instead. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Constructing a RecordBatch from arrays: >>> pa.RecordBatch.from_arrays([n_legs, animals], names=names) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] >>> pa.RecordBatch.from_arrays([n_legs, animals], names=names).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede Constructing a RecordBatch from pandas DataFrame: >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022], ... 'month': [3, 5, 7, 9], ... 'day': [1, 5, 9, 13], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.RecordBatch.from_pandas(df) pyarrow.RecordBatch year: int64 month: int64 day: int64 n_legs: int64 animals: string ---- year: [2020,2022,2021,2022] month: [3,5,7,9] day: [1,5,9,13] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] >>> pa.RecordBatch.from_pandas(df).to_pandas() year month day n_legs animals 0 2020 3 1 2 Flamingo 1 2022 5 5 4 Horse 2 2021 7 9 5 Brittle stars 3 2022 9 13 100 Centipede Constructing a RecordBatch from pylist: >>> pylist = [{'n_legs': 2, 'animals': 'Flamingo'}, ... {'n_legs': 4, 'animals': 'Dog'}] >>> pa.RecordBatch.from_pylist(pylist).to_pandas() n_legs animals 0 2 Flamingo 1 4 Dog You can also construct a RecordBatch using :func:`pyarrow.record_batch`: >>> pa.record_batch([n_legs, animals], names=names).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede >>> pa.record_batch(df) pyarrow.RecordBatch year: int64 month: int64 day: int64 n_legs: int64 animals: string ---- year: [2020,2022,2021,2022] month: [3,5,7,9] day: [1,5,9,13] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] Number of columns Returns ------- int Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.num_columns 2 Number of rows Due to the definition of a RecordBatch, all columns have the same number of rows. Returns ------- int Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.num_rows 6 Schema of the RecordBatch and its columns Returns ------- pyarrow.Schema Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.schema n_legs: int64 animals: string Total number of bytes consumed by the elements of the record batch. In other words, the sum of bytes from all buffer ranges referenced. Unlike `get_total_buffer_size` this method will account for array offsets. If buffers are shared between arrays then the shared portion will only be counted multiple times. The dictionary of dictionary arrays will always be counted in their entirety even if the array only references a portion of the dictionary. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.nbytes 116 The device type where the arrays in the RecordBatch reside. Returns ------- DeviceAllocationType Whether the RecordBatch's arrays are CPU-accessible. A collection of top-level named, equal length Arrow arrays. Warnings -------- Do not call this class's constructor directly, use one of the ``from_*`` methods instead. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Construct a Table from arrays: >>> pa.Table.from_arrays([n_legs, animals], names=names) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from a RecordBatch: >>> batch = pa.record_batch([n_legs, animals], names=names) >>> pa.Table.from_batches([batch]) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from pandas DataFrame: >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.Table.from_pandas(df) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022,2019,2021]] n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from a dictionary of arrays: >>> pydict = {'n_legs': n_legs, 'animals': animals} >>> pa.Table.from_pydict(pydict) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> pa.Table.from_pydict(pydict).schema n_legs: int64 animals: string Construct a Table from a dictionary of arrays with metadata: >>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.Table.from_pydict(pydict, metadata=my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from a list of rows: >>> pylist = [{'n_legs': 2, 'animals': 'Flamingo'}, {'year': 2021, 'animals': 'Centipede'}] >>> pa.Table.from_pylist(pylist) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,null]] animals: [["Flamingo","Centipede"]] Construct a Table from a list of rows with pyarrow schema: >>> my_schema = pa.schema([ ... pa.field('year', pa.int64()), ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"year": "Year of entry"}) >>> pa.Table.from_pylist(pylist, schema=my_schema).schema year: int64 n_legs: int64 animals: string -- schema metadata -- year: 'Year of entry' Construct a Table with :func:`pyarrow.table`: >>> pa.table([n_legs, animals], names=names) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Schema of the table and its columns. Returns ------- Schema Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.schema n_legs: int64 animals: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' ... Number of columns in this table. Returns ------- int Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.num_columns 2 Number of rows in this table. Due to the definition of a table, all columns have the same number of rows. Returns ------- int Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.num_rows 4 Total number of bytes consumed by the elements of the table. In other words, the sum of bytes from all buffer ranges referenced. Unlike `get_total_buffer_size` this method will account for array offsets. If buffers are shared between arrays then the shared portion will only be counted multiple times. The dictionary of dictionary arrays will always be counted in their entirety even if the array only references a portion of the dictionary. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.nbytes 72 Whether all ChunkedArrays are CPU-accessible. _Tabular() Internal: An interface for common operations on tabular objects. Names of the Table or RecordBatch columns. Returns ------- list of str Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> table = pa.Table.from_arrays([[2, 4, 5, 100], ... ["Flamingo", "Horse", "Brittle stars", "Centipede"]], ... names=['n_legs', 'animals']) >>> table.column_names ['n_legs', 'animals'] List of all columns in numerical order. Returns ------- columns : list of Array (for RecordBatch) or list of ChunkedArray (for Table) Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.columns [ [ [ null, 4, 5, null ] ], [ [ "Flamingo", "Horse", null, "Centipede" ] ]] Dimensions of the table or record batch: (#rows, #columns). Returns ------- (int, int) Number of rows and number of columns. Examples -------- >>> import pyarrow as pa >>> table = pa.table({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table.shape (4, 2) ChunkedArray() An array-like composed from a (possibly empty) collection of pyarrow.Arrays Warnings -------- Do not call this class's constructor directly. Examples -------- To construct a ChunkedArray object use :func:`pyarrow.chunked_array`: >>> import pyarrow as pa >>> pa.chunked_array([], type=pa.int8()) [ ... ] >>> pa.chunked_array([[2, 2, 4], [4, 5, 100]]) [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> isinstance(pa.chunked_array([[2, 2, 4], [4, 5, 100]]), pa.ChunkedArray) True Return data type of a ChunkedArray. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.type DataType(int64) Number of null entries Returns ------- int Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.null_count 1 Total number of bytes consumed by the elements of the chunked array. In other words, the sum of bytes from all buffer ranges referenced. Unlike `get_total_buffer_size` this method will account for array offsets. If buffers are shared between arrays then the shared portion will only be counted multiple times. The dictionary of dictionary arrays will always be counted in their entirety even if the array only references a portion of the dictionary. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.nbytes 49 Number of underlying chunks. Returns ------- int Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, None], [4, 5, 100]]) >>> n_legs.num_chunks 2 Convert to a list of single-chunked arrays. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, None], [4, 5, 100]]) >>> n_legs [ [ 2, 2, null ], [ 4, 5, 100 ] ] >>> n_legs.chunks [ [ 2, 2, null ], [ 4, 5, 100 ]] Whether all chunks in the ChunkedArray are CPU-accessible. pyarrow.lib.MonthDayNanoIntervalArray Concrete class for Arrow arrays of interval[MonthDayNano] type. Concrete class for Arrow extension arrays. Concrete class for dictionary-encoded Arrow arrays. Concrete class for Arrow arrays of variable-sized binary view data type. Concrete class for Arrow arrays of string (or utf8) view data type. Concrete class for Arrow arrays of variable-sized binary data type. The number of bytes from beginning to end of the data buffer addressed by the offsets of this BinaryArray. Concrete class for Arrow arrays of string (or utf8) data type. Concrete class for Arrow arrays of a Union data type. Get the value offsets array (dense arrays only). Does not account for any slice offset. pyarrow.lib.FixedSizeListArray Concrete class for Arrow arrays of a fixed size list data type. Return the underlying array of values which backs the FixedSizeListArray ignoring the array's offset. Note even null elements are included. Compare with :meth:`flatten`, which returns only the non-null sub-list values. Returns ------- values : Array See Also -------- FixedSizeListArray.flatten : ... Examples -------- >>> import pyarrow as pa >>> array = pa.array( ... [[1, 2], None, [3, None]], ... type=pa.list_(pa.int32(), 2) ... ) >>> array.values [ 1, 2, null, null, 3, null ] Concrete class for Arrow arrays of a map data type. Flattened array of keys across all maps in arrayFlattened array of items across all maps in arraypyarrow.lib.LargeListViewArray Concrete class for Arrow arrays of a large list view data type. Identical to ListViewArray, but with 64-bit offsets. Return the underlying array of values which backs the LargeListArray ignoring the array's offset. The values array may be out of order and/or contain additional values that are not found in the logical representation of the array. The only guarantee is that each non-null value in the ListView Array is contiguous. Compare with :meth:`flatten`, which returns only the non-null values taking into consideration the array's order and offset. Returns ------- values : Array See Also -------- LargeListArray.flatten : ... Examples -------- The values include null elements from sub-lists: >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) >>> array [ [ 1, 2 ], [], [ 2, null, 3, 4 ] ] >>> array.values [ 1, 2, null, 3, 4 ] Return the list view offsets as an int64 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `LargeListViewArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- offsets : Int64Array Examples -------- >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) >>> array.offsets [ 0, 0, 1 ] Return the list view sizes as an int64 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `LargeListViewArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- sizes : Int64Array Examples -------- >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) >>> array.sizes [ 2, 0, 4 ] Concrete class for Arrow arrays of a list view data type. Return the underlying array of values which backs the ListViewArray ignoring the array's offset and sizes. The values array may be out of order and/or contain additional values that are not found in the logical representation of the array. The only guarantee is that each non-null value in the ListView Array is contiguous. Compare with :meth:`flatten`, which returns only the non-null values taking into consideration the array's order and offset. Returns ------- values : Array Examples -------- The values include null elements from sub-lists: >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) >>> array [ [ 1, 2 ], [], [ 2, null, 3, 4 ] ] >>> array.values [ 1, 2, null, 3, 4 ] Return the list offsets as an int32 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `ListViewArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- offsets : Int32Array Examples -------- >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) >>> array.offsets [ 0, 0, 1 ] Return the list sizes as an int32 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `ListViewArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- sizes : Int32Array Examples -------- >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) >>> array.sizes [ 2, 0, 4 ] Concrete class for Arrow arrays of a large list data type. Identical to ListArray, but 64-bit offsets. Return the underlying array of values which backs the LargeListArray ignoring the array's offset. If any of the list elements are null, but are backed by a non-empty sub-list, those elements will be included in the output. Compare with :meth:`flatten`, which returns only the non-null values taking into consideration the array's offset. Returns ------- values : Array See Also -------- LargeListArray.flatten : ... Examples -------- The values include null elements from the sub-lists: >>> import pyarrow as pa >>> array = pa.array( ... [[1, 2], None, [3, 4, None, 6]], ... type=pa.large_list(pa.int32()), ... ) >>> array.values [ 1, 2, 3, 4, null, 6 ] If an array is sliced, the slice still uses the same underlying data as the original array, just with an offset. Since values ignores the offset, the values are the same: >>> sliced = array.slice(1, 2) >>> sliced [ null, [ 3, 4, null, 6 ] ] >>> sliced.values [ 1, 2, 3, 4, null, 6 ] Return the list offsets as an int64 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `LargeListArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- offsets : Int64Array Concrete class for Arrow arrays of a list data type. Return the underlying array of values which backs the ListArray ignoring the array's offset. If any of the list elements are null, but are backed by a non-empty sub-list, those elements will be included in the output. Compare with :meth:`flatten`, which returns only the non-null values taking into consideration the array's offset. Returns ------- values : Array See Also -------- ListArray.flatten : ... Examples -------- The values include null elements from sub-lists: >>> import pyarrow as pa >>> array = pa.array([[1, 2], None, [3, 4, None, 6]]) >>> array.values [ 1, 2, 3, 4, null, 6 ] If an array is sliced, the slice still uses the same underlying data as the original array, just with an offset. Since values ignores the offset, the values are the same: >>> sliced = array.slice(1, 2) >>> sliced [ null, [ 3, 4, null, 6 ] ] >>> sliced.values [ 1, 2, 3, 4, null, 6 ] Return the list offsets as an int32 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `ListArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- offsets : Int32Array Examples -------- >>> import pyarrow as pa >>> array = pa.array([[1, 2], None, [3, 4, 5]]) >>> array.offsets [ 0, 2, 2, 5 ] Concrete class for Arrow arrays of a struct data type. Concrete class for Arrow arrays of decimal256 data type. Concrete class for Arrow arrays of decimal128 data type. Concrete class for Arrow arrays of decimal64 data type. pyarrow.lib.FixedSizeBinaryArray Concrete class for Arrow arrays of a fixed-size binary data type. Concrete class for Arrow arrays of float64 data type. Concrete class for Arrow arrays of float32 data type. Concrete class for Arrow arrays of float16 data type. Concrete class for Arrow arrays of uint64 data type. Concrete class for Arrow arrays of int64 data type. Concrete class for Arrow arrays of uint32 data type. Concrete class for Arrow arrays of int32 data type. Concrete class for Arrow arrays of uint16 data type. Concrete class for Arrow arrays of int16 data type. Concrete class for Arrow arrays of uint8 data type. Concrete class for Arrow arrays of int8 data type. pyarrow.lib.FloatingPointArray A base class for Arrow floating-point arrays. A base class for Arrow integer arrays. A base class for Arrow numeric arrays. Concrete class for Arrow arrays of boolean data type. Concrete class for Arrow arrays of null data type. SparseCSFTensor() A sparse CSF tensor. CSF is a generalization of compressed sparse row (CSR) index. CSF index recursively compresses each dimension of a tensor into a set of prefix trees. Each path from a root to leaf forms one tensor non-zero index. CSF is implemented with two arrays of buffers and one arrays of integers.SparseCOOTensor() A sparse COO tensor.SparseCSCMatrix() A sparse CSC matrix.SparseCSRMatrix() A sparse CSR matrix.Tensor() A n-dimensional array a.k.a Tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) type: int32 shape: (2, 3) strides: (12, 4) Names of this tensor dimensions. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.dim_names ['dim1', 'dim2'] Is this tensor mutable or immutable. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.is_mutable True Is this tensor contiguous in memory. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.is_contiguous True The dimension (n) of this tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.ndim 2 The size of this tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.size 6 The shape of this tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.shape (2, 3) Strides of this tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.strides (12, 4) Array() The base class for all Arrow arrays. Total number of bytes consumed by the elements of the array. In other words, the sum of bytes from all buffer ranges referenced. Unlike `get_total_buffer_size` this method will account for array offsets. If buffers are shared between arrays then the shared portion will be counted multiple times. The dictionary of dictionary arrays will always be counted in their entirety even if the array only references a portion of the dictionary. A relative position into another array's data. The purpose is to enable zero-copy slicing. This value defaults to zero but must be applied on all operations with the physical storage buffers. The device type where the array resides. Returns ------- DeviceAllocationType Whether the array is CPU-accessible. Statistics of the array. pyarrow.lib._PandasConvertibleArrayStatistics() The class for statistics of an array. The number of nulls. The number of distinct values. The minimum value. Whether the minimum value is an exact value or not. The maximum value. Whether the maximum value is an exact value or not. Scalar() The base class for scalars. Data type of the Scalar object. Holds a valid (non-null) value. Schema() A named collection of types a.k.a schema. A schema defines the column names and types in a record batch or table data structure. They also contain metadata about the columns. For example, schemas converted from Pandas contain metadata about their original Pandas types so they can be converted back to the same types. Warnings -------- Do not call this class's constructor directly. Instead use :func:`pyarrow.schema` factory function which makes a new Arrow Schema object. Examples -------- Create a new Arrow Schema object: >>> import pyarrow as pa >>> pa.schema([ ... ('some_int', pa.int32()), ... ('some_string', pa.string()) ... ]) some_int: int32 some_string: string Create Arrow Schema with metadata: >>> pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Return deserialized-from-JSON pandas metadata field (if it exists) Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> schema = pa.Table.from_pandas(df).schema Select pandas metadata field from Arrow Schema: >>> schema.pandas_metadata {'index_columns': [{'kind': 'range', 'name': None, 'start': 0, 'stop': 4, 'step': 1}], ... The schema's field names. Returns ------- list of str Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Get the names of the schema's fields: >>> schema.names ['n_legs', 'animals'] The schema's field types. Returns ------- list of DataType Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Get the types of the schema's fields: >>> schema.types [DataType(int64), DataType(string)] The schema's metadata (if any is set). Returns ------- metadata: dict or None Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) Get the metadata of the schema's fields: >>> schema.metadata {b'n_legs': b'Number of legs per animal'} Field() A named field, with a data type, nullability, and optional metadata. Notes ----- Do not use this class's constructor directly; use pyarrow.field Examples -------- Create an instance of pyarrow.Field: >>> import pyarrow as pa >>> pa.field('key', pa.int32()) pyarrow.Field >>> pa.field('key', pa.int32(), nullable=False) pyarrow.Field >>> field = pa.field('key', pa.int32(), ... metadata={"key": "Something important"}) >>> field pyarrow.Field >>> field.metadata {b'key': b'Something important'} Use the field to create a struct type: >>> pa.struct([field]) StructType(struct) The field nullability. Examples -------- >>> import pyarrow as pa >>> f1 = pa.field('key', pa.int32()) >>> f2 = pa.field('key', pa.int32(), nullable=False) >>> f1.nullable True >>> f2.nullable False The field name. Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) >>> field.name 'key' The field metadata (if any is set). Returns ------- metadata : dict or None Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32(), ... metadata={"key": "Something important"}) >>> field.metadata {b'key': b'Something important'} KeyValueMetadata(__arg0__=None, **kwargs) KeyValueMetadata Parameters ---------- __arg0__ : dict A dict of the key-value metadata **kwargs : optional additional key-value metadata Concrete class for JSON extension type. Examples -------- Define the extension type for JSON array >>> import pyarrow as pa >>> json_type = pa.json_(pa.large_utf8()) Create an extension array >>> arr = [None, '{ "id":30, "values":["a", "b"] }'] >>> storage = pa.array(arr, pa.large_utf8()) >>> pa.ExtensionArray.from_storage(json_type, storage) [ null, "{ "id":30, "values":["a", "b"] }" ] Concrete class for UUID extension type. Concrete class for opaque extension type. Opaque is a placeholder for a type from an external (often non-Arrow) system that could not be interpreted. Examples -------- Create an instance of opaque extension type: >>> import pyarrow as pa >>> pa.opaque(pa.int32(), "geometry", "postgis") OpaqueType(extension) The name of the type in the external system. The name of the external system. Concrete class for bool8 extension type. Bool8 is an alternate representation for boolean arrays using 8 bits instead of 1 bit per value. The underlying storage type is int8. Examples -------- Create an instance of bool8 extension type: >>> import pyarrow as pa >>> pa.bool8() Bool8Type(extension) pyarrow.lib.FixedShapeTensorType Concrete class for fixed shape tensor extension type. Examples -------- Create an instance of fixed shape tensor extension type: >>> import pyarrow as pa >>> pa.fixed_shape_tensor(pa.int32(), [2, 2]) FixedShapeTensorType(extension) Create an instance of fixed shape tensor extension type with permutation: >>> tensor_type = pa.fixed_shape_tensor(pa.int8(), (2, 2, 3), ... permutation=[0, 2, 1]) >>> tensor_type.permutation [0, 2, 1] Data type of an individual tensor. Shape of the tensors. Explicit names of the dimensions. Indices of the dimensions ordering. ExtensionType(DataType storage_type, extension_name) Concrete base class for Python-defined extension types. Parameters ---------- storage_type : DataType The underlying storage type for the extension type. extension_name : str A unique name distinguishing this extension type. The name will be used when deserializing IPC data. Examples -------- Define a RationalType extension type subclassing ExtensionType: >>> import pyarrow as pa >>> class RationalType(pa.ExtensionType): ... def __init__(self, data_type: pa.DataType): ... if not pa.types.is_integer(data_type): ... raise TypeError(f"data_type must be an integer type not {data_type}") ... super().__init__( ... pa.struct( ... [ ... ("numer", data_type), ... ("denom", data_type), ... ], ... ), ... # N.B. This name does _not_ reference `data_type` so deserialization ... # will work for _any_ integer `data_type` after registration ... "my_package.rational", ... ) ... def __arrow_ext_serialize__(self) -> bytes: ... # No parameters are necessary ... return b"" ... @classmethod ... def __arrow_ext_deserialize__(cls, storage_type, serialized): ... # return an instance of this subclass ... return RationalType(storage_type[0].type) Register the extension type: >>> pa.register_extension_type(RationalType(pa.int64())) Create an instance of RationalType extension type: >>> rational_type = RationalType(pa.int32()) Inspect the extension type: >>> rational_type.extension_name 'my_package.rational' >>> rational_type.storage_type StructType(struct) Wrap an array as an extension array: >>> storage_array = pa.array( ... [ ... {"numer": 10, "denom": 17}, ... {"numer": 20, "denom": 13}, ... ], ... type=rational_type.storage_type ... ) >>> rational_array = rational_type.wrap_array(storage_array) >>> rational_array -- is_valid: all not null -- child 0 type: int32 [ 10, 20 ] -- child 1 type: int32 [ 17, 13 ] Or do the same with creating an ExtensionArray: >>> rational_array = pa.ExtensionArray.from_storage(rational_type, storage_array) >>> rational_array -- is_valid: all not null -- child 0 type: int32 [ 10, 20 ] -- child 1 type: int32 [ 17, 13 ] Unregister the extension type: >>> pa.unregister_extension_type("my_package.rational") Note that even though we registered the concrete type ``RationalType(pa.int64())``, PyArrow will be able to deserialize ``RationalType(integer_type)`` for any ``integer_type``, as the deserializer will reference the name ``my_package.rational`` and the ``@classmethod`` ``__arrow_ext_deserialize__``. Concrete base class for extension types. The extension type name. The underlying storage type. The byte width of the extension type. The bit width of the extension type. Concrete class for run-end encoded types. Concrete class for decimal256 data types. Examples -------- Create an instance of decimal256 type: >>> import pyarrow as pa >>> pa.decimal256(76, 38) Decimal256Type(decimal256(76, 38)) The decimal precision, in number of decimal digits (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal256(76, 38) >>> t.precision 76 The decimal scale (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal256(76, 38) >>> t.scale 38 Concrete class for decimal128 data types. Examples -------- Create an instance of decimal128 type: >>> import pyarrow as pa >>> pa.decimal128(5, 2) Decimal128Type(decimal128(5, 2)) The decimal precision, in number of decimal digits (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal128(5, 2) >>> t.precision 5 The decimal scale (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal128(5, 2) >>> t.scale 2 Concrete class for decimal64 data types. Examples -------- Create an instance of decimal64 type: >>> import pyarrow as pa >>> pa.decimal64(5, 2) Decimal64Type(decimal64(5, 2)) The decimal precision, in number of decimal digits (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal64(5, 2) >>> t.precision 5 The decimal scale (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal64(5, 2) >>> t.scale 2 Concrete class for decimal32 data types. Examples -------- Create an instance of decimal32 type: >>> import pyarrow as pa >>> pa.decimal32(5, 2) Decimal32Type(decimal32(5, 2)) The decimal precision, in number of decimal digits (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal32(5, 2) >>> t.precision 5 The decimal scale (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal32(5, 2) >>> t.scale 2 pyarrow.lib.FixedSizeBinaryType Concrete class for fixed-size binary data types. Examples -------- Create an instance of fixed-size binary type: >>> import pyarrow as pa >>> pa.binary(3) FixedSizeBinaryType(fixed_size_binary[3]) Concrete class for duration data types. Examples -------- Create an instance of duration type: >>> import pyarrow as pa >>> pa.duration('s') DurationType(duration[s]) The duration unit ('s', 'ms', 'us' or 'ns'). Examples -------- >>> import pyarrow as pa >>> t = pa.duration('s') >>> t.unit 's' Concrete class for time64 data types. Supported time unit resolutions are 'us' [microsecond] and 'ns' [nanosecond]. Examples -------- Create an instance of time64 type: >>> import pyarrow as pa >>> pa.time64('us') Time64Type(time64[us]) The time unit ('us' or 'ns'). Examples -------- >>> import pyarrow as pa >>> t = pa.time64('us') >>> t.unit 'us' Concrete class for time32 data types. Supported time unit resolutions are 's' [second] and 'ms' [millisecond]. Examples -------- Create an instance of time32 type: >>> import pyarrow as pa >>> pa.time32('ms') Time32Type(time32[ms]) The time unit ('s' or 'ms'). Examples -------- >>> import pyarrow as pa >>> t = pa.time32('ms') >>> t.unit 'ms' Concrete class for timestamp data types. Examples -------- >>> import pyarrow as pa Create an instance of timestamp type: >>> pa.timestamp('us') TimestampType(timestamp[us]) Create an instance of timestamp type with timezone: >>> pa.timestamp('s', tz='UTC') TimestampType(timestamp[s, tz=UTC]) The timestamp unit ('s', 'ms', 'us' or 'ns'). Examples -------- >>> import pyarrow as pa >>> t = pa.timestamp('us') >>> t.unit 'us' The timestamp time zone, if any, or None. Examples -------- >>> import pyarrow as pa >>> t = pa.timestamp('s', tz='UTC') >>> t.tz 'UTC' Concrete class for dictionary data types. Examples -------- Create an instance of dictionary type: >>> import pyarrow as pa >>> pa.dictionary(pa.int64(), pa.utf8()) DictionaryType(dictionary) Whether the dictionary is ordered, i.e. whether the ordering of values in the dictionary is important. Examples -------- >>> import pyarrow as pa >>> pa.dictionary(pa.int64(), pa.utf8()).ordered False The data type of dictionary indices (a signed integer type). Examples -------- >>> import pyarrow as pa >>> pa.dictionary(pa.int16(), pa.utf8()).index_type DataType(int16) The dictionary value type. The dictionary values are found in an instance of DictionaryArray. Examples -------- >>> import pyarrow as pa >>> pa.dictionary(pa.int16(), pa.utf8()).value_type DataType(string) Tracking container for dictionary-encoded fields. Concrete class for struct data types. ``StructType`` supports direct indexing using ``[...]`` (implemented via ``__getitem__``) to access its fields. It will return the struct field with the given index or name. Examples -------- >>> import pyarrow as pa Accessing fields using direct indexing: >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct_type[0] pyarrow.Field >>> struct_type['y'] pyarrow.Field Accessing fields using ``field()``: >>> struct_type.field(1) pyarrow.Field >>> struct_type.field('x') pyarrow.Field # Creating a schema from the struct type's fields: >>> pa.schema(list(struct_type)) x: int32 y: string Lists the field names. Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct([('a', pa.int64()), ('b', pa.float64()), ('c', pa.string())]) >>> struct_type.names ['a', 'b', 'c'] Lists all fields within the StructType. Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct([('a', pa.int64()), ('b', pa.float64()), ('c', pa.string())]) >>> struct_type.fields [pyarrow.Field, pyarrow.Field, pyarrow.Field] Concrete class for fixed size list data types. Examples -------- Create an instance of FixedSizeListType: >>> import pyarrow as pa >>> pa.list_(pa.int32(), 2) FixedSizeListType(fixed_size_list[2]) The field for list values. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.int32(), 2).value_field pyarrow.Field The data type of large list values. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.int32(), 2).value_type DataType(int32) The size of the fixed size lists. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.int32(), 2).list_size 2 Concrete class for map data types. Examples -------- Create an instance of MapType: >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()) MapType(map) >>> pa.map_(pa.string(), pa.int32(), keys_sorted=True) MapType(map) The field for keys in the map entries. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()).key_field pyarrow.Field The data type of keys in the map entries. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()).key_type DataType(string) The field for items in the map entries. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()).item_field pyarrow.Field The data type of items in the map entries. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()).item_type DataType(int32) Should the entries be sorted according to keys. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32(), keys_sorted=True).keys_sorted True Concrete class for large list view data types (like ListViewType, but with 64-bit offsets). Examples -------- Create an instance of LargeListViewType: >>> import pyarrow as pa >>> pa.large_list_view(pa.string()) LargeListViewType(large_list_view) The field for large list view values. Examples -------- >>> import pyarrow as pa >>> pa.large_list_view(pa.string()).value_field pyarrow.Field The data type of large list view values. Examples -------- >>> import pyarrow as pa >>> pa.large_list_view(pa.string()).value_type DataType(string) Concrete class for list view data types. Examples -------- Create an instance of ListViewType: >>> import pyarrow as pa >>> pa.list_view(pa.string()) ListViewType(list_view) The field for list view values. Examples -------- >>> import pyarrow as pa >>> pa.list_view(pa.string()).value_field pyarrow.Field The data type of list view values. Examples -------- >>> import pyarrow as pa >>> pa.list_view(pa.string()).value_type DataType(string) Concrete class for large list data types (like ListType, but with 64-bit offsets). Examples -------- Create an instance of LargeListType: >>> import pyarrow as pa >>> pa.large_list(pa.string()) LargeListType(large_list) The data type of large list values. Examples -------- >>> import pyarrow as pa >>> pa.large_list(pa.string()).value_type DataType(string) Concrete class for list data types. Examples -------- Create an instance of ListType: >>> import pyarrow as pa >>> pa.list_(pa.string()) ListType(list) The field for list values. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.string()).value_field pyarrow.Field The data type of list values. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.string()).value_type DataType(string) DataType() Base class of all Arrow data types. Each data type is an *instance* of this class. Examples -------- Instance of int64 type: >>> import pyarrow as pa >>> pa.int64() DataType(int64) Bit width for fixed width type. Examples -------- >>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().bit_width 64 Byte width for fixed width type. Examples -------- >>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().byte_width 8 The number of child fields. Examples -------- >>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().num_fields 0 >>> pa.list_(pa.string()) ListType(list) >>> pa.list_(pa.string()).num_fields 1 >>> struct = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct.num_fields 2 Number of data buffers required to construct Array type excluding children. Examples -------- >>> import pyarrow as pa >>> pa.int64().num_buffers 2 >>> pa.string().num_buffers 3 If True, the number of expected buffers is only lower-bounded by num_buffers. Examples -------- >>> import pyarrow as pa >>> pa.int64().has_variadic_buffers False >>> pa.string_view().has_variadic_buffers True MemoryPool() Base class for memory allocation. Besides tracking its number of allocated bytes, a memory pool also takes care of the required 64-byte alignment for Arrow data. The name of the backend used by this MemoryPool (e.g. "jemalloc"). Message() Container for an Arrow IPC message with metadata and optional bodyIpcReadOptions(bool ensure_native_endian=True, *, Alignment ensure_alignment=Alignment.Any, bool use_threads=True, list included_fields=None) Serialization options for reading IPC format. Parameters ---------- ensure_native_endian : bool, default True Whether to convert incoming data to platform-native endianness. ensure_alignment : Alignment, default Alignment.Any Data is copied to aligned memory locations if mis-aligned. Some use cases might require data to have a specific alignment, for example, for the data buffer of an int32 array to be aligned on a 4-byte boundary. use_threads : bool Whether to use the global CPU thread pool to parallelize any computational tasks like decompression included_fields : list If empty (the default), return all deserialized fields. If non-empty, the values are the indices of fields to read on the top-level schemaIpcWriteOptions(metadata_version=MetadataVersion.V5, *, bool allow_64bit=False, use_legacy_format=False, compression=None, bool use_threads=True, bool emit_dictionary_deltas=False, bool unify_dictionaries=False) Serialization options for the IPC format. Parameters ---------- metadata_version : MetadataVersion, default MetadataVersion.V5 The metadata version to write. V5 is the current and latest, V4 is the pre-1.0 metadata version (with incompatible Union layout). allow_64bit : bool, default False If true, allow field lengths that don't fit in a signed 32-bit int. use_legacy_format : bool, default False Whether to use the pre-Arrow 0.15 IPC format. compression : str, Codec, or None compression codec to use for record batch buffers. If None then batch buffers will be uncompressed. Must be "lz4", "zstd" or None. To specify a compression_level use `pyarrow.Codec` use_threads : bool Whether to use the global CPU thread pool to parallelize any computational tasks like compression. emit_dictionary_deltas : bool Whether to emit dictionary deltas. Default is false for maximum stream compatibility. unify_dictionaries : bool If true then calls to write_table will attempt to unify dictionaries across all batches in the table. This can help avoid the need for replacement dictionaries (which the file format does not support) but requires computing the unified dictionary and then remapping the indices arrays. This parameter is ignored when writing to the IPC stream format as the IPC stream format can support replacement dictionaries.ҽ8]̾)##'p(%## )`&'$x)&#(@%(&##h'#$##8$##0#ziXn]Lo[J9(` t#yhs_N=,d|G7&%%%%x%())|)*====y=h=CB>AAApveTdLW!D!0!!! ['['* *K*'C)))*;L;|;::;8;h;x::@d?4?A@aWNW:W&WWVVVVVVVrV^VJV6V"Vcihhhhhhhhhhhhh9g%gۀʀ..t.`.L.@:<;0;@>> import pyarrow as pa >>> data = b"buffer data" >>> empty_obj = bytearray(11) >>> buf = pa.py_buffer(empty_obj) >>> with pa.output_stream(buf) as stream: ... stream.write(data) ... 11 >>> with pa.input_stream(buf) as stream: ... stream.read(6) ... b'buffer' or from a memoryview object: >>> buf = memoryview(empty_obj) >>> with pa.output_stream(buf) as stream: ... stream.write(data) ... 11 >>> with pa.input_stream(buf) as stream: ... stream.read() ... b'buffer data' Create a writable NativeFile from a string or file path: >>> with pa.output_stream('example_second.txt') as stream: ... stream.write(b'Write some data') ... 15 >>> with pa.input_stream('example_second.txt') as stream: ... stream.read() ... b'Write some data'input_stream(source, compression='detect', buffer_size=None) Create an Arrow input stream. Parameters ---------- source : str, Path, buffer, or file-like object The source to open for reading. compression : str optional, default 'detect' The compression algorithm to use for on-the-fly decompression. If "detect" and source is a file path, then compression will be chosen based on the file extension. If None, no compression will be applied. Otherwise, a well-known algorithm name must be supplied (e.g. "gzip"). buffer_size : int, default None If None or 0, no buffering will happen. Otherwise the size of the temporary read buffer. Examples -------- Create a readable BufferReader (NativeFile) from a Buffer or a memoryview object: >>> import pyarrow as pa >>> buf = memoryview(b"some data") >>> with pa.input_stream(buf) as stream: ... stream.read(4) ... b'some' Create a readable OSFile (NativeFile) from a string or file path: >>> import gzip >>> with gzip.open('example.gz', 'wb') as f: ... f.write(b'some data') ... 9 >>> with pa.input_stream('example.gz') as stream: ... stream.read() ... b'some data' Create a readable PythonFile (NativeFile) from a a Python file object: >>> with open('example.txt', mode='w') as f: ... f.write('some text') ... 9 >>> with pa.input_stream('example.txt') as stream: ... stream.read(6) ... b'some t'decompress(buf, decompressed_size=None, codec='lz4', asbytes=False, memory_pool=None) Decompress data from buffer-like object. Parameters ---------- buf : pyarrow.Buffer, bytes, or memoryview-compatible object Input object to decompress data from. decompressed_size : int, default None Size of the decompressed result codec : str, default 'lz4' Compression codec. Supported types: {'brotli, 'gzip', 'lz4', 'lz4_raw', 'snappy', 'zstd'} asbytes : bool, default False Return result as Python bytes object, otherwise Buffer. memory_pool : MemoryPool, default None Memory pool to use for buffer allocations, if any. Returns ------- uncompressed : pyarrow.Buffer or bytes (if asbytes=True)compress(buf, codec='lz4', asbytes=False, memory_pool=None) Compress data from buffer-like object. Parameters ---------- buf : pyarrow.Buffer, bytes, or other object supporting buffer protocol codec : str, default 'lz4' Compression codec. Supported types: {'brotli, 'gzip', 'lz4', 'lz4_raw', 'snappy', 'zstd'} asbytes : bool, default False Return result as Python bytes object, otherwise Buffer. memory_pool : MemoryPool, default None Memory pool to use for buffer allocations, if any. Returns ------- compressed : pyarrow.Buffer or bytes (if asbytes=True)Codec.__setstate_cython__(self, __pyx_state)Codec.__reduce_cython__(self)Codec.decompress(self, buf, decompressed_size=None, asbytes=False, memory_pool=None) Decompress data from buffer-like object. Parameters ---------- buf : pyarrow.Buffer, bytes, or memoryview-compatible object decompressed_size : int, default None Size of the decompressed result asbytes : boolean, default False Return result as Python bytes object, otherwise Buffer memory_pool : MemoryPool, default None Memory pool to use for buffer allocations, if any. Returns ------- uncompressed : pyarrow.Buffer or bytes (if asbytes=True)Codec.compress(self, buf, asbytes=False, memory_pool=None) Compress data from buffer-like object. Parameters ---------- buf : pyarrow.Buffer, bytes, or other object supporting buffer protocol asbytes : bool, default False Return result as Python bytes object, otherwise Buffer memory_pool : MemoryPool, default None Memory pool to use for buffer allocations, if any Returns ------- compressed : pyarrow.Buffer or bytes (if asbytes=True)Codec.maximum_compression_level(str compression) Returns the largest valid value for the compression level Parameters ---------- compression : str Type of compression codec, refer to Codec docstring for a list of supported ones.Codec.minimum_compression_level(str compression) Returns the smallest valid value for the compression level Parameters ---------- compression : str Type of compression codec, refer to Codec docstring for a list of supported ones.Codec.default_compression_level(str compression) Returns the compression level that Arrow will use for the codec if None is specified. Parameters ---------- compression : str Type of compression codec, refer to Codec docstring for a list of supported ones.Codec.supports_compression_level(str compression) Returns true if the compression level parameter is supported for the given codec. Parameters ---------- compression : str Type of compression codec, refer to Codec docstring for a list of supported ones.Codec.is_available(str compression) Returns whether the compression support has been built and enabled. Parameters ---------- compression : str Type of compression codec, refer to Codec docstring for a list of supported ones. Returns ------- boolCodec.detect(path) Detect and instantiate compression codec based on file extension. Parameters ---------- path : str, path-like File-path to detect compression from. Raises ------ TypeError If the passed value is not path-like. ValueError If the compression can't be detected from the path. Returns ------- CodecCacheOptions.__reduce__(self)CacheOptions._reconstruct(kwargs)CacheOptions.from_network_metrics(time_to_first_byte_millis, transfer_bandwidth_mib_per_sec, ideal_bandwidth_utilization_frac=0.9, max_ideal_request_size_mib=64) Create suitable CacheOptions based on provided network metrics. Typically this will be used with object storage solutions like Amazon S3, Google Cloud Storage and Azure Blob Storage. Parameters ---------- time_to_first_byte_millis : int Seek-time or Time-To-First-Byte (TTFB) in milliseconds, also called call setup latency of a new read request. The value is a positive integer. transfer_bandwidth_mib_per_sec : int Data transfer Bandwidth (BW) in MiB/sec (per connection). The value is a positive integer. ideal_bandwidth_utilization_frac : int, default 0.9 Transfer bandwidth utilization fraction (per connection) to maximize the net data load. The value is a positive float less than 1. max_ideal_request_size_mib : int, default 64 The maximum single data request size (in MiB) to maximize the net data load. Returns ------- CacheOptions_detect_compression(path)as_buffer(o)foreign_buffer(address, size, base=None) Construct an Arrow buffer with the given *address* and *size*. The buffer will be optionally backed by the Python *base* object, if given. The *base* object will be kept alive as long as this buffer is alive, including across language boundaries (for example if the buffer is referenced by C++ code). Parameters ---------- address : int The starting address of the buffer. The address can refer to both device or host memory but it must be accessible from device after mapping it with `get_device_address` method. size : int The size of device buffer in bytes. base : {None, object} Object that owns the referenced memory.py_buffer(obj) Construct an Arrow buffer from a Python bytes-like or buffer-like object Parameters ---------- obj : object the object from which the buffer should be constructed.transcoding_input_stream(stream, src_encoding, dest_encoding) Add a transcoding transformation to the stream. Incoming data will be decoded according to ``src_encoding`` and then re-encoded according to ``dest_encoding``. Parameters ---------- stream : NativeFile The stream to which the transformation should be applied. src_encoding : str The codec to use when reading data. dest_encoding : str The codec to use for emitted data.Transcoder.__call__(self, buf)Transcoder.__init__(self, decoder, encoder)TransformInputStream.__setstate_cython__(self, __pyx_state)TransformInputStream.__reduce_cython__(self)BufferedOutputStream.__setstate_cython__(self, __pyx_state)BufferedOutputStream.__reduce_cython__(self)BufferedOutputStream.detach(self) Flush any buffered writes and release the raw OutputStream. Further operations on this stream are invalid. Returns ------- raw : NativeFile The underlying raw output stream.BufferedInputStream.__setstate_cython__(self, __pyx_state)BufferedInputStream.__reduce_cython__(self)BufferedInputStream.detach(self) Release the raw InputStream. Further operations on this stream are invalid. Returns ------- raw : NativeFile The underlying raw input streamCompressedOutputStream.__setstate_cython__(self, __pyx_state)CompressedOutputStream.__reduce_cython__(self)CompressedInputStream.__setstate_cython__(self, __pyx_state)CompressedInputStream.__reduce_cython__(self)BufferReader.__setstate_cython__(self, __pyx_state)BufferReader.__reduce_cython__(self)MockOutputStream.__setstate_cython__(self, __pyx_state)MockOutputStream.__reduce_cython__(self)MockOutputStream.size(self)BufferOutputStream.__setstate_cython__(self, __pyx_state)BufferOutputStream.__reduce_cython__(self)BufferOutputStream.getvalue(self) Finalize output stream and return result as pyarrow.Buffer. Returns ------- value : Bufferallocate_buffer(int64_t size, MemoryPool memory_pool=None, resizable=False) Allocate a mutable buffer. Parameters ---------- size : int Number of bytes to allocate (plus internal padding) memory_pool : MemoryPool, optional The pool to allocate memory from. If not given, the default memory pool is used. resizable : bool, default False If true, the returned buffer is resizable. Returns ------- buffer : Buffer or ResizableBufferResizableBuffer.resize(self, int64_t new_size, shrink_to_fit=False) Resize buffer to indicated size. Parameters ---------- new_size : int New size of buffer (padding may be added internally). shrink_to_fit : bool, default False If this is true, the buffer is shrunk when new_size is less than the current size. If this is false, the buffer is never shrunk.Buffer.to_pybytes(self) Return this buffer as a Python bytes object. Memory is copied.Buffer.__reduce_ex__(self, protocol)Buffer.equals(self, Buffer other) Determine if two buffers contain exactly the same data. Parameters ---------- other : Buffer Returns ------- are_equal : bool True if buffer contents and size are equalBuffer.slice(self, offset=0, length=None) Slice this buffer. Memory is not copied. You can also use the Python slice notation ``buffer[start:stop]``. Parameters ---------- offset : int, default 0 Offset from start of buffer to slice. length : int, default None Length of slice (default is until end of Buffer starting from offset). Returns ------- sliced : Buffer A logical view over this buffer.Buffer.hex(self) Compute hexadecimal representation of the buffer. Returns ------- : bytesBuffer._assert_cpu(self)FixedSizeBufferWriter.__setstate_cython__(self, __pyx_state)FixedSizeBufferWriter.__reduce_cython__(self)FixedSizeBufferWriter.set_memcopy_threshold(self, int64_t threshold) Parameters ---------- threshold : int64FixedSizeBufferWriter.set_memcopy_blocksize(self, int64_t blocksize) Parameters ---------- blocksize : int64FixedSizeBufferWriter.set_memcopy_threads(self, int num_threads) Parameters ---------- num_threads : intOSFile.__setstate_cython__(self, __pyx_state)OSFile.__reduce_cython__(self)OSFile.fileno(self)create_memory_map(path, size) Create a file of the given size and memory-map it. Parameters ---------- path : str The file path to create, on the local filesystem. size : int The file size to create. Returns ------- mmap : MemoryMappedFile Examples -------- Create a file with a memory map: >>> import pyarrow as pa >>> with pa.create_memory_map('example_mmap_create.dat', 27) as mmap: ... mmap.write(b'Create a memory-mapped file') ... mmap.read_at(10, 9) ... 27 b'memory-map'memory_map(path, mode='r') Open memory map at file path. Size of the memory map cannot change. Parameters ---------- path : str mode : {'r', 'r+', 'w'}, default 'r' Whether the file is opened for reading ('r'), writing ('w') or both ('r+'). Returns ------- mmap : MemoryMappedFile Examples -------- Reading from a memory map without any memory allocation or copying: >>> import pyarrow as pa >>> with pa.output_stream('example_mmap.txt') as stream: ... stream.write(b'Constructing a buffer referencing the mapped memory') ... 51 >>> with pa.memory_map('example_mmap.txt') as mmap: ... mmap.read_at(6,45) ... b'memory'MemoryMappedFile.__setstate_cython__(self, __pyx_state)MemoryMappedFile.__reduce_cython__(self)MemoryMappedFile.fileno(self)MemoryMappedFile.resize(self, new_size) Resize the map and underlying file. Parameters ---------- new_size : new size in bytesMemoryMappedFile._open(self, path, mode='r')MemoryMappedFile.create(path, size) Create a MemoryMappedFile Parameters ---------- path : str Where to create the file. size : int Size of the memory mapped file.PythonFile.__setstate_cython__(self, __pyx_state)PythonFile.__reduce_cython__(self)PythonFile.readlines(self, hint=None) Read lines of the file. Parameters ---------- hint : int Maximum number of bytes read until we stopPythonFile.readline(self, size=None) Read and return a line of bytes from the file. If size is specified, read at most size bytes. Parameters ---------- size : int Maximum number of bytes readPythonFile.truncate(self, pos=None) Parameters ---------- pos : int, optionalNativeFile.__setstate_cython__(self, __pyx_state)NativeFile.__reduce_cython__(self)NativeFile._upload_nothreads(self, stream, buffer_size=None) Internal method to do an upload without separate threads, queues etc. Called by upload above if is_threading_enabled() == FalseNativeFile.upload(self, stream, buffer_size=None) Write from a source stream to this file. Parameters ---------- stream : file-like object Source stream to pipe to this file. buffer_size : int, optional The buffer size to use for data transfers.NativeFile._download_nothreads(self, stream_or_path, buffer_size=None) Internal method to do a download without separate threads, queues etc. Called by download above if is_threading_enabled() == FalseNativeFile.download(self, stream_or_path, buffer_size=None) Read this file completely to a local path or destination stream. This method first seeks to the beginning of the file. Parameters ---------- stream_or_path : str or file-like object If a string, a local file path to write to; otherwise, should be a writable stream. buffer_size : int, optional The buffer size to use for data transfers.NativeFile.writelines(self, lines) Write lines to the file. Parameters ---------- lines : iterable Iterable of bytes-like objects or exporters of buffer protocolNativeFile.truncate(self) NOT IMPLEMENTEDNativeFile.read_buffer(self, nbytes=None) Read from buffer. Parameters ---------- nbytes : int, optional maximum number of bytes readNativeFile.readlines(self, hint=None) NOT IMPLEMENTED. Read lines of the file Parameters ---------- hint : int maximum number of bytes read until we stopNativeFile.readline(self, size=None) NOT IMPLEMENTED. Read and return a line of bytes from the file. If size is specified, read at most size bytes. Line terminator is always b"\n". Parameters ---------- size : int maximum number of bytes readNativeFile.readinto(self, b) Read into the supplied buffer Parameters ---------- b : buffer-like object A writable buffer object (such as a bytearray). Returns ------- written : int number of bytes writtenNativeFile.readall(self)NativeFile.read1(self, nbytes=None) Read and return up to n bytes. Unlike read(), if *nbytes* is None then a chunk is read, not the entire file. Parameters ---------- nbytes : int, default None The maximum number of bytes to read. Returns ------- data : bytesNativeFile.read_at(self, nbytes, offset) Read indicated number of bytes at offset from the file Parameters ---------- nbytes : int offset : int Returns ------- data : bytesNativeFile.get_stream(self, file_offset, nbytes) Return an input stream that reads a file segment independent of the state of the file. Allows reading portions of a random access file as an input stream without interfering with each other. Parameters ---------- file_offset : int nbytes : int Returns ------- stream : NativeFileNativeFile.read(self, nbytes=None) Read and return up to n bytes. If *nbytes* is None, then the entire remaining file contents are read. Parameters ---------- nbytes : int, default None Returns ------- data : bytesNativeFile.write(self, data) Write data to the file. Parameters ---------- data : bytes-like object or exporter of buffer protocol Returns ------- int nbytes: number of bytes writtenNativeFile.flush(self) Flush the stream, if applicable. An error is raised if stream is not writable.NativeFile.seek(self, int64_t position, int whence=0) Change current file stream position Parameters ---------- position : int Byte offset, interpreted relative to value of whence argument whence : int, default 0 Point of reference for seek offset Notes ----- Values of whence: * 0 -- start of stream (the default); offset should be zero or positive * 1 -- current stream position; offset may be negative * 2 -- end of stream; offset is usually negative Returns ------- int The new absolute stream position.NativeFile.tell(self) Return current stream positionNativeFile.metadata(self) Return file metadataNativeFile.size(self) Return file sizeNativeFile._assert_seekable(self)NativeFile._assert_writable(self)NativeFile._assert_readable(self)NativeFile._assert_open(self)NativeFile.close(self)NativeFile.fileno(self) NOT IMPLEMENTEDNativeFile.isatty(self)NativeFile.seekable(self)NativeFile.writable(self)NativeFile.readable(self)NativeFile.__exit__(self, exc_type, exc_value, tb)NativeFile.__enter__(self)set_io_thread_count(int count) Set the number of threads to use for I/O operations. Many operations, such as scanning a dataset, will implicitly make use of this pool. Parameters ---------- count : int The max number of threads that may be used for I/O. Must be positive. See Also -------- io_thread_count : Get the size of this pool. set_cpu_count : The analogous function for the CPU thread pool.io_thread_count() Return the number of threads to use for I/O operations. Many operations, such as scanning a dataset, will implicitly make use of this pool. The number of threads is set to a fixed value at startup. It can be modified at runtime by calling :func:`set_io_thread_count()`. See Also -------- set_io_thread_count : Modify the size of this pool. cpu_count : The analogous function for the CPU thread pool.have_libhdfs() Return true if HDFS (HadoopFileSystem) library is set up correctly.SparseCSFTensor.__setstate_cython__(self, __pyx_state)SparseCSFTensor.__reduce_cython__(self)SparseCSFTensor.dim_name(self, i) Returns the name of the i-th tensor dimension. Parameters ---------- i : int The physical index of the tensor dimension. Returns ------- strSparseCSFTensor.equals(self, SparseCSFTensor other) Return true if sparse tensors contains exactly equal data Parameters ---------- other : SparseCSFTensor The other tensor to compare for equality.SparseCSFTensor.to_tensor(self) Convert arrow::SparseCSFTensor to arrow::TensorSparseCSFTensor.to_numpy(self) Convert arrow::SparseCSFTensor to numpy.ndarrays with zero copySparseCSFTensor.from_tensor(obj) Convert arrow::Tensor to arrow::SparseCSFTensor Parameters ---------- obj : Tensor The dense tensor that should be converted.SparseCSFTensor.from_numpy(data, indptr, indices, shape, axis_order=None, dim_names=None) Create arrow::SparseCSFTensor from numpy.ndarrays Parameters ---------- data : numpy.ndarray Data used to populate the sparse tensor. indptr : numpy.ndarray The sparsity structure. Each two consecutive dimensions in a tensor correspond to a buffer in indices. A pair of consecutive values at `indptr[dim][i]` `indptr[dim][i + 1]` signify a range of nodes in `indices[dim + 1]` who are children of `indices[dim][i]` node. indices : numpy.ndarray Stores values of nodes. Each tensor dimension corresponds to a buffer in indptr. shape : tuple Shape of the matrix. axis_order : list, optional the sequence in which dimensions were traversed to produce the prefix tree. dim_names : list, optional Names of the dimensions.SparseCSFTensor.from_dense_numpy(cls, obj, dim_names=None) Convert numpy.ndarray to arrow::SparseCSFTensor Parameters ---------- obj : numpy.ndarray Data used to populate the rows. dim_names : list[str], optional Names of the dimensions. Returns ------- pyarrow.SparseCSFTensorSparseCSCMatrix.__setstate_cython__(self, __pyx_state)SparseCSCMatrix.__reduce_cython__(self)SparseCSCMatrix.dim_name(self, i) Returns the name of the i-th tensor dimension. Parameters ---------- i : int The physical index of the tensor dimension. Returns ------- strSparseCSCMatrix.equals(self, SparseCSCMatrix other) Return true if sparse tensors contains exactly equal data Parameters ---------- other : SparseCSCMatrix The other tensor to compare for equality.SparseCSCMatrix.to_tensor(self) Convert arrow::SparseCSCMatrix to arrow::TensorSparseCSCMatrix.to_scipy(self) Convert arrow::SparseCSCMatrix to scipy.sparse.csc_arraySparseCSCMatrix.to_numpy(self) Convert arrow::SparseCSCMatrix to numpy.ndarrays with zero copySparseCSCMatrix.from_tensor(obj) Convert arrow::Tensor to arrow::SparseCSCMatrix Parameters ---------- obj : Tensor The dense tensor that should be converted.SparseCSCMatrix.from_scipy(obj, dim_names=None) Convert scipy.sparse.csc_array or scipy.sparse.csc_matrix to arrow::SparseCSCMatrix Parameters ---------- obj : scipy.sparse.csc_array or scipy.sparse.csc_matrix The scipy matrix that should be converted. dim_names : list, optional Names of the dimensions.SparseCSCMatrix.from_numpy(data, indptr, indices, shape, dim_names=None) Create arrow::SparseCSCMatrix from numpy.ndarrays Parameters ---------- data : numpy.ndarray Data used to populate the sparse matrix. indptr : numpy.ndarray Range of the rows, The i-th row spans from `indptr[i]` to `indptr[i+1]` in the data. indices : numpy.ndarray Column indices of the corresponding non-zero values. shape : tuple Shape of the matrix. dim_names : list, optional Names of the dimensions.SparseCSCMatrix.from_dense_numpy(cls, obj, dim_names=None) Convert numpy.ndarray to arrow::SparseCSCMatrix Parameters ---------- obj : numpy.ndarray Data used to populate the rows. dim_names : list[str], optional Names of the dimensions. Returns ------- pyarrow.SparseCSCMatrixSparseCSRMatrix.__setstate_cython__(self, __pyx_state)SparseCSRMatrix.__reduce_cython__(self)SparseCSRMatrix.dim_name(self, i) Returns the name of the i-th tensor dimension. Parameters ---------- i : int The physical index of the tensor dimension. Returns ------- strSparseCSRMatrix.equals(self, SparseCSRMatrix other) Return true if sparse tensors contains exactly equal data. Parameters ---------- other : SparseCSRMatrix The other tensor to compare for equality.SparseCSRMatrix.to_tensor(self) Convert arrow::SparseCSRMatrix to arrow::Tensor.SparseCSRMatrix.to_scipy(self) Convert arrow::SparseCSRMatrix to scipy.sparse.csr_array.SparseCSRMatrix.to_numpy(self) Convert arrow::SparseCSRMatrix to numpy.ndarrays with zero copy.SparseCSRMatrix.from_tensor(obj) Convert arrow::Tensor to arrow::SparseCSRMatrix. Parameters ---------- obj : Tensor The dense tensor that should be converted.SparseCSRMatrix.from_scipy(obj, dim_names=None) Convert scipy.sparse.csr_array or scipy.sparse.csr_matrix to arrow::SparseCSRMatrix. Parameters ---------- obj : scipy.sparse.csr_array or scipy.sparse.csr_matrix The scipy matrix that should be converted. dim_names : list, optional Names of the dimensions.SparseCSRMatrix.from_numpy(data, indptr, indices, shape, dim_names=None) Create arrow::SparseCSRMatrix from numpy.ndarrays. Parameters ---------- data : numpy.ndarray Data used to populate the sparse matrix. indptr : numpy.ndarray Range of the rows, The i-th row spans from `indptr[i]` to `indptr[i+1]` in the data. indices : numpy.ndarray Column indices of the corresponding non-zero values. shape : tuple Shape of the matrix. dim_names : list, optional Names of the dimensions.SparseCSRMatrix.from_dense_numpy(cls, obj, dim_names=None) Convert numpy.ndarray to arrow::SparseCSRMatrix Parameters ---------- obj : numpy.ndarray The dense numpy array that should be converted. dim_names : list, optional The names of the dimensions. Returns ------- pyarrow.SparseCSRMatrixSparseCOOTensor.__setstate_cython__(self, __pyx_state)SparseCOOTensor.__reduce_cython__(self)SparseCOOTensor.dim_name(self, i) Returns the name of the i-th tensor dimension. Parameters ---------- i : int The physical index of the tensor dimension. Returns ------- strSparseCOOTensor.equals(self, SparseCOOTensor other) Return true if sparse tensors contains exactly equal data. Parameters ---------- other : SparseCOOTensor The other tensor to compare for equality.SparseCOOTensor.to_tensor(self) Convert arrow::SparseCOOTensor to arrow::Tensor.SparseCOOTensor.to_pydata_sparse(self) Convert arrow::SparseCOOTensor to pydata/sparse.COO.SparseCOOTensor.to_scipy(self) Convert arrow::SparseCOOTensor to scipy.sparse.coo_array.SparseCOOTensor.to_numpy(self) Convert arrow::SparseCOOTensor to numpy.ndarrays with zero copy.SparseCOOTensor.from_tensor(obj) Convert arrow::Tensor to arrow::SparseCOOTensor. Parameters ---------- obj : Tensor The tensor that should be converted.SparseCOOTensor.from_pydata_sparse(obj, dim_names=None) Convert pydata/sparse.COO to arrow::SparseCOOTensor. Parameters ---------- obj : pydata.sparse.COO The sparse multidimensional array that should be converted. dim_names : list, optional Names of the dimensions.SparseCOOTensor.from_scipy(obj, dim_names=None) Convert scipy.sparse.coo_array or scipy.sparse.coo_matrix to arrow::SparseCOOTensor Parameters ---------- obj : scipy.sparse.coo_array or scipy.sparse.coo_matrix The scipy array or matrix that should be converted. dim_names : list, optional Names of the dimensions.SparseCOOTensor.from_numpy(data, coords, shape, dim_names=None) Create arrow::SparseCOOTensor from numpy.ndarrays Parameters ---------- data : numpy.ndarray Data used to populate the rows. coords : numpy.ndarray Coordinates of the data. shape : tuple Shape of the tensor. dim_names : list, optional Names of the dimensions.SparseCOOTensor.from_dense_numpy(cls, obj, dim_names=None) Convert numpy.ndarray to arrow::SparseCOOTensor Parameters ---------- obj : numpy.ndarray Data used to populate the rows. dim_names : list[str], optional Names of the dimensions. Returns ------- pyarrow.SparseCOOTensorTensor.__setstate_cython__(self, __pyx_state)Tensor.__reduce_cython__(self)Tensor.__dlpack_device__(self) Return the DLPack device tuple this tensor resides on. Returns ------- tuple : Tuple[int, int] Tuple with index specifying the type of the device (where CPU = 1, see cpp/src/arrow/c/dpack_abi.h) and index of the device which is 0 by default for CPU.Tensor.__dlpack__(self, stream=None) Export a Tensor as a DLPack capsule. Parameters ---------- stream : int, optional A Python integer representing a pointer to a stream. Currently not supported. Stream is provided by the consumer to the producer to instruct the producer to ensure that operations can safely be performed on the array. Returns ------- capsule : PyCapsule A DLPack capsule for the tensor, pointing to a DLManagedTensor.Tensor.dim_name(self, i) Returns the name of the i-th tensor dimension. Parameters ---------- i : int The physical index of the tensor dimension. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.dim_name(0) 'dim1' >>> tensor.dim_name(1) 'dim2'Tensor.equals(self, Tensor other) Return true if the tensors contains exactly equal data. Parameters ---------- other : Tensor The other tensor to compare for equality. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> y = np.array([[2, 2, 4], [4, 5, 10]], np.int32) >>> tensor2 = pa.Tensor.from_numpy(y, dim_names=["a","b"]) >>> tensor.equals(tensor) True >>> tensor.equals(tensor2) FalseTensor.to_numpy(self) Convert arrow::Tensor to numpy.ndarray with zero copy Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.to_numpy() array([[ 2, 2, 4], [ 4, 5, 100]], dtype=int32)Tensor.from_numpy(obj, dim_names=None) Create a Tensor from a numpy array. Parameters ---------- obj : numpy.ndarray The source numpy array dim_names : list, optional Names of each dimension of the Tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) type: int32 shape: (2, 3) strides: (12, 4)Tensor._make_shape_or_strides_buffer(self, values) Make a bytes object holding an array of `values` cast to `Py_ssize_t`.TableGroupBy.aggregate(self, aggregations) Perform an aggregation over the grouped columns of the table. Parameters ---------- aggregations : list[tuple(str, str)] or list[tuple(str, str, FunctionOptions)] List of tuples, where each tuple is one aggregation specification and consists of: aggregation column name followed by function name and optionally aggregation function option. Pass empty list to get a single row for each group. The column name can be a string, an empty list or a list of column names, for unary, nullary and n-ary aggregation functions respectively. For the list of function names and respective aggregation function options see :ref:`py-grouped-aggrs`. Returns ------- Table Results of the aggregation functions. Examples -------- >>> import pyarrow as pa >>> t = pa.table([ ... pa.array(["a", "a", "b", "b", "c"]), ... pa.array([1, 2, 3, 4, 5]), ... ], names=["keys", "values"]) Sum the column "values" over the grouped column "keys": >>> t.group_by("keys").aggregate([("values", "sum")]) pyarrow.Table keys: string values_sum: int64 ---- keys: [["a","b","c"]] values_sum: [[3,7,5]] Count the rows over the grouped column "keys": >>> t.group_by("keys").aggregate([([], "count_all")]) pyarrow.Table keys: string count_all: int64 ---- keys: [["a","b","c"]] count_all: [[2,2,1]] Do multiple aggregations: >>> t.group_by("keys").aggregate([ ... ("values", "sum"), ... ("keys", "count") ... ]) pyarrow.Table keys: string values_sum: int64 keys_count: int64 ---- keys: [["a","b","c"]] values_sum: [[3,7,5]] keys_count: [[2,2,1]] Count the number of non-null values for column "values" over the grouped column "keys": >>> import pyarrow.compute as pc >>> t.group_by(["keys"]).aggregate([ ... ("values", "count", pc.CountOptions(mode="only_valid")) ... ]) pyarrow.Table keys: string values_count: int64 ---- keys: [["a","b","c"]] values_count: [[2,2,1]] Get a single row for each group in column "keys": >>> t.group_by("keys").aggregate([]) pyarrow.Table keys: string ---- keys: [["a","b","c"]]TableGroupBy.__init__(self, table, keys, use_threads=True)_from_pylist(cls, mapping, schema, metadata) Construct a Table/RecordBatch from list of rows / dictionaries. Parameters ---------- cls : Class Table/RecordBatch mapping : list of dicts of rows A mapping of strings to row values. schema : Schema, default None If not passed, will be inferred from the first row of the mapping values. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table/RecordBatch_from_pydict(cls, mapping, schema, metadata) Construct a Table/RecordBatch from Arrow arrays or columns. Parameters ---------- cls : Class Table/RecordBatch mapping : dict or Mapping A mapping of strings to Arrays or Python lists. schema : Schema, default None If not passed, will be inferred from the Mapping values. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table/RecordBatchconcat_batches(recordbatches, MemoryPool memory_pool=None) Concatenate pyarrow.RecordBatch objects. All recordbatches must share the same Schema, the operation implies a copy of the data to merge the arrays of the different RecordBatches. Parameters ---------- recordbatches : iterable of pyarrow.RecordBatch objects Pyarrow record batches to concatenate into a single RecordBatch. memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. Examples -------- >>> import pyarrow as pa >>> t1 = pa.record_batch([ ... pa.array([2, 4, 5, 100]), ... pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) ... ], names=['n_legs', 'animals']) >>> t2 = pa.record_batch([ ... pa.array([2, 4]), ... pa.array(["Parrot", "Dog"]) ... ], names=['n_legs', 'animals']) >>> pa.concat_batches([t1,t2]) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100,2,4] animals: ["Flamingo","Horse","Brittle stars","Centipede","Parrot","Dog"]concat_tables(tables, MemoryPool memory_pool=None, str promote_options='none', **kwargs) Concatenate pyarrow.Table objects. If promote_options="none", a zero-copy concatenation will be performed. The schemas of all the Tables must be the same (except the metadata), otherwise an exception will be raised. The result Table will share the metadata with the first table. If promote_options="default", any null type arrays will be casted to the type of other arrays in the column of the same name. If a table is missing a particular field, null values of the appropriate type will be generated to take the place of the missing field. The new schema will share the metadata with the first table. Each field in the new schema will share the metadata with the first table which has the field defined. Note that type promotions may involve additional allocations on the given ``memory_pool``. If promote_options="permissive", the behavior of default plus types will be promoted to the common denominator that fits all the fields. Parameters ---------- tables : iterable of pyarrow.Table objects Pyarrow tables to concatenate into a single Table. memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. promote_options : str, default none Accepts strings "none", "default" and "permissive". **kwargs : dict, optional Examples -------- >>> import pyarrow as pa >>> t1 = pa.table([ ... pa.array([2, 4, 5, 100]), ... pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) ... ], names=['n_legs', 'animals']) >>> t2 = pa.table([ ... pa.array([2, 4]), ... pa.array(["Parrot", "Dog"]) ... ], names=['n_legs', 'animals']) >>> pa.concat_tables([t1,t2]) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100],[2,4]] animals: [["Flamingo","Horse","Brittle stars","Centipede"],["Parrot","Dog"]]table(data, names=None, schema=None, metadata=None, nthreads=None) Create a pyarrow.Table from a Python data structure or sequence of arrays. Parameters ---------- data : dict, list, pandas.DataFrame, Arrow-compatible table A mapping of strings to Arrays or Python lists, a list of arrays or chunked arrays, a pandas DataFame, or any tabular object implementing the Arrow PyCapsule Protocol (has an ``__arrow_c_array__``, ``__arrow_c_device_array__`` or ``__arrow_c_stream__`` method). names : list, default None Column names if list of arrays passed as data. Mutually exclusive with 'schema' argument. schema : Schema, default None The expected schema of the Arrow Table. If not passed, will be inferred from the data. Mutually exclusive with 'names' argument. If passed, the output will have exactly this schema (raising an error when columns are not found in the data and ignoring additional data not specified in the schema, when data is a dict or DataFrame). metadata : dict or Mapping, default None Optional metadata for the schema (if schema not passed). nthreads : int, default None For pandas.DataFrame inputs: if greater than 1, convert columns to Arrow in parallel using indicated number of threads. By default, this follows :func:`pyarrow.cpu_count` (may use up to system CPU count threads). Returns ------- Table See Also -------- Table.from_arrays, Table.from_pandas, Table.from_pydict Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Construct a Table from a python dictionary: >>> pa.table({"n_legs": n_legs, "animals": animals}) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from arrays: >>> pa.table([n_legs, animals], names=names) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from arrays with metadata: >>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.table([n_legs, animals], names=names, metadata = my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from pandas DataFrame: >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.table(df) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022,2019,2021]] n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from pandas DataFrame with pyarrow schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.table(df, my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' pandas: '{"index_columns": [], "column_indexes": [{"name": null, ... Construct a Table from chunked arrays: >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> animals = pa.chunked_array([["Flamingo", "Parrot", "Dog"], ["Horse", "Brittle stars", "Centipede"]]) >>> table = pa.table([n_legs, animals], names=names) >>> table pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,2,4],[4,5,100]] animals: [["Flamingo","Parrot","Dog"],["Horse","Brittle stars","Centipede"]]record_batch(data, names=None, schema=None, metadata=None) Create a pyarrow.RecordBatch from another Python data structure or sequence of arrays. Parameters ---------- data : dict, list, pandas.DataFrame, Arrow-compatible table A mapping of strings to Arrays or Python lists, a list of Arrays, a pandas DataFame, or any tabular object implementing the Arrow PyCapsule Protocol (has an ``__arrow_c_array__`` or ``__arrow_c_device_array__`` method). names : list, default None Column names if list of arrays passed as data. Mutually exclusive with 'schema' argument. schema : Schema, default None The expected schema of the RecordBatch. If not passed, will be inferred from the data. Mutually exclusive with 'names' argument. metadata : dict or Mapping, default None Optional metadata for the schema (if schema not passed). Returns ------- RecordBatch See Also -------- RecordBatch.from_arrays, RecordBatch.from_pandas, table Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Construct a RecordBatch from a python dictionary: >>> pa.record_batch({"n_legs": n_legs, "animals": animals}) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] >>> pa.record_batch({"n_legs": n_legs, "animals": animals}).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede Creating a RecordBatch from a list of arrays with names: >>> pa.record_batch([n_legs, animals], names=names) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] Creating a RecordBatch from a list of arrays with names and metadata: >>> my_metadata={"n_legs": "How many legs does an animal have?"} >>> pa.record_batch([n_legs, animals], ... names=names, ... metadata = my_metadata) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] >>> pa.record_batch([n_legs, animals], ... names=names, ... metadata = my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'How many legs does an animal have?' Creating a RecordBatch from a pandas DataFrame: >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022], ... 'month': [3, 5, 7, 9], ... 'day': [1, 5, 9, 13], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.record_batch(df) pyarrow.RecordBatch year: int64 month: int64 day: int64 n_legs: int64 animals: string ---- year: [2020,2022,2021,2022] month: [3,5,7,9] day: [1,5,9,13] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] >>> pa.record_batch(df).to_pandas() year month day n_legs animals 0 2020 3 1 2 Flamingo 1 2022 5 5 4 Horse 2 2021 7 9 5 Brittle stars 3 2022 9 13 100 Centipede Creating a RecordBatch from a pandas DataFrame with schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.record_batch(df, my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' pandas: ... >>> pa.record_batch(df, my_schema).to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede_reconstruct_table(arrays, schema) Internal: reconstruct pa.Table from pickled components.Table.__arrow_c_stream__(self, requested_schema=None) Export the table as an Arrow C stream PyCapsule. Parameters ---------- requested_schema : PyCapsule, default None The schema to which the stream should be casted, passed as a PyCapsule containing a C ArrowSchema representation of the requested schema. Currently, this is not supported and will raise a NotImplementedError if the schema doesn't match the current schema. Returns ------- PyCapsuleTable.join_asof(self, right_table, on, by, tolerance, right_on=None, right_by=None) Perform an asof join between this table and another one. This is similar to a left-join except that we match on nearest key rather than equal keys. Both tables must be sorted by the key. This type of join is most useful for time series data that are not perfectly aligned. Optionally match on equivalent keys with "by" before searching with "on". Result of the join will be a new Table, where further operations can be applied. Parameters ---------- right_table : Table The table to join to the current one, acting as the right table in the join operation. on : str The column from current table that should be used as the "on" key of the join operation left side. An inexact match is used on the "on" key, i.e. a row is considered a match if and only if left_on - tolerance <= right_on <= left_on. The input dataset must be sorted by the "on" key. Must be a single field of a common type. Currently, the "on" key must be an integer, date, or timestamp type. by : str or list[str] The columns from current table that should be used as the keys of the join operation left side. The join operation is then done only for the matches in these columns. tolerance : int The tolerance for inexact "on" key matching. A right row is considered a match with the left row ``right.on - left.on <= tolerance``. The ``tolerance`` may be: - negative, in which case a past-as-of-join occurs; - or positive, in which case a future-as-of-join occurs; - or zero, in which case an exact-as-of-join occurs. The tolerance is interpreted in the same units as the "on" key. right_on : str or list[str], default None The columns from the right_table that should be used as the on key on the join operation right side. When ``None`` use the same key name as the left table. right_by : str or list[str], default None The columns from the right_table that should be used as keys on the join operation right side. When ``None`` use the same key names as the left table. Returns ------- Table Example -------- >>> import pyarrow as pa >>> t1 = pa.table({'id': [1, 3, 2, 3, 3], ... 'year': [2020, 2021, 2022, 2022, 2023]}) >>> t2 = pa.table({'id': [3, 4], ... 'year': [2020, 2021], ... 'n_legs': [5, 100], ... 'animal': ["Brittle stars", "Centipede"]}) >>> t1.join_asof(t2, on='year', by='id', tolerance=-2) pyarrow.Table id: int64 year: int64 n_legs: int64 animal: string ---- id: [[1,3,2,3,3]] year: [[2020,2021,2022,2022,2023]] n_legs: [[null,5,null,5,null]] animal: [[null,"Brittle stars",null,"Brittle stars",null]]Table.join(self, right_table, keys, right_keys=None, join_type='left outer', left_suffix=None, right_suffix=None, coalesce_keys=True, use_threads=True, filter_expression=None) Perform a join between this table and another one. Result of the join will be a new Table, where further operations can be applied. Parameters ---------- right_table : Table The table to join to the current one, acting as the right table in the join operation. keys : str or list[str] The columns from current table that should be used as keys of the join operation left side. right_keys : str or list[str], default None The columns from the right_table that should be used as keys on the join operation right side. When ``None`` use the same key names as the left table. join_type : str, default "left outer" The kind of join that should be performed, one of ("left semi", "right semi", "left anti", "right anti", "inner", "left outer", "right outer", "full outer") left_suffix : str, default None Which suffix to add to left column names. This prevents confusion when the columns in left and right tables have colliding names. right_suffix : str, default None Which suffix to add to the right column names. This prevents confusion when the columns in left and right tables have colliding names. coalesce_keys : bool, default True If the duplicated keys should be omitted from one of the sides in the join result. use_threads : bool, default True Whether to use multithreading or not. filter_expression : pyarrow.compute.Expression Residual filter which is applied to matching row. Returns ------- Table Examples -------- >>> import pandas as pd >>> import pyarrow as pa >>> import pyarrow.compute as pc >>> df1 = pd.DataFrame({'id': [1, 2, 3], ... 'year': [2020, 2022, 2019]}) >>> df2 = pd.DataFrame({'id': [3, 4], ... 'n_legs': [5, 100], ... 'animal': ["Brittle stars", "Centipede"]}) >>> t1 = pa.Table.from_pandas(df1) >>> t2 = pa.Table.from_pandas(df2) Left outer join: >>> t1.join(t2, 'id').combine_chunks().sort_by('year') pyarrow.Table id: int64 year: int64 n_legs: int64 animal: string ---- id: [[3,1,2]] year: [[2019,2020,2022]] n_legs: [[5,null,null]] animal: [["Brittle stars",null,null]] Full outer join: >>> t1.join(t2, 'id', join_type="full outer").combine_chunks().sort_by('year') pyarrow.Table id: int64 year: int64 n_legs: int64 animal: string ---- id: [[3,1,2,4]] year: [[2019,2020,2022,null]] n_legs: [[5,null,null,100]] animal: [["Brittle stars",null,null,"Centipede"]] Right outer join: >>> t1.join(t2, 'id', join_type="right outer").combine_chunks().sort_by('year') pyarrow.Table year: int64 id: int64 n_legs: int64 animal: string ---- year: [[2019,null]] id: [[3,4]] n_legs: [[5,100]] animal: [["Brittle stars","Centipede"]] Right anti join: >>> t1.join(t2, 'id', join_type="right anti") pyarrow.Table id: int64 n_legs: int64 animal: string ---- id: [[4]] n_legs: [[100]] animal: [["Centipede"]] Inner join with intended mismatch filter expression: >>> t1.join(t2, 'id', join_type="inner", filter_expression=pc.equal(pc.field("n_legs"), 100)) pyarrow.Table id: int64 year: int64 n_legs: int64 animal: string ---- id: [] year: [] n_legs: [] animal: []Table.group_by(self, keys, use_threads=True) Declare a grouping over the columns of the table. Resulting grouping can then be used to perform aggregations with a subsequent ``aggregate()`` method. Parameters ---------- keys : str or list[str] Name of the columns that should be used as the grouping key. use_threads : bool, default True Whether to use multithreading or not. When set to True (the default), no stable ordering of the output is guaranteed. Returns ------- TableGroupBy See Also -------- TableGroupBy.aggregate Examples -------- >>> import pandas as pd >>> import pyarrow as pa >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.group_by('year').aggregate([('n_legs', 'sum')]) pyarrow.Table year: int64 n_legs_sum: int64 ---- year: [[2020,2022,2021,2019]] n_legs_sum: [[2,6,104,5]]Table.drop(self, columns) Drop one or more columns and return a new table. Alias of Table.drop_columns, but kept for backwards compatibility. Parameters ---------- columns : str or list[str] Field name(s) referencing existing column(s). Returns ------- Table New table without the column(s).Table.rename_columns(self, names) Create new table with columns renamed to provided names. Parameters ---------- names : list[str] or dict[str, str] List of new column names or mapping of old column names to new column names. If a mapping of old to new column names is passed, then all columns which are found to match a provided old column name will be renamed to the new column name. If any column names are not found in the mapping, a KeyError will be raised. Raises ------ KeyError If any of the column names passed in the names mapping do not exist. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> new_names = ["n", "name"] >>> table.rename_columns(new_names) pyarrow.Table n: int64 name: string ---- n: [[2,4,5,100]] name: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> new_names = {"n_legs": "n", "animals": "name"} >>> table.rename_columns(new_names) pyarrow.Table n: int64 name: string ---- n: [[2,4,5,100]] name: [["Flamingo","Horse","Brittle stars","Centipede"]]Table.set_column(self, int i, field_, column) Replace column in Table at position. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array, list of Array, or values coercible to arrays Column data. Returns ------- Table New table with the passed column set. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Replace a column: >>> year = [2021, 2022, 2019, 2021] >>> table.set_column(1,'year', [year]) pyarrow.Table n_legs: int64 year: int64 ---- n_legs: [[2,4,5,100]] year: [[2021,2022,2019,2021]]Table.remove_column(self, int i) Create new Table with the indicated column removed. Parameters ---------- i : int Index of column to remove. Returns ------- Table New table without the column. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.remove_column(1) pyarrow.Table n_legs: int64 ---- n_legs: [[2,4,5,100]]Table.add_column(self, int i, field_, column) Add column to Table at position. A new table is returned with the column added, the original table object is left unchanged. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array, list of Array, or values coercible to arrays Column data. Returns ------- Table New table with the passed column added. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Add column: >>> year = [2021, 2022, 2019, 2021] >>> table.add_column(0,"year", [year]) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2021,2022,2019,2021]] n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Original table is left unchanged: >>> table pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]]Table.__sizeof__(self)Table.get_total_buffer_size(self) The sum of bytes in each buffer referenced by the table. An array may only reference a portion of a buffer. This method will overestimate in this case and return the byte size of the entire buffer. If a buffer is referenced multiple times then it will only be counted once. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.get_total_buffer_size() 76Table._column(self, int i) Select a column by its numeric index. Parameters ---------- i : int The index of the column to retrieve. Returns ------- ChunkedArrayTable._to_pandas(self, options, categories=None, ignore_metadata=False, types_mapper=None)Table.to_reader(self, max_chunksize=None) Convert the Table to a RecordBatchReader. Note that this method is zero-copy, it merely exposes the same data under a different API. Parameters ---------- max_chunksize : int, default None Maximum number of rows for each RecordBatch chunk. Individual chunks may be smaller depending on the chunk layout of individual columns. Returns ------- RecordBatchReader Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Convert a Table to a RecordBatchReader: >>> table.to_reader() >>> reader = table.to_reader() >>> reader.schema n_legs: int64 animals: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, ... >>> reader.read_all() pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]]Table.to_batches(self, max_chunksize=None) Convert Table to a list of RecordBatch objects. Note that this method is zero-copy, it merely exposes the same data under a different API. Parameters ---------- max_chunksize : int, default None Maximum number of rows for each RecordBatch chunk. Individual chunks may be smaller depending on the chunk layout of individual columns. Returns ------- list[RecordBatch] Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Convert a Table to a RecordBatch: >>> table.to_batches()[0].to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede Convert a Table to a list of RecordBatches: >>> table.to_batches(max_chunksize=2)[0].to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse >>> table.to_batches(max_chunksize=2)[1].to_pandas() n_legs animals 0 5 Brittle stars 1 100 CentipedeTable.from_batches(batches, Schema schema=None) Construct a Table from a sequence or iterator of Arrow RecordBatches. Parameters ---------- batches : sequence or iterator of RecordBatch Sequence of RecordBatch to be converted, all schemas must be equal. schema : Schema, default None If not passed, will be inferred from the first RecordBatch. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] >>> batch = pa.record_batch([n_legs, animals], names=names) >>> batch.to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede Construct a Table from a RecordBatch: >>> pa.Table.from_batches([batch]) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from a sequence of RecordBatches: >>> pa.Table.from_batches([batch, batch]) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100],[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"],["Flamingo","Horse","Brittle stars","Centipede"]]Table.to_struct_array(self, max_chunksize=None) Convert to a chunked array of struct type. Parameters ---------- max_chunksize : int, default None Maximum number of rows for ChunkedArray chunks. Individual chunks may be smaller depending on the chunk layout of individual columns. Returns ------- ChunkedArrayTable.from_struct_array(struct_array) Construct a Table from a StructArray. Each field in the StructArray will become a column in the resulting ``Table``. Parameters ---------- struct_array : StructArray or ChunkedArray Array to construct the table from. Returns ------- pyarrow.Table Examples -------- >>> import pyarrow as pa >>> struct = pa.array([{'n_legs': 2, 'animals': 'Parrot'}, ... {'year': 2022, 'n_legs': 4}]) >>> pa.Table.from_struct_array(struct).to_pandas() animals n_legs year 0 Parrot 2 NaN 1 None 4 2022.0Table.from_arrays(arrays, names=None, schema=None, metadata=None) Construct a Table from Arrow arrays. Parameters ---------- arrays : list of pyarrow.Array or pyarrow.ChunkedArray Equal-length arrays that should form the table. names : list of str, optional Names for the table columns. If not passed, schema must be passed. schema : Schema, default None Schema for the created table. If not passed, names must be passed. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Construct a Table from arrays: >>> pa.Table.from_arrays([n_legs, animals], names=names) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from arrays with metadata: >>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.Table.from_arrays([n_legs, animals], ... names=names, ... metadata=my_metadata) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> pa.Table.from_arrays([n_legs, animals], ... names=names, ... metadata=my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from arrays with pyarrow schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"animals": "Name of the animal species"}) >>> pa.Table.from_arrays([n_legs, animals], ... schema=my_schema) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> pa.Table.from_arrays([n_legs, animals], ... schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- animals: 'Name of the animal species'Table.from_pandas(cls, df, Schema schema=None, preserve_index=None, nthreads=None, columns=None, bool safe=True) Convert pandas.DataFrame to an Arrow Table. The column types in the resulting Arrow Table are inferred from the dtypes of the pandas.Series in the DataFrame. In the case of non-object Series, the NumPy dtype is translated to its Arrow equivalent. In the case of `object`, we need to guess the datatype by looking at the Python objects in this Series. Be aware that Series of the `object` dtype don't carry enough information to always lead to a meaningful Arrow type. In the case that we cannot infer a type, e.g. because the DataFrame is of length 0 or the Series only contains None/nan objects, the type is set to null. This behavior can be avoided by constructing an explicit schema and passing it to this function. Parameters ---------- df : pandas.DataFrame schema : pyarrow.Schema, optional The expected schema of the Arrow Table. This can be used to indicate the type of columns if we cannot infer it automatically. If passed, the output will have exactly this schema. Columns specified in the schema that are not found in the DataFrame columns or its index will raise an error. Additional columns or index levels in the DataFrame which are not specified in the schema will be ignored. preserve_index : bool, optional Whether to store the index as an additional column in the resulting ``Table``. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Use ``preserve_index=True`` to force it to be stored as a column. nthreads : int, default None If greater than 1, convert columns to Arrow in parallel using indicated number of threads. By default, this follows :func:`pyarrow.cpu_count` (may use up to system CPU count threads). columns : list, optional List of column to be converted. If None, use all columns. safe : bool, default True Check for overflows or other unsafe conversions. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.Table.from_pandas(df) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]]Table.cast(self, Schema target_schema, safe=None, options=None) Cast table values to another schema. Parameters ---------- target_schema : Schema Schema to cast to, the names and order of fields must match. safe : bool, default True Check for overflows or other unsafe conversions. options : CastOptions, default None Additional checks pass by CastOptions Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.schema n_legs: int64 animals: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, ... Define new schema and cast table values: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.duration('s')), ... pa.field('animals', pa.string())] ... ) >>> table.cast(target_schema=my_schema) pyarrow.Table n_legs: duration[s] animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]]Table.equals(self, Table other, bool check_metadata=False) Check if contents of two tables are equal. Parameters ---------- other : pyarrow.Table Table to compare against. check_metadata : bool, default False Whether schema metadata equality should be checked as well. Returns ------- bool Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> names=["n_legs", "animals"] >>> table = pa.Table.from_arrays([n_legs, animals], names=names) >>> table_0 = pa.Table.from_arrays([]) >>> table_1 = pa.Table.from_arrays([n_legs, animals], ... names=names, ... metadata={"n_legs": "Number of legs per animal"}) >>> table.equals(table) True >>> table.equals(table_0) False >>> table.equals(table_1) True >>> table.equals(table_1, check_metadata=True) FalseTable.unify_dictionaries(self, MemoryPool memory_pool=None) Unify dictionaries across all chunks. This method returns an equivalent table, but where all chunks of each column share the same dictionary values. Dictionary indices are transposed accordingly. Columns without dictionaries are returned unchanged. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- Table Examples -------- >>> import pyarrow as pa >>> arr_1 = pa.array(["Flamingo", "Parrot", "Dog"]).dictionary_encode() >>> arr_2 = pa.array(["Horse", "Brittle stars", "Centipede"]).dictionary_encode() >>> c_arr = pa.chunked_array([arr_1, arr_2]) >>> table = pa.table([c_arr], names=["animals"]) >>> table pyarrow.Table animals: dictionary ---- animals: [ -- dictionary: ["Flamingo","Parrot","Dog"] -- indices: [0,1,2], -- dictionary: ["Horse","Brittle stars","Centipede"] -- indices: [0,1,2]] Unify dictionaries across both chunks: >>> table.unify_dictionaries() pyarrow.Table animals: dictionary ---- animals: [ -- dictionary: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] -- indices: [0,1,2], -- dictionary: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] -- indices: [3,4,5]]Table.combine_chunks(self, MemoryPool memory_pool=None) Make a new table by combining the chunks this table has. All the underlying chunks in the ChunkedArray of each column are concatenated into zero or one chunk. To avoid buffer overflow, binary columns may be combined into multiple chunks. Chunks will have the maximum possible length. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> animals = pa.chunked_array([["Flamingo", "Parrot", "Dog"], ["Horse", "Brittle stars", "Centipede"]]) >>> names = ["n_legs", "animals"] >>> table = pa.table([n_legs, animals], names=names) >>> table pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,2,4],[4,5,100]] animals: [["Flamingo","Parrot","Dog"],["Horse","Brittle stars","Centipede"]] >>> table.combine_chunks() pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,2,4,4,5,100]] animals: [["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]]Table.flatten(self, MemoryPool memory_pool=None) Flatten this Table. Each column with a struct type is flattened into one column per struct field. Other columns are left unchanged. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- Table Examples -------- >>> import pyarrow as pa >>> struct = pa.array([{'n_legs': 2, 'animals': 'Parrot'}, ... {'year': 2022, 'n_legs': 4}]) >>> month = pa.array([4, 6]) >>> table = pa.Table.from_arrays([struct,month], ... names = ["a", "month"]) >>> table pyarrow.Table a: struct child 0, animals: string child 1, n_legs: int64 child 2, year: int64 month: int64 ---- a: [ -- is_valid: all not null -- child 0 type: string ["Parrot",null] -- child 1 type: int64 [2,4] -- child 2 type: int64 [null,2022]] month: [[4,6]] Flatten the columns with struct field: >>> table.flatten() pyarrow.Table a.animals: string a.n_legs: int64 a.year: int64 month: int64 ---- a.animals: [["Parrot",null]] a.n_legs: [[2,4]] a.year: [[null,2022]] month: [[4,6]]Table.replace_schema_metadata(self, metadata=None) Create shallow copy of table by replacing schema key-value metadata with the indicated new metadata (which may be None), which deletes any existing metadata. Parameters ---------- metadata : dict, default None Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Constructing a Table with pyarrow schema and metadata: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> table= pa.table(df, my_schema) >>> table.schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' pandas: ... Create a shallow copy of a Table with deleted schema metadata: >>> table.replace_schema_metadata().schema n_legs: int64 animals: string Create a shallow copy of a Table with new schema metadata: >>> metadata={"animals": "Which animal"} >>> table.replace_schema_metadata(metadata = metadata).schema n_legs: int64 animals: string -- schema metadata -- animals: 'Which animal'Table.select(self, columns) Select columns of the Table. Returns a new Table with the specified columns, and metadata preserved. Parameters ---------- columns : list-like The column names or integer indices to select. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.select([0,1]) pyarrow.Table year: int64 n_legs: int64 ---- year: [[2020,2022,2019,2021]] n_legs: [[2,4,5,100]] >>> table.select(["year"]) pyarrow.Table year: int64 ---- year: [[2020,2022,2019,2021]]Table.slice(self, offset=0, length=None) Compute zero-copy slice of this Table. Parameters ---------- offset : int, default 0 Offset from start of table to slice. length : int, default None Length of slice (default is until end of table starting from offset). Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.slice(length=3) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022,2019]] n_legs: [[2,4,5]] animals: [["Flamingo","Horse","Brittle stars"]] >>> table.slice(offset=2) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2019,2021]] n_legs: [[5,100]] animals: [["Brittle stars","Centipede"]] >>> table.slice(offset=2, length=1) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2019]] n_legs: [[5]] animals: [["Brittle stars"]]Table.__reduce__(self)Table.validate(self, *, full=False) Perform validation checks. An exception is raised if validation fails. By default only cheap validation checks are run. Pass `full=True` for thorough validation checks (potentially O(n)). Parameters ---------- full : bool, default False If True, run expensive checks, otherwise cheap checks only. Raises ------ ArrowInvalidTable._is_initialized(self)table_to_blocks(options, Table table, categories, extension_columns)_reconstruct_record_batch(columns, schema) Internal: reconstruct RecordBatch from pickled components.RecordBatch._import_from_c_device_capsule(schema_capsule, array_capsule) Import RecordBatch from a pair of PyCapsules containing a C ArrowSchema and ArrowDeviceArray, respectively. Parameters ---------- schema_capsule : PyCapsule A PyCapsule containing a C ArrowSchema representation of the schema. array_capsule : PyCapsule A PyCapsule containing a C ArrowDeviceArray representation of the array. Returns ------- pyarrow.RecordBatchRecordBatch.__arrow_c_device_array__(self, requested_schema=None, **kwargs) Get a pair of PyCapsules containing a C ArrowDeviceArray representation of the object. Parameters ---------- requested_schema : PyCapsule | None A PyCapsule containing a C ArrowSchema representation of a requested schema. PyArrow will attempt to cast the batch to this data type. If None, the batch will be returned as-is, with a type matching the one returned by :meth:`__arrow_c_schema__()`. kwargs Currently no additional keyword arguments are supported, but this method will accept any keyword with a value of ``None`` for compatibility with future keywords. Returns ------- Tuple[PyCapsule, PyCapsule] A pair of PyCapsules containing a C ArrowSchema and ArrowDeviceArray, respectively.RecordBatch._import_from_c_device(in_ptr, schema) Import RecordBatch from a C ArrowDeviceArray struct, given its pointer and the imported schema. Parameters ---------- in_ptr: int The raw pointer to a C ArrowDeviceArray struct. type: Schema or int Either a Schema object, or the raw pointer to a C ArrowSchema struct. This is a low-level function intended for expert users.RecordBatch._export_to_c_device(self, out_ptr, out_schema_ptr=0) Export to a C ArrowDeviceArray struct, given its pointer. If a C ArrowSchema struct pointer is also given, the record batch schema is exported to it at the same time. Parameters ---------- out_ptr: int The raw pointer to a C ArrowDeviceArray struct. out_schema_ptr: int (optional) The raw pointer to a C ArrowSchema struct. Be careful: if you don't pass the ArrowDeviceArray struct to a consumer, array memory will leak. This is a low-level function intended for expert users.RecordBatch._import_from_c_capsule(schema_capsule, array_capsule) Import RecordBatch from a pair of PyCapsules containing a C ArrowSchema and ArrowArray, respectively. Parameters ---------- schema_capsule : PyCapsule A PyCapsule containing a C ArrowSchema representation of the schema. array_capsule : PyCapsule A PyCapsule containing a C ArrowArray representation of the array. Returns ------- pyarrow.RecordBatchRecordBatch.__arrow_c_stream__(self, requested_schema=None) Export the batch as an Arrow C stream PyCapsule. Parameters ---------- requested_schema : PyCapsule, default None The schema to which the stream should be casted, passed as a PyCapsule containing a C ArrowSchema representation of the requested schema. Currently, this is not supported and will raise a NotImplementedError if the schema doesn't match the current schema. Returns ------- PyCapsuleRecordBatch.__arrow_c_array__(self, requested_schema=None) Get a pair of PyCapsules containing a C ArrowArray representation of the object. Parameters ---------- requested_schema : PyCapsule | None A PyCapsule containing a C ArrowSchema representation of a requested schema. PyArrow will attempt to cast the batch to this schema. If None, the batch will be returned as-is, with a schema matching the one returned by :meth:`__arrow_c_schema__()`. Returns ------- Tuple[PyCapsule, PyCapsule] A pair of PyCapsules containing a C ArrowSchema and ArrowArray, respectively.RecordBatch._import_from_c(in_ptr, schema) Import RecordBatch from a C ArrowArray struct, given its pointer and the imported schema. Parameters ---------- in_ptr: int The raw pointer to a C ArrowArray struct. type: Schema or int Either a Schema object, or the raw pointer to a C ArrowSchema struct. This is a low-level function intended for expert users.RecordBatch._export_to_c(self, out_ptr, out_schema_ptr=0) Export to a C ArrowArray struct, given its pointer. If a C ArrowSchema struct pointer is also given, the record batch schema is exported to it at the same time. Parameters ---------- out_ptr: int The raw pointer to a C ArrowArray struct. out_schema_ptr: int (optional) The raw pointer to a C ArrowSchema struct. Be careful: if you don't pass the ArrowArray struct to a consumer, array memory will leak. This is a low-level function intended for expert users.RecordBatch.copy_to(self, destination) Copy the entire RecordBatch to destination device. This copies each column of the record batch to create a new record batch where all underlying buffers for the columns have been copied to the destination MemoryManager. Parameters ---------- destination : pyarrow.MemoryManager or pyarrow.Device The destination device to copy the array to. Returns ------- RecordBatchRecordBatch.to_tensor(self, bool null_to_nan=False, bool row_major=True, MemoryPool memory_pool=None) Convert to a :class:`~pyarrow.Tensor`. RecordBatches that can be converted have fields of type signed or unsigned integer or float, including all bit-widths. ``null_to_nan`` is ``False`` by default and this method will raise an error in case any nulls are present. RecordBatches with nulls can be converted with ``null_to_nan`` set to ``True``. In this case null values are converted to ``NaN`` and integer type arrays are promoted to the appropriate float type. Parameters ---------- null_to_nan : bool, default False Whether to write null values in the result as ``NaN``. row_major : bool, default True Whether resulting Tensor is row-major or column-major memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Examples -------- >>> import pyarrow as pa >>> batch = pa.record_batch( ... [ ... pa.array([1, 2, 3, 4, None], type=pa.int32()), ... pa.array([10, 20, 30, 40, None], type=pa.float32()), ... ], names = ["a", "b"] ... ) >>> batch pyarrow.RecordBatch a: int32 b: float ---- a: [1,2,3,4,null] b: [10,20,30,40,null] Convert a RecordBatch to row-major Tensor with null values written as ``NaN``s >>> batch.to_tensor(null_to_nan=True) type: double shape: (5, 2) strides: (16, 8) >>> batch.to_tensor(null_to_nan=True).to_numpy() array([[ 1., 10.], [ 2., 20.], [ 3., 30.], [ 4., 40.], [nan, nan]]) Convert a RecordBatch to column-major Tensor >>> batch.to_tensor(null_to_nan=True, row_major=False) type: double shape: (5, 2) strides: (8, 40) >>> batch.to_tensor(null_to_nan=True, row_major=False).to_numpy() array([[ 1., 10.], [ 2., 20.], [ 3., 30.], [ 4., 40.], [nan, nan]])RecordBatch.to_struct_array(self) Convert to a struct array.RecordBatch.from_struct_array(StructArray struct_array) Construct a RecordBatch from a StructArray. Each field in the StructArray will become a column in the resulting ``RecordBatch``. Parameters ---------- struct_array : StructArray Array to construct the record batch from. Returns ------- pyarrow.RecordBatch Examples -------- >>> import pyarrow as pa >>> struct = pa.array([{'n_legs': 2, 'animals': 'Parrot'}, ... {'year': 2022, 'n_legs': 4}]) >>> pa.RecordBatch.from_struct_array(struct).to_pandas() animals n_legs year 0 Parrot 2 NaN 1 None 4 2022.0RecordBatch.from_arrays(list arrays, names=None, schema=None, metadata=None) Construct a RecordBatch from multiple pyarrow.Arrays Parameters ---------- arrays : list of pyarrow.Array One for each field in RecordBatch names : list of str, optional Names for the batch fields. If not passed, schema must be passed schema : Schema, default None Schema for the created batch. If not passed, names must be passed metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- pyarrow.RecordBatch Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Construct a RecordBatch from pyarrow Arrays using names: >>> pa.RecordBatch.from_arrays([n_legs, animals], names=names) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] >>> pa.RecordBatch.from_arrays([n_legs, animals], names=names).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede Construct a RecordBatch from pyarrow Arrays using schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.RecordBatch.from_arrays([n_legs, animals], schema=my_schema).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede >>> pa.RecordBatch.from_arrays([n_legs, animals], schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'RecordBatch.from_pandas(cls, df, Schema schema=None, preserve_index=None, nthreads=None, columns=None) Convert pandas.DataFrame to an Arrow RecordBatch Parameters ---------- df : pandas.DataFrame schema : pyarrow.Schema, optional The expected schema of the RecordBatch. This can be used to indicate the type of columns if we cannot infer it automatically. If passed, the output will have exactly this schema. Columns specified in the schema that are not found in the DataFrame columns or its index will raise an error. Additional columns or index levels in the DataFrame which are not specified in the schema will be ignored. preserve_index : bool, optional Whether to store the index as an additional column in the resulting ``RecordBatch``. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Use ``preserve_index=True`` to force it to be stored as a column. nthreads : int, default None If greater than 1, convert columns to Arrow in parallel using indicated number of threads. By default, this follows :func:`pyarrow.cpu_count` (may use up to system CPU count threads). columns : list, optional List of column to be converted. If None, use all columns. Returns ------- pyarrow.RecordBatch Examples -------- >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022], ... 'month': [3, 5, 7, 9], ... 'day': [1, 5, 9, 13], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) Convert pandas DataFrame to RecordBatch: >>> import pyarrow as pa >>> pa.RecordBatch.from_pandas(df) pyarrow.RecordBatch year: int64 month: int64 day: int64 n_legs: int64 animals: string ---- year: [2020,2022,2021,2022] month: [3,5,7,9] day: [1,5,9,13] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] Convert pandas DataFrame to RecordBatch using schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.RecordBatch.from_pandas(df, schema=my_schema) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] Convert pandas DataFrame to RecordBatch specifying columns: >>> pa.RecordBatch.from_pandas(df, columns=["n_legs"]) pyarrow.RecordBatch n_legs: int64 ---- n_legs: [2,4,5,100]RecordBatch._to_pandas(self, options, **kwargs)RecordBatch.cast(self, Schema target_schema, safe=None, options=None) Cast record batch values to another schema. Parameters ---------- target_schema : Schema Schema to cast to, the names and order of fields must match. safe : bool, default True Check for overflows or other unsafe conversions. options : CastOptions, default None Additional checks pass by CastOptions Returns ------- RecordBatch Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) >>> batch.schema n_legs: int64 animals: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, ... Define new schema and cast batch values: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.duration('s')), ... pa.field('animals', pa.string())] ... ) >>> batch.cast(target_schema=my_schema) pyarrow.RecordBatch n_legs: duration[s] animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"]RecordBatch.select(self, columns) Select columns of the RecordBatch. Returns a new RecordBatch with the specified columns, and metadata preserved. Parameters ---------- columns : list-like The column names or integer indices to select. Returns ------- RecordBatch Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.record_batch([n_legs, animals], ... names=["n_legs", "animals"]) Select columns my indices: >>> batch.select([1]) pyarrow.RecordBatch animals: string ---- animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] Select columns by names: >>> batch.select(["n_legs"]) pyarrow.RecordBatch n_legs: int64 ---- n_legs: [2,2,4,4,5,100]RecordBatch.equals(self, other, bool check_metadata=False) Check if contents of two record batches are equal. Parameters ---------- other : pyarrow.RecordBatch RecordBatch to compare against. check_metadata : bool, default False Whether schema metadata equality should be checked as well. Returns ------- are_equal : bool Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch_0 = pa.record_batch([]) >>> batch_1 = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"], ... metadata={"n_legs": "Number of legs per animal"}) >>> batch.equals(batch) True >>> batch.equals(batch_0) False >>> batch.equals(batch_1) True >>> batch.equals(batch_1, check_metadata=True) FalseRecordBatch.slice(self, offset=0, length=None) Compute zero-copy slice of this RecordBatch Parameters ---------- offset : int, default 0 Offset from start of record batch to slice length : int, default None Length of slice (default is until end of batch starting from offset) Returns ------- sliced : RecordBatch Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede >>> batch.slice(offset=3).to_pandas() n_legs animals 0 4 Horse 1 5 Brittle stars 2 100 Centipede >>> batch.slice(length=2).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot >>> batch.slice(offset=3, length=1).to_pandas() n_legs animals 0 4 HorseRecordBatch.serialize(self, memory_pool=None) Write RecordBatch to Buffer as encapsulated IPC message, which does not include a Schema. To reconstruct a RecordBatch from the encapsulated IPC message Buffer returned by this function, a Schema must be passed separately. See Examples. Parameters ---------- memory_pool : MemoryPool, default None Uses default memory pool if not specified Returns ------- serialized : Buffer Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> buf = batch.serialize() >>> buf Reconstruct RecordBatch from IPC message Buffer and original Schema >>> pa.ipc.read_record_batch(buf, batch.schema) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]RecordBatch.rename_columns(self, names) Create new record batch with columns renamed to provided names. Parameters ---------- names : list[str] or dict[str, str] List of new column names or mapping of old column names to new column names. If a mapping of old to new column names is passed, then all columns which are found to match a provided old column name will be renamed to the new column name. If any column names are not found in the mapping, a KeyError will be raised. Raises ------ KeyError If any of the column names passed in the names mapping do not exist. Returns ------- RecordBatch Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) >>> new_names = ["n", "name"] >>> batch.rename_columns(new_names) pyarrow.RecordBatch n: int64 name: string ---- n: [2,4,5,100] name: ["Flamingo","Horse","Brittle stars","Centipede"] >>> new_names = {"n_legs": "n", "animals": "name"} >>> batch.rename_columns(new_names) pyarrow.RecordBatch n: int64 name: string ---- n: [2,4,5,100] name: ["Flamingo","Horse","Brittle stars","Centipede"]RecordBatch.set_column(self, int i, field_, column) Replace column in RecordBatch at position. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array or value coercible to array Column data. Returns ------- RecordBatch New record batch with the passed column set. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) Replace a column: >>> year = [2021, 2022, 2019, 2021] >>> batch.set_column(1,'year', year) pyarrow.RecordBatch n_legs: int64 year: int64 ---- n_legs: [2,4,5,100] year: [2021,2022,2019,2021]RecordBatch.remove_column(self, int i) Create new RecordBatch with the indicated column removed. Parameters ---------- i : int Index of column to remove. Returns ------- Table New record batch without the column. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) >>> batch.remove_column(1) pyarrow.RecordBatch n_legs: int64 ---- n_legs: [2,4,5,100]RecordBatch.add_column(self, int i, field_, column) Add column to RecordBatch at position i. A new record batch is returned with the column added, the original record batch object is left unchanged. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array or value coercible to array Column data. Returns ------- RecordBatch New record batch with the passed column added. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) Add column: >>> year = [2021, 2022, 2019, 2021] >>> batch.add_column(0,"year", year) pyarrow.RecordBatch year: int64 n_legs: int64 animals: string ---- year: [2021,2022,2019,2021] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] Original record batch is left unchanged: >>> batch pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"]RecordBatch.__sizeof__(self)RecordBatch.get_total_buffer_size(self) The sum of bytes in each buffer referenced by the record batch An array may only reference a portion of a buffer. This method will overestimate in this case and return the byte size of the entire buffer. If a buffer is referenced multiple times then it will only be counted once. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.get_total_buffer_size() 120RecordBatch._column(self, int i) Select single column from record batch by its numeric index. Parameters ---------- i : int The index of the column to retrieve. Returns ------- column : pyarrow.ArrayRecordBatch.replace_schema_metadata(self, metadata=None) Create shallow copy of record batch by replacing schema key-value metadata with the indicated new metadata (which may be None, which deletes any existing metadata Parameters ---------- metadata : dict, default None Returns ------- shallow_copy : RecordBatch Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) Constructing a RecordBatch with schema and metadata: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64())], ... metadata={"n_legs": "Number of legs per animal"}) >>> batch = pa.RecordBatch.from_arrays([n_legs], schema=my_schema) >>> batch.schema n_legs: int64 -- schema metadata -- n_legs: 'Number of legs per animal' Shallow copy of a RecordBatch with deleted schema metadata: >>> batch.replace_schema_metadata().schema n_legs: int64RecordBatch.validate(self, *, full=False) Perform validation checks. An exception is raised if validation fails. By default only cheap validation checks are run. Pass `full=True` for thorough validation checks (potentially O(n)). Parameters ---------- full : bool, default False If True, run expensive checks, otherwise cheap checks only. Raises ------ ArrowInvalidRecordBatch.__reduce__(self)RecordBatch._is_initialized(self)_Tabular.__setstate_cython__(self, __pyx_state)_Tabular.__reduce_cython__(self)_Tabular.append_column(self, field_, column) Append column at end of columns. Parameters ---------- field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array or value coercible to array Column data. Returns ------- Table or RecordBatch New table or record batch with the passed column added. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Append column at the end: >>> year = [2021, 2022, 2019, 2021] >>> table.append_column('year', [year]) pyarrow.Table n_legs: int64 animals: string year: int64 ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] year: [[2021,2022,2019,2021]]_Tabular.add_column(self, int i, field_, column)_Tabular.drop_columns(self, columns) Drop one or more columns and return a new Table or RecordBatch. Parameters ---------- columns : str or list[str] Field name(s) referencing existing column(s). Raises ------ KeyError If any of the passed column names do not exist. Returns ------- Table or RecordBatch A tabular object without the column(s). Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Drop one column: >>> table.drop_columns("animals") pyarrow.Table n_legs: int64 ---- n_legs: [[2,4,5,100]] Drop one or more columns: >>> table.drop_columns(["n_legs", "animals"]) pyarrow.Table ... ----_Tabular.remove_column(self, int i)_Tabular.to_string(self, *, show_metadata=False, preview_cols=0) Return human-readable string representation of Table or RecordBatch. Parameters ---------- show_metadata : bool, default False Display Field-level and Schema-level KeyValueMetadata. preview_cols : int, default 0 Display values of the columns for the first N columns. Returns ------- str_Tabular.to_pylist(self, *, maps_as_pydicts=None) Convert the Table or RecordBatch to a list of rows / dictionaries. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected. Returns ------- list Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> data = [[2, 4, 5, 100], ... ["Flamingo", "Horse", "Brittle stars", "Centipede"]] >>> table = pa.table(data, names=["n_legs", "animals"]) >>> table.to_pylist() [{'n_legs': 2, 'animals': 'Flamingo'}, {'n_legs': 4, 'animals': 'Horse'}, ..._Tabular.to_pydict(self, *, maps_as_pydicts=None) Convert the Table or RecordBatch to a dict or OrderedDict. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected. Returns ------- dict Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> table = pa.Table.from_arrays([n_legs, animals], names=["n_legs", "animals"]) >>> table.to_pydict() {'n_legs': [2, 2, 4, 4, 5, 100], 'animals': ['Flamingo', 'Parrot', ..., 'Centipede']}_Tabular.filter(self, mask, null_selection_behavior='drop') Select rows from the table or record batch based on a boolean mask. The Table can be filtered based on a mask, which will be passed to :func:`pyarrow.compute.filter` to perform the filtering, or it can be filtered through a boolean :class:`.Expression` Parameters ---------- mask : Array or array-like or .Expression The boolean mask or the :class:`.Expression` to filter the table with. null_selection_behavior : str, default "drop" How nulls in the mask should be handled, does nothing if an :class:`.Expression` is used. Returns ------- filtered : Table or RecordBatch A tabular object of the same schema, with only the rows selected by applied filtering Examples -------- Using a Table (works similarly for RecordBatch): >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) Define an expression and select rows: >>> import pyarrow.compute as pc >>> expr = pc.field("year") <= 2020 >>> table.filter(expr) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2019]] n_legs: [[2,5]] animals: [["Flamingo","Brittle stars"]] Define a mask and select rows: >>> mask=[True, True, False, None] >>> table.filter(mask) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022]] n_legs: [[2,4]] animals: [["Flamingo","Horse"]] >>> table.filter(mask, null_selection_behavior='emit_null') pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022,null]] n_legs: [[2,4,null]] animals: [["Flamingo","Horse",null]]_Tabular.take(self, indices) Select rows from a Table or RecordBatch. See :func:`pyarrow.compute.take` for full usage. Parameters ---------- indices : Array or array-like The indices in the tabular object whose rows will be returned. Returns ------- Table or RecordBatch A tabular object with the same schema, containing the taken rows. Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.take([1,3]) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2022,2021]] n_legs: [[4,100]] animals: [["Horse","Centipede"]]_Tabular.sort_by(self, sorting, **kwargs) Sort the Table or RecordBatch by one or multiple columns. Parameters ---------- sorting : str or list[tuple(name, order)] Name of the column to use to sort (ascending), or a list of multiple sorting conditions where each entry is a tuple with column name and sorting order ("ascending" or "descending") **kwargs : dict, optional Additional sorting options. As allowed by :class:`SortOptions` Returns ------- Table or RecordBatch A new tabular object sorted according to the sort keys. Examples -------- Table (works similarly for RecordBatch) >>> import pandas as pd >>> import pyarrow as pa >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.sort_by('animal') pyarrow.Table year: int64 n_legs: int64 animal: string ---- year: [[2019,2021,2021,2020,2022,2022]] n_legs: [[5,100,4,2,4,2]] animal: [["Brittle stars","Centipede","Dog","Flamingo","Horse","Parrot"]]_Tabular.itercolumns(self) Iterator over all columns in their numerical order. Yields ------ Array (for RecordBatch) or ChunkedArray (for Table) Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> for i in table.itercolumns(): ... print(i.null_count) ... 2 1_Tabular.from_pylist(cls, mapping, schema=None, metadata=None) Construct a Table or RecordBatch from list of rows / dictionaries. Parameters ---------- mapping : list of dicts of rows A mapping of strings to row values. schema : Schema, default None If not passed, will be inferred from the first row of the mapping values. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table or RecordBatch Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> pylist = [{'n_legs': 2, 'animals': 'Flamingo'}, ... {'n_legs': 4, 'animals': 'Dog'}] Construct a Table from a list of rows: >>> pa.Table.from_pylist(pylist) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4]] animals: [["Flamingo","Dog"]] Construct a Table from a list of rows with metadata: >>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.Table.from_pylist(pylist, metadata=my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from a list of rows with pyarrow schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.Table.from_pylist(pylist, schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'_Tabular.from_pydict(cls, mapping, schema=None, metadata=None) Construct a Table or RecordBatch from Arrow arrays or columns. Parameters ---------- mapping : dict or Mapping A mapping of strings to Arrays or Python lists. schema : Schema, default None If not passed, will be inferred from the Mapping values. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table or RecordBatch Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> pydict = {'n_legs': n_legs, 'animals': animals} Construct a Table from a dictionary of arrays: >>> pa.Table.from_pydict(pydict) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> pa.Table.from_pydict(pydict).schema n_legs: int64 animals: string Construct a Table from a dictionary of arrays with metadata: >>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.Table.from_pydict(pydict, metadata=my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from a dictionary of arrays with pyarrow schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.Table.from_pydict(pydict, schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'_Tabular.field(self, i) Select a schema field by its column name or numeric index. Parameters ---------- i : int or string The index or name of the field to retrieve. Returns ------- Field Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.field(0) pyarrow.Field >>> table.field(1) pyarrow.Field_Tabular.drop_null(self) Remove rows that contain missing values from a Table or RecordBatch. See :func:`pyarrow.compute.drop_null` for full usage. Returns ------- Table or RecordBatch A tabular object with the same schema, with rows containing no missing values. Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [None, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.drop_null() pyarrow.Table year: double n_legs: int64 animals: string ---- year: [[2022,2021]] n_legs: [[4,100]] animals: [["Horse","Centipede"]]_Tabular.column(self, i) Select single column from Table or RecordBatch. Parameters ---------- i : int or string The index or name of the column to retrieve. Returns ------- column : Array (for RecordBatch) or ChunkedArray (for Table) Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Select a column by numeric index: >>> table.column(0) [ [ 2, 4, 5, 100 ] ] Select a column by its name: >>> table.column("animals") [ [ "Flamingo", "Horse", "Brittle stars", "Centipede" ] ]_Tabular._is_initialized(self)_Tabular._ensure_integer_index(self, i) Ensure integer index (convert string column name to integer if needed)._Tabular._column(self, int i)_Tabular.__getitem__(self, key) Slice or return column at given index or column name Parameters ---------- key : integer, str, or slice Slices with step not equal to 1 (or None) will produce a copy rather than a zero-copy view Returns ------- Array (from RecordBatch) or ChunkedArray (from Table) for column input. RecordBatch or Table for slice input._Tabular.__dataframe__(self, nan_as_null: bool = False, allow_copy: bool = True) Return the dataframe interchange object implementing the interchange protocol. Parameters ---------- nan_as_null : bool, default False Whether to tell the DataFrame to overwrite null values in the data with ``NaN`` (or ``NaT``). allow_copy : bool, default True Whether to allow memory copying when exporting. If set to False it would cause non-zero-copy exports to fail. Returns ------- DataFrame interchange object The object which consuming library can use to ingress the dataframe. Notes ----- Details on the interchange protocol: https://data-apis.org/dataframe-protocol/latest/index.html `nan_as_null` currently has no effect; once support for nullable extension dtypes is added, this value should be propagated to columns._Tabular.__array__(self, dtype=None, copy=None)chunked_array(arrays, type=None) Construct chunked array from list of array-like objects Parameters ---------- arrays : Array, list of Array, or array-like Must all be the same data type. Can be empty only if type also passed. Any Arrow-compatible array that implements the Arrow PyCapsule Protocol (has an ``__arrow_c_array__`` or ``__arrow_c_stream__`` method) can be passed as well. type : DataType or string coercible to DataType Returns ------- ChunkedArray Examples -------- >>> import pyarrow as pa >>> pa.chunked_array([], type=pa.int8()) [ ... ] >>> pa.chunked_array([[2, 2, 4], [4, 5, 100]]) [ [ 2, 2, 4 ], [ 4, 5, 100 ] ]ChunkedArray._assert_cpu(self)ChunkedArray._import_from_c_capsule(stream) Import ChunkedArray from a C ArrowArrayStream PyCapsule. Parameters ---------- stream: PyCapsule A capsule containing a C ArrowArrayStream PyCapsule. Returns ------- ChunkedArrayChunkedArray.__arrow_c_stream__(self, requested_schema=None) Export to a C ArrowArrayStream PyCapsule. Parameters ---------- requested_schema : PyCapsule, default None The schema to which the stream should be casted, passed as a PyCapsule containing a C ArrowSchema representation of the requested schema. Returns ------- PyCapsule A capsule containing a C ArrowArrayStream struct.ChunkedArray.to_pylist(self, *, maps_as_pydicts=None) Convert to a list of native Python objects. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.to_pylist() [2, 2, 4, 4, None, 100]ChunkedArray.iterchunks(self) Convert to an iterator of ChunkArrays. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> for i in n_legs.iterchunks(): ... print(i.null_count) ... 0 1ChunkedArray.chunk(self, i) Select a chunk by its index. Parameters ---------- i : int Returns ------- pyarrow.Array Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, None], [4, 5, 100]]) >>> n_legs.chunk(1) [ 4, 5, 100 ]ChunkedArray.unify_dictionaries(self, MemoryPool memory_pool=None) Unify dictionaries across all chunks. This method returns an equivalent chunked array, but where all chunks share the same dictionary values. Dictionary indices are transposed accordingly. If there are no dictionaries in the chunked array, it is returned unchanged. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- result : ChunkedArray Examples -------- >>> import pyarrow as pa >>> arr_1 = pa.array(["Flamingo", "Parrot", "Dog"]).dictionary_encode() >>> arr_2 = pa.array(["Horse", "Brittle stars", "Centipede"]).dictionary_encode() >>> c_arr = pa.chunked_array([arr_1, arr_2]) >>> c_arr [ ... -- dictionary: [ "Flamingo", "Parrot", "Dog" ] -- indices: [ 0, 1, 2 ], ... -- dictionary: [ "Horse", "Brittle stars", "Centipede" ] -- indices: [ 0, 1, 2 ] ] >>> c_arr.unify_dictionaries() [ ... -- dictionary: [ "Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede" ] -- indices: [ 0, 1, 2 ], ... -- dictionary: [ "Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede" ] -- indices: [ 3, 4, 5 ] ]ChunkedArray.sort(self, order='ascending', **kwargs) Sort the ChunkedArray Parameters ---------- order : str, default "ascending" Which order to sort values in. Accepted values are "ascending", "descending". **kwargs : dict, optional Additional sorting options. As allowed by :class:`SortOptions` Returns ------- result : ChunkedArrayChunkedArray.drop_null(self) Remove missing values from a chunked array. See :func:`pyarrow.compute.drop_null` for full description. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, None], [4, 5, 100]]) >>> n_legs [ [ 2, 2, null ], [ 4, 5, 100 ] ] >>> n_legs.drop_null() [ [ 2, 2 ], [ 4, 5, 100 ] ]ChunkedArray.take(self, indices) Select values from the chunked array. See :func:`pyarrow.compute.take` for full usage. Parameters ---------- indices : Array or array-like The indices in the array whose values will be returned. Returns ------- taken : Array or ChunkedArray An array with the same datatype, containing the taken values. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.take([1,4,5]) [ [ 2, 5, 100 ] ]ChunkedArray.index(self, value, start=None, end=None, *, memory_pool=None) Find the first index of a value. See :func:`pyarrow.compute.index` for full usage. Parameters ---------- value : Scalar or object The value to look for in the array. start : int, optional The start index where to look for `value`. end : int, optional The end index where to look for `value`. memory_pool : MemoryPool, optional A memory pool for potential memory allocations. Returns ------- index : Int64Scalar The index of the value in the array (-1 if not found). Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.index(4) >>> n_legs.index(4, start=3) ChunkedArray.filter(self, mask, null_selection_behavior='drop') Select values from the chunked array. See :func:`pyarrow.compute.filter` for full usage. Parameters ---------- mask : Array or array-like The boolean mask to filter the chunked array with. null_selection_behavior : str, default "drop" How nulls in the mask should be handled. Returns ------- filtered : Array or ChunkedArray An array of the same type, with only the elements selected by the boolean mask. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> mask = pa.array([True, False, None, True, False, True]) >>> n_legs.filter(mask) [ [ 2 ], [ 4, 100 ] ] >>> n_legs.filter(mask, null_selection_behavior="emit_null") [ [ 2, null ], [ 4, 100 ] ]ChunkedArray.slice(self, offset=0, length=None) Compute zero-copy slice of this ChunkedArray Parameters ---------- offset : int, default 0 Offset from start of array to slice length : int, default None Length of slice (default is until end of batch starting from offset) Returns ------- sliced : ChunkedArray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.slice(2,2) [ [ 4 ], [ 4 ] ]ChunkedArray.value_counts(self) Compute counts of unique elements in array. Returns ------- An array of structs Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.value_counts() -- is_valid: all not null -- child 0 type: int64 [ 2, 4, 5, 100 ] -- child 1 type: int64 [ 2, 2, 1, 1 ]ChunkedArray.unique(self) Compute distinct elements in array Returns ------- pyarrow.Array Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.unique() [ 2, 4, 5, 100 ]ChunkedArray.combine_chunks(self, MemoryPool memory_pool=None) Flatten this ChunkedArray into a single non-chunked array. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- result : Array Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.combine_chunks() [ 2, 2, 4, 4, 5, 100 ]ChunkedArray.flatten(self, MemoryPool memory_pool=None) Flatten this ChunkedArray. If it has a struct type, the column is flattened into one array per struct field. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- result : list of ChunkedArray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> c_arr = pa.chunked_array(n_legs.value_counts()) >>> c_arr [ -- is_valid: all not null -- child 0 type: int64 [ 2, 4, 5, 100 ] -- child 1 type: int64 [ 2, 2, 1, 1 ] ] >>> c_arr.flatten() [ [ [ 2, 4, 5, 100 ] ], [ [ 2, 2, 1, 1 ] ]] >>> c_arr.type StructType(struct) >>> n_legs.type DataType(int64)ChunkedArray.dictionary_encode(self, null_encoding='mask') Compute dictionary-encoded representation of array. See :func:`pyarrow.compute.dictionary_encode` for full usage. Parameters ---------- null_encoding : str, default "mask" How to handle null entries. Returns ------- encoded : ChunkedArray A dictionary-encoded version of this array. Examples -------- >>> import pyarrow as pa >>> animals = pa.chunked_array(( ... ["Flamingo", "Parrot", "Dog"], ... ["Horse", "Brittle stars", "Centipede"] ... )) >>> animals.dictionary_encode() [ ... -- dictionary: [ "Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede" ] -- indices: [ 0, 1, 2 ], ... -- dictionary: [ "Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede" ] -- indices: [ 3, 4, 5 ] ]ChunkedArray.cast(self, target_type=None, safe=None, options=None) Cast array values to another data type See :func:`pyarrow.compute.cast` for usage. Parameters ---------- target_type : DataType, None Type to cast array to. safe : boolean, default True Whether to check for conversion errors such as overflow. options : CastOptions, default None Additional checks pass by CastOptions Returns ------- cast : Array or ChunkedArray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.type DataType(int64) Change the data type of an array: >>> n_legs_seconds = n_legs.cast(pa.duration('s')) >>> n_legs_seconds.type DurationType(duration[s])ChunkedArray.__array__(self, dtype=None, copy=None)ChunkedArray.to_numpy(self, zero_copy_only=False) Return a NumPy copy of this array (experimental). Parameters ---------- zero_copy_only : bool, default False Introduced for signature consistence with pyarrow.Array.to_numpy. This must be False here since NumPy arrays' buffer must be contiguous. Returns ------- array : numpy.ndarray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.to_numpy() array([ 2, 2, 4, 4, 5, 100])ChunkedArray._to_pandas(self, options, types_mapper=None, **kwargs)ChunkedArray.equals(self, ChunkedArray other) Return whether the contents of two chunked arrays are equal. Parameters ---------- other : pyarrow.ChunkedArray Chunked array to compare against. Returns ------- are_equal : bool Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> animals = pa.chunked_array(( ... ["Flamingo", "Parrot", "Dog"], ... ["Horse", "Brittle stars", "Centipede"] ... )) >>> n_legs.equals(n_legs) True >>> n_legs.equals(animals) FalseChunkedArray.fill_null(self, fill_value) Replace each null element in values with fill_value. See :func:`pyarrow.compute.fill_null` for full usage. Parameters ---------- fill_value : any The replacement value for null entries. Returns ------- result : Array or ChunkedArray A new array with nulls replaced by the given value. Examples -------- >>> import pyarrow as pa >>> fill_value = pa.scalar(5, type=pa.int8()) >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.fill_null(fill_value) [ [ 2, 2, 4, 4, 5, 100 ] ]ChunkedArray.is_valid(self) Return boolean array indicating the non-null values. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.is_valid() [ [ true, true, true ], [ true, false, true ] ]ChunkedArray.is_nan(self) Return boolean array indicating the NaN values. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> arr = pa.chunked_array([[2, np.nan, 4], [4, None, 100]]) >>> arr.is_nan() [ [ false, true, false, false, null, false ] ]ChunkedArray.is_null(self, *, nan_is_null=False) Return boolean array indicating the null values. Parameters ---------- nan_is_null : bool (optional, default False) Whether floating-point NaN values should also be considered null. Returns ------- array : boolean Array or ChunkedArray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.is_null() [ [ false, false, false, false, true, false ] ]ChunkedArray.__getitem__(self, key) Slice or return value at given index Parameters ---------- key : integer or slice Slices with step not equal to 1 (or None) will produce a copy rather than a zero-copy view Returns ------- value : Scalar (index) or ChunkedArray (slice)ChunkedArray.__sizeof__(self)ChunkedArray.get_total_buffer_size(self) The sum of bytes in each buffer referenced by the chunked array. An array may only reference a portion of a buffer. This method will overestimate in this case and return the byte size of the entire buffer. If a buffer is referenced multiple times then it will only be counted once. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.get_total_buffer_size() 49ChunkedArray.validate(self, *, full=False) Perform validation checks. An exception is raised if validation fails. By default only cheap validation checks are run. Pass `full=True` for thorough validation checks (potentially O(n)). Parameters ---------- full : bool, default False If True, run expensive checks, otherwise cheap checks only. Raises ------ ArrowInvalidChunkedArray.format(self, **kwargs) DEPRECATED, use pyarrow.ChunkedArray.to_string Parameters ---------- **kwargs : dict Returns ------- strChunkedArray.to_string(self, *, int indent=0, int window=5, int container_window=2, bool skip_new_lines=False, int element_size_limit=100) Render a "pretty-printed" string representation of the ChunkedArray Parameters ---------- indent : int How much to indent right the content of the array, by default ``0``. window : int How many items to preview within each chunk at the begin and end of the chunk when the chunk is bigger than the window. The other elements will be ellipsed. container_window : int How many chunks to preview at the begin and end of the array when the array is bigger than the window. The other elements will be ellipsed. This setting also applies to list columns. skip_new_lines : bool If the array should be rendered as a single line of text or if each element should be on its own line. element_size_limit : int, default 100 Maximum number of characters of a single element before it is truncated. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.to_string(skip_new_lines=True) '[[2,2,4],[4,5,100]]'ChunkedArray.length(self) Return length of a ChunkedArray. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.length() 6ChunkedArray.__reduce__(self)StringViewBuilder.__setstate_cython__(self, __pyx_state)StringViewBuilder.__reduce_cython__(self)StringViewBuilder.finish(self) Return result of builder as an Array object; also resets the builder. Returns ------- array : pyarrow.ArrayStringViewBuilder.append_values(self, values) Append all the values from an iterable. Parameters ---------- values : iterable of string/bytes or np.nan/None values The values to append to the string array builder.StringViewBuilder.append(self, value) Append a single value to the builder. The value can either be a string/bytes object or a null value (np.nan or None). Parameters ---------- value : string/bytes or np.nan/None The value to append to the string array builder.StringBuilder.__setstate_cython__(self, __pyx_state)StringBuilder.__reduce_cython__(self)StringBuilder.finish(self) Return result of builder as an Array object; also resets the builder. Returns ------- array : pyarrow.ArrayStringBuilder.append_values(self, values) Append all the values from an iterable. Parameters ---------- values : iterable of string/bytes or np.nan/None values The values to append to the string array builder.StringBuilder.append(self, value) Append a single value to the builder. The value can either be a string/bytes object or a null value (np.nan or None). Parameters ---------- value : string/bytes or np.nan/None The value to append to the string array builder._empty_array(DataType type) Create empty array of the given type.concat_arrays(arrays, MemoryPool memory_pool=None) Concatenate the given arrays. The contents of the input arrays are copied into the returned array. Raises ------ ArrowInvalid If not all of the arrays have the same type. Parameters ---------- arrays : iterable of pyarrow.Array Arrays to concatenate, must be identically typed. memory_pool : MemoryPool, default None For memory allocations. If None, the default pool is used. Examples -------- >>> import pyarrow as pa >>> arr1 = pa.array([2, 4, 5, 100]) >>> arr2 = pa.array([2, 4]) >>> pa.concat_arrays([arr1, arr2]) [ 2, 4, 5, 100, 2, 4 ]Bool8Array.from_numpy(obj) Convert numpy array to a bool8 extension array without making a copy. The input array must be 1-dimensional, with either bool_ or int8 dtype. Parameters ---------- obj : numpy.ndarray Returns ------- bool8_array : Bool8Array Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> arr = np.array([True, False, True], dtype=np.bool_) >>> pa.Bool8Array.from_numpy(arr) [ 1, 0, 1 ]Bool8Array.from_storage(Int8Array storage) Construct Bool8Array from Int8Array storage. Parameters ---------- storage : Int8Array The underlying storage for the result array. Returns ------- bool8_array : Bool8ArrayBool8Array.to_numpy(self, zero_copy_only=True, writable=False) Return a NumPy bool view or copy of this array. By default, tries to return a view of this array. This is only supported for arrays without any nulls. Parameters ---------- zero_copy_only : bool, default True If True, an exception will be raised if the conversion to a numpy array would require copying the underlying data (e.g. in presence of nulls). writable : bool, default False For numpy arrays created with zero copy (view on the Arrow data), the resulting array is not writable (Arrow data is immutable). By setting this to True, a copy of the array is made to ensure it is writable. Returns ------- array : numpy.ndarrayFixedShapeTensorArray.from_numpy_ndarray(obj, dim_names=None) Convert numpy tensors (ndarrays) to a fixed shape tensor extension array. The first dimension of ndarray will become the length of the fixed shape tensor array. If input array data is not contiguous a copy will be made. Parameters ---------- obj : numpy.ndarray dim_names : tuple or list of strings, default None Explicit names to tensor dimensions. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> arr = np.array( ... [[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]], ... dtype=np.float32) >>> pa.FixedShapeTensorArray.from_numpy_ndarray(arr) [ [ 1, 2, 3, 4, 5, 6 ], [ 1, 2, 3, 4, 5, 6 ] ]FixedShapeTensorArray.to_tensor(self) Convert fixed shape tensor extension array to a pyarrow.Tensor. The resulting Tensor will have (ndim + 1) dimensions. The size of the first dimension will be the length of the fixed shape tensor array and the rest of the dimensions will match the permuted shape of the fixed shape tensor. The conversion is zero-copy. Returns ------- pyarrow.Tensor Tensor representing tensors in the fixed shape tensor array concatenated along the first dimension.FixedShapeTensorArray.to_numpy_ndarray(self) Convert fixed shape tensor extension array to a multi-dimensional numpy.ndarray. The resulting ndarray will have (ndim + 1) dimensions. The size of the first dimension will be the length of the fixed shape tensor array and the rest of the dimensions will match the permuted shape of the fixed shape tensor. The conversion is zero-copy. Returns ------- numpy.ndarray Ndarray representing tensors in the fixed shape tensor array concatenated along the first dimension.ExtensionArray.from_storage(BaseExtensionType typ, Array storage) Construct ExtensionArray from type and storage array. Parameters ---------- typ : DataType The extension type for the result array. storage : Array The underlying storage for the result array. Returns ------- ext_array : ExtensionArrayRunEndEncodedArray.find_physical_length(self) Find the physical length of this REE array. The physical length of an REE is the number of physical values (and run-ends) necessary to represent the logical range of values from offset to length. This function uses binary-search, so it has a O(log N) cost.RunEndEncodedArray.find_physical_offset(self) Find the physical offset of this REE array. This is the offset of the run that contains the value of the first logical element of this array considering its offset. This function uses binary-search, so it has a O(log N) cost.RunEndEncodedArray.from_buffers(DataType type, length, buffers, null_count=-1, offset=0, children=None) Construct a RunEndEncodedArray from all the parameters that make up an Array. RunEndEncodedArrays do not have buffers, only children arrays, but this implementation is needed to satisfy the Array interface. Parameters ---------- type : DataType The run_end_encoded(run_end_type, value_type) type. length : int The logical length of the run-end encoded array. Expected to match the last value of the run_ends array (children[0]) minus the offset. buffers : List[Buffer] Empty List or [None]. null_count : int, default -1 The number of null entries in the array. Run-end encoded arrays are specified to not have valid bits and null_count always equals 0. offset : int, default 0 The array's logical offset (in values, not in bytes) from the start of each buffer. children : List[Array] Nested type children containing the run_ends and values arrays. Returns ------- RunEndEncodedArrayRunEndEncodedArray.from_arrays(run_ends, values, type=None) Construct RunEndEncodedArray from run_ends and values arrays. Parameters ---------- run_ends : Array (int16, int32, or int64 type) The run_ends array. values : Array (any type) The values array. type : pyarrow.DataType, optional The run_end_encoded(run_end_type, value_type) array type. Returns ------- RunEndEncodedArrayRunEndEncodedArray._from_arrays(type, allow_none_for_type, logical_length, run_ends, values, logical_offset)StructArray.sort(self, order='ascending', by=None, **kwargs) Sort the StructArray Parameters ---------- order : str, default "ascending" Which order to sort values in. Accepted values are "ascending", "descending". by : str or None, default None If to sort the array by one of its fields or by the whole array. **kwargs : dict, optional Additional sorting options. As allowed by :class:`SortOptions` Returns ------- result : StructArrayStructArray.from_arrays(arrays, names=None, fields=None, mask=None, memory_pool=None, type=None) Construct StructArray from collection of arrays representing each field in the struct. Either field names, field instances or a struct type must be passed. Parameters ---------- arrays : sequence of Array names : List[str] (optional) Field names for each struct child. fields : List[Field] (optional) Field instances for each struct child. mask : pyarrow.Array[bool] (optional) Indicate which values are null (True) or not null (False). memory_pool : MemoryPool (optional) For memory allocations, if required, otherwise uses default pool. type : pyarrow.StructType (optional) Struct type for name and type of each child. Returns ------- result : StructArrayStructArray.flatten(self, MemoryPool memory_pool=None) Return one individual array for each field in the struct. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. Returns ------- result : List[Array]StructArray._flattened_field(self, index, MemoryPool memory_pool=None) Retrieves the child array belonging to field, accounting for the parent array null bitmap. Parameters ---------- index : Union[int, str] Index / position or name of the field. memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. Returns ------- result : ArrayStructArray.field(self, index) Retrieves the child array belonging to field. Parameters ---------- index : Union[int, str] Index / position or name of the field. Returns ------- result : ArrayDictionaryArray.from_arrays(indices, dictionary, mask=None, bool ordered=False, bool from_pandas=False, bool safe=True, MemoryPool memory_pool=None) Construct a DictionaryArray from indices and values. Parameters ---------- indices : pyarrow.Array, numpy.ndarray or pandas.Series, int type Non-negative integers referencing the dictionary values by zero based index. dictionary : pyarrow.Array, ndarray or pandas.Series The array of values referenced by the indices. mask : ndarray or pandas.Series, bool type True values indicate that indices are actually null. ordered : bool, default False Set to True if the category values are ordered. from_pandas : bool, default False If True, the indices should be treated as though they originated in a pandas.Categorical (null encoded as -1). safe : bool, default True If True, check that the dictionary indices are in range. memory_pool : MemoryPool, default None For memory allocations, if required, otherwise uses default pool. Returns ------- dict_array : DictionaryArrayDictionaryArray.from_buffers(DataType type, int64_t length, buffers, Array dictionary, int64_t null_count=-1, int64_t offset=0) Construct a DictionaryArray from buffers. Parameters ---------- type : pyarrow.DataType length : int The number of values in the array. buffers : List[Buffer] The buffers backing the indices array. dictionary : pyarrow.Array, ndarray or pandas.Series The array of values referenced by the indices. null_count : int, default -1 The number of null entries in the indices array. Negative value means that the null count is not known. offset : int, default 0 The array's logical offset (in values, not in bytes) from the start of each buffer. Returns ------- dict_array : DictionaryArrayDictionaryArray.dictionary_decode(self) Decodes the DictionaryArray to an Array.DictionaryArray.dictionary_encode(self)LargeStringArray.from_buffers(int length, Buffer value_offsets, Buffer data, Buffer null_bitmap=None, int null_count=-1, int offset=0) Construct a LargeStringArray from value_offsets and data buffers. If there are nulls in the data, also a null_bitmap and the matching null_count must be passed. Parameters ---------- length : int value_offsets : Buffer data : Buffer null_bitmap : Buffer, optional null_count : int, default 0 offset : int, default 0 Returns ------- string_array : StringArrayStringArray.from_buffers(int length, Buffer value_offsets, Buffer data, Buffer null_bitmap=None, int null_count=-1, int offset=0) Construct a StringArray from value_offsets and data buffers. If there are nulls in the data, also a null_bitmap and the matching null_count must be passed. Parameters ---------- length : int value_offsets : Buffer data : Buffer null_bitmap : Buffer, optional null_count : int, default 0 offset : int, default 0 Returns ------- string_array : StringArrayUnionArray.from_sparse(Array types, list children, list field_names=None, list type_codes=None) Construct sparse UnionArray from arrays of int8 types and children arrays Parameters ---------- types : Array (int8 type) children : list field_names : list type_codes : list Returns ------- union_array : UnionArrayUnionArray.from_dense(Array types, Array value_offsets, list children, list field_names=None, list type_codes=None) Construct dense UnionArray from arrays of int8 types, int32 offsets and children arrays Parameters ---------- types : Array (int8 type) value_offsets : Array (int32 type) children : list field_names : list type_codes : list Returns ------- union_array : UnionArrayUnionArray.field(self, int pos) Return the given child field as an individual array. For sparse unions, the returned array has its offset, length, and null count adjusted. For dense unions, the returned array is unchanged. Parameters ---------- pos : int The physical index of the union child field (not its type code). Returns ------- field : Array The given child field.UnionArray.child(self, int pos) DEPRECATED, use field() instead. Parameters ---------- pos : int The physical index of the union child field (not its type code). Returns ------- field : pyarrow.Field The given child field.FixedSizeListArray.from_arrays(values, list_size=None, DataType type=None, mask=None) Construct FixedSizeListArray from array of values and a list length. Parameters ---------- values : Array (any type) list_size : int The fixed length of the lists. type : DataType, optional If not specified, a default ListType with the values' type and `list_size` length is used. mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- FixedSizeListArray Examples -------- Create from a values array and a list size: >>> import pyarrow as pa >>> values = pa.array([1, 2, 3, 4]) >>> arr = pa.FixedSizeListArray.from_arrays(values, 2) >>> arr [ [ 1, 2 ], [ 3, 4 ] ] Or create from a values array, list size and matching type: >>> typ = pa.list_(pa.field("values", pa.int64()), 2) >>> arr = pa.FixedSizeListArray.from_arrays(values,type=typ) >>> arr [ [ 1, 2 ], [ 3, 4 ] ]MapArray.from_arrays(offsets, keys, items, DataType type=None, MemoryPool pool=None, mask=None) Construct MapArray from arrays of int32 offsets and key, item arrays. Parameters ---------- offsets : array-like or sequence (int32 type) keys : array-like or sequence (any type) items : array-like or sequence (any type) type : DataType, optional If not specified, a default MapArray with the keys' and items' type is used. pool : MemoryPool mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- map_array : MapArray Examples -------- First, let's understand the structure of our dataset when viewed in a rectangular data model. The total of 5 respondents answered the question "How much did you like the movie x?". The value -1 in the integer array means that the value is missing. The boolean array represents the null bitmask corresponding to the missing values in the integer array. >>> import pyarrow as pa >>> movies_rectangular = np.ma.masked_array([ ... [10, -1, -1], ... [8, 4, 5], ... [-1, 10, 3], ... [-1, -1, -1], ... [-1, -1, -1] ... ], ... [ ... [False, True, True], ... [False, False, False], ... [True, False, False], ... [True, True, True], ... [True, True, True], ... ]) To represent the same data with the MapArray and from_arrays, the data is formed like this: >>> offsets = [ ... 0, # -- row 1 start ... 1, # -- row 2 start ... 4, # -- row 3 start ... 6, # -- row 4 start ... 6, # -- row 5 start ... 6, # -- row 5 end ... ] >>> movies = [ ... "Dark Knight", # ---------------------------------- row 1 ... "Dark Knight", "Meet the Parents", "Superman", # -- row 2 ... "Meet the Parents", "Superman", # ----------------- row 3 ... ] >>> likings = [ ... 10, # -------- row 1 ... 8, 4, 5, # --- row 2 ... 10, 3 # ------ row 3 ... ] >>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas() 0 [(Dark Knight, 10)] 1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup... 2 [(Meet the Parents, 10), (Superman, 3)] 3 [] 4 [] dtype: object If the data in the empty rows needs to be marked as missing, it's possible to do so by modifying the offsets argument, so that we specify `None` as the starting positions of the rows we want marked as missing. The end row offset still has to refer to the existing value from keys (and values): >>> offsets = [ ... 0, # ----- row 1 start ... 1, # ----- row 2 start ... 4, # ----- row 3 start ... None, # -- row 4 start ... None, # -- row 5 start ... 6, # ----- row 5 end ... ] >>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas() 0 [(Dark Knight, 10)] 1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup... 2 [(Meet the Parents, 10), (Superman, 3)] 3 None 4 None dtype: objectLargeListViewArray.from_arrays(offsets, sizes, values, DataType type=None, MemoryPool pool=None, mask=None) Construct LargeListViewArray from arrays of int64 offsets and values. Parameters ---------- offsets : Array (int64 type) sizes : Array (int64 type) values : Array (any type) type : DataType, optional If not specified, a default ListType with the values' type is used. pool : MemoryPool, optional mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- list_view_array : LargeListViewArray Examples -------- >>> import pyarrow as pa >>> values = pa.array([1, 2, 3, 4]) >>> offsets = pa.array([0, 1, 2]) >>> sizes = pa.array([2, 2, 2]) >>> pa.LargeListViewArray.from_arrays(offsets, sizes, values) [ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ] ] >>> # use a null mask to represent null values >>> mask = pa.array([False, True, False]) >>> pa.LargeListViewArray.from_arrays(offsets, sizes, values, mask=mask) [ [ 1, 2 ], null, [ 3, 4 ] ] >>> # null values can be defined in either offsets or sizes arrays >>> # WARNING: this will result in a copy of the offsets or sizes arrays >>> offsets = pa.array([0, None, 2]) >>> pa.LargeListViewArray.from_arrays(offsets, sizes, values) [ [ 1, 2 ], null, [ 3, 4 ] ]ListViewArray.from_arrays(offsets, sizes, values, DataType type=None, MemoryPool pool=None, mask=None) Construct ListViewArray from arrays of int32 offsets, sizes, and values. Parameters ---------- offsets : Array (int32 type) sizes : Array (int32 type) values : Array (any type) type : DataType, optional If not specified, a default ListType with the values' type is used. pool : MemoryPool, optional mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- list_view_array : ListViewArray Examples -------- >>> import pyarrow as pa >>> values = pa.array([1, 2, 3, 4]) >>> offsets = pa.array([0, 1, 2]) >>> sizes = pa.array([2, 2, 2]) >>> pa.ListViewArray.from_arrays(offsets, sizes, values) [ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ] ] >>> # use a null mask to represent null values >>> mask = pa.array([False, True, False]) >>> pa.ListViewArray.from_arrays(offsets, sizes, values, mask=mask) [ [ 1, 2 ], null, [ 3, 4 ] ] >>> # null values can be defined in either offsets or sizes arrays >>> # WARNING: this will result in a copy of the offsets or sizes arrays >>> offsets = pa.array([0, None, 2]) >>> pa.ListViewArray.from_arrays(offsets, sizes, values) [ [ 1, 2 ], null, [ 3, 4 ] ]LargeListArray.from_arrays(offsets, values, DataType type=None, MemoryPool pool=None, mask=None) Construct LargeListArray from arrays of int64 offsets and values. Parameters ---------- offsets : Array (int64 type) values : Array (any type) type : DataType, optional If not specified, a default ListType with the values' type is used. pool : MemoryPool, optional mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- list_array : LargeListArrayListArray.from_arrays(offsets, values, DataType type=None, MemoryPool pool=None, mask=None) Construct ListArray from arrays of int32 offsets and values. Parameters ---------- offsets : Array (int32 type) values : Array (any type) type : DataType, optional If not specified, a default ListType with the values' type is used. pool : MemoryPool, optional mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- list_array : ListArray Examples -------- >>> import pyarrow as pa >>> values = pa.array([1, 2, 3, 4]) >>> offsets = pa.array([0, 2, 4]) >>> pa.ListArray.from_arrays(offsets, values) [ [ 1, 2 ], [ 3, 4 ] ] >>> # nulls in the offsets array become null lists >>> offsets = pa.array([0, None, 2, 4]) >>> pa.ListArray.from_arrays(offsets, values) [ [ 1, 2 ], null, [ 3, 4 ] ]BaseListArray.value_lengths(self) Return integers array with values equal to the respective length of each list element. Null list values are null in the output. Examples -------- >>> import pyarrow as pa >>> arr = pa.array([[1, 2, 3], [], None, [4]], ... type=pa.list_(pa.int32())) >>> arr.value_lengths() [ 3, 0, null, 1 ]BaseListArray.value_parent_indices(self) Return array of same length as list child values array where each output value is the index of the parent list array slot containing each child value. Examples -------- >>> import pyarrow as pa >>> arr = pa.array([[1, 2, 3], [], None, [4]], ... type=pa.list_(pa.int32())) >>> arr.value_parent_indices() [ 0, 0, 0, 3 ]BaseListArray.flatten(self, recursive=False) Unnest this [Large]ListArray/[Large]ListViewArray/FixedSizeListArray according to 'recursive'. Note that this method is different from ``self.values`` in that it takes care of the slicing offset as well as null elements backed by non-empty sub-lists. Parameters ---------- recursive : bool, default False, optional When True, flatten this logical list-array recursively until an array of non-list values is formed. When False, flatten only the top level. Returns ------- result : Array Examples -------- Basic logical list-array's flatten >>> import pyarrow as pa >>> values = [1, 2, 3, 4] >>> offsets = [2, 1, 0] >>> sizes = [2, 2, 2] >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) >>> array [ [ 3, 4 ], [ 2, 3 ], [ 1, 2 ] ] >>> array.flatten() [ 3, 4, 2, 3, 1, 2 ] When recursive=True, nested list arrays are flattened recursively until an array of non-list values is formed. >>> array = pa.array([ ... None, ... [ ... [1, None, 2], ... None, ... [3, 4] ... ], ... [], ... [ ... [], ... [5, 6], ... None ... ], ... [ ... [7, 8] ... ] ... ], type=pa.list_(pa.list_(pa.int64()))) >>> array.flatten(True) [ 1, null, 2, 3, 4, 5, 6, 7, 8 ]MonthDayNanoIntervalArray.to_pylist(self, *, maps_as_pydicts=None) Convert to a list of native Python objects. pyarrow.MonthDayNano is used as the native representation. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars. Returns ------- lst : listArray.__dlpack_device__(self) Return the DLPack device tuple this arrays resides on. Returns ------- tuple : Tuple[int, int] Tuple with index specifying the type of the device (where CPU = 1, see cpp/src/arrow/c/dpack_abi.h) and index of the device which is 0 by default for CPU.Array.__dlpack__(self, stream=None) Export a primitive array as a DLPack capsule. Parameters ---------- stream : int, optional A Python integer representing a pointer to a stream. Currently not supported. Stream is provided by the consumer to the producer to instruct the producer to ensure that operations can safely be performed on the array. Returns ------- capsule : PyCapsule A DLPack capsule for the array, pointing to a DLManagedTensor.Array._import_from_c_device_capsule(schema_capsule, array_capsule)Array.__arrow_c_device_array__(self, requested_schema=None, **kwargs) Get a pair of PyCapsules containing a C ArrowDeviceArray representation of the object. Parameters ---------- requested_schema : PyCapsule | None A PyCapsule containing a C ArrowSchema representation of a requested schema. PyArrow will attempt to cast the array to this data type. If None, the array will be returned as-is, with a type matching the one returned by :meth:`__arrow_c_schema__()`. kwargs Currently no additional keyword arguments are supported, but this method will accept any keyword with a value of ``None`` for compatibility with future keywords. Returns ------- Tuple[PyCapsule, PyCapsule] A pair of PyCapsules containing a C ArrowSchema and ArrowDeviceArray, respectively.Array._import_from_c_device(in_ptr, type) Import Array from a C ArrowDeviceArray struct, given its pointer and the imported array type. Parameters ---------- in_ptr: int The raw pointer to a C ArrowDeviceArray struct. type: DataType or int Either a DataType object, or the raw pointer to a C ArrowSchema struct. This is a low-level function intended for expert users.Array._export_to_c_device(self, out_ptr, out_schema_ptr=0) Export to a C ArrowDeviceArray struct, given its pointer. If a C ArrowSchema struct pointer is also given, the array type is exported to it at the same time. Parameters ---------- out_ptr: int The raw pointer to a C ArrowDeviceArray struct. out_schema_ptr: int (optional) The raw pointer to a C ArrowSchema struct. Be careful: if you don't pass the ArrowDeviceArray struct to a consumer, array memory will leak. This is a low-level function intended for expert users.Array._import_from_c_capsule(schema_capsule, array_capsule)Array.__arrow_c_array__(self, requested_schema=None) Get a pair of PyCapsules containing a C ArrowArray representation of the object. Parameters ---------- requested_schema : PyCapsule | None A PyCapsule containing a C ArrowSchema representation of a requested schema. PyArrow will attempt to cast the array to this data type. If None, the array will be returned as-is, with a type matching the one returned by :meth:`__arrow_c_schema__()`. Returns ------- Tuple[PyCapsule, PyCapsule] A pair of PyCapsules containing a C ArrowSchema and ArrowArray, respectively.Array._import_from_c(in_ptr, type) Import Array from a C ArrowArray struct, given its pointer and the imported array type. Parameters ---------- in_ptr: int The raw pointer to a C ArrowArray struct. type: DataType or int Either a DataType object, or the raw pointer to a C ArrowSchema struct. This is a low-level function intended for expert users.Array._export_to_c(self, out_ptr, out_schema_ptr=0) Export to a C ArrowArray struct, given its pointer. If a C ArrowSchema struct pointer is also given, the array type is exported to it at the same time. Parameters ---------- out_ptr: int The raw pointer to a C ArrowArray struct. out_schema_ptr: int (optional) The raw pointer to a C ArrowSchema struct. Be careful: if you don't pass the ArrowArray struct to a consumer, array memory will leak. This is a low-level function intended for expert users.Array.copy_to(self, destination) Construct a copy of the array with all buffers on destination device. This method recursively copies the array's buffers and those of its children onto the destination MemoryManager device and returns the new Array. Parameters ---------- destination : pyarrow.MemoryManager or pyarrow.Device The destination device to copy the array to. Returns ------- ArrayArray.buffers(self) Return a list of Buffer objects pointing to this array's physical storage. To correctly interpret these buffers, you need to also apply the offset multiplied with the size of the stored data type.Array.validate(self, *, full=False) Perform validation checks. An exception is raised if validation fails. By default only cheap validation checks are run. Pass `full=True` for thorough validation checks (potentially O(n)). Parameters ---------- full : bool, default False If True, run expensive checks, otherwise cheap checks only. Raises ------ ArrowInvalidArray.tolist(self) Alias of to_pylist for compatibility with NumPy.Array.to_pylist(self, *, maps_as_pydicts=None) Convert to a list of native Python objects. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected. Returns ------- lst : listArray.to_numpy(self, zero_copy_only=True, writable=False) Return a NumPy view or copy of this array. By default, tries to return a view of this array. This is only supported for primitive arrays with the same memory layout as NumPy (i.e. integers, floating point, ..) and without any nulls. For the extension arrays, this method simply delegates to the underlying storage array. Parameters ---------- zero_copy_only : bool, default True If True, an exception will be raised if the conversion to a numpy array would require copying the underlying data (e.g. in presence of nulls, or for non-primitive types). writable : bool, default False For numpy arrays created with zero copy (view on the Arrow data), the resulting array is not writable (Arrow data is immutable). By setting this to True, a copy of the array is made to ensure it is writable. Returns ------- array : numpy.ndarrayArray.__array__(self, dtype=None, copy=None)Array._to_pandas(self, options, types_mapper=None, **kwargs)Array.sort(self, order='ascending', **kwargs) Sort the Array Parameters ---------- order : str, default "ascending" Which order to sort values in. Accepted values are "ascending", "descending". **kwargs : dict, optional Additional sorting options. As allowed by :class:`SortOptions` Returns ------- result : ArrayArray.index(self, value, start=None, end=None, *, memory_pool=None) Find the first index of a value. See :func:`pyarrow.compute.index` for full usage. Parameters ---------- value : Scalar or object The value to look for in the array. start : int, optional The start index where to look for `value`. end : int, optional The end index where to look for `value`. memory_pool : MemoryPool, optional A memory pool for potential memory allocations. Returns ------- index : Int64Scalar The index of the value in the array (-1 if not found).Array.filter(self, mask, *, null_selection_behavior='drop') Select values from an array. See :func:`pyarrow.compute.filter` for full usage. Parameters ---------- mask : Array or array-like The boolean mask to filter the array with. null_selection_behavior : str, default "drop" How nulls in the mask should be handled. Returns ------- filtered : Array An array of the same type, with only the elements selected by the boolean mask.Array.drop_null(self) Remove missing values from an array.Array.take(self, indices) Select values from an array. See :func:`pyarrow.compute.take` for full usage. Parameters ---------- indices : Array or array-like The indices in the array whose values will be returned. Returns ------- taken : Array An array with the same datatype, containing the taken values.Array.slice(self, offset=0, length=None) Compute zero-copy slice of this array. Parameters ---------- offset : int, default 0 Offset from start of array to slice. length : int, default None Length of slice (default is until end of Array starting from offset). Returns ------- sliced : Array An array with the same datatype, containing the sliced values.Array.__getitem__(self, key) Slice or return value at given index Parameters ---------- key : integer or slice Slices with step not equal to 1 (or None) will produce a copy rather than a zero-copy view Returns ------- value : Scalar (index) or Array (slice)Array.fill_null(self, fill_value) See :func:`pyarrow.compute.fill_null` for usage. Parameters ---------- fill_value : any The replacement value for null entries. Returns ------- result : Array A new array with nulls replaced by the given value.Array.is_valid(self) Return BooleanArray indicating the non-null values.Array.is_nan(self) Return BooleanArray indicating the NaN values. Returns ------- array : boolean ArrayArray.is_null(self, *, nan_is_null=False) Return BooleanArray indicating the null values. Parameters ---------- nan_is_null : bool (optional, default False) Whether floating-point NaN values should also be considered null. Returns ------- array : boolean ArrayArray.equals(self, Array other) Parameters ---------- other : pyarrow.Array Returns ------- boolArray.format(self, **kwargs) DEPRECATED, use pyarrow.Array.to_string Parameters ---------- **kwargs : dict Returns ------- strArray.to_string(self, *, int indent=2, int top_level_indent=0, int window=10, int container_window=2, bool skip_new_lines=False, int element_size_limit=100) Render a "pretty-printed" string representation of the Array. Note: for data on a non-CPU device, the full array is copied to CPU memory. Parameters ---------- indent : int, default 2 How much to indent the internal items in the string to the right, by default ``2``. top_level_indent : int, default 0 How much to indent right the entire content of the array, by default ``0``. window : int How many primitive items to preview at the begin and end of the array when the array is bigger than the window. The other items will be ellipsed. container_window : int How many container items (such as a list in a list array) to preview at the begin and end of the array when the array is bigger than the window. skip_new_lines : bool If the array should be rendered as a single line of text or if each element should be on its own line. element_size_limit : int, default 100 Maximum number of characters of a single element before it is truncated.Array.__sizeof__(self)Array.get_total_buffer_size(self) The sum of bytes in each buffer referenced by the array. An array may only reference a portion of a buffer. This method will overestimate in this case and return the byte size of the entire buffer. If a buffer is referenced multiple times then it will only be counted once.Array.from_buffers(DataType type, length, buffers, null_count=-1, offset=0, children=None) Construct an Array from a sequence of buffers. The concrete type returned depends on the datatype. Parameters ---------- type : DataType The value type of the array. length : int The number of values in the array. buffers : List[Buffer] The buffers backing this array. null_count : int, default -1 The number of null entries in the array. Negative value means that the null count is not known. offset : int, default 0 The array's logical offset (in values, not in bytes) from the start of each buffer. children : List[Array], default None Nested type children with length matching type.num_fields. Returns ------- array : ArrayArray.__reduce__(self)Array.from_pandas(obj, mask=None, type=None, bool safe=True, MemoryPool memory_pool=None) Convert pandas.Series to an Arrow Array. This method uses Pandas semantics about what values indicate nulls. See pyarrow.array for more general conversion from arrays or sequences to Arrow arrays. Parameters ---------- obj : ndarray, pandas.Series, array-like mask : array (boolean), optional Indicate which values are null (True) or not null (False). type : pyarrow.DataType Explicit type to attempt to coerce to, otherwise will be inferred from the data. safe : bool, default True Check for overflows or other unsafe conversions. memory_pool : pyarrow.MemoryPool, optional If not passed, will allocate memory from the currently-set default memory pool. Notes ----- Localized timestamps will currently be returned as UTC (pandas's native representation). Timezone-naive data will be implicitly interpreted as UTC. Returns ------- array : pyarrow.Array or pyarrow.ChunkedArray ChunkedArray is returned if object data overflows binary buffer.Array.value_counts(self) Compute counts of unique elements in array. Returns ------- StructArray An array of structsArray.dictionary_encode(self, null_encoding='mask') Compute dictionary-encoded representation of array. See :func:`pyarrow.compute.dictionary_encode` for full usage. Parameters ---------- null_encoding : str, default "mask" How to handle null entries. Returns ------- encoded : DictionaryArray A dictionary-encoded version of this array.Array.unique(self) Compute distinct elements in array. Returns ------- unique : Array An array of the same data type, with deduplicated elements.Array.sum(self, **kwargs) Sum the values in a numerical array. See :func:`pyarrow.compute.sum` for full usage. Parameters ---------- **kwargs : dict, optional Options to pass to :func:`pyarrow.compute.sum`. Returns ------- sum : Scalar A scalar containing the sum value.Array.view(self, target_type) Return zero-copy "view" of array as another data type. The data types must have compatible columnar buffer layouts Parameters ---------- target_type : DataType Type to construct view as. Returns ------- view : ArrayArray.cast(self, target_type=None, safe=None, options=None, memory_pool=None) Cast array values to another data type See :func:`pyarrow.compute.cast` for usage. Parameters ---------- target_type : DataType, default None Type to cast array to. safe : boolean, default True Whether to check for conversion errors such as overflow. options : CastOptions, default None Additional checks pass by CastOptions memory_pool : MemoryPool, optional memory pool to use for allocations during function execution. Returns ------- cast : ArrayArray.diff(self, Array other) Compare contents of this array against another one. Return a string containing the result of diffing this array (on the left side) against the other array (on the right side). Parameters ---------- other : Array The other array to compare this array with. Returns ------- diff : str A human-readable printout of the differences. Examples -------- >>> import pyarrow as pa >>> left = pa.array(["one", "two", "three"]) >>> right = pa.array(["two", None, "two-and-a-half", "three"]) >>> print(left.diff(right)) # doctest: +SKIP @@ -0, +0 @@ -"one" @@ -2, +1 @@ +null +"two-and-a-half"Array._debug_print(self)_PandasConvertible.__setstate_cython__(self, __pyx_state)_PandasConvertible.__reduce_cython__(self)_PandasConvertible.to_pandas(self, memory_pool=None, categories=None, bool strings_to_categorical=False, bool zero_copy_only=False, bool integer_object_nulls=False, bool date_as_object=True, bool timestamp_as_object=False, bool use_threads=True, bool deduplicate_objects=True, bool ignore_metadata=False, bool safe=True, bool split_blocks=False, bool self_destruct=False, str maps_as_pydicts=None, types_mapper=None, bool coerce_temporal_nanoseconds=False) Convert to a pandas-compatible NumPy array or DataFrame, as appropriate Parameters ---------- memory_pool : MemoryPool, default None Arrow MemoryPool to use for allocations. Uses the default memory pool if not passed. categories : list, default empty List of fields that should be returned as pandas.Categorical. Only applies to table-like data structures. strings_to_categorical : bool, default False Encode string (UTF8) and binary types to pandas.Categorical. zero_copy_only : bool, default False Raise an ArrowException if this function call would require copying the underlying data. integer_object_nulls : bool, default False Cast integers with nulls to objects date_as_object : bool, default True Cast dates to objects. If False, convert to datetime64 dtype with the equivalent time unit (if supported). Note: in pandas version < 2.0, only datetime64[ns] conversion is supported. timestamp_as_object : bool, default False Cast non-nanosecond timestamps (np.datetime64) to objects. This is useful in pandas version 1.x if you have timestamps that don't fit in the normal date range of nanosecond timestamps (1678 CE-2262 CE). Non-nanosecond timestamps are supported in pandas version 2.0. If False, all timestamps are converted to datetime64 dtype. use_threads : bool, default True Whether to parallelize the conversion using multiple threads. deduplicate_objects : bool, default True Do not create multiple copies Python objects when created, to save on memory use. Conversion will be slower. ignore_metadata : bool, default False If True, do not use the 'pandas' metadata to reconstruct the DataFrame index, if present safe : bool, default True For certain data types, a cast is needed in order to store the data in a pandas DataFrame or Series (e.g. timestamps are always stored as nanoseconds in pandas). This option controls whether it is a safe cast or not. split_blocks : bool, default False If True, generate one internal "block" for each column when creating a pandas.DataFrame from a RecordBatch or Table. While this can temporarily reduce memory note that various pandas operations can trigger "consolidation" which may balloon memory use. self_destruct : bool, default False EXPERIMENTAL: If True, attempt to deallocate the originating Arrow memory while converting the Arrow object to pandas. If you use the object after calling to_pandas with this option it will crash your program. Note that you may not see always memory usage improvements. For example, if multiple columns share an underlying allocation, memory can't be freed until all columns are converted. maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. This can change the ordering of (key, value) pairs, and will deduplicate multiple keys, resulting in a possible loss of data. If 'lossy', this key deduplication results in a warning printed when detected. If 'strict', this instead results in an exception being raised when detected. types_mapper : function, default None A function mapping a pyarrow DataType to a pandas ExtensionDtype. This can be used to override the default pandas type for conversion of built-in pyarrow types or in absence of pandas_metadata in the Table schema. The function receives a pyarrow DataType and is expected to return a pandas ExtensionDtype or ``None`` if the default conversion should be used for that type. If you have a dictionary mapping, you can pass ``dict.get`` as function. coerce_temporal_nanoseconds : bool, default False Only applicable to pandas version >= 2.0. A legacy option to coerce date32, date64, duration, and timestamp time units to nanoseconds when converting to pandas. This is the default behavior in pandas version 1.x. Set this option to True if you'd like to use this coercion when using pandas version >= 2.0 for backwards compatibility (not recommended otherwise). Returns ------- pandas.Series or pandas.DataFrame depending on type of object Examples -------- >>> import pyarrow as pa >>> import pandas as pd Convert a Table to pandas DataFrame: >>> table = pa.table([ ... pa.array([2, 4, 5, 100]), ... pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) ... ], names=['n_legs', 'animals']) >>> table.to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede >>> isinstance(table.to_pandas(), pd.DataFrame) True Convert a RecordBatch to pandas DataFrame: >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.record_batch([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] >>> batch.to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede >>> isinstance(batch.to_pandas(), pd.DataFrame) True Convert a Chunked Array to pandas Series: >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.to_pandas() 0 2 1 2 2 4 3 4 4 5 5 100 dtype: int64 >>> isinstance(n_legs.to_pandas(), pd.Series) TrueArrayStatistics.__setstate_cython__(self, __pyx_state)ArrayStatistics.__reduce_cython__(self)_restore_array(data) Reconstruct an Array from pickled ArrayData._normalize_slice(arrow_obj, slice key) Slices with step not equal to 1 (or None) will produce a copy rather than a zero-copy viewarange(int64_t start, int64_t stop, int64_t step=1, *, memory_pool=None) Create an array of evenly spaced values within a given interval. This function is similar to Python's `range` function. The resulting array will contain values starting from `start` up to but not including `stop`, with a step size of `step`. Parameters ---------- start : int The starting value for the sequence. The returned array will include this value. stop : int The stopping value for the sequence. The returned array will not include this value. step : int, default 1 The spacing between values. memory_pool : MemoryPool, optional A memory pool to use for memory allocations. Raises ------ ArrowInvalid If `step` is zero. Returns ------- arange : Arrayinfer_type(values, mask=None, from_pandas=False) Attempt to infer Arrow data type that can hold the passed Python sequence type in an Array object Parameters ---------- values : array-like Sequence to infer type from. mask : ndarray (bool type), optional Optional exclusion mask where True marks null, False non-null. from_pandas : bool, default False Use pandas's NA/null sentinel values for type inference. Returns ------- type : DataTyperepeat(value, size, MemoryPool memory_pool=None) Create an Array instance whose slots are the given scalar. Parameters ---------- value : Scalar-like object Either a pyarrow.Scalar or any python object coercible to a Scalar. size : int Number of times to repeat the scalar in the output Array. memory_pool : MemoryPool, default None Arrow MemoryPool to use for allocations. Uses the default memory pool if not passed. Returns ------- arr : Array Examples -------- >>> import pyarrow as pa >>> pa.repeat(10, 3) [ 10, 10, 10 ] >>> pa.repeat([1, 2], 2) [ [ 1, 2 ], [ 1, 2 ] ] >>> pa.repeat("string", 3) [ "string", "string", "string" ] >>> pa.repeat(pa.scalar({'a': 1, 'b': [1, 2]}), 2) -- is_valid: all not null -- child 0 type: int64 [ 1, 1 ] -- child 1 type: list [ [ 1, 2 ], [ 1, 2 ] ]nulls(size, type=None, MemoryPool memory_pool=None) Create a strongly-typed Array instance with all elements null. Parameters ---------- size : int Array length. type : pyarrow.DataType, default None Explicit type for the array. By default use NullType. memory_pool : MemoryPool, default None Arrow MemoryPool to use for allocations. Uses the default memory pool if not passed. Returns ------- arr : Array Examples -------- >>> import pyarrow as pa >>> pa.nulls(10) 10 nulls >>> pa.nulls(3, pa.uint32()) [ null, null, null ]asarray(values, type=None) Convert to pyarrow.Array, inferring type if not provided. Parameters ---------- values : array-like This can be a sequence, numpy.ndarray, pyarrow.Array or pyarrow.ChunkedArray. If a ChunkedArray is passed, the output will be a ChunkedArray, otherwise the output will be a Array. type : string or DataType Explicitly construct the array with this type. Attempt to cast if indicated type is different. Returns ------- arr : Array or ChunkedArrayarray(obj, type=None, mask=None, size=None, from_pandas=None, bool safe=True, MemoryPool memory_pool=None) Create pyarrow.Array instance from a Python object. Parameters ---------- obj : sequence, iterable, ndarray, pandas.Series, Arrow-compatible array If both type and size are specified may be a single use iterable. If not strongly-typed, Arrow type will be inferred for resulting array. Any Arrow-compatible array that implements the Arrow PyCapsule Protocol (has an ``__arrow_c_array__`` or ``__arrow_c_device_array__`` method) can be passed as well. type : pyarrow.DataType Explicit type to attempt to coerce to, otherwise will be inferred from the data. mask : array[bool], optional Indicate which values are null (True) or not null (False). size : int64, optional Size of the elements. If the input is larger than size bail at this length. For iterators, if size is larger than the input iterator this will be treated as a "max size", but will involve an initial allocation of size followed by a resize to the actual size (so if you know the exact size specifying it correctly will give you better performance). from_pandas : bool, default None Use pandas's semantics for inferring nulls from values in ndarray-like data. If passed, the mask tasks precedence, but if a value is unmasked (not-null), but still null according to pandas semantics, then it is null. Defaults to False if not passed explicitly by user, or True if a pandas object is passed in. safe : bool, default True Check for overflows or other unsafe conversions. memory_pool : pyarrow.MemoryPool, optional If not passed, will allocate memory from the currently-set default memory pool. Returns ------- array : pyarrow.Array or pyarrow.ChunkedArray A ChunkedArray instead of an Array is returned if: - the object data overflowed binary storage. - the object's ``__arrow_array__`` protocol method returned a chunked array. Notes ----- Timezone will be preserved in the returned array for timezone-aware data, else no timezone will be returned for naive timestamps. Internally, UTC values are stored for timezone-aware data with the timezone set in the data type. Pandas's DateOffsets and dateutil.relativedelta.relativedelta are by default converted as MonthDayNanoIntervalArray. relativedelta leapdays are ignored as are all absolute fields on both objects. datetime.timedelta can also be converted to MonthDayNanoIntervalArray but this requires passing MonthDayNanoIntervalType explicitly. Converting to dictionary array will promote to a wider integer type for indices if the number of distinct values cannot be represented, even if the index type was explicitly set. This means that if there are more than 127 values the returned dictionary array's index type will be at least pa.int16() even if pa.int8() was passed to the function. Note that an explicit index type will not be demoted even if it is wider than required. Examples -------- >>> import pandas as pd >>> import pyarrow as pa >>> pa.array(pd.Series([1, 2])) [ 1, 2 ] >>> pa.array(["a", "b", "a"], type=pa.dictionary(pa.int8(), pa.string())) ... -- dictionary: [ "a", "b" ] -- indices: [ 0, 1, 0 ] >>> import numpy as np >>> pa.array(pd.Series([1, 2]), mask=np.array([0, 1], dtype=bool)) [ 1, null ] >>> arr = pa.array(range(1024), type=pa.dictionary(pa.int8(), pa.int64())) >>> arr.type.index_type DataType(int16)_handle_arrow_array_protocol(obj, type, mask, size)_ndarray_to_arrow_type(values, DataType type)scalar(value, type=None, *, from_pandas=None, MemoryPool memory_pool=None) Create a pyarrow.Scalar instance from a Python object. Parameters ---------- value : Any Python object coercible to arrow's type system. type : pyarrow.DataType Explicit type to attempt to coerce to, otherwise will be inferred from the value. from_pandas : bool, default None Use pandas's semantics for inferring nulls from values in ndarray-like data. Defaults to False if not passed explicitly by user, or True if a pandas object is passed in. memory_pool : pyarrow.MemoryPool, optional If not passed, will allocate memory from the currently-set default memory pool. Returns ------- scalar : pyarrow.Scalar Examples -------- >>> import pyarrow as pa >>> pa.scalar(42) >>> pa.scalar("string") >>> pa.scalar([1, 2]) >>> pa.scalar([1, 2], type=pa.list_(pa.int16())) Bool8Scalar.as_py(self, *, maps_as_pydicts=None) Return this scalar as a Python object. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.FixedShapeTensorScalar.to_tensor(self) Convert fixed shape tensor extension scalar to a pyarrow.Tensor, using shape and strides derived from corresponding FixedShapeTensorType. The conversion is zero-copy. Returns ------- pyarrow.Tensor Tensor represented stored in FixedShapeTensorScalar.FixedShapeTensorScalar.to_numpy(self) Convert fixed shape tensor scalar to a numpy.ndarray. The resulting ndarray's shape matches the permuted shape of the fixed shape tensor scalar. The conversion is zero-copy. Returns ------- numpy.ndarrayUuidScalar.as_py(self, *, maps_as_pydicts=None) Return this scalar as a Python UUID. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.ExtensionScalar.from_storage(BaseExtensionType typ, value) Construct ExtensionScalar from type and storage value. Parameters ---------- typ : DataType The extension type for the result scalar. value : object The storage value for the result scalar. Returns ------- ext_scalar : ExtensionScalarExtensionScalar.as_py(self, *, maps_as_pydicts=None) Return this scalar as a Python object. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected.UnionScalar.as_py(self, *, maps_as_pydicts=None) Return underlying value as a Python object. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected.RunEndEncodedScalar.as_py(self, *, maps_as_pydicts=None) Return underlying value as a Python object. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected.DictionaryScalar.as_py(self, *, maps_as_pydicts=None) Return this encoded value as a Python object. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected.DictionaryScalar.__reduce__(self)DictionaryScalar._reconstruct(type, is_valid, index, dictionary)MapScalar.keys(self) Return the keys of the map as a list.MapScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python list or dict, depending on 'maps_as_pydicts'. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected.MapScalar.__iter__(self) Iterate over this element's values.MapScalar.__getitem__(self, i) Return the value at the given index or key.StructScalar._as_py_tuple(self)StructScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python dict. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected.StructScalar.__getitem__(self, key) Return the child value for the given field. Parameters ---------- index : Union[int, str] Index / position or name of the field. Returns ------- result : ScalarStructScalar.items(self)ListScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python list. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected.ListScalar.__iter__(self) Iterate over this element's values.ListScalar.__getitem__(self, i) Return the value at the given index.ListScalar.__len__(self) Return the number of values.StringScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python string. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.BinaryScalar.__bytes__(self)BinaryScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python bytes. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.BinaryScalar.as_buffer(self) Return a view over this value as a Buffer object.MonthDayNanoIntervalScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a pyarrow.MonthDayNano. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.DurationScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Pandas Timedelta instance (if units are nanoseconds and pandas is available), otherwise as a Python datetime.timedelta instance. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.TimestampScalar.__repr__(self) Return the representation of TimestampScalar using `strftime` to avoid original repr datetime values being out of range.TimestampScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Pandas Timestamp instance (if units are nanoseconds and pandas is available), otherwise as a Python datetime.datetime instance. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Time64Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python datetime.timedelta instance. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Time32Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python datetime.timedelta instance. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars._datetime_from_int(int64_t value, TimeUnit unit, tzinfo=None)Date64Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python datetime.datetime instance. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Date32Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python datetime.datetime instance. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Decimal256Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python Decimal. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Decimal128Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python Decimal. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Decimal64Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python Decimal. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Decimal32Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python Decimal. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.DoubleScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python float. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.FloatScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python float. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.HalfFloatScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python float. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Int64Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python int. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.UInt64Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python int. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Int32Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python int. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.UInt32Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python int. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Int16Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python int. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.UInt16Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python int. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Int8Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python int. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.UInt8Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python int. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.BooleanScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python bool. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.NullScalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python None. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. This parameter is ignored for non-nested Scalars.Scalar.as_py(self, *, maps_as_pydicts=None) Return this value as a Python representation. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected.Scalar.__reduce__(self)Scalar.equals(self, Scalar other) Parameters ---------- other : pyarrow.Scalar Returns ------- boolScalar.validate(self, *, full=False) Perform validation checks. An exception is raised if validation fails. By default only cheap validation checks are run. Pass `full=True` for thorough validation checks (potentially O(n)). Parameters ---------- full : bool, default False If True, run expensive checks, otherwise cheap checks only. Raises ------ ArrowInvalidScalar.cast(self, target_type=None, safe=None, options=None, memory_pool=None) Cast scalar value to another data type. See :func:`pyarrow.compute.cast` for usage. Parameters ---------- target_type : DataType, default None Type to cast scalar to. safe : boolean, default True Whether to check for conversion errors such as overflow. options : CastOptions, default None Additional checks pass by CastOptions memory_pool : MemoryPool, optional memory pool to use for allocations during function execution. Returns ------- scalar : A Scalar of the given target data type._ExtensionRegistryNanny.__setstate_cython__(self, __pyx_state)_ExtensionRegistryNanny.__reduce_cython__(self)_ExtensionRegistryNanny.release_registry(self)is_float_value(obj) Check if the object is a float. Parameters ---------- obj : object The object to checkis_integer_value(obj) Check if the object is an integer. Parameters ---------- obj : object The object to checkis_boolean_value(obj) Check if the object is a boolean. Parameters ---------- obj : object The object to checkfrom_numpy_dtype(dtype) Convert NumPy dtype to pyarrow.DataType. Parameters ---------- dtype : the numpy dtype to convert Examples -------- Create a pyarrow DataType from NumPy dtype: >>> import pyarrow as pa >>> import numpy as np >>> pa.from_numpy_dtype(np.dtype('float16')) DataType(halffloat) >>> pa.from_numpy_dtype('U') DataType(string) >>> pa.from_numpy_dtype(bool) DataType(bool) >>> pa.from_numpy_dtype(np.str_) DataType(string)schema(fields, metadata=None) Construct pyarrow.Schema from collection of fields. Parameters ---------- fields : iterable of Fields or tuples, or mapping of strings to DataTypes Can also pass an object that implements the Arrow PyCapsule Protocol for schemas (has an ``__arrow_c_schema__`` method). metadata : dict, default None Keys and values must be coercible to bytes. Examples -------- Create a Schema from iterable of tuples: >>> import pyarrow as pa >>> pa.schema([ ... ('some_int', pa.int32()), ... ('some_string', pa.string()), ... pa.field('some_required_string', pa.string(), nullable=False) ... ]) some_int: int32 some_string: string some_required_string: string not null Create a Schema from iterable of Fields: >>> pa.schema([ ... pa.field('some_int', pa.int32()), ... pa.field('some_string', pa.string()) ... ]) some_int: int32 some_string: string DataTypes can also be passed as strings. The following is equivalent to the above example: >>> pa.schema([ ... pa.field('some_int', "int32"), ... pa.field('some_string', "string") ... ]) some_int: int32 some_string: string Or more concisely: >>> pa.schema([ ... ('some_int', "int32"), ... ('some_string', "string") ... ]) some_int: int32 some_string: string Returns ------- schema : pyarrow.Schemaensure_type(ty, bool allow_none=False) -> DataTypetype_for_alias(name) Return DataType given a string alias if one exists. Parameters ---------- name : str The alias of the DataType that should be retrieved. Returns ------- type : DataTypeopaque(DataType storage_type, str type_name, str vendor_name) Create instance of opaque extension type. Parameters ---------- storage_type : DataType The underlying data type. type_name : str The name of the type in the external system. vendor_name : str The name of the external system. Examples -------- Create an instance of an opaque extension type: >>> import pyarrow as pa >>> type = pa.opaque(pa.binary(), "other", "jdbc") >>> type OpaqueType(extension) Inspect the data type: >>> type.storage_type DataType(binary) >>> type.type_name 'other' >>> type.vendor_name 'jdbc' Create a table with an opaque array: >>> arr = [None, b"foobar"] >>> storage = pa.array(arr, pa.binary()) >>> other = pa.ExtensionArray.from_storage(type, storage) >>> pa.table([other], names=["unknown_col"]) pyarrow.Table unknown_col: extension ---- unknown_col: [[null,666F6F626172]] Returns ------- type : OpaqueTypebool8() Create instance of bool8 extension type. Examples -------- Create an instance of bool8 extension type: >>> import pyarrow as pa >>> type = pa.bool8() >>> type Bool8Type(extension) Inspect the data type: >>> type.storage_type DataType(int8) Create a table with a bool8 array: >>> arr = [-1, 0, 1, 2, None] >>> storage = pa.array(arr, pa.int8()) >>> other = pa.ExtensionArray.from_storage(type, storage) >>> pa.table([other], names=["unknown_col"]) pyarrow.Table unknown_col: extension ---- unknown_col: [[-1,0,1,2,null]] Returns ------- type : Bool8Typefixed_shape_tensor(DataType value_type, shape, dim_names=None, permutation=None) Create instance of fixed shape tensor extension type with shape and optional names of tensor dimensions and indices of the desired logical ordering of dimensions. Parameters ---------- value_type : DataType Data type of individual tensor elements. shape : tuple or list of integers The physical shape of the contained tensors. dim_names : tuple or list of strings, default None Explicit names to tensor dimensions. permutation : tuple or list integers, default None Indices of the desired ordering of the original dimensions. The indices contain a permutation of the values ``[0, 1, .., N-1]`` where N is the number of dimensions. The permutation indicates which dimension of the logical layout corresponds to which dimension of the physical tensor. For more information on this parameter see :ref:`fixed_shape_tensor_extension`. Examples -------- Create an instance of fixed shape tensor extension type: >>> import pyarrow as pa >>> tensor_type = pa.fixed_shape_tensor(pa.int32(), [2, 2]) >>> tensor_type FixedShapeTensorType(extension) Inspect the data type: >>> tensor_type.value_type DataType(int32) >>> tensor_type.shape [2, 2] Create a table with fixed shape tensor extension array: >>> arr = [[1, 2, 3, 4], [10, 20, 30, 40], [100, 200, 300, 400]] >>> storage = pa.array(arr, pa.list_(pa.int32(), 4)) >>> tensor = pa.ExtensionArray.from_storage(tensor_type, storage) >>> pa.table([tensor], names=["tensor_array"]) pyarrow.Table tensor_array: extension ---- tensor_array: [[[1,2,3,4],[10,20,30,40],[100,200,300,400]]] Create an instance of fixed shape tensor extension type with names of tensor dimensions: >>> tensor_type = pa.fixed_shape_tensor(pa.int8(), (2, 2, 3), ... dim_names=['C', 'H', 'W']) >>> tensor_type.dim_names ['C', 'H', 'W'] Create an instance of fixed shape tensor extension type with permutation: >>> tensor_type = pa.fixed_shape_tensor(pa.int8(), (2, 2, 3), ... permutation=[0, 2, 1]) >>> tensor_type.permutation [0, 2, 1] Returns ------- type : FixedShapeTensorTypeuuid() Create UuidType instance. Returns ------- type : UuidTypejson_(DataType storage_type=utf8()) Create instance of JSON extension type. Parameters ---------- storage_type : DataType, default pyarrow.string() The underlying data type. Can be on of the following types: string, large_string, string_view. Returns ------- type : JsonType Examples -------- Create an instance of JSON extension type: >>> import pyarrow as pa >>> pa.json_(pa.utf8()) JsonType(extension) Use the JSON type to create an array: >>> pa.array(['{"a": 1}', '{"b": 2}'], type=pa.json_(pa.utf8())) [ "{"a": 1}", "{"b": 2}" ]run_end_encoded(run_end_type, value_type) Create RunEndEncodedType from run-end and value types. Parameters ---------- run_end_type : pyarrow.DataType The integer type of the run_ends array. Must be 'int16', 'int32', or 'int64'. value_type : pyarrow.DataType The type of the values array. Returns ------- type : RunEndEncodedTypeunion(child_fields, mode, type_codes=None) Create UnionType from child fields. A union is a nested type where each logical value is taken from a single child. A buffer of 8-bit type ids indicates which child a given logical value is to be taken from. Unions come in two flavors: sparse and dense (see also `pyarrow.sparse_union` and `pyarrow.dense_union`). Parameters ---------- child_fields : sequence of Field values Each field must have a UTF8-encoded name, and these field names are part of the type metadata. mode : str Must be 'sparse' or 'dense' type_codes : list of integers, default None Returns ------- type : UnionTypedense_union(child_fields, type_codes=None) Create DenseUnionType from child fields. A dense union is a nested type where each logical value is taken from a single child, at a specific offset. A buffer of 8-bit type ids indicates which child a given logical value is to be taken from, and a buffer of 32-bit offsets indicates at which physical position in the given child array the logical value is to be taken from. Unlike a sparse union, a dense union allows encoding only the child array values which are actually referred to by the union array. This is counterbalanced by the additional footprint of the offsets buffer, and the additional indirection cost when looking up values. Parameters ---------- child_fields : sequence of Field values Each field must have a UTF8-encoded name, and these field names are part of the type metadata. type_codes : list of integers, default None Returns ------- type : DenseUnionTypesparse_union(child_fields, type_codes=None) Create SparseUnionType from child fields. A sparse union is a nested type where each logical value is taken from a single child. A buffer of 8-bit type ids indicates which child a given logical value is to be taken from. In a sparse union, each child array should have the same length as the union array, regardless of the actual number of union values that refer to it. Parameters ---------- child_fields : sequence of Field values Each field must have a UTF8-encoded name, and these field names are part of the type metadata. type_codes : list of integers, default None Returns ------- type : SparseUnionTypestruct(fields) Create StructType instance from fields. A struct is a nested type parameterized by an ordered sequence of types (which can all be distinct), called its fields. Parameters ---------- fields : iterable of Fields or tuples, or mapping of strings to DataTypes Each field must have a UTF8-encoded name, and these field names are part of the type metadata. Examples -------- Create an instance of StructType from an iterable of tuples: >>> import pyarrow as pa >>> fields = [ ... ('f1', pa.int32()), ... ('f2', pa.string()), ... ] >>> struct_type = pa.struct(fields) >>> struct_type StructType(struct) Retrieve a field from a StructType: >>> struct_type[0] pyarrow.Field >>> struct_type['f1'] pyarrow.Field Create an instance of StructType from an iterable of Fields: >>> fields = [ ... pa.field('f1', pa.int32()), ... pa.field('f2', pa.string(), nullable=False), ... ] >>> pa.struct(fields) StructType(struct) Returns ------- type : DataTypedictionary(index_type, value_type, bool ordered=False) -> DictionaryType Dictionary (categorical, or simply encoded) type. Parameters ---------- index_type : DataType value_type : DataType ordered : bool Returns ------- type : DictionaryType Examples -------- Create an instance of dictionary type: >>> import pyarrow as pa >>> pa.dictionary(pa.int64(), pa.utf8()) DictionaryType(dictionary) Use dictionary type to create an array: >>> pa.array(["a", "b", None, "d"], pa.dictionary(pa.int64(), pa.utf8())) ... -- dictionary: [ "a", "b", "d" ] -- indices: [ 0, 1, null, 2 ]map_(key_type, item_type, keys_sorted=False) -> MapType Create MapType instance from key and item data types or fields. Parameters ---------- key_type : DataType or Field item_type : DataType or Field keys_sorted : bool Returns ------- map_type : DataType Examples -------- Create an instance of MapType: >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()) MapType(map) >>> pa.map_(pa.string(), pa.int32(), keys_sorted=True) MapType(map) Use MapType to create an array: >>> data = [[{'key': 'a', 'value': 1}, {'key': 'b', 'value': 2}], [{'key': 'c', 'value': 3}]] >>> pa.array(data, type=pa.map_(pa.string(), pa.int32(), keys_sorted=True)) [ keys: [ "a", "b" ] values: [ 1, 2 ], keys: [ "c" ] values: [ 3 ] ]large_list_view(value_type) -> LargeListViewType Create LargeListViewType instance from child data type or field. This data type may not be supported by all Arrow implementations because it is an alternative to the ListType. Parameters ---------- value_type : DataType or Field Returns ------- list_view_type : DataType Examples -------- Create an instance of LargeListViewType: >>> import pyarrow as pa >>> pa.large_list_view(pa.int8()) LargeListViewType(large_list_view)list_view(value_type) -> ListViewType Create ListViewType instance from child data type or field. This data type may not be supported by all Arrow implementations because it is an alternative to the ListType. Parameters ---------- value_type : DataType or Field Returns ------- list_view_type : DataType Examples -------- Create an instance of ListViewType: >>> import pyarrow as pa >>> pa.list_view(pa.string()) ListViewType(list_view)large_list(value_type) -> LargeListType Create LargeListType instance from child data type or field. This data type may not be supported by all Arrow implementations. Unless you need to represent data larger than 2**31 elements, you should prefer list_(). Parameters ---------- value_type : DataType or Field Returns ------- list_type : DataType Examples -------- Create an instance of LargeListType: >>> import pyarrow as pa >>> pa.large_list(pa.int8()) LargeListType(large_list) Use the LargeListType to create an array: >>> pa.array([[-1, 3]] * 5, type=pa.large_list(pa.int8())) [ [ -1, 3 ], [ -1, 3 ], ...list_(value_type, int list_size=-1) Create ListType instance from child data type or field. Parameters ---------- value_type : DataType or Field list_size : int, optional, default -1 If length == -1 then return a variable length list type. If length is greater than or equal to 0 then return a fixed size list type. Returns ------- list_type : DataType Examples -------- Create an instance of ListType: >>> import pyarrow as pa >>> pa.list_(pa.string()) ListType(list) >>> pa.list_(pa.int32(), 2) FixedSizeListType(fixed_size_list[2]) Use the ListType to create a scalar: >>> pa.scalar(['foo', None], type=pa.list_(pa.string(), 2)) or an array: >>> pa.array([[1, 2], [3, 4]], pa.list_(pa.int32(), 2)) [ [ 1, 2 ], [ 3, 4 ] ]string_view() Create UTF8 variable-length string view type. Examples -------- Create an instance of a string type: >>> import pyarrow as pa >>> pa.string_view() DataType(string_view)binary_view() Create a variable-length binary view type. Examples -------- Create an instance of a string type: >>> import pyarrow as pa >>> pa.binary_view() DataType(binary_view)large_utf8() Alias for large_string(). Examples -------- Create an instance of large UTF8 variable-length binary type: >>> import pyarrow as pa >>> pa.large_utf8() DataType(large_string) and use the type to create an array: >>> pa.array(['foo', 'bar'] * 50, type=pa.large_utf8()) [ "foo", "bar", ... "foo", "bar" ]large_string() Create large UTF8 variable-length string type. This data type may not be supported by all Arrow implementations. Unless you need to represent data larger than 2GB, you should prefer string(). Examples -------- Create an instance of large UTF8 variable-length binary type: >>> import pyarrow as pa >>> pa.large_string() DataType(large_string) and use the type to create an array: >>> pa.array(['foo', 'bar'] * 50, type=pa.large_string()) [ "foo", "bar", ... "foo", "bar" ]large_binary() Create large variable-length binary type. This data type may not be supported by all Arrow implementations. Unless you need to represent data larger than 2GB, you should prefer binary(). Examples -------- Create an instance of large variable-length binary type: >>> import pyarrow as pa >>> pa.large_binary() DataType(large_binary) and use the type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.large_binary()) [ 666F6F, 626172, 62617A ]binary(int length=-1) Create variable-length or fixed size binary type. Parameters ---------- length : int, optional, default -1 If length == -1 then return a variable length binary type. If length is greater than or equal to 0 then return a fixed size binary type of width `length`. Examples -------- Create an instance of a variable-length binary type: >>> import pyarrow as pa >>> pa.binary() DataType(binary) and use the variable-length binary type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.binary()) [ 666F6F, 626172, 62617A ] Create an instance of a fixed-size binary type: >>> pa.binary(3) FixedSizeBinaryType(fixed_size_binary[3]) and use the fixed-length binary type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.binary(3)) [ 666F6F, 626172, 62617A ]utf8() Alias for string(). Examples -------- Create an instance of a string type: >>> import pyarrow as pa >>> pa.utf8() DataType(string) and use the string type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.utf8()) [ "foo", "bar", "baz" ]string() Create UTF8 variable-length string type. Examples -------- Create an instance of a string type: >>> import pyarrow as pa >>> pa.string() DataType(string) and use the string type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.string()) [ "foo", "bar", "baz" ]decimal256(int precision, int scale=0) -> DataType Create decimal type with precision and scale and 256-bit width. Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative). For most use cases, the maximum precision offered by ``decimal128`` is sufficient, and it will result in a more compact and more efficient encoding. ``decimal256`` is useful if you need a precision higher than 38 significant digits. Parameters ---------- precision : int Must be between 1 and 76 scale : int Returns ------- decimal_type : Decimal256Typedecimal128(int precision, int scale=0) -> DataType Create decimal type with precision and scale and 128-bit width. Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative). As an example, ``decimal128(7, 3)`` can exactly represent the numbers 1234.567 and -1234.567 (encoded internally as the 128-bit integers 1234567 and -1234567, respectively), but neither 12345.67 nor 123.4567. ``decimal128(5, -3)`` can exactly represent the number 12345000 (encoded internally as the 128-bit integer 12345), but neither 123450000 nor 1234500. If you need a precision higher than 38 significant digits, consider using ``decimal256``. Parameters ---------- precision : int Must be between 1 and 38 scale : int Returns ------- decimal_type : Decimal128Type Examples -------- Create an instance of decimal type: >>> import pyarrow as pa >>> pa.decimal128(5, 2) Decimal128Type(decimal128(5, 2)) Create an array with decimal type: >>> import decimal >>> a = decimal.Decimal('123.45') >>> pa.array([a], pa.decimal128(5, 2)) [ 123.45 ]decimal64(int precision, int scale=0) -> DataType Create decimal type with precision and scale and 64-bit width. Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative). As an example, ``decimal64(7, 3)`` can exactly represent the numbers 1234.567 and -1234.567 (encoded internally as the 64-bit integers 1234567 and -1234567, respectively), but neither 12345.67 nor 123.4567. ``decimal64(5, -3)`` can exactly represent the number 12345000 (encoded internally as the 64-bit integer 12345), but neither 123450000 nor 1234500. If you need a precision higher than 18 significant digits, consider using ``decimal128``, or ``decimal256``. Parameters ---------- precision : int Must be between 1 and 18 scale : int Returns ------- decimal_type : Decimal64Type Examples -------- Create an instance of decimal type: >>> import pyarrow as pa >>> pa.decimal64(5, 2) Decimal64Type(decimal64(5, 2)) Create an array with decimal type: >>> import decimal >>> a = decimal.Decimal('123.45') >>> pa.array([a], pa.decimal64(5, 2)) [ 123.45 ]decimal32(int precision, int scale=0) -> DataType Create decimal type with precision and scale and 32-bit width. Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative). As an example, ``decimal32(7, 3)`` can exactly represent the numbers 1234.567 and -1234.567 (encoded internally as the 32-bit integers 1234567 and -1234567, respectively), but neither 12345.67 nor 123.4567. ``decimal32(5, -3)`` can exactly represent the number 12345000 (encoded internally as the 32-bit integer 12345), but neither 123450000 nor 1234500. If you need a precision higher than 9 significant digits, consider using ``decimal64``, ``decimal128``, or ``decimal256``. Parameters ---------- precision : int Must be between 1 and 9 scale : int Returns ------- decimal_type : Decimal32Type Examples -------- Create an instance of decimal type: >>> import pyarrow as pa >>> pa.decimal32(5, 2) Decimal32Type(decimal32(5, 2)) Create an array with decimal type: >>> import decimal >>> a = decimal.Decimal('123.45') >>> pa.array([a], pa.decimal32(5, 2)) [ 123.45 ]float64() Create double-precision floating point type. Examples -------- Create an instance of float64 type: >>> import pyarrow as pa >>> pa.float64() DataType(double) >>> print(pa.float64()) double Create an array with float64 type: >>> pa.array([0.0, 1.0, 2.0], type=pa.float64()) [ 0, 1, 2 ]float32() Create single-precision floating point type. Examples -------- Create an instance of float32 type: >>> import pyarrow as pa >>> pa.float32() DataType(float) >>> print(pa.float32()) float Create an array with float32 type: >>> pa.array([0.0, 1.0, 2.0], type=pa.float32()) [ 0, 1, 2 ]float16() Create half-precision floating point type. Examples -------- Create an instance of float16 type: >>> import pyarrow as pa >>> pa.float16() DataType(halffloat) >>> print(pa.float16()) halffloat Create an array with float16 type: >>> arr = np.array([1.5, np.nan], dtype=np.float16) >>> a = pa.array(arr, type=pa.float16()) >>> a [ 1.5, nan ] Note that unlike other float types, if you convert this array to a python list, the types of its elements will be ``np.float16`` >>> [type(val) for val in a.to_pylist()] [, ]date64() Create instance of 64-bit date (milliseconds since UNIX epoch 1970-01-01). Examples -------- Create an instance of 64-bit date type: >>> import pyarrow as pa >>> pa.date64() DataType(date64[ms]) Create a scalar with 64-bit date type: >>> from datetime import datetime >>> pa.scalar(datetime(2012, 1, 1), type=pa.date64()) date32() Create instance of 32-bit date (days since UNIX epoch 1970-01-01). Examples -------- Create an instance of 32-bit date type: >>> import pyarrow as pa >>> pa.date32() DataType(date32[day]) Create a scalar with 32-bit date type: >>> from datetime import date >>> pa.scalar(date(2012, 1, 1), type=pa.date32()) month_day_nano_interval() Create instance of an interval type representing months, days and nanoseconds between two dates. Examples -------- Create an instance of an month_day_nano_interval type: >>> import pyarrow as pa >>> pa.month_day_nano_interval() DataType(month_day_nano_interval) Create a scalar with month_day_nano_interval type: >>> pa.scalar((1, 15, -30), type=pa.month_day_nano_interval()) duration(unit) Create instance of a duration type with unit resolution. Parameters ---------- unit : str One of 's' [second], 'ms' [millisecond], 'us' [microsecond], or 'ns' [nanosecond]. Returns ------- type : pyarrow.DurationType Examples -------- Create an instance of duration type: >>> import pyarrow as pa >>> pa.duration('us') DurationType(duration[us]) >>> pa.duration('s') DurationType(duration[s]) Create an array with duration type: >>> pa.array([0, 1, 2], type=pa.duration('s')) [ 0, 1, 2 ]time64(unit) Create instance of 64-bit time (time of day) type with unit resolution. Parameters ---------- unit : str One of 'us' [microsecond], or 'ns' [nanosecond]. Returns ------- type : pyarrow.Time64Type Examples -------- >>> import pyarrow as pa >>> pa.time64('us') Time64Type(time64[us]) >>> pa.time64('ns') Time64Type(time64[ns])time32(unit) Create instance of 32-bit time (time of day) type with unit resolution. Parameters ---------- unit : str one of 's' [second], or 'ms' [millisecond] Returns ------- type : pyarrow.Time32Type Examples -------- >>> import pyarrow as pa >>> pa.time32('s') Time32Type(time32[s]) >>> pa.time32('ms') Time32Type(time32[ms])timestamp(unit, tz=None) Create instance of timestamp type with resolution and optional time zone. Parameters ---------- unit : str one of 's' [second], 'ms' [millisecond], 'us' [microsecond], or 'ns' [nanosecond] tz : str, default None Time zone name. None indicates time zone naive Examples -------- Create an instance of timestamp type: >>> import pyarrow as pa >>> pa.timestamp('us') TimestampType(timestamp[us]) >>> pa.timestamp('s', tz='America/New_York') TimestampType(timestamp[s, tz=America/New_York]) >>> pa.timestamp('s', tz='+07:30') TimestampType(timestamp[s, tz=+07:30]) Use timestamp type when creating a scalar object: >>> from datetime import datetime >>> pa.scalar(datetime(2012, 1, 1), type=pa.timestamp('s', tz='UTC')) >>> pa.scalar(datetime(2012, 1, 1), type=pa.timestamp('us')) Returns ------- timestamp_type : TimestampTypestring_to_tzinfo(name) Convert a time zone name into a time zone object. Supported input strings are: * As used in the Olson time zone database (the "tz database" or "tzdata"), such as "America/New_York" * An absolute time zone offset of the form +XX:XX or -XX:XX, such as +07:30 Parameters ---------- name: str Time zone name. Returns ------- tz : datetime.tzinfo Time zone objecttzinfo_to_string(tz) Converts a time zone object into a string indicating the name of a time zone, one of: * As used in the Olson time zone database (the "tz database" or "tzdata"), such as "America/New_York" * An absolute time zone offset of the form +XX:XX or -XX:XX, such as +07:30 Parameters ---------- tz : datetime.tzinfo Time zone object Returns ------- name : str Time zone nameint64() Create instance of signed int64 type. Examples -------- Create an instance of int64 type: >>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> print(pa.int64()) int64 Create an array with int64 type: >>> pa.array([0, 1, 2], type=pa.int64()) [ 0, 1, 2 ]uint64() Create instance of unsigned uint64 type. Examples -------- Create an instance of unsigned int64 type: >>> import pyarrow as pa >>> pa.uint64() DataType(uint64) >>> print(pa.uint64()) uint64 Create an array with unsigned uint64 type: >>> pa.array([0, 1, 2], type=pa.uint64()) [ 0, 1, 2 ]int32() Create instance of signed int32 type. Examples -------- Create an instance of int32 type: >>> import pyarrow as pa >>> pa.int32() DataType(int32) >>> print(pa.int32()) int32 Create an array with int32 type: >>> pa.array([0, 1, 2], type=pa.int32()) [ 0, 1, 2 ]uint32() Create instance of unsigned uint32 type. Examples -------- Create an instance of unsigned int32 type: >>> import pyarrow as pa >>> pa.uint32() DataType(uint32) >>> print(pa.uint32()) uint32 Create an array with unsigned int32 type: >>> pa.array([0, 1, 2], type=pa.uint32()) [ 0, 1, 2 ]int16() Create instance of signed int16 type. Examples -------- Create an instance of int16 type: >>> import pyarrow as pa >>> pa.int16() DataType(int16) >>> print(pa.int16()) int16 Create an array with int16 type: >>> pa.array([0, 1, 2], type=pa.int16()) [ 0, 1, 2 ]uint16() Create instance of unsigned uint16 type. Examples -------- Create an instance of unsigned int16 type: >>> import pyarrow as pa >>> pa.uint16() DataType(uint16) >>> print(pa.uint16()) uint16 Create an array with unsigned int16 type: >>> pa.array([0, 1, 2], type=pa.uint16()) [ 0, 1, 2 ]int8() Create instance of signed int8 type. Examples -------- Create an instance of int8 type: >>> import pyarrow as pa >>> pa.int8() DataType(int8) >>> print(pa.int8()) int8 Create an array with int8 type: >>> pa.array([0, 1, 2], type=pa.int8()) [ 0, 1, 2 ]uint8() Create instance of unsigned int8 type. Examples -------- Create an instance of unsigned int8 type: >>> import pyarrow as pa >>> pa.uint8() DataType(uint8) >>> print(pa.uint8()) uint8 Create an array with unsigned int8 type: >>> pa.array([0, 1, 2], type=pa.uint8()) [ 0, 1, 2 ]bool_() Create instance of boolean type. Examples -------- Create an instance of a boolean type: >>> import pyarrow as pa >>> pa.bool_() DataType(bool) >>> print(pa.bool_()) bool Create a ``Field`` type with a boolean type and a name: >>> pa.field('bool_field', pa.bool_()) pyarrow.Fieldnull() Create instance of null type. Examples -------- Create an instance of a null type: >>> import pyarrow as pa >>> pa.null() DataType(null) >>> print(pa.null()) null Create a ``Field`` type with a null type and a name: >>> pa.field('null_field', pa.null()) pyarrow.Fieldfield(name, type=None, nullable=None, metadata=None) Create a pyarrow.Field instance. Parameters ---------- name : str or bytes Name of the field. Alternatively, you can also pass an object that implements the Arrow PyCapsule Protocol for schemas (has an ``__arrow_c_schema__`` method). type : pyarrow.DataType or str Arrow datatype of the field or a string matching one. nullable : bool, default True Whether the field's values are nullable. metadata : dict, default None Optional field metadata, the keys and values must be coercible to bytes. Returns ------- field : pyarrow.Field Examples -------- Create an instance of pyarrow.Field: >>> import pyarrow as pa >>> pa.field('key', pa.int32()) pyarrow.Field >>> pa.field('key', pa.int32(), nullable=False) pyarrow.Field >>> field = pa.field('key', pa.int32(), ... metadata={"key": "Something important"}) >>> field pyarrow.Field >>> field.metadata {b'key': b'Something important'} Use the field to create a struct type: >>> pa.struct([field]) StructType(struct) A str can also be passed for the type parameter: >>> pa.field('key', 'int32') pyarrow.Fieldunify_schemas(schemas, *, promote_options='default') Unify schemas by merging fields by name. The resulting schema will contain the union of fields from all schemas. Fields with the same name will be merged. Note that two fields with different types will fail merging by default. - The unified field will inherit the metadata from the schema where that field is first defined. - The first N fields in the schema will be ordered the same as the N fields in the first schema. The resulting schema will inherit its metadata from the first input schema. Parameters ---------- schemas : list of Schema Schemas to merge into a single one. promote_options : str, default default Accepts strings "default" and "permissive". Default: null and only null can be unified with another type. Permissive: types are promoted to the greater common denominator. Returns ------- Schema Raises ------ ArrowInvalid : If any input schema contains fields with duplicate names. If Fields of the same name are not mergeable.Schema._import_from_c_capsule(schema) Import a Schema from a ArrowSchema PyCapsule Parameters ---------- schema : PyCapsule A valid PyCapsule with name 'arrow_schema' containing an ArrowSchema pointer.Schema.__arrow_c_schema__(self) Export to a ArrowSchema PyCapsule Unlike _export_to_c, this will not leak memory if the capsule is not used.Schema._import_from_c(in_ptr) Import Schema from a C ArrowSchema struct, given its pointer. This is a low-level function intended for expert users.Schema._export_to_c(self, out_ptr) Export to a C ArrowSchema struct, given its pointer. Be careful: if you don't pass the ArrowSchema struct to a consumer, its memory will leak. This is a low-level function intended for expert users.Schema.to_string(self, truncate_metadata=True, show_field_metadata=True, show_schema_metadata=True, element_size_limit=100) Return human-readable representation of Schema Parameters ---------- truncate_metadata : boolean, default True Limit metadata key/value display to a single line of ~80 characters or less show_field_metadata : boolean, default True Display Field-level KeyValueMetadata show_schema_metadata : boolean, default True Display Schema-level KeyValueMetadata element_size_limit : int, default 100 Maximum number of characters of a single element before it is truncated. Returns ------- str : the formatted outputSchema.remove_metadata(self) Create new schema without metadata, if any Returns ------- schema : pyarrow.Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Create a new schema with removing the metadata from the original: >>> schema.remove_metadata() n_legs: int64 animals: stringSchema.serialize(self, memory_pool=None) Write Schema to Buffer as encapsulated IPC message Parameters ---------- memory_pool : MemoryPool, default None Uses default memory pool if not specified Returns ------- serialized : Buffer Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Write schema to Buffer: >>> schema.serialize() Schema.with_metadata(self, metadata) Add metadata as dict of string keys and values to Schema Parameters ---------- metadata : dict Keys and values must be string-like / coercible to bytes Returns ------- schema : pyarrow.Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Add metadata to existing schema field: >>> schema.with_metadata({"n_legs": "Number of legs per animal"}) n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'Schema.add_metadata(self, metadata) DEPRECATED Parameters ---------- metadata : dict Keys and values must be string-like / coercible to bytesSchema.set(self, int i, Field field) Replace a field at position i in the schema. Parameters ---------- i : int field : Field Returns ------- schema: Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Replace the second field of the schema with a new field 'extra': >>> schema.set(1, pa.field('replaced', pa.bool_())) n_legs: int64 replaced: boolSchema.remove(self, int i) Remove the field at index i from the schema. Parameters ---------- i : int Returns ------- schema: Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Remove the second field of the schema: >>> schema.remove(1) n_legs: int64Schema.insert(self, int i, Field field) Add a field at position i to the schema. Parameters ---------- i : int field : Field Returns ------- schema: Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Insert a new field on the second position: >>> schema.insert(1, pa.field('extra', pa.bool_())) n_legs: int64 extra: bool animals: stringSchema.append(self, Field field) Append a field at the end of the schema. In contrast to Python's ``list.append()`` it does return a new object, leaving the original Schema unmodified. Parameters ---------- field : Field Returns ------- schema: Schema New object with appended field. Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Append a field 'extra' at the end of the schema: >>> schema_new = schema.append(pa.field('extra', pa.bool_())) >>> schema_new n_legs: int64 animals: string extra: bool Original schema is unmodified: >>> schema n_legs: int64 animals: stringSchema.get_all_field_indices(self, name) Return sorted list of indices for the fields with the given name. Parameters ---------- name : str The name of the field to look up. Returns ------- indices : List[int] Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string()), ... pa.field('animals', pa.bool_())]) Get the indexes of the fields named 'animals': >>> schema.get_all_field_indices("animals") [1, 2]Schema.get_field_index(self, name) Return index of the unique field with the given name. Parameters ---------- name : str The name of the field to look up. Returns ------- index : int The index of the field with the given name; -1 if the name isn't found or there are several fields with the given name. Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Get the index of the field named 'animals': >>> schema.get_field_index("animals") 1 Index in case of several fields with the given name: >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string()), ... pa.field('animals', pa.bool_())], ... metadata={"n_legs": "Number of legs per animal"}) >>> schema.get_field_index("animals") -1Schema.field_by_name(self, name) DEPRECATED Parameters ---------- name : str Returns ------- field: pyarrow.FieldSchema._field(self, int i) Select a field by its numeric index. Parameters ---------- i : int Returns ------- pyarrow.FieldSchema.field(self, i) Select a field by its column name or numeric index. Parameters ---------- i : int or string Returns ------- pyarrow.Field Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Select the second field: >>> schema.field(1) pyarrow.Field Select the field of the column named 'n_legs': >>> schema.field('n_legs') pyarrow.FieldSchema.from_pandas(cls, df, preserve_index=None) Returns implied schema from dataframe Parameters ---------- df : pandas.DataFrame preserve_index : bool, default True Whether to store the index as an additional column (or columns, for MultiIndex) in the resulting `Table`. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Use ``preserve_index=True`` to force it to be stored as a column. Returns ------- pyarrow.Schema Examples -------- >>> import pandas as pd >>> import pyarrow as pa >>> df = pd.DataFrame({ ... 'int': [1, 2], ... 'str': ['a', 'b'] ... }) Create an Arrow Schema from the schema of a pandas dataframe: >>> pa.Schema.from_pandas(df) int: int64 str: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, ...Schema.equals(self, Schema other, bool check_metadata=False) Test if this schema is equal to the other Parameters ---------- other : pyarrow.Schema check_metadata : bool, default False Key/value metadata must be equal too Returns ------- is_equal : bool Examples -------- >>> import pyarrow as pa >>> schema1 = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> schema2 = pa.schema([ ... ('some_int', pa.int32()), ... ('some_string', pa.string()) ... ]) Test two equal schemas: >>> schema1.equals(schema1) True Test two unequal schemas: >>> schema1.equals(schema2) FalseSchema.empty_table(self) Provide an empty table according to the schema. Returns ------- table: pyarrow.Table Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Create an empty table with schema's fields: >>> schema.empty_table() pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[]] animals: [[]]Schema.__sizeof__(self)Schema.__reduce__(self)Field._import_from_c_capsule(schema) Import a Field from a ArrowSchema PyCapsule Parameters ---------- schema : PyCapsule A valid PyCapsule with name 'arrow_schema' containing an ArrowSchema pointer.Field.__arrow_c_schema__(self) Export to a ArrowSchema PyCapsule Unlike _export_to_c, this will not leak memory if the capsule is not used.Field._import_from_c(in_ptr) Import Field from a C ArrowSchema struct, given its pointer. This is a low-level function intended for expert users.Field._export_to_c(self, out_ptr) Export to a C ArrowSchema struct, given its pointer. Be careful: if you don't pass the ArrowSchema struct to a consumer, its memory will leak. This is a low-level function intended for expert users.Field.flatten(self) Flatten this field. If a struct field, individual child fields will be returned with their names prefixed by the parent's name. Returns ------- fields : List[pyarrow.Field] Examples -------- >>> import pyarrow as pa >>> f1 = pa.field('bar', pa.float64(), nullable=False) >>> f2 = pa.field('foo', pa.int32()).with_metadata({"key": "Something important"}) >>> ff = pa.field('ff', pa.struct([f1, f2]), nullable=False) Flatten a struct field: >>> ff pyarrow.Field not null> >>> ff.flatten() [pyarrow.Field, pyarrow.Field]Field.with_nullable(self, nullable) A copy of this field with the replaced nullability Parameters ---------- nullable : bool Returns ------- field: pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) >>> field pyarrow.Field >>> field.nullable True Create new field by replacing the nullability of an existing one: >>> field_new = field.with_nullable(False) >>> field_new pyarrow.Field >>> field_new.nullable FalseField.with_name(self, name) A copy of this field with the replaced name Parameters ---------- name : str Returns ------- field : pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) >>> field pyarrow.Field Create new field by replacing the name of an existing one: >>> field_new = field.with_name('lock') >>> field_new pyarrow.FieldField.with_type(self, DataType new_type) A copy of this field with the replaced type Parameters ---------- new_type : pyarrow.DataType Returns ------- field : pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) >>> field pyarrow.Field Create new field by replacing type of an existing one: >>> field_new = field.with_type(pa.int64()) >>> field_new pyarrow.FieldField.remove_metadata(self) Create new field without metadata, if any Returns ------- field : pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32(), ... metadata={"key": "Something important"}) >>> field.metadata {b'key': b'Something important'} Create new field by removing the metadata from the existing one: >>> field_new = field.remove_metadata() >>> field_new.metadataField.with_metadata(self, metadata) Add metadata as dict of string keys and values to Field Parameters ---------- metadata : dict Keys and values must be string-like / coercible to bytes Returns ------- field : pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) Create new field by adding metadata to existing one: >>> field_new = field.with_metadata({"key": "Something important"}) >>> field_new pyarrow.Field >>> field_new.metadata {b'key': b'Something important'}Field.__reduce__(self)Field.equals(self, Field other, bool check_metadata=False) Test if this field is equal to the other Parameters ---------- other : pyarrow.Field check_metadata : bool, default False Whether Field metadata equality should be checked as well. Returns ------- is_equal : bool Examples -------- >>> import pyarrow as pa >>> f1 = pa.field('key', pa.int32()) >>> f2 = pa.field('key', pa.int32(), nullable=False) >>> f1.equals(f2) False >>> f1.equals(f1) Trueensure_metadata(meta, bool allow_none=False) -> KeyValueMetadataKeyValueMetadata.to_dict(self) Convert KeyValueMetadata to dict. If a key occurs twice, the value for the first one is returnedKeyValueMetadata.get_all(self, key) Parameters ---------- key : str Returns ------- list[byte]KeyValueMetadata.items(self)KeyValueMetadata.values(self)KeyValueMetadata.keys(self)KeyValueMetadata.value(self, i) Parameters ---------- i : int Returns ------- byteKeyValueMetadata.key(self, i) Parameters ---------- i : int Returns ------- byteKeyValueMetadata.__reduce__(self)KeyValueMetadata.equals(self, KeyValueMetadata other) Parameters ---------- other : pyarrow.KeyValueMetadata Returns ------- boolunregister_extension_type(type_name) Unregister a Python extension type. Parameters ---------- type_name : str The name of the ExtensionType subclass to unregister. Examples -------- Define a RationalType extension type subclassing ExtensionType: >>> import pyarrow as pa >>> class RationalType(pa.ExtensionType): ... def __init__(self, data_type: pa.DataType): ... if not pa.types.is_integer(data_type): ... raise TypeError(f"data_type must be an integer type not {data_type}") ... super().__init__( ... pa.struct( ... [ ... ("numer", data_type), ... ("denom", data_type), ... ], ... ), ... # N.B. This name does _not_ reference `data_type` so deserialization ... # will work for _any_ integer `data_type` after registration ... "my_package.rational", ... ) ... def __arrow_ext_serialize__(self) -> bytes: ... # No parameters are necessary ... return b"" ... @classmethod ... def __arrow_ext_deserialize__(cls, storage_type, serialized): ... # return an instance of this subclass ... return RationalType(storage_type[0].type) Register the extension type: >>> pa.register_extension_type(RationalType(pa.int64())) Unregister the extension type: >>> pa.unregister_extension_type("my_package.rational")register_extension_type(ext_type) Register a Python extension type. Registration is based on the extension name (so different registered types need unique extension names). Registration needs an extension type instance, but then works for any instance of the same subclass regardless of parametrization of the type. Parameters ---------- ext_type : BaseExtensionType instance The ExtensionType subclass to register. Examples -------- Define a RationalType extension type subclassing ExtensionType: >>> import pyarrow as pa >>> class RationalType(pa.ExtensionType): ... def __init__(self, data_type: pa.DataType): ... if not pa.types.is_integer(data_type): ... raise TypeError(f"data_type must be an integer type not {data_type}") ... super().__init__( ... pa.struct( ... [ ... ("numer", data_type), ... ("denom", data_type), ... ], ... ), ... # N.B. This name does _not_ reference `data_type` so deserialization ... # will work for _any_ integer `data_type` after registration ... "my_package.rational", ... ) ... def __arrow_ext_serialize__(self) -> bytes: ... # No parameters are necessary ... return b"" ... @classmethod ... def __arrow_ext_deserialize__(cls, storage_type, serialized): ... # return an instance of this subclass ... return RationalType(storage_type[0].type) Register the extension type: >>> pa.register_extension_type(RationalType(pa.int64())) Unregister the extension type: >>> pa.unregister_extension_type("my_package.rational")UnknownExtensionType.__arrow_ext_deserialize__(cls, storage_type, serialized)UnknownExtensionType.__arrow_ext_serialize__(self)OpaqueType.__arrow_ext_scalar_class__(self)OpaqueType.__reduce__(self)OpaqueType.__arrow_ext_class__(self)Bool8Type.__arrow_ext_scalar_class__(self)Bool8Type.__reduce__(self)Bool8Type.__arrow_ext_class__(self)FixedShapeTensorType.__arrow_ext_scalar_class__(self)FixedShapeTensorType.__reduce__(self)FixedShapeTensorType.__arrow_ext_class__(self)UuidType.__arrow_ext_scalar_class__(self)UuidType.__reduce__(self)UuidType.__arrow_ext_class__(self)JsonType.__arrow_ext_scalar_class__(self)JsonType.__reduce__(self)JsonType.__arrow_ext_class__(self)ExtensionType.__arrow_ext_scalar_class__(self) Return an extension scalar class for building scalars with this extension type. This method should return subclass of the ExtensionScalar class. By default, if not specialized in the extension implementation, an extension type scalar will be a built-in ExtensionScalar instance.ExtensionType.__arrow_ext_class__(self) Return an extension array class to be used for building or deserializing arrays with this extension type. This method should return a subclass of the ExtensionArray class. By default, if not specialized in the extension implementation, an extension type array will be a built-in ExtensionArray instance.ExtensionType.__reduce__(self)ExtensionType.__arrow_ext_deserialize__(cls, storage_type, serialized) Return an extension type instance from the storage type and serialized metadata. This method should return an instance of the ExtensionType subclass that matches the passed storage type and serialized metadata (the return value of ``__arrow_ext_serialize__``).ExtensionType.__arrow_ext_serialize__(self) Serialized representation of metadata to reconstruct the type object. This method should return a bytes object, and those serialized bytes are stored in the custom metadata of the Field holding an extension type in an IPC message. The bytes are passed to ``__arrow_ext_deserialize`` and should hold sufficient information to reconstruct the data type instance. Initialize an extension type instance. This should be called at the end of the subclass' ``__init__`` method. BaseExtensionType.wrap_array(self, storage) Wrap the given storage array as an extension array. Parameters ---------- storage : Array or ChunkedArray Returns ------- array : Array or ChunkedArray Extension array wrapping the storage arrayBaseExtensionType.__arrow_ext_scalar_class__(self) The associated scalar classBaseExtensionType.__arrow_ext_class__(self) The associated array extension classRunEndEncodedType.__reduce__(self)Decimal256Type.__reduce__(self)Decimal128Type.__reduce__(self)Decimal64Type.__reduce__(self)Decimal32Type.__reduce__(self)FixedSizeBinaryType.__reduce__(self)TimestampType.__reduce__(self)UnionType.__reduce__(self)UnionType.__getitem__(self, i) Return a child field by its index. Alias of ``field``.UnionType.field(self, i) -> Field Return a child field by its numeric index. Parameters ---------- i : int Returns ------- pyarrow.Field Examples -------- >>> import pyarrow as pa >>> union = pa.sparse_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) >>> union[0] pyarrow.FieldUnionType.__iter__(self) Iterate over union members, in order.UnionType.__len__(self) Like num_fields().StructType.__reduce__(self)StructType.__getitem__(self, i) Return the struct field with the given index or name. Alias of ``field``.StructType.__iter__(self) Iterate over struct fields, in order.StructType.__len__(self) Like num_fields().StructType.get_all_field_indices(self, name) Return sorted list of indices for the fields with the given name. Parameters ---------- name : str The name of the field to look up. Returns ------- indices : List[int] Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct_type.get_all_field_indices('x') [0]StructType.field(self, i) -> Field Select a field by its column name or numeric index. Parameters ---------- i : int or str Returns ------- pyarrow.Field Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()}) Select the second field: >>> struct_type.field(1) pyarrow.Field Select the field named 'x': >>> struct_type.field('x') pyarrow.FieldStructType.get_field_index(self, name) Return index of the unique field with the given name. Parameters ---------- name : str The name of the field to look up. Returns ------- index : int The index of the field with the given name; -1 if the name isn't found or there are several fields with the given name. Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()}) Index of the field with a name 'y': >>> struct_type.get_field_index('y') 1 Index of the field that does not exist: >>> struct_type.get_field_index('z') -1FixedSizeListType.__reduce__(self)MapType.__reduce__(self)LargeListViewType.__reduce__(self)ListViewType.__reduce__(self)LargeListType.__reduce__(self)ListType.__reduce__(self)DictionaryType.__reduce__(self)DictionaryMemo.__setstate_cython__(self, __pyx_state)DictionaryMemo.__reduce_cython__(self)DataType._import_from_c_capsule(schema) Import a DataType from a ArrowSchema PyCapsule Parameters ---------- schema : PyCapsule A valid PyCapsule with name 'arrow_schema' containing an ArrowSchema pointer.DataType.__arrow_c_schema__(self) Export to a ArrowSchema PyCapsule Unlike _export_to_c, this will not leak memory if the capsule is not used.DataType._import_from_c(in_ptr) Import DataType from a C ArrowSchema struct, given its pointer. This is a low-level function intended for expert users.DataType._export_to_c(self, out_ptr) Export to a C ArrowSchema struct, given its pointer. Be careful: if you don't pass the ArrowSchema struct to a consumer, its memory will leak. This is a low-level function intended for expert users.DataType.to_pandas_dtype(self) Return the equivalent NumPy / Pandas dtype. Examples -------- >>> import pyarrow as pa >>> pa.int64().to_pandas_dtype() DataType.equals(self, other, *, check_metadata=False) Return true if type is equivalent to passed value. Parameters ---------- other : DataType or string convertible to DataType check_metadata : bool Whether nested Field metadata equality should be checked as well. Returns ------- is_equal : bool Examples -------- >>> import pyarrow as pa >>> pa.int64().equals(pa.string()) False >>> pa.int64().equals(pa.int64()) TrueDataType.__reduce__(self)DataType.field(self, i) -> Field Parameters ---------- i : int Returns ------- pyarrow.Field_to_pandas_dtype(arrow_type, options=None)_get_pandas_tz_type(arrow_type, coerce_to_ns=False)_get_pandas_type(arrow_type, coerce_to_ns=False)_is_primitive(Type type)_get_pandas_type_map()default_cpu_memory_manager() Return the default CPU MemoryManager instance. The returned singleton instance uses the default MemoryPool.MemoryManager.__setstate_cython__(self, __pyx_state)MemoryManager.__reduce_cython__(self)Device.__setstate_cython__(self, __pyx_state)Device.__reduce_cython__(self)supported_memory_backends() Return a list of available memory pool backendsjemalloc_set_decay_ms(decay_ms) Set arenas.dirty_decay_ms and arenas.muzzy_decay_ms to indicated number of milliseconds. A value of 0 (the default) results in dirty / muzzy memory pages being released right away to the OS, while a higher value will result in a time-based decay. See the jemalloc docs for more information It's best to set this at the start of your application. Parameters ---------- decay_ms : int Number of milliseconds to set for jemalloc decay conf parameters. Note that this change will only affect future memory arenastotal_allocated_bytes() Return the currently allocated bytes from the default memory pool. Other memory pools may not be accounted for.log_memory_allocations(enable=True) Enable or disable memory allocator logging for debugging purposes Parameters ---------- enable : bool, default True Pass False to disable loggingset_memory_pool(MemoryPool pool) Set the default memory pool. Parameters ---------- pool : MemoryPool The memory pool that should be used by default.mimalloc_memory_pool() Return a memory pool based on the mimalloc heap. NotImplementedError is raised if mimalloc support is not enabled.jemalloc_memory_pool() Return a memory pool based on the jemalloc heap. NotImplementedError is raised if jemalloc support is not enabled.system_memory_pool() Return a memory pool based on the C malloc heap.logging_memory_pool(MemoryPool parent) Create and return a MemoryPool instance that redirects to the *parent*, but also dumps allocation logs on stderr. Parameters ---------- parent : MemoryPool The real memory pool that should be used for allocations.proxy_memory_pool(MemoryPool parent) Create and return a MemoryPool instance that redirects to the *parent*, but with separate allocation statistics. Parameters ---------- parent : MemoryPool The real memory pool that should be used for allocations.default_memory_pool() Return the process-global memory pool. Examples -------- >>> default_memory_pool() ProxyMemoryPool.__setstate_cython__(self, __pyx_state)ProxyMemoryPool.__reduce_cython__(self)LoggingMemoryPool.__setstate_cython__(self, __pyx_state)LoggingMemoryPool.__reduce_cython__(self)MemoryPool.__setstate_cython__(self, __pyx_state)MemoryPool.__reduce_cython__(self)MemoryPool.print_stats(self) Print statistics about this memory pool. The output format is implementation-specific. Not all memory pools implement this method.MemoryPool.num_allocations(self) Return the number of allocations or reallocations that were made using this memory pool.MemoryPool.max_memory(self) Return the peak memory allocation in this memory pool. This can be an approximate number in multi-threaded applications. None is returned if the pool implementation doesn't know how to compute this number.MemoryPool.total_bytes_allocated(self) Return the total number of bytes that have been allocated from this memory pool.MemoryPool.bytes_allocated(self) Return the number of bytes that are currently allocated from this memory pool.MemoryPool.release_unused(self) Attempt to return to the OS any memory being held onto by the pool. This function should not be called except potentially for benchmarking or debugging as it could be expensive and detrimental to performance. This is best effort and may not have any effect on some memory pools or in some situations (e.g. fragmentation)._PandasAPIShim.__setstate_cython__(self, __pyx_state)_PandasAPIShim.__reduce_cython__(self)_PandasAPIShim.get_rangeindex_attribute(self, level, name)_PandasAPIShim.get_values(self, obj) Get the underlying array values of a pandas Series or Index in the format (np.ndarray or pandas ExtensionArray) as we need them. Assumes obj is a pandas Series or Index._PandasAPIShim.is_index(self, obj)_PandasAPIShim.is_series(self, obj)_PandasAPIShim.is_data_frame(self, obj)_PandasAPIShim.is_sparse(self, obj)_PandasAPIShim.is_extension_array_dtype(self, obj)_PandasAPIShim.is_datetimetz(self, obj)_PandasAPIShim.is_categorical(self, obj)_PandasAPIShim.is_array_like(self, obj)_PandasAPIShim.uses_string_dtype(self)_PandasAPIShim.is_ge_v3_strict(self)_PandasAPIShim.is_ge_v3(self)_PandasAPIShim.is_ge_v23(self)_PandasAPIShim.is_ge_v21(self)_PandasAPIShim.is_v1(self)_PandasAPIShim.pandas_dtype(self, dtype)_PandasAPIShim.infer_dtype(self, obj)_PandasAPIShim.data_frame(self, *args, **kwargs)_PandasAPIShim.series(self, *args, **kwargs)set_timezone_db_path(path) Configure the path to text timezone database on Windows. Parameters ---------- path : str Path to text timezone database.runtime_info() Get runtime information. Returns ------- info : pyarrow.RuntimeInfoSignalStopHandler.__setstate_cython__(self, __pyx_state)SignalStopHandler.__reduce_cython__(self)SignalStopHandler.__exit__(self, exc_type, exc_value, exc_tb)SignalStopHandler.__enter__(self)SignalStopHandler._init_signals(self)enable_signal_handlers(bool enable) Enable or disable interruption of long-running operations. By default, certain long running operations will detect user interruptions, such as by pressing Ctrl-C. This detection relies on setting a signal handler for the duration of the long-running operation, and may therefore interfere with other frameworks or libraries (such as an event loop). Parameters ---------- enable : bool Whether to enable user interruption by setting a temporary signal handler.StopToken.__setstate_cython__(self, __pyx_state)StopToken.__reduce_cython__(self)ArrowCancelled.__init__(self, message, signum=None)ArrowKeyError.__str__(self)frombytes(o, *, safe=False) Decode the given bytestring to unicode. Parameters ---------- o : bytes-like Input object. safe : bool, default False If true, raise on encoding errors.tobytes(o) Encode a unicode or bytes string to bytes. Parameters ---------- o : str or bytes Input string.encode_file_path(path)_gdb_test_session()_ensure_cuda_loaded()_pac()_pc()is_threading_enabled() -> bool Returns True if threading is enabled in libarrow. If it isn't enabled, then python shouldn't create any threads either, because we're probably on a system where threading doesn't work (e.g. Emscripten).set_cpu_count(int count) Set the number of threads to use in parallel operations. Parameters ---------- count : int The number of concurrent threads that should be used. See Also -------- cpu_count : Get the size of this pool. set_io_thread_count : The analogous function for the I/O thread pool.cpu_count() Return the number of threads to use in parallel operations. The number of threads is determined at startup by inspecting the ``OMP_NUM_THREADS`` and ``OMP_THREAD_LIMIT`` environment variables. If neither is present, it will default to the number of hardware threads on the system. It can be modified at runtime by calling :func:`set_cpu_count()`. See Also -------- set_cpu_count : Modify the size of this pool. io_thread_count : The analogous function for the I/O thread pool.precision should be between 1 and 76precision should be between 1 and 38precision should be between 1 and 18UnknownExtensionType.__arrow_ext_deserialize__Unable to avoid a copy while creating a numpy array as requested (converting a pyarrow.Unable to avoid a copy while creating a numpy array as requested (converting a pyarrow.ChunkedArray always results in a copy). If using `np.array(obj, copy=False)` replace it with `np.asarray(obj)` to allow a copy when neededType's expected number of buffers (The 'names' and 'metadata' arguments are not valid when using Arrow PyCapsule InterfaceStructType.get_all_field_indices (line 1014)RunEndEncodedType's expected number of buffers (RunEndEncodedArray.find_physical_lengthRecordBatch.replace_schema_metadata (line 2636)RecordBatch.get_total_buffer_size (line 2805)RecordBatch._import_from_c_device_capsuleRecordBatchReader.read_next_batch_with_custom_metadataRecordBatchReader._import_from_c_capsuleMust pass either names or fields, not bothInvalid value for 'maps_as_pydicts': valid values are 'lossy', 'strict' or `None` (default). Received 'Incompatible checksums (0x%x vs (0xe3b0c44, 0xda39a3e, 0xd41d8cd) = ())Implemented only for data on CPU device or data with equal addressesFixedSizeBufferWriter.set_memcopy_thresholdFixedSizeBufferWriter.set_memcopy_blocksizeFixedShapeTensorType.__arrow_ext_scalar_class__FixedShapeTensorArray.from_numpy_ndarray (line 4650)Expected a list of 1-dimensional arrays for SparseCSFTensor.indicesExpected 1-dimensional array for SparseCSCMatrix indicesExpected 1-dimensional array for SparseCSCMatrix indptrExpected 1-dimensional array for SparseCSRMatrix indicesChunkedArray.get_total_buffer_size (line 265)BaseListArray.value_parent_indices (line 2619)Ad :QhfA z'! qq a l%vQ$g%;1A4q(!2[IQ#1IQ U!4qz'/QcWARq )1BC4q  nAT~Qd!1!!A"# 4z&WLWA )1VVZZ[[\ EA :Qa :WA Q:QgQa 81Cya"HAS &A.a/DA/2'/8/0-Qa's constructor directly, use `pyarrow.ipc.MessageReader.open_stream` function instead.'s constructor directly, use `pyarrow.ipc.read_message` function instead.'s constructor directly, use pyarrow.proxy_memory_pool instead.'s constructor directly, use pyarrow.logging_memory_pool instead. np.arrays for SparseCSFTensor.indices is not safely convertible to microseconds to convert to datetime.timedelta. Install pandas to return as Timedelta with nanosecond support or access the .value attribute. Unify dictionaries across all chunks. This method returns an equivalent table, but where all chunks of each column share the same dictionary values. Dictionary indices are transposed accordingly. Columns without dictionaries are returned unchanged. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- Table Examples -------- >>> import pyarrow as pa >>> arr_1 = pa.array(["Flamingo", "Parrot", "Dog"]).dictionary_encode() >>> arr_2 = pa.array(["Horse", "Brittle stars", "Centipede"]).dictionary_encode() >>> c_arr = pa.chunked_array([arr_1, arr_2]) >>> table = pa.table([c_arr], names=["animals"]) >>> table pyarrow.Table animals: dictionary ---- animals: [ -- dictionary: ["Flamingo","Parrot","Dog"] -- indices: [0,1,2], -- dictionary: ["Horse","Brittle stars","Centipede"] -- indices: [0,1,2]] Unify dictionaries across both chunks: >>> table.unify_dictionaries() pyarrow.Table animals: dictionary ---- animals: [ -- dictionary: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] -- indices: [0,1,2], -- dictionary: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] -- indices: [3,4,5]] The sum of bytes in each buffer referenced by the table. An array may only reference a portion of a buffer. This method will overestimate in this case and return the byte size of the entire buffer. If a buffer is referenced multiple times then it will only be counted once. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.get_total_buffer_size() 76 The sum of bytes in each buffer referenced by the record batch An array may only reference a portion of a buffer. This method will overestimate in this case and return the byte size of the entire buffer. If a buffer is referenced multiple times then it will only be counted once. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.get_total_buffer_size() 120 The field for list values. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.int32(), 2).value_field pyarrow.Field The decimal scale (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal256(76, 38) >>> t.scale 38 The decimal scale (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal128(5, 2) >>> t.scale 2 The decimal scale (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal64(5, 2) >>> t.scale 2 The decimal precision, in number of decimal digits (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal256(76, 38) >>> t.precision 76 The decimal precision, in number of decimal digits (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal128(5, 2) >>> t.precision 5 The decimal precision, in number of decimal digits (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal64(5, 2) >>> t.precision 5 The data type of large list values. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.int32(), 2).value_type DataType(int32) Target schema's field names are not matching the table's field names: Select a field by its column name or numeric index. Parameters ---------- i : int or string Returns ------- pyarrow.Field Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Select the second field: >>> schema.field(1) pyarrow.Field Select the field of the column named 'n_legs': >>> schema.field('n_legs') pyarrow.Field Return the list offsets as an int32 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `ListViewArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- offsets : Int32Array Examples -------- >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) >>> array.offsets [ 0, 0, 1 ] Return sorted list of indices for the fields with the given name. Parameters ---------- name : str The name of the field to look up. Returns ------- indices : List[int] Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string()), ... pa.field('animals', pa.bool_())]) Get the indexes of the fields named 'animals': >>> schema.get_all_field_indices("animals") [1, 2] Return index of the unique field with the given name. Parameters ---------- name : str The name of the field to look up. Returns ------- index : int The index of the field with the given name; -1 if the name isn't found or there are several fields with the given name. Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Get the index of the field named 'animals': >>> schema.get_field_index("animals") 1 Index in case of several fields with the given name: >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string()), ... pa.field('animals', pa.bool_())], ... metadata={"n_legs": "Number of legs per animal"}) >>> schema.get_field_index("animals") -1 Return boolean array indicating the non-null values. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.is_valid() [ [ true, true, true ], [ true, false, true ] ] Return boolean array indicating the NaN values. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> arr = pa.chunked_array([[2, np.nan, 4], [4, None, 100]]) >>> arr.is_nan() [ [ false, true, false, false, null, false ] ] _RecordBatchFileReader.get_batch_with_custom_metadataExpected an object implementing the Arrow PyCapsule Protocol for schema (i.e. having a `__arrow_c_schema__` method), got Create instance of unsigned uint64 type. Examples -------- Create an instance of unsigned int64 type: >>> import pyarrow as pa >>> pa.uint64() DataType(uint64) >>> print(pa.uint64()) uint64 Create an array with unsigned uint64 type: >>> pa.array([0, 1, 2], type=pa.uint64()) [ 0, 1, 2 ] Create instance of unsigned uint32 type. Examples -------- Create an instance of unsigned int32 type: >>> import pyarrow as pa >>> pa.uint32() DataType(uint32) >>> print(pa.uint32()) uint32 Create an array with unsigned int32 type: >>> pa.array([0, 1, 2], type=pa.uint32()) [ 0, 1, 2 ] Create decimal type with precision and scale and 128-bit width. Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative). As an example, ``decimal128(7, 3)`` can exactly represent the numbers 1234.567 and -1234.567 (encoded internally as the 128-bit integers 1234567 and -1234567, respectively), but neither 12345.67 nor 123.4567. ``decimal128(5, -3)`` can exactly represent the number 12345000 (encoded internally as the 128-bit integer 12345), but neither 123450000 nor 1234500. If you need a precision higher than 38 significant digits, consider using ``decimal256``. Parameters ---------- precision : int Must be between 1 and 38 scale : int Returns ------- decimal_type : Decimal128Type Examples -------- Create an instance of decimal type: >>> import pyarrow as pa >>> pa.decimal128(5, 2) Decimal128Type(decimal128(5, 2)) Create an array with decimal type: >>> import decimal >>> a = decimal.Decimal('123.45') >>> pa.array([a], pa.decimal128(5, 2)) [ 123.45 ] Create decimal type with precision and scale and 64-bit width. Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative). As an example, ``decimal64(7, 3)`` can exactly represent the numbers 1234.567 and -1234.567 (encoded internally as the 64-bit integers 1234567 and -1234567, respectively), but neither 12345.67 nor 123.4567. ``decimal64(5, -3)`` can exactly represent the number 12345000 (encoded internally as the 64-bit integer 12345), but neither 123450000 nor 1234500. If you need a precision higher than 18 significant digits, consider using ``decimal128``, or ``decimal256``. Parameters ---------- precision : int Must be between 1 and 18 scale : int Returns ------- decimal_type : Decimal64Type Examples -------- Create an instance of decimal type: >>> import pyarrow as pa >>> pa.decimal64(5, 2) Decimal64Type(decimal64(5, 2)) Create an array with decimal type: >>> import decimal >>> a = decimal.Decimal('123.45') >>> pa.array([a], pa.decimal64(5, 2)) [ 123.45 ] Create UTF8 variable-length string view type. Examples -------- Create an instance of a string type: >>> import pyarrow as pa >>> pa.string_view() DataType(string_view) Converting to Python dictionary is not supported in strict mode when duplicate keys are present (duplicate key was ' Convert the Table or RecordBatch to a list of rows / dictionaries. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected. Returns ------- list Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> data = [[2, 4, 5, 100], ... ["Flamingo", "Horse", "Brittle stars", "Centipede"]] >>> table = pa.table(data, names=["n_legs", "animals"]) >>> table.to_pylist() [{'n_legs': 2, 'animals': 'Flamingo'}, {'n_legs': 4, 'animals': 'Horse'}, ... Construct a Table or RecordBatch from list of rows / dictionaries. Parameters ---------- mapping : list of dicts of rows A mapping of strings to row values. schema : Schema, default None If not passed, will be inferred from the first row of the mapping values. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table or RecordBatch Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> pylist = [{'n_legs': 2, 'animals': 'Flamingo'}, ... {'n_legs': 4, 'animals': 'Dog'}] Construct a Table from a list of rows: >>> pa.Table.from_pylist(pylist) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4]] animals: [["Flamingo","Dog"]] Construct a Table from a list of rows with metadata: >>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.Table.from_pylist(pylist, metadata=my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from a list of rows with pyarrow schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.Table.from_pylist(pylist, schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Concrete class for Arrow arrays of UUID data type. Compute zero-copy slice of this Table. Parameters ---------- offset : int, default 0 Offset from start of table to slice. length : int, default None Length of slice (default is until end of table starting from offset). Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.slice(length=3) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022,2019]] n_legs: [[2,4,5]] animals: [["Flamingo","Horse","Brittle stars"]] >>> table.slice(offset=2) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2019,2021]] n_legs: [[5,100]] animals: [["Brittle stars","Centipede"]] >>> table.slice(offset=2, length=1) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2019]] n_legs: [[5]] animals: [["Brittle stars"]] Compute zero-copy slice of this RecordBatch Parameters ---------- offset : int, default 0 Offset from start of record batch to slice length : int, default None Length of slice (default is until end of batch starting from offset) Returns ------- sliced : RecordBatch Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede >>> batch.slice(offset=3).to_pandas() n_legs animals 0 4 Horse 1 5 Brittle stars 2 100 Centipede >>> batch.slice(length=2).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot >>> batch.slice(offset=3, length=1).to_pandas() n_legs animals 0 4 Horse ChunkedArray.unify_dictionaries (line 1149) A copy of this field with the replaced nullability Parameters ---------- nullable : bool Returns ------- field: pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) >>> field pyarrow.Field >>> field.nullable True Create new field by replacing the nullability of an existing one: >>> field_new = field.with_nullable(False) >>> field_new pyarrow.Field >>> field_new.nullable False A copy of this field with the replaced name Parameters ---------- name : str Returns ------- field : pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) >>> field pyarrow.Field Create new field by replacing the name of an existing one: >>> field_new = field.with_name('lock') >>> field_new pyarrow.Field zero_copy_only must be False for pyarrow.ChunkedArray.to_numpyunregister_extension_type (line 2233)self.wrapped cannot be converted to a Python object for picklingself.stop_token cannot be converted to a Python object for picklingself.sp_tensor,self.tp cannot be converted to a Python object for picklingself.sp_statistics cannot be converted to a Python object for picklingself.sp_sparse_tensor,self.stp cannot be converted to a Python object for picklingself.pool,self.proxy_pool cannot be converted to a Python object for picklingself.pool cannot be converted to a Python object for picklingself.memory_manager cannot be converted to a Python object for picklingself.logging_pool,self.pool cannot be converted to a Python object for picklingself.c_options cannot be converted to a Python object for pickling's constructor directly, use one of the RecordBatchReader.from_* functions instead.'s constructor directly, use one of the `register_extension_type (line 2169)read_next_batch_with_custom_metadatapyarrow requires pandas 1.0.0 or above, pandas pyarrow.Message type: {self.type} metadata length: {metadata_len} body length: {body_len}promote has been superseded by promote_options='default'.precision should be between 1 and 9pa.output_stream() called with instance of 'pa.input_stream() called with instance of 'only slices with step 1 supportedno default __reduce__ due to non-trivial __cinit__names must be a list or dict not month_day_nano_interval (line 4378)list_size should be a positive integeriter_batches_with_custom_metadataideal_bandwidth_utilization_fracfrom_numpy_ndarray..genexprfield or tuple expected, got Nonedim_names must be a tuple or listcould not infer open mode for file-like object cannot specify 'type' when creating a Field from an ArrowSchemabinary file expected, got text filearrow.ArrayStatistics>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.nbytes 72 Total number of bytes consumed by the elements of the record batch. In other words, the sum of bytes from all buffer ranges referenced. Unlike `get_total_buffer_size` this method will account for array offsets. If buffers are shared between arrays then the shared portion will only be counted multiple times. The dictionary of dictionary arrays will always be counted in their entirety even if the array only references a portion of the dictionary. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.nbytes 116 TimestampType.tz.__get__ (line 1282)Time64Type.unit.__get__ (line 1358)Time32Type.unit.__get__ (line 1323)This object's internal pointer is NULL, do not use any methods or attributes on this objectThe run_end_type should be 'int16', 'int32', or 'int64'The passed mapping doesn't contain the following field(s) of the schema: {}The 'ordered' flag of the passed categorical values does not match the 'ordered' of the specified type. The object's __arrow_array__ method does not return a pyarrow Array or ChunkedArray.The 'names' and 'metadata' arguments are not valid when passing a pandas DataFrameThe 'field_by_name' method is deprecated, use 'field' insteadThe dtype of the 'categories' of the passed categorical values (The dictionary index type should be integer.The 'add_metadata' method is deprecated, use 'with_metadata' insteadThe Scalar value passed as index must have identical type to the dictionary type's index_typeThe Array passed as dictionary must have identical type to the dictionary type's value_typeTensor.is_mutable.__get__ (line 186)Tensor.is_contiguous.__get__ (line 202)Tensor.dim_names.__get__ (line 170)Tensor._make_shape_or_strides_bufferTable.unify_dictionaries (line 4561)Table.replace_schema_metadata (line 4381)Table.num_rows.__get__ (line 5247)Table.num_columns.__get__ (line 5226)Table.get_total_buffer_size (line 5306)Table.from_struct_array (line 4915)TableGroupBy.aggregate (line 6510)Struct field name corresponds to more than one fieldStructType.names.__get__ (line 1060)StructType.get_all_field_indicesStructType.fields.__get__ (line 1074)StringViewBuilder only accepts string objectsStringViewBuilder.__setstate_cython__StringViewBuilder.__reduce_cython__StringBuilder only accepts string objectsSparseCSRMatrix.from_dense_numpySparseCSRMatrix.__setstate_cython__SparseCSRMatrix.__get__..genexprSparseCSFTensor.from_dense_numpySparseCSFTensor.__setstate_cython__SparseCSFTensor.__get__..genexprSparseCSCMatrix.from_dense_numpySparseCSCMatrix.__setstate_cython__SparseCSCMatrix.__get__..genexprSparseCOOTensor.to_pydata_sparseSparseCOOTensor.from_pydata_sparseSparseCOOTensor.from_dense_numpySparseCOOTensor.__setstate_cython__SparseCOOTensor.__get__..genexprSignalStopHandler.__setstate_cython__SignalStopHandler.__reduce_cython__ Select values from the chunked array. See :func:`pyarrow.compute.take` for full usage. Parameters ---------- indices : Array or array-like The indices in the array whose values will be returned. Returns ------- taken : Array or ChunkedArray An array with the same datatype, containing the taken values. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.take([1,4,5]) [ [ 2, 5, 100 ] ] Schema.remove_metadata (line 3536)Schema passed to names= option, please pass schema= explicitly. Will raise exception in futureSchema.pandas_metadata.__get__ (line 2932)Schema must be an instance of pyarrow.SchemaSchema.metadata.__get__ (line 3009)Schema.get_field_index (line 3240)Schema.get_all_field_indices (line 3280)Schema field name corresponds to more than one fieldSchema and number of arrays unequalRunEndEncodedType's expected number of children (RunEndEncodedType's expected null_count (0) did not match passed number (RunEndEncodedType expects None as validity bitmap, buffers[0] is not NoneRunEndEncodedArray.find_physical_offset Return the underlying array of values which backs the FixedSizeListArray ignoring the array's offset. Note even null elements are included. Compare with :meth:`flatten`, which returns only the non-null sub-list values. Returns ------- values : Array See Also -------- FixedSizeListArray.flatten : ... Examples -------- >>> import pyarrow as pa >>> array = pa.array( ... [[1, 2], None, [3, None]], ... type=pa.list_(pa.int32(), 2) ... ) >>> array.values [ 1, 2, null, null, 3, null ] Return the underlying array of values which backs the LargeListArray ignoring the array's offset. The values array may be out of order and/or contain additional values that are not found in the logical representation of the array. The only guarantee is that each non-null value in the ListView Array is contiguous. Compare with :meth:`flatten`, which returns only the non-null values taking into consideration the array's order and offset. Returns ------- values : Array See Also -------- LargeListArray.flatten : ... Examples -------- The values include null elements from sub-lists: >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) >>> array [ [ 1, 2 ], [], [ 2, null, 3, 4 ] ] >>> array.values [ 1, 2, null, 3, 4 ] Return the underlying array of values which backs the ListViewArray ignoring the array's offset and sizes. The values array may be out of order and/or contain additional values that are not found in the logical representation of the array. The only guarantee is that each non-null value in the ListView Array is contiguous. Compare with :meth:`flatten`, which returns only the non-null values taking into consideration the array's order and offset. Returns ------- values : Array Examples -------- The values include null elements from sub-lists: >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) >>> array [ [ 1, 2 ], [], [ 2, null, 3, 4 ] ] >>> array.values [ 1, 2, null, 3, 4 ] Return the underlying array of values which backs the LargeListArray ignoring the array's offset. If any of the list elements are null, but are backed by a non-empty sub-list, those elements will be included in the output. Compare with :meth:`flatten`, which returns only the non-null values taking into consideration the array's offset. Returns ------- values : Array See Also -------- LargeListArray.flatten : ... Examples -------- The values include null elements from the sub-lists: >>> import pyarrow as pa >>> array = pa.array( ... [[1, 2], None, [3, 4, None, 6]], ... type=pa.large_list(pa.int32()), ... ) >>> array.values [ 1, 2, 3, 4, null, 6 ] If an array is sliced, the slice still uses the same underlying data as the original array, just with an offset. Since values ignores the offset, the values are the same: >>> sliced = array.slice(1, 2) >>> sliced [ null, [ 3, 4, null, 6 ] ] >>> sliced.values [ 1, 2, 3, 4, null, 6 ] RecordBatch with its custom metadata Parameters ---------- batch : RecordBatch custom_metadata : KeyValueMetadata RecordBatch.set_column (line 2951)RecordBatch.replace_schema_metadataRecordBatch.remove_column (line 2917)RecordBatch.num_rows.__get__ (line 2703)RecordBatch.get_total_buffer_sizeRecordBatch.from_struct_array (line 3561)RecordBatch.from_pandas (line 3367)RecordBatch.from_arrays (line 3462)RecordBatch.add_column (line 2836)RecordBatch._import_from_c_deviceRecordBatch._import_from_c_capsuleRecordBatch.__arrow_c_device_array__RecordBatchReader.read_next_batchRecordBatchReader.iter_batches_with_custom_metadataRecordBatchReader._import_from_cRecordBatchReader.__setstate_cython__RecordBatchReader.__reduce_cython__RecordBatchReader.__arrow_c_stream__Received unsupported keyword argument(s): ProxyMemoryPool.__setstate_cython__Property `compression` must be None, str, or pyarrow.CodecPassing a pointer value as a float is unsafe and only supported for compatibility with older versions of the R Arrow libraryOpaqueType.__arrow_ext_scalar_class__Only extension types can be registeredNote that Cython is deliberately stricter than PEP-484 and rejects subclasses of builtin types. If you need to pass subclasses then set the 'annotation_typing' directive to False.Nanosecond resolution temporal type Must pass schema, or at least one RecordBatchMust pass names or schema when constructing Table or RecordBatch.Must pass either names or fieldsMust pass a DictionaryType instanceMonthDayNanoIntervalScalar.as_pyMonthDayNanoIntervalArray.to_pylistMockOutputStream.__setstate_cython__MockOutputStream.__reduce_cython__MemoryPool.total_bytes_allocatedMemoryMappedFile.__setstate_cython__MemoryMappedFile.__reduce_cython__Map key field should be non-nullableMapType.keys_sorted.__get__ (line 803)MapType.key_type.__get__ (line 764)MapType.key_field.__get__ (line 751)MapType.item_type.__get__ (line 790)LoggingMemoryPool.__setstate_cython__LoggingMemoryPool.__reduce_cython__ListView requires DataType or FieldListViewArray.values.__get__ (line 3094)ListViewArray.sizes.__get__ (line 3178)ListViewArray.offsets.__get__ (line 3148)ListViewArray.from_arrays (line 2993)ListType.value_type.__get__ (line 581)ListType.value_field.__get__ (line 568)ListArray.values.__get__ (line 2746)ListArray.offsets.__get__ (line 2817)LargeListViewType.value_type.__get__ (line 715)LargeListViewArray.offsets.__get__ (line 3375)LargeListViewArray.from_arrays (line 3215)LargeListArray.values.__get__ (line 2899)JsonType.__arrow_ext_scalar_class__Iterable should contain Array objects, got IpcWriteOptions.__setstate_cython__IpcReadOptions.__setstate_cython__Invalid value for 'maps_as_pydicts': valid values are 'lossy', 'strict' or `None` (default). Received Index must either be string or integerIncompatible checksums (0x%x vs (0x3ec5c35, 0x39e7a8b, 0xda37436) = (_array_like_types, _categorical_type, _compat_module, _data_frame, _datetimetz_type, _extension_array, _extension_dtype, _have_pandas, _index, _is_extension_array_dtype, _is_ge_v21, _is_ge_v23, _is_ge_v3, _is_ge_v3_strict, _is_v1, _lock, _loose_version, _pd, _pd024, _series, _tried_importing_pandas, _types_api, _version, has_sparse))Implemented only for data on CPU deviceIPC read statistics Parameters ---------- num_messages : int Number of messages. num_record_batches : int Number of record batches. num_dictionary_batches : int Number of dictionary batches. num_dictionary_deltas : int Delta of dictionaries. num_replaced_dictionaries : int Number of replaced dictionaries. IO thread count must be strictly positiveFixedSizeListType.value_type.__get__ (line 850)FixedSizeListType.list_size.__get__ (line 863)FixedSizeListArray.from_arrays (line 3580)FixedSizeBufferWriter.set_memcopy_threadsFixedSizeBufferWriter.__setstate_cython__FixedSizeBufferWriter.__reduce_cython__FixedShapeTensorType.__arrow_ext_class__FixedShapeTensorScalar.to_tensorFixedShapeTensorArray.to_numpy_ndarrayFixedShapeTensorArray.from_numpy_ndarrayFirst stride needs to be largest to ensure that individual tensor data is contiguous in memory.Field.nullable.__get__ (line 2541)Field.metadata.__get__ (line 2572)ExtensionType.__arrow_ext_serialize__ExtensionType.__arrow_ext_scalar_class__ExtensionType.__arrow_ext_deserialize__Expected pandas DataFrame, python dictionary or list of arraysExpected pandas DataFrame or list of arraysExpected integer or string indexExpected a list of 1-dimensional arrays for SparseCSFTensor.indptrExpected 2-dimensional array for SparseCOOTensor indicesExpected 1-dimensional array for SparseCSRMatrix indptrEach element of dim_names must be a stringDurationType.unit.__get__ (line 1390)Duplicate key {}, use pass all items as list of tuples if you intend to have duplicate keysDo not call Tensor's constructor directly, use one of the `pyarrow.Tensor.from_*` functions instead.Do not call SparseCSRMatrix's constructor directly, use one of the `pyarrow.SparseCSRMatrix.from_*` functions instead.Do not call SparseCSFTensor's constructor directly, use one of the `pyarrow.SparseCSFTensor.from_*` functions instead.Do not call SparseCSCMatrix's constructor directly, use one of the `pyarrow.SparseCSCMatrix.from_*` functions instead.Do not call SparseCOOTensor's constructor directly, use one of the `pyarrow.SparseCOOTensor.from_*` functions instead.Do not call Schema's constructor directly, use `pyarrow.schema` instead.Do not call MemoryManager's constructor directly, use pyarrow.default_cpu_memory_manager() instead.Do not call Device's constructor directly, use the device attribute of the MemoryManager instead.Do not call ChunkedArray's constructor directly, use `chunked_array` function instead.Do not call Buffer's constructor directly, use `pyarrow.py_buffer` function instead.DictionaryType.ordered.__get__ (line 505)DictionaryMemo.__setstate_cython__DictionaryArray.dictionary_encodeDictionaryArray.dictionary_decodeDevice on which the data resides differs between buffers: Decimal64Type.scale.__get__ (line 1510)Decimal32Type.scale.__get__ (line 1461)Decimal256Type.scale.__get__ (line 1608)Decimal128Type.scale.__get__ (line 1559)DataType.to_pandas_dtype (line 400)DataType.num_fields.__get__ (line 298)DataType.num_buffers.__get__ (line 320)DataType.byte_width.__get__ (line 276) Convert pandas.DataFrame to an Arrow Table. The column types in the resulting Arrow Table are inferred from the dtypes of the pandas.Series in the DataFrame. In the case of non-object Series, the NumPy dtype is translated to its Arrow equivalent. In the case of `object`, we need to guess the datatype by looking at the Python objects in this Series. Be aware that Series of the `object` dtype don't carry enough information to always lead to a meaningful Arrow type. In the case that we cannot infer a type, e.g. because the DataFrame is of length 0 or the Series only contains None/nan objects, the type is set to null. This behavior can be avoided by constructing an explicit schema and passing it to this function. Parameters ---------- df : pandas.DataFrame schema : pyarrow.Schema, optional The expected schema of the Arrow Table. This can be used to indicate the type of columns if we cannot infer it automatically. If passed, the output will have exactly this schema. Columns specified in the schema that are not found in the DataFrame columns or its index will raise an error. Additional columns or index levels in the DataFrame which are not specified in the schema will be ignored. preserve_index : bool, optional Whether to store the index as an additional column in the resulting ``Table``. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Use ``preserve_index=True`` to force it to be stored as a column. nthreads : int, default None If greater than 1, convert columns to Arrow in parallel using indicated number of threads. By default, this follows :func:`pyarrow.cpu_count` (may use up to system CPU count threads). columns : list, optional List of column to be converted. If None, use all columns. safe : bool, default True Check for overflows or other unsafe conversions. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.Table.from_pandas(df) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Compression type must be lz4, zstd or NoneCompressedOutputStream.__setstate_cython__CompressedInputStream.__setstate_cython__CompressedInputStream.__reduce_cython__Codec.supports_compression_levelChunkedArray.value_counts (line 820)ChunkedArray.type.__get__ (line 85)ChunkedArray.to_pylist (line 1356)ChunkedArray.nbytes.__get__ (line 233)ChunkedArray.iterchunks (line 1338)ChunkedArray.get_total_buffer_sizeChunkedArray.format is deprecated, use ChunkedArray.to_stringChunkedArray.drop_null (line 1085)ChunkedArray.dictionary_encode (line 599)ChunkedArray.combine_chunks (line 734)ChunkedArray.chunks.__get__ (line 1300)ChunkedArray._import_from_c_capsuleCasting to a requested schema is only supported for CPU dataCannot specify both list_size and typeCannot return a writable array if asking for zero-copyCannot return a numpy.ndarray if NumPy is not presentCannot pass both schema and namesCannot pass both schema and metadataCannot pass a numpy masked array and specify a mask at the same timeCannot export buffer from null Arrow ScalarCannot create multiple NullScalar instancesCannot convert 1D array or scalar to fixed shape tensor arrayCan't convert PyCapsule with name 'Can only get value offsets for dense arraysCacheOptions.from_network_metricsCPU count must be strictly positiveBufferedOutputStream.__reduce_cython__BufferedInputStream.__setstate_cython__BufferedInputStream.__reduce_cython__BufferOutputStream.__setstate_cython__BufferOutputStream.__reduce_cython__Bool8Type.__arrow_ext_scalar_class__BaseListArray.value_parent_indicesBaseListArray.value_lengths (line 2641)BaseExtensionType.__arrow_ext_scalar_class__BaseExtensionType.__arrow_ext_class__Arrays were not all the same length: Array.format is deprecated, use Array.to_stringArray._import_from_c_device_capsuleArrayStatistics.__setstate_cython__Argument 'destination' has incorrect type (expected a pyarrow Device or MemoryManager, got Add metadata as dict of string keys and values to Schema Parameters ---------- metadata : dict Keys and values must be string-like / coercible to bytes Returns ------- schema : pyarrow.Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Add metadata to existing schema field: >>> schema.with_metadata({"n_legs": "Number of legs per animal"}) n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Ad :QhfA z'! qq a l%vQ$g%;1A4q(!2[IQ#1IQ U!4q?$as$m1Az'! )1BC4q  nAT~Qd!1!!A null type field may not be non-nullableA*+T 3as("A *A 2U!3hc *AQ :WA t:Qkiq s!;cASaqj4Cq E :Qa 4q 81A E  !1 :WA Q:QgQa 5 !9F(!!:V1 )12$a{$aq 3axs#QgRq *AR4Cq 3ay3aq *AR4Cq 3aqs"DQ *AQ 3aqs"DQ *AQ"HAU&d'!2XQe6t7!A.a/DD/7y/=Q/0-QaA.A%6a+,@ :Qiq uG1) q q,AYfF!5%v\ :Ql! ! %q L 4z*A *AQ fA(a)4IT5)* 1>$/q0;1 F!/q0;1.aqiqqA*+ 4z%vQ )1/t1A EA :Qa :WA Q:QgQa81Cwd&m1A.a/DA/2'/ type: {self.type} shape: {self.shape}&oQ. 4q t89Be1Ba #11!s"Jat:RyHXXaab&oQ6 L 3c +Q ?$a *A (#1Q  -QkQ.4AQ "!1 9DEq Eaq np.arrays for SparseCSFTensor.indptr not supported for buffer protocol'max_chunksize' should be strictly positivemask not implemented with Arrow array inputs yetk L 51 Yaaj 2V1HF'aYaa 55Jat5T\A 2V1HF'a 6A 1r(&kKq !P 31A  ;a(QuG5DCqt1|3az%q 5uDCuG1A #U!6fLqwauA+1EvQ a 5q T!4A Q(+DAQE7q8H 5uD s! U!6fLq a 5q T!4A Q(+=QaE01A 5uD s! U!6fLq q 5q ~Qaz&iq 1E! D Cq A :Qhb1 uG1jxvV3b=aq 5q t7#Rqiq t6Aj s!83c!j 7!81 /qfAq7%t4t3a &a(!9F&vQ aq uG1TT6#T*AQQ 'qhfL U!+Ye1 ;gQE2& 1.a({!!ak,a ?,aXV:U! zz0DACxq uDD1'qF$m?&BoQe=A.:!*!86a+, 5DCq $AV6]& S/%}D*6a 'qV6vQgQ}A-=Q 1 is not safely convertible to microseconds to convert to datetime.datetime. Install pandas to return as Timestamp with nanosecond support or access the .value attribute. is installed. Therefore, pandas-specific integration is not used. incompatible with bool8 storage_download_nothreads..cleanup) does not matchthe number of tensor dimensions () does not match the specified type () does not match length of arrays () did not match the passed number (_break_traceback_cycle_from_frame always results in a copy). If using `np.array(obj, copy=False)` replace it with `np.asarray(obj)` to allow a copy when neededabz,aaxq 1LiqzQq QfA :Rq *AQq.av[ !!>a " &al#Q 4wa'q T*!  Q  E! kq 4s! +Qb 7q#1%Q !qd"E/q;c4A]!56fAQ  1&a* L 3c +Q 1 *A Q  +1Q #1A :Qha RuAV1O6!q! " &a 7#Q t4qyU! t52Ta q  ^1F$b 1A"!1 Write Schema to Buffer as encapsulated IPC message Parameters ---------- memory_pool : MemoryPool, default None Uses default memory pool if not specified Returns ------- serialized : Buffer Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Write schema to Buffer: >>> schema.serialize() Whether the dictionary is ordered, i.e. whether the ordering of values in the dictionary is important. Examples -------- >>> import pyarrow as pa >>> pa.dictionary(pa.int64(), pa.utf8()).ordered False Unregister a Python extension type. Parameters ---------- type_name : str The name of the ExtensionType subclass to unregister. Examples -------- Define a RationalType extension type subclassing ExtensionType: >>> import pyarrow as pa >>> class RationalType(pa.ExtensionType): ... def __init__(self, data_type: pa.DataType): ... if not pa.types.is_integer(data_type): ... raise TypeError(f"data_type must be an integer type not {data_type}") ... super().__init__( ... pa.struct( ... [ ... ("numer", data_type), ... ("denom", data_type), ... ], ... ), ... # N.B. This name does _not_ reference `data_type` so deserialization ... # will work for _any_ integer `data_type` after registration ... "my_package.rational", ... ) ... def __arrow_ext_serialize__(self) -> bytes: ... # No parameters are necessary ... return b"" ... @classmethod ... def __arrow_ext_deserialize__(cls, storage_type, serialized): ... # return an instance of this subclass ... return RationalType(storage_type[0].type) Register the extension type: >>> pa.register_extension_type(RationalType(pa.int64())) Unregister the extension type: >>> pa.unregister_extension_type("my_package.rational") Unnest this [Large]ListArray/[Large]ListViewArray/FixedSizeListArray according to 'recursive'. Note that this method is different from ``self.values`` in that it takes care of the slicing offset as well as null elements backed by non-empty sub-lists. Parameters ---------- recursive : bool, default False, optional When True, flatten this logical list-array recursively until an array of non-list values is formed. When False, flatten only the top level. Returns ------- result : Array Examples -------- Basic logical list-array's flatten >>> import pyarrow as pa >>> values = [1, 2, 3, 4] >>> offsets = [2, 1, 0] >>> sizes = [2, 2, 2] >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) >>> array [ [ 3, 4 ], [ 2, 3 ], [ 1, 2 ] ] >>> array.flatten() [ 3, 4, 2, 3, 1, 2 ] When recursive=True, nested list arrays are flattened recursively until an array of non-list values is formed. >>> array = pa.array([ ... None, ... [ ... [1, None, 2], ... None, ... [3, 4] ... ], ... [], ... [ ... [], ... [5, 6], ... None ... ], ... [ ... [7, 8] ... ] ... ], type=pa.list_(pa.list_(pa.int64()))) >>> array.flatten(True) [ 1, null, 2, 3, 4, 5, 6, 7, 8 ] Unify dictionaries across all chunks. This method returns an equivalent chunked array, but where all chunks share the same dictionary values. Dictionary indices are transposed accordingly. If there are no dictionaries in the chunked array, it is returned unchanged. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- result : ChunkedArray Examples -------- >>> import pyarrow as pa >>> arr_1 = pa.array(["Flamingo", "Parrot", "Dog"]).dictionary_encode() >>> arr_2 = pa.array(["Horse", "Brittle stars", "Centipede"]).dictionary_encode() >>> c_arr = pa.chunked_array([arr_1, arr_2]) >>> c_arr [ ... -- dictionary: [ "Flamingo", "Parrot", "Dog" ] -- indices: [ 0, 1, 2 ], ... -- dictionary: [ "Horse", "Brittle stars", "Centipede" ] -- indices: [ 0, 1, 2 ] ] >>> c_arr.unify_dictionaries() [ ... -- dictionary: [ "Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede" ] -- indices: [ 0, 1, 2 ], ... -- dictionary: [ "Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede" ] -- indices: [ 3, 4, 5 ] ] Trying to import data on a CUDA device, but PyArrow is not built with CUDA support. (importing 'pyarrow.cuda' resulted in "TransformInputStream.__setstate_cython__TimestampType.unit.__get__ (line 1268) The timestamp unit ('s', 'ms', 'us' or 'ns'). Examples -------- >>> import pyarrow as pa >>> t = pa.timestamp('us') >>> t.unit 'us' The time unit ('us' or 'ns'). Examples -------- >>> import pyarrow as pa >>> t = pa.time64('us') >>> t.unit 'us' The sum of bytes in each buffer referenced by the chunked array. An array may only reference a portion of a buffer. This method will overestimate in this case and return the byte size of the entire buffer. If a buffer is referenced multiple times then it will only be counted once. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.get_total_buffer_size() 49 The size of this tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.size 6 The size of the fixed size lists. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.int32(), 2).list_size 2 The shape of this tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.shape (2, 3) The schema's metadata (if any is set). Returns ------- metadata: dict or None Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) Get the metadata of the schema's fields: >>> schema.metadata {b'n_legs': b'Number of legs per animal'} The schema's field types. Returns ------- list of DataType Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Get the types of the schema's fields: >>> schema.types [DataType(int64), DataType(string)] The schema's field names. Returns ------- list of str Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Get the names of the schema's fields: >>> schema.names ['n_legs', 'animals'] The number of child fields. Examples -------- >>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().num_fields 0 >>> pa.list_(pa.string()) ListType(list) >>> pa.list_(pa.string()).num_fields 1 >>> struct = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct.num_fields 2 The 'names' argument is not valid when passing a dictionary The field metadata (if any is set). Returns ------- metadata : dict or None Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32(), ... metadata={"key": "Something important"}) >>> field.metadata {b'key': b'Something important'} The field for list values. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.string()).value_field pyarrow.Field The field for large list view values. Examples -------- >>> import pyarrow as pa >>> pa.large_list_view(pa.string()).value_field pyarrow.Field The field for keys in the map entries. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()).key_field pyarrow.Field The duration unit ('s', 'ms', 'us' or 'ns'). Examples -------- >>> import pyarrow as pa >>> t = pa.duration('s') >>> t.unit 's' The dictionary value type. The dictionary values are found in an instance of DictionaryArray. Examples -------- >>> import pyarrow as pa >>> pa.dictionary(pa.int16(), pa.utf8()).value_type DataType(string) The decimal scale (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal32(5, 2) >>> t.scale 2 The decimal precision, in number of decimal digits (an integer). Examples -------- >>> import pyarrow as pa >>> t = pa.decimal32(5, 2) >>> t.precision 5 The data type of list view values. Examples -------- >>> import pyarrow as pa >>> pa.list_view(pa.string()).value_type DataType(string) The data type of list values. Examples -------- >>> import pyarrow as pa >>> pa.list_(pa.string()).value_type DataType(string) The data type of large list view values. Examples -------- >>> import pyarrow as pa >>> pa.large_list_view(pa.string()).value_type DataType(string) The data type of large list values. Examples -------- >>> import pyarrow as pa >>> pa.large_list(pa.string()).value_type DataType(string) The data type of keys in the map entries. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()).key_type DataType(string) The data type of items in the map entries. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()).item_type DataType(int32) The data type of dictionary indices (a signed integer type). Examples -------- >>> import pyarrow as pa >>> pa.dictionary(pa.int16(), pa.utf8()).index_type DataType(int16) The column must be allocated on the same device as the RecordBatch. Got column on device Test if this schema is equal to the other Parameters ---------- other : pyarrow.Schema check_metadata : bool, default False Key/value metadata must be equal too Returns ------- is_equal : bool Examples -------- >>> import pyarrow as pa >>> schema1 = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> schema2 = pa.schema([ ... ('some_int', pa.int32()), ... ('some_string', pa.string()) ... ]) Test two equal schemas: >>> schema1.equals(schema1) True Test two unequal schemas: >>> schema1.equals(schema2) False Tensor.strides.__get__ (line 267)Target schema's field names are not matching the record batch's field names: _Tabular.shape.__get__ (line 2088)_Tabular.columns.__get__ (line 1820)_Tabular.column_names.__get__ (line 1798)_Tabular.append_column (line 2456)StructType.get_field_index (line 946)StringViewBuilder.append_valuesStringBuilder.__setstate_cython__ Strides of this tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.strides (12, 4) SparseCSRMatrix.__reduce_cython__SparseCSFTensor.__reduce_cython__SparseCSCMatrix.__reduce_cython__SparseCOOTensor.__reduce_cython__ Sort the Table or RecordBatch by one or multiple columns. Parameters ---------- sorting : str or list[tuple(name, order)] Name of the column to use to sort (ascending), or a list of multiple sorting conditions where each entry is a tuple with column name and sorting order ("ascending" or "descending") **kwargs : dict, optional Additional sorting options. As allowed by :class:`SortOptions` Returns ------- Table or RecordBatch A new tabular object sorted according to the sort keys. Examples -------- Table (works similarly for RecordBatch) >>> import pandas as pd >>> import pyarrow as pa >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.sort_by('animal') pyarrow.Table year: int64 n_legs: int64 animal: string ---- year: [[2019,2021,2021,2020,2022,2022]] n_legs: [[5,100,4,2,4,2]] animal: [["Brittle stars","Centipede","Dog","Flamingo","Horse","Parrot"]] SignalStopHandler._init_signals Should the entries be sorted according to keys. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32(), keys_sorted=True).keys_sorted True Should specify one of list_size and type Select single column from Table or RecordBatch. Parameters ---------- i : int or string The index or name of the column to retrieve. Returns ------- column : Array (for RecordBatch) or ChunkedArray (for Table) Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Select a column by numeric index: >>> table.column(0) [ [ 2, 4, 5, 100 ] ] Select a column by its name: >>> table.column("animals") [ [ "Flamingo", "Horse", "Brittle stars", "Centipede" ] ] Select rows from the table or record batch based on a boolean mask. The Table can be filtered based on a mask, which will be passed to :func:`pyarrow.compute.filter` to perform the filtering, or it can be filtered through a boolean :class:`.Expression` Parameters ---------- mask : Array or array-like or .Expression The boolean mask or the :class:`.Expression` to filter the table with. null_selection_behavior : str, default "drop" How nulls in the mask should be handled, does nothing if an :class:`.Expression` is used. Returns ------- filtered : Table or RecordBatch A tabular object of the same schema, with only the rows selected by applied filtering Examples -------- Using a Table (works similarly for RecordBatch): >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) Define an expression and select rows: >>> import pyarrow.compute as pc >>> expr = pc.field("year") <= 2020 >>> table.filter(expr) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2019]] n_legs: [[2,5]] animals: [["Flamingo","Brittle stars"]] Define a mask and select rows: >>> mask=[True, True, False, None] >>> table.filter(mask) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022]] n_legs: [[2,4]] animals: [["Flamingo","Horse"]] >>> table.filter(mask, null_selection_behavior='emit_null') pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022,null]] n_legs: [[2,4,null]] animals: [["Flamingo","Horse",null]] Select rows from a Table or RecordBatch. See :func:`pyarrow.compute.take` for full usage. Parameters ---------- indices : Array or array-like The indices in the tabular object whose rows will be returned. Returns ------- Table or RecordBatch A tabular object with the same schema, containing the taken rows. Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.take([1,3]) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2022,2021]] n_legs: [[4,100]] animals: [["Horse","Centipede"]] Select columns of the Table. Returns a new Table with the specified columns, and metadata preserved. Parameters ---------- columns : list-like The column names or integer indices to select. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.select([0,1]) pyarrow.Table year: int64 n_legs: int64 ---- year: [[2020,2022,2019,2021]] n_legs: [[2,4,5,100]] >>> table.select(["year"]) pyarrow.Table year: int64 ---- year: [[2020,2022,2019,2021]] Select columns of the RecordBatch. Returns a new RecordBatch with the specified columns, and metadata preserved. Parameters ---------- columns : list-like The column names or integer indices to select. Returns ------- RecordBatch Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.record_batch([n_legs, animals], ... names=["n_legs", "animals"]) Select columns my indices: >>> batch.select([1]) pyarrow.RecordBatch animals: string ---- animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] Select columns by names: >>> batch.select(["n_legs"]) pyarrow.RecordBatch n_legs: int64 ---- n_legs: [2,2,4,4,5,100] Select a schema field by its column name or numeric index. Parameters ---------- i : int or string The index or name of the field to retrieve. Returns ------- Field Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.field(0) pyarrow.Field >>> table.field(1) pyarrow.Field Select a field by its column name or numeric index. Parameters ---------- i : int or str Returns ------- pyarrow.Field Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()}) Select the second field: >>> struct_type.field(1) pyarrow.Field Select the field named 'x': >>> struct_type.field('x') pyarrow.Field Select a chunk by its index. Parameters ---------- i : int Returns ------- pyarrow.Array Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, None], [4, 5, 100]]) >>> n_legs.chunk(1) [ 4, 5, 100 ] Schema of the table and its columns. Returns ------- Schema Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.schema n_legs: int64 animals: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' ... Schema of the RecordBatch and its columns Returns ------- pyarrow.Schema Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.schema n_legs: int64 animals: string RunEndEncodedArray.from_buffersRunEndEncodedArray._from_arrays Returns the name of the i-th tensor dimension. Parameters ---------- i : int The physical index of the tensor dimension. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.dim_name(0) 'dim1' >>> tensor.dim_name(1) 'dim2' Returns implied schema from dataframe Parameters ---------- df : pandas.DataFrame preserve_index : bool, default True Whether to store the index as an additional column (or columns, for MultiIndex) in the resulting `Table`. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Use ``preserve_index=True`` to force it to be stored as a column. Returns ------- pyarrow.Schema Examples -------- >>> import pandas as pd >>> import pyarrow as pa >>> df = pd.DataFrame({ ... 'int': [1, 2], ... 'str': ['a', 'b'] ... }) Create an Arrow Schema from the schema of a pandas dataframe: >>> pa.Schema.from_pandas(df) int: int64 str: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, ... Return true if type is equivalent to passed value. Parameters ---------- other : DataType or string convertible to DataType check_metadata : bool Whether nested Field metadata equality should be checked as well. Returns ------- is_equal : bool Examples -------- >>> import pyarrow as pa >>> pa.int64().equals(pa.string()) False >>> pa.int64().equals(pa.int64()) True Return true if the tensors contains exactly equal data. Parameters ---------- other : Tensor The other tensor to compare for equality. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> y = np.array([[2, 2, 4], [4, 5, 10]], np.int32) >>> tensor2 = pa.Tensor.from_numpy(y, dim_names=["a","b"]) >>> tensor.equals(tensor) True >>> tensor.equals(tensor2) False Return the process-global memory pool. Examples -------- >>> default_memory_pool() Return the list view sizes as an int64 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `LargeListViewArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- sizes : Int64Array Examples -------- >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) >>> array.sizes [ 2, 0, 4 ] Return the list view offsets as an int64 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `LargeListViewArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- offsets : Int64Array Examples -------- >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) >>> array.offsets [ 0, 0, 1 ] Return the list sizes as an int32 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `ListViewArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- sizes : Int32Array Examples -------- >>> import pyarrow as pa >>> values = [1, 2, None, 3, 4] >>> offsets = [0, 0, 1] >>> sizes = [2, 0, 4] >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) >>> array.sizes [ 2, 0, 4 ] Return the list offsets as an int32 array. The returned array will not have a validity bitmap, so you cannot expect to pass it to `ListArray.from_arrays` and get back the same list array if the original one has nulls. Returns ------- offsets : Int32Array Examples -------- >>> import pyarrow as pa >>> array = pa.array([[1, 2], None, [3, 4, 5]]) >>> array.offsets [ 0, 2, 2, 5 ] Return the equivalent NumPy / Pandas dtype. Examples -------- >>> import pyarrow as pa >>> pa.int64().to_pandas_dtype() Return sorted list of indices for the fields with the given name. Parameters ---------- name : str The name of the field to look up. Returns ------- indices : List[int] Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct_type.get_all_field_indices('x') [0] Return length of a ChunkedArray. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.length() 6 Return integers array with values equal to the respective length of each list element. Null list values are null in the output. Examples -------- >>> import pyarrow as pa >>> arr = pa.array([[1, 2, 3], [], None, [4]], ... type=pa.list_(pa.int32())) >>> arr.value_lengths() [ 3, 0, null, 1 ] Return index of the unique field with the given name. Parameters ---------- name : str The name of the field to look up. Returns ------- index : int The index of the field with the given name; -1 if the name isn't found or there are several fields with the given name. Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()}) Index of the field with a name 'y': >>> struct_type.get_field_index('y') 1 Index of the field that does not exist: >>> struct_type.get_field_index('z') -1 Return deserialized-from-JSON pandas metadata field (if it exists) Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> schema = pa.Table.from_pandas(df).schema Select pandas metadata field from Arrow Schema: >>> schema.pandas_metadata {'index_columns': [{'kind': 'range', 'name': None, 'start': 0, 'stop': 4, 'step': 1}], ... Return data type of a ChunkedArray. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.type DataType(int64) Return boolean array indicating the null values. Parameters ---------- nan_is_null : bool (optional, default False) Whether floating-point NaN values should also be considered null. Returns ------- array : boolean Array or ChunkedArray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.is_null() [ [ false, false, false, false, true, false ] ] Return a child field by its numeric index. Parameters ---------- i : int Returns ------- pyarrow.Field Examples -------- >>> import pyarrow as pa >>> union = pa.sparse_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) >>> union[0] pyarrow.Field Return a NumPy copy of this array (experimental). Parameters ---------- zero_copy_only : bool, default False Introduced for signature consistence with pyarrow.Array.to_numpy. This must be False here since NumPy arrays' buffer must be contiguous. Returns ------- array : numpy.ndarray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.to_numpy() array([ 2, 2, 4, 4, 5, 100]) Replace each null element in values with fill_value. See :func:`pyarrow.compute.fill_null` for full usage. Parameters ---------- fill_value : any The replacement value for null entries. Returns ------- result : Array or ChunkedArray A new array with nulls replaced by the given value. Examples -------- >>> import pyarrow as pa >>> fill_value = pa.scalar(5, type=pa.int8()) >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.fill_null(fill_value) [ [ 2, 2, 4, 4, 5, 100 ] ] Replace column in Table at position. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array, list of Array, or values coercible to arrays Column data. Returns ------- Table New table with the passed column set. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Replace a column: >>> year = [2021, 2022, 2019, 2021] >>> table.set_column(1,'year', [year]) pyarrow.Table n_legs: int64 year: int64 ---- n_legs: [[2,4,5,100]] year: [[2021,2022,2019,2021]] Replace column in RecordBatch at position. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array or value coercible to array Column data. Returns ------- RecordBatch New record batch with the passed column set. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) Replace a column: >>> year = [2021, 2022, 2019, 2021] >>> batch.set_column(1,'year', year) pyarrow.RecordBatch n_legs: int64 year: int64 ---- n_legs: [2,4,5,100] year: [2021,2022,2019,2021] Replace a field at position i in the schema. Parameters ---------- i : int field : Field Returns ------- schema: Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Replace the second field of the schema with a new field 'extra': >>> schema.set(1, pa.field('replaced', pa.bool_())) n_legs: int64 replaced: bool Remove the field at index i from the schema. Parameters ---------- i : int Returns ------- schema: Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Remove the second field of the schema: >>> schema.remove(1) n_legs: int64 Remove rows that contain missing values from a Table or RecordBatch. See :func:`pyarrow.compute.drop_null` for full usage. Returns ------- Table or RecordBatch A tabular object with the same schema, with rows containing no missing values. Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [None, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.drop_null() pyarrow.Table year: double n_legs: int64 animals: string ---- year: [[2022,2021]] n_legs: [[4,100]] animals: [["Horse","Centipede"]] Remove missing values from a chunked array. See :func:`pyarrow.compute.drop_null` for full description. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, None], [4, 5, 100]]) >>> n_legs [ [ 2, 2, null ], [ 4, 5, 100 ] ] >>> n_legs.drop_null() [ [ 2, 2 ], [ 4, 5, 100 ] ] Register a Python extension type. Registration is based on the extension name (so different registered types need unique extension names). Registration needs an extension type instance, but then works for any instance of the same subclass regardless of parametrization of the type. Parameters ---------- ext_type : BaseExtensionType instance The ExtensionType subclass to register. Examples -------- Define a RationalType extension type subclassing ExtensionType: >>> import pyarrow as pa >>> class RationalType(pa.ExtensionType): ... def __init__(self, data_type: pa.DataType): ... if not pa.types.is_integer(data_type): ... raise TypeError(f"data_type must be an integer type not {data_type}") ... super().__init__( ... pa.struct( ... [ ... ("numer", data_type), ... ("denom", data_type), ... ], ... ), ... # N.B. This name does _not_ reference `data_type` so deserialization ... # will work for _any_ integer `data_type` after registration ... "my_package.rational", ... ) ... def __arrow_ext_serialize__(self) -> bytes: ... # No parameters are necessary ... return b"" ... @classmethod ... def __arrow_ext_deserialize__(cls, storage_type, serialized): ... # return an instance of this subclass ... return RationalType(storage_type[0].type) Register the extension type: >>> pa.register_extension_type(RationalType(pa.int64())) Unregister the extension type: >>> pa.unregister_extension_type("my_package.rational") RecordBatch.to_tensor (line 3612)RecordBatch.serialize (line 3092)RecordBatch.schema.__get__ (line 2727)RecordBatch.rename_columns (line 3017)RecordBatch.nbytes.__get__ (line 2770)RecordBatch._export_to_c_device_RecordBatchStreamWriter.__setstate_cython___RecordBatchStreamWriter.__reduce_cython___RecordBatchStreamReader.__setstate_cython___RecordBatchStreamReader.__reduce_cython___RecordBatchFileWriter.__setstate_cython___RecordBatchFileReader.get_batch_RecordBatchFileReader.__setstate_cython__(Qwc 1 D5 E AV2S d' '!s,axwiq :Qha V1ASrIU$gQgQa 3l!87()1 )1AQ,waqz%q!  ^1JagXTa!5q  ^1Jaxt4q aq))=Q 4wj  !,d!5 Q! 1 '! U%t>gQd$fARyG1BjPSSbbc }Bd!gQat5=Q" ! 0A 7q :QhgQ E!1! z1haq qq (C{! )1Aas"4A[!!ProxyMemoryPool.__reduce_cython__ Provide an empty table according to the schema. Returns ------- table: pyarrow.Table Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Create an empty table with schema's fields: >>> schema.empty_table() pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[]] animals: [[]] Perform an asof join between this table and another one. This is similar to a left-join except that we match on nearest key rather than equal keys. Both tables must be sorted by the key. This type of join is most useful for time series data that are not perfectly aligned. Optionally match on equivalent keys with "by" before searching with "on". Result of the join will be a new Table, where further operations can be applied. Parameters ---------- right_table : Table The table to join to the current one, acting as the right table in the join operation. on : str The column from current table that should be used as the "on" key of the join operation left side. An inexact match is used on the "on" key, i.e. a row is considered a match if and only if left_on - tolerance <= right_on <= left_on. The input dataset must be sorted by the "on" key. Must be a single field of a common type. Currently, the "on" key must be an integer, date, or timestamp type. by : str or list[str] The columns from current table that should be used as the keys of the join operation left side. The join operation is then done only for the matches in these columns. tolerance : int The tolerance for inexact "on" key matching. A right row is considered a match with the left row ``right.on - left.on <= tolerance``. The ``tolerance`` may be: - negative, in which case a past-as-of-join occurs; - or positive, in which case a future-as-of-join occurs; - or zero, in which case an exact-as-of-join occurs. The tolerance is interpreted in the same units as the "on" key. right_on : str or list[str], default None The columns from the right_table that should be used as the on key on the join operation right side. When ``None`` use the same key name as the left table. right_by : str or list[str], default None The columns from the right_table that should be used as keys on the join operation right side. When ``None`` use the same key names as the left table. Returns ------- Table Example -------- >>> import pyarrow as pa >>> t1 = pa.table({'id': [1, 3, 2, 3, 3], ... 'year': [2020, 2021, 2022, 2022, 2023]}) >>> t2 = pa.table({'id': [3, 4], ... 'year': [2020, 2021], ... 'n_legs': [5, 100], ... 'animal': ["Brittle stars", "Centipede"]}) >>> t1.join_asof(t2, on='year', by='id', tolerance=-2) pyarrow.Table id: int64 year: int64 n_legs: int64 animal: string ---- id: [[1,3,2,3,3]] year: [[2020,2021,2022,2022,2023]] n_legs: [[null,5,null,5,null]] animal: [[null,"Brittle stars",null,"Brittle stars",null]] Perform an aggregation over the grouped columns of the table. Parameters ---------- aggregations : list[tuple(str, str)] or list[tuple(str, str, FunctionOptions)] List of tuples, where each tuple is one aggregation specification and consists of: aggregation column name followed by function name and optionally aggregation function option. Pass empty list to get a single row for each group. The column name can be a string, an empty list or a list of column names, for unary, nullary and n-ary aggregation functions respectively. For the list of function names and respective aggregation function options see :ref:`py-grouped-aggrs`. Returns ------- Table Results of the aggregation functions. Examples -------- >>> import pyarrow as pa >>> t = pa.table([ ... pa.array(["a", "a", "b", "b", "c"]), ... pa.array([1, 2, 3, 4, 5]), ... ], names=["keys", "values"]) Sum the column "values" over the grouped column "keys": >>> t.group_by("keys").aggregate([("values", "sum")]) pyarrow.Table keys: string values_sum: int64 ---- keys: [["a","b","c"]] values_sum: [[3,7,5]] Count the rows over the grouped column "keys": >>> t.group_by("keys").aggregate([([], "count_all")]) pyarrow.Table keys: string count_all: int64 ---- keys: [["a","b","c"]] count_all: [[2,2,1]] Do multiple aggregations: >>> t.group_by("keys").aggregate([ ... ("values", "sum"), ... ("keys", "count") ... ]) pyarrow.Table keys: string values_sum: int64 keys_count: int64 ---- keys: [["a","b","c"]] values_sum: [[3,7,5]] keys_count: [[2,2,1]] Count the number of non-null values for column "values" over the grouped column "keys": >>> import pyarrow.compute as pc >>> t.group_by(["keys"]).aggregate([ ... ("values", "count", pc.CountOptions(mode="only_valid")) ... ]) pyarrow.Table keys: string values_count: int64 ---- keys: [["a","b","c"]] values_count: [[2,2,1]] Get a single row for each group in column "keys": >>> t.group_by("keys").aggregate([]) pyarrow.Table keys: string ---- keys: [["a","b","c"]] Perform a join between this table and another one. Result of the join will be a new Table, where further operations can be applied. Parameters ---------- right_table : Table The table to join to the current one, acting as the right table in the join operation. keys : str or list[str] The columns from current table that should be used as keys of the join operation left side. right_keys : str or list[str], default None The columns from the right_table that should be used as keys on the join operation right side. When ``None`` use the same key names as the left table. join_type : str, default "left outer" The kind of join that should be performed, one of ("left semi", "right semi", "left anti", "right anti", "inner", "left outer", "right outer", "full outer") left_suffix : str, default None Which suffix to add to left column names. This prevents confusion when the columns in left and right tables have colliding names. right_suffix : str, default None Which suffix to add to the right column names. This prevents confusion when the columns in left and right tables have colliding names. coalesce_keys : bool, default True If the duplicated keys should be omitted from one of the sides in the join result. use_threads : bool, default True Whether to use multithreading or not. filter_expression : pyarrow.compute.Expression Residual filter which is applied to matching row. Returns ------- Table Examples -------- >>> import pandas as pd >>> import pyarrow as pa >>> import pyarrow.compute as pc >>> df1 = pd.DataFrame({'id': [1, 2, 3], ... 'year': [2020, 2022, 2019]}) >>> df2 = pd.DataFrame({'id': [3, 4], ... 'n_legs': [5, 100], ... 'animal': ["Brittle stars", "Centipede"]}) >>> t1 = pa.Table.from_pandas(df1) >>> t2 = pa.Table.from_pandas(df2) Left outer join: >>> t1.join(t2, 'id').combine_chunks().sort_by('year') pyarrow.Table id: int64 year: int64 n_legs: int64 animal: string ---- id: [[3,1,2]] year: [[2019,2020,2022]] n_legs: [[5,null,null]] animal: [["Brittle stars",null,null]] Full outer join: >>> t1.join(t2, 'id', join_type="full outer").combine_chunks().sort_by('year') pyarrow.Table id: int64 year: int64 n_legs: int64 animal: string ---- id: [[3,1,2,4]] year: [[2019,2020,2022,null]] n_legs: [[5,null,null,100]] animal: [["Brittle stars",null,null,"Centipede"]] Right outer join: >>> t1.join(t2, 'id', join_type="right outer").combine_chunks().sort_by('year') pyarrow.Table year: int64 id: int64 n_legs: int64 animal: string ---- year: [[2019,null]] id: [[3,4]] n_legs: [[5,100]] animal: [["Brittle stars","Centipede"]] Right anti join: >>> t1.join(t2, 'id', join_type="right anti") pyarrow.Table id: int64 n_legs: int64 animal: string ---- id: [[4]] n_legs: [[100]] animal: [["Centipede"]] Inner join with intended mismatch filter expression: >>> t1.join(t2, 'id', join_type="inner", filter_expression=pc.equal(pc.field("n_legs"), 100)) pyarrow.Table id: int64 year: int64 n_legs: int64 animal: string ---- id: [] year: [] n_legs: [] animal: [] _PandasConvertible.to_pandas (line 840)_PandasConvertible.__setstate_cython___PandasConvertible.__reduce_cython___PandasAPIShim.uses_string_dtype_PandasAPIShim.is_extension_array_dtype_PandasAPIShim.get_rangeindex_attribute_PandasAPIShim.__setstate_cython__ Open memory map at file path. Size of the memory map cannot change. Parameters ---------- path : str mode : {'r', 'r+', 'w'}, default 'r' Whether the file is opened for reading ('r'), writing ('w') or both ('r+'). Returns ------- mmap : MemoryMappedFile Examples -------- Reading from a memory map without any memory allocation or copying: >>> import pyarrow as pa >>> with pa.output_stream('example_mmap.txt') as stream: ... stream.write(b'Constructing a buffer referencing the mapped memory') ... 51 >>> with pa.memory_map('example_mmap.txt') as mmap: ... mmap.read_at(6,45) ... b'memory' Number of underlying chunks. Returns ------- int Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, None], [4, 5, 100]]) >>> n_legs.num_chunks 2 Number of rows in this table. Due to the definition of a table, all columns have the same number of rows. Returns ------- int Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.num_rows 4 Number of rows Due to the definition of a RecordBatch, all columns have the same number of rows. Returns ------- int Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.num_rows 6 Number of data buffers required to construct Array type excluding children. Examples -------- >>> import pyarrow as pa >>> pa.int64().num_buffers 2 >>> pa.string().num_buffers 3 Number of columns in this table. Returns ------- int Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.num_columns 2 Number of columns Returns ------- int Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.num_columns 2 Names of this tensor dimensions. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.dim_names ['dim1', 'dim2'] Names of the Table or RecordBatch columns. Returns ------- list of str Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> table = pa.Table.from_arrays([[2, 4, 5, 100], ... ["Flamingo", "Horse", "Brittle stars", "Centipede"]], ... names=['n_legs', 'animals']) >>> table.column_names ['n_legs', 'animals'] Must pass either fields or type, not bothMessageReader.read_next_messageMessageReader.__setstate_cython__MemoryManager.__setstate_cython__Mask must be a pyarrow.Array of type booleanMask must be a numpy array when converting numpy arraysMask is a different length from sequence being convertedMapType.item_field.__get__ (line 777) Make a new table by combining the chunks this table has. All the underlying chunks in the ChunkedArray of each column are concatenated into zero or one chunk. To avoid buffer overflow, binary columns may be combined into multiple chunks. Chunks will have the maximum possible length. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> animals = pa.chunked_array([["Flamingo", "Parrot", "Dog"], ["Horse", "Brittle stars", "Centipede"]]) >>> names = ["n_legs", "animals"] >>> table = pa.table([n_legs, animals], names=names) >>> table pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,2,4],[4,5,100]] animals: [["Flamingo","Parrot","Dog"],["Horse","Brittle stars","Centipede"]] >>> table.combine_chunks() pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,2,4,4,5,100]] animals: [["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]]  Mfz'WCqz'quLvWG1!*! 1F! 6 *AuLwhiq N!1 6S  *AuLwhiq q 6S  *A 7' 1 $)!""9!iq 7'd%xs! Eaqq ,CwavQ 6S  *A AV1uM!1iq Lists all fields within the StructType. Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct([('a', pa.int64()), ('b', pa.float64()), ('c', pa.string())]) >>> struct_type.fields [pyarrow.Field, pyarrow.Field, pyarrow.Field] List requires DataType or Field List of all columns in numerical order. Returns ------- columns : list of Array (for RecordBatch) or list of ChunkedArray (for Table) Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.columns [ [ [ null, 4, 5, null ] ], [ [ "Flamingo", "Horse", null, "Centipede" ] ]] ListArray.from_arrays (line 2668)LargeListView requires DataType or FieldLargeListViewArray.values.__get__ (line 3316)|=Jz'WCqz'q{,avV7''0 1F! 6 *A{,avWHIQ q 7' v%8 q(,EQa 9:J! 7'd%xs! Eaqq q 7' v%8 q(,>aq 2!3C1 7'd%xs! Eaqq N!1{,avWA iq Iterator over all columns in their numerical order. Yields ------ Array (for RecordBatch) or ChunkedArray (for Table) Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> for i in table.itercolumns(): ... print(i.null_count) ... 2 1 Is this tensor mutable or immutable. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.is_mutable True Is this tensor contiguous in memory. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.is_contiguous True IpcWriteOptions.__reduce_cython__IPC write statistics Parameters ---------- num_messages : int Number of messages. num_record_batches : int Number of record batches. num_dictionary_batches : int Number of dictionary batches. num_dictionary_deltas : int Delta of dictionaries. num_replaced_dictionaries : int Number of replaced dictionaries. !HDt1,K8ST6D $a ~%6awa|6#1L Qt1!#Qa 1 Flatten this ChunkedArray. If it has a struct type, the column is flattened into one array per struct field. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- result : list of ChunkedArray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> c_arr = pa.chunked_array(n_legs.value_counts()) >>> c_arr [ -- is_valid: all not null -- child 0 type: int64 [ 2, 4, 5, 100 ] -- child 1 type: int64 [ 2, 2, 1, 1 ] ] >>> c_arr.flatten() [ [ [ 2, 4, 5, 100 ] ], [ [ 2, 2, 1, 1 ] ]] >>> c_arr.type StructType(struct) >>> n_legs.type DataType(int64) FixedSizeListArray.values.__get__ (line 3665)FixedShapeTensorScalar.to_numpyFixedShapeTensorArray.to_tensor Find the first index of a value. See :func:`pyarrow.compute.index` for full usage. Parameters ---------- value : Scalar or object The value to look for in the array. start : int, optional The start index where to look for `value`. end : int, optional The end index where to look for `value`. memory_pool : MemoryPool, optional A memory pool for potential memory allocations. Returns ------- index : Int64Scalar The index of the value in the array (-1 if not found). Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.index(4) >>> n_legs.index(4, start=3) File object is malformed, has no modeField.remove_metadata (line 2629)ExtensionType.__arrow_ext_class___ExtensionRegistryNanny.__setstate_cython___ExtensionRegistryNanny.__reduce_cython__Expected scipy.sparse.csr_array or scipy.sparse.csr_matrix, got Expected scipy.sparse.csc_array or scipy.sparse.csc_matrix, got Expected scipy.sparse.coo_array or scipy.sparse.coo_matrix, got Expected array or chunked array, got Expected an object implementing the Arrow PyCapsule Protocol for streams (i.e. having a `__arrow_c_stream__` method), got EQT {!+B!{!+B!^81A{$a<|1Maiq V1'q 1(3:XSuAQ 1 Drop one or more columns and return a new Table or RecordBatch. Parameters ---------- columns : str or list[str] Field name(s) referencing existing column(s). Raises ------ KeyError If any of the passed column names do not exist. Returns ------- Table or RecordBatch A tabular object without the column(s). Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Drop one column: >>> table.drop_columns("animals") pyarrow.Table n_legs: int64 ---- n_legs: [[2,4,5,100]] Drop one or more columns: >>> table.drop_columns(["n_legs", "animals"]) pyarrow.Table ... ---- Do not call Field's constructor directly, use `pyarrow.field` instead. Dimensions of the table or record batch: (#rows, #columns). Returns ------- (int, int) Number of rows and number of columns. Examples -------- >>> import pyarrow as pa >>> table = pa.table({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table.shape (4, 2) Dictionary (categorical, or simply encoded) type. Parameters ---------- index_type : DataType value_type : DataType ordered : bool Returns ------- type : DictionaryType Examples -------- Create an instance of dictionary type: >>> import pyarrow as pa >>> pa.dictionary(pa.int64(), pa.utf8()) DictionaryType(dictionary) Use dictionary type to create an array: >>> pa.array(["a", "b", None, "d"], pa.dictionary(pa.int64(), pa.utf8())) ... -- dictionary: [ "a", "b", "d" ] -- indices: [ 0, 1, null, 2 ] DictionaryType.value_type.__get__ (line 532)DictionaryType.index_type.__get__ (line 519) Declare a grouping over the columns of the table. Resulting grouping can then be used to perform aggregations with a subsequent ``aggregate()`` method. Parameters ---------- keys : str or list[str] Name of the columns that should be used as the grouping key. use_threads : bool, default True Whether to use multithreading or not. When set to True (the default), no stable ordering of the output is guaranteed. Returns ------- TableGroupBy See Also -------- TableGroupBy.aggregate Examples -------- >>> import pandas as pd >>> import pyarrow as pa >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.group_by('year').aggregate([('n_legs', 'sum')]) pyarrow.Table year: int64 n_legs_sum: int64 ---- year: [[2020,2022,2021,2019]] n_legs_sum: [[2,6,104,5]] DataType.bit_width.__get__ (line 257)DataType._import_from_c_capsule Create variable-length or fixed size binary type. Parameters ---------- length : int, optional, default -1 If length == -1 then return a variable length binary type. If length is greater than or equal to 0 then return a fixed size binary type of width `length`. Examples -------- Create an instance of a variable-length binary type: >>> import pyarrow as pa >>> pa.binary() DataType(binary) and use the variable-length binary type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.binary()) [ 666F6F, 626172, 62617A ] Create an instance of a fixed-size binary type: >>> pa.binary(3) FixedSizeBinaryType(fixed_size_binary[3]) and use the fixed-length binary type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.binary(3)) [ 666F6F, 626172, 62617A ] Create single-precision floating point type. Examples -------- Create an instance of float32 type: >>> import pyarrow as pa >>> pa.float32() DataType(float) >>> print(pa.float32()) float Create an array with float32 type: >>> pa.array([0.0, 1.0, 2.0], type=pa.float32()) [ 0, 1, 2 ] Create shallow copy of table by replacing schema key-value metadata with the indicated new metadata (which may be None), which deletes any existing metadata. Parameters ---------- metadata : dict, default None Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Constructing a Table with pyarrow schema and metadata: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> table= pa.table(df, my_schema) >>> table.schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' pandas: ... Create a shallow copy of a Table with deleted schema metadata: >>> table.replace_schema_metadata().schema n_legs: int64 animals: string Create a shallow copy of a Table with new schema metadata: >>> metadata={"animals": "Which animal"} >>> table.replace_schema_metadata(metadata = metadata).schema n_legs: int64 animals: string -- schema metadata -- animals: 'Which animal' Create shallow copy of record batch by replacing schema key-value metadata with the indicated new metadata (which may be None, which deletes any existing metadata Parameters ---------- metadata : dict, default None Returns ------- shallow_copy : RecordBatch Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) Constructing a RecordBatch with schema and metadata: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64())], ... metadata={"n_legs": "Number of legs per animal"}) >>> batch = pa.RecordBatch.from_arrays([n_legs], schema=my_schema) >>> batch.schema n_legs: int64 -- schema metadata -- n_legs: 'Number of legs per animal' Shallow copy of a RecordBatch with deleted schema metadata: >>> batch.replace_schema_metadata().schema n_legs: int64 Create pyarrow.Array instance from a Python object. Parameters ---------- obj : sequence, iterable, ndarray, pandas.Series, Arrow-compatible array If both type and size are specified may be a single use iterable. If not strongly-typed, Arrow type will be inferred for resulting array. Any Arrow-compatible array that implements the Arrow PyCapsule Protocol (has an ``__arrow_c_array__`` or ``__arrow_c_device_array__`` method) can be passed as well. type : pyarrow.DataType Explicit type to attempt to coerce to, otherwise will be inferred from the data. mask : array[bool], optional Indicate which values are null (True) or not null (False). size : int64, optional Size of the elements. If the input is larger than size bail at this length. For iterators, if size is larger than the input iterator this will be treated as a "max size", but will involve an initial allocation of size followed by a resize to the actual size (so if you know the exact size specifying it correctly will give you better performance). from_pandas : bool, default None Use pandas's semantics for inferring nulls from values in ndarray-like data. If passed, the mask tasks precedence, but if a value is unmasked (not-null), but still null according to pandas semantics, then it is null. Defaults to False if not passed explicitly by user, or True if a pandas object is passed in. safe : bool, default True Check for overflows or other unsafe conversions. memory_pool : pyarrow.MemoryPool, optional If not passed, will allocate memory from the currently-set default memory pool. Returns ------- array : pyarrow.Array or pyarrow.ChunkedArray A ChunkedArray instead of an Array is returned if: - the object data overflowed binary storage. - the object's ``__arrow_array__`` protocol method returned a chunked array. Notes ----- Timezone will be preserved in the returned array for timezone-aware data, else no timezone will be returned for naive timestamps. Internally, UTC values are stored for timezone-aware data with the timezone set in the data type. Pandas's DateOffsets and dateutil.relativedelta.relativedelta are by default converted as MonthDayNanoIntervalArray. relativedelta leapdays are ignored as are all absolute fields on both objects. datetime.timedelta can also be converted to MonthDayNanoIntervalArray but this requires passing MonthDayNanoIntervalType explicitly. Converting to dictionary array will promote to a wider integer type for indices if the number of distinct values cannot be represented, even if the index type was explicitly set. This means that if there are more than 127 values the returned dictionary array's index type will be at least pa.int16() even if pa.int8() was passed to the function. Note that an explicit index type will not be demoted even if it is wider than required. Examples -------- >>> import pandas as pd >>> import pyarrow as pa >>> pa.array(pd.Series([1, 2])) [ 1, 2 ] >>> pa.array(["a", "b", "a"], type=pa.dictionary(pa.int8(), pa.string())) ... -- dictionary: [ "a", "b" ] -- indices: [ 0, 1, 0 ] >>> import numpy as np >>> pa.array(pd.Series([1, 2]), mask=np.array([0, 1], dtype=bool)) [ 1, null ] >>> arr = pa.array(range(1024), type=pa.dictionary(pa.int8(), pa.int64())) >>> arr.type.index_type DataType(int16) Create new table with columns renamed to provided names. Parameters ---------- names : list[str] or dict[str, str] List of new column names or mapping of old column names to new column names. If a mapping of old to new column names is passed, then all columns which are found to match a provided old column name will be renamed to the new column name. If any column names are not found in the mapping, a KeyError will be raised. Raises ------ KeyError If any of the column names passed in the names mapping do not exist. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> new_names = ["n", "name"] >>> table.rename_columns(new_names) pyarrow.Table n: int64 name: string ---- n: [[2,4,5,100]] name: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> new_names = {"n_legs": "n", "animals": "name"} >>> table.rename_columns(new_names) pyarrow.Table n: int64 name: string ---- n: [[2,4,5,100]] name: [["Flamingo","Horse","Brittle stars","Centipede"]] Create new schema without metadata, if any Returns ------- schema : pyarrow.Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Create a new schema with removing the metadata from the original: >>> schema.remove_metadata() n_legs: int64 animals: string Create new record batch with columns renamed to provided names. Parameters ---------- names : list[str] or dict[str, str] List of new column names or mapping of old column names to new column names. If a mapping of old to new column names is passed, then all columns which are found to match a provided old column name will be renamed to the new column name. If any column names are not found in the mapping, a KeyError will be raised. Raises ------ KeyError If any of the column names passed in the names mapping do not exist. Returns ------- RecordBatch Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) >>> new_names = ["n", "name"] >>> batch.rename_columns(new_names) pyarrow.RecordBatch n: int64 name: string ---- n: [2,4,5,100] name: ["Flamingo","Horse","Brittle stars","Centipede"] >>> new_names = {"n_legs": "n", "animals": "name"} >>> batch.rename_columns(new_names) pyarrow.RecordBatch n: int64 name: string ---- n: [2,4,5,100] name: ["Flamingo","Horse","Brittle stars","Centipede"] Create new field without metadata, if any Returns ------- field : pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32(), ... metadata={"key": "Something important"}) >>> field.metadata {b'key': b'Something important'} Create new field by removing the metadata from the existing one: >>> field_new = field.remove_metadata() >>> field_new.metadata Create new Table with the indicated column removed. Parameters ---------- i : int Index of column to remove. Returns ------- Table New table without the column. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.remove_column(1) pyarrow.Table n_legs: int64 ---- n_legs: [[2,4,5,100]] Create new RecordBatch with the indicated column removed. Parameters ---------- i : int Index of column to remove. Returns ------- Table New record batch without the column. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) >>> batch.remove_column(1) pyarrow.RecordBatch n_legs: int64 ---- n_legs: [2,4,5,100] Create large variable-length binary type. This data type may not be supported by all Arrow implementations. Unless you need to represent data larger than 2GB, you should prefer binary(). Examples -------- Create an instance of large variable-length binary type: >>> import pyarrow as pa >>> pa.large_binary() DataType(large_binary) and use the type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.large_binary()) [ 666F6F, 626172, 62617A ] Create large UTF8 variable-length string type. This data type may not be supported by all Arrow implementations. Unless you need to represent data larger than 2GB, you should prefer string(). Examples -------- Create an instance of large UTF8 variable-length binary type: >>> import pyarrow as pa >>> pa.large_string() DataType(large_string) and use the type to create an array: >>> pa.array(['foo', 'bar'] * 50, type=pa.large_string()) [ "foo", "bar", ... "foo", "bar" ] Create instance of unsigned uint16 type. Examples -------- Create an instance of unsigned int16 type: >>> import pyarrow as pa >>> pa.uint16() DataType(uint16) >>> print(pa.uint16()) uint16 Create an array with unsigned int16 type: >>> pa.array([0, 1, 2], type=pa.uint16()) [ 0, 1, 2 ] Create instance of unsigned int8 type. Examples -------- Create an instance of unsigned int8 type: >>> import pyarrow as pa >>> pa.uint8() DataType(uint8) >>> print(pa.uint8()) uint8 Create an array with unsigned int8 type: >>> pa.array([0, 1, 2], type=pa.uint8()) [ 0, 1, 2 ] Create instance of timestamp type with resolution and optional time zone. Parameters ---------- unit : str one of 's' [second], 'ms' [millisecond], 'us' [microsecond], or 'ns' [nanosecond] tz : str, default None Time zone name. None indicates time zone naive Examples -------- Create an instance of timestamp type: >>> import pyarrow as pa >>> pa.timestamp('us') TimestampType(timestamp[us]) >>> pa.timestamp('s', tz='America/New_York') TimestampType(timestamp[s, tz=America/New_York]) >>> pa.timestamp('s', tz='+07:30') TimestampType(timestamp[s, tz=+07:30]) Use timestamp type when creating a scalar object: >>> from datetime import datetime >>> pa.scalar(datetime(2012, 1, 1), type=pa.timestamp('s', tz='UTC')) >>> pa.scalar(datetime(2012, 1, 1), type=pa.timestamp('us')) Returns ------- timestamp_type : TimestampType Create instance of signed int64 type. Examples -------- Create an instance of int64 type: >>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> print(pa.int64()) int64 Create an array with int64 type: >>> pa.array([0, 1, 2], type=pa.int64()) [ 0, 1, 2 ] Create instance of signed int32 type. Examples -------- Create an instance of int32 type: >>> import pyarrow as pa >>> pa.int32() DataType(int32) >>> print(pa.int32()) int32 Create an array with int32 type: >>> pa.array([0, 1, 2], type=pa.int32()) [ 0, 1, 2 ] Create instance of signed int16 type. Examples -------- Create an instance of int16 type: >>> import pyarrow as pa >>> pa.int16() DataType(int16) >>> print(pa.int16()) int16 Create an array with int16 type: >>> pa.array([0, 1, 2], type=pa.int16()) [ 0, 1, 2 ] Create instance of opaque extension type. Parameters ---------- storage_type : DataType The underlying data type. type_name : str The name of the type in the external system. vendor_name : str The name of the external system. Examples -------- Create an instance of an opaque extension type: >>> import pyarrow as pa >>> type = pa.opaque(pa.binary(), "other", "jdbc") >>> type OpaqueType(extension) Inspect the data type: >>> type.storage_type DataType(binary) >>> type.type_name 'other' >>> type.vendor_name 'jdbc' Create a table with an opaque array: >>> arr = [None, b"foobar"] >>> storage = pa.array(arr, pa.binary()) >>> other = pa.ExtensionArray.from_storage(type, storage) >>> pa.table([other], names=["unknown_col"]) pyarrow.Table unknown_col: extension ---- unknown_col: [[null,666F6F626172]] Returns ------- type : OpaqueType Create instance of null type. Examples -------- Create an instance of a null type: >>> import pyarrow as pa >>> pa.null() DataType(null) >>> print(pa.null()) null Create a ``Field`` type with a null type and a name: >>> pa.field('null_field', pa.null()) pyarrow.Field Create instance of boolean type. Examples -------- Create an instance of a boolean type: >>> import pyarrow as pa >>> pa.bool_() DataType(bool) >>> print(pa.bool_()) bool Create a ``Field`` type with a boolean type and a name: >>> pa.field('bool_field', pa.bool_()) pyarrow.Field Create instance of bool8 extension type. Examples -------- Create an instance of bool8 extension type: >>> import pyarrow as pa >>> type = pa.bool8() >>> type Bool8Type(extension) Inspect the data type: >>> type.storage_type DataType(int8) Create a table with a bool8 array: >>> arr = [-1, 0, 1, 2, None] >>> storage = pa.array(arr, pa.int8()) >>> other = pa.ExtensionArray.from_storage(type, storage) >>> pa.table([other], names=["unknown_col"]) pyarrow.Table unknown_col: extension ---- unknown_col: [[-1,0,1,2,null]] Returns ------- type : Bool8Type Create instance of a duration type with unit resolution. Parameters ---------- unit : str One of 's' [second], 'ms' [millisecond], 'us' [microsecond], or 'ns' [nanosecond]. Returns ------- type : pyarrow.DurationType Examples -------- Create an instance of duration type: >>> import pyarrow as pa >>> pa.duration('us') DurationType(duration[us]) >>> pa.duration('s') DurationType(duration[s]) Create an array with duration type: >>> pa.array([0, 1, 2], type=pa.duration('s')) [ 0, 1, 2 ] Create instance of JSON extension type. Parameters ---------- storage_type : DataType, default pyarrow.string() The underlying data type. Can be on of the following types: string, large_string, string_view. Returns ------- type : JsonType Examples -------- Create an instance of JSON extension type: >>> import pyarrow as pa >>> pa.json_(pa.utf8()) JsonType(extension) Use the JSON type to create an array: >>> pa.array(['{"a": 1}', '{"b": 2}'], type=pa.json_(pa.utf8())) [ "{"a": 1}", "{"b": 2}" ] Create double-precision floating point type. Examples -------- Create an instance of float64 type: >>> import pyarrow as pa >>> pa.float64() DataType(double) >>> print(pa.float64()) double Create an array with float64 type: >>> pa.array([0.0, 1.0, 2.0], type=pa.float64()) [ 0, 1, 2 ] Create decimal type with precision and scale and 32-bit width. Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative). As an example, ``decimal32(7, 3)`` can exactly represent the numbers 1234.567 and -1234.567 (encoded internally as the 32-bit integers 1234567 and -1234567, respectively), but neither 12345.67 nor 123.4567. ``decimal32(5, -3)`` can exactly represent the number 12345000 (encoded internally as the 32-bit integer 12345), but neither 123450000 nor 1234500. If you need a precision higher than 9 significant digits, consider using ``decimal64``, ``decimal128``, or ``decimal256``. Parameters ---------- precision : int Must be between 1 and 9 scale : int Returns ------- decimal_type : Decimal32Type Examples -------- Create an instance of decimal type: >>> import pyarrow as pa >>> pa.decimal32(5, 2) Decimal32Type(decimal32(5, 2)) Create an array with decimal type: >>> import decimal >>> a = decimal.Decimal('123.45') >>> pa.array([a], pa.decimal32(5, 2)) [ 123.45 ] Create an Arrow output stream. Parameters ---------- source : str, Path, buffer, file-like object The source to open for writing. compression : str optional, default 'detect' The compression algorithm to use for on-the-fly compression. If "detect" and source is a file path, then compression will be chosen based on the file extension. If None, no compression will be applied. Otherwise, a well-known algorithm name must be supplied (e.g. "gzip"). buffer_size : int, default None If None or 0, no buffering will happen. Otherwise the size of the temporary write buffer. Examples -------- Create a writable NativeFile from a pyarrow Buffer: >>> import pyarrow as pa >>> data = b"buffer data" >>> empty_obj = bytearray(11) >>> buf = pa.py_buffer(empty_obj) >>> with pa.output_stream(buf) as stream: ... stream.write(data) ... 11 >>> with pa.input_stream(buf) as stream: ... stream.read(6) ... b'buffer' or from a memoryview object: >>> buf = memoryview(empty_obj) >>> with pa.output_stream(buf) as stream: ... stream.write(data) ... 11 >>> with pa.input_stream(buf) as stream: ... stream.read() ... b'buffer data' Create a writable NativeFile from a string or file path: >>> with pa.output_stream('example_second.txt') as stream: ... stream.write(b'Write some data') ... 15 >>> with pa.input_stream('example_second.txt') as stream: ... stream.read() ... b'Write some data' Create an Arrow input stream. Parameters ---------- source : str, Path, buffer, or file-like object The source to open for reading. compression : str optional, default 'detect' The compression algorithm to use for on-the-fly decompression. If "detect" and source is a file path, then compression will be chosen based on the file extension. If None, no compression will be applied. Otherwise, a well-known algorithm name must be supplied (e.g. "gzip"). buffer_size : int, default None If None or 0, no buffering will happen. Otherwise the size of the temporary read buffer. Examples -------- Create a readable BufferReader (NativeFile) from a Buffer or a memoryview object: >>> import pyarrow as pa >>> buf = memoryview(b"some data") >>> with pa.input_stream(buf) as stream: ... stream.read(4) ... b'some' Create a readable OSFile (NativeFile) from a string or file path: >>> import gzip >>> with gzip.open('example.gz', 'wb') as f: ... f.write(b'some data') ... 9 >>> with pa.input_stream('example.gz') as stream: ... stream.read() ... b'some data' Create a readable PythonFile (NativeFile) from a a Python file object: >>> with open('example.txt', mode='w') as f: ... f.write('some text') ... 9 >>> with pa.input_stream('example.txt') as stream: ... stream.read(6) ... b'some t' Create a variable-length binary view type. Examples -------- Create an instance of a string type: >>> import pyarrow as pa >>> pa.binary_view() DataType(binary_view) Create a strongly-typed Array instance with all elements null. Parameters ---------- size : int Array length. type : pyarrow.DataType, default None Explicit type for the array. By default use NullType. memory_pool : MemoryPool, default None Arrow MemoryPool to use for allocations. Uses the default memory pool if not passed. Returns ------- arr : Array Examples -------- >>> import pyarrow as pa >>> pa.nulls(10) 10 nulls >>> pa.nulls(3, pa.uint32()) [ null, null, null ] Create a pyarrow.Table from a Python data structure or sequence of arrays. Parameters ---------- data : dict, list, pandas.DataFrame, Arrow-compatible table A mapping of strings to Arrays or Python lists, a list of arrays or chunked arrays, a pandas DataFame, or any tabular object implementing the Arrow PyCapsule Protocol (has an ``__arrow_c_array__``, ``__arrow_c_device_array__`` or ``__arrow_c_stream__`` method). names : list, default None Column names if list of arrays passed as data. Mutually exclusive with 'schema' argument. schema : Schema, default None The expected schema of the Arrow Table. If not passed, will be inferred from the data. Mutually exclusive with 'names' argument. If passed, the output will have exactly this schema (raising an error when columns are not found in the data and ignoring additional data not specified in the schema, when data is a dict or DataFrame). metadata : dict or Mapping, default None Optional metadata for the schema (if schema not passed). nthreads : int, default None For pandas.DataFrame inputs: if greater than 1, convert columns to Arrow in parallel using indicated number of threads. By default, this follows :func:`pyarrow.cpu_count` (may use up to system CPU count threads). Returns ------- Table See Also -------- Table.from_arrays, Table.from_pandas, Table.from_pydict Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Construct a Table from a python dictionary: >>> pa.table({"n_legs": n_legs, "animals": animals}) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from arrays: >>> pa.table([n_legs, animals], names=names) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from arrays with metadata: >>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.table([n_legs, animals], names=names, metadata = my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from pandas DataFrame: >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.table(df) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022,2019,2021]] n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from pandas DataFrame with pyarrow schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.table(df, my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' pandas: '{"index_columns": [], "column_indexes": [{"name": null, ... Construct a Table from chunked arrays: >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> animals = pa.chunked_array([["Flamingo", "Parrot", "Dog"], ["Horse", "Brittle stars", "Centipede"]]) >>> table = pa.table([n_legs, animals], names=names) >>> table pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,2,4],[4,5,100]] animals: [["Flamingo","Parrot","Dog"],["Horse","Brittle stars","Centipede"]] Create a pyarrow.Scalar instance from a Python object. Parameters ---------- value : Any Python object coercible to arrow's type system. type : pyarrow.DataType Explicit type to attempt to coerce to, otherwise will be inferred from the value. from_pandas : bool, default None Use pandas's semantics for inferring nulls from values in ndarray-like data. Defaults to False if not passed explicitly by user, or True if a pandas object is passed in. memory_pool : pyarrow.MemoryPool, optional If not passed, will allocate memory from the currently-set default memory pool. Returns ------- scalar : pyarrow.Scalar Examples -------- >>> import pyarrow as pa >>> pa.scalar(42) >>> pa.scalar("string") >>> pa.scalar([1, 2]) >>> pa.scalar([1, 2], type=pa.list_(pa.int16())) Create a pyarrow.RecordBatch from another Python data structure or sequence of arrays. Parameters ---------- data : dict, list, pandas.DataFrame, Arrow-compatible table A mapping of strings to Arrays or Python lists, a list of Arrays, a pandas DataFame, or any tabular object implementing the Arrow PyCapsule Protocol (has an ``__arrow_c_array__`` or ``__arrow_c_device_array__`` method). names : list, default None Column names if list of arrays passed as data. Mutually exclusive with 'schema' argument. schema : Schema, default None The expected schema of the RecordBatch. If not passed, will be inferred from the data. Mutually exclusive with 'names' argument. metadata : dict or Mapping, default None Optional metadata for the schema (if schema not passed). Returns ------- RecordBatch See Also -------- RecordBatch.from_arrays, RecordBatch.from_pandas, table Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Construct a RecordBatch from a python dictionary: >>> pa.record_batch({"n_legs": n_legs, "animals": animals}) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] >>> pa.record_batch({"n_legs": n_legs, "animals": animals}).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede Creating a RecordBatch from a list of arrays with names: >>> pa.record_batch([n_legs, animals], names=names) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] Creating a RecordBatch from a list of arrays with names and metadata: >>> my_metadata={"n_legs": "How many legs does an animal have?"} >>> pa.record_batch([n_legs, animals], ... names=names, ... metadata = my_metadata) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] >>> pa.record_batch([n_legs, animals], ... names=names, ... metadata = my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'How many legs does an animal have?' Creating a RecordBatch from a pandas DataFrame: >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022], ... 'month': [3, 5, 7, 9], ... 'day': [1, 5, 9, 13], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.record_batch(df) pyarrow.RecordBatch year: int64 month: int64 day: int64 n_legs: int64 animals: string ---- year: [2020,2022,2021,2022] month: [3,5,7,9] day: [1,5,9,13] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] >>> pa.record_batch(df).to_pandas() year month day n_legs animals 0 2020 3 1 2 Flamingo 1 2022 5 5 4 Horse 2 2021 7 9 5 Brittle stars 3 2022 9 13 100 Centipede Creating a RecordBatch from a pandas DataFrame with schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.record_batch(df, my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' pandas: ... >>> pa.record_batch(df, my_schema).to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede Create a pyarrow.Field instance. Parameters ---------- name : str or bytes Name of the field. Alternatively, you can also pass an object that implements the Arrow PyCapsule Protocol for schemas (has an ``__arrow_c_schema__`` method). type : pyarrow.DataType or str Arrow datatype of the field or a string matching one. nullable : bool, default True Whether the field's values are nullable. metadata : dict, default None Optional field metadata, the keys and values must be coercible to bytes. Returns ------- field : pyarrow.Field Examples -------- Create an instance of pyarrow.Field: >>> import pyarrow as pa >>> pa.field('key', pa.int32()) pyarrow.Field >>> pa.field('key', pa.int32(), nullable=False) pyarrow.Field >>> field = pa.field('key', pa.int32(), ... metadata={"key": "Something important"}) >>> field pyarrow.Field >>> field.metadata {b'key': b'Something important'} Use the field to create a struct type: >>> pa.struct([field]) StructType(struct) A str can also be passed for the type parameter: >>> pa.field('key', 'int32') pyarrow.Field Create a file of the given size and memory-map it. Parameters ---------- path : str The file path to create, on the local filesystem. size : int The file size to create. Returns ------- mmap : MemoryMappedFile Examples -------- Create a file with a memory map: >>> import pyarrow as pa >>> with pa.create_memory_map('example_mmap_create.dat', 27) as mmap: ... mmap.write(b'Create a memory-mapped file') ... mmap.read_at(10, 9) ... 27 b'memory-map' Create a Tensor from a numpy array. Parameters ---------- obj : numpy.ndarray The source numpy array dim_names : list, optional Names of each dimension of the Tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) type: int32 shape: (2, 3) strides: (12, 4) Create UTF8 variable-length string type. Examples -------- Create an instance of a string type: >>> import pyarrow as pa >>> pa.string() DataType(string) and use the string type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.string()) [ "foo", "bar", "baz" ] Create StructType instance from fields. A struct is a nested type parameterized by an ordered sequence of types (which can all be distinct), called its fields. Parameters ---------- fields : iterable of Fields or tuples, or mapping of strings to DataTypes Each field must have a UTF8-encoded name, and these field names are part of the type metadata. Examples -------- Create an instance of StructType from an iterable of tuples: >>> import pyarrow as pa >>> fields = [ ... ('f1', pa.int32()), ... ('f2', pa.string()), ... ] >>> struct_type = pa.struct(fields) >>> struct_type StructType(struct) Retrieve a field from a StructType: >>> struct_type[0] pyarrow.Field >>> struct_type['f1'] pyarrow.Field Create an instance of StructType from an iterable of Fields: >>> fields = [ ... pa.field('f1', pa.int32()), ... pa.field('f2', pa.string(), nullable=False), ... ] >>> pa.struct(fields) StructType(struct) Returns ------- type : DataType Create MapType instance from key and item data types or fields. Parameters ---------- key_type : DataType or Field item_type : DataType or Field keys_sorted : bool Returns ------- map_type : DataType Examples -------- Create an instance of MapType: >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()) MapType(map) >>> pa.map_(pa.string(), pa.int32(), keys_sorted=True) MapType(map) Use MapType to create an array: >>> data = [[{'key': 'a', 'value': 1}, {'key': 'b', 'value': 2}], [{'key': 'c', 'value': 3}]] >>> pa.array(data, type=pa.map_(pa.string(), pa.int32(), keys_sorted=True)) [ keys: [ "a", "b" ] values: [ 1, 2 ], keys: [ "c" ] values: [ 3 ] ] Create ListViewType instance from child data type or field. This data type may not be supported by all Arrow implementations because it is an alternative to the ListType. Parameters ---------- value_type : DataType or Field Returns ------- list_view_type : DataType Examples -------- Create an instance of ListViewType: >>> import pyarrow as pa >>> pa.list_view(pa.string()) ListViewType(list_view) Create ListType instance from child data type or field. Parameters ---------- value_type : DataType or Field list_size : int, optional, default -1 If length == -1 then return a variable length list type. If length is greater than or equal to 0 then return a fixed size list type. Returns ------- list_type : DataType Examples -------- Create an instance of ListType: >>> import pyarrow as pa >>> pa.list_(pa.string()) ListType(list) >>> pa.list_(pa.int32(), 2) FixedSizeListType(fixed_size_list[2]) Use the ListType to create a scalar: >>> pa.scalar(['foo', None], type=pa.list_(pa.string(), 2)) or an array: >>> pa.array([[1, 2], [3, 4]], pa.list_(pa.int32(), 2)) [ [ 1, 2 ], [ 3, 4 ] ] Create LargeListViewType instance from child data type or field. This data type may not be supported by all Arrow implementations because it is an alternative to the ListType. Parameters ---------- value_type : DataType or Field Returns ------- list_view_type : DataType Examples -------- Create an instance of LargeListViewType: >>> import pyarrow as pa >>> pa.large_list_view(pa.int8()) LargeListViewType(large_list_view) Create LargeListType instance from child data type or field. This data type may not be supported by all Arrow implementations. Unless you need to represent data larger than 2**31 elements, you should prefer list_(). Parameters ---------- value_type : DataType or Field Returns ------- list_type : DataType Examples -------- Create an instance of LargeListType: >>> import pyarrow as pa >>> pa.large_list(pa.int8()) LargeListType(large_list) Use the LargeListType to create an array: >>> pa.array([[-1, 3]] * 5, type=pa.large_list(pa.int8())) [ [ -1, 3 ], [ -1, 3 ], ... Converting to Python dictionary is not supported when duplicate field names are present Convert to an iterator of ChunkArrays. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> for i in n_legs.iterchunks(): ... print(i.null_count) ... 0 1 Convert to a list of single-chunked arrays. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, None], [4, 5, 100]]) >>> n_legs [ [ 2, 2, null ], [ 4, 5, 100 ] ] >>> n_legs.chunks [ [ 2, 2, null ], [ 4, 5, 100 ]] Convert to a list of native Python objects. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.to_pylist() [2, 2, 4, 4, None, 100] Convert to a :class:`~pyarrow.Tensor`. RecordBatches that can be converted have fields of type signed or unsigned integer or float, including all bit-widths. ``null_to_nan`` is ``False`` by default and this method will raise an error in case any nulls are present. RecordBatches with nulls can be converted with ``null_to_nan`` set to ``True``. In this case null values are converted to ``NaN`` and integer type arrays are promoted to the appropriate float type. Parameters ---------- null_to_nan : bool, default False Whether to write null values in the result as ``NaN``. row_major : bool, default True Whether resulting Tensor is row-major or column-major memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Examples -------- >>> import pyarrow as pa >>> batch = pa.record_batch( ... [ ... pa.array([1, 2, 3, 4, None], type=pa.int32()), ... pa.array([10, 20, 30, 40, None], type=pa.float32()), ... ], names = ["a", "b"] ... ) >>> batch pyarrow.RecordBatch a: int32 b: float ---- a: [1,2,3,4,null] b: [10,20,30,40,null] Convert a RecordBatch to row-major Tensor with null values written as ``NaN``s >>> batch.to_tensor(null_to_nan=True) type: double shape: (5, 2) strides: (16, 8) >>> batch.to_tensor(null_to_nan=True).to_numpy() array([[ 1., 10.], [ 2., 20.], [ 3., 30.], [ 4., 40.], [nan, nan]]) Convert a RecordBatch to column-major Tensor >>> batch.to_tensor(null_to_nan=True, row_major=False) type: double shape: (5, 2) strides: (8, 40) >>> batch.to_tensor(null_to_nan=True, row_major=False).to_numpy() array([[ 1., 10.], [ 2., 20.], [ 3., 30.], [ 4., 40.], [nan, nan]]) Convert the Table to a RecordBatchReader. Note that this method is zero-copy, it merely exposes the same data under a different API. Parameters ---------- max_chunksize : int, default None Maximum number of rows for each RecordBatch chunk. Individual chunks may be smaller depending on the chunk layout of individual columns. Returns ------- RecordBatchReader Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Convert a Table to a RecordBatchReader: >>> table.to_reader() >>> reader = table.to_reader() >>> reader.schema n_legs: int64 animals: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, ... >>> reader.read_all() pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Convert the Table or RecordBatch to a dict or OrderedDict. Parameters ---------- maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. If 'lossy', whenever duplicate keys are detected, a warning will be printed. The last seen value of a duplicate key will be in the Python dictionary. If 'strict', this instead results in an exception being raised when detected. Returns ------- dict Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> table = pa.Table.from_arrays([n_legs, animals], names=["n_legs", "animals"]) >>> table.to_pydict() {'n_legs': [2, 2, 4, 4, 5, 100], 'animals': ['Flamingo', 'Parrot', ..., 'Centipede']} Convert arrow::Tensor to numpy.ndarray with zero copy Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.to_numpy() array([[ 2, 2, 4], [ 4, 5, 100]], dtype=int32) Convert Table to a list of RecordBatch objects. Note that this method is zero-copy, it merely exposes the same data under a different API. Parameters ---------- max_chunksize : int, default None Maximum number of rows for each RecordBatch chunk. Individual chunks may be smaller depending on the chunk layout of individual columns. Returns ------- list[RecordBatch] Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Convert a Table to a RecordBatch: >>> table.to_batches()[0].to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede Convert a Table to a list of RecordBatches: >>> table.to_batches(max_chunksize=2)[0].to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse >>> table.to_batches(max_chunksize=2)[1].to_pandas() n_legs animals 0 5 Brittle stars 1 100 Centipede Construct pyarrow.Schema from collection of fields. Parameters ---------- fields : iterable of Fields or tuples, or mapping of strings to DataTypes Can also pass an object that implements the Arrow PyCapsule Protocol for schemas (has an ``__arrow_c_schema__`` method). metadata : dict, default None Keys and values must be coercible to bytes. Examples -------- Create a Schema from iterable of tuples: >>> import pyarrow as pa >>> pa.schema([ ... ('some_int', pa.int32()), ... ('some_string', pa.string()), ... pa.field('some_required_string', pa.string(), nullable=False) ... ]) some_int: int32 some_string: string some_required_string: string not null Create a Schema from iterable of Fields: >>> pa.schema([ ... pa.field('some_int', pa.int32()), ... pa.field('some_string', pa.string()) ... ]) some_int: int32 some_string: string DataTypes can also be passed as strings. The following is equivalent to the above example: >>> pa.schema([ ... pa.field('some_int', "int32"), ... pa.field('some_string', "string") ... ]) some_int: int32 some_string: string Or more concisely: >>> pa.schema([ ... ('some_int', "int32"), ... ('some_string', "string") ... ]) some_int: int32 some_string: string Returns ------- schema : pyarrow.Schema Construct chunked array from list of array-like objects Parameters ---------- arrays : Array, list of Array, or array-like Must all be the same data type. Can be empty only if type also passed. Any Arrow-compatible array that implements the Arrow PyCapsule Protocol (has an ``__arrow_c_array__`` or ``__arrow_c_stream__`` method) can be passed as well. type : DataType or string coercible to DataType Returns ------- ChunkedArray Examples -------- >>> import pyarrow as pa >>> pa.chunked_array([], type=pa.int8()) [ ... ] >>> pa.chunked_array([[2, 2, 4], [4, 5, 100]]) [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] Construct a Table or RecordBatch from Arrow arrays or columns. Parameters ---------- mapping : dict or Mapping A mapping of strings to Arrays or Python lists. schema : Schema, default None If not passed, will be inferred from the Mapping values. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table or RecordBatch Examples -------- Table (works similarly for RecordBatch) >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> pydict = {'n_legs': n_legs, 'animals': animals} Construct a Table from a dictionary of arrays: >>> pa.Table.from_pydict(pydict) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> pa.Table.from_pydict(pydict).schema n_legs: int64 animals: string Construct a Table from a dictionary of arrays with metadata: >>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.Table.from_pydict(pydict, metadata=my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from a dictionary of arrays with pyarrow schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.Table.from_pydict(pydict, schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from a sequence or iterator of Arrow RecordBatches. Parameters ---------- batches : sequence or iterator of RecordBatch Sequence of RecordBatch to be converted, all schemas must be equal. schema : Schema, default None If not passed, will be inferred from the first RecordBatch. Returns ------- Table Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] >>> batch = pa.record_batch([n_legs, animals], names=names) >>> batch.to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede Construct a Table from a RecordBatch: >>> pa.Table.from_batches([batch]) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from a sequence of RecordBatches: >>> pa.Table.from_batches([batch, batch]) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100],[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"],["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from a StructArray. Each field in the StructArray will become a column in the resulting ``Table``. Parameters ---------- struct_array : StructArray or ChunkedArray Array to construct the table from. Returns ------- pyarrow.Table Examples -------- >>> import pyarrow as pa >>> struct = pa.array([{'n_legs': 2, 'animals': 'Parrot'}, ... {'year': 2022, 'n_legs': 4}]) >>> pa.Table.from_struct_array(struct).to_pandas() animals n_legs year 0 Parrot 2 NaN 1 None 4 2022.0 Construct a Table from Arrow arrays. Parameters ---------- arrays : list of pyarrow.Array or pyarrow.ChunkedArray Equal-length arrays that should form the table. names : list of str, optional Names for the table columns. If not passed, schema must be passed. schema : Schema, default None Schema for the created table. If not passed, names must be passed. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Construct a Table from arrays: >>> pa.Table.from_arrays([n_legs, animals], names=names) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Construct a Table from arrays with metadata: >>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.Table.from_arrays([n_legs, animals], ... names=names, ... metadata=my_metadata) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> pa.Table.from_arrays([n_legs, animals], ... names=names, ... metadata=my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct a Table from arrays with pyarrow schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"animals": "Name of the animal species"}) >>> pa.Table.from_arrays([n_legs, animals], ... schema=my_schema) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> pa.Table.from_arrays([n_legs, animals], ... schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- animals: 'Name of the animal species' Construct a RecordBatch from multiple pyarrow.Arrays Parameters ---------- arrays : list of pyarrow.Array One for each field in RecordBatch names : list of str, optional Names for the batch fields. If not passed, schema must be passed schema : Schema, default None Schema for the created batch. If not passed, names must be passed metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- pyarrow.RecordBatch Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"] Construct a RecordBatch from pyarrow Arrays using names: >>> pa.RecordBatch.from_arrays([n_legs, animals], names=names) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] >>> pa.RecordBatch.from_arrays([n_legs, animals], names=names).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede Construct a RecordBatch from pyarrow Arrays using schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.RecordBatch.from_arrays([n_legs, animals], schema=my_schema).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede >>> pa.RecordBatch.from_arrays([n_legs, animals], schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' Construct ListViewArray from arrays of int32 offsets, sizes, and values. Parameters ---------- offsets : Array (int32 type) sizes : Array (int32 type) values : Array (any type) type : DataType, optional If not specified, a default ListType with the values' type is used. pool : MemoryPool, optional mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- list_view_array : ListViewArray Examples -------- >>> import pyarrow as pa >>> values = pa.array([1, 2, 3, 4]) >>> offsets = pa.array([0, 1, 2]) >>> sizes = pa.array([2, 2, 2]) >>> pa.ListViewArray.from_arrays(offsets, sizes, values) [ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ] ] >>> # use a null mask to represent null values >>> mask = pa.array([False, True, False]) >>> pa.ListViewArray.from_arrays(offsets, sizes, values, mask=mask) [ [ 1, 2 ], null, [ 3, 4 ] ] >>> # null values can be defined in either offsets or sizes arrays >>> # WARNING: this will result in a copy of the offsets or sizes arrays >>> offsets = pa.array([0, None, 2]) >>> pa.ListViewArray.from_arrays(offsets, sizes, values) [ [ 1, 2 ], null, [ 3, 4 ] ] Construct ListArray from arrays of int32 offsets and values. Parameters ---------- offsets : Array (int32 type) values : Array (any type) type : DataType, optional If not specified, a default ListType with the values' type is used. pool : MemoryPool, optional mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- list_array : ListArray Examples -------- >>> import pyarrow as pa >>> values = pa.array([1, 2, 3, 4]) >>> offsets = pa.array([0, 2, 4]) >>> pa.ListArray.from_arrays(offsets, values) [ [ 1, 2 ], [ 3, 4 ] ] >>> # nulls in the offsets array become null lists >>> offsets = pa.array([0, None, 2, 4]) >>> pa.ListArray.from_arrays(offsets, values) [ [ 1, 2 ], null, [ 3, 4 ] ] Construct LargeListViewArray from arrays of int64 offsets and values. Parameters ---------- offsets : Array (int64 type) sizes : Array (int64 type) values : Array (any type) type : DataType, optional If not specified, a default ListType with the values' type is used. pool : MemoryPool, optional mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- list_view_array : LargeListViewArray Examples -------- >>> import pyarrow as pa >>> values = pa.array([1, 2, 3, 4]) >>> offsets = pa.array([0, 1, 2]) >>> sizes = pa.array([2, 2, 2]) >>> pa.LargeListViewArray.from_arrays(offsets, sizes, values) [ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ] ] >>> # use a null mask to represent null values >>> mask = pa.array([False, True, False]) >>> pa.LargeListViewArray.from_arrays(offsets, sizes, values, mask=mask) [ [ 1, 2 ], null, [ 3, 4 ] ] >>> # null values can be defined in either offsets or sizes arrays >>> # WARNING: this will result in a copy of the offsets or sizes arrays >>> offsets = pa.array([0, None, 2]) >>> pa.LargeListViewArray.from_arrays(offsets, sizes, values) [ [ 1, 2 ], null, [ 3, 4 ] ] Construct FixedSizeListArray from array of values and a list length. Parameters ---------- values : Array (any type) list_size : int The fixed length of the lists. type : DataType, optional If not specified, a default ListType with the values' type and `list_size` length is used. mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- FixedSizeListArray Examples -------- Create from a values array and a list size: >>> import pyarrow as pa >>> values = pa.array([1, 2, 3, 4]) >>> arr = pa.FixedSizeListArray.from_arrays(values, 2) >>> arr [ [ 1, 2 ], [ 3, 4 ] ] Or create from a values array, list size and matching type: >>> typ = pa.list_(pa.field("values", pa.int64()), 2) >>> arr = pa.FixedSizeListArray.from_arrays(values,type=typ) >>> arr [ [ 1, 2 ], [ 3, 4 ] ] Concrete class for Uuid extension scalar. Concrete class for JSON extension scalar. Concrete class for Arrow arrays of JSON data type. This does not guarantee that the JSON data actually is valid JSON. Examples -------- Define the extension type for JSON array >>> import pyarrow as pa >>> json_type = pa.json_(pa.large_utf8()) Create an extension array >>> arr = [None, '{ "id":30, "values":["a", "b"] }'] >>> storage = pa.array(arr, pa.large_utf8()) >>> pa.ExtensionArray.from_storage(json_type, storage) [ null, "{ "id":30, "values":["a", "b"] }" ] Concatenate the given arrays. The contents of the input arrays are copied into the returned array. Raises ------ ArrowInvalid If not all of the arrays have the same type. Parameters ---------- arrays : iterable of pyarrow.Array Arrays to concatenate, must be identically typed. memory_pool : MemoryPool, default None For memory allocations. If None, the default pool is used. Examples -------- >>> import pyarrow as pa >>> arr1 = pa.array([2, 4, 5, 100]) >>> arr2 = pa.array([2, 4]) >>> pa.concat_arrays([arr1, arr2]) [ 2, 4, 5, 100, 2, 4 ] Concatenate pyarrow.Table objects. If promote_options="none", a zero-copy concatenation will be performed. The schemas of all the Tables must be the same (except the metadata), otherwise an exception will be raised. The result Table will share the metadata with the first table. If promote_options="default", any null type arrays will be casted to the type of other arrays in the column of the same name. If a table is missing a particular field, null values of the appropriate type will be generated to take the place of the missing field. The new schema will share the metadata with the first table. Each field in the new schema will share the metadata with the first table which has the field defined. Note that type promotions may involve additional allocations on the given ``memory_pool``. If promote_options="permissive", the behavior of default plus types will be promoted to the common denominator that fits all the fields. Parameters ---------- tables : iterable of pyarrow.Table objects Pyarrow tables to concatenate into a single Table. memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. promote_options : str, default none Accepts strings "none", "default" and "permissive". **kwargs : dict, optional Examples -------- >>> import pyarrow as pa >>> t1 = pa.table([ ... pa.array([2, 4, 5, 100]), ... pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) ... ], names=['n_legs', 'animals']) >>> t2 = pa.table([ ... pa.array([2, 4]), ... pa.array(["Parrot", "Dog"]) ... ], names=['n_legs', 'animals']) >>> pa.concat_tables([t1,t2]) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100],[2,4]] animals: [["Flamingo","Horse","Brittle stars","Centipede"],["Parrot","Dog"]] Concatenate pyarrow.RecordBatch objects. All recordbatches must share the same Schema, the operation implies a copy of the data to merge the arrays of the different RecordBatches. Parameters ---------- recordbatches : iterable of pyarrow.RecordBatch objects Pyarrow record batches to concatenate into a single RecordBatch. memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. Examples -------- >>> import pyarrow as pa >>> t1 = pa.record_batch([ ... pa.array([2, 4, 5, 100]), ... pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) ... ], names=['n_legs', 'animals']) >>> t2 = pa.record_batch([ ... pa.array([2, 4]), ... pa.array(["Parrot", "Dog"]) ... ], names=['n_legs', 'animals']) >>> pa.concat_batches([t1,t2]) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100,2,4] animals: ["Flamingo","Horse","Brittle stars","Centipede","Parrot","Dog"] Compute zero-copy slice of this ChunkedArray Parameters ---------- offset : int, default 0 Offset from start of array to slice length : int, default None Length of slice (default is until end of batch starting from offset) Returns ------- sliced : ChunkedArray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.slice(2,2) [ [ 4 ], [ 4 ] ] Compute distinct elements in array Returns ------- pyarrow.Array Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.unique() [ 2, 4, 5, 100 ] Compute dictionary-encoded representation of array. See :func:`pyarrow.compute.dictionary_encode` for full usage. Parameters ---------- null_encoding : str, default "mask" How to handle null entries. Returns ------- encoded : ChunkedArray A dictionary-encoded version of this array. Examples -------- >>> import pyarrow as pa >>> animals = pa.chunked_array(( ... ["Flamingo", "Parrot", "Dog"], ... ["Horse", "Brittle stars", "Centipede"] ... )) >>> animals.dictionary_encode() [ ... -- dictionary: [ "Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede" ] -- indices: [ 0, 1, 2 ], ... -- dictionary: [ "Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede" ] -- indices: [ 3, 4, 5 ] ] Compute counts of unique elements in array. Returns ------- An array of structs Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.value_counts() -- is_valid: all not null -- child 0 type: int64 [ 2, 4, 5, 100 ] -- child 1 type: int64 [ 2, 2, 1, 1 ] CompressedOutputStream.__reduce_cython__Codec.minimum_compression_levelCodec.maximum_compression_levelCodec.default_compression_levelChunkedArray.unify_dictionariesChunkedArray.to_string (line 119)ChunkedArray.fill_null (line 413)ChunkedArray data type was NULL Check if contents of two tables are equal. Parameters ---------- other : pyarrow.Table Table to compare against. check_metadata : bool, default False Whether schema metadata equality should be checked as well. Returns ------- bool Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> names=["n_legs", "animals"] >>> table = pa.Table.from_arrays([n_legs, animals], names=names) >>> table_0 = pa.Table.from_arrays([]) >>> table_1 = pa.Table.from_arrays([n_legs, animals], ... names=names, ... metadata={"n_legs": "Number of legs per animal"}) >>> table.equals(table) True >>> table.equals(table_0) False >>> table.equals(table_1) True >>> table.equals(table_1, check_metadata=True) False Check if contents of two record batches are equal. Parameters ---------- other : pyarrow.RecordBatch RecordBatch to compare against. check_metadata : bool, default False Whether schema metadata equality should be checked as well. Returns ------- are_equal : bool Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch_0 = pa.record_batch([]) >>> batch_1 = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"], ... metadata={"n_legs": "Number of legs per animal"}) >>> batch.equals(batch) True >>> batch.equals(batch_0) False >>> batch.equals(batch_1) True >>> batch.equals(batch_1, check_metadata=True) False Cast table values to another schema. Parameters ---------- target_schema : Schema Schema to cast to, the names and order of fields must match. safe : bool, default True Check for overflows or other unsafe conversions. options : CastOptions, default None Additional checks pass by CastOptions Returns ------- Table Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.schema n_legs: int64 animals: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, ... Define new schema and cast table values: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.duration('s')), ... pa.field('animals', pa.string())] ... ) >>> table.cast(target_schema=my_schema) pyarrow.Table n_legs: duration[s] animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Cast record batch values to another schema. Parameters ---------- target_schema : Schema Schema to cast to, the names and order of fields must match. safe : bool, default True Check for overflows or other unsafe conversions. options : CastOptions, default None Additional checks pass by CastOptions Returns ------- RecordBatch Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) >>> batch.schema n_legs: int64 animals: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, ... Define new schema and cast batch values: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.duration('s')), ... pa.field('animals', pa.string())] ... ) >>> batch.cast(target_schema=my_schema) pyarrow.RecordBatch n_legs: duration[s] animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] Cast array values to another data type See :func:`pyarrow.compute.cast` for usage. Parameters ---------- target_type : DataType, None Type to cast array to. safe : boolean, default True Whether to check for conversion errors such as overflow. options : CastOptions, default None Additional checks pass by CastOptions Returns ------- cast : Array or ChunkedArray Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.type DataType(int64) Change the data type of an array: >>> n_legs_seconds = n_legs.cast(pa.duration('s')) >>> n_legs_seconds.type DurationType(duration[s]) Cannot specify a mask or a size when passing an object that is converted with the __arrow_array__ protocol.Can only instantiate subclasses of ExtensionTypeCalling .data on ChunkedArray is provided for compatibility after Column was removed, simply drop this attribute_CRecordBatchWriter.__setstate_cython___CRecordBatchWriter.__reduce_cython__ Byte width for fixed width type. Examples -------- >>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().byte_width 8 BufferedOutputStream.__setstate_cython__Buffer size must be larger than zeroBool8Array.from_numpy (line 4829)BaseListArray.flatten (line 2525)At :Qha A M! :Qha a e1HE  nATz7+U!!!ArrayStatistics.__reduce_cython__Ar  HA s!6AqafA t:QivQ! s!4wb$d$k!xr s!4wc4t;aqt1A ($d+QnD s!83aACuAXRt2Q '86at2Zq  )WLAAr 1IT>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Append column at the end: >>> year = [2021, 2022, 2019, 2021] >>> table.append_column('year', [year]) pyarrow.Table n_legs: int64 animals: string year: int64 ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] year: [[2021,2022,2019,2021]] Append a field at the end of the schema. In contrast to Python's ``list.append()`` it does return a new object, leaving the original Schema unmodified. Parameters ---------- field : Field Returns ------- schema: Schema New object with appended field. Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Append a field 'extra' at the end of the schema: >>> schema_new = schema.append(pa.field('extra', pa.bool_())) >>> schema_new n_legs: int64 animals: string extra: bool Original schema is unmodified: >>> schema n_legs: int64 animals: string Alias for string(). Examples -------- Create an instance of a string type: >>> import pyarrow as pa >>> pa.utf8() DataType(string) and use the string type to create an array: >>> pa.array(['foo', 'bar', 'baz'], type=pa.utf8()) [ "foo", "bar", "baz" ] Alias for large_string(). Examples -------- Create an instance of large UTF8 variable-length binary type: >>> import pyarrow as pa >>> pa.large_utf8() DataType(large_string) and use the type to create an array: >>> pa.array(['foo', 'bar'] * 50, type=pa.large_utf8()) [ "foo", "bar", ... "foo", "bar" ] Add column to Table at position. A new table is returned with the column added, the original table object is left unchanged. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array, list of Array, or values coercible to arrays Column data. Returns ------- Table New table with the passed column added. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) Add column: >>> year = [2021, 2022, 2019, 2021] >>> table.add_column(0,"year", [year]) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2021,2022,2019,2021]] n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Original table is left unchanged: >>> table pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] Add column to RecordBatch at position i. A new record batch is returned with the column added, the original record batch object is left unchanged. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array or value coercible to array Column data. Returns ------- RecordBatch New record batch with the passed column added. Examples -------- >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) Add column: >>> year = [2021, 2022, 2019, 2021] >>> batch.add_column(0,"year", year) pyarrow.RecordBatch year: int64 n_legs: int64 animals: string ---- year: [2021,2022,2019,2021] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] Original record batch is left unchanged: >>> batch pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] Add a field at position i to the schema. Parameters ---------- i : int field : Field Returns ------- schema: Schema Examples -------- >>> import pyarrow as pa >>> schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())]) Insert a new field on the second position: >>> schema.insert(1, pa.field('extra', pa.bool_())) n_legs: int64 extra: bool animals: string A,-n IQ ZqQ 7#Q yS1j y4r vQ  nA(4q!! A grouping of columns in a table on which to perform aggregations. Parameters ---------- table : pyarrow.Table Input table to execute the aggregation on. keys : str or list[str] Name of the grouped columns. use_threads : bool, default True Whether to use multithreading or not. When set to True (the default), no stable ordering of the output is guaranteed. Examples -------- >>> import pyarrow as pa >>> t = pa.table([ ... pa.array(["a", "a", "b", "b", "c"]), ... pa.array([1, 2, 3, 4, 5]), ... ], names=["keys", "values"]) Grouping of columns: >>> pa.TableGroupBy(t,"keys") Perform aggregations: >>> pa.TableGroupBy(t,"keys").aggregate([("values", "sum")]) pyarrow.Table keys: string values_sum: int64 ---- keys: [["a","b","c"]] values_sum: [[3,7,5]] A copy of this field with the replaced type Parameters ---------- new_type : pyarrow.DataType Returns ------- field : pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) >>> field pyarrow.Field Create new field by replacing type of an existing one: >>> field_new = field.with_type(pa.int64()) >>> field_new pyarrow.Field A .aq Q  ^#5WAXQ''7qhaoQoQ !=Q%Q&FajqA"/a` vS+1HG81,-Qxq HA z&za!a1F!z?%qiqAQ#7%q !iqqA &a  qd"M1 :TCq U!:T5!:T4qd"F!1qA :Qd' D'=Qa s!?#QharAA_BahakS}AQ q1 1 )1AA Q ;a$g0 7%s#Q 1 EBa E!,- 1 %QgQaA:PP[[\\ "!87!9EQ'!)& 5qnA"4AJhc$fCqG3atSZZ[nA"-Q 1Dc$gSWA.aqiqqA;<, E :Qa :WA Q:QgQa 81HF!"HAYfA 6s! *AQ 7&1 *AQ A.a/DA/5XYa/e1-Yk ST q gQaN*>oQ%Yk 1.a/C1iqQqA" 0/B-qPQ >c q)! 7#Q aq.%Q&6oQ.%Q&6a!!AX :Qiq aq! G1 $g-Qa t4qharA 7!1uAxqa G1 #^1AqAV :Qha A M! :Qha a e1HE  nATz7+U!!!AT 1IT Q  wcJnA*0U$d!15QJnA*/qEQ04A J)$gT7!2uCqA cAj=QzAq*HAQuAWAQA]! 1. 2!Z ! ;a( "!1QuG5DCqt1~Qa !7!1 81uG1 [xr|3aaa AQ .!2!7&  7$b 3c G4rq^1ERz!5gQ Q.>a 12! L * G1 ("9! |3d!d%q U!'q*A-T1K?Z[! aq  +1G3Faq1$ L G1 F"9! ~SA#4uA_E""6aq'q*A-T1OO``ad! $aq Qaq  *!6yq1$ L G1 ("9! |3d!#3bQfMa""6aq'q*A-T1K?Z[d! $aq Qaq  AV>!q1Bwaxq.av5H 9G1 V>!qz(!vQ :QfA uBa q 9Cq )1A !81a4A $AQ F!;az V81A ,aq 100 ,A  wc1qd"E!1qd"HA!*AR'DA t2U!1t5uG55qj  # Qe1t:QfG1iqz%~TKrcquG5CvScaq 1transfer_bandwidth_mib_per_sect1q b ! ! 1 1 1 1 "A "A "A b 1 "A "F!1 "F!1 RvQabaqbaqbaq RvQabaqbaqbaq "A ! r %Rq "A ! r ! r Rq Rq b b 1's constructor directly, use one of the `pyarrow.Array.from_*` functions instead.'q` ! fA)&A > t>1j a $baq AV4r!1A uD3a ',AQqq HA .aq 5E Q q $e1 Q q $fG1 Q q q *AR6a  ^#5U!81 a;1 #1$DA Ja__pyx_unpickle__PandasConvertible.nA^ 1 4wgS Q *ARqC4wlZggh HIS\Q t5 $fL!j(Q V5gU& 7!1{,ayq.nAX L 1 4wgS Q *ARquAZq %Qa++>a. &QKq Q$hd",=Q d%uA 1 31F! M);1IQ oQ!]*A G7$b Q  N!G2Yaaa 1aq}A %Qa 7!1 1aN ! 4z(! )1B7t1A11!s!(  A( 1j31 aa|1Kqa0z& 5+1 *AR6a 51 1 #Q 1 *AR6auCq|1N!{!> Write RecordBatch to Buffer as encapsulated IPC message, which does not include a Schema. To reconstruct a RecordBatch from the encapsulated IPC message Buffer returned by this function, a Schema must be passed separately. See Examples. Parameters ---------- memory_pool : MemoryPool, default None Uses default memory pool if not specified Returns ------- serialized : Buffer Examples -------- >>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> buf = batch.serialize() >>> buf Reconstruct RecordBatch from IPC message Buffer and original Schema >>> pa.ipc.read_record_batch(buf, batch.schema) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] V M!z,aaxq 1Liq V1&avQuAQ 1UnionArray does not have child Total number of bytes consumed by the elements of the chunked array. In other words, the sum of bytes from all buffer ranges referenced. Unlike `get_total_buffer_size` this method will account for array offsets. If buffers are shared between arrays then the shared portion will only be counted multiple times. The dictionary of dictionary arrays will always be counted in their entirety even if the array only references a portion of the dictionary. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.nbytes 49 The type code to indicate each data type in this union. Examples -------- >>> import pyarrow as pa >>> union = pa.sparse_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) >>> union.type_codes [0, 1] The timestamp time zone, if any, or None. Examples -------- >>> import pyarrow as pa >>> t = pa.timestamp('s', tz='UTC') >>> t.tz 'UTC' The time unit ('s' or 'ms'). Examples -------- >>> import pyarrow as pa >>> t = pa.time32('ms') >>> t.unit 'ms' The mode of the union ("dense" or "sparse"). Examples -------- >>> import pyarrow as pa >>> union = pa.sparse_union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())]) >>> union.mode 'sparse' The field nullability. Examples -------- >>> import pyarrow as pa >>> f1 = pa.field('key', pa.int32()) >>> f2 = pa.field('key', pa.int32(), nullable=False) >>> f1.nullable True >>> f2.nullable False The field name. Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) >>> field.name 'key' The field for list view values. Examples -------- >>> import pyarrow as pa >>> pa.list_view(pa.string()).value_field pyarrow.Field The field for items in the map entries. Examples -------- >>> import pyarrow as pa >>> pa.map_(pa.string(), pa.int32()).item_field pyarrow.Field The dimension (n) of this tensor. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.ndim 2 Test if this field is equal to the other Parameters ---------- other : pyarrow.Field check_metadata : bool, default False Whether Field metadata equality should be checked as well. Returns ------- is_equal : bool Examples -------- >>> import pyarrow as pa >>> f1 = pa.field('key', pa.int32()) >>> f2 = pa.field('key', pa.int32(), nullable=False) >>> f1.equals(f2) False >>> f1.equals(f1) True _Tabular.drop_columns (line 2389)Table.schema.__get__ (line 5183)Table.rename_columns (line 5504)Table.nbytes.__get__ (line 5271)Table.combine_chunks (line 4510)T%T)=TARRVVddhh{{@SSWWjjnn}}AAJJNNjjnn{{LLPP\\``ssww@@DDLLPPaaeekkooxx||FFJJddhhuuyyDDHHI G1F,avWA!qt.gU#TATT[[``ccggww~DDGGKKXX__ddggkk}}DDIILLPPbbiinnqquuGGNNSSVVZZbbiinnqquuPPWW\\__ccjjqqvvyy}}MMTTYY\\``eellqqttxxAAHHMMPPTT``ggllooss}}DDEq/t1G;gQ/t1G;a Select values from the chunked array. See :func:`pyarrow.compute.filter` for full usage. Parameters ---------- mask : Array or array-like The boolean mask to filter the chunked array with. null_selection_behavior : str, default "drop" How nulls in the mask should be handled. Returns ------- filtered : Array or ChunkedArray An array of the same type, with only the elements selected by the boolean mask. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> mask = pa.array([True, False, None, True, False, True]) >>> n_legs.filter(mask) [ [ 2 ], [ 4, 100 ] ] >>> n_legs.filter(mask, null_selection_behavior="emit_null") [ [ 2, null ], [ 4, 100 ] ] Schema.with_metadata (line 3466)Schema.types.__get__ (line 2986)Schema.names.__get__ (line 2958)RunEndEncodedArray.from_arrays Return whether the contents of two chunked arrays are equal. Parameters ---------- other : pyarrow.ChunkedArray Chunked array to compare against. Returns ------- are_equal : bool Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> animals = pa.chunked_array(( ... ["Flamingo", "Parrot", "Dog"], ... ["Horse", "Brittle stars", "Centipede"] ... )) >>> n_legs.equals(n_legs) True >>> n_legs.equals(animals) False Return the underlying array of values which backs the ListArray ignoring the array's offset. If any of the list elements are null, but are backed by a non-empty sub-list, those elements will be included in the output. Compare with :meth:`flatten`, which returns only the non-null values taking into consideration the array's offset. Returns ------- values : Array See Also -------- ListArray.flatten : ... Examples -------- The values include null elements from sub-lists: >>> import pyarrow as pa >>> array = pa.array([[1, 2], None, [3, 4, None, 6]]) >>> array.values [ 1, 2, 3, 4, null, 6 ] If an array is sliced, the slice still uses the same underlying data as the original array, just with an offset. Since values ignores the offset, the values are the same: >>> sliced = array.slice(1, 2) >>> sliced [ null, [ 3, 4, null, 6 ] ] >>> sliced.values [ 1, 2, 3, 4, null, 6 ] Return array of same length as list child values array where each output value is the index of the parent list array slot containing each child value. Examples -------- >>> import pyarrow as pa >>> arr = pa.array([[1, 2, 3], [], None, [4]], ... type=pa.list_(pa.int32())) >>> arr.value_parent_indices() [ 0, 0, 0, 3 ] Render a "pretty-printed" string representation of the ChunkedArray Parameters ---------- indent : int How much to indent right the content of the array, by default ``0``. window : int How many items to preview within each chunk at the begin and end of the chunk when the chunk is bigger than the window. The other elements will be ellipsed. container_window : int How many chunks to preview at the begin and end of the array when the array is bigger than the window. The other elements will be ellipsed. This setting also applies to list columns. skip_new_lines : bool If the array should be rendered as a single line of text or if each element should be on its own line. element_size_limit : int, default 100 Maximum number of characters of a single element before it is truncated. Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.to_string(skip_new_lines=True) '[[2,2,4],[4,5,100]]' RecordBatchReader.from_batchesRecordBatchReader._export_to_c_RecordBatchFileWriter.__reduce_cython___RecordBatchFileReader.read_all_RecordBatchFileReader.__reduce_cython__&Qwc CuG6  ''!s,axwiq 1HA IQ G1EqqQgU!arU&s"G1(!>?t5 ''#U%qs,axwhiqiq:Q\ 7"A *AQAS 7#Q TvQa TvQha!!:Q& 7"A *AQAS 7#Q TF!1 wbj TF!81!! Number of null entries Returns ------- int Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]]) >>> n_legs.null_count 1 Null pointer (value before cast = NativeFile._download_nothreadsMapArray.from_arrays (line 3443) Lists the field names. Examples -------- >>> import pyarrow as pa >>> struct_type = pa.struct([('a', pa.int64()), ('b', pa.float64()), ('c', pa.string())]) >>> struct_type.names ['a', 'b', 'c'] ListViewType.value_field.__get__ (line 654)LargeListViewArray.sizes.__get__ (line 3406)LargeListViewArray.from_arraysLargeListType.value_type.__get__ (line 620)IpcReadOptions.__reduce_cython__ If True, the number of expected buffers is only lower-bounded by num_buffers. Examples -------- >>> import pyarrow as pa >>> pa.int64().has_variadic_buffers False >>> pa.string_view().has_variadic_buffers True ). For now ignoring the specified type, but in the future this mismatch will raise a TypeError Flatten this field. If a struct field, individual child fields will be returned with their names prefixed by the parent's name. Returns ------- fields : List[pyarrow.Field] Examples -------- >>> import pyarrow as pa >>> f1 = pa.field('bar', pa.float64(), nullable=False) >>> f2 = pa.field('foo', pa.int32()).with_metadata({"key": "Something important"}) >>> ff = pa.field('ff', pa.struct([f1, f2]), nullable=False) Flatten a struct field: >>> ff pyarrow.Field not null> >>> ff.flatten() [pyarrow.Field, pyarrow.Field] Flatten this Table. Each column with a struct type is flattened into one column per struct field. Other columns are left unchanged. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- Table Examples -------- >>> import pyarrow as pa >>> struct = pa.array([{'n_legs': 2, 'animals': 'Parrot'}, ... {'year': 2022, 'n_legs': 4}]) >>> month = pa.array([4, 6]) >>> table = pa.Table.from_arrays([struct,month], ... names = ["a", "month"]) >>> table pyarrow.Table a: struct child 0, animals: string child 1, n_legs: int64 child 2, year: int64 month: int64 ---- a: [ -- is_valid: all not null -- child 0 type: string ["Parrot",null] -- child 1 type: int64 [2,4] -- child 2 type: int64 [null,2022]] month: [[4,6]] Flatten the columns with struct field: >>> table.flatten() pyarrow.Table a.animals: string a.n_legs: int64 a.year: int64 month: int64 ---- a.animals: [["Parrot",null]] a.n_legs: [[2,4]] a.year: [[null,2022]] month: [[4,6]] Flatten this ChunkedArray into a single non-chunked array. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- result : Array Examples -------- >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs [ [ 2, 2, 4 ], [ 4, 5, 100 ] ] >>> n_legs.combine_chunks() [ 2, 2, 4, 4, 5, 100 ] FixedSizeListArray.from_arrays_ExtensionRegistryNanny.release_registryDictionaryMemo.__reduce_cython__Decimal256Type.precision.__get__ (line 1594)Decimal128Type.precision.__get__ (line 1545) Create instance of signed int8 type. Examples -------- Create an instance of int8 type: >>> import pyarrow as pa >>> pa.int8() DataType(int8) >>> print(pa.int8()) int8 Create an array with int8 type: >>> pa.array([0, 1, 2], type=pa.int8()) [ 0, 1, 2 ] Create instance of fixed shape tensor extension type with shape and optional names of tensor dimensions and indices of the desired logical ordering of dimensions. Parameters ---------- value_type : DataType Data type of individual tensor elements. shape : tuple or list of integers The physical shape of the contained tensors. dim_names : tuple or list of strings, default None Explicit names to tensor dimensions. permutation : tuple or list integers, default None Indices of the desired ordering of the original dimensions. The indices contain a permutation of the values ``[0, 1, .., N-1]`` where N is the number of dimensions. The permutation indicates which dimension of the logical layout corresponds to which dimension of the physical tensor. For more information on this parameter see :ref:`fixed_shape_tensor_extension`. Examples -------- Create an instance of fixed shape tensor extension type: >>> import pyarrow as pa >>> tensor_type = pa.fixed_shape_tensor(pa.int32(), [2, 2]) >>> tensor_type FixedShapeTensorType(extension) Inspect the data type: >>> tensor_type.value_type DataType(int32) >>> tensor_type.shape [2, 2] Create a table with fixed shape tensor extension array: >>> arr = [[1, 2, 3, 4], [10, 20, 30, 40], [100, 200, 300, 400]] >>> storage = pa.array(arr, pa.list_(pa.int32(), 4)) >>> tensor = pa.ExtensionArray.from_storage(tensor_type, storage) >>> pa.table([tensor], names=["tensor_array"]) pyarrow.Table tensor_array: extension ---- tensor_array: [[[1,2,3,4],[10,20,30,40],[100,200,300,400]]] Create an instance of fixed shape tensor extension type with names of tensor dimensions: >>> tensor_type = pa.fixed_shape_tensor(pa.int8(), (2, 2, 3), ... dim_names=['C', 'H', 'W']) >>> tensor_type.dim_names ['C', 'H', 'W'] Create an instance of fixed shape tensor extension type with permutation: >>> tensor_type = pa.fixed_shape_tensor(pa.int8(), (2, 2, 3), ... permutation=[0, 2, 1]) >>> tensor_type.permutation [0, 2, 1] Returns ------- type : FixedShapeTensorType Create instance of an interval type representing months, days and nanoseconds between two dates. Examples -------- Create an instance of an month_day_nano_interval type: >>> import pyarrow as pa >>> pa.month_day_nano_interval() DataType(month_day_nano_interval) Create a scalar with month_day_nano_interval type: >>> pa.scalar((1, 15, -30), type=pa.month_day_nano_interval()) Create instance of 64-bit time (time of day) type with unit resolution. Parameters ---------- unit : str One of 'us' [microsecond], or 'ns' [nanosecond]. Returns ------- type : pyarrow.Time64Type Examples -------- >>> import pyarrow as pa >>> pa.time64('us') Time64Type(time64[us]) >>> pa.time64('ns') Time64Type(time64[ns]) Create instance of 64-bit date (milliseconds since UNIX epoch 1970-01-01). Examples -------- Create an instance of 64-bit date type: >>> import pyarrow as pa >>> pa.date64() DataType(date64[ms]) Create a scalar with 64-bit date type: >>> from datetime import datetime >>> pa.scalar(datetime(2012, 1, 1), type=pa.date64()) Create instance of 32-bit time (time of day) type with unit resolution. Parameters ---------- unit : str one of 's' [second], or 'ms' [millisecond] Returns ------- type : pyarrow.Time32Type Examples -------- >>> import pyarrow as pa >>> pa.time32('s') Time32Type(time32[s]) >>> pa.time32('ms') Time32Type(time32[ms]) Create instance of 32-bit date (days since UNIX epoch 1970-01-01). Examples -------- Create an instance of 32-bit date type: >>> import pyarrow as pa >>> pa.date32() DataType(date32[day]) Create a scalar with 32-bit date type: >>> from datetime import date >>> pa.scalar(date(2012, 1, 1), type=pa.date32()) Create half-precision floating point type. Examples -------- Create an instance of float16 type: >>> import pyarrow as pa >>> pa.float16() DataType(halffloat) >>> print(pa.float16()) halffloat Create an array with float16 type: >>> arr = np.array([1.5, np.nan], dtype=np.float16) >>> a = pa.array(arr, type=pa.float16()) >>> a [ 1.5, nan ] Note that unlike other float types, if you convert this array to a python list, the types of its elements will be ``np.float16`` >>> [type(val) for val in a.to_pylist()] [, ] Create an Array instance whose slots are the given scalar. Parameters ---------- value : Scalar-like object Either a pyarrow.Scalar or any python object coercible to a Scalar. size : int Number of times to repeat the scalar in the output Array. memory_pool : MemoryPool, default None Arrow MemoryPool to use for allocations. Uses the default memory pool if not passed. Returns ------- arr : Array Examples -------- >>> import pyarrow as pa >>> pa.repeat(10, 3) [ 10, 10, 10 ] >>> pa.repeat([1, 2], 2) [ [ 1, 2 ], [ 1, 2 ] ] >>> pa.repeat("string", 3) [ "string", "string", "string" ] >>> pa.repeat(pa.scalar({'a': 1, 'b': [1, 2]}), 2) -- is_valid: all not null -- child 0 type: int64 [ 1, 1 ] -- child 1 type: list [ [ 1, 2 ], [ 1, 2 ] ] Convert to a pandas-compatible NumPy array or DataFrame, as appropriate Parameters ---------- memory_pool : MemoryPool, default None Arrow MemoryPool to use for allocations. Uses the default memory pool if not passed. categories : list, default empty List of fields that should be returned as pandas.Categorical. Only applies to table-like data structures. strings_to_categorical : bool, default False Encode string (UTF8) and binary types to pandas.Categorical. zero_copy_only : bool, default False Raise an ArrowException if this function call would require copying the underlying data. integer_object_nulls : bool, default False Cast integers with nulls to objects date_as_object : bool, default True Cast dates to objects. If False, convert to datetime64 dtype with the equivalent time unit (if supported). Note: in pandas version < 2.0, only datetime64[ns] conversion is supported. timestamp_as_object : bool, default False Cast non-nanosecond timestamps (np.datetime64) to objects. This is useful in pandas version 1.x if you have timestamps that don't fit in the normal date range of nanosecond timestamps (1678 CE-2262 CE). Non-nanosecond timestamps are supported in pandas version 2.0. If False, all timestamps are converted to datetime64 dtype. use_threads : bool, default True Whether to parallelize the conversion using multiple threads. deduplicate_objects : bool, default True Do not create multiple copies Python objects when created, to save on memory use. Conversion will be slower. ignore_metadata : bool, default False If True, do not use the 'pandas' metadata to reconstruct the DataFrame index, if present safe : bool, default True For certain data types, a cast is needed in order to store the data in a pandas DataFrame or Series (e.g. timestamps are always stored as nanoseconds in pandas). This option controls whether it is a safe cast or not. split_blocks : bool, default False If True, generate one internal "block" for each column when creating a pandas.DataFrame from a RecordBatch or Table. While this can temporarily reduce memory note that various pandas operations can trigger "consolidation" which may balloon memory use. self_destruct : bool, default False EXPERIMENTAL: If True, attempt to deallocate the originating Arrow memory while converting the Arrow object to pandas. If you use the object after calling to_pandas with this option it will crash your program. Note that you may not see always memory usage improvements. For example, if multiple columns share an underlying allocation, memory can't be freed until all columns are converted. maps_as_pydicts : str, optional, default `None` Valid values are `None`, 'lossy', or 'strict'. The default behavior (`None`), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), ...]. If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. This can change the ordering of (key, value) pairs, and will deduplicate multiple keys, resulting in a possible loss of data. If 'lossy', this key deduplication results in a warning printed when detected. If 'strict', this instead results in an exception being raised when detected. types_mapper : function, default None A function mapping a pyarrow DataType to a pandas ExtensionDtype. This can be used to override the default pandas type for conversion of built-in pyarrow types or in absence of pandas_metadata in the Table schema. The function receives a pyarrow DataType and is expected to return a pandas ExtensionDtype or ``None`` if the default conversion should be used for that type. If you have a dictionary mapping, you can pass ``dict.get`` as function. coerce_temporal_nanoseconds : bool, default False Only applicable to pandas version >= 2.0. A legacy option to coerce date32, date64, duration, and timestamp time units to nanoseconds when converting to pandas. This is the default behavior in pandas version 1.x. Set this option to True if you'd like to use this coercion when using pandas version >= 2.0 for backwards compatibility (not recommended otherwise). Returns ------- pandas.Series or pandas.DataFrame depending on type of object Examples -------- >>> import pyarrow as pa >>> import pandas as pd Convert a Table to pandas DataFrame: >>> table = pa.table([ ... pa.array([2, 4, 5, 100]), ... pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) ... ], names=['n_legs', 'animals']) >>> table.to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede >>> isinstance(table.to_pandas(), pd.DataFrame) True Convert a RecordBatch to pandas DataFrame: >>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.record_batch([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] >>> batch.to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede >>> isinstance(batch.to_pandas(), pd.DataFrame) True Convert a Chunked Array to pandas Series: >>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.to_pandas() 0 2 1 2 2 4 3 4 4 5 5 100 dtype: int64 >>> isinstance(n_legs.to_pandas(), pd.Series) True Convert pandas.DataFrame to an Arrow RecordBatch Parameters ---------- df : pandas.DataFrame schema : pyarrow.Schema, optional The expected schema of the RecordBatch. This can be used to indicate the type of columns if we cannot infer it automatically. If passed, the output will have exactly this schema. Columns specified in the schema that are not found in the DataFrame columns or its index will raise an error. Additional columns or index levels in the DataFrame which are not specified in the schema will be ignored. preserve_index : bool, optional Whether to store the index as an additional column in the resulting ``RecordBatch``. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Use ``preserve_index=True`` to force it to be stored as a column. nthreads : int, default None If greater than 1, convert columns to Arrow in parallel using indicated number of threads. By default, this follows :func:`pyarrow.cpu_count` (may use up to system CPU count threads). columns : list, optional List of column to be converted. If None, use all columns. Returns ------- pyarrow.RecordBatch Examples -------- >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022], ... 'month': [3, 5, 7, 9], ... 'day': [1, 5, 9, 13], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) Convert pandas DataFrame to RecordBatch: >>> import pyarrow as pa >>> pa.RecordBatch.from_pandas(df) pyarrow.RecordBatch year: int64 month: int64 day: int64 n_legs: int64 animals: string ---- year: [2020,2022,2021,2022] month: [3,5,7,9] day: [1,5,9,13] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] Convert pandas DataFrame to RecordBatch using schema: >>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.RecordBatch.from_pandas(df, schema=my_schema) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] Convert pandas DataFrame to RecordBatch specifying columns: >>> pa.RecordBatch.from_pandas(df, columns=["n_legs"]) pyarrow.RecordBatch n_legs: int64 ---- n_legs: [2,4,5,100] Convert numpy tensors (ndarrays) to a fixed shape tensor extension array. The first dimension of ndarray will become the length of the fixed shape tensor array. If input array data is not contiguous a copy will be made. Parameters ---------- obj : numpy.ndarray dim_names : tuple or list of strings, default None Explicit names to tensor dimensions. Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> arr = np.array( ... [[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]], ... dtype=np.float32) >>> pa.FixedShapeTensorArray.from_numpy_ndarray(arr) [ [ 1, 2, 3, 4, 5, 6 ], [ 1, 2, 3, 4, 5, 6 ] ] Convert numpy array to a bool8 extension array without making a copy. The input array must be 1-dimensional, with either bool_ or int8 dtype. Parameters ---------- obj : numpy.ndarray Returns ------- bool8_array : Bool8Array Examples -------- >>> import pyarrow as pa >>> import numpy as np >>> arr = np.array([True, False, True], dtype=np.bool_) >>> pa.Bool8Array.from_numpy(arr) [ 1, 0, 1 ] Convert NumPy dtype to pyarrow.DataType. Parameters ---------- dtype : the numpy dtype to convert Examples -------- Create a pyarrow DataType from NumPy dtype: >>> import pyarrow as pa >>> import numpy as np >>> pa.from_numpy_dtype(np.dtype('float16')) DataType(halffloat) >>> pa.from_numpy_dtype('U') DataType(string) >>> pa.from_numpy_dtype(bool) DataType(bool) >>> pa.from_numpy_dtype(np.str_) DataType(string) Construct a RecordBatch from a StructArray. Each field in the StructArray will become a column in the resulting ``RecordBatch``. Parameters ---------- struct_array : StructArray Array to construct the record batch from. Returns ------- pyarrow.RecordBatch Examples -------- >>> import pyarrow as pa >>> struct = pa.array([{'n_legs': 2, 'animals': 'Parrot'}, ... {'year': 2022, 'n_legs': 4}]) >>> pa.RecordBatch.from_struct_array(struct).to_pandas() animals n_legs year 0 Parrot 2 NaN 1 None 4 2022.0 Construct MapArray from arrays of int32 offsets and key, item arrays. Parameters ---------- offsets : array-like or sequence (int32 type) keys : array-like or sequence (any type) items : array-like or sequence (any type) type : DataType, optional If not specified, a default MapArray with the keys' and items' type is used. pool : MemoryPool mask : Array (boolean type), optional Indicate which values are null (True) or not null (False). Returns ------- map_array : MapArray Examples -------- First, let's understand the structure of our dataset when viewed in a rectangular data model. The total of 5 respondents answered the question "How much did you like the movie x?". The value -1 in the integer array means that the value is missing. The boolean array represents the null bitmask corresponding to the missing values in the integer array. >>> import pyarrow as pa >>> movies_rectangular = np.ma.masked_array([ ... [10, -1, -1], ... [8, 4, 5], ... [-1, 10, 3], ... [-1, -1, -1], ... [-1, -1, -1] ... ], ... [ ... [False, True, True], ... [False, False, False], ... [True, False, False], ... [True, True, True], ... [True, True, True], ... ]) To represent the same data with the MapArray and from_arrays, the data is formed like this: >>> offsets = [ ... 0, # -- row 1 start ... 1, # -- row 2 start ... 4, # -- row 3 start ... 6, # -- row 4 start ... 6, # -- row 5 start ... 6, # -- row 5 end ... ] >>> movies = [ ... "Dark Knight", # ---------------------------------- row 1 ... "Dark Knight", "Meet the Parents", "Superman", # -- row 2 ... "Meet the Parents", "Superman", # ----------------- row 3 ... ] >>> likings = [ ... 10, # -------- row 1 ... 8, 4, 5, # --- row 2 ... 10, 3 # ------ row 3 ... ] >>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas() 0 [(Dark Knight, 10)] 1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup... 2 [(Meet the Parents, 10), (Superman, 3)] 3 [] 4 [] dtype: object If the data in the empty rows needs to be marked as missing, it's possible to do so by modifying the offsets argument, so that we specify `None` as the starting positions of the rows we want marked as missing. The end row offset still has to refer to the existing value from keys (and values): >>> offsets = [ ... 0, # ----- row 1 start ... 1, # ----- row 2 start ... 4, # ----- row 3 start ... None, # -- row 4 start ... None, # -- row 5 start ... 6, # ----- row 5 end ... ] >>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas() 0 [(Dark Knight, 10)] 1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup... 2 [(Meet the Parents, 10), (Superman, 3)] 3 None 4 None dtype: object Compare contents of this array against another one. Return a string containing the result of diffing this array (on the left side) against the other array (on the right side). Parameters ---------- other : Array The other array to compare this array with. Returns ------- diff : str A human-readable printout of the differences. Examples -------- >>> import pyarrow as pa >>> left = pa.array(["one", "two", "three"]) >>> right = pa.array(["two", None, "two-and-a-half", "three"]) >>> print(left.diff(right)) # doctest: +SKIP @@ -0, +0 @@ -"one" @@ -2, +1 @@ +null +"two-and-a-half" ChunkedArray.to_numpy (line 494)ChunkedArray.is_valid (line 381)ChunkedArray.dictionary_encode_CRecordBatchWriter.write_table_CRecordBatchWriter.write_batchBufferReader.__setstate_cython__ Bit width for fixed width type. Examples -------- >>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().bit_width 64 Add metadata as dict of string keys and values to Field Parameters ---------- metadata : dict Keys and values must be string-like / coercible to bytes Returns ------- field : pyarrow.Field Examples -------- >>> import pyarrow as pa >>> field = pa.field('key', pa.int32()) Create new field by adding metadata to existing one: >>> field_new = field.with_metadata({"key": "Something important"}) >>> field_new pyarrow.Field >>> field_new.metadata {b'key': b'Something important'} A -,??aabHD&A 22EE``aaeef nAV;aq"!1APQ\ L 9Cq q 9Cq qt2(t1)6j)4L88 Q V9F&3fG1 1 %Q@ G1 ("9! |3d!4t1-Q#3bQfMa""6aq'q*A-T1K?Z[d! $aq,AQa  *!n$fA|3a)!|7%t type: type: type: .genexprStructArray._flattened_fieldSchema.get_all_field_indicesSchema.from_pandas (line 3110)Schema.empty_table (line 3043)RecordBatch.select (line 3247)RecordBatch.equals (line 3198)RecordBatch.__arrow_c_stream___RecordBatchFileReader.__exit__:Q^ 7"A *AQAS 7#Q TvQa TvQha)!PythonFile.__setstate_cython___PandasAPIShim.is_categoricalOpaqueType.__arrow_ext_class__NativeFile._upload_nothreadsNativeFile.__setstate_cython__MemoryPool.__setstate_cython__Invalid time unit for time64: Invalid time unit for time32: Indices must be integer typeI/O operation on closed fileFixedSizeBinaryType.__reduce__Field.name.__get__ (line 2558)Field._import_from_c_capsuleExtensionScalar.from_storageExpected a pointer value, got Expected a non-empty ndarrayDictionaryArray.from_buffersChunkedArray.unique (line 782)ChunkedArray.is_nan (line 356)ChunkedArray.filter (line 925)ChunkedArray.equals (line 450)ChunkedArray.chunk (line 1271)BufferReader.__reduce_cython__BaseExtensionType.wrap_arrayArray._import_from_c_capsuleArray.__arrow_c_device_array__ A G1F,avWA!qqq34q{'QR34q{!A $A3i|1  ADqivQ61Eq17z+1B ! Eat1 4vQb T"Ja'7q 7"F!|1A'q $#7t84q $$6bT 2Q :XQ"F)1Eq 1__pyx_unpickle__PandasAPIShim_handle_arrow_array_protocolcreate_memory_map (line 1152)coerce_temporal_nanoseconds_Tabular.to_pylist (line 2315)_Tabular.to_pydict (line 2275)_Tabular.drop_null (line 1859)Table.get_total_buffer_sizeTable.from_pandas (line 4732)Table.from_arrays (line 4812)StringBuilder.append_valuesStopToken.__setstate_cython__SparseCSRMatrix.from_tensorSparseCSFTensor.from_tensorSparseCSCMatrix.from_tensorSparseCOOTensor.from_tensorRecordBatch.to_struct_arrayRecordBatch.slice (line 3141)RecordBatch._is_initializedRecordBatch.__arrow_c_array___RecordBatchFileWriter._open_RecordBatchFileReader._open_ReadPandasMixin.read_pandas:Q* 7"A *AQ 7#Q ^1O1D  ^1O1D 45"!1_PandasConvertible.to_pandas_PandasAPIShim.is_datetimetz_PandasAPIShim.is_data_frame_PandasAPIShim.is_array_likeOffset must be non-negativeNativeFile._assert_writableNativeFile._assert_seekableNativeFile._assert_readableMust pass decompressed_sizeMask must not contain nullsLength must be non-negativeExtensionArray.from_storageExpected int index, got type 'DictionaryArray.from_arraysChunkedArray.take (line 1038)ChunkedArray.slice (line 867)ChunkedArray.length (line 99)ChunkedArray.index (line 990)ChunkedArray.combine_chunks++CC``aH L ! 7q-Qa  ~Q.fO9AQMXXY"!1BufferedOutputStream.detachBufferOutputStream.getvalueBool8Type.__arrow_ext_class__BaseListArray.value_lengthsArray.get_total_buffer_sizeArray._import_from_c_deviceA,-F  *!wk!31 1 F)3awa '%qavQhaA  ! A-Qd2EQ./z!./q!!#1A$AQ"DD &Aq7qF L 't1 33Gq 4q 1  Zwav^1q2!& G1 6aq t83at5,?qq  0Yaqsupports_compression_level'q %$9XT %%8%t1 2Q :XQ"F)1Eq 1max_ideal_request_size_mibgQawaqyc1 q q *!94Gq+55Hfrom_numpy_dtype (line 5939)" does not exist in schemadefault_cpu_memory_managerUuidType.__arrow_ext_class__Table.to_batches (line 5044)Table.set_column (line 5445)Table.add_column (line 5337)StructType.get_field_indexSparseCSRMatrix.from_scipySparseCSRMatrix.from_numpySparseCSFTensor.from_numpySparseCSCMatrix.from_scipySparseCSCMatrix.from_numpySparseCOOTensor.from_scipySparseCOOTensor.from_numpySchema.serialize (line 3502)RunEndEncodedType.__reduce__RecordBatch.rename_columnsRecordBatch.cast (line 3301)RecordBatch._import_from_cRecordBatchReader.read_allPythonFile.__reduce_cython___PandasAPIShim.pandas_dtypeOperation on closed writerOperation on closed readerNativeFile.__reduce_cython__MonthDayNanoIntervalScalarMemoryPool.num_allocationsMemoryPool.bytes_allocatedMemoryPool.__reduce_cython__Mask must be boolean dtypeLargeListViewType.__reduce__LargeListArray.from_arrays!L 31A  4z' )1A&d!1 !/q q 1Ja QaJsonType.__arrow_ext_class__FixedSizeListType.__reduce__Expected list or tuple, got ChunkedArray.cast (line 564)_CRecordBatchWriter.__enter__BufferedInputStream.detachA$z)7! 5uDF%waq V5quAXU!Aq 4q Yd)6:Qa:QauBe1HEAA Q Eat9E $it1A t7!awd)6!qA 2RrBcQ *AR0  N!4wd"4DAQ!!AX G1 $,AQ "!5A Zqa  nAT~Qd!1!!AR G1 $,AQ "!5A Zqa  nAT~Qd!1!!A6 :QnA 5 Qa{2DAQ 5 Qa-QaI\unregister_extension_typetime_to_first_byte_millissupported_memory_backends qr""D kQ !;az1FavYchaq 1, please pass it explicitlynum_replaced_dictionariesminimum_compression_levelmaximum_compression_levellarge_list_view (line 5103)fz(!vQ :QfA uBa q !81vQoQa !!default_compression_levelUnionType.field (line 1169)Tensor.from_numpy (line 61)_Tabular.sort_by (line 2112)_Tabular.__setstate_cython__Table.to_reader (line 5114)Table.join_asof (line 5774)StructType.field (line 979)StructScalar._as_py_tupleStopToken.__reduce_cython__SparseCSRMatrix.to_tensorSparseCSFTensor.to_tensorSparseCSCMatrix.to_tensorSparseCOOTensor.to_tensorSignalStopHandler.__enter__Scalar type not supportedScalar data type was NULLRunEndEncodedScalar.as_pyRecordBatch.remove_column_RecordBatchWithMetadataRecordBatchReader.__enter___PandasAPIShim.infer_dtypeNot an ArrowSchema objectN 31At:QgQawl! wa . qk QaMonthDayNanoIntervalArrayMessage.__setstate_cython__MessageReader.open_streamMemoryPool.release_unusedListViewArray.from_arraysKeyValueMetadata.__reduce__Incompatible storage type Field.with_type (line 2655)Field.with_name (line 2690)DictionaryScalar.__reduce__DataType.__arrow_c_schema__**DA'@, <9Az$A&a'q%Q  1$aQ yaChunkedArray.value_countsCacheOptions._reconstruct_CRecordBatchWriter.__exit__Array._export_to_c_device A G1F,avWA!qqq)Qg[q)Qg[A"#4 :WA Q:QgQaA_A%:$a%2!1"!1A$ 2RrBcQ *AR0  ".G4r!C1A/qAR L :Qiq b #R}A CrQj 1t56a{$cAq 1Dq 1D~Qaiq5T!"!& 4AQq  )1N!'qa,AQ  yqavQ"!13>%& Kwa HO#:!1(!4q   .(AaLA !!=TA+1B Zq 0G1!86'%t:QgU!4qq.z%q!,aqwaq q 1F'Q"!+4A Qatranscoding_input_stream_reconstruct_record_batchpyarrow.vendored.versionk L 51 *A Ya 6A 1vWAWEis_extension_array_dtypehkA ^1!!kkmmn881A|7!*!;nA 1get_rangeindex_attributedownload..bg_write does not exist in schemaconcat_batches (line 6325), but the passed number is Tensor.dim_name (line 148)Tensor.__setstate_cython___Tabular.filter (line 2202)_Tabular.column (line 1747)Table.unify_dictionariesTable.group_by (line 5596)StringViewBuilder.finishStringViewBuilder.appendStringArray.from_buffersSparseCSRMatrix was NULLSparseCSRMatrix.to_scipySparseCSRMatrix.to_numpySparseCSRMatrix.dim_nameSparseCSFTensor was NULLSparseCSFTensor.to_numpySparseCSFTensor.dim_nameSparseCSCMatrix was NULLSparseCSCMatrix.to_scipySparseCSCMatrix.to_numpySparseCSCMatrix.dim_nameSparseCOOTensor was NULLSparseCOOTensor.to_scipySparseCOOTensor.to_numpySparseCOOTensor.dim_nameSignalStopHandler.__exit__RecordBatch._export_to_cRecordBatchReader.__exit___PandasAPIShim.get_values_PandasAPIShim.data_frameOSFile.__setstate_cython__KeyValueMetadata.to_dictKeyValueMetadata.get_allDevice.__setstate_cython__DataType.to_pandas_dtypeDataType.equals (line 370)ChunkedArray._assert_cpuChunk index out of range._CRecordBatchWriter.write_CRecordBatchWriter.closeArrowNotImplementedErrorArray data type was NULLA() !&' !%&%&!" !-.h a  #1 1 ! 1      ! A (t;ay 1/q,AA :QhgQ BgQgQa 3e3d& Bk )1AA& 4wgS Q *AQ!;5  xq :QqA" 0/B-qPQ >c q( 9Cq =).cleanupconcat_tables (line 6242)concat_arrays (line 4960)chunked_array (line 1475)Wrapping scalar of type The length of dim_names (Tensor.to_numpy (line 96)_Tabular.field (line 1894)_Tabular._is_initialized_Tabular.__reduce_cython__Table.from_struct_arrayTable.flatten (line 4444)StructArray.from_arraysSchema.remove (line 3385)Schema.insert (line 3347)Schema.equals (line 3071)Schema.append (line 3308)Schema.__arrow_c_schema__RecordBatch.from_pandasRecordBatch.from_arraysRecordBatchWithMetadata_RecordBatchStreamWriter_RecordBatchStreamReaderRecordBatchReader.close_PandasAPIShim.is_sparse_PandasAPIShim.is_series_PandasAPIShim.is_ge_v23_PandasAPIShim.is_ge_v21PYARROW_IGNORE_TIMEZONENativeFile._assert_openMessage.__reduce_cython__MemoryMappedFile.resizeMemoryMappedFile.filenoMemoryMappedFile.createKeyValueMetadata.valuesKeyValueMetadata.equalsInvalid value of whence: Invalid promote options: Field.flatten (line 2761):!F L :QfCr 4rqa 3bqfAExpected sparse.COO, got DictionaryType.__reduce__DictionaryEncodeOptionsDecimal256Type.__reduce__Decimal128Type.__reduce__DataType._import_from_cCodec.__setstate_cython__ChunkedArray.iterchunksChunkedArray._to_pandasBool8Array.from_storageArrowSerializationErrorArray.dictionary_encodeA d! 4s! 1DZqqs$e3fAQA4 L 6A 1 'd! 'uA XWAV1q11A,,@1t L ;c t2^1 vV=  ]!  ^1  awritable file expectedupload..bg_writestrings_to_categorical's constructor directlyrecord_batch (line 5903)readable file expected'q$ 4q q4q&)99J$eSWW\\]j 1num_dictionary_batches&n4LA(FaF ( %Q 'q ) 1$aQ yalog_memory_allocationslarge_string (line 4855)large_binary (line 4827)input_stream (line 2738)hkA ^1!"yy{{|>!|7!01B.PQ 1fixed_size_binary_typef A%:!t:QgQiqq 8Q%G1Aenable_signal_handlersemit_dictionary_deltas__arrow_ext_scalar_class__{!( 'auG5D !61rqfA .qa !!UnionArray.from_sparseType_FIXED_SIZE_BINARYTimestampType.__reduce__Tensor.equals (line 118)Tensor.__reduce_cython__Tensor.__dlpack_device___Tabular.take (line 2163)Table.select (line 4330)Table.equals (line 4620)Table.__arrow_c_stream__TableGroupBy.aggregateSparseCSRMatrix.equalsSparseCSFTensor.equalsSparseCSCMatrix.equalsSparseCOOTensor.equalsSchema.remove_metadataSchema.get_field_indexSchema.field (line 3156)ScalarAggregateOptionsResizableBuffer.resizeRecordBatch.set_columnRecordBatch.add_columnRecordBatch._to_pandasRecordBatchReader.cast_PandasAPIShim.is_index_PandasAPIShim.is_ge_v3OSFile.__reduce_cython__Not a metadata version: NativeFile.read_bufferMemoryPool.print_statsMemoryMappedFile._openLargeListType.__reduce__KeyValueMetadata.valueKeyValueMetadata.itemsJ"!1zA#1ALuAYaqa 1FixedShapeTensorScalarField.equals (line 2497)Field.__arrow_c_schema__ExtensionType.__reduce___ExtensionRegistryNannyExpected file path, but DictionaryScalar.as_pyDevice.__reduce_cython__Decimal64Type.__reduce__Decimal32Type.__reduce__Decimal256Scalar.as_pyDecimal128Scalar.as_py-D array to bool8 arrayCompressedOutputStreamChunkedArray.to_stringChunkedArray.to_pylistChunkedArray.fill_nullChunkedArray.drop_nullBinaryScalar.as_bufferA gXQa  +T.WD1A 6S1 !qA* &a!1&fG4ra  qd"E)1qA 4z#Q )1B@AQ/q4uKq!$e6!total_bytes_allocatedtotal_allocated_bytesstring_view (line 4927)set_memcopy_thresholdset_memcopy_blocksizeq 1  AAT!2$b QAT!2$b __pyx_unpickle__Tabularpyarrow.pandas_compatpyarrow/benchmark.pxinum_dictionary_deltas_ndarray_to_arrow_typejemalloc_set_decay_ms__init__..genexpr_import_from_c_capsuleget_total_buffer_sizeget_record_batch_sizeget_all_field_indicesbinary_view (line 4912)__arrow_ext_deserialize__UnionArray.from_denseTimestampScalar.as_py_Tabular.remove_column_Tabular.append_columnTable.to_struct_arrayTable.slice (line 4265)Table._is_initializedSchema._import_from_cRecordBatch.to_tensorRecordBatch.serialize_RecordBatchFileWriter_RecordBatchFileReaderNativeFile.writelinesNativeFile.get_stream"!N 31Aqz+Q ~Q $A%6a QaMockOutputStream.sizeMemoryPool.max_memoryMask must be 1D arrayListViewType.__reduce__ListArray.from_arraysKeyValueMetadata.keysHalfFloatScalar.as_pyFixedSizeBufferWriterFixedSizeBinaryScalarFixedShapeTensorArrayField.remove_metadataExtensionScalar.as_pyDecimal64Scalar.as_pyDecimal32Scalar.as_pyDataType expected, got DataType._export_to_cCompressedInputStreamCodec.__reduce_cython__ChunkedArray was NULLChunkedArray.validateChunkedArray.to_numpyChunkedArray.is_validChunkedArray.__sizeof__ChunkedArray.__reduce__CacheOptions.__reduce__Bool8Array.from_numpyBaseListArray.flattenArrowCancelled.__init__Array.__dlpack_device__Array.__arrow_c_array__A N! :Qc$cV1"&cV1 3as!A 4q 31>)4ra .a>)4raqA+@+1`  *! !4A ( 81 1 %]%r'8@ 3l!87!6oQ %A }Ad$Bd!  XT%Qe9AQvalue_parent_indicesuse_pandas_sentinelsshow_schema_metadataset_timezone_db_path'q "!2$hd! 2Q QfCs! !5'1 1mimalloc_memory_poolmemory_map (line 1111)large_utf8 (line 4885)large_list (line 5008)jemalloc_memory_poolitems..genexpris_threading_enabledinteger_object_nulls_import_from_c_devicehave_signal_refcyclehas_variadic_buffershas_canonical_formatfrom_network_metricsfind_physical_offsetfind_physical_lengthensure_native_endian_ensure_integer_indexdictionary (line 5216)decimal128 (line 4639) d%s+V3bkQhaaq =3iqc_result_recordbatch__arrow_c_device_array__UnsupportedOperationUnknownExtensionTypeType_RUN_END_ENCODEDType_LARGE_LIST_VIEWType_FIXED_SIZE_LISTTransformInputStream_Tabular.drop_columnsTable.rename_columnsTable.join (line 5639)Table.combine_chunksTable.cast (line 4669)StringBuilder.finishStringBuilder.appendSchema.with_metadataSchema.set (line 3416)Schema.field_by_nameRecordBatch.validateRecordBatch.__sizeof__RecordBatch.__reduce__PythonFile.readlines_PandasAPIShim.seriesNon-fixed width typeNativeFile.readlinesMessage.serialize_toMapArray.from_arraysKeyValueMetadata.keyFixedSizeBinaryArrayFixedShapeTensorTypeField._import_from_cDurationScalar.as_pyDeviceAllocationTypeChunkedArray.is_nullChunkedArray.flattenChunkedArray.__array__BufferedOutputStreamBinaryScalar.__bytes__Array.diff (line 1076)Array._import_from_cA+," q#V6AZrPQ!avV1/9A /q4q##=Q gQait7!6qA 4q 1 t:SD87!q qA 3c +Q A-Qd2EQ./z!./q"!;.@"!1A, 1,A~Q'qq1qoQq to requested schema timestamp (line 4183)timestamp_as_objectt4s!o\ ^ type: logging_memory_poollist_view (line 5065)list_parent_indicesindex out of bounds_get_pandas_type_mapget_datetimetz_typedetected_simd_leveldefault_memory_pooldeduplicate_objectsdecimal64 (line 4584)decimal32 (line 4529)dataframe_to_arrays d%s+V3bkQha& =3iqq compression_level=batch_with_metadata__arrow_ext_serialize__allow_none_for_type_Tabular.itercolumns_Tabular.from_pylist_Tabular.from_pydict_Tabular.__dataframe__Table.remove_columnTableGroupBy.__init__StructType.__reduce__StructScalar.__iter__StructArray.flattenSchema.add_metadataSchema._export_to_cRunEndEncodedScalarRecordBatch.copy_toRecordBatch._columnPythonFile.truncatePythonFile.readline_PandasAPIShim.is_v1OpaqueType.__reduce__NotImplementedErrorNativeFile.writableNativeFile.truncateNativeFile.seekableNativeFile.readlineNativeFile.readintoNativeFile.readableNativeFile.metadataNativeFile.downloadNanosecond duration LargeListViewScalarFixedSizeListScalarFixedSizeBinaryTypeField.with_nullableField.with_metadataExpected Schema, got End of Arrow streamDEFAULT_BUFFER_SIZEChunkedArray.uniqueChunkedArray.lengthChunkedArray.is_nanChunkedArray.formatChunkedArray.filterChunkedArray.equalsChunkedArray.__iter__BufferedInputStreamBooleanScalar.as_pyBool8Array.to_numpyArrowKeyError.__str__A <:! d!y1  N!87!j ?! QaqA, ?"6a7Gq. 4A_A  nA%6ay!!A&5Q Kwa!6!?!#8(   .axv\Zq$AN L8 5Qa  ^1$AV4y"!1A8 :Qd' 4~Qa q1 6& )1AA0 2SL2Rq *AQ!$nF!16z,aaxq 1Liq&avQ !!z& 4y 1 !1 1 !1 1 !1 1unify_dictionaries' to pointer addresstable_to_dataframesystem_memory_poolpyarrow/tensor.pxipyarrow/scalar.pxipyarrow/memory.pxipyarrow/device.pxipyarrow/config.pxipyarrow/compat.pxinum_record_batchesnon_default_kwargs&&>nA'@)*B ();1 %Q ?! ) 1$aQ yaincrementalencoderincrementaldecoder_get_pandas_tz_typefrom_pydata_sparsefrom_numpy_ndarray for extension type fixed_shape_tensor_export_to_c_device_ensure_cuda_loadedelement_size_limitduration (line 4328)_download_nothreads_detect_compression_default_chunk_sizedataframe_to_typescline_in_tracebackasyncio.coroutinesUnionType.__reduce__UInt64Scalar.as_pyUInt32Scalar.as_pyUInt16Scalar.as_pyTime64Scalar.as_pyTime32Scalar.as_py_Tabular.add_columnTable.from_batchesStructScalar.itemsStructScalar.as_pyStringScalar.as_pySchema.from_pandasSchema.empty_tableRunEndEncodedArrayRecordBatch.selectRecordBatch.equals%Q< L#R|1Ls"N!;awa-Q ! 7q !!1Q  ^1Dq"!5G1NativeFile.readallNativeFile.read_atNativeFile.__enter__ListFlattenOptionsLess than one byteLargeListViewArrayInvalid union mode Invalid merge mode: FloatingPointArrayFixedSizeListArrayField._export_to_cFailed to allocate Expected Array, got DoubleScalar.as_pyDate64Scalar.as_pyDate32Scalar.as_pyCodec.is_availableChunkedArray.sliceChunkedArray.indexChunkedArray.chunk_CRecordBatchWriterBuffer._assert_cpuBuffer.__reduce_ex__BufferOutputStreamBool8Type.__reduce__BinaryScalar.as_pyArrowCapacityErrorArray.value_countsArray.from_buffersArray._export_to_cArray._debug_printA" -q )! 7#Q aq.A"'.A^156!!A /q4q.at6it7!6qA( /Tq 7#Q %Qaharaquses_string_dtypeuse_legacy_formattruncate_metadatatotal_buffer_size to requested type to_pandas_dtype_reconstruct_tableread_record_batchread_next_messagepyarrow/types.pxipyarrow/table.pxipyarrow/error.pxipyarrow/array.pxiproxy_memory_pool_perform_join_asoflist_value_lengthfrom_struct_arrayfloat64 (line 4502)float32 (line 4475)float16 (line 4441)filter_expressionextension_columnsdictionary_encodedictionary_decodedecompressed_size_datetime_from_intcreate_memory_mapcompression_levelc_tensor_ext_typebytes_allocatedUuidType.__reduce__UnionScalar.as_pyUInt8Scalar.as_pyType_SPARSE_UNIONType_LARGE_STRINGType_LARGE_BINARYTranscoder.__init__Transcoder.__call__Tensor.from_numpy_Tabular.to_string_Tabular.to_pylist_Tabular.to_pydict_Tabular.drop_nullTable.from_pandasTable.from_arrays$T#1 A qfF&A*!1 2QStructType.__iter__StructArray.fieldStringViewBuilderSignalStopHandlerRunEndEncodedTypeRecordBatch.sliceRecordBatchReader-Qz L ! 7q  at>!q*!5G1_PandasConvertibleNo type alias for NativeFile.uploadNativeFile.isattyNativeFile.filenoNativeFile.__exit__Message.serializeLoggingMemoryPoolListType.__reduce__LargeStringScalarLargeListViewTypeLargeBinaryScalarJsonType.__reduce__Invalid time unit: Invalid file mode: Int64Scalar.as_pyInt32Scalar.as_pyInt16Scalar.as_pyFloatScalar.as_pyFixedSizeListTypeDataType.__reduce__ChunkedArray.takeChunkedArray.sortChunkedArray.castBuffer.to_pybytesBool8Scalar.as_pyBaseExtensionTypeArray.from_pandasA N! 4{,auG1 4t4|1AA M 4q T+1AV4rq "A-Fa{!+B! =S4}Mj%Qm:[ !!A ?"6a7Gq. 4A_A  N!;ay!!A 4t14q ]$ba ^4rq4A Ql#Q &Qa t1 aq31a,aq 7+Qe89L0_upload_nothreadsuint64 (line 4056)uint32 (line 4002)uint16 (line 3948)tzinfo_to_stringtop_level_indentto_pydata_sparseto_numpy_ndarraytime64 (line 4285)time32 (line 4242)struct (line 5275)string_to_tzinfostring (line 4725)schema (line 5846)schema_as_stringscalar (line 1598)requested_schemarelease_registryrange_size_limitq 1  AATMATIQq 1ATR}AATRyopaque (line 5694)metadata_version_logical_offset_logical_lengthis_pandas_objectis_integer_valueis_boolean_value haq{&-QfAuAS 4q 1get_record_batch_gdb_test_sessionfrom_numpy_dtypefrom_dense_numpyensure_alignmentencode_file_pathdistinct_countdate64 (line 4420)date32 (line 4399)cpp_version_infoconverted_arrayscontainer_windowcompiler_versioncategorical_typec_memory_managerc_check_metadatabinary (line 4775)&a` ;0Q > D.''MQ "(!1jqUuidScalar.as_pyUnionType.__iter__UnionMode_SPARSEUnionArray.fieldUnionArray.childType_STRING_VIEWType_DENSE_UNIONType_BINARY_VIEWTable.to_batchesTable.set_columnTable.add_columnTable._to_pandasStructType.fieldStructArray.sortStringViewScalarSchema.to_stringSchema.serializeRecordBatch.cast%Q L#R|1Ls"N!;awa_PyArrowDataFrameNullScalar.as_pyNot an alignment: NativeFile.writeNativeFile.read1NativeFile.flushNativeFile.closeMockOutputStreamMemoryMappedFileMapType.__reduce__MapScalar.__iter__ListScalar.as_pyLargeStringArrayLargeBinaryArray" L#R}A CrQj$kt5KeyValueMetadataInt8Scalar.as_pyExpected list of Expected integerDictionaryScalarDecimal256ScalarDecimal128ScalarDataTypeSpecificCodec.decompressBinaryViewScalarArrowMemoryErrorArray._to_pandasA gQaq$cd&3b1A< a4A  t7-qG1"!1$A :QfA 1A Ja HA AA Q'q'{!1  t2\!s$bQA :Q&a  AQ q(  AQ *AT!A& &&:! A nA-?q|81A E!qA))9+,B uAU%vU&V a  WD+Qe6!67 4vQ Qa j1z'q 531bz2S "Aja*!;a !!312z2S "Aja*!;a !!2!bz2S "Aja)+Q !!uint8 (line 3894)to_struct_array_to_pandas_dtype times in schematable_to_blockstable (line 6080)__setstate_cython__set_memory_poolrun_end_encodedrepeat (line 458)remove_metadataread_next_batch'q$ xt7#Zt6q@PPQq 1  AAT}AATy__pyx_PickleErrorpyarrow.unknownpyarrow/lib.pyxpyarrow/ipc.pxipyarrow.computepromote_optionspandas_type_mapnum_allocations_normalize_slicemetadata_lengthmax_output_sizemaps_as_pydictsmake_datetimetzlist_ (line 4942)large_list_view&k?QQR* Ls"E& U!")^^_2 5.EQ 'q .aA WD)1AQ 5Cs! !!!A TRwavU($aqA LuAWECrQA> L  TE&QyaA* L O1F$aqA$ L O1F$aqA& &&:! A ~Q&=Qa  JaqA 4  *A?"6axq  nA[!!31& -q !aq:;  *!6Q+9+:!^1 ;a9AV1IQfAwrite_tensorversion_info_value_typevalue_countsuse_setstatetypes_mappertimestamp[us]timestamp[ns]timestamp[ms]struct_arraystorage_typestaticmethodsrc_encodingsplit_blockssparse_unionsort_indicesserialize_toscipy.sparseruntime_inforun_end_typeright_suffixrequirementsrecord_batchread_message:!& -q !aq:;  0d,&>a$G?!'q Zqxwc6A'q %$8HDq+Ra'q #"4DAr2_A'q "!2$hd!r2_A'q ! 0HDr2_A__pyx_checksumpyarrow.utilpyarrow.cudapreview_cols_perform_joinpandas_dtypepackage_kind out of rangeordered_dictnum_messagesmillisecondsmicroseconds_member_names_max_memorylist_flattenlarge_stringlarge_binary_is_primitive_is_path_likeis_mutable, is_min_exact=, is_max_exact= is installed_is_coroutineis_availableinput_stream_initializing_init_signalsinfer_stringhave_libhdfsfrom_storagefrom_buffersfrom_batches_filter_tableencoded_pathdrop_columns_dictionarydictionary_datetime64[s]column_namescoerce_to_nschild_fieldscasted_batchcasted_arrayc_type_codesc_schema_ptrc_child_datac_axis_order, but expected backend_name=aggregationsadd_metadata!+@Z Ls"F!6uL_WriteStatsUInt64ScalarUInt32ScalarUInt16ScalarTime64ScalarTime32Scalar_Tabular.takeTable.selectTable.equalsTableGroupByStructScalarStringScalarSchema.fieldScalar.as_pyRuntimeError=Q& Ls"G1F!4APickleBufferOpaqueScalarNumericArrayMonthDayNanoListViewTypeIntegerArrayField.equalsDurationTypeDoubleScalarDate64ScalarDate32ScalarD(!1 ^;e1uAQ 1Codec.detectChunkedArrayCacheOptionsCUDA_MANAGEDBuffer.sliceBufferReaderBooleanArrayBinaryScalarBatch number ArrowInvalidArrowIOErrorArray.uniqueArray.tolistArray.is_nanArray.formatArray.filterArray.equalsArray.__iter__A> %q  qG9AS"!1A /q4wk!$gV1AA  nATYa"!1A(>a !& uM$d!"#=q".aA(>a !& uM*D"#=q".a$A &a 8%Zq ?!61A N! 4q 41! 1A Ls"N!:QaA L!4t7$a$ITA* (>!6e1 a  JaqA 4%Q :Qe4q 1A 4%Q :QcS 1A $= (!1  #5 'qhaqAX Ls"N!#31AA8 a4A  d& Qd'!!"/ #1A M(*K|1vYawrite_tablewrite_queuewrite_batchvendor_namevalue_fielduse_threadstotal_bytesto_pandastimestamp[s]target_typestruct_typestring_viewstorage_arrsource_pathright_tableresult_dictrecordbatch_reconstructread_tensorread_schemaread_pandasread_buffer'q /t84qnAA !!!'q d($ar2_Apyarrow.libprint_statspermutationpandas_typeoutput_typeoutput_sizeout_indicesother_tableother_batchopen_streamnum_threadsnum_columnsnum_buffersnull_to_nannull_bitmapnan_is_nullnan_as_null__mro_entries__memory_poolmain_thread_list_sizeleft_suffixkeys_sorted&kq@ Ls"E& U&itercolumns is_writable= is_seekable= is_readable=inner_batchinner_arrayinfer_dtypehave_pandasfunc_nohashfrom_tensorfrom_streamfrom_sparse_from_pylist_from_pydictfrom_pandasfrom_arraysfile_offsetfield_namesfield_index_export_to_censure_typeempty_table_empty_arrayduration[us]duration[ns]duration[ms]device_typedestinationdense_union_debug_print__cuda_loadedcpp_versioncompressioncompiler_idcollectionscloudpicklec_type_namec_rz_bufferc_dim_namesbuffer_sizebody_lengthbinary_view_assert_open_as_py_tuple__arrow_array__allow_64bit.a4 [1t5qj_WeakrefableVersionInfoUserWarningUnionScalarUInt8ScalarUInt64ArrayUInt32ArrayUInt16ArrayType_UINT64Type_UINT32Type_UINT16Type_TIME64Type_TIME32Type_STRUCTType_STRINGType_DOUBLEType_DATE64Type_DATE32Type_BINARYTime64ArrayTime32ArrayTable.sliceStructArrayStringArraySparseDtypeSortOptionsScalar.castRuntimeInfoRecordBatch_ReadStats-Qp L ! 7q  at6!!!=Q ?!#?q(  WD*!6iqQ:!1!!1avQ 1PickleErrorPeriodDtypeOpaqueArrayNullOptionsMemoryErrorMaskedArrayInt64ScalarInt32ScalarInt16ScalarImportError@H t:T7!6a+,FloatScalarDoubleArrayDo not call Date64ArrayDate32ArrayCategoricalBufferErrorBool8ScalarBinaryArrayArray.sliceArray.indexArray dtype Ab t81D 6aqAuA^5 3bAAuAWECrQA Ls"N!#31AA@ Ls"JaqA. Ls"IQa,A L !  [q}AXU&QA LO1F$aqA A[t1!0 QaA %$7q~W$a$G?!/qN ?!#8(  d& 6aq!!q6.:Qa !AT+T!__pyx_vtable____pyx_resultput_nowaitpermissive_pandas_apiout_schemaout_indptrout_coordsother_typenum_fieldsnum_chunksnum_arraysnull_countnew_schemanamedtuplenJe1uAQ 1memory_map max_memory=left outerlarge_utf8large_listiterchunksitem_field is_mutable=infer_typeindex_typegroup_byget_valuesget_streamfrom_scipyfrom_numpyfrom_densefrom_codes__from_arrow__fill_valueextensionsext_scalarduration[s]dlm_tensordictionarydest_codecdecompressdecimal256decimal128date32[day]data_framecsr_matrixcsc_matrixcoo_matrixcontextlibcategoriesc_type_ptrc_timezonec_nullablec_metadatac_datatypebytes_readbyte_widthbuild_typeaxis_orderastimezone_assert_cpuarrow_typearray_dataallow_noneallow_copyadd_columnWriteStatsValueErrorUuidScalarUnionArrayUInt8ArrayType_UINT8Type_INT64Type_INT32Type_INT16Type_FLOATTranscoderTime64TypeTime32TypeTextIOBaseTable.joinTable.dropTable.castStructTypeSchema.setQueueEmptyPythonFileOpaqueTypeNullScalarNativeFileMemoryPoolListScalar!+@, Ls"F!6uLJsonScalarInt8ScalarInt64ArrayInt32ArrayInt16ArrayIndexError *HAQ'qQa 1FloatArrayExpressionBuffer.hexBool8ArrayArray.viewArray.takeArray.sortArray.diffArray.castAxt7$gTDA we1Bd#Qj A'qe9AQ 1A q ATv^6A q !1+8%QaA  nATYa"!1AQat:SA Mt7$b 0A LuM!6A[A Lt7$b AA L \t3gQfEA Ls"N!:QaA Ls"JavQA L[  ^1D5Q!!A /.ETy+1A A\&A"1aqA AZqd! /}AQA ^4rq"!#9QA 4q 8QqA& 10J$a  iy"!>!AJ Ls"JaqA4 t7-QgQaA4 qG!A Q HA aqA N!t82XQA N! 4{-q 1A M 4t1 '!A Ls"JaqA Ls"IQaA, Ls"G1AA ,A  >&BhaqA ATBgQaA %$7q~W$ t<~QgQaA t4wavU!A, t3gQfEA-. s,av[jA: nAT}AQ!!A &d.A$AQAQat:SAQ8t6!A N!z%t1A L+4zQA IQuJcA /.ETy+1A .!  AV4yqA 4t1 %QaA ,+@  0!1-QaAX Ls"E&AH Ls"E&A8 WO1"!1wrappedversion$vRqj(uCqq 1type_idtobytesto_dicttimeout_tablestridesstoragesortingsort_by_sizes shape: secondsschemasresultsrequirereplacereadallread_atpyarrowpy_listpromotepresent__prepare__out_ptrout_buforderedoptionsoffsetsnewcolsndarraymissingmessage__members__mappinglexsort_itemsis_null insteadindicesindex_get_allgenexprfloat64float32float16flattenfield__fieldexc_valenvironentriesencoderdisabledefaultdecoderdecimalctensorcopy_tocomputecolumnscleanupchunkedcapsulec_tablec_shapec_namesc_fieldc_batchc_array__bytes__ bytesbuffersbuf_lenbooleanbatchesbackendasbytesasarray__array__argsort address=&a~Qd'! QaVersionType_NA_TabularSIG_IGNSIG_DFLSIGTERMQ t7*AQMessageMappingMapType:!| Ls"G1F&LZ4_RAWIntFlagIntEnumIOErrorHEXAGON *HAQQ"! 1FieldEXT_DEVDecimalA yT!1AyF$d!AyAWDA t;e1DA t9F!1A t7)1AA &d.A"!1A .!  QfD !qA N!t$ 9A^1N!;a1qqq+1( -T$a9&.!!&%@ 1G7#TAwriterwindowwhencevstackvaluesuploadupdateuniqueuint64uint32uint16tzinfotype__typetype tosorttolisttime64time32tensortargettablesstructstringstrictstreamstablesparsesourcesnappyskipna__sizeof__ size=signumsignalseriesselectschemascalarreturnresultresizerepeatremove__reduce__readerpylistpydictpy_valpy_bufpiecespickleparentpandasoutput_openopaqueoffsetobjectnomasknbytes name=_name__name__n_rowsmodulelookuplengthkwargs_keysjsonisattyis_nanis_cpuinvertinsertindptrindentin_ptrhandlegit_idfuturefuncformatfinishfilterfilenofields" exists exc_tberrorsequalsencodeenabledouble__dlpack___dictdevicedetectdetachdecodedate64date32createcoordscompatcolumncodecs closed=chunkscastedc_typec_sizec_sinkc_poolc_pathc_modec_metac_maskc_infoc_datac_addrbufobjbufferboolbinaryatexitastypearraysarangeappendWEBGPUVULKANThreadTensorSeriesSchemaScalarSNAPPYSIGINTOSFileOPENCLONEAPIIOBaseDevice. Detail: Column BufferBROTLIAyAQAxt=AAwd,d!A t:RyAt7#QA t5.aAt5A& s"&aqA &%:$hd!"!2[/A: -Qa  d& !!!A N!t1A Mt7*!A Mt1A IQ qA|4|4qA =  ^1L"!1&%!, >!> >!$ >!( >!& >!(!!?, ...---- ).'.').: VPIQ "! Q:! +QLZ4CPUCOOBZ2AnyA t>A( s"(A qAaA!QA, F/!!A}DA "!A "!AA [AA#1,AV1 9AQ 81A 7!16 >!0 <_.V5V4V3V2V1Qd!NAxwvsrqonkihfedcbaTQMKIHCBA, 62 >! #10 >!"). @std::get: variant is valuelessstd::get: wrong index for variantResize capacity must be positive (requested: Resize cannot downsize (requested: , current length: basic_string::appendReadNext with custom metadataarray cannot contain more than bytes, have vector::_M_realloc_insertBinaryView or StringView elements cannot reference strings larger than 2GBS\S4S SSvector::_M_default_appendSt11_Mutex_baseILN9__gnu_cxx12_Lock_policyE2EEN5arrow8internal20ArrayBuilderExtraOpsINS_17BaseBinaryBuilderINS_10BinaryTypeEEESt17basic_string_viewIcSt11char_traitsIcEEEEN5arrow4util18EqualityComparableINS_6ScalarEEESt23enable_shared_from_thisIN5arrow6ScalarEEFvP7_objectRKSt10shared_ptrIN5arrow6BufferEEPS4_EFN5arrow6ResultISt10shared_ptrINS_13MemoryManagerEEEEilEN5arrow4util18EqualityComparableINS_7compute15FunctionOptionsEEESt19_Sp_make_shared_tagSt14default_deleteIN5arrow6BufferEESt14default_deleteIN5arrow4util5CodecEESt14default_deleteIN5arrow15ResizableBufferEESt16_Sp_counted_baseILN9__gnu_cxx12_Lock_policyE2EESt18bad_variant_accessN5arrow5ArrayEN5arrow15DictionaryArrayEN5arrow17BaseBinaryBuilderINS_10BinaryTypeEEEN5arrow13BinaryBuilderEN5arrow13StringBuilderEN5arrow17StringViewBuilderEN5arrow6ScalarEN5arrow10NullScalarEN5arrow8internal19PrimitiveScalarBaseEN5arrow16DictionaryScalarEN5arrow15ExtensionScalarEN5arrow2io12OutputStreamEN5arrow4util12CodecOptionsEN5arrow7compute15FunctionOptionsEN5arrow7compute11CastOptionsEPFN5arrow6ResultISt10shared_ptrINS_13MemoryManagerEEEEilEPFvP7_objectRKSt10shared_ptrIN5arrow6BufferEEPS4_ESt19_Sp_counted_deleterIPN5arrow15ResizableBufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EESt19_Sp_counted_deleterIPN5arrow4util5CodecESt14default_deleteIS2_ESaIvELN9__gnu_cxx12_Lock_policyE2EESt19_Sp_counted_deleterIPN5arrow6BufferESt14default_deleteIS1_ESaIvELN9__gnu_cxx12_Lock_policyE2EESt23_Sp_counted_ptr_inplaceIN5arrow9extension8UuidTypeESaIvELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow3ipc14DictionaryMemoELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow16KeyValueMetadataELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow6SchemaELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow5FieldELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow13Decimal32TypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow13Decimal64TypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow14Decimal128TypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow14Decimal256TypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow19FixedSizeBinaryTypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow8ListTypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow17FixedSizeListTypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow13LargeListTypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow7MapTypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow14DictionaryTypeELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow10StructTypeELN9__gnu_cxx12_Lock_policyE2EESt23_Sp_counted_ptr_inplaceIN5arrow9extension10OpaqueTypeESaIvELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow10NullScalarELN9__gnu_cxx12_Lock_policyE2EESt23_Sp_counted_ptr_inplaceIN5arrow16DictionaryScalarESaIvELN9__gnu_cxx12_Lock_policyE2EESt23_Sp_counted_ptr_inplaceIN5arrow15ExtensionScalarESaIvELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow15DictionaryArrayELN9__gnu_cxx12_Lock_policyE2EESt23_Sp_counted_ptr_inplaceIN5arrow14ExtensionArrayESaIvELN9__gnu_cxx12_Lock_policyE2EESt23_Sp_counted_ptr_inplaceIN5arrow12ChunkedArrayESaIvELN9__gnu_cxx12_Lock_policyE2EESt23_Sp_counted_ptr_inplaceIN5arrow16TableBatchReaderESaIvELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow2py14PyReadableFileELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow2py14PyOutputStreamELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow2io21FixedSizeBufferWriterELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow2io18BufferOutputStreamELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow2io16MockOutputStreamELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow2io12BufferReaderELN9__gnu_cxx12_Lock_policyE2EESt15_Sp_counted_ptrIPN5arrow4util5CodecELN9__gnu_cxx12_Lock_policyE2EE?{Gz?@@h㈵>?pA ________________@@Constructed with a non-error sta [],?;$W @h@Wp0h˕m o1rSrHsL4tޙuupzPz>{ǝ4{N`{ϟ|̠||p}@}h}}}}~8 4s,P*Лiȯ~H(D )-J/1L;;;(??%AWAgFwG4JlNN,OOTTVh]]^p^^ _Fp_)_Ȝ_Z(bZb[0f[f,[fB[4g[gX\@h\h\h\Hi]iB]iw]Hj]j ^Lk ^(m0^m@^mX^,nh^nx^n^po^o_p`tp`p`$qa|qaq*a4rHa$sxу(8v^LLˇKTJ*\$PXy `V ю%b4m8+@e5}œ0 U8Bxt٘pF{ x6( 4xhT/˟hΡ ~ԣlͤ+`X( (`׫8֮Yt<$|#,[[dDhظP 8['`^ ϼ Sh  .  d D L  B4$ twh)=TN_M{| ,a T |,`0`X0X DX@XXXXX XXYY0Y DY@XY`lYYYYZ@ZpZZZP[0[0`[[[0[\4\`H\\\p\\\@\\ \ ]pdddde4ehee eePfDfPxffPfgPHg|gPgggghPhm0mPm nHnplnnnPnp o4oTo@toooopp4p hp@p`pq8qlq@qPq`qpqqrr(r >@>Є`>>>0>P>p? ??؅?p@$AhAABȆ B@B`B(BHBBBЇC C@C0`CPCpCCCЈDF(G<KMMN8O`PP`Q@ Sx W@XX X,YL@Yl0[[\Ѝ\]] ^ ^4_H_\`p`aabbԎcc@dHdt@eȅ@ff$@gPg|@hhԐPii,PjXj`kkܑl l0`mTmx@nnĒoo p,p``qqprēpttPvD wtwxԔy0yyD`zlzzz̕z{ {,@{L`{l{{{̖{| |,@|L`|l|||̗|} },@}L`}l}}}̘`~0(L0|pЄ<`pؚ$pPp@P0PppД0МЕ@К0ȝP(HphН0ȞP(HphР0ȟP(HphУ0ȠP(H`hPȡ@(Hh0ЩȢ p(Hl`Ьأ@ DhԤpp@dppХP<@`@̦@ 4Tt@ԧ` 4Tt@`Ȩ,pd`ة0,T| Ъ4p\pԫp$Dd0ĬPp$Dd ĭ00<0pԮ@8Xx0,L ppذ<\| `ܱ 8`h0,Pt` @  ( L pp p` 0T@|е d0P8P\@PԷ(H`l`ܸ  <!\!|""Ĺ@##$<%h&'()*D+p-.Ȼ //0H01p@11 2м2`3 4H4p@556 778`8`@<<ľ===$>X`?@@0A̿CD,G\JpLOP0QdRSTUpU<U`V@W`XpYY@PZdZ0[[\],^d_`bb0e<edpff`ggPh pi@idPjjPklpmm<rh s0tt@u xDxd yy zz {,{T||}~ Hx L p<pp`Б@ D h4PXx0  40d` <P`С@ 4pX|PХ0Щ<pЬ0 <d`л@<` `, Lt@P < d`P$Dl @00P@t @<@d@,L tHPh`P04Tx` 04\0,d` @p0`$ @-P239p99 :P;=`== >0?@?`@ApBC PEXpGHHPJKH0MMNNN R\S|pSSS Y`\<glj0ppsv<yt}Ѕ,pTЏt`4d@h0XppP < d P 8`` 4pdp``PP<l< d,T| p#,p%Tp'|p)p+p-0$2L4t080:0<0>@PBx`CH IPJ,@LTLt@MM0NN `P<PSl@V0Y \^H0`xPbeiPl@pnl pq@r r4`vdpw`yzzp{D |l|}0~~ 4@\P$`Ltp Ї<0d@,PT|`pD lВ0 4l0DЧp еDt`  @p@<p8pl@P 8l`0@<@l"P%'$)L+t66; =( P>T ? @ A `D F8 Gd @H H I PJ K@ Kl L R  T XD 0Zp @a b e `h0 m` r s u w$pyT`{P}Lxp0,T|`Щ@DPl00 d@$T@@Dx0p 4\PH\P!%T *@/145@>pVp}@00`0@p,`\P@ L@xD t@,h`@p<t0`T 4 0d p   !L! x!`!p!"0"`""""p # H## ##$ T$@ $$$&$@+$%`-P%.x%.%@5%`9%;$&=P&B&0D&J&L'OP'Q'Q'pS'@X((`ZT(](a(f(@j<)pot)o)r)@})@(*@X**** +H+x+p+p+,8,pd,P,0,,-D-t--0-` .`P..@ .P.` /`\3@3B3@G30I4KL4L|4N4@Q40S5S(50TL5Tp5U5W5`W5W 60X06Z\6\6_60a6Pc6pe$7gL7i|7l7s7w8@{H8}|88P8 9<9`l9999,:\:::`:;0p;;P <0L<x<<<<(=pT=P===>D>`t>P>0>0>PL?|? ?@ 4@Pd@ @`%@&@@(,A/\A2A06B 9HBK@@$L0FTLJL@OLRL0XM[@M_pMbMeMrN{0NЁNNPPOOO PpWC4WPQdWSW[WP^Wa0Xw`XzXXX@ YpDYpYYY@Z$ZHZZZP Zp([X[ ![0[G[`O\X@\p\p\Є\\]4]@]P]@<^p^^D_ bcо,c Pcptccc`cd(dPLdpdd@dde0$eHele epeee@Tfpf gXgg`g hdh`hi"li0i8j;ljFjPk@Yl ]Hmamfm hLn0jnr,ooo@p0pЪppHqqrXr@rprrPr`ssp tpttuPhuPvvPvvp4wdwwp w x x 4yyyy$zXzzzz ({0\{@{P{`{`|@|$}@1h}L}L}M~U\~V~X@]\bdl`pu @dPl0Ԃ,в܃D0\PLṗ p|PЈ0,P̉ P +`.T1 69P;N`UT[P^_Ta`ix`@||ԏ, d`Ԑ  D`| lP @`4ЛlȔppР0PФ pH`x ؗ80pL t@,0\``P@P\$ pXDx<tpȡp(Xp <ḷ,\L|ܥ <0D@P ܧP pĨt̩`#&<P'l'(̪)*8,`/305@7;=TPDFܭK4PSVLPY \ _@eghP0jkv`w yzt@|г},`PЗ xЩ`\p$ ܷ`ppȸP  lpd0  ` &@*X`17>x@Խ0F,HZa<g`nw@|@<@ЭL иP4  d` `0!@'-h;EOU\dl(s@tTpPDp@L0d!p*109p@CI Zxpv(t $ |P,Tp X0 \P ,d6pALEIMTQZ`\dPkXwDTp<p D|-38p:PNdxz4D@68 90<@?tDK$R|0  d/0ST$f@xT@t \#@/`5AHH0N`TPoq4P~P40@Pt$@P  L ` 4  T  ` 0   p&  -03X@9G@R ctk4}0`p@ $PxpdH0@003@0ADf|PhW|WWW W0W@WPW`Xp4]T]h]Р|]]]]] ]0]@^P^`0^pD^X^l^^^^С^^^^ _ _04_@H_P\_pp____Т____0`@$``8`pL```t```У```` a0a@(aPP AAB0CC\E<F$0GGIKMl`NOOpP\ QQR 0S S T T Up @VVW(PYp\`^D_ `4abPdh0fzRx $0-FJ w?;*3$"DpHXlHlhHdH`H \H XH TH PH z z z,4z{AC BEDY H J d0|x<|H|,T|{AC BEDX I J ||| | |4|,H|AC BED| E J ,x\}AC BEDj G J },}[AC BEDu L J ,}AC BEDj G J ,X~kAC BEDH I J ,L~kAC BEDH I J ,|~[AC BEDu L J ,kAC BEDH I J ,HkAC BEDH I J , kAC BEDH I J ,<kAC BEDH I J ,lkAC BEDH I J H,T[AC BEDu L J ,{AC BEDX I J ԀH$8L(!,`D AC BED K J $SpZr,({AC BEDX I J x4C"AI AV 0DCDPCXLClHCDC@C > > > > > 0> D> X> l> > > > > > > >  >  > 4> H> \> p> > > > > > > > > $> 8|> Lx> $`t>6AC E^ I E  L~,AC Cd X~d~%$'OAC DED} $X~{AC AQ J Z  $~aAC E] J H~aAC E] J (lHAC Ah C J F 8AC BEFG H W I H E P'H TTiC g 0IaC d PĀ=d58x AC HGn G  E T L (AC AA J u K ,daG f A D M M A 0ĂAC E B _ A \ D 0DAC E B _ A \ D 0xAC E D ] C Z F 0AC E D ] C Z F 0tAC E B _ A \ D 0`AC E D ] C Z F ,HLtAC BKw H X H x|,x@9 T`_aC Fh F zPLRx ,$m#"ۦAC BV E   _%fAE BGV  (paC Ap K t ($i%AC FED 8PDAC AO L H H K M b F AF E~ F (AC BGEH 0XAC BEEEH F (%AC DEEIv (<AC G] H (hlAC Aw D g I $sYC [ I r (AC Al O g I (lAC Al O g I (AC Al O g I @AC Y `R$AC S PaC Aj  *$AC C 4(,wAC A F O I (AC A D O I (0dAC Av E O I (\GAC A K O I (tAC N F p H H>AC V h>AC V >AC V >AC V >AC V >AC V ?AC V (?AC V H?AC V h?AC V ?AC V ?AC V ?AC V ?AC V @AC V (@AC V H@AC V h@AC V @AC V @AC V @AC V @AC V AAC V (AAC V HAAC V hAAC V AAC V $AAC N F p H 0AdAI BHs I P H [  BAC Et C ,(B@AC BEL H XB(lBHAC BEDR G BAC Ea F ,BAC E K O A (BAC I K J  CAC E K 4cAJ U H z LY>tq] e  lY?cAJ U H z  YT?[AJ Q D z  Y?AC E| K Y|@AC V Y|@AC V Z|@AC V 8Z|@AC V XZ|@AC V xZ|@7AC r Z@oq] ` ,Z@%AJ Ch J D D (ZAAC K B ,[DAC MD K 0?GR gAC FK H @=g  [SkAJ \ I z  [DTkAJ \ I z  [TkAJ \ I z  \TkAJ \ I z  ,\(UkAJ \ I z  P\tUcAJ U H z  t\UcAJ U H z  \ VkAJ \ I z  \XVkAJ ] H z  \VcAJ U H z  ]VcAJ U H z  (]AC BH F G I S A ~d ~`;AC EU B ,~|AC Cd E q G $<AX E I @oq] ` ,`lAJ C9 I e K $DAC I D  oq] ` $\AC I D $oq] ` $ tAC I D HAC G D _ A w I ,v- AC HK J ,HAC I K ,x sAC M C 4\4AC If E e C W I 4d4AC If E e C W I 4l4AC If E e C W I ,PtAC I K ,dAC HK H ,.AC FJ K $AC IJ I $̤dAJ C D 0_a] ` 0PTAC K? B  J (AJ DD I 0AC K? B  J (pAJ DD I ,԰AC BD| J A G $@TAJ Cw K $hLAJ Cw K 0DAX DHG D  G (ĒAJ E I (AJ E A $AJ Cg K $DpAJ Cg K $lHAJ Cg K $ AJ Cg K $AJ Cg K $AJ Cg K $ AJ Cg K $4AJ Cg K $\XAJ C F $AJ Cg K ,AJ G J j F 8ܔHAJ FH A  G  I $AJ Cg K $@AJ Cg K $hAJ Cg K (d"AJ FD G (hAJ DD A ( AJ FG G $AM E I (<AJ FD G $h\AM E I $AJ Cg K ,AJ HD E $lAJ Cg K ,DAJ HD E $@AJ Cg K ,hAJ HD E $AJ Cg K ,tAJ HD E $4AJ Cg K , ZAJ DHh A (H< ]AM E G $tpAJ Cg K (HAM G A $ȘAJ Cg K $AJ Cg K $/AJ E I $@AJ Cg K $hlAJ Cg K $DAJ Cg K $!AJ Cg K $"AJ Cg K $$AJ Cg K $0&AJ Cg K $X|(AJ Cg K $T*AJ Cg K $,,AJ Cg K 4К.bAX FHG B  D $<1AJ Cg K $03AJ Cg K $X4AJ Cg K $6AJ Cg K $8AJ Cg K ,Лt:ZAJ DH` I $=AJ Cg K $(|?AJ Cg K ,PTAZAJ DH` I $DAJ Cg K $\FAJ Cg K $М4HAJ Cg K 0 JAU DHB D  J $,LAJ Cg K T`NA] ` 4tNyAC I$ G  E Z F T:AC O E a 4Н$T+AC BH H b F o I $UAC G A 0VA] ` PDWA] `  pWBAC V F a ,WAC BIN C n B Ğ@XtQC EZ ,XAC M A ,ZAC M0 G ,H\AC M0 G ,x_AC M0 G ,\bAC M0 G (de#AC I F v# ,$fAC FF H ,ThAC FF H ,jkAC FF2 F (m@AM G A 8pHAJ G F  F  I (tAC DD E 4HuAC IO D { E  A 8twAC DJz D d D O I (xAC I[ H e K $,yAC u G z F ,ytAC BGJP I (@|qC G B 8l}AC K A \ D l D $AC z J z F $ТAC z J z F $AC z J z F $ $AC z J z F $HAC z J z F $p4AC z J z F $AC z J z F $DAC z J z F $̃AC z J z F $TAC z J z F $8܄AC z J z F $`dAC z J z F $AC z J z F $tAC z J z F $ؤAC z J z F $AC z J z F $( AC z J z F $PAC z J z F $xAC z J z F $AC z J z F $ȥ,AC z J z F $AC z J z F $<AC z J z F $@ċAC z J z F $hLAC z J z F $ԌAC z J z F $\AC z J z F $AC z J z F $lAC z J z F $0AC z J z F $X|AC z J z F $AC z J z F $AC z J z F $ЧAC z J z F $AC z J z F $ $AC z J z F $HAC z J z F $p4AC z J z F $AC z J z F $DAC z J z F $̔AC z J z F 4TAC DGD K  A ,HAC E@ G N (ij>AC E@ G N (4?AC E@ G N (?AC E@ G N 0H<@AC EA F p H A G 8|(A"AC FD` B  A  I (FAJ DDT I 8HAC DF A Z F  D ( KAJ DDT I ,LMAJ HD A ,|TAC Gr C  I 0VAC GW F F B (XAC M J , ([}AQ HR G 4<x`AC M C  F (t eAC Gb C z F ,fAC Gt A S E ,жgAC G C S E ,TiAC G C S E ,0kAC G C S E ,`lAC G C S E ,nAC G D S E ,$qAM F[- D 4AC Mm B G I ((,AC Gb C z F ,T AC Gw F  E 0AC K E  B $LnAJ U H [ E $nAJ U H [ E $ܗnAJ U H [ E $0$nAJ U H [ E XlcAJ U H z  |cAJ U H z $nAJ Y D [ E (ȹLAC Ej E  B (AC Ej E  B $ nAJ U H [ E $HܚnAJ U H [ E $p$nAJ U H [ E $lnAJ U H [ E ,AJ ^ G J F [ E ,AJ HD E  zDAE Ex ,@AJ I D ,pdAJ I B ,47AC G C B F ,лD7AC G C B F ,T7AC G C B F ,0d7AC G C B F ,`t7AC G C B F ,7AC G C B F ,7AC G C B F ,w AJ I F 0 AJ E H  D 4Tp;AJ I0 D  D t D ,x7AC G C B F ,7AC G C B F lAC Eu B $TAM C D $8AJ C K (`BAM I D ,7AC G C B F ,(7AC G C B F 48@AC I K q G Z A $@=,8l AC BEL H ,hAC M# D ,AJ I` D ,ȿ AC FJ E 4 AC FJ6 F E K 404AC FJ6 F E K 0hAC FH I W A $xAJ C J $AJ C J ,hPAC BDw G  E ,AC FJ D ,L(&(AN FF E ,|(>AJ HG G ,WT AJ FMv D ,dF AJ HH E , oAJ HV K (<sAJ DDf G (hvTAC A D U C w},[ 07?AC HE E 4' 0X9 AC HE F  0 <=״AC FG7 H ~ <? AJ E- C  I M C H2q 0hAYAG HH A < $4`H{AJ Y D R (\H!AJ FD J $KnAJ U H [ E $LnAJ U H [ E <dLLE|AJ G I  G O A q 08P UAC M! F ` @ YDAJ FLD F .N.>.d. d{hc ,HjGAJ E5 K , ,mAJ E5 K O ,(oAJ E5 K XƲ 0xr AM BN E Jղ 4D}AC FJ F @ H ,|(OAC EK D ` H X ,OAC EK D ` H X $PAN CP N $PAN CP N ,,~AG EG D ` H X ,\(AG EG D ` H X ,AG EG D ` H X ,H AAQ M J xIQ , 4AG EG D ` H X ,@ AG EG D ` H X 0հAQ HR K 0 , |AG EG D ` H X , AG EG D ` H X ,(!OAN Ci E G I ,X!OAN Ci E G I $!|PAN Cy E 4!ԓAC E] J p H p P H $! QAN Cy E 0t}AC Ci H E C [ 0d"AC C^ K d L ~ B 0"AC C^ K d L ~ B 0"ȖAC C^ K d L ~ B 0#AC C^ K d L ~ B 04#AC C^ K d L ~ B 0h#\AC C^ K d L ~ B 0#8AC C^ K d L ~ B 0#AC C^ K d L ~ B 0$AC C^ K d L ~ B 08$̜AC C^ K d L ~ B 0l$AC C^ K d L ~ B 0$AC C^ K d L ~ B ,$`AC C^ K ^ B 0%N,AC C D [ M g 08%O,AC C D [ M g $l%ȟAC Ha C 0 }AJ FFK F T  0x  AJ HD J v4 0 г߫AG FM J  R0ϫ ,&HAC C~ K b F &0l oAM HH A \ , @AC Ke D $ , jAC Ke D H l 0l >˪AJ HG[ K $ 0 AJ HG E g , DKAJ FD G L + 0p AJ HK A PnC , 8['AC K E j  4D AC I F d D T.ҩ 0t+ AC M I  4 ~AC I F d D Z 0$+ BAC M I X[" 4|d AC I F d D  @ ʨAC M F  A  J  0<TW ~AC M K pu^ 4\+:BAC If E R F * 4D/"AC I I   C $ @D2 ʧAJ HHF G  H ^ J   05AJ HG H Vf @9 JAJ HHF G  H ^ J H & 0l=s AC FF D  ,8.M AM C C  J @OAJ HH D ( H ~ B 8M  0\ShAJ HG H D @,X(AJ HHF G  H ^ J   ,[jAC Kj G Lǥ @p\AJ FJ, I  H ^ B 2  4X`fAC K G W A = ,4a!AJ FD G d 4hdAC K G W A f ,eAJ FD G " 48xhdAC K G W A p; ,iAJ FD G  (l9AC IM F Rƣ (2|m[AC CN K z 0`m_AN I D $ 0AT P$ G ${ 0M _AU DGK K Dzc ,hYmAJ G5 I M ,Y1AJ G5 I E 0\AX Ib D D ,h^ѢAJ E I  ,(FAC M G  0 $gAN HU K @?$ 0dfAJ I G  !{ 07_AJ I A K (/AJ C C @ 8`PAC I D U C h H Vӡ 8AC I D U C h H   0{AJ I K L2 0pPvjAN DOU I L ,x^0AJ E I \  8:AC O E a 0<Q ٠AC DL. F p 49=AC C N L L n J 4@9=AC C N L L n J 4x9=AC C N L L n J 49=AC C N L L n J 49=AC C N L L n J 4 :=AC C N L L n J 4X:=AC C N L L n J 4:3AC C F L L f B 0:AC A~ M M K g A ,XAC Ek D ~ J Ҟ ,,AC Ek D ~ J   , AC Ek D ~ J P Un ,l ZAC Ek D ~ J  < , (AC Ek D ~ J   ,!|AC Ek D ~ J 4!؝ ,P!PĝAC Ek D ~ J !} 4=$mAC C I L L ~ J (H=\AC As H W ,t=8AN C E G I ,0"5AC E H w I `"ܜ $=9AN C M 0>\;AC DL O v J D"xzlJC FD C h H , # ](AC E F ~ J P# ,l# ]AC E E ~ J #Л ,,? EAC I K d L ,\? EAC I K d L ,?EAC I K d L ,?8EAC I K d L 4?XAC C H L L  J ,$@EAC I G d L ,T@UAC I H d L ,@UAC I H d L ,@@UAC I H d L ,@pUAC I H d L 0%CԙAG DL I % $lA<AC I H 4A9AN C B k M  I $A(;AN C H 0AP MAC FH H i G $(Bl!]AC C I <&"AC G L  H r F 4B$SAC C M h H B F <T'%@AC G L  H r F ,C'AC Cs F ^ B ,8C;-AN C G G I $hC==AN C O 0((!AG ED G  D P(\ 0p((!DAG ED G  D ( 0()!AG ED G  D (ؖ 0)*!AG ED G  D L)a (l)+AC I B )+c{ ,)-xAC K C )>j < *4/]NAC K A  G W I L* ,p*01AJ FDD G * ,*4=ЕAC E F v B * ,+6=AC E E v B @+Nz ,F C j F 4 (4]AC I H 4، (4_AC I H $5` <D5laAC Gw N H H  F 05,d}^AG C. G j F 54 05Xf AG G H j F  6 0,6hۋAC DEH. E `6f9ˋ 46|lAG DD A P H 6C 464nyAG DD A P H 7K 4Ro AC HHu G W I 4RTyKAC C J x H  F ,Sl|AC AF E M K k ,HS|AC AF E M K k ,xSL}AC AF E M K k 0S}AC C^ K d L ~ B 4S~=AC C N L L n J $T AC G B ,8AQ E I 858y 89*aAG BIH H  H T90 ,TȇJAC C} D g A <9AN FD J ] C  K 9҈ 0 :DAC MF I @:ZW 0d:̎ AG FJ E :Y ,:YtAM G F :$2 0VMAC K A  K 0D;3AJ HD J x;ʾ$, 0;AJ HD J ;$ 8;LAC M9 F j F 0<Z 8T<AC M9 F j F <y 8<,]AC M9 F j F <ƽ1 8=AC M9 F j F P=| 0X AJ G J O I 0=ȮkAJ HD G = 4>|AN FD B s E 8>ȼN 4\>2AN FD B s E > 4>HAN FD B s E >> 4?|AN FD B s E L?p 0p?9 TAG BN K ?2+ 4?AN FD B s E @ 4$@ńAN FD B s E \@I 4@{AN FD B s E @M 4@41AN FD B s E A 48AhAN FD B s E pAz 4AAN FD B s E A5o 0ASAG I K $B@D <]hwAC BEEEH F  F ~ J 0BAG P+ E B3̂ ,T^0 AM C C  J 4C AN FD B s E HCCR 0lCT-6AG FM C C@' <8_, wAC BEEEH F  F ~ J 0Dl SˁAG P H 8D3 ,_t AM C C  J 4DdcAN FD B s E DQ5 4D AN FD B s E E  <`!AI BJb H  H  F ,E<' AM I D E 0E1 AJ I# I FϷWǀ 00F0;HAC FJT H dFη (F(>{AC GC B F^ (F@FAC GC B G^) 4 G0CAG I K  I XG ,xGEAJ G I GA ,GLAJ G I G϶A , HpRAJ G I PHA ,tHXAJ G I HA+ (HH_/AM GE F H2# ,I,eAJ DD I DI| 4dIjUAC M F w I I:W 0ImAM I H I9 0JtkAJ HK H LJgW HpJz+AC DH$ D  A 9 G i E JNG 4Ju+AG FDs K V J K 0 B ,AC DL H v 8@[?zAC BDs C ^ J W E (vd@AC Cq H @ 0[RFGzAC DZ' G [ (*z 0\XpzAJ I F 4\٭z 8X\@yAC BDs C ^ J W E 8\@yAC BK E u K m K 0\^ yAM Ie D ]%#y $xAXAC At G W 0x BYAC M J t 0]k NyAM I H ]6Ry  ]B+6yaC F 0tyCAC DL H v 0yCYAC M J t 0h^xtO xAM I@ I ^6x $4zDXAC At G W $\zDXAC At G W <_E\xAC G I  E K M 0P_}#xAM BN D _4_x 0{FAC DL H v P{F(d{FuAC Cf C @ 0`wAC MA F $P`JwA 0x`؉wAR DEJ D `#w <`FwAC G I  E K M $|GAC A] F [ 08a8[wAJ HDJ G laW2nw 0aRwAG I A a1ILw $\}8rAC K I x H <bGwAC G I  E K M }H0db x 0c<wAM I F Hcxwy 0lcoyAM I B $c3yA 4<GKC E} H p P H 0dJyAG HG B 4d*y 8XdyAG DIED7.Y.8 J dZby (dlyAM E I dly 0e<ryAJ Ig E 8e.8y ,\eyAJ E_ A e5y 0ed yAM H]^ G e8z ,fzAJ GR D 4fת& z 4XfHyAI K D l D f5z 0fyAI M A f~2y 0 gyAS M I @gX> z ,؂DRAC M D 4FKC E} H p P H 0g" yAJ DNDV I h֩8y 8$h,yAM Dd& D Q.T. `hy ,h?yAM I H h =z 0hF\ yAM I D i}z ,0iOazAM I H `i5z ,ilUzAM I D iz 0i\ zAJ FF F jp{ 00jpfXT{AJ FF B djGK{ 0jxl+{AJ DO D j:| 0jP}@{AM HY; F k7| 08k8/|AJ HOp F lk;j| 0k N|AJ FMc G kƫz| 0k0 |AM I} D l| 4BKC E} H p P H <xlm|AG G D  H { E l̫{m| 0l$w Q|AJ HK B mdr| 04mL V|AJ FLNn G hm| 0m2|AJ HD B m"| 0m% |AQ HR B n\e| 0 4CKC E} H p P H 0{,~AJ Ig E {8; 0{AJ I E 0|v5Y 0T|,t=AJ HGu A |SC 0|TWgAJ HD\ E |>5 0}\tAJ HGu A 8}C 0\} AJ HK D }K: ,(,BKC I# F ,} BAX I D ~ͩ ,CKC I# F 0h~ AJ IO E $~ϩ} A ,8DLAC HH E 0~*\AG BEO D (K ,L$;_AM I H |\Ag ,AKAM I H IAS (hEKC M F 8 G AM I H  .]. \7 80[C7AM H] D P .]. c 8 qCcAM H] D P .]. Ъ 4@AM I D  .x. xˀ 0T ˀAM I I Ё[S 4 jAM I D .q. ,R[ 4P j[AM I D .q.  84O5AM F[ D k,. _. Vǁ 4 $ a ׁAM I D .q. D 4ܞ8CKC E} H p P H 0@ہAG G? B j F ԃ & 4BAG DF H  B ,ۭ&w 0P@E [AG Ig H l D &7 4BKC E} H p P H 0܄GAJ I A C8- 04LAM IY H h#5h 0S LAG BJL H  ,XLZZAC FED2 K ,| AJ HYn F 0DPAM HY B x$5 ,dAKC I# F 0̆%AM Fb F  ,BKC I# F 8T 5($AM D]< E g.U.$ڭ3A @,(DAJ GB D a G Q G  I 4XAG G E b F V B 4 4ȣ,FKC E} H p P H 8YuAM I D .E. Ȉ 4`DFKC E} H p P H 8$jȁAM I D .E. `n 4\FKC E} H p P H @{vAM H`B H .A..A. a: 4lFKC E} H p P H @\ďvAM H`B H .A..A.  ,8|FKC I# F ,C AM I H $$jA ,LہAJ I I $|wA 4GKC E} H p P H 0܋43AC M E Tc 04=KAM FMZ E hί. 4TGKC E} H p P H 0Č< sAM Fb E lU 4tGKC E} H p P H ,T4AC K G 5.$ 08#d AN FPZ A ܍ } 0P/gAJ HDd E 408̓ 0Xh4d AN FPZ A }M 0@'1AM I  H 55p 0XF'TAM I  H <5 0`0L'wAM I  H 8 0RXAK HO F ϱ (mAJ DDT I ,EKC I# F ,FKC I# F ,tn #AM I H $̐A ,zn AM I H $B ,GKC I# F 0xAG DGD B $YuA 4H[AC FD H 0H>GAC HO D S 0@0'GAG FF J tմkC 4 AJ I B  J 0ФLAC BN D 8NAC DD G R F  F 0@" ƃAG W= D t@Zƒ  (4(%AG BEEEKi C *5; 0N!?AM Fb C < 0`cAM I J #ӄ ,Hr?AM I H Y/ TT| } } }}}}}}}}}@  p  ,zQQ )?pA )9jA )9jA )8i );l !=  -':ia );l   )Ar 0                     su!=  -XZ !9*/      M /      Dq  l$%G\5W  Ux%   PK=5[ 5 5 5 555"%4W\g~MB%`[   T   j g &w 5 0't5 \        ^)Yh^s< Q      /    5 5 < Q    3a99 9C99599N9b9`9 "9##9()9+9+92939%Cml37"""!! " " " " " "";"5""""N"("!!"!!!#"""""## D"!"!!!u4(4)4(O\{ _   1}O-;  5_!!! # !!5!!!! !/9   WkQ  %-<  e  < Q    $e  @zp$   [555 5 *5 $]            d  g    _ %  UC 7   + 7   + 7   + +h 7 7                  (    (    (    4 K $C$^$68$  %$!/#$#$* --*,-,-Z^     'SN    (V%  K %>%V%3 8%  '%">$%$%E j        <       ;     -  W@0  u 3 %%%%%%% GS S TG  e eWWWW% LWa}!C>SN^},, QE  -3       G ~ &@ . *1 *1#e!   $)4FF3*(Uc)?.DO;  ) ]     -)   )       /     G LLLL-LLLLLL! + + +++;.L!,,,',',;   .LLUM#!      }  3GLeMB   u  +>C*" (9 (9hQF    D  1   -QF    D  1   -QF    D  1   -QF    D  1   -1)   / -/,   >   '>IW?r              {  f;  &    W  ?' g       B                   K. M    G$Pw"# " " " L"#%"#"B"""%tj          =   Q  d F         $F  P ]    *  ?GX D  PF&L  6         'L  6         'L  6         'L  6         '2  fITe        V    32  4X      r  % :?Jo4   A             'o4   A             '^M)     ";     >4gl ) )o+ &?DO5      5      'an 7q* 7q* [ 7H& & &&&"& &Iu3/mYGp{       j  EJ%%p     7  BB'D|<H        #*     G #4 K]I1J K R1mb         L     IrN}-$a  F #;@Ur  +   F  C4Y     #*79    _   0<t                   2H,,,_,,m,"$,9222222 3 3 1 1 3 0 1 1 1 1 2 1 32331322111322222%13211123112 1 1 1 3 2!2!2'3'1)3*2+3-2.1.1/1/1/102010102' 2 ''&''E''''&''''&#H'%& =mY>              ' "]R d x              G3rA      r  *1           $X                   "*u!5 5    / !K'Jj!E)KyX      ,       /x         !a''''''e'''''{w                  )ca  b    N      Hv      z            !Tg' D            @%0    /  ,9 P    n  *   %  /        ,!_!""! " ! h"'!""""$"" ""!"""!"Hw * * * (* * ****** c!2*!!e*"#* ZUk $                !}  * 3 Bg +r}!    s<< - [        1JQ  / !C    7 fsV 8 i          )aaA  Y  d@2         7 E|       5| $         -         !F!,tt5*<H     0  %  -     [,2w                  )ca  b   N     su     g            ``            Mo     B    1       $= > .5u0     y            $= > .5%0    /   DJ09-"     //^<m.GYy,,m.GYy,,m.GYy,,m.GYy,,{k8    F  1yY       ,       /#I    . 1\2 %    m * D     Q @Um(% (!PULu :!9!:#9$:$9%9%:+9,:595:-% SXaY0 #  / 4>RCME:55553555'5( 5h c^w|c      r  *1           $j                !      r  *1           $j                !v)    -     /u0     r            !v)    -     /(D   ) #           m/"7MD   o JcO@i_I    (  (D-\s""" A" "T"""""":"""""1"""""" 5" "!"!"!8"5++ &Bch&GG4       <4       <e]' '  '''''' '%'&'!DIe], ,  ,,,,,  ,"",+,,,! $.3$e], ,  ,,,,,  ,"",+,,,! $.3$qf* +#3*+*+*U*'* *)**P*!=LQBfkByp111111111  1'!((1()1,2-1-$ 888qg 66636666666565l6!AKP}}qg 66636666666565l6!AKP}}i_j j jjjjj j j..0j^j_ j1&OYlqg @@@3@@@@@@"@?@@7@! :r|: +! L! ,!v     0  D           $r           -        0                                    x/%&%%& & % & % & <% & "&%&&&%E&%&%%%"&/%&&&& & &!%!&"&"%#%eZ .!a9;!}s GNGGN!G!H"G&H&^G''G8H9H:G:G; G%A5#"\# " p# # # " "##%"#""(#"#e"#-#"#"#"## "#"#"##"\# " p# # # " "##%"#""(#"#e"#-#"#"#"## "#"#"#_(((((I(ec(((((_(((((I(ec(((((]S    3 2Q`V 5555l55555e5 5 )5!5%5&&5)6)5*5-5-5.516152555F`B D _ l z      ,  .w yy7yyy y()y--y34y<y=ySySydyey1)))))@)) ) ))(())[()())5))))(()5)))))()(/))) ) )!/)!(")"($)&)&(&(')'(')'(()()V,%\,)  .4L/[Ju0     y            $  .4L/[Jo B      1         0o B      1         0o C      1         E:66663666'6'6! Y^  8   s--H|QH @ m!o AKP7jI?0"#"?""!"!" 2QkVHWh 5e         CPm7%oX      ]  5     +  "    r HsM c     |U@5+NS[fw>]i   9  %    -    4/EN#>H)  1 (EG%O nX`&      T   ,uX      T   !|jo          (a|jo            in6GjO4Ky.      -  D \ -~      XF{*    {    <a       T      3]U     &   D     i]P     &   D     ir     Xp    N $!! "!!!!4!"!!!!!!!"!!W!!!C!!!!!" " ! ! !!!!!yqi -    <  K/ ~ ytYLE}%U }"">(77#8#7*8*8+ 747577]S/ L  * a q1&8      g ,6];  .   C% ]S/ L  * a qYQ" " 5" " ""m""'"" " """-%8=ns@}   Z() (()A(((%(}(-G(,()() ( (!(#)#($(((()1)(((()((X(G((()(( ( (")"(#(((((-$8l=6=2Z      *>/9,3&&&& &$%$&f)q^}jC,I@d K K J J J "KKK KJeK!J"K(J)J)K+J,.K,J-K-J/BK1K7K8K@J@KDJDJEJEKHKHnKJJ% |,  ,,3,+,,+, m!,$,$,%,*+*d,++!V`~eyyqf*  z5- BGuj(  (((%(((("("(#('('(!UJJ4<a9 Y9 Y9 Y9 .9 Y9 .9 t7 /4  -4 q7 @4* @n7; `h7 b7 @>8 4 `7 `_7o 79 `_9`[7h W7: 4\ jW9`8`U7"`4$`9`p8`V8`8`P8` 9`8``8`8`8`0q8`8`V8` _8`4$`8`9`P)9 `9`{8 8`@)9 `p8 8`89 9 `8` 9 ` 9 ``40 8`8`_8`(9 ` 9 `9`P8`9 `0)9 `79 ` )9 `@8`8`8`p 9 `` 9 `08`8`)9 ` 8 4& 8`08``8`8`P 9 `8`@ 9 `9`8`8`{8`8`8`8`C9 `8`a9@R9`~_9`8`4&`4-`V8`9`8`U7" ^8``4( 4#`3/ 0 9 9 ` 9 `P8`8`@8`8`8``=8 )9 `8`T7" 8`8`9 `p8`79 `^8`4%` 8` 9 `9`p8`R9`9 `8`4%``4'`^8` 9 `V8` =8!`8`8`9`(9 `T7% 9 `P8`8`P8` 4&`4(`g8`08`4'`@T7)`^8`79 ``S7 a9`z_9`v_9``4$ 8`f8`q8` S7&`R7(`p{8`P{8`=8 `<8 `[9`79 ` 9 ` 9 `Л8`p8` 4"``R7q 4, R71 4$ 8 `4> 4, 4, 4E @4% 4" 46 47 Q7l @4' @N7H H7d `C7O 09 4= 9 `>7 :7n 0{8 9 `8`O8 `08`8`8`{8`4$`8`08`f8 8``V8 4( ^8`@4' 97 <8`4* В8`4# 8`@V8 8`97" 8` V8 8`N8 а8`4> @4#`3. `8`]8 8`V8 Х8`N8 p8`<8! 8`4$ 8`]8 4' N8+ @N8, @8`]8 8`8`]8 P8`@<8! 8`4# p8``97" @4$ @97 `,4, p8`U8 08`p8`4% 8 dW9`8`8`8`8` 97 ` 9 ` 8`97 `87 `4!`R9 98 К8`4(`@4*`P8`87)`4+`4+ 57e /7e -7g )7 '4 !4 @%7; 7 7 @7M @!4= 74 74 @7d 7 7 6w *8r '8 6 6W 6 6 6 `4 6l 6 %8 @6k 6 @#8c 8 `8 4 `67 `4 68 `6 6 6 7 6/ @6X 4u 8 6  6 @6 @6 `6 6 6 4 6- 6* @62 ~6* y6 @j6 g6 f6 7 `6 @Z6` T6o 4b 4Z S6 7 7 7 7 7 P6 M6 7 K6 I6h `7 @H6X C6v @B6 @6 @?6 7v ;6( `96 76 4 4 @56g 26K 06 `-6 @+6 @%6 "6 6 @ 60 @ 6 6S @6 5  P8`08 79 `C9 `8`0p8`8`8``8`5 `5& 4' 8`z8 8 x8`N81 4( @4' z8`4$ 9 `h 9 `8`9 `X 9 `8`8` 9`PJ9`8``8`8`h8`@8`7- 4) p8`@8`8`X8` 8``7- 4) H8``8`p8`9`Б8`M8, @4( 88`P8`P8`9`8`M8, 4( 5 (8`Q9 Q9`8`8`z8`4; @8`4"`@4"``]8`U8`8`8` 7!`4#` 8`p8``M8`p8`8`8``5- 4* 5- 5 `5 9 `4U 4W 4b 5G 4d 4I 4w 4w 4w 4w 4e 9 `H 9 `8`54 4\ 8`8`8`8 9 `4& B9 `HJ9`@4+ ^W9` 8 08 48 39 @38 39 49 8 8 `4C 3D U8 U8 5{ `4z 5& P8 @]8 8 4! 8 f8 4, 4? 5A 5A `5A 8 (9 `8` ]8`8`08` 5*`5,`7)`8`08``U8`8`5"``4(` 4)`4&`8`8 XW9`PW9 AJ9`8`8``8`p8`@U8`( 9 `А8 8`P8 4# U8 `4# 8``5" 8`@M8 8`o8 Я8` M8 8`o8 5& 5] 4` 8`4)``35 4'`5 `8`5 `@4!`P8`4)` 30`M8 `08`Й8`8`U8`8`4(`4*`@4*`3,`3,`@8`7`4+ @5. 8`8`f8`4/ L81 40 5w `7D `7 `7 (9 `9 `8` 8`7_ 8`[9`a9@J9`8`8`8`a9@Q9`J9`@4* 4} 5~ T8 7% 4( @3E 89 `4 3H o8 L8 DW9`(9 `4' T8 p(9 `(9 `p8``(9 `9 `P8`P(9 `9 `08`879 `@(9 `8`I9`I9` 9 `8`8 8 08 8 T8 T8 8 L8 4g `3h 8 8`7!`4#`8`5"`4$` 5M 5J `4, @5c (79 `0(9 `B9 `pf8` 4$`8`a9`B9 `8`o8`8`z8`08`8`p8`pz8`8`Є8`r_9`79 `I9`@8`8`8`e8`~4* 8`8`8`@7, 8`7`~4+ `~4/ 7- 5. p8`8`e8`@L81 ~40 @5) 8`L8`p8`]8 p8 8 79 `P8`5" }4& }4% 8`'9 `8`B9 `P8``}4( }4' 8`po8`|4& |4* `|4( |4) x8` 9 `08`7, K8+ {4$ 5l `5 5U 7 [9`08`{4$``{4&`a9`>W9`5C B9 `8`@7! 69 `8``8`h8`I9`8`5& {4% z4% z4$ `z4' z4% I9`59 8 @58 5- e8 \8 9 `9 `8`K8 `5"`8`y4#`y4%`Џ8`8`8`p8`'9 `pe8``T8`Pe8`8`0e8`8`Po8``y4!`I9`p8`K8 `5"`0o8``5 `P8`o8`X8`8`Ф8`B9 `P8`8` y4#`x4%`И8` 9 `n8`x4$`e8``x4!` x4$ \8 5* w4! 3+ w4B @w4. va9`[9`5 5Q P8 w4% '9 ``8`8`d8`@T8`08`\8`\8``\8`7` T8``8`08`8`@8``8`8`8`@8` 8`@8`8`8` 8`Ю8`8`8`08`8` 8`8`p8`8`P8`8`@8`p8 8 [9@[9 H8`08`p8 `n8 8 @v4 69 `9 `'9 `8`7# 5 5 5 7 `5B @5 5  9 `Q9`Q9`Q9`P8`Pz8``8`@\8 v4' pK8 9 ` 9 `'9 `T8`u4&`8`@5 d8 d8 8`P8`@K8!`5#`0z8`5(`z8`@n8` \8`S8`\8`[8`5(`8`Ѓ8`08` K8`8`8`8`8`d8`p8`@5!`P8`5%`5'`[8`5( @u4} 5 5? 5h 9 ` 9 `9 `u4; 5 8`5"`t4$`8`'9 `pd8`S8`Э8`P8`8`a9@8W9`'9 `[9`69 `8`0[8`69 `9 `t4+ 9 ` 8`J8!`@S8 `7)`5+`[8`5!` 46`7 `8`@7)``5+`Z8`8`@t4%` n8`y8`t4$`s4&` 7`s4!`3)`8`p8`7`PJ8`@s44`Pd8`s4"`37`P8` 5+`5-`0J8`08`5+``5-`J8`8`n8`Z8`r4%`S8`08`8`8`y8`@5 `0d8`r4#`@r4"``3*`Z8`Ў8`8`r4# @8`d8 p8`p8`R8 8`q4$ Ђ8`q4$ I8`@q4* q4"` 3. 5' I8, p4) m8`p4& c8`5' @p4$`30 5' P8`R8 8`@5" 8`p4# 8`Z8 pZ8`8`5" 8``o4 5 }5 @y5 `w5 @7 u5@ q5  l5 i5  8`p8``g5H e5 7 c5 @4 `4 b5 _5G \5 3& Z5 Y5 X5 3n W5 T5O 3 R5 O5 @L5 K5 @7 i43 d4 ^4E [4 H5 F5 7 B5 @5 08`@5 ``[4(`3(`P7`@5 `P8`m8`8`c8`[4J Z4J `Z42 `31 9 `9 `Q9`xI9`pI9`hI9`Q9`Q9`P8``8` 9 `9 `m8 @8`m8 P8`@8 Q9`8`08` 8`8`08`8`8`I8`8` Z4$ 8`8 8`R8 8`p8 p 9 `У8`08 Y45 8`R8 pR8`Y4) 8``Y4# 8`P8 Y4$ X4- 7! @>5' ;5M X4+ @X4_ 8`08 8`X4# 8`c8 '9 `8 8`7! 8`7! :5 85 `3m 55 15 -5 )5 5= @5i 7 @T4 hB9 `Q9`5) 5 8``m8`y8`T4$`S4&`5 `9 ``5 8`S4)` 5"`@S4$`y8`Ѝ8`S4!`c8`R4#`pc8`PZ8`py8`R4!`Py8`@m8`0y8 8`@R4)`5"`R4$`y8`8`Q4!`Pc8`0c8`0Z8`x8`x8` m8`x8 8`Q4)`5"`@Q4$`x8`8`Q4!`c8`Z8`px8`m8`Px8 8`P4)``5"`P4$`0x8`p8`@P4!`b8`b8`Y8`x8`w8`l8`w8 9 `8`8`69 `l8`Y8` 5= 9 `w8`8`I8 `5"`p8`Y8`P8`P4* ` 9 `й8`8``8`O4$`O4&`w8`5 `pw8`@O4. 8`p9 `PR8`@8`8`8`8`P 9 `Ь8`l8`8`8`p'9 ` 8`8`8`l8 O4& N4!` 3- b8`5& N4% @N45 a9`W9`@ 9 `8`P8`N4# 08`0R8`08`8`8`8`8``8`b8 `'9 `08 8`7! P'9 `0 9 `8 8`8 8`Y8 p8`R8 8`pY8 Ё8`M4$ PY8`M4( 8`Pw8 @'9 `8``l8 8 @7! @M4& M4# p8``I8 Т8`7! 0I8`L4* 7! 9 `8 @8`pb8 `9 ``8 8`Pb8 8`@l8 @8`0w8`L4% 8`XI9 ``8`P8`8` l8`@8`I8`8`P8` 8`@5# 8`w8 5* 5% 8`7" 8`0Y8 8`p8 8`v8 08`H8! 8`H8! 8``H8! 8`5# 8`l8  9`Ќ8 `8`Y8 @8`X8 8` 5N 3G Q9`8`8`8`v8`@L4%`8`v8 L4$ x8`p8 8`k8 K4( K4% Q8 @H8 Q8 5" 8`P8 8 @7* 5V 0'9 ` K4\ J4^ `J4E 5Z 5 @ 5 ` 5 5 3 5 5 5 5 @3 `3 3 `5 3 3 @3 J4- @5 7> I4A `5 I4> 7 5 5 5 `3 @7 @4u 7 @7" 08 7  I4S 3X 4< @4 H4U @H4i G4L G48 4 4 4 4< 4 45 `4 `3 3 `7 4 7 4 `7 @G4\ Q9`P9 ` 9 `08` '9 `G4$ @9 ` 9 `8`'9 `F4$ 69 `69 `8`8`8`h8`P8`F4% 4' 7 B4 ?4O '9 `8`8`8`@?4'`@4)`[9`4| 69 `09 `8`x69 ` 9 `9 `8`8`8`8`8`8`9 `X8`08`p8`&9 `8`&9 `&9 `&9 `h69 `Q8`8`p8`P8`8`X69 `8`XB9 `PI9`08``8`9 `8`9 `9 `9 `x8`9 `9 `9 `&9 `?4/ 3$ >4% 9 ` 9 `8`p9 ` 9 `и8``9 ` 9 `8`&9 `P9 `@8`[9`>4 3 3X =4/ =4( @=4$ @4h @3U &9 `8`7 8`8`8``8``8`@9 ` 8`H69 `@8`8`P8`k8 =4# <4) 8`<4-`3/`4$ 4 8`09 `869 `&9 ` 8`HB9 `0b8`@<4$`8`^a9`[a9`Xa9`Ua9`Ra9`:_9`Q9`p&9 `HI9` 9 `Q9`9 `4  8 <4; `&9 ` 9 `7# `4c `8 [9`7_9 3_9 0_9 -_9 +_9 *_9*_9 %_9 !_9 _9 Pa9 _9 Na9`La9 Ja9 Ha9Fa9 Da9 Ba9 a9`?a9`V9`Q9`%9 `88`P9 `H9`8`A9 `8`x8`859 `7Q9`@8`0Q9`08`P8`)Q9`%9 `"Q9`xH9`A9 `%9 `A9 `h8`(59 `59 `Q9`X8`Q9`V9`V9`A9 `(8` 8`A9 `8`8`@9 `xA9 `hA9 ` 9 `59 `pH9`8` Q9`Q9`8`XA9 `hH9`HA9 `8A9 `8`p%9 `P9` 9 `09 ``%9 `8`H8`[9 `88`@;4@ `H9`[9`P9` 9 ` 9 ` ^9`08`P%9 `8`V9` 9 `H8 (A9 `V9`XH9`(8`8 P9`V9 `8`PH9`P8`xV9`P9 A9` 9 `^9`8`rV9`P9`lV9`fV9`X8` 9 `^9`9 `8`P9`A9`8` 9 `HH9`8`A9 `P9`8`9 `8`@9 `9 `8`p8 @H9`8`Ѐ8 8`pv8 8`8 8`@%9 `8`8`49 `0%9 `P9`[9`8H9`;40 `V9`ZV9`8`@9 `9 `8`49 `P9`8`X8 49 ` %9 `8`49 `%9 `0H9`}[9`9`8`8`a9@x[9`%9 `49`8`08`s[9`P9`$9 8 P9`p8 49 x8`@9 `8 8 9 8 p8`n[9`9 `@9 `(H9`$9 `08 $9 `49 `Ъ8 49 `8 P9` H9`x49 `$9 `P8`8`H9`8`k8`b8`p8`pQ8 TV9`NV9`9 `i[9`$9 `8`9 `P9`P9`8`P8`P9`9 `3a9``[9 `P9`$9 ` 9 `p 9 `08`8`8 8`4$ X[9`@9 `h49 `:4" H9 `8 X8`$9 `P9 `p8`^9`Pv8 a8 4$ `4& 42 S[9`}P9`@9 `0v8`8`з8`4%`N[9`` 9 `X49 `0a9`HV9`@9 `8 9 p9 $9 `9 a9@a9`8`p8`BV9`P9 `@9 `vP9`vP9 P8`oP9`@8`P 9 `H9`H49 `^9`@9 ` 8`p8`8`8`Р8`09 `8V9 `H9`I[9`849 `G9`hP9`aP9`^9`x@9 `ZP9`h@9 `G9`(49 `PP9 @[9 `X@9 9 `P8`49 `p$9 `H@9 `8`H8`88``$9 `a9@a9`-a9`*a9`'a9`2V9`G9`G9``8`9 `P8`8 9 `:4" EP9`8`9 `>P9`49 `P$9 `7P9`8`@ 9`,V9`8`8`0P9`08`PQ8 8`&V9`G9`39 `p8` V9`G9`8 G9`8 G9`p8 V9`@8`8 (8`)P9`p8 9 `08 `@$9`0 9 ` 9 `0$9 ` $9 `8`p8`$9 `8`a8 8`@:4$`9 `ж8`9 ` 8 `9 `8 `$9 `9 ` 9 `9 `P8`9 `39 `9[9``8`0[9 `$P9`p9 `P9`$a9 8`G9`]9`G9``8`39 `7`08`P8`08`8`8`v8`8`@8`#9 ` 8` 8`#9 `8@9 `39 `39 `(@9 `@9 `8`P9`]9 8 @9 `#9 `8` a9 $[9`a9@39 `P9`X8`P8`08`[9` 9 ``9 `8`]9`[9`8`a9@a9`a9`a9`a9`a9`a9`:4!`V9`]9`8`8`8`8`8`P8`P9`39 `8`4! 8`p8`P9`V9`G9`8 #9 `G9`39 `O9`P9 `9 `#9 `[9 `8`9`9`@9 `09 `9 `P8 O9`G9 V9`8 V9`8 U9``8 [9`8 x39 `П8`O9`a9`P8`8 ?9 `8`9 `@8`8`9`O9`?9 8`8`u8`8`h39 `X39 `?9 `@8`?9 `8`9 @4C 8`9 8 `p9 8 `#9 X9 `O9`4 3 G9`8`H9`89` 9 9 H39 `839 `8`U9`?9 `9 O9`U9`(39 U9`[9`#9 `39 `U9`G9`8`Z9 `94"`#9 `9 `p8`8`Z9`39 `29 `Z9`O9` 8 a9`]9`29 `?9 `Z9`O9`9 `Z9`O9`(9 `08 p#9 `P8 8` k8 29 `9 `8 `#9 `08 Z9`P#9 9 `O9`U9`xG9`]9`Z9`U9`Z9`8 9 `Щ8`29 `9 `94' 29 `08`29 `8 U9`8`8`8`8`x8`8`O9`U9`U9`]9 U9` a9`Z9 `9 `U9`8`P8`x8`]9``8 pG9`8`Z9`41 Z9`]9 U9`h8`4, Pa8`@#9 9 `8`k8`X8`9``G9 `0#9 `8 p9 `XG9`Z9`29`?9 `p8`8`9 `9 `8`]9 U9`j8`U9`PG9`Z9`Z9`O9`?9 `P8`@94$ `9`a9`a9`O9`Z9`O9 `O9`O9 "9 `U9`94" H9 `89 `x?9 `O9`HG9`8`Z9`]9`29 `h?9 `"9 `X?9 `H?9 `@G9`Z9`a9`843 O9`е8`Z9`P8`x29 `h29 4# a9`@4& @3' `9``9`8?9 `Z9`(9 `"9 `H8`@8 08`9 `(?9 `U9` 8 @8`"9 `9 `"9 `9 `P8`8`"9 `9 `8`j8`?9 `9 `U9`a9`]9`}O9`?9`vO9`8G9`X29 ``9`84" P8 P8 `P8 oO9`8 Z9`iO9`9 `]9`0G9`}U9`(G9`9 ``9`wU9`H29 `9 `9 `x"9 `]9`829 ` G9`h"9 `?9 `9 `X"9 `9 G9`H"9 `8`bO9`8`8`9 `8`8 9 `>9 (29 `@84, 84- ]9`rU9`nU9`Z9`9 `[O9@[O9`8"9 `8`x9 `x9 `08`TO9`hU9`Z9``9`~Z9`{Z9``9`h9`8`("9 `h9 `MO9`FO9`j8 vZ9`]9`]9`>9 `29 `74$ 3% `3% 3% 8`G9 `G9`8`X9 `X9 `qZ9`F9`74: 8`>9 `8`"9 `?O9`29 `>9 `F9`8O9`F9`19 19 8 8 @P8 74Z G8 4@ P8! O8! O8! p8 8`8 `8 P8 8 8`p8 H9 `P8 8 G8`8 8 H9 `H9 8 08 @8`8 640 8 8 8 p8 8 89 `u8`bU9`19 `1O9`*O9`\U9`4!`8`(9`"9 `19 `>9 `pX8`7"` 8`!9`a9@VU9`X>9 `PU9`a9`|]9 x]9 H>9 @JU9`8`DU9`t]9``9 nZ9`19 ``9`iZ9`>U9`8>9 `F9`9 `9 `08`64%`P8`9 `08`9 `9 `(>9 `8 F9`#O9`>9 `>9 `19 `9 `t8`8`9 `8 p9 `h8`19 `O9 `P8`19`x19 `=9 `=9 ` 8``64$ 8`8`p8`O9`@8` 8``8` O9`8 F9`8``Z9 `h19 `8`P8`F9`9 `p]9`X19 `O9`08`N9``9 ` 9 `F9`l]9`N9`=9 ` 9 `=9 `9 `P9 `h]9`H19 `@8`8`p9 `08`=9 ` 9 ``9 `a9`8 7R 64* 54T @42 4_ 4< 3B 3@ @3J 3W TZ9`OZ9`N9`8 8U9`N9`8` 8``8 F9`2U9`P9 `F9`JZ9`=9 `N9`EZ9``54C 8``4@ 54P 44H `44> 44N 4@ 34S @34G 24K 24D 24A 4@ @Z9`819 `@9 ` 9 `N9`d]9` 9 `8`08`8`8`8`8`=9 `p8`=9 `8`,U9`F9 8`8`P8`8``]9`N9`N9` 9 `;Z9`6Z9`N9 N9 `&U9`F9`8`N9` U9`U9`U9 `N9` 9 `1Z9`F9`09 `(19 `F9`N9`@9 ``9`19 `x 9 `19 `N9` 9 `(Z9 `9 `09 `9 `N9` U9`h 9 `U9`X 9 `T9`9 ` Z9`Z9`F9`09 `9 `X]9`T9`N9`8`8`x=9 `N9`xF9`09 |N9`@8 8` 9 `p8 8`8`9 uN9`p=9`9 `8 9 `M]9`8`T9`j8``8`I]9`д8``=9 `T9`pF9`8 8`8`8`nN9`Z9`gN9`8`9 ``9`Z9`09 ``N9`Z9 `P=9 `H 9 `8 9 `09 `09 `T9`Z9`YN9`8 09 @=9 RN9`8 09 09 i8`x09 `8 8 8 8 hF9`p8 h09 `p8`P8 9 9 9 9 0=9 `T9`( 9 ``F9` =9 `8`X09 `9 `P8`8`8  9 `8`H09 `809 `(09 `08 8 =9 `09 `@8`09 `XF9`/9 `KN9``8`DN9`P8`8`9 `08`/9 `t8`P7`x8`=9 `8``9`E]9`Y9`>N9 8N9`2N9` 9 `41 h8`PF9`/9 `T9`9 ``9`+N9`@8``9``9``9``9`$N9` 8 N9`8 N9`8 T9` 8 p8`8`T9`N9`Y9`/9 `i8`14& N9`N9``8`8`T9``9`8`08`p9 `9 `8 ``8`A]9`Y9`P8 T9 Y9`}a9`=]9`<9 `T9``9 `9 `8`8`8`9 `P9 `M9`<9`9 `E9`/9 `@9 `Y9``9 M9`{a9`Y9`<9 ``9`M9`G8! M9`8`p/9 ``4" p8``/9 `P/9 `9 `E9`<9 `@8 cT9`9 `9 `p9 `09 `@/9 `9 `M9``8`ya9`88`14? 9]9`4]9 Y9`H=`={======== >>%>>  ,4<4<o`И > =C@( oXooo$P=6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv  & 6 F V f v           & 6 F V f v           & 6 F V f v           & 6 F V f v           & 6 F -A?-`b--0b@-$-x--D-XO-@-\-hd-`o-0--,Ph- -`--c~,c-M)=4`Bd2GU3P@@*=H*=I`+=60~, d- -@-0o-(- s- s-{-{-@U`-g-g-`U-`U-- -U-U-Pe,Pe,-d ;-pgK-8-.=I?Y-Pg-?@/=.`-0|@pT0,-(}@Tp&-~@S``'-0@S%@-0Ѐ@S %p-0 @R&-0p@0R$-0@Q+. @`QP+0.8 @P*`.8p@PP*.X@O). p@OP).8@pO( .H`@NP(P.P@@N,.@ N&.X0k@Nt.8@MО.8@M /0.8@M.X.8@M ..@`@M-.8@L -.8@L'n-@LX.0!DX @\=`[=c#-p8.,x.b9N!.-,*e/e-U%e/8-#c/-*`c/F,PL c/;,b/,b/,@b/`.p 6!_=,p*g/,` f/,f/.9!a= a=b#,@x.,*h/,`g/,g/.p 6! d=c=-@j-,*x/,`x/, x/- .``@f=Sd-Z*~/-pD-p* ~/, }/,P}/8.h@!`.h=#`i,@/,@/-p!D8.pY j=M,/,`/-h@!l=a!-P/, /,/.xp!.n=p~#-w!/,/,/ .h@!8 .p=!, /#, +/ ,( /,P/,/-p0!Dp .Y@s=p1,P/,й/,/--!D .pZ0`u=jU-05* /, %*/ -@/,/,/,~/J-pП!D.Zw=na,y/, /,P`/, /,|/a- z`z=@z=. {=z=ff-f,K%1, 1-}!1,@1,>1- `z}=}=.`~=~=`gg-g,@# 1,@1- !1,`1,< 1-H@!D.p[0=г) -@1,`# 1-pZ@1-H@!Dh.p[0.H@!D.p[0=,p 1-% 1q-1 .H@!D .p[0 ==-$ .,%`!.-)1-K1,1,0k1,k1-H@!D!.p[0=@-0". -H@!D".p[0=,`'1*-H@!D#.p[0D-H@!DX#.p[0@^-H@!D#.p[0 v-H@!D#.p[0-H@!D $.p[0-H@!Dh$.p[0`-H@!D$.p[0-0$.=0, L2-0 %.`0X%.0%.@=1) - 2-%2 -0%.=@=,2%.,062,"@2& -00&. ==, 3`&.> -&.,>`2&.0&.`==,P6`&.,@2H -00'.=@=0\-6p'., ''.-0$,$2~,n@2,K@2e -0 =='.P=`3gr, 2,2{ -0==0i (. =PPи+Prn,02,p2,`u2P(.03 -01 -0/p(.00 -0==(.= =0`1r,%,A2 -0 -0 1!-0:!-0(.@=3,2).0@2S!-02q!-0`=().=p-2,02, 2`).0).==, ).,(@2!-0).@==,,k`2!-0P(*.= =,,p2!-0X*.=`=0,,2!-0*.==,, 2!-0*.@==,,`2 "-0*.= =,,2%"-0+.`=,2B"-0P+.@=,p2_"-0+. =,02{"-0+.=p, 2"-0=+.=P@7,Y@2"-0=,.=5,PJ`2"-0=,.=9`,P2"-0=H,.=P,E2"-0=x,.= ,@U2#-0=,.=, H2-#-0=,.=p,[2F#-0=-.=@,L 2^#-0=8-.=,N@2w#-0=h-.=0,S`2#-0=-.=`,pW2#-0=-.=p@,2#-0-.=J%#,P42(..(=!-2!2,02,P2@2P..X !x..>^,y3j,`Y@3#-@!/.`#-@!2.@$-@!@> >h4.p >>@gr$$- 8._- 9.~,0mp3)$-0y:. >W ,``3,' 3E$-0c$- >[` ,3,%3w$-@D;. K >>\Z,$-,0),-L, ^,p,(,z-@,,,P,~-@,K,],t,`,,,P,P,, ,,p\B,\M,p]W,],@3,3,3 ,`3C,03N,p3X,г@3-`e3,3,[3,0`3$-8`BDK `>>;,@n--+3F,m 3;,@ 3, @3,!3$-(@>b, 3,@3$-0<.@>>#p -'$- - C.-^/p,/U, `/ -p\@/{ -PV@/ -`Y@/,%/,%@/,P /,P/$-@`yXC.@ >@> %-@P&%-@7%-mp><%-0, `/,  /~,@/K%-(7!pG.!>@!>P_P -0!XK.- D-@A!v/-#u/Z-@t/-)s/ -`s/F,PK s/;,r/- *q/M - F! p/l-*o/,`m/U-*`l/,@j/-P*i/,h/,h/K.(4!K.%>%> , L.-%}/-`"{/ -z/ -p z/F,Ky/;,Py/,`y/, y/L.h@!L.(>`f*i,/,`/@O.h@!hO.*>@^*i,p /,/S.h@!S.,>w*iC-E*@/, /,/U.h@!U..>n*iC-*/, `/, /i%-h@!W. >`1>0>Ph$$-p<Y.%-F,L/;,0q@/,/,`/,/,`/,/ -P/,`0/,-/,+/z,p)/-"@/b90*/x- #/ -/ -Я! /- %`/ -_/J-* /%-"`/[,t@/, /-`7#@/,@/,`/-0>D&-01%/a, /, / -`/g -E/-'/k-</,/,w@/%-@hZ.7> - `/%-@9>9>9>Z.;> :>7`p{ppr-P@[.%-p[.%-0\.v,H\."-P\./-p\.%-`].,!c,0/, / -(%`/?,pL/-@u@/!,0/%-0:].>> >>c "-^.v,`_.,`3,+ 3%-0Ћ`_.A>@>d0 9 -pa.&-8a.v,b.%-b.,д3,)3 &-@ Dc.0^ D>C>!$&-4n.0&-hp.- r.9&-"t.%-xx.v,y.p,@1~, 1D -6 `1-0#1- D 1,pt1#,JP1-% 1+,0%`1-%1-@&0E-p:%0 -z0?,`"0-@+0-0,0-f#0-+0,|%`0,@) 0-%0;-% 0M -1 0l-`u%0-" 0,^@0U-n%0-Q!@0-e%0-0 "`0-P^%0@&-@Py.`K>`J>#-.$&-.0&-.9&-p.v,@.p,0D -- 0~,@s0 -0-p;+0-*#`0-)0-)@0-)0?,`u 0-0-# 0-+0,@ 0,@h}0-)x0- "@t0-#o0,'o0-<n0,y`l0#,G0l0-@)g0+,Ч)e0-`)@b0-)`]0,@M \0u,W0P-rJ04-h @0,@>0R&- x Q>Q>P.tR>Q> c ~~`rg&-.- .$&-`[0&-[z,j.-[x,U1,@Q1-P1-`BO1p, PO1,@L1-I1K,0CF1L-d @1M,^`:1,0`81.-31O-`018-@)1,y%1,0~ 1 - 1+,1-1-@1,F1,@1,`@1t&-H!`W>@W>DȖ.^@n@Y>W>`?%|f|Pr+-d, .-.9&-P%.&-؝.-.v,.-m~,@*1, 1 -o 1,p1D -0M 1,s1#,M1-C@1-p11-1f-`1?,1,+`1) -%`1x,@6 1-`3@1P,@1-`#@}1-#z1-@y1-v1 -``t18-@@p1\-P l1O- j1-@h1-PSf1-'`1,&_1,^1, [1,K `Y1U- '`X1c,@X1С.H@!D.p[0@_>,072&-H@!DH.p[0a> a>,#,@1&-X!D.c>`c>- "#-"P,PM`1,P1,(1-$1&-H@!D.p[0!&-H@!D.p[0`!'-H@!Dh.p[0`i>"-@.'-H@!D@.p[0`k>",`17'-H@!D.p[0m>@m>P"_-dN'-h-5Ф.,` 1K,"`1?-`c+1j-x+1H.H@!Dh.p[0`p>p>@,!.-$1h'-H@!DȨ.p[0r>@r>, .n,@!@.-~$@1x.H@!D.p[0@u>t>`,`  .h-!h.}'- !8.-)1'-H@!D.p[0w> w> ,H.h- !H.}'- !.- (1'-H@!D.p[0 z>y>,8.h- !p.-p(@1'-H@!D.p[0|>|>,.h-!.-(`1'-H@!Dp[0`~>!- 1,1,@@1'-H@!D .p[0> K, 1-u$@1-# 1-pE)1-| 1(-H@!Dh.p[0(-H@!D.p[08(-H@!D.p[0S(-H@!Dp[0@.H@!Dh.p[00n(-H@!D.p[0(-H@!D.p[0(-H@!D8.p[0(-H@!Dx.p[0(-H@!D.p[0 (-H@!D.p[0@(-H@!D8.p[0)-H@!Dx.p[0.)-H@!D.p[0E)-H@!D.p[0\)-H@!D8.p[0`x.H@!D.p[0r)-H@!D.p[0)-H@!D.p[0)-H@!D@.p[0>p )-3)- 4)-H@!D.p[0 )-@!D.0_>> 9#%-*-p z,-@3 *-@*-0d,l*,@j`/-`X'/?-"@/) -/-P%/?,,/,/,p/,0o`/%*-@!@D._ У >><"%-`*- z,-2 *-0*-A*-d,f*,pU/-P&/-'@/-& /?-"/) -p& / - / -p @/-%/?,p#/,` @/,/,`Z/V*-@!PD8.0`>>`:@$%-*- z,-`2 *- *-0d,d*,Pc/-&/-!'/?- "/) - / - /-`%/?,P&/, /,@/,@h/r*-@@!D`.`  >>;`#%-`*- z,p-1 *-*-d,a*,`\/-0&/-<'@/?-"/) -` / -0/-p%@/?,0)`/,/,P`/,Pa /*-PP!@>D.0a0p >`> >0@o *-.%-.*-0P.*- .-1.z,P.,`X.d,Sq, T, W-`N0-`&0) -* 0?,.`0,`0z - / -/,p/,pS@/*-H@!p >>D.p[0Pdг>>0iRjR@r-9&- .,Д.%-.v,`H.2,t".d,S-`Su -`Z F2g-@D2->B2U- $A2-P?2-@?2P,P.=2- =2-082~,/!82,(52,@j42#,PP42 - /2, /2?,.2-^-2--21-,2f- +2 -n)2O-`'2-'28-p%2\-`#2-Pt"2,+!2x,0!2) -0%2,2,2D -`V 2-! 2;-$2M -Q `2l-p$2-PL"2U-$@2-PV! 2-`$ 2-p9" 2-$ 2z -@2 -2.x@>X,`G2, G2,@ F2*-0@.>`>mP -p.*-8.*-Pp.*-.*-@.+-.,  `2,:_2+-0p0gP.j>>p d,px.1-.-0w2D -[ `2?,2~,p2,O2!+-8>`>{ .g>>R[[0r4+-.Y-`. , .b98.~,0s3#,`s3A,q3?,o3-k3K,i3,3 i3P,>#h3u-0@e3-W#@c3, \`3[-f&^3A-a& ]3*-Z&@[3,Z3E-!@X3E-`B%@V3-r"T3 - `Q3M -a `P3l-PT&O3 -_ O3U-PN&@N3D+-@@!@PD@.aq@>`>PSP -0.-.b9C!.d, R?,W3~,3E-!`3-0o"~3-"|3}-!@{3K -@y3-H#v3M -Pf u3l-H& u3 -pd t3U-B&s3V+-8h>>s8.0>& # r ?,`3~,0 3 ,&3,`#`3,03,P3n,3-3-I3s+-xX+-P!.>@}, 3~,3b,`3+-P!.> },@3~,3b,3+-P!(.@>>`9 -.C -.},P@3~,3b,0Q3+-P!P.`>},R3~,3b,M3.P!.`>>-0/z,@ h/ *-[+/+-d#/},PR3~,p`3b,pS 3+-P!/8> @,O`3j,/3~,k3},P3b,N 3,-H!x/>> $,-2/-/3,-?/>,->H/},`N3b,Q3,3H,-H!/`>>f,-- ~,=`3s,-P!/>@>,-/,-x/~,C3,-P!8/ >>,-P/,-/~,@3,-P!/>>,-/,- h/~,:3,-P! />`>,-p/,-/~,PI3/H!/>~,P 3,-H!/>,@p/--H!8/>,`X/--H!/>`,(/4--H!/ ??,@!/,G"/~,pFP3N--H!"/??@i--#/q--Ѐ$/-@%/~,3|--0 &/?p?!,@ 3,-3--H!??8'/ ? ? 0Q0qY- P*/ ,X+/u-P`3-\# 3~, У3--H!,/@ ? ?---/-`p./--8//~,83--H!// ? ?--P!(1/.-0J!2/ .-!2/.-pL!3/.-04/~,053*.-H!h5/??--6/-p7/~, 3H.-H!@8/?`?--0 9/-9/~,P3a.-H!:/@??---;/~,0p3{.-H!/~,3.-@!f~>/r??t &->,- A?/3,-@/.-hA/.- C/.-(D/~,3?,@3-@k3M -k 3l-P$3 -0i @3U-J$`3.-(xPE/?@?px .-0F/,@E3,``3, 3,3,`3,3,0`3,# 3.- b`F/@"?`!?@| dd,-b9` !- /-pz!?,P?/--@"`/E- /,/,P//-pF/%?$?U`b#)/-J O>/-pOO/-PP,p 0:+, /,P/[/-X08J/(?'?Юw/-&;-:;-@Б2,`#O/-DF/-G@H-0II,/,P`//-xX, X/-  Y/$-Y/,Y/{-p% Z/n-`n&[/-@* ]/-%^/-@"`_/ - `/ -@ `a/,@b/,b/;,b/F,PL c/-*`c/8-#c/e-U%e/,*e/,f/,` f/,p*g/,g/,`g/,*h/,h/,h/-P*i/,@j/U-*`l/,`m/l-*o/M - F! p/- *q/;,r/F,PK s/ -`s/-)s/Z-@t/-#u/-@A!v/9,9v/, x/,`x/,*x/, y/,`y/;,Py/F,Ky/ -p z/ -z/-`"{/-%}/,P}/, }/-p* ~/-Z*~/,P/,/E- /--@"`/?,P?/,P`/,/,P/, /B-``/\-@/,+/,1/,P/,P /,%@/,%/ -`Y@/{ -PV@/ -p\@/U, `/p,/-^/~,@/,  /, `/*,p/-/ - /[-pH%`/-  /,/,/,@/,@/,/, /C-E*@/, /, `/C-*/,`/,/,/,p /,`/,/,/, /-P/,/,/-w!/T-#/ - `/!,0/-@u@/?,pL/ -(%`/, /c,0/,/,P/ ,( /#, +/, /,/,й/,P/v, /-Z /,~/,/,/ -@/, %*/U-05* /,|/, /,P`/, /a,y/,w@/,/k-<//-K-'/N-N-g -E//-`N-JN- -`/, /a, /&-01%/,`/,@/-`7#@/, /[,t@/%-"`/J-* / -_/- %`/ -Я! / -/x- #/b90*/-"@/z,p)/,+/,-/,`0/ -P/,/,`/,/,`/,/;,0q@/F,L/ - /, \@/; -` /,0o`/,p/,/?,,/-P%/) -/?-"@/-`X'/*,@j`/,@h/,@/, /?,P&/-`%/ - /) - /?- "/-!'/-&/*,Pc/,Pa /,P`/,/?,0)`/-p%@/ -0/) -` /?-"/-<'@/-0&/*,`\/,`Z/,/,` @/?,p#/-%/ -p @/ - /) -p& /?-"/-& /-'@/-P&/*,pU/,pS@/,p/ -/z - /,`0?,.`0) -* 0-`&0-`N0, @0, 0L,10K-P0 -0)0%-*0,0,-@.0,O=0,@>04-h @0P-rJ0u,W0,@M \0-)`]0-`)@b0+,Ч)e0-@)g0#,G0l0,y`l0-<n0,'o0-#o0- "@t0-)x0,@h}0,@ 0-+0-# 0-0?,`u 0-)0-)@0-)0-*#`0-p;+0 -0~,@s0D -- 0p,0- +0,I 0-P^%0-0 "`0-e%0-Q!@0U-n%0,^@0-" 0l-`u%0M -1 0;-% 0-%0,@) 0,|%`0-+0-f#0,0-0-@+0?,`"0 -z0E-p:%0-@&0-%1+,0%`1-% 1#,JP1,pt1- D 1-0#1D -6 `1~, 1p,@1,`@1,@1,F1-@1-1+,1 - 1,0~ 1,y%18-@)1O-`01.-31,0`81M,^`:1L-d @1K,0CF1-I1,@L1p, PO1-`BO1-P1,@Q1x,U1y-p%)@U1c,@X1U- '`X1,K `Y1, [1,^1,&_1-'`1-PSf1-@h1O- j1\-P l18-@@p1 -``t1-v1-@y1-#z1-`#@}1P,@1-`3@1x,@6 1) -%`1,+`1?,1f-`11-1-p1-C@1#,M1,s1D -0M 1,p1 -o 1, 1~,@*1,>1,@1-}!1, 1,K%1,< 1,`1- !1,@1,@# 1-i@1_- )1-pZ@1,`# 1) -@1q-1-% 1,p 1,@1,k1,0k1,1-K1-)1-| 1-pE)1-# 1-u$@1K, 1-$1,(1,P1P,PM`1,`'1,`1j-x+1?-`c+1K,"`1,` 1-$1-~$@1-)1- (1-p(@1-(`1,@@1,1- 1,072 -2z -@2-$ 2-p9" 2-`$ 2-PV! 2U-$@2-PL"2l-p$2M -Q `2;-$2-! 2D -`V 2,2,2) -0%2x,0!2,+!2-Pt"2\-`#28-p%2-'2O-`'2 -n)2f- +21-,2--2-^-2?,.2, /2 - /2#,PP42,@j42,(52~,/!82-082- =2P,P.=2-@?2-P?2U- $A2->B2g-@D2u -`Z F2,@ F2, G2,`G2,:_2,  `20-X+``2d-`2f-$`a2-V$`d2y-$@f2-p$j2-m2:-|(o29,@@}2>-PG$}2L-(}2, L2-%2) - 2,@ 2,"@2,062,>`2,@2,K@2~,n@2,$2,2, 2,`u2,p2n,02,A2,2, 2,02-2,(@2,k`2,p2,2, 2,M@2,`2,2,2,p2,02, 2,Y@2,PJ`2,P2,E2,@U2, H2,[2,L 2,N@2,S`2,pW2,2,P42,O2~,p2?,2D -[ `2-0w2,P2@2,02-2!2A,`d2$,a2,`_2-Pa$2-,@2- 2,22 - 2- g$2,p'@2-j$`2-pn$25-е! 2,f2-& 2-&2-&2-Х#2-v2-`#2W-`#2-Pb"2-@W"2 -`638-63,ж3P-73i-P7@3Q-"` 3,` 3-7@3:-Ћ"3-w"3$-"3-P~"3-7!3-@8 #3-8$3-8'3-09(3/-9 *3 - ,3 -@`.3. -p/3A - 13 -53p-`#63-9@83 - :93-p::3.-: <3A-;=3S-`;>3f-; @3w-<`A3-P<B3-<D3K,($@E3-pw& J3U-PN&@N3 -_ O3l-PT&O3M -a `P3 - `Q3-r"T3E-`B%@V3E-!@X3,Z3*-Z&@[3A-a& ]3[-f&^3, \`3-W#@c3u-0@e3P,>#h3,3 i3K,i3-k3?,o3A,q3#,`s3~,0s3U-B&s3 -pd t3l-H& u3M -Pf u3-H#v3K -@y3}-!@{3-"|3-0o"~3E-!`3~,3?,W3,V3-I3-3n,3,P3,03,`#`3 ,&3~,0 3?,`3d -p 3f -@ 3j,`Y@3,y3b,0Q3~,3},P@3b,M3~,3},R3b,pS 3~,p`3},PR3b,3~,3},@3b,`3~,3}, 3b,N 3},P3~,k3j,/3,O`3,3b,Q3},`N3~,=`3~,C3~,@3~,:3~,PI3~,P 3~,pFP3~,0mp3K,@3~, У3-\# 3K,3u-P`3~,83~,053~, 3~,P3~,0p3~,3~,3,-3,@ 3U-J$`3 -0i @3l-P$3M -k 3-@k3?,@3~,3K,` 3-.3,`\3Z- 3#,p@3/-t`3/-3,+ 3,`3,)3,д30-z#3~ - `30-[3-@3,T340-0 3I0- @3^0-Z3h,p^@3,`3q0-Y`3,' 3,``3,%3,3,# 3,0`3,3,`3,3, 3,``3,@E3,0`3,[3,3, 3,3, @3,p3.,3, 3,@3,3c-3-`e3X,г@3N,p3C,03 ,`3,3-23,P@3,3,@3 -p 3u-3,!3, @3;,@ 3F,m 3--+3,pD@3,@3, 3,B3,3,`? 3b,3E,`30-`{30-#3 ,3,30-X3 - 3,X 34PGX>?P@(=H'=I'=:PQd-GCC: (GNU) 12.2.1 20221121 (Red Hat 12.2.1-7)GA$3a1JJGA$3a1GA$3a1,,GA$3a1JJGA$3a1,,GA$3a1,,GA$3a1GA$3a1,, JU J K K{2 L{ L L* M{ M M+ M M N0 N @N N5 pO O[ O? Pk Pk `Q[N Qk 0Rk RkV Sk Sk  Sk  T[  pT{4  THd  @U  `U  U!  U c  VS  WZ  Wr  X{Z  X  X1 @?  X @  Xv  pYv  Yv pZvd Zv p[ \v \ZP:@ 0^v ^v 0_va _v 0`v `v? 0av av 0b! `b!4 bXxX:@ bq pc1 P [ c(H c,g d 0d% O `d{ daS Pea e f 0g  8 Pg b pgT gI h= `h5) h S i Pj j l m2 @nz `o p qt> rz 0r @r Pr `rI pr{ r r r rS r_ " 3f sp 5 s\ t @u @vU `  z  U , x x `ys4 yq `z z `{' K {P  8@ {4 |wI  }  ~  G6! ЀG! G! pG" Gb" " G" pGJ# # p# -$ `y$ $  % V% % % .& `wx& &  ' I' @' ' 0'0=@ ( #( [( .(&=( '( c ) _V) {) О{) P) * HF* 0m* \* X/*4<* P2+  p+07@+7@+ *.+ a9+ _9 , _9, _9-, _9>, m^9O, x\9 a, Q`9r, 8M, `8H, a9 , T9#, P^9, 0F9, Y9- 8D+- _9<- 9'T- /9 k- @9'- X9- W9- h_9 - `^9 - `W8J- P,9. 4>. 9)Y. 9'q. :9. pK9. 80. :9". PS9. @86 / pD9/ @99/ `9"S/ `9#m/ 8:/ 8// 7@/ h`9 / Y90 P\90 R9&0 p99=0 @`9N0 `79!e0 `860 8:0 J9!0 (9,0 ha90 PM90 W91 ^91 M9+1 P_9<1 7Ch1 ]9 y1 `D8z1 9'1 @5s1 8J2 ]9"2 9);2 _9L2 ,9d2 *9#|2 <9)2 8E2 K92 W9 2 `9 2 \9 2 _9 3 @R9#3 0R973 `C9M3 @8:n3 0893 R93 :9$3 893 Y93 W9 3 S94 X94 \9&4 PX9 94 4g4 @X9 z4 P894 0X9 4 (X94 \9 4 L94 [9 4 795 h\9 5 X`9 *5 8FN5 pT9a5 p89x5 `X95 W95 J95 8)5 h8I5 806 -9.6 `)9F6 9/`6 _9q6 S9)6 <9 6 @<9)6 `9%6 96 L9*6 E9)7 `9E+7 J9@7 g8Gh7 9'7 `9!7 @_8S7 4\7 9+ 8 y7d88 @Y9K8 ,9c8 9|8 9,8 -9#8 8,8 @:9 8 `8/8 839 E939 `p8iZ9 +9r9 S9*9 @K9)9 8E9 79 7: ^9!: ^92: a9@: 0M9U: I9"j: 7: 7f: `8I: ^9: ^9 ; 8=(; `8=F; 8<d; ^9u; a9 ; .94; a9; `9; `9 ; ^9; 4| < 7\5< 8HV< @8Hv< 7< @5{< @k8\< !93= 693&= `7tR= `8Uq= 93= #9)= 7= 9*= ~8R> 8B.> r8JU> @7> @9#> `9> `9> x`9> X9 > 8,> `85? 9"5? J9J? ]9[? ]9 l? 9#? 9#? 9"? 9#? @9(? X8N@ a8N>@ @8Bc@ 8G@ B8@ 8G@ `4pA 40A 91IA R9%]A 9"wA 8\9 A @8$A 8%A 0`9A 8JA @8.B 4AB @8<fB 4B 89B 8 B p>9B 8%B @8#C |7BC 8#]C PR9qC @8PC 8$C 7C ]9C 7#D 4rPD @g8IxD @~8`D n8bD 8PD 85E 4S3E T9GE {8mE W8WE Y9 E L9E 9-E 83E +95F 8-,F 0+9DF 81_F 9xF 8/F 8$F 7F `9F p9G 8e3G 0D9IG +9$aG `81G 9G ;9G P+9G @7jG K9 H :9 H 9#:H (9+RH `8=pH >9H @4H 4H 9&H W9 I 84*I `8&GI @4luI 89I 8bI 7I 8>J @!9?J ~7vFJ A8rJ 8CJ -99J )9J M95J /9(J _9J R9K 4?K 7lK y7K 4K @4K 4#L PD99L 85YL 4L 4L 9*L 9*L J9L `4w,M `4ZM 4vM 5M 8@M `4N D8h/N ~7\N 8=~N @4N D9N +9N |7RO @C9O ,9)5O 4;cO @4YO X9O 4cO f8cO 8CP |8L@P S9TP @L9#iP K9~P _9P 8bP p*9P 8>P 9 Q p9"Q 81BQ 0;9YQ 9rQ 9Q 8AQ @4Q @u8JR 9+R 828R 8BWR 85wR 9R 9R `S8YR I9!R 9,S E9S ,91S 8>MS 83nS 8:S 7S 8AS 0E9S 7T @7}GT <9%^T _9oT x7yT P9T 9T `Y9T 8%T 8%U r8K@U E9VU 8?{U W8NU t8KU `5U xX9 V `7{9V M9NV `q8VuV 0^9 V hR9V D9V 84V !9:V 8;W 9 W C96W W7cW C9#yW `7W `4W 8DW 7Y!X `8FJX h8TrX 7X *9X @8aX 4Y 8?$Y 88@Y ^8TiY 4lY 9:Y 89gY 7Y 9#Z @8?0Z 9?JZ `}8wpZ 7Z 8CZ U9Z `7Z 9'[ J8Y>[ i8Tf[ !9:~[ 9:[ 8:[ 8>[ }8G[ 7!\ }7pN\ `w7{\ i8B\ 9>\ p7s\ @7] 8S3] @99N] 8<p] 9] @U7c] 7c] @3^ W9&^ B9<^ 8`a^ @A8O^ 9^ 0T9^ 5i^ `5_ 7A_ 8Cd_ 7_ 5_ 8._ V7` )9 ` q8FG` @87d` C9z` pW9` @-99` C9` 4` 4a 4Ea `E9,[a 8E{a {7za O8\a @*9!a C9b `J9b `z7Cb 3sb 8Qb _8hb `9!b 4uc X9!c ^9 *c F9#?c X9 Rc S9fc X9yc `9 c 88c L9c K9c :9c `;9(d x7o.d 8MQd 7~d 8/d 8Ad 7d 8H e 4w8e .9%Pe R9 de 8Ke `9e @_9e 4ne `:9e `E8`f `4Gf C8sf @8<f PT9f K9f I9f v7jf 7)g ;9@g *9Xg 9'qg Y9g pS9g K9g D9g *9g `[8Th 4u2h `4a`h @80|h -9)h @s8]h ,9(h 99h {7vi 8N8i X9Ki 8)hi a8Mi V9i @.95i /9i 8Hi 9! j \9j 8.;j \9Mj \9_j pL9tj ;9j 9j 7j 7j 8(k 817k 4dk F8k @9&k 8Ck @9.k 9=l 8F&l @8:Dl @9;]l 8:{l \9l `8:l D9l 99l @8:l 99+ m |8b3m @99%Jm 8<fm `8\m 9@m 4{m 98m s8Zn 8T:n 7gn `h8In r8Jn @}7_n ;9 n )9!o 8<1o 86Mo @j8^to 5xo `t8io p^9 o 8Yo Q8O&p u8LLp Yp Zp \D1q jq q q =r sr PKr N* s ! fs ` Q s  s #u ct t t 2S7u {u eu !u aLv 0o [v :v sw `sQw sw sw sw `s)x `sfx `sx `sx sy `sTy sy sy `s z `s@z Pz 1z 0j{ <@@{ K{(<@{ ;{:@"| 0f| d|8@|7@}7@6}7@b}7@}7@}7@}7@~7@>~7@n~7@~7@~7@~7@7@ P e(&=  L e(D)= c f?`.=  0x Sfs fDC @ ` Á p2߁ # `   `  \  @  Щ4 b W/v 0 ҄ Юb @ ^ ` х !`8@X X8@ˆ гP8@< w pE p;@ ]h;@ ׈`;@ P0;@ @̉;@ `M(;@ Ɋ8@ A8;@q X;@ 0@;@[ t ׌ ;@ - P%Q ;@ƍ ;@G 8@ 8@3 y8@ 8@ @a8@ `֐8@ L;@| ;@ 3;@` ;@ђ ;@D ;@ @;@( `l;@ ܔ;@ N;@{ ;@ , оZ .   * @]  Ƙ @ `@X @ @ؙ   PN y p ~ ~3 ~j ~ ~ڛ ~  ~F ~ Ü ~ 0~5 ~g 0~  @ a `m m @m. mq   +M89@ +ˠ(9@ . q @8, W P Pf fʢ 0 6  `:@ 3:@d @<@ͤ  =@: @<@ `=@  h=@ ަ=@  X=@ ͧ<@ B<@u <@ @*8:@U `<@Ʃ  <@7 <@ <@# q<@ <@% q<@ @0:@ `h(:@ <@ X<@ Ѯ<@ I<@x p<@ *`<@T @X<@ `h<@2 x<@ H<@ @  @ H ~ P г.=   DW hz P  `5 ( P @t H(=@ @3 Hv:@ h? p X!`:@H X8<@ 0 X:@ Xb:@ XܸP<@ P XX0<@ Xйh:@  HH@:@y ` HźH:@ 2 `Kp X9@ X49@b pX9@׼ X9@L 0X:@ X:@0 Xv9@ PX9@ X]9@ Xֿ9@ pXR9@ X9@ 0XEx9@s X9@ X49@a PX9@ X9@I Xh9@ pX :@9 X9@ 0X 9@ Xi8@ X9@ PXV8@ Xp9@ XE8@r pXX9@ X<`9@x 0X8@ XC8@x C:@ @C<p8@n Cx8@ C2;@` 0Cx;@ C2h8@f C:@ C9;@d p C;@ CP;@L !CH;@ `!C :@> !C:@ "C;@, P"Cq;@ "C;@ "hZ<@ `#h<@ #hP<@ @$h<@ $kT %k %k &k] p&s &k  `'km '{ P({ ({v P)k )' P*{ *{ P+k6 +k 0,k ,{W -{ -s .{Z .{ /{ /XO9@ 0X9@ `0XJ8@x 0X8@ 1X609@h 1X9@ 1X28@j @2XH9@ 2X=P9@p 3X9@ `3X78@b 3X@9@ 4  @5,I p6r 8 P> @? `BP3 C[o D[ pD[ D,(7@N E[ F F J) PK|w K| PL| L|_ PM| M `N^ N O`7@7 P P 0Q2 Q PR R8 pS Tu XB X26 Yt Z [J `[23 [2r [2 \B p\2 \z p] ] p^S Ih bs ft fcb gt gc g[' Phl:@ `i8@ inp:@ ix:@- i|:@ i:@5 j7@8@ @jo  j%H k n ^h# @rR l ~k k k: k `k Ѐc @c` k k cE c pc c  P_ P @[ [4 [~ `  c  _ > oh  p f s 0s sP 0s k  ! x 0i  `c; Дcu @{ { @M  `  `g  ` + h   `, 7@N p  9   R У  F   p' j ; ` ? ~ @  9  x    `  6  u  @    e    `  p;X    @  0      #8  P]6@ n   pS pc  c" Pc]  c  @^ Pc c 0c/ c{ c ' }d pk  SJ  t ,  Pc   @cN  0 Pc c[ 0  0w V Pd  ( d    \ { { { {` { { n+ |  p X s `s s* `7n   O  k    ! X! ! p! `" PV" @ c" k" k# k^# k# p k# $ p [h$ $ k$ 0d % dY% % c% c0& pn& & & >' @[~' [' [' `[;( c( 0( c) cJ) c) c) pc* c\* Pc* c* 0&+ [_+ + !'+:@, "a, #,:@, $ - %Q-:@- &o- ' . 0M. 1c. 1c. `2c / 2cO/ @3c/ 3c/ 4c0 4ce0 540 @740 9 1 :on1 ;1 ;2 <>g2 >2 0>;2 p>;3 `?u3 Do3 pDl48@94 F4 Go4 @H35 0Io5 I5 Jo*6 Kr6 O6 Po7 P\7 pQL7 Q[8 R_>8 Rwt8 S_8 `S_8 S_9 T_a9 T9 W_9 W3#: [`Y: \@: `_: a_; a_; d_; `d; f_%< f^< g< hT< 0i= @ja= 0k= k> l_V> m_> pm`? moF? @n_? n`?7@ @h7@'@ h @ r@ s_A ptnA `uSA yA z_EB {}B |B ~B p)C @_oC \C C ,D _mD D &D &LE @E E F U]F _F P_F -G dG гG _G @_(H _mH H p I _YI pI _I l)J J PlJ 7K lK 0kK 0&L PL PL 0 M `_lM lM N 0l[N N lO nRO nO nO `n P LP _P _P P_@Q !Q >Q @- Q p6R6@PR sR 4R P4 S 4JS S S .S ET dT P_T TU @ U V `dV V V 3W xW W W ?X !X #X %?Y 'Y )Y +2Z -Z /Z P2=[ P4[ 06[ :\ <o\ >\ @"] 0CH] F] I] @M^ O[^ pS^ pU^ `ZO_ `\_ Pa_ PcI` @h` @j` 0oGa 0qZa t]a w b yeb |b ~ c /Pc c c Od d d Re e f af f bg PKg Pg Pg PAh Ph PZh >i i Zi Aj j j Mk k k @y;l :{l +l 0 m Om m Bn pEn tn o @Po jo 0 p jp p `j?q q jq 8r hyr @r Hs 0Zs P}s s s t tXt @t Pt @#u yu u Pv uv v `$w rw w px ix x y 0]y y y @Nz z z PR{ { | `S| | | pT} } } 8~ 0~ ~ D @  9 P  ؀ 0 `    3 p m s . a    M/ %nz p)ȄP7@ +1 - /X7@˅ `1/  3L @6" p<ӆ > ?h AZ BR@7@  GL J M߈ P-! Sf W [ P_? c~ 0i m p> t} px @| F 7@  ) 0"l `" " !    $g г# # 0#M `# #ߐ u' @uk  p S   0# g  " d є   ^p7@z ȕ  Q @} 6@ [  p ` P @c 0  G `  P0 nn n n ` n= cx @!c !n "E " #nН 0$n $nd %n % &1 hDn + 1 77! 97h `:7 ;7 <7= >7z `?7 @w  LO O; R7ʢ PS7 Tlv VT `Y `\BZ c7 d7ܤ 0f@  pg=1 g q `u 0~  86@O  pŦ  N  `Pǧ  (H 7@ pT  F ' n  T֩ T p }) p }L % % P6 @ 0ҫ :% `#n & (t +to h viLέ i k< -` 287@ 4| 8 9  >EP AE @Eݰ E/  H/c PJ/ L/ N/- P/t S/ @U/ pW/= Y/ [/ų ^ b<k Pd `e< g9 h< j̵ l<0 @nr Po<ƶ q r<[ t u· y  pz P׸ pgD  g pO g  go  g( s @?<@ /9 :@o iǽ ` ` @ l ? 3   `T2 T P & @e x l /, P{S  R  + e L p p  ` b   ]$ Pj  p# P&A 0) , . 1P pL`  Y ZJ lk [( U @h  @s8 y !  0 @ 1 @b    *m  %r7@ 0 n Q -0  M fh  tL5I x7@H7@7@6@6@6@0 ` `u u5 `  * w `.  : жp ` " & S   C j  c k0 ko  [ @[f c  6    0[ P p# ;! e   :8 ` : 0 K  @ }7 ` } } `} }Y `#V 'r @*<# -]  0 ʼn- 2| Չ 05 8a : = @D C pF PI# 0L@ pO U) ^`o d` @k 0mE p s  0wxK ~#    R $ 0{   @jd j  : 2 ` 7 6 v  4 4: `4v  pJ J? J `n n @[ r p `7    K  p  bE G P #  ` L `'  `3n : Wb > G I' `NB| UE Z ^( d/l h  r  $ gd   @. @2 ^  "Q     dT c  pr f x  G p  0# o    #S ? P.S 5N < C_ K PSq  ^ 2 fw j @n Pt@ 4 x ` P  A    `C CC     z  C N @N # 3 ._t @ P  pZfA iU  @u | 3 Б  жC   0 %] 6 0& `. a  +' 'k/ P?   `B \ K ^6 d1  dy  `e[  k  {eP  P    vM  V  Y  @   `]  b9  PR(     U      62&  p hG 0 T +  PM9 ы " E  p1L88@t &  )?%?/#?\? ??? `d!'o??? `w!~V? ? v!~+?X? `v!~У?.`?^ u!~?  ?/ `u!~? ? t!~? `t!~"?K M# 3- 3A 3lN?{?`? s!~Tp?? `s!~)`?T>} r!~P?>F `r!~@?> q!~0? > `o!~y ?> `q!~N ?| `>  p!~#!?R!>! `p!~!?+">X" o!~"?#@>7# n!~#Т?#@>$ j!~$?$>$ m! t% 3%?%>& Pm!~&?&>& l!~`'?' >' Pl!~)(?R(>y( k!~(p?)>9) Pk!~)@>)P?* #!U*>* ;!!+@?7+ [!+0?+ T#@, !E,>,?, !Eg- +->- @>!! .?P. !E. (/>/>/? 0 _!z0 ' 0`>0 *2 1?B1>g1 #-1?2@>/2 !2?2>,3 `!3?3>)4 0!4?4>&5 !5? 5@>6`? D6 >o6@? 6>6 ? 6>7? R7@>7? 7>7? 8>)8? T8`>}8? 8>8`? 8 >'9@? S9>}9 ? 9>9? 9@>':? V:>:? :>:? ;`>-;? b;>;`? ; >;@? <>M< ? }<><? <@> =? 5=~>_=? =|>=? =`z> >? :>x>g>`? >u>>@? >s>%? ? N?p>u?? ?`n>?? @k>-@? Y@i>@? @g>@? A f>7A`? gAd>A@? Aa>A ? "B_>OB? B]>B?B `&!UlC 'CU>C `1+D?TD`O>{D P1lDМ?D %!U`E?E @"!UFA>1F?XF !EF?>F :!!2G?`G `!EG<> H =!!gHp?H !H7>IP?MI !5I6>J ?00J 0!MJ ]!GK P1!MK "u3L !L@/>L !M?0MM ->M?0M+>M`?0N)>QN ?0N'>N#>N>O?LO>wO?O >O?O >P tP`>P?pP` >Qh?2Q` >bQ`?Q`>QP?Q j!1\R>R 3,R `3@R 3XS@?KS>yS0?S@>S ? T@>=T =sT?T@=T:@T?!U@=MU?yU@=U?U@=U?$V@=OV`?{V@=V@?V@=V ?)W@=SW?W@=W?W@=X?1X@=_X?X@=X?X@= Y`?=Y`=kY@?Y=Y ?Y=)Z?ZZ=Z?Z=Z?[@=9[?f[=[?[=[`?\=G\ 2\@?\@=\ ?]=P]?}]=]?] = ^?@^=t^?^=^?^=._`?__`=_@?_=_ ?`?I`?}`=`?`?a?q K=zqI=qG=q@F=+rD=hrC=r`A=r?= s >=`s<=s:=s@9=t7=Pt6=t`4=t2=u 1=Lu/=u u? u? v? Ov`? rv@? v ? v? v? -w? Uw? w? w`? w@? +x ? ix? x? x? y? Zy? y`? y@? z ? Jz? z? z? z? 5{? l{`? {@? { ? |? ]|? |? |? }? ^}`? }@? } ? "~? ]~? ~? ~? ? ``? @?  ? ? ^? ? Ҁ? ? J`? @? Ё ? ? Z? ? ӂ? ? 9`? l@?  ? փ? ? =? s? ? `? @? W ? ? ۅ? ? K? y? `? ކ@?  ? >? s? ? އ? ? N`? @? ̈ ? ? R? ? ? ? 4`? r@?  ? ? ~? Q~? ~? ˋ~? `~? 1@~? k ~? ~? }? }? Z}? }? Ӎ`}? @}? h }? }? |? 7|? r|? |? `|? >@|? r |? |? {? '{? k{? {? `{? G@{?  {? {? z? ?z? vz? z? `z? [@z?  z? ͔>z? 5y? sy? y? y? `y? U@y?  y? ɖy? x? 4x? ax? x? Ǘ`x? @x? / x? `x? w? Ęw? w? .w? h`w? @w? ٙ w? w? @v? ov? v? њv? `v? 6@v? n v? v? ۛu? u? 9u? eu? `u? М@u?  u? :u? lt? t? ؝t? t? R`t? @t?  t? ˞t? s? s? <s? cs? `s? @s? ֟ s? s? #r? Tr? r? r? ֠`r? @r? ' r? `r? q? q? ١q? q? +`q? V@q?  q? q? ٢p? p? 'p? Op? }`p? @p? ף p? p? 1o? Xo? o? o? `o? @o? 2 o? Zo? n? n? ܥn? n? 4`n? Z@n?  n? n? ݦm? m? :m? bm? `m? Ƨ@m?  m? (m? rl? l? l? 6l? f`l? @l? ȩ l? l? (k? ]k? k? ªk? `k? )@k? ] k? k? īj? j? .j? aj? `j? ̬@j?  j? ;j? si? i? ۭi? i? C`i? w@i?  i? i? &h? ^h? h? ʯh? =' @27Y 2F 2?İ`h? `=(=V === 2@h? M h? h? `= `2L 2>Lg? |g? g? g? '`g? _@g?  g? ʹg? f? Bf? tf? f? `f? *@f? R f? f? ȶe? e? e? ?e? g`e? @e?  e? e? d? `d? d? d? )`d? q@d?  d? Ϲd? c? %c? Pc? ~c? `c? @c?  c? Pc? b? b? b? $b? R`b? @b?  b? ݼb? a? >a? ka? a? Ƚ`a? @a? # a? Oa? `? `? `? `? A``? q@`?  `? Ͽ`? _? 9_? r_? _? `_? (@_? h _? _? ^? ^? _^? ^? `^? @^? M ^? ^? ]? ]? 9]? y]? `]? @]?  ]? L]? \? \? \? K\? `\? @\?  \? 7\? l[? [? [? [? X`[? @[?  [? +[? hZ? Z? Z? ;Z? p`Z? @Z?  Z? Z? =Y? sY? Y? Y? (`Y? l@Y?  Y? Y? !X? gX? X? X? `X? V@X?  X? X? W? CW? zW? W? `W? !@W? W W? W? V? V? 6V? wV? `V? @V? " V? ^V? U? U? U? 2U? k`U? @U?  U? U? PT? T? T? T? L`T? {@T?  T? T? S? WS? S? S? `S? &@S? \ S? S? R? R? )R? ZR? `R? @R?  R? .R? eQ? Q? Q? Q? L`Q? @Q?  Q? Q? <P? rP? P? P? (`P? d@P?  P? P? O? FO? {O? O? `O? @O? V O? O? N? N? FN? |N? `N? @N? 4 N? uN? M? M? @M? M? `M? @M? ? M? uM? L? L? L? /L? n`L? @L?  L? L? ;K? gK? K? K? `K? =@K? q K? K? J? J? 5J? rJ? `J? @J?  J? =J? sI? I? I? I? ,`I? f@I?  I? I? H? H? NH? |H? `H? @H?  H? ^H? G? G? G? G? S`G? @G?  G? G? EF? F? F? F? @`F? {@F?  F? F? 5E? nE? E? E? 3`E? u@E?  E? E? +D? fD? D? D? `D? Q@D?  D? D? C? YC? C? C? `C? I@C?  C? C? B? =B? B? B? `B? >@B? y B? B? A? )A? mA? A? `A? @A? G A? }A? @? @? @? T@? `@? @@?  @? )@? g?? ?? ?? ?? K`?? }@??  ?? ?? >? G>? >? >? `>? @>? R >? >? =? =? .=? f=? =? @.? ~ .? .? -? M-? -? -? '`-? e@-?  -? -? 9,? {,? ,? ,? V`,? @,?  ,? 0,? a+? +? +? +? !`+? N@+?  +? +? *? A *? z .=h    `6B! 6BM! 7B! P7B! 7B! 7B"" @8BU" 8B" 8B" 09B" 9B/# 9B_# :B# p:B# :B# ;B!$ `;BR$ ;B$ <B$ P<B$ <B% <&O% % D&% $& _& M& "j& S5' }' n' @o ( vA( 8m|( ( ( @,,) h) p,) ) 2 * ;T* "+* "5* 1+ W{+  + m},  a, `, , a9- Q- - - $. e. . . 8D/ / H/ 0 XZ0 0@=? 0 =? 1`=? [1 nh1 R1 )2 a2 2 p2 3  Q3 3 "3 4 P%=Y4 4 ( 4 I5 5 2{5 3!6 P6nc6 6n6 07E6 (W7 ; 7 @7 EE8 z\> W> P> G? ? m? @ N@ @ @ @ Ћ'A [A A A B CB 0B @B @B }>C C  C 4'D 0gD D D ZE E $E pj>F 4F >F D5G }G TG H daH H tnH [-I  uI  I J + [J J  J #FK 0+ K 3K ` ,L D|L p L T'M  W rM eM p& : N v]N * "N N - !O  eO 1 O P 6 FP  P : sQ vQ K Q 0M R  ]R Q R %R `V *S 6 oS `Z jS VS [ :T f T _ T U a _U U pd U BV Pf V V 0i W nW k W X m 9NX X o _X $7Y yY $Y M Z >cOZ YZ Z @ Y#[ i[ \[ [ ^3\ }\ ` F\ \ 3] $y] p ] #!^ @ 7Z^ D^ ^ b8_ 0 w_ r_ _ >` p ` 2` @ va ja ^a a Gb =b !=b @!=b !=4c !=qc !=c @!=c !3d !Yd ` !d d !e ce !e %e !:f ;f !f Qg !Yg gg !g },h @!m_h !h +i !zfi P!]i i !])j nj P!j '!Cj +k /!<mk 2!]k 4!l 6!SNl 7!l 9!l #m m m -7n p?!n Ccn @A!x!o yo C!]o o F!Gp p 0J!=p q pL!=]q q N!Eq $Br Q!Fr :"r PV!F6s \"s a!s ~$!t t w!t &@u pz!zu u }!v Rv !v v 0!'w 0!}nw w ! w 05x !x F9x =y y @!Ky !z 0!Gz П!z p!z !=z ! O{ 8{ !*| d| !J| | Я!'} Wo} q} е!Y~ 2Y~ !~ $~ !/ $y   6e L  !kJ b     5 !c !9 Ń 2, _ % < ! S !D jw  !˅ @!B @ 0 "w " 3 " D k !" @#"- "@q p9"w ;"S! b3 PL" ϊ  pN"% X Q"ȋ @W"  ; Pb" w [W k"H w 0o"   r"R  t"ݎ   w"\ A P~"؏ KA "S A Ћ"ϐ A "/H 2 "Ǒ @ "UP VW "ْ   @"k^ 3W  f `" O  "K " - `"= 7 " Ԗ V3 "_ X @" +8 " ;٘ "' G;z "ș ; "h ; `# $5 #w  `# -$E # Q Q %#E O *#/ 86 0#؞ n62 `7#cx ;ß >#  T H#4 נ @ 7T W# a \#u   `b#vS  b# L c#  d#B  f#A U/ z#cs T8 p~#!  w[ # Q @# ( Ts #F e(  `#pK  Х# ͩ # # S 6 `#O  60 #q 8 # JV # #Ӭ #: C2 #( uI #r D #,ί > $e @ ($ S* `<$J D*߱ A$R nbʲ PG$l _ J$ 8 P$O 5 V$ ٴ S8 Pa$\ & g$Ե 5  j$: 2o pn$ > u$ 0 V8 ~$ȷ  $g >= `$\  {` $ 5 p$G  $ Ѻ  $XP +K $+ v5 $@ *Լ $  ;I $  z p$0  1 %a { %w ؾ d % _  %2 b/ (%% m e 01%4  YG p:% I `B% 65e pH%p k5 K% * y U% T" P^%~ = e% 3 B  n% M5; `u%  |%* a 8 % : 0%gb 8 % :J %  E  p%  Pf P%   H `% O ] H p%  H= %  H %" 5 o %^ C %i " 6 % X E> 0% ~ - % ) - %  %K | &b `&r I s\ %& i @& B& 8W H& 5 PN&7 8 PT& &5 Z&tZ [C a&W 5 f&t] C `n&  K  pw&B^ a &  } &\ h' &e XA & A' P&s  0&C a &C l &S  p'  S: !'j  <'j# t `X'O5 ^V 'a ]  ' a&= & & 'B 8 ' 5F '  @7 'Z |( (P $R (  (($7  < (  p( !j (v " )vU # )C  $j- p%)l $ @) %Q pE)= &. )9 (U ) 9*.. `)d p g*} Ч)g *8F @)d  +} )' +5h )' +5 )'8 ,8| @)X ;,; ) )  ;- 0)n N - * .u 0*\ . *J /D * 0 %*! s1xn 05*  1 o2 E*7 ;3E 47 >4Lk 0V* Z*2 4%e @^* 4 `f*qR 35R n* 5@ w* 6 p*/ 6? @*. 6N p*3 U $7 * 7M P* 8 * O "9q *  9qZ *e : *L A :m * W;y7 *^ ; `* <[ * <Z +* +sl @+  = &+* =q^ -+*  > 0:+6U .> p;+  ?>+ PG+yg >K X+ -@.- [+z [@_ `c+  @3_  x+  AT  +>8  AC  +'  Ck`  +  +"  4DZv  и+  +%  D5|  +!  F +X G# ,? H?4(=Q'=q'=)=@*=@*=`+=.= .?PU a9b Y9u Y9 Y9 .9  Y9 .9  t7  /4 : -4i q7 @4* @n7; `h7 b7K @>8w 4 `7 `_7o 79  _9' [7hT W7: 4\ jW9 8 U7"  4$: 9U p8x V8 8 P8 9 8 `83 8S 8s 0q8 8 V8 _8 4$= 8[ 9v P)9  9 {8 8 @)9  p8. 8K 89 d 9 ~ 8 9  9  `40 8 8< _8e (9 ~ 9  9 P8 9  0)9  79  )9 / @8K 8h 8 p 9  ` 9  08 8 )9  8) 4&W 8s 08 `8 8 P 9  8  @ 9 # 9> 8_ 8} {8 8 8 8 C9  82 a9@ R9T ~_9e 8 4& 4- V8  9% 8H U7"u ^8 `4( 4# 3/* 0 9D 9 ] 9 w P8 8 @8 8 8 `=8D )9 \ 8 T7" 8 8 9  p8*  79 A  ^8j  4%  8   9  9  p8! R9"! 9 ;! 8[! 4%! `4'! ^8! 9 ! V8$" =8!P" 8p" 8" 9" (9 " T7%" 9 # P8)# 8E# P8f# 4&# 4(# g8# 08 $ 4':$ @T7)g$ ^8$ 79 $ `S7$ a9$ z_9$ v_9% `4$2% 8R% f8z% q8% S7&% R7(% p{8!& P{8G& =8 s& <8 & [9& 79 & 9 & 9 & Л8' p8F' 4"t' `R7q' 4,' R71' 4$*( 8F( `4>t( 4,( 4,( 4E( @4%,) 4"Z) 46) 47) Q7l) @4'* @N7H>* H7dk* `C7O* 09* 4=* 9 * >7'+ :7nT+ 0{8z+ 9 + 8+ O8 + 08, 8%, 8H, {8n, 4$, 8, 08, f8- 8(- `V8R- 4(- ^8- @4'- 97 . <80. 4*^. В8. 4#. 8. @V8. 8/ 97"L/ 8m/ V8/ 8/ N8 / а80 4>30 @4#a0 3.0 `80 ]80 80 V8%1 Х8G1 N8 r1 p81 <8!1 81 4$2 852 ]8^2 4'2 N8+2 @N8,2 @83 ]8+3 8J3 8i3 ]83 P83 @<8!3 84 4#34 p8W4 `97"4 @4$4 @97 4 ,4,5 p8/5 U8Y5 08|5 p85 4%5 85 dW96 8*6 8O6 8k6 86 97 6 9 6 86 97 7 87 J7 4!x7 R97 987 К87 4( 8 @4*78 P8[8 87)8 4+8 4+8 57e9 /7e>9 -7gk9 )79 '49 !49 @%7;#: 7P: 7}: @7M: @!4=: 74; 743; @7d`; 7; 7; 6w; *8r< '8?< 6l< 6W < 6< 6< 6 = `4O= 6l|= 6= %8= @6k> 6/> @#8c[> 8> `8 > 4 > `67? `4=? 68j? `6? 6? 6? 7@ 6/J@ @6Xw@ 4u@ 8@ 6 @ 6A @6IA @6vA `6A 6A 6A 4,B 6-YB 6*B @62B ~6*B y6 C @j6:C g6gC f6C 7C `6C @Z6`D T6oGD 4bvD 4ZD S6D 7D 7*E 7VE 7E 7E P6E M6F 74F K6aF I6hF `7 F @H6XF C6vG @B6AG @6nG @?6G 7vG ;6(G `96!H 76NH 4}H 4H @56gH 26KI 063I `-6`I @+6I @%6I "6I 6J @ 60AJ @ 6nJ 6SJ @6J 5 J P8K 08:K 79 QK C9 gK 8K 0p8K 8K 8K `8L 5 @L 5&mL 4'L 8L z8L 8M x8M N81HM 4(vM @4'M z8M 4$M 9 N h 9 +N 8KN 9 dN X 9 ~N 8N 8N 9N PJ9N 8O `8&O 8JO h8fO @8O 7-O 4)O p8P @8 P 8DP X8`P 8P `7-P 4)P H8P `8Q p8;Q 9VQ Б8zQ M8,Q @4(Q 88Q P8 R P8/R 9JR 8nR M8,R 4(R 5R (8S Q9 $S Q98S 8ZS 8~S z8S 4;S @8S 4"T @4"KT `]8tT U8T 8T 8T 7! U 4#9U 8WU p8~U `M8U p8U 8U 8V `5-;V 4*iV 5-V 5V `5V 9 W `4U7W 4WeW 4bW 5GW 4dW 4IX 4wJX 4wxX 4wX 4wX 4eY 9 Y H 9 5Y 8UY 54Y 4\Y 8Y 8Y 8 Z 8 9 #Z 4&QZ B9 gZ HJ9|Z @4+Z ^W9Z 8Z 08Z 48)[ 39Y[ @38[ 39[ 49[ 8\ 8(\ `4CV\ 3D\ U8\ U8\ 5{] `4z6] 5&c] P8] @]8] 8] 4!] 8^ f8B^ 4,p^ 4?^ 5A^ 5A^ `5A%_ 8J_ (9 b_ 8~_ ]8_ 8_ 08_ 5*` 5,A` 7)m` 8` 08` `U8` 8` 5"a `4(Ma 4){a 4&a 8a 8a XW9b PW9b AJ9(b 8Lb 8hb `8b p8b @U8b ( 9 b А8c 8-c P8Rc 4#c U8c `4#c 8c `5"(d 8Id @M8 td 8d o8d Я8d M8 e 8!e o8He 5&ue 5]e 4`e 8e 4)!f `35Qf 4'f 5 f 8f 5 f @4!+g P8Mg 4){g 30g M8 g 08g Й8h 8W9 5C- B9 C 8e @7! 69  8ƀ `8 h8 I9 82 5&_ {4% z4% z4$ `z4' z4%E I9Z 59 8 @58ׂ 5- e8, \8U 9 n 9  8 K8 ̓ 5" 8 y4#F y4%t Џ8 8 8 p8 '9  pe8G `T8q Pe8 8 0e8 8 Po8/ `y4!] I9r p8 K8  5" 0o8  `5 9 P8^ o8 X8 8 Ф8 B9  P8 83 y4#a x4% И8 9 ̈ n8 x4$! e8I `x4!w x4$ \8Ή 5* w4!) 3+Y w4B @w4. va9Ŋ [9׊ 5 5Q1 P8R w4% '9  `8 8׋ d8 @T8) 08N \8w \8 `\8Ɍ 7 T8 `8= 08^ 8} @8 `8 8ݍ 8 @8 89 @8Y 8} 8 8 Ю8ߎ 8 8" 08? 8` 8} 8 p8 8ڏ P8 8 @8< p8[ 8} [9 H8 08̐ p8 `n8 85 @v4c 69 z 9  '9  8ɑ 7# 5" 5O 5| 7 `5BՒ @5 5 / 9 I Q9] Q9q Q9 P8 Pz8ϓ `8 @\8 v4'A pK8l 9  9  '9  T8 u4& 80 @5] d8 d8 8ҕ P8 @K8! 5#E 0z8k 5( z8 @n8 \8 S88 \8a [8 5( 8ܗ Ѓ8 08% K8P 8t 8 8 8ߘ d8 p8) @5!V P8u 5% 5'ϙ [8 5(% @u4}S 5 5?  5h ښ 9  9  9 & u4;T 5 8 5"˛ t4$ 8 '9 / pd8W S8 Э8 P8Ĝ 8 a9 8W9 '9  [90 69 G 8d 0[8 69  9  t4+ 9  8' J8!R @S8 | 7) 5+՞ [8 5!+ 46Z 7  8 @7)՟ `5+ Z8+ 8J @t4%x n8 y8Š t4$ s4&! 7M s4!{ 3) 8ϡ p8 7  PJ8K @s44y Pd8 s4"Ϣ 37 P8$ 5+Q 5-~ 0J8 08Σ 5+ `5-( J8S 8x n8 Z8Ȥ r4% S8  08B 8d 8 y8 @5 إ 0d8 r4#. @r4"\ `3* Z8 Ў8٦ 8 r4#+ @8I d8q p8 p8 R8ܧ 8 q4$/ Ђ8T q4$ I8 @q4*ۨ q4"  3.9 5'f I8, p4) m8 p4& c8< 5'i @p4$ 30Ǫ 5' P8 R8> 8a @5" 8 p4# 8 Z8( pZ8Q 8t 5" 8ì `o4 5 }5K @y5x `w5 @7ѭ u5@ q5 + l5X i5  8 p8Ʈ `g5H e5  7L c5y @4 `4ׯ b5 _5G1 \5^ 3& Z5 Y5 X5 3nC W5p T5O 3̱ R5 O5& @L5S K5 @7 i43ڲ d4 ^4E6 [4d H5 F5 7 B5 @5D 08d @5  `[4( 3( P7 @5 H P8i m8 8 c8׵ [4J Z4J3 `Z42a `31 9  9 Ķ Q9ض xI9 pI9 hI9 Q9+ Q9? P8c `8 9  9  m8ڷ @8 m8 P89 @8V Q9j 8 08 8Ǹ 8 08 8  8C I8n 8 Z4$ 8ع 8 8 R8G 8b p8 p 9  У8ú 08 Y45 85 R8_ pR8 Y4) 8ۻ `Y4#  8$ P8I Y4$w X4- 7!Ѽ @>5' ;5M+ X4+Y @X4_ 8 08ǽ 8 X4# 87 c8_ '9 w 8 8 7! 8 7!1 :5^ 85 `3m 55 15 -5A )5n 5= @5i 7 @T4" hB9 8 Q9L 5)y 5 8 `m8 y8 T4$@ S4&n 5  9  `5 8 S4), 5"Y @S4$ y8 Ѝ8 S4! c8' R4#U pc8} PZ8 py8 R4! Py8  @m8G 0y8m 8 @R4) 5" R4$ y89 8] Q4! Pc8 0c8 0Z8 x8* x8P m8w x8 8 Q4) 5" @Q4$C x8i 8 Q4! c8 Z8  px82 m8Y Px8 8 P4) `5" P4$% 0x8K p8o @P4! b8 b8 Y8 x8< w8b l8 w8 9  8 8 69  l8> Y8g 5= 9  w8 8 I8  5"F p8h Y8 P8 P4* ` 9  й8 88 `8W O4$ O4& w8 5  pw8, @O4.Z 8x p9  PR8 @8 8 8  8> P 9 X Ь8y l8 8 8 p'9  8 88 8V l8} O4& N4! 3-  b81 5&^ N4% @N45 a9 W9 @ 9  8 P8: N4#h 08 0R8 08 8 8  8, 8J `8h b8 `'9  08 8 7! P'9 0 0 9 J 8n 8 8 8 Y8 p8 R8@ 8_ pY8 Ё8 M4$ PY8 M4(2 8N Pw8t @'9  8 `l8 8 @7! @M4&L M4#z p8 `I8  Т8 7! 0I8? L4*m 7! 9  8 @8 pb8 `9 6 `8Y 8w Pb8 8 @l8 @8 0w8, L4%Z 8v XI9  `8 P8 8 l8 @82 I8] 8 P8 8 @5# 8 w84 5*a 5% 8 7" 8 0Y8$ 8? p8d 8 v8 08 H8! 8 H8!> 8_ `H8! 8 5# 8 l8  98 Ќ8\ `8{ Y8 @8 X8 8  5N8 3Gg Q9{ 8 8 8 v8 @L4%4 8Q v8w L4$ x8 p8 8 k8* K4(X K4% Q8 @H8  Q8 5"2 8O P8t 8 @7* 5V 0'9  K4\0 J4^^ `J4E 5Z 5 @ 5 ` 5@ 5m 3 5 5 5# 5P @3 `3 3 `5  39 3h @3 J4- @5 7> I4AL `5y I4> 7 5 5- 5Z `3 @7 @4u 7 @7": 08_ 7  I4S 3X 4< @4C H4Uq @H4i G4L G48 4( 4U 4 4< 4 45  `46 `3e 3 `7 4 7 4F `7r @G4\ Q9 P9  9  08 '9  G4$M @9 f 9  8 '9  F4$ 69  69  80 8M 8p h8 P8 F4% 4'  76 B4d ?4O '9  8 8 8  @?4'8 @4)e [9w 4| 69  09  8 x69  9 " 9 ; 8X 8u 8 8 8 8 9  X8 08@ p8b &9 z 8 &9  &9  &9  h69  Q8  8? p8\ P8~ 8 X69  8 XB9  PI9 08 `8< 9 U 8s 9  9  9  x8 9  9  9 % &9 = ?4/k 3$ >4% 9  9  8 p9 5 9 O и8o `9  9  8 &9  P9  @8 [9$ >4R 3 3X =4/ =4( @=4$< @4hi @3U &9  8 7  8 8; 8_ `8| `8 @9  8 H69  @8 8' P8D k8k =4# <4) 8 <4- 3/G 4$t 4 8 09  869  &9  8) HB9 ? 0b8g @<4$ 8 ^a9 [a9 Xa9 Ua9 Ra9 :_9 Q9) p&9 A HI9V 9 o Q9 9  4  8 <4; `&9 4 9 N 7#z `4c `8 [9 7_9 3_9 0_9 -_9 +_9* *_9; %_9L !_9] _9n Pa9~ _9 Na9 La9 Ja9 Ha9 Fa9 Da9 Ba9 a9  ?a9 V90  H9S  Q8}  B9  _Q9  ;4$  8  9  8/  x59 F  h59 ]  [9o  p9  [9  V9  8  ZQ9  8  H9  4"=  9a9M  )^9^  H9s  SQ9  `9  A9  H9  LQ9  %9  0 9  v87  6a9G  %9 _  V9r  H9  H9  `8  8  %9  $^9 V9 a9" EQ96 V9I H9^ A9 t 9  H9 X59  V9 A9  8 H59  p83  9 M P8j H8 >Q9 %9  88 P9  H9 8 A9 - 8H x8c 859 z 7Q9 @8 0Q9 08 P8 )Q9 %9 & "Q9: xH9O A9 e %9 } A9  h8 (59  59  Q9 X8  Q9 V92 V9E A9 [ (8w 8 A9  8 8 @9  xA9  hA9 - 9 G 59 ^ pH9s 8 Q9 Q9 8 XA9  hH9 HA9  8A9 + 8J p%9 b P9v 9  09  `%9  8 H8 [9  88& @;4@T `H9i [9{ P9 9  9  ^9 08 P%9  8& V99 9 S H8~ (A9  V9 XH9 (8 8 P9 V9 # 8> PH9S P8s xV9 P9  A9 9  ^9 8 rV9 P9 lV9/ fV9B X8k 9  ^9 9  8 P9 A9 8 9 + HH9@ 8\ A9 r P9 8 9  8 @9  9  8' p8H @H9] 8x Ѐ8 8 pv8 8 8 8= @%9 U 8q 8 49  0%9  P9 [9 8H9 ;40' `V9: ZV9M 8i @9  9  8 49  P9 8 X8) 49 @ %9 X 8t 49  %9  0H9 }[9 9 8 8 a9* x[9< %9 T 49k 8 08 s[9 P9 $9  8 P9 p8: 49 Q x8m @9  8 8 9 8 p8  n[9  9 8  @9 N  (H9c  $9 {  08  $9  49  Ъ8  49 ! 8%! P99! H9N! x49 e! $9 }! P8! 8! H9! 8! k8" b8A" p8b" pQ8" TV9" NV9" 9 " i[9" $9 " 8# 9 )# P9=# P9Q# 8q# P8# P9# 9 # 3a9# `[9 # P9# $9 $ 9 '$ p 9 A$ 08`$ 8$ 8$ 8$ 4$$ X[9$ @9 % h49 *% :4"X% H9m% `8% X8% $9 % P9 % p8% ^9% Pv8%& a8M& 4$z& `4&& 42& S[9& }P9& @9 ' 0v86' 8[' з8{' 4%' N[9' ` 9 ' X49 ' 0a9' HV9( @9 $( 8D( 9 ]( p9 v( $9 ( `9 ( a9( 8( p8( BV9 ) P9 %) @9 >) vP9R) P8v) oP9) @8) P 9 ) H9) H49 ) ^9) @9 * 83* p8S* 8u* 8* Р8* 09 * 8V9 * H9* I[9+ 849 + G93+ hP9G+ aP9[+ ^9l+ x@9 + ZP9+ h@9 + G9+ (49 + PP9 + @[9 + X@9 , 9 -, P8M, 49 d, p$9 |, H@9 , 8, H8, 88, `$9 - a9- -a9- *a9/- 'a9?- 2V9R- G9g- G9|- `8- 9 - P8- 8- 9 . :4"/. EP9C. 8`. 9 y. >P9. 49 . P$9 . 7P9. 8. @ 9 / ,V9/ 8>/ 8`/ 0P9t/ 08/ PQ8/ 8/ &V9/ G9 0 39 !0 p8>0 V9Q0 G9f0 80 G90 80 G90 p80 V91 @81 8;1 (8W1 )P9k1 p81 9 1 08 1 @$91 0 9 1 9 2 0$9 (2 $9 @2 8^2 p82 $9 2 82 a82 82 @:4$,3 9 E3 ж8e3 9 ~3 8 3 9 3 8 3 $9 3 9 3  9 4 9 14 P8P4 9 i4 39 4 9[94 `84 0[9 4 $P94 p9 4 P95 $a95 805 G9E5 ]9V5 G9k5 `85 39 5 75 085 P86 08,6 8M6 8m6 v86 86 @86 #9 6 8 7 8,7 #9 D7 8@9 Z7 39 q7 39 7 (@9 7 @9 7 87 P97 ]97 88 @9 )8 #9 A8 8]8 a9m8 $[98 a98 39 8 P98 X88 P89 08%9 [979 9 Q9 `9 j9 89 ]99 [99 89 a99 a99 a99 a9 : a9: a9*: :4!X: V9k: ]9|: 8: 8: 8: 8: 8; P8@; P9T; 39 k; 8; 4!; 8; p8; P9 < V9< G91< 8R< #9 j< G9< 39 < O9< P9 < 9 < #9 < [9 = 8*= 9D= 9^= @9 w= 09 = 9 = P8= O9= G9 = V9 > 8'> V9:> 8W> U9j> `8> [9> 8> x39 > П8> O9? a9? P8/? 8K? ?9 a? 8|? 9 ? @8? 8? 9? O9? ?9 @ 8/@ 8J@ u8p@ 8@ h39 @ X39 @ ?9 @ @8@ ?9 A 8A 99A @4CfA 8A 9A 8 A p9A 8 A #9 B X9 "B O96B 4cB 3B G9B 8B H9B 89B 9C 9+C H39 BC 839 YC 8{C U9C ?9 C 9C O9C U9C (39 C U9D [9 D #9 8D 39 OD U9bD G9wD 8D Z9 D 94"D #9 D 9 E p8,E 8OE Z9aE 39 xE 29 E Z9E O9E 8E a9E ]9E 29 F ?9 F Z90F O9DF 9 ]F Z9oF O9F (9 F 08F p#9 F P8F 8G k8?G 29 VG 9 pG 8G `#9 G 08G Z9G P#9 G 9 H O9%H U98H xG9MH ]9^H Z9pH U9H Z9H 8H 9 H Щ8H 29 I 9 I 94'KI 29 bI 08I 29 I 8I U9I 8I 8J 8-J 8KJ x8gJ 8J O9J U9J U9J ]9J U9J a9J Z9 K 9 K U91K 8NK P8xK x8K ]9K `8K pG9K 8K Z9L 411L Z9CL ]9TL U9gL h8L 4,L Pa8L @#9 L 9 M 8&M k8MM X8hM 9M `G9 M 0#9 M 8M p9 M XG9M Z9N 29(N ?9 >N p8[N 8yN 9 N 9 N 8N ]9N U9N j8O U9-O PG9BO Z9TO Z9fO O9zO ?9 O P8O @94$O `9O a9 P a9P O9.P Z9@P O9 TP O9hP O9|P "9 P U9P 94"P H9 P 89 Q x?9 Q O91Q HG9FQ 8iQ Z9{Q ]9Q 29 Q h?9 Q "9 Q X?9 Q H?9 Q @G9R Z9$R a94R 843bR O9vR е8R Z9R P8R x29 R h29 R 4# S a90S @4&]S @3'S `9S `9S 8?9 S Z9S (9 S "9 T H8 T @8U P8bU 8U "9 U 9 U 8U j8U ?9 V 9 -V U9@V a9NV ]9_V }O9sV ?9V vO9V 8G9V X29 V `9V 84"W P81W P8[W `P8W oO9W 8W Z9W iO9W 9 W ]9X 0G9X }U9/X (G9DX 9 ^X `9nX wU9X H29 X 9 X 9 X x"9 X ]9X 829 Y G9Y h"9 7Y ?9 MY 9 fY X"9 ~Y 9Y G9Y H"9 Y 8Y bO9Y 8Z 8+Z 9 DZ 8_Z 8Z 9 Z >9 Z (29 Z @84,Z 84-&[ ]97[ rU9J[ nU9][ Z9o[ 9 [ [O9[ 8"9 [ 8[ x9 [ x9 \ 08 \ TO94\ hU9G\ Z9Y\ `9i\ ~Z9{\ {Z9\ `9\ h9\ 8\ ("9 \ h9 ] MO9] FO9/] j8V] vZ9h] ]9y] ]9] >9 ] 29 ] 74$] 3%^ `3%E^ 3%u^ 8^ G9 ^ G9^ 8^ X9 ^ X9 _ qZ9_ F91_ 74:__ 8|_ >9 _ 8_ "9 _ ?O9_ 29 _ >9 ` F9` 8O93` F9H` 19 _` 19 v` 8` 8` @P8 ` 74Za G80a 4@]a P8!a O8!a O8!a p8a 8b 86b `8Yb P8zb 8b 8b p8b H9 b P8c 80c G8[c 8wc 8c H9 c 8c 08c @8 d 82d 640`d 8d 8d 8d p8d 8d 89 e u8;e bU9Ne 19 ee 1O9ye *O9e \U9e 4!e 8e (9f "9 f 19 3f >9 If pX8rf 7"f 8f !9f a9f VU9f X>9 g PU9#g a91g |]9Bg x]9Sg H>9 ig JU9|g 8g DU9g t]9g `9g nZ9g 19 g `9h iZ9h >U9,h 8>9 Bh F9Wh 9 ph 9 h 08h 64%h P8h 9 i 08,i 9 Ei 9 ^i (>9 ti 8i F9i #O9i >9 i >9 i 19 j 9 j t8Cj 8bj 9 |j 8j p9 j h8j 19 j O9 j P8k 191k x19 Hk =9 ^k =9 tk 8k `64$k 8k 8l p8l O91l @8Ll 8il `8l O9l 8l F9l 8l `Z9 m h19 m 87m P8Sm F9hm 9 m p]9m X19 m O9m 08m N9m `9 n 9 n F93n l]9Dn N9Xn =9 nn 9 n =9 n 9 n P9 n h]9n H19 n @8o 80o p9 Jo 08fo =9 |o 9 o `9 o a9o 8o 7R p 64*:p 54Thp @42p 4_p 4<p 3Bq 3@Mq @3J|q 3Wq TZ9q OZ9q N9q 8r 8U9r N9(r 8Fr 8br `8r F9r 2U9r P9 r F9r JZ9r =9 r N9s EZ9%s `54CSs 8ns `4@s 54Ps 44Hs `44>%t 44NSt 4@t 34St @34Gt 24K u 24D8u 24Afu 4@u @Z9u 819 u @9 u 9 u N9v d]9v 9 +v 8Fv 08gv 8v 8v 8v 8v =9 w p8#w =9 9w 8Vw ,U9iw F9 ~w 8w 8w P8w 8w `]9x N9x N90x 9 Hx ;Z9Zx 6Z9lx N9x N9 x &U9x F9x 8x N9x U9x U9y U9 %y N99y 9 Qy 1Z9cy F9xy 09 y (19 y F9y N9y @9 y `9y 19 z x 9 *z 19 Az N9Uz 9 oz (Z9 z 9 z 09 z 9 z N9z U9z h 9 { U9{ X 9 6{ T9I{ 9 c{ Z9u{ Z9{ F9{ 09 { 9 { X]9{ T9{ N9| 8#| 8?| x=9 U| N9i| xF9~| 09 | |N9| @8| 8| 9 | p8!} 8=} 8a} 9{} uN9} p=9} 9 } 8} 9 } M]9~ 8#~ T96~ j8]~ `8~ I]9~ д8~ `=9 ~ T9~ pF9~ 8 8- 8J 8j nN9~ Z9 gN9 8 9  `9 Z9 09  `N9% Z9 7 P=9 M H 9 e 8 9 } 09  09  T9 Z9Ѐ YN9 8 09  @=9 / RN9C 8a 09 x 09  i8 x09 ́ 8 8 8  8< hF9Q p8n h09  p8 P8ǂ 9 9 9  9. 0=9 D T9W ( 9 o `F9 =9  8 X09 σ 9  P8 8$ 8D  9 \ 8z H09  809  (09  08 8 =9  09 , @8I 09 ` XF9u /9  KN9 `8 DN9҅ P8 8 9 - 08P /9 g t8 P7 x8Ն =9  8  `9 E]9+ Y9= >N9Q 8N9e 2N9y  9  41 h8ڇ PF9 /9  T9 9 3 `9C +N9W @8u `9 `9 `9 `9 $N9Ɉ 8 N9 8 N9- 8K T9^ 8{ p8 8 T9ɉ N9݉ Y9 /9  i8- 14&[ N9o N9 `8 8Ŋ T9؊ `9 8 08) p9 C 9 \ 8 w `8 A]9 Y9 P8Ջ T9 Y9 }a9 =]9 <9 / T9B `9 \ 9 u 8 8 8͌ 9  P9  M9 <9) 9 B E9W /9 n @9  Y9 `9 M9 {a9̍ Y9ލ <9  `9 M9 G8!C M9W 8r p/9  `4" p8ю `/9  P/9  9  E9, <9 B @8f cT9y 9  9  p9 ď 09 ޏ @/9  9  M9! `8< ya9J 88f 14? 9]9 4]9 Y9Ȑ? ې@/=0@\= .`[=f e/ e/ c/(: `c/Rz c/' b/F b//G @b/>_=˓ g/r f//P f/>a=Ք a=P h/sN g/1 g/@ d= c=xZ x/e `x/1 x/@1@f=` ~/ ~/|ۗ }/& }/5_h=` /-ܘ @/<%j=`S /% `/4әl= P/; /)~ /8Ún= /3 /+x /:p= /j@ /n /n؜ /.  /=k@s= / й/ /.2`u=d / /-Ҟ @/  /B /) /8˟w= /O+ /_ `/ /#Ѡ /2`z=P=@z=h {=z=PΡ 1 1G 1 @1*Ţ 19 }=P4}=[`~=~=P 1  @1* 1_ `1& 15= 1B 1z @1= 1 - 1m 1# ==x 1m] 1 1ܧ 1$ 12l=P=@Ш 1 =@: 2 k@=` 2 2)#=`T@=P 2 @21 =@$=xQ `2`=@=P @2%=W@= 2AƬ @2" @29 =P]==` 2ڭ 2<=P/=U= 2 2 2 %=PJ=n=@ =PƯ 2@=@% 2 W`=|= 2P 2 2J=@=P± @2@=@2=Pb `2}=@Dz =P 2}-=@[`=P 2=@=P 2I@=@w=P 2״=@ =P3 2e`=@ 2͵@=@ 25 =@f 2 =@̶ 2 = &=@T @2= =@׷ `2= 0=@a 2 = =@ 2= ==@k 2= =@ 2= D=@r 2= Ⱥ=@ 2&= K=@y @2= λ=@ `2*= N=@{ 2= Ҽ=@ 24=@` 2=ʽ 2/ 20] @2?>`߾ 33, @3N{@>P >¿ >@>x p3L >`} `3( 37 >`6 3*z 39>>  3-V 31 3 3 3: p3s @3% 3' 3;> 3' `36`>>P* 3&j 3" 3> @3*& 39m>` 3" @31@>`6>x] /J / `/ @/ : @/z @/ / @/! /R /- >@> `/ * /"d /!>@@!>P v/D u/ @t/ s/e, `s/Qe s/" r/< q/C p/\V o/ `m/ `l/( @j/g i/; h/* h/93%> h%>P }/ {/ z/WV z/P y/$ y/>  `y/,S y/;(>` // `/>h*>` /. /=1,>g @/ /- /<3.>h / `/, /;1`1>]0>x / @/3 /' /\ / / /) P/) 0/b /" /" /" @/(J /0 /6 /  /h `/E /v /M `/ @/  /G @/| @/ / / /+T / `/ / /3 /q /# @/27>@  `/wV9>Pw9>9>;> :>h /8 /]c `/ / @/% /X%>>`T >>x `3& 35A>`-@>U д3 3.D> C>! 1"] 1 `1x 1_  1B 1 P1 1 `1.0 1Fh 0 0X 0 0B 0Jv 0 00 0  0R `0c 0> 0J 0: 0t 0r 0S @0/ 0s @0+ 0 `0&= 0`K>`J> 0  0r9 0i 0G 0 `0= 0- @0jb 0X 0 0f 0r % 0W 0B }0A x0 @t0}) o0IY o0[ n0 `l0G 0l0% g0V e0 @b09 `]0 \00 W0%J J0 u @0  @>0 Q>PQ>#R>MQ>w U10 Q1B P1 O1qO PO1 L1I I1 F1A @1eO `:1 `81 31 `01K )1H %1{ 1[ 1k 1$ 1PN @11 1n 1! @101`W>PX@W>~@Y>`W>h 1 1F 1q~ 1 1y 1. 1g @1 1P 1H  1hA 1'v `1D `1 14 @1Q @1 @}1 z1Z @y19 v1Dt `t1{ @p1 l1o j1D @h1| f1b `1 _1.$ ^1] [1z `Y1 `X1 @X1U@_>@ 2xa>@ a>P3 @19nc>`c>x `1( 1RS 1 1"`i>P`k>@& 1^m>@m>x 1 `1 1M 1;`p>@p>P 19*r>@T@r>x~ @1A @u>@t> 1Ww>@ w> 1 z>@y>xN @1|>@|>x `1`~>A 1v 1 @1>" 1S @1 1 1  1->x[>@>@ `/! /]9 @/u /` /Q /" /\ /( `/7 > >hF  /!  /V  @/D  /A  /~  /a  /Z  @/]4  /Ro  /  @/  /($  /7i > >@  /!  /G  /;  /  /`  /Y3 /Qn / / /(# /7h >>@ /0  /F @/< / /a /Z2 @/Rm `/ / `/(" /7g@> >@`> 0{ 0K 0Yz `0 0 /  /'C p/| @/. >P>>>hD F2v @D2r B2% A2 ?2 @?2K =2^ =2 82) 82 52L 427 P42 /2 /2 .2cC -2 q -2j ,2J +2 )2u) '2<T '2< %2 `#2. "2M !2=9 !2-i 2 2 2E 2r$ 2R 2 `2 2l 2N  @2<] 2 2 2  2CV @2 2&@> `G2w0 G2+u F2:>``> `2(` _27>>x 2L  `2sN  2f|  2  2 >P `>!>D!>l! s3! `s3! q3" o31" k3Vd" i3" i3" h3u" @e3`+# @c3h# `3# ^3# ]3l# @[3$ Z3Q$ @X3G$ @V3$ T3&$ `Q3% `P3S% O3% O3% @N3&@>(&`>O& 3{& 3& `3& ~3' |3E' @{3u' @y3' v3u' u3 ( u3?( t3x( s3(>P(> )>@<) `3t) 3") 3S) `3U* 03V* 3* 3* 3a+ 3;+>e+ 3#+ 3+ 3*,>@, @3#{, 3, 3*,@>->xI- @3%- 3- 3,.`>.. 3$j. 3. 3+.`>/>N/ 3// `3&/ 36&0>U0 `30 3N0 31 3Za1 3H1>1>2 3RV2 3P2 32`>@3>xF3 `3#3>@3@>x3 3 4 >@K4>x{4 3 4>@4>x5 3J5>@y5`>x5 35>@6 3%S6>P6>P6>P6 ?@7?x77 P3o7?@7?7 3 8?`88 3'y8 368?P8?9 ?19 ?x]9 `3S9 3y9 У3:@ ?@B: ?u: 3#: ?@: ?; 34;?@g;?x; 3#;?@<`?x2< P3i<@?@<?x< p3<?@)= ?xS= 3=?=?= 3 > @3=> 3v> 3> 3> @3 ? `3`?? ?@?P? 3e? `3q-@ 3yn@ 3@ `3{@ 3A `3#VA 32A@"?A`!?A /B `/4JB /7{B / B //B%?`!C$?QC /'C /6C(?`D'?@7D /(yD `/7D X/FD Y/P7E Y/LuE Y/'E Z/E [//F ]/=F ^/TiF `_/F `/F `a/F v/D8G `/fG @/yG /G /@G p/H / EH /tH `/H /H / I /,>I /nI /I /I /I @//J /T\J @0)J 0;J 0J 0"K 0QK 0_K 0LK @.0K =0\L 0E5L 0goL @U1L @1CL 1L ``2C'M `2XM `a2M `d2M @f20M j2vM m2N o2.EN @}24N }2.N }2N 2O @2>CO 2qrO 2vO 2uO 2P @2(,P 23XP 2P 2#P 2SP @2 Q `2C,Q 2\RQ 2UQ 2Q 2Q 2R 2'(R 2SR 2VxR 2R 2R 2R 2t#S 3OS 3{S 3wS 3%S @3T ` 3'T 35LT @3PsT 3T 3T 3T 3U !3ZEU #3WmU $3aU '3U (3sU *3V ,36DV `.3ZjV /3RV 13V 53V 63W @83>>W 93[dW :3>W <3ZW =3>W >3ZW @34X `A3OCX B37hX D3*X @E3X J3X 3A Y 3FY 3}Y 3EY 3Y 3_ Z 3+;Z 34nZ 31Z @3Z `3Z 39[ 3Mr[ `3([ 3[ @3\ 3A\ 3u\ @3\ 3G\ @3] `3?] `3r] 3] 3#] @3$ ^ 3(^^ 3$^ 33^ @3(_ 3)^_ 3(_ 3)_ @3&` 3G` 3Us` @3` 34` 3a 3>a 3qea `3a 3a 3a 3b 3>b 3qb 30b 3b Jb @Jb Jb`?b4<"c J.c4<Mc;[cP?gc ?c ,c@?c?c0?c?c=dP=d8?6d?Td(?td? d?dw9d?d4<dH?e" /,8Me" +,se! d9/e P"ef" ", nf!x=8ff" `7,%g!<Egg! @e99g!<%hGh]hyhhh" ,i i,i" d,di" ,i" e,!i" ,Ejhj" ,j!< jk" I;(k" i,]k|kkk!<k" P9,Yl/l=l!=8lll" , =mm" ,mn&n9nvnnn" ,ncoo! l9Bo! u9V pwpp" ,q @rR Qqdq" ,qqr r@rPrbrrr! i9mRs" ^,ss" +,sss'tAtt! h9tuAu! g9]u" +,u@?8u! q9Hv !5vTv" ,v?8v" $, w?8Dw" ,ww!< w4x!=8x" &,7y !4y" `,yy" @+,z$z9zaz" ,z" P,!{" ,o{{" #, { { |!@<8*|6|L|||" , }}l}!p< }" S,}" @,c}} ~~~~!<!<&" P?,@" ," `", O! g9bn" 0,܀" ,nˁ" ,J^" #, ւ" p,$!<Fi" -,Qà " !, \" , ;" `!, " d,…Ӆ! r9Z1" , R!<x" (,N" ," l,s^! @k9[" @, " l,!u! @f9(" , M_!P< r"" (,N" `,T" !, F!@=8̋ߋ! p9H+z!p<" 0,Ti}" 1,`" P',@" p,f/" *,WvƎҎ?8" 3,@!<" ,#_!(<ƐېT" .,vN" ,oݒ%!P=8" ", ^! 0g9|F?8{" ,ݕ(" ," ", =z͗" P,=!!<" ," ", R! @j9g" ,ޙ"P" 0,! m9K3" ," ,(" ,|" J,ѝ#O" ,q" PE,ʞ؞F" ," @$,ݟ" .,f"" $,W! p9D" @,X!<š" ,!=8bt v9 @! `r9Yأ! @n9Lj!H=8" <,ݤ7?8t" P,W!0<֦" P , :T{§ԧXd" ,ר! v9M(" , !.O" p,Y" 2,ު" @,:M" 0," 0),Nƫ" ,!fĭS" ,Ѯ" =,'" ,9U" .,w !! Ph9" , 5b" 01,uʱ" P?,#" p+,! g91Er!<8س" i,J`! m9Ki?8ɵܵ" ," m,uP! o9K'GY 1" ,S" `$,1q" P=,r" @,ܹ" B,,+ źbǻ" ,!n! i93" P,I!=8" ,P" ,@g" e," ,>" ,&<e!=8!=8" &,7"" ," ," ,O" `,M" D,," @," ,1x! m9L7Qa" pe,!" Б,?[!<" P,^" p," u,u0" `R,mg" ',@9" ," 0,+" ,!<" #, j" ,MZ" P,+O" l,!" ,Cf" p", !`<" ," ,!=8j" Pm,!" P#, )" ,Yi" H," `+," , e" ,6" +,\" g,!<?" ," ,!<," ` , " ,!=8q" @,! g9%! r9M" ,37NJ" p*,!d !" +,!p=8\@?8" ,!`<" ," #, y" ", " P=,G" *,m!p<x" ,%" Ѝ,Xx h" !, ! o9E(" ,x! e92! <>Ag!<N_" J," (,@mx!<8Ch" ," 0@," `,AR! s9Z" M,- " [,)" *,O" h," ," P,"" ," 6,K" 4,w" L,N" ," ',@_" B,," -,Q h" *," p," 0+,"" ,,K" ,!=8b!=8" ,=" ," P,uJ" 0," 2,:i" @, P! s9Vv" f," `,h! u9Q" ,3!P<0R" p,!< ?j" ,," @", " P," ,)4!=8?" #,64!<f" 0," ,4 !^" p#, " p,f" ,}" ," p,A$7!0< P!=8" S,a" m,uTr!" ,a" 0," P,5" h,m" 0@,'!<l! ph9" ,!" ," ,!x< !h<p   " ,   $A !`=8  " `,  " , = !(=8   " ',@I l  ! !H<  " ,Sf" , p6" Б," `," ,p  {" h,!!<!h=8,B" ," `," ,Q! @q9^-Fn!<!<" ,n~" ,_! g9s" P,T!<4" ,0" ," ," , 1t!< @?" v,)9U" p,Y! f9.D" M,-d" ," A," , =f!0=8" I!" ,/" .,fTe" 0," 0", "4" PE,Sn" 0v,! `l9C  !# 4 G " p5,  " , " `+, D!?8z!" p,!!" , &"" %, ""!=8"#!<k#" @8,#" !, #$$" e,!%;%!< y%" 0!, %" ,,% &&" g,X&&&&''''" ,P(" ,(! h9"(" ,`))" P,*" #, o*****+%+=++ ," !, k," ,,,!<0-----." @, C.v." , ." ,./>K>!=8>" 0#, >! =8[?h?y??@! n9Qh@!<@" !, @" ", MAoA" 0+,A AA @IBWBlB" V,B" h,!B! l9NB" p,`C! e9|C!<C!< D" `,ND" u,D" ,&E" ,DEcEE! f9$E" ,F!X<YFjF" ", FFG" p*,!0GG!8<G" +,HUHfH" ,H" ,H" ,uH" P&,7I" ,I JJ!<kJ}J" >,JJ" +,J" v,4K mKKK" #, KLL" б,LL M0M|MM! c9/MM7N" ,NNNO" ,qO!<OO" ,P" #, WPcP}PPP" #, Q.QQ!<Q" @,R!<SRR" ,R" ", HSmSSSS" ,8T"VTwTTT" ,YT" ,3U" @,U" P,U" ,5VVVV! d9-0WPWaW" ,XW" f,WbX" ,XX!=8@Y" `,Y" ,R#Z5ZOZ" P,+Z[" ,!%\" +,K\" ,\" @!, ]!x<!]" !, t]]]" ,;^O^?8^^ 0^! d9}Z_" %, __`%`3`" $,8`?8`a!a" q,ua" ,Ya" , aab>bLb" V,ibbbc!<gccd s 8dqd! j9cd P>eee" ,eMf" ,ff" p,]g" p,g" p,h!(<(-h" `,hhh hh" ,Yifi!< i" B,iii!<j! k9Phj" y,j" ,gk" Pm,!k" ,kk!<Olxll" !, Ho UoXXd((nB@@Cxs  0-~P P }&,, ,, w9w9$W99;;<4<$<4<$<4<$< P=P< =<==&==e `?P|?ذ 0P|?. 8]@|? }?آb! x CǤ?J"