import os import sys from typing import Any, Dict, Optional, Union import numpy as np import paddle from safetensors import numpy, deserialize, safe_open, serialize, serialize_file def save( tensors: Dict[str, paddle.Tensor], metadata: Optional[Dict[str, str]] = None ) -> bytes: """ Saves a dictionary of tensors into raw bytes in safetensors format. Args: tensors (`Dict[str, paddle.Tensor]`): The incoming tensors. Tensors need to be contiguous and dense. metadata (`Dict[str, str]`, *optional*, defaults to `None`): Optional text only metadata you might want to save in your header. For instance it can be useful to specify more about the underlying tensors. This is purely informative and does not affect tensor loading. Returns: `bytes`: The raw bytes representing the format Example: ```python from safetensors.paddle import save import paddle tensors = {"embedding": paddle.zeros((512, 1024)), "attention": paddle.zeros((256, 256))} byte_data = save(tensors) ``` """ serialized = serialize(_flatten(tensors), metadata=metadata) result = bytes(serialized) return result def save_file( tensors: Dict[str, paddle.Tensor], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]] = None, ) -> None: """ Saves a dictionary of tensors into raw bytes in safetensors format. Args: tensors (`Dict[str, paddle.Tensor]`): The incoming tensors. Tensors need to be contiguous and dense. filename (`str`, or `os.PathLike`)): The filename we're saving into. metadata (`Dict[str, str]`, *optional*, defaults to `None`): Optional text only metadata you might want to save in your header. For instance it can be useful to specify more about the underlying tensors. This is purely informative and does not affect tensor loading. Returns: `None` Example: ```python from safetensors.paddle import save_file import paddle tensors = {"embedding": paddle.zeros((512, 1024)), "attention": paddle.zeros((256, 256))} save_file(tensors, "model.safetensors") ``` """ serialize_file(_flatten(tensors), filename, metadata=metadata) def load(data: bytes, device: str = "cpu") -> Dict[str, paddle.Tensor]: """ Loads a safetensors file into paddle format from pure bytes. Args: data (`bytes`): The content of a safetensors file Returns: `Dict[str, paddle.Tensor]`: dictionary that contains name as key, value as `paddle.Tensor` on cpu Example: ```python from safetensors.paddle import load file_path = "./my_folder/bert.safetensors" with open(file_path, "rb") as f: data = f.read() loaded = load(data) ``` """ if paddle.__version__ >= "3.2.0": flat = deserialize(data) return _view2paddle(flat, device) else: flat = numpy.load(data) return _np2paddle(flat, device) def load_file( filename: Union[str, os.PathLike], device="cpu" ) -> Dict[str, paddle.Tensor]: """ Loads a safetensors file into paddle format. Args: filename (`str`, or `os.PathLike`)): The name of the file which contains the tensors device (`Union[Dict[str, any], str]`, *optional*, defaults to `cpu`): The device where the tensors need to be located after load. available options are all regular paddle device locations Returns: `Dict[str, paddle.Tensor]`: dictionary that contains name as key, value as `paddle.Tensor` Example: ```python from safetensors.paddle import load_file file_path = "./my_folder/bert.safetensors" loaded = load_file(file_path) ``` """ result = {} if paddle.__version__ >= "3.2.0": with safe_open(filename, framework="paddle", device=device) as f: for k in f.offset_keys(): result[k] = f.get_tensor(k) else: flat = numpy.load_file(filename) result = _np2paddle(flat, device) return result def _np2paddle( numpy_dict: Dict[str, np.ndarray], device: str = "cpu" ) -> Dict[str, paddle.Tensor]: for k, v in numpy_dict.items(): numpy_dict[k] = paddle.to_tensor(v, place=device) return numpy_dict def _paddle2np(paddle_dict: Dict[str, paddle.Tensor]) -> Dict[str, np.array]: for k, v in paddle_dict.items(): paddle_dict[k] = v.detach().cpu().numpy() return paddle_dict _SIZE = { paddle.int64: 8, paddle.float32: 4, paddle.int32: 4, paddle.bfloat16: 2, paddle.float16: 2, paddle.int16: 2, paddle.uint8: 1, paddle.int8: 1, paddle.bool: 1, paddle.float64: 8, paddle.float8_e4m3fn: 1, paddle.float8_e5m2: 1, paddle.complex64: 8, # XXX: These are not supported yet in paddle # paddle.uint64: 8, # paddle.uint32: 4, # paddle.uint16: 2, # paddle.float8_e8m0: 1, # paddle.float4_e2m1_x2: 1, } _TYPES = { "F64": paddle.float64, "F32": paddle.float32, "F16": paddle.float16, "BF16": paddle.bfloat16, "I64": paddle.int64, "I32": paddle.int32, "I16": paddle.int16, "I8": paddle.int8, "U8": paddle.uint8, "BOOL": paddle.bool, "F8_E4M3": paddle.float8_e4m3fn, "F8_E5M2": paddle.float8_e5m2, } NPDTYPES = { paddle.int64: np.int64, paddle.float32: np.float32, paddle.int32: np.int32, # XXX: This is ok because both have the same width paddle.bfloat16: np.float16, paddle.float16: np.float16, paddle.int16: np.int16, paddle.uint8: np.uint8, paddle.int8: np.int8, paddle.bool: bool, paddle.float64: np.float64, # XXX: This is ok because both have the same width and byteswap is a no-op anyway paddle.float8_e4m3fn: np.uint8, paddle.float8_e5m2: np.uint8, } def _getdtype(dtype_str: str) -> paddle.dtype: return _TYPES[dtype_str] def _view2paddle(safeview, device) -> Dict[str, paddle.Tensor]: result = {} for k, v in safeview: dtype = _getdtype(v["dtype"]) if len(v["data"]) == 0: # Workaround because frombuffer doesn't accept zero-size tensors assert any(x == 0 for x in v["shape"]) arr = paddle.empty(v["shape"], dtype=dtype) else: arr = paddle.base.core.frombuffer(v["data"], dtype).reshape(v["shape"]) if device != "cpu": arr = arr.to(device) if sys.byteorder == "big": arr = paddle.to_tensor(arr.numpy().byteswap(inplace=False), place=device) result[k] = arr return result def _tobytes(tensor: paddle.Tensor, name: str) -> bytes: if not tensor.is_contiguous(): raise ValueError( f"You are trying to save a non contiguous tensor: `{name}` which is not allowed. It either means you" " are trying to save tensors which are reference of each other in which case it's recommended to save" " only the full tensors, and reslice at load time, or simply call `.contiguous()` on your tensor to" " pack it before saving." ) if not tensor.place.is_cpu_place(): # Moving tensor to cpu before saving tensor = tensor.cpu() import ctypes import numpy as np # When shape is empty (scalar), np.prod returns a float # we need a int for the following calculations length = int(np.prod(tensor.shape).item()) bytes_per_item = _SIZE[tensor.dtype] total_bytes = length * bytes_per_item ptr = tensor.data_ptr() if ptr == 0: return b"" newptr = ctypes.cast(ptr, ctypes.POINTER(ctypes.c_ubyte)) data = np.ctypeslib.as_array(newptr, (total_bytes,)) # no internal copy if sys.byteorder == "big": npdtype = NPDTYPES[tensor.dtype] # Not in place as that would potentially modify a live running model data = data.view(npdtype).byteswap(inplace=False) return data.tobytes() def _flatten(tensors: Dict[str, paddle.Tensor]) -> Dict[str, Dict[str, Any]]: if not isinstance(tensors, dict): raise ValueError( f"Expected a dict of [str, paddle.Tensor] but received {type(tensors)}" ) for k, v in tensors.items(): if not isinstance(v, paddle.Tensor): raise ValueError( f"Key `{k}` is invalid, expected paddle.Tensor but received {type(v)}" ) return { k: { "dtype": str(v.dtype).split(".")[-1], "shape": v.shape, "data": _tobytes(v, k), } for k, v in tensors.items() }