ELF>i@@8 @8R8R```PPPppp"0+  888$$Ptd44QtdRtdpppGNUEhwMݹH6CRk vy+  + ( : \ I5 b \v W    b@?OC w  g 8OI bX  , @ 3&    k j7 ] d$" O 3  I _  U\ {&* uv ( ) a F F5   u4  q"  @ u,  q {  F"DVj  l __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyObject_SetAttrPyDict_NewPyExc_ValueErrorPyErr_SetStringPyErr_FormatPyExc_TypeErrorPyExc_SystemErrorPyDict_SizePyObject_VectorcallPyComplex_FromDoublesPyFloat_TypePyFloat_AsDoublePyErr_OccurredPyFloat_FromDoublePyUnicode_InternFromStringPyUnicode_FromStringPyUnicode_FromFormatPyObject_GetAttr_Py_DeallocPyTuple_NewPyDict_SetDefaultPyBytes_FromStringAndSizePyBytes_AsStringPyUnstable_Code_NewWithPosOnlyArgsPyObject_GC_UnTrackPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyObject_GetAttrStringPyDict_SetItemStringPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyThreadState_GetPyInterpreterState_GetIDPyModule_NewObjectPyModule_GetDictPyType_IsSubtypePyType_TypePyLong_AsLongPyExc_OverflowErrorPyLong_TypePyExc_DeprecationWarningPyErr_WarnFormatPyTuple_GetSlicePyTuple_GetItemPyMem_MallocPyDict_NextPyMem_FreePyErr_NoMemorystrrchrPyImport_AddModulePyDict_GetItemWithErrorPyType_FromMetaclass_PyObject_GC_NewPyObject_GC_TrackPyList_Newvsnprintf_Py_FatalErrorFuncPyList_TypePyLong_FromSsize_tPyObject_SetItemPyObject_RichCompareBoolPyTuple_TypePyObject_GetItemPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyExc_RuntimeErrorPyMethod_NewPyExc_KeyErrorPyErr_SetObjectPyTuple_PackPyUnicode_NewmemsetPyUnicode_FromOrdinal_PyUnicode_FastCopyCharactersmemcpymemcmpPyObject_HashPyUnicode_TypePyArg_ValidateKeywordArgumentsPyComplex_TypePyComplex_AsCComplexPyBaseObject_TypePyErr_GivenExceptionMatchesPyExc_RuntimeWarningPyErr_WarnExPyOS_string_to_doublePyFloat_FromStringPyCFunction_TypePyObject_VectorcallDictPyObject_ClearWeakRefsPyObject_GC_DelPyObject_StrPyUnicode_Join_Py_FalseStructPyImport_ImportModuleLevelObject_Py_TrueStructPyMethodDescr_TypePyCMethod_New_PyThreadState_UncheckedGetPyFrame_NewPyTraceBack_HerePyCode_NewEmptymemmovePyMem_ReallocPyException_SetTracebackPyNumber_SubtractPyNumber_TrueDividePyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyObject_VectorcallMethodPyObject_IsTruePyDict_ContainsPyDict_SetItem_PyList_ExtendPyList_AppendPySequence_ListPyImport_GetModulePySequence_GetSlicePyUnicode_FromStringAndSizePyExc_ModuleNotFoundErrorPyList_SetSlicePyList_AsTuplePyExc_NameError_PyDict_GetItem_KnownHashPyMethod_TypePyObject_RichComparePyNumber_AddPyObject_GetIterPyExc_StopIterationPyObject_Size_Py_EllipsisObjectPySequence_TuplePyEval_SaveThreadpowPyEval_RestoreThreadsqrtPyExc_IndexErrorPyLong_AsSsize_tPyNumber_IndexPyUnicode_FormatPyBytes_TypePyByteArray_Type_PyByteArray_empty_stringPyNumber_FloatPyUnicode_AsUTF8AndSizePyNumber_RemainderPyLong_AsDouble_Py_ascii_whitespace_PyUnicode_IsWhitespacePyObject_IsInstancePyNumber_InvertPyNumber_InPlaceTrueDividePyObject_SetAttrStringPy_VersionPyOS_snprintfPyDict_TypePyUnicode_DecodePyLong_FromLongPyImport_GetModuleDictPySlice_NewPyType_ReadyPyImport_ImportModulePyObject_CallObject_PyDict_SetItem_KnownHashPyGC_DisablePyGC_EnablePyInit__interpndPyModuleDef_Initlibm.so.6libc.so.6GLIBC_2.2.5GLIBC_2.14  ui    ui  p0x`  `0@`P`p` @  0 @@P `p@P` @PдP 0@Pг`pH 0P@P`p@@зݶ׶ Ѷ0@@P̷`0p 08p޷ȷk 0f@aPX`p` { 0H@0P`App08ķ0а ۷( 0˶@ Pf`p_+pŶ 0&@P`p@`!p` P  0 @ P ` p        X    ` ط0 @ P  \v Vv {v kv uvm`@`(8Hp X t0Ptt0tmPP@`(`@uH0tuu3u`Fuh0pPt0POuкYuкbu`@(ou08PyuX`xuuuuu @uHhupxuu@uv`mxt v H\rP`!hl׃n@$v=v0Ivdq8q3 q(@rHpX@`qhq`$v$=v Iv8 q p 8q(  -@ qH ` qh  q    q   q p q p!q!П !r(!@!qH!'`!qh! &x!    !&19;< A(W0Z8[@]H_PbXf`phrpsxy} (08@HP X`hpx "#$%'()* +(,0-8.@/H0P2X3`4h5p6x78:=>?@BCDEFGHIJKLMNO P(Q0R8S@THUPVXX`Yh[p\x^`acdeghijklmnoqtuvwx z({0|8~@HPX`hpx (08@HPX`hpxHH-HtH5%@%h%گh%үh%ʯh%¯h%h%h%hp%h`%h P%h @%h 0%h %zh %rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %h%h%h%h %ڮh!%Үh"%ʮh#%®h$%h%%h&%h'p%h(`%h)P%h*@%h+0%h, %zh-%rh.%jh/%bh0%Zh1%Rh2%Jh3%Bh4%:h5%2h6%*h7p%"h8`%h9P%h:@% h;0%h< %h=%h>%h?%h@%ڭhA%ҭhB%ʭhC%­hD%hE%hF%hGp%hH`%hIP%hJ@%hK0%hL %zhM%rhN%jhO%bhP%ZhQ%RhR%JhS%BhT%:hU%2hV%*hWp%"hX`%hYP%hZ@% h[0%h\ %h]%h^%h_%h`%ڬha%Ҭhb%ʬhc%¬hd%he%hf%hgp%hh`%hiP%hj@%hk0%hl %zhm%rhn%jho%bhp%Zhq%Rhr%Jhs%Bht%:hu%2hv%*hwp%"hx`%hyP%hz@% h{0%h| %h}%h~%h%h%ګh%ҫh%ʫh%«h%h%h%hp%h`%hP%h@%h0%h %zhAWIAVI E1AUIfAATMUSHH8HT$ HHHL$ЃLL$(HHT$D$zHOHT$LL$(H1H9}IttHtHHHLIHuE1E1E1LAIHtCt?1E1%D$IHH*IHL$1LIHHI E1HL$HAH5HATSt$ t$(t$HPPAUPPAWH`IHt ǀLCQL;QHExHHEuH2H8L[]A\A]A^A_AVIAUIHATUSDgHt@H;sHuE1tHLL`AHEx2HHEu)HHsAH8t6E1[D]A\A]A^AWIAVIH5AUIATUSHAPIHtLH@HHt%tGEB1L3PH+PLLH5HHǣH81LHu LBH$H HD$H0HD$HHD$HPHD$ HoHH wHXILH= L|C(Ef)$H,H(H ILBfmHLH=b )$HHHڳILH HH= L0BH$H]HD$;HH1(H-IL4fmH LHRH= HD$)$HVHH6ILH HH=s L3H$HHD$HHD$HHHܲILZ3LH$HtHD$H`HD$H4HD$HHD$ HHD$(HHD$0H|HD$8HHD$@HHD$HHHD$PHHD$XH@HD$`HHD$hHpHD$pH\HD$xHPH HH$HH=< H$HH$hHH^H9ILH HH= L6H$HDHD$H@HD$HܱHD$HHHSILH H/H=x L:H$H~HD$HHD$HHD$HjHD$ HHD$(HHD$0xH HnHɰILH ̰HH=L/5H$H$HD$HHD$HHD$HxHD$ HHH _H@ILH=sLd?(-f)$H\H(H ILs>fmHܯLH= )$qHHgH¯ILH HH=L>H$HEHD$#HԪH(lHILK1fmH ̬LH:H=[HD$)$HHHILH HH=L0H$HHD$HHD$sH4HiHĮIL0LH$H\HD$HHHD$HHD$HHD$ H̭HD$(HHD$0HdHD$8HHHD$@HHD$HHخHD$PH,HD$XHXHD$`HHD$hHHD$pHHD$xHH iHڭH$H#H=H$HH$HH$HoH$HhH$#HHtHExHHEuH1HExHHEuHHĸ]A\AWIAVIAUIATUHSLAQH=HTfInfHnIǀflH@(H@p@Ht EtEAWIl$ AD$@tAAEMt$PID$XID$8Ml$`tAEHttAGWI\$hID$xA$%IDŽ$A$t6tKuQHXZID$0w=t#=u5H,YID$0[H.BID$0MHXID$0?ID$04HH5H8I$xHI$uL/E1LZL[]A\A]A^A_HXHt$(`Ht$`H|$ D$Ht$H|$HtHOtHPH HXAUIATSHIHH@u$HLH/H5H81 H(L[]A\A]A^A_AWMAVIAUMATUSH(HtlIH5HI HHtHHt$HLd$HHD$H\$ׅIHEx%HHEuHHuq IMtdH5LLy I$y5DH5LLxMt,H5`LLyHI$uL.E1H(L[]A\A]A^A_AWAVAUATUSHH-Ht)1H9[/HH5kH8=/tH=lHHitH=;HttHH8H=HttH^HHFH=H5 HH0HH u1HHuiHHLd$ASHLA L -RHPH4P1FH 1LU1H=$;HH51H=]H~H~HHyfHnH@L5u(fHnH(flfHnL) p(flfl) L#MtpC t8@t L;sHc$t1LILLsLHcOHtTIEHHtCHI1rHâIHG2RHHu H$E1E11E1E11?HHtͿ)HrHtHdHtHVHtHHIHrH$HH$E1E11E1LD$m4He4L]4LU4H<$L4LD4H=tMH=2tD$tH=H=ˢHtAHHx/HHu' HHuHH5eH81H={3+H5"1vHHHH51H"HExHHEuHyH=HH51CHtHH1HHH=HH5H;HExHHEuHH=F=unHH,$H H5:H=cH5H}HtH=H=H HH5HH={NHHH=o2HH=jHnH=-HHRH-iH=ZHHHH)HHHHHHH1_HHH5HH]H^HH֞H51HDHH H1H5HHlH51HHIH H1H5;HחHH1oHHH5P1LHHH5-1)HHHH5˝1HhH|H HlHP HHuH=Å>H=XHHt}pH5HHHt]HHtLH5HH̕Ht,HHtHEx8HHEu/HU%HE1E1E12/1E1H=HHqH HHH5bNH JH{HH5=)H UHNHH5HExHHEuHH=)HHH gHHH5=H bHÜHH5)H HHH5xdH HiHH5S?H H<HH5.H 6HHH5 H HHH5H $HHH5H _HHH5H H[HH5uaH H.HH5P<H HHH5+H HԚHH5uH HHH5_H HzHH5IH HMHH5>H H HH5+r^H HHH5M9H HƙHH5(H HHH5H HlHH5H H?HH5H HHH5H HHH5ox_H HHH5Nx>H HHH5-xHEx:HHEu1H'1HE1E1E1*1E1H=71IHH5H=FHnIExHIEuL-H56H=IHH5H=HIExHIEuLH=1HIHH5H=HIExHIEuLH?L 1LߕH5pH9IHLH 6H=HH5yHHH=q1HExIHH= IHH5cH(IHI$xHI$uLHExH5{H<|LpHiHI9]uHNHLHLmH$E1E11E1E1E1E11H$E1E11E1{E1E1E11aH$E1E11E1?E1E1E11%H$E1E11E12E1E1E1:H$E1E1:H$E1E1:H$H$E1:H$E1E111sH 5HH=HqL݇H9HDu9HPHyE11H5E1E1E1H81OHuFH tHtffDuDȉH5ɘuDH@u]HH9GtHVH5$H8褪1늃9tH5HHVH81o1bHVH5D$ H:VD$ 7ff.fUHHSHHHGLH@tV$HHH[]AukHLFI$HvHH[]A@HLF1MtHCH $HHUH5&H81~@HyUH5;H8rH1[]fHtHL $HT$ L $Ht$H`)fDHL $HT$ߦL $Ht$H#HCH H5HHIUH81׭pfHL $HT$菦L $Ht$HHCH SHBHҺHEHFHHE鰫ORfSHHHHnTH9Ft(蓫f.{(H[f.Ff.kzuD$蔪D$Ht1D'HGHHttDSHGHH8HCHHt t[ff.H=锫@HGXHttDSHGHHxHtZHCXHt t[fDHStff.HwPH1H=${ff.HGHHtfDCHtHx HHt f.ff.ATSHLMtA$tA$HL[A\DHHHtYHHtL`A$LtA$HW HtHxHHuVLDL%Roff.UHGHHuNHH}HtHHEx HHtHEH]H@@ۤfKuHUHH9B0uH~t]ATIUHSHHpHt HՅH{ Ht LՅH{@Ht LՅH{XHt LՅuH{`Ht LՅumH{8Ht LՅu[HHt LՅuFHHt LՅu1HHt LՅuH{x1Ht[LH]A\D[]A\ff.AUIATIUHHHt HAԅu,HHt LAԅuLLH]A\A]]A\A]f.HLOH?t%HupHHu6IAH6HfHt{HH>HHDHPIIH RH53H81苨1H@HytH aHOIH5kH81WDH HysATUHHGHGHvNHHH)HHtbH蓥HcAH9t5Hub]HtXAH)‹GHHcAH9u3HD]A\GWHH HHcAH9tDHOH5rAH8dfGWHH HcAH9uHD]A\DH@`HtUHHtIHHt?H@H;Nu_HAHEBHHE4H'UHHNH5`AH8財HPtOHMHѾHH810lHEHHEH膠yHMH5H81)AWAVIAUATIUHSHhLG0MtHwHhHL[]A\A]A^A_HVLϣIHL1)IHmLLHH\IIEx HIEtOHhL[]A\A]A^A_DL~HvHu;HhLH1[]A\A]A^A_Af.E1L`fDHBHD$HtJ<8LD$H訥IH4MLD$tWIF I9IGHL1HHAoDADHH9uLHAt ITITH|$LD$謡LD$HHD$KD1AL|$ HHD$HL$PLHD$XH|$HLl$0IHl$8IHIHD$HLD$(EHD$PHPH#tHL$XtH|$JDHD$J ILLHL葢uL|$ LD$(ILl$0Hl$8HHL$LLHAIH\$Hx HHH\$H~nLd$1DHH9tWIHx8 M\$8@LI茓uHD$I)IL8H([]A\A]A^A_DH9Ml$(M|$8HH9HHL;puL@M;D$uDX AT$ Dމ@@@8uA Hx8 M\$8@LIՒuH=HT$LH5ӃH81A3H(1[]A\A]A^A_L\$@MDHx(H8A@HDHx(H8A@HDSQIH@MMD6ff.AWIAVN4AUIATUHSHHHG[I1HL$8M~NDILdLHuNfDHPHHt;L;"uIL)L2t2HHI9uHH1[]A\A]A^A_fDHD$8H=I9D$LLLLL$L$L\$HL$HL$L\$LL$tHHA`@HH9IH H5FH8121Hff.H?IIHHWtLWHw8HBLL@Ht#LIHw8HHBLLHH9HH KH5H81蚑1HAWH8AVSHHH9Ft8SfI~fI~Hu=fInfInf[A^A_V^fI~fI~跎Ht[1A^A_f.HLOH?tHu`HHu'IA1HHtsHu~H>HDH!8IIH 7H5CH81蛐1H@HytH qH7IH5{H81gDH HywHG@HFH@H9t*HXHt.HJH~v1 HH9thH;tuf.HH9tHu1H;57fHDHH9tHuH;`7tfDIM9uG1@ctLVM~1 @HI9tH;|ucE1DJTHBt@tH94HXHTLAMo1HI9[H;TufDAWMAVAAUATUHSLHH<$H=IHT$Ll$P̉HT$Hn~$fHnIDH@(fl@Ht EtEIl$pHt tfI\$ AD$@tAIT$PID$XID$8M|$`tAMt AEtAEH$fMl$hID$xIDŽ$@A$A$%~O==uUHfID$0fLA$LHL[]A\A]A^A_f.tCuH/ID$0H94H5H82I$x HI$tPE1ID$0yf.HID$0^HAID$0FLfDHa4LGHWtMtIx HIt1HL贆1Hff.fHt+tLGXHwXMtIx HIt1fH53HLT1Hff.fHH;53tKHtFHF tQtLHMtIx HIt1HfD1@L؅fDH2H5zH8芆HHtOHFtBtLGPHwPMtIx HIt 1HDL`fDHy2H5yH8HHHtOHFtBtLGHHwHMtIx HIt 1HDLfDH1H5yH8蒅HUHSHH2H9tHHucHHQ2H5yH8etHHHtHx HHt 1H[];fHF uHD1H5xH8݄fDUHSHHh1H9tHHucHH1H5uyH8赃tHHHtHx HHt 1H[]苃fHFuH0H5xH8-fDHHtOHF tjtLG@Hw@MtIx HIt 1HDLfDH0H5xH8貃HH/H5xH8芃AVHAUATIUHSHPHwEHHv< t@HHH9v q@v tII)MPLHLH)N9/ .yIEHLffHHfo5fffo-HfDoHftffDofhfD`fofifEofDifafDafEofDjfDbfAfAfEofDjfDbfAfAfDofjfDbfAffofjfbffH9afoLfsHffH~Av1|_HJ@HI9[1|_HJ@HI9@1|_HJ@HI9%1|_HJ@HI9 1|_HJ@HI91|_HJ@HI91|_HJ@HI91|_HJ@HI91|_HJ @HI91| _HJ @HI9~l1| _HJ @HI9~U1| _HJ @HI9~>1| _HJ @HI9~'1| _HJ@HI9~|_HfI9FHt$1H؁H9\$HP[]A\A]A^Àit`nHQ߀AQ߀NP<-tLHP[]A\A]A^IukH~eQy߀NA@FD!H<-G: f.2DL蘅 HH1@HHHD$L~D$H'~oHx袄IHtJD-L1I3MID! Dރ_HHH93UJҀ7v1LD$ JD-1IL0@MID! Dփ_HHH9UJҀ7v111]L$袀L$Hf(Hqy@I@ƃ@N@!y@I@!yI@T@ǃ!Y@H ; -Ht$1L1 u(Ht$1L~LD${D$L{ff.fAUATUHHH@u~@tz1IHtR1HHvIIEx HIEtyMt+IL$@tvLH|I$x HI$t9]A\A]H]A\A]{H(]H5YrA\A]H8m|D]LA\A]{L{zH(HH5qH81uATSHLMtA$tA$HL[A\DHHHtYHHtHPHtLg A$Lt?A$HxHHuzLDL%)(A$ofHWD_@GDHtWH H1LH9t)HRLIHLH H ȆH PH ӆH !H L}EH ,HHDcEH ԆH݆HDIEH HHD/H #H #H - H H ЅH H |H H 5H 0GDE1qAWAVAUATUHSHHWL:ILrMDJXYfHݨ2HuLLH轵I1DILMLL1eIHVH.f.H A @L^OL^L^^^fDH pLl^AWAVIAUIATIULSHHhHI@H9t3HXHcHqH~11fDHH9tH;TuHLHL1ҾN&HHHdfoHlH|$HCHD$H@@H;A}\S)D$0fLl$HD$ H\$(HD$P)D$@u0HSL@H@HHBHHBHx\StHL$(Huh*HgHl$H]@HUXMML9E1H}P~RG<DHDl$DOA=HH%AKIIuI>I~HUxHEpHH INPHJINXHRIV`HH[LH)HHIH9@I9@oANoAH@IF HBIHE@I.IFE8u H|$)Hh1[]A\A]A^A_HH9HuH;D fAHHtJ<HyT$H5VH81 aH|$tH\$Hx HHtWHh[]A\A]A^A_HD$MdH]@HH5TH81`HZHUXIV`HPIVXHPIVPCUyUqJ<yAfDH jH>gIHHGHHOHHdVMEH5hTH81_XZH9H5SH81_Hl$LH)HˆHofvAA^H@IdžIF Hl$lHH5TH8jZfAAHINH IHHINHJIH@IF HBITHIdžIVHPIdžIVH@IdžIF H%DH5{SH81^@AUIIIATI?UHSHHHwMItCH9HF8HDHHH1L[L]A\A]@H9H=PH9LXMI[H~&1@ILH9"H9HH9un MHH1L[L]A\A][DH9H=H9LXMI[H~&1@ILH9H9HH9uHL%zHH=J]V1LHIZMHL[]A\A]@HE0HDHH9t4HuH H9t#HHH9tHuH9FfDHMA1HYE1 uLeH=+JU1LI?ZMLYIHH6H5JH8/W HHH9t4HuH H9t#HHH9tHuH9fDHMAM)HYE1 uLeH=hITuL;E1HMA@HMAuHLH1[]A\A]ZATIUSHtA$tA$L[]A\f.H@u҉H;-HEHtHIT$PML$`MD$ IL$pI|$At$hHXZHID$xHt tHCxID$8H{8Ht tHC8HtHx HHtxI$Ht tHI$Ht tHEtEIH[L]A\ÐHE1+T~fDAWAVAUATUSHHHBHVHIHHnH9RIHHL%E11H5!YHHt=IGJfDUSHHAHtrHHCxHPtHUHtHU AHt%H HhtHH H[]fDHEx HHEt-H=9H1[]@H@>ff.USHH AHtzHHCxHPtHUHtHaHU tH](@HtHhtHX H[]ÐHEx HHEtH=8MH1[]@Hx=fDAWAVAUATUSHHGHIHH;H51LoM9t%ID$LLhtH}`HE`Õ[>HCHPHH57E1H81hAHL[]A\A]A^A_fDHuVtTE1 H^uLmH=.h:u*LLI?M>IHE1fH9HE0fDHt$1ɺH>IHfHH9t4HuH5xH9t#HHH9tHuH9fDHuV@HYHLH5.H8E;Mt$M1M;luHI9uE1KtI9WL賯GIM9uMff.fAWHAVAUATIUSHxHD$PH-HD$@HD$HHD$XHD$`HLyHM|HHHHHHHL RFATAH HH54H81?XZH|$HHtHx HHxdH=:5Hx1[]A\A]A^A_HVtHT$HHtHT$@HEN,LL$PO4)I1LT$@DIL\LHuHPHHL;uITL)LЋ t HHI9uI"J|@bIIt J|@LHtH|$@HtHx HHhH|$HHtHx HHTHxH[]A\A]A^A_@HD$8HI9CMLLHL$8LLFLT$LL$L\$荥L\$LL$LT$t"LHHFH5+H81.=H|$@HHHHC7fDIHtHT$@HVtHT$HHH#H FH5U2ATL CAHFH81AHi@H816Y^J 1HD$0HD$lHHD$0HD$.HD$8ITI ‹tHy>5H=,HD$\HD$LHL$8LLL?LT$LL$L\$YLT$LL$L\$_HLL$0zIE1LL$LHu3mtHIL)HD@HCHHtLLLt`HL$07L]>LLLaff.AWHoAVAUATIUSHxHD$PHHD$@HD$HHD$XHD$`HLIHMHHHHHH=L 2;ATAH v=H5)H813XZH|$HHtHx HHH=*1Hx[]A\A]A^A_HVtHT$HHtHT$@HEN,L|$PO4/BI1LT$@DIL\LHu+HPHHL;uITL)LЋ t HHI9uHl$@I"J|@IIt J|@HT$HEtEfHnfHn1LH_flH=H)D$PHD$`1HUxHHUHH|$@HtHx HHH|$HHHHHuHD$v,HD$a@HD$8H(I9CLHL$8LLL;LT$LL$L\$L\$LL$LT$t"LH&H?;H5 H811H|$@HHHH+zfDI/H.EEHVHl$@ t EHT$HL|$PKHHH :H5&ATL "8AH:H810Y^J++HD$+HD$lHHD$+HD$.HD$8ITI ‹tHy>H=^'HD$|HD$LHL$8LLL9LT$LL$L\$yLT$LL$L\$_HLL$*zIE1LL$LHu3mtHIL)HD@HCHHtH9Gu,L8LLL3t`HL$07L}8LLLaff.AWHOfAVfHnAUATUSHHLnH`H)$fHnH)$fHnHxflH$HGx)$fHnflHD$HDŽ$HDŽ$)$Ht1HI&IH~I|HEJcH@IITLc8A$tA$L$HS0tH{(H$H<$D$tH$Ls H$AtAHKL$HL$D$tHD$H$M} H<$D$t%IHf HD$t H IEH=H4$H8H9tuH;5H;5hH2+ uBHwD$t H=eH$HxH $HHH@H$L;55IFH$HHc H$H;}H5H%j]H5H<$HD$`H'H\$`H5H{H9+H{H5GH9y+HrD$t H5`IEH5SH8H0HDHS8tH$HS0tH$HS(tH$HS tH$HStH$ID$H$NtL$Ll$1ILIM\LHuHPHHL;uHL)H t HHI9uLl$L$MH$HD$IsJ%IEItZHİ IEItAHİIEIt(HİIItJH$L$H$f.HDŽ$HI9C'LLS3LLH$L$貑L$wt"LHH3H5H81^)H$HtHx HH? H$HtHx HH H$HtHx HHH$HtHx HHH$HtHx HH:H= E1HL[]A\A]A^A_IH'2H 2HMHAUL {/L@HH1H5H81D(XZE1jIHL ;/AAUH 1DH$HHLtHPH9tIEH8HHx HH111L HD$HHuD$tH|$Hx HHHD$H;!# HD$HHD$XHD$@HD$8HD$P1HHIHH|$D$tID$HL$HAEtAEHD$0I}HD$ HD$tHD$(1E11IIEH|$(H4؋Ht$(D$htHtHx HH]1L\$hL\$hHIMtIxHIu Lv L\$h1L\$hL\$hHIMtIxHIuL7 HD$(H;/ #IHEtEA$IktA$AMc tAHDŽ$Ix HIVH1H|$Ll$hHl$pH$L\$Ld$xLd$ L$IA6tA6HH$byL;5AtAI~LLt$01HELL$A$tA$HHtHx HHL;%oHt$(L%IH>AEtAEMtIx HIL;-5IO IGHHH9H9AMtAMIOML,HIGH9](Lt$0IIx HIH$HHt$LLtDHD$L`A$tA$L$LE1E11HD$0E1E11HD$ E1E1HD$(HD$HHD$XHD$@HD$8HD$HD$`HD$PHD$HtHx HHMtIx HIMtIx HI:H=LD$LD$E1HL$HtHx HHHt$PHtHx HHMtIExHIEHL$`HtHx HHHt$HtHx HHHL$8HtHx HHHt$@HtHx HHHL$XHtHx HHHt$HHtHx HHHtHExHHE MtI$xHI$HL$(HtHx HHMtIx HIMtIx HI&Ht$ HtHx HH)HL$0HtHx HH,MtIx HIH4$Hx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HHHHL$oL$a!WMOC$9IN(HL$`D$HD$L`A$tA$L$`HLD$pLL$hLT$LD$pLL$hLT$TL$L$L$L$LLD$hLL$LD$hLL$(LLD$uLD$*LL\$^L\$HL\$GL\$L$4L$'L$"L$6HL\$hLD$L\$hLD$HL\$LD$L\$LD$LL\$LD$L\$LD$HL\$LD$L\$LD$HL\$LD$L\$LD$HL\$LD$bL\$LD$HL\$LD$AL\$LD$HL\$LD$ L\$LD$HL\$LD$L\$LD$HL\$LD$L\$LD$LL\$LD$L\$LD$HL\$LD$L\$LD$LL\$LD${L\$LD$LL\$LD$ZL\$LD$HL\$LD$9L\$LD$HL\$LD$L\$LD$HHD$D$tHt$AHHCI~H$H-IHHHSH$L$LT$H$HH$H$IBHt"LT$HIEHx HHIx HI9H|$H$L\$L$HDŽ$ͨL\$HIx HI H|$Hx HHH>HWHHHH1E1E1f.HD$H.HHxH=HH HD$H;HDŽ$HHINjD$tL$111HD$hHD$@L|$8Lt$ Ld$0ILl$IH|$^H9D$8 HL$ H|$H$H$4L$AtAHqnHL$D$(tLWnAtAHMH=&1HHt$ L$H$LI nMAAtAH:Ht$ 1HH=L$H$LHmIx HI; HuHH9E H} E EHHExHHE HSHHCH|$@HDHHSHD$X,mH|$h"mtH{Ld$1HCLL,AEtAEHtHx HH! L;%W LLN +IH HLLAtAI$xHI$p IMx HI/ HH9k;L\$hIL\$hHD$0E111HD$ E1E1E1HD$(E1E1HD$HHD$XHD$@HD$8HD$PP@L5IULL,LLH$L$tL$LIL1HL,$I<tHIH)HHHM9EHpH0L1HuwHtHA QH'H5 1H8E1E1LLhwIH tAIx HII$xHI$M/ vHH5 H8@HD$HD$HD$0E111HD$ E1E1E1HD$(E1E1HD$HHD$XHD$@HD$8HD$PHD$nL Y L LL,$I9L$H$HDŽ$HDŽ$L$1LHL IH$LHtH98tHBHHuHDŽ$H H9G LLLHytqH$EfL,$-HLd$hH\$ H H5 H81HLl$E1E1E1H\$(E11HtHx HHMtIx HItQHt$HHHHHLD$xLL$pLT$hH LD$xLL$pLT$hLLD$xLL$pLT$h LD$xLL$pLT$hHL$LD$xLL$pLT$h LD$xLL$pL$LT$h7HD$0E1E11E1E1E1E1HD$ HD$(HD$HEL\$1HH5(Ll$hLt$0H81Ld$ L\$hLd$xL$Hl$xHl$pHL$xE1E1Ll$L\$hE1HL$nHD$0E111HD$ E1E1E1HD$(E1E1HD$HHD$XHD$@HD$8HD$HD$PHD$ H L-H\$ MILd$hLl$HE1E11HI HD$0E1E11HD$ E1E1E1HD$(HD$H\$ MLd$hHLl$E1E11E1K 11HILLv MNLLl$E1E11E1MIHLl$E1E11E1MLsLL\$haH$L\$hH ILHaH5:Ll$HLd$PLl$H8L|$8H\$@HD$HE1HD$HD$0E111E1E1E1E1HD$ E1HD$(HD$HEHHAH˴L\$Ld$ 1H5Ll$hHl$pLt$pH8L\$hLd$xL$7HL$pE1E1Ll$L\$hE1HL$Ll$E1E11E1H9H5RLl$HLd$PLl$H8HD$hHl$8HD$XHD$E1E11HD$0E1E11HD$E1E1HD$ HD$(HD$.H HH HD$hLl$HHE1L|$8Ll$E11HD$XHD$E1E1HD$0E1E11HD$ E1HD$(HD$HD$PHD$L*LjLM LHD$Ll$HHE1Ll$Ld$PL|$8H\$@HD$MLl$hHLd$ LD$0L\$E1E1Ll$Ld$x1E1HL$L$Hl$pHD$(E1E1IExHIEEtEHEHHH HD$H;HHEH0nIIHE1E11mLL\$L\$LLl$HLl$E1E1H±H wH51L|$8E1H81H HD$hIE1HD$0E11E1HD$XHD$HD$ HD$HD$PHD$(HD$L|$8E1E11HD$0E1E1HD$ Ll$HLl$HD$hE1E1HD$(HD$XHD$HD$HD$HD$PNLl$HLLl$E1L|$8E11E1HD$0HD$ HD$Ll$HLd$PLl$HLd$0xHt$HHH\$1LHhHl$8HD$hHD$XeH\$HHD$Ll$HHLd$PLl$E1E1L|$8E1E1E1H\$@E11E1HD$0HD$ HD$(HD$HD$!HD$Ll$HMHLl$Ld$PL|$8H\$@HD$IHD$Ll$HHLd$PLl$E1E1L|$8E1E1E1H\$@E111HD$0HD$ HD$(HD$HD$LLLHhLE1HD$0E1E11HD$ E1E1HD$(HD$HHD$XHD$@HD$8HD$HD$`HD$PHD$ E1E1HL\$}L\$LT$2MLl$hH\$ ILE1E11Ll$HAiH]H51H8IE1E1HtH_HH$HDŽ$H$諓1HD$ZHL\$x HHt7MLL\$DL\$Ix HII}H{L\$IExHIEAMLHtH5HH$HDŽ$H$IHIHHIH~I|HEJcH@IITLc8A$tA$L$HS0tH{(H$H<$D$tH$Ls H$AtAHKL$HL$D$tHD$H$M} H<$D$t'IHf H,D$t H IEH= H4$H8H9tuH;5 H;5H uBHǨD$t H=H$HxH $HHHH$L;5IFH$HHc H$H;T}H5HGj]H5߾H<$6dHD$`H'H\$`H5lH{H9H{H5H9H§D$t H5IEH5H8H0HDHS8tH$HS0tH$HS(tH$HS tH$HStH$ID$H$NtL$Ll$1ILIM\LHuHPHHL;uHL)H t HHI9uLl$L$MH$HD$IsJ%IEItZHİ IEItAHİIEIt(HİIItJH$L$H$f.HDŽ$HI9C'LLLLH$L$fL$wt"LH.HiH5 H81H$HtHx HH? H$HtHx HH H$HtHx HHH$HtHx HHH$HtHx HHH=eE1HL[]A\A]A^A_IHwH gHMHAUL L@HHOH5FH81XZE1jIHL AAUH DH$HHLtHPHtIEH8HHx HH111L\]HD$HHuD$tH|$Hx HHHD$H;q# HD$HHD$XHD$@HD$8HD$P1HH IHH|$D$tID$HL$HAEtAEHD$0I}HD$ HD$tHD$(1E11IIEH|$(H4؋Ht$(D$htHtHx HH]1L\$hTL\$hHIMtIxHIu LL\$h1L\$hL\$hHIMtIxHIuLHD$(H;/[IHEtEA$IktA$AMc tAHDŽ$Ix HIVH1H|$Ll$hHl$pH$L\$Ld$xLd$ L$IA6tA6HH$ML;53AtAI~LLt$01HELL$A$tA$HHtHx HHL;%ѠoHt$(LFIH>AEtAEMtIx HIL;-IO IGHHH9H9AMtAMIOML,HIGH9](Lt$0IIx HIH$HHt$LLtDHD$L`A$tA$L$LE1E11HD$0E1E11HD$ E1E1HD$(HD$HHD$XHD$@HD$8HD$HD$`HD$PHD$HtHx HHMtIx HIMtIx HIH=LD$;LD$E1HL$HtHx HHHt$PHtHx HHMtIExHIEHL$`HtHx HHHt$HtHx HHHL$8HtHx HHHt$@HtHx HHHL$XHtHx HHHt$HHtHx HHHtHExHHE MtI$xHI$HL$(HtHx HHMtIx HIMtIx HI&Ht$ HtHx HH)HL$0HtHx HH,MtIx HIH4$Hx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HHHHL$L$!O$IN(HL$`D$HD$L`A$tA$L$`HLD$pLL$hLT$+LD$pLL$hLT$TL$L$L$L$LLD$hLL$LD$hLL$(LLD$LD$*LL\$L\$HL\$L\$L$L$'L$rL$6HL\$hLD$WL\$hLD$HL\$LD$6L\$LD$LL\$LD$L\$LD$HL\$LD$L\$LD$HL\$LD$L\$LD$HL\$LD$L\$LD$HL\$LD$L\$LD$HL\$LD$pL\$LD$HL\$LD$OL\$LD$HL\$LD$.L\$LD$LL\$LD$ L\$LD$HL\$LD$L\$LD$LL\$LD$L\$LD$LL\$LD$L\$LD$HL\$LD$L\$LD$HL\$LD$hL\$LD$HHD$D$tHt$UHHCI~H$H-jUIHHOHSH$L$LT$H$HH$H$IBHt"aWLT$HIEHx HHIx HI9H|$H$L\$L$HDŽ$}L\$HIx HI H|$Hx HHH>HmHHHH1E1E1f.;HD$H.H.HxH= HH HD$H;HDŽ$HHINjD$tL$111HD$hHD$@L|$8Lt$ Ld$0ILl$IH|$H9D$8 HL$ H|$H$H$L$AtAHBHL$D$(tLBAtAHH=v1HHt$ L$H$(LI]BMAAtAHHt$ 1HH=L$H$LH BIx HI; HuHH9E H} E EHHExHHE HSHHCH|$@HDHHSHD$X|AH|$hrAtH{Ld$1HCLL,AEtAEHtHx HH! L;% LL {IH HLLAtAI$xHI$p IMx HI/ HH9kH;8HIHLHHHHx HH2 IExHIE H$I9D$eH\$ Ll$hH\$pI$xHI$gAtAHExHHEAtAI$xHI$Iu I~HMLI9] MMHӧ>;L\$hL\$hHD$0E111HD$ E1E1E1HD$(E1E1HD$HHD$XHD$@HD$8HD$PP@L5ULL|LLH$L$HL$LJIL1HL,$I<tHIH)HHHM9EHpH0LHuHtHeA[QHwH5(1H8E1E1LLKIH tAIx HII$xHI$M/vHH5H8HD$HD$HD$0E111HD$ E1E1E1HD$(E1E1HD$HHD$XHD$@HD$8HD$PHD$nLB8Y.L!LL,$I9L$H$HDŽ$HDŽ$L$1LHL\IH$LHtH98tHBHHuHDŽ$H[H9G LLLHLNtqH$EfL,$-HLd$hH\$ H]H5H81HLl$E1E1E1H\$(E11HtHx HHMtIx HItQHt$HHHHHLD$xLL$pLT$hLD$xLL$pLT$hLLD$xLL$pLT$hmLD$xLL$pLT$hHL$LD$xLL$pLT$h=LD$xLL$pL$LT$h7HD$0E1E11E1E1E1E1HD$ HD$(HD$HL\$1HKH5xLl$hLt$0H81Ld$ L\$hLd$xL$Hl$xHl$pSHL$xE1E1Ll$L\$hE1HL$nHD$0E111HD$ E1E1E1HD$(E1E1HD$HHD$XHD$@HD$8HD$HD$PHD$ GH L-_H\$ MILd$hLl$HE1E11HeI HD$0E1E11HD$ E1E1E1HD$(HD$H\$ MLd$hHLl$E1E11E1K 11HILLMNLLl$E1E11E1MIHLl$E1E11E1MLLL\$hH$L\$hH ILHH5Ll$HLd$PLl$H8L|$8H\$@1HD$HE1HD$HD$0E111E1E1E1E1HD$ E1HD$(HD$HEHHAHL\$Ld$ 1H5Ll$hHl$pLt$pH8L\$hLd$xL$HL$pE1E1Ll$L\$hE1HL$Ll$E1E11E1HH5Ll$HLd$PLl$H8+HD$hHl$8HD$XHD$E1E11HD$0E1E11HD$E1E1HD$ HD$(HD$.HKHH HD$hLl$HHE1L|$8Ll$E11HD$XHD$E1E1HD$0E1E11HD$ E1HD$(HD$HD$PHD$LzLmjLM]LPHD$Ll$HHE1Ll$Ld$PL|$8H\$@HD$MLl$hHLd$ LD$0L\$E1E1Ll$Ld$x1E1HL$L$Hl$pHD$(E1E1IExHIEEtEHEHHH HD$H;HHEH0BIIHE1E11mDLL\$2L\$L Ll$HLl$E1E1HH H5L1L|$8E1H81HD$hIE1HD$0E11E1HD$XHD$HD$ HD$HD$PHD$(HD$L|$8E1E11HD$0E1E1HD$ Ll$HLl$HD$hE1E1HD$(HD$XHD$HD$HD$HD$PNLl$HLLl$E1L|$8E11E1HD$0HD$ HD$Ll$HLd$PLl$HLd$0xHt$HHH\$1LH^HLFtH{`HC`HtHxHHxnLuMa1 HI9tL;luHC`E1JtI9tL!FuIM9uff.@AWHAVAUATIUSHxHD$PHHD$@HD$HHD$XHD$`H$LyHMHHHHH$}HL ATAH H5@H81XZH|$HHtHx HH7H=BE1ZHxL[]A\A]A^A_HVtHT$HHtHT$@HEN,LL$PO4)zI1LT$@fIL\LHuSHPHH?L;uITL)LЋ t HHI9uLl$@I"J|@IIt J|@H\$HAEtAE $fBHHKfHnH=rfIn1flHt$PHl$`H)D$PIIExHIEHExHHEMH|$@HtHx HHsH|$HHSHHHH;1HD$8H{I9CLLHL$8LL.LT$LL$L\$e;L\$LL$LT$t"LHzHH5xH81H|$@HlHaHHTJfDIL.AEAEH^Ll$@tAEH\$H&HHyH H5!ATL AH8H81YY^LLv9HD$8ITI ‹tHgVH@IEy8H=E1߀HIEuLLLHL$8LLLT$LL$L\$1LT$LL$L\$SHLL$nIE1LL$LHu7qtHIL)HD@HCHHtHtt]fH]"fAWHAVAUATIUSHxHD$PHHD$@HD$HHD$XHD$`HLyHMHHHHHnHUL bATAH H5H81.XZH|$HHtHx HHH=zu1Hx[]A\A]A^A_HVtHT$HHtHT$@HUJLL$PM4L,1LT$@@IL\LHu3HPHHL;uITL)LЋ t HHI9uLt$@I"J|@tIIt J|@^Ld$HA$tA$L-H=+IULHHxtEHEH5fHHHIHEMRxHHE/HlI9EHHt$XLLd$XLHHD$PfIHx HHMI$xHI$IGH5LHHHHHEH1mH9H; lL`pM%I|$HHt5HD$HHAT$LD$IIx HI MMHE! HHE E1vf.HD$8HPlI9C LLHL$8LL!LT$LL$L\$-,L\$LL$LT$t"LHNkHH5@H81H|$@HHHH|rfDI'L6AtALfLt$@A$ƒA$Ld$HFAxHHEfMDH=-r1Ix HIH|$@HtHx HH-H|$HHHHHHD$ HD$HHjH H5NATL AHH81Y^躼gH譼!H蠼L蓼&HEHLlAEtAEHExHHEIFH5.LHHHHHEH5‚HHHIHEMxHHEID$H9H;hHXpHtCH{t<覽IH$HLSHIx:HIu1L膻'H@hHH@HLHHI$xHI$hHL螻IHIExHIEHExHHEL;%whL;%%hL;%KhLÅI$xHI$aAL#AI$xHI$uLlMIEAHIEL;HExHHEuHHD$8ITI ‹tHh8Ld$HL`hMI|$I$H?HHH7HHAT$IHEHPHHEL,AELHD$fHD$HTI|$ID$HhEEH.HHD$HD$I$]HI$OE1bLθI|$MIl$ EuW6LHHyMAL|kHotLLHL$8LLLT$LL$L\$1LT$LL$L\$XI*HLL$sIE1LL$LHu:StHIL)HD@HCHHM94H0HLL$设LL$HuLL$LL$Ht}L胷ImI]EtEtIExHIEyfInfHnHt$PHfl)D$P7^IHE}HHEoHbAsHָIHHH߷II$HI$L誶мHSMA 赼HG証IfVIHHL_HIL%}A$tA$H{Ht$XLHD$PHD$XHHI$xHI$'AHbHAp9HEHHHE:H讵-M9HD$(Ld$0H\$(HD$0Ll$81LHHLL$TIH|$0LLL$HtDH98tHBHHuHD$8HbH9GugLLLLLL$"LL$yHL$0fDLشL˴zL辴LLoLLLL$LL$AHHaH8ܵHfDAWHzAVAUATUSHHHHD$ H-HD$HD$HD$(HD$0HLIHMHHHHH`H5-L SAH HH81_^_H|$HtHx HHH|$HtHx HHH=ղh1HH[]A\A]A^A_HVtHT$HtHT$HL$HT$ IHH,H4P#AXAYJH"H|HHt H|Ld$H\$L-xH=rIUL+HHgtEHEH5tHHHgIHEMexHHEH _I9EBHt$(LH\$(MHHD$ YHIx HIH ID$H5xHLHHXЉHExHHEuH袱H_tH|$HtHx HH$H|$HH HHHD$DHD$f.HOL&A$tA$H^Ld$tH\$Ef.xHHEH=Re14fDHL$HT$ HE1H׿P ZY苰%fD{fDLhpHXHD$FHD$@H0M賲LHH1f.+IMuM}AtAAtAIEx HIEt\fHnfInHt$ Lfl)D$ VHIHIyLxl諲L\f.AWHuAVAUATUSHHHHD$ H-HD$HD$HD$(HD$0HLIHMHHHHH[H5-L SAH ׽HؽH81_^_H|$HtHx HHH|$HtHx HH1H=%c1HH[]A\A]A^A_HVtHT$HtHT$HL$HT$ IHH,H4PAXAYJH"H|HHt H|Ld$H\$L-sH=mIUL+HHgtEHEH5oHHHgIHEMexHHEH ZI9EBHt$(LH\$(MHHD$ THIx HIH ID$H5sHLHHXЉHExHHEuH袬HZtH|$HtHx HH$H|$HH HHHD$DHD$f.HOL&A$tA$H^Ld$tH\$Ef.xHHE2H=`14fDHL$HT$ HE1H׺PZY苫%fD{fDLhpHXHD$FHD$@H0M賭LHH1f.+IMuM}AtAAtAIEx HIEt\fHnfInHt$ Lfl)D$ QHIHIyLxl諭L\f.AWH'pfIAVHHfHnAUH-`ATfHnHUSHHIhx)D$ )D$0fHnHflHD$p)D$PfHnHD$@flHD$x)D$`HLOMHHgHcHfDHV tHT$@HVtHT$8HVtHT$0HVtHT$(HtHT$ HL$ HT$PHIHH4P5Y^ Lt$8M5Ld$@MIHcH| HCHtMH| HCHt7H| HCHt"H| tHHt H| aHD$0L|$ H\$(HD$L-+kH=ThIULHHtEHEH5mHHHIHEMxHHEHTI9EHD$fHD$PL|$XH\$`HD$h)D$p诪HH_E1IHlHUtHmLt$pHU tHt4PHLLLD$Ld$xWLD$IMtIx HIHExHHEIExHIEMI$xHI$3L%\TA$tA$H|$ HtHx HHH|$(HtHx HHH|$0HtHx HHH|$8HtHx HHgH|$@HHHH4HHL ASH eH-SHеH5_H81譫XZH|$ HtHx HHH|$(HtHx HHH|$0HtHx HHH|$8HtHx HHH|$@HtHx HH-H=iE1ZHĈL[]A\A]A^A_@HHHHHXH ZHNHSL LDˤfD軤afD諤3fD蛤fD苤fDxHHEfD.H=|E1YxE1E1H^H\$D$tHD$H^HD$0tL>H\$(AtAL|$ MMyL%$QA$tA$Ld$@[DLuAtALd$@Lt$8ML%PA$tA$Ld$@Lf A$tA$Ld$@LvAtALt$8E1H@;LuAtALt$8+HLfD%fDӢ3fDâAfDL谢L蠢eH蓢&fDL{HH(f.苨I4MEMMAtAAtAIExHIEffIn߿LL$)D$pfInflLD$)D$PfHnD$)D$`ФLD$LL$HHujIx HIt%IKHI>L螡1LLL$茡LL$LLD$LL$sLL$LD$EM1AMff.@AWAVIAULjATIUSHHXHD$ MLHH1DHLHLtHI9uHD$HHTgHD$@MM|$MMMLl$@INMLID$6 NLT$ 1@II|LHunfDHPHHt[H;:uIL)LЋ t HHI9uM J| Ld$ JHtHT$ OfDHD$8HMH9GLHL$8LLT$LL\$LL$H<$ H<$LL$L\$LT$t"HHLHUH5H81)H|$ HtHxHHuJf.HExHHEH=ΟE1SHXL[]A\A]A^A_@H-_EE DMM L#A$tA$Ld$ ID$H5dLHHIMnIGHHH=u!1HLI M Ix HISIEH;KIUH MuAtAIu H4$D$tIExHIEuID$H5bLHH IM L;=9KL;=Ju L;=KIx HI&A$tA$fInH=afIn1Ll$@flHL)D$@HI$xHI$ HL bH=\IQLLL$|LL$HI[tAIGH5&`LHH IM Ix HIKHZII9A LHt$HLL$HHD$@H\$HfCLL$IMIx HIMAtAH<$HWHBpHH@HH5\IH ID$LT$LH5bHH LT$IMLLLL$LT$LT$LL$HIIx HIIx HI~fInfIn1LH=aflL\$H)D$@ߟL\$IIHIIx HIWIx HI6MIx HIH$MHxH4$HHHtHx HHI$xHI$HEZHHELHZ?tA$fInH=^fIn1Ll$@flHL)D$@ʞHI$xHI$HH=NMtIx HIE1H$HHLÝÅ I1ۅxHIuLt$vt$Lh~H[,LNHHfFH H5AVL AHH81ОY^HD$8II ‹tHLE1LMИLØBH趘H詘1HLIH9fDLL$LL$LiIHcLKLLL$9LL$E1H$1E1 ;IeLHL$8LLT$LǧL\$LL$H<$LT$L\$LL$H<$(AIx HIrHx`HHt LGM(IHRLH H5͔HEHzDH81MMH$1E1E1ҾE1E1Ix HIMtIExHIEMtIx HIt6MIHIL׉t$t$Lωt$LT$視LT$t$LLL$t$LT$腖LT$t$LL$ULLL$t$LT$\LL$t$LT$GLL $蝖L $1ILHu> tHHL)HD HCHHI9H0LLL$H $ҜH $LL$HuLL$H $H $LL$Ht:H;C>LnIHIExHIEIAL $LHL $HI`LL$LLL$HH$kLLL$HIQLL$HD$דLL$Hx`HHt LGMIHILɔ@ HH$1E1E1E1ɾdH3H_HHKMH H5ƑHEHsAE1H81H$I)EHMAHRH5MH81͙E1E1(I/1۾LL\$דL\$kLL\$LL$L\$;L詓L蜓MYHH@HSL AVAH H5ÎH81XZ LB$L5/[IuLL\$MImMYMQAtAAtAIx HIfInfHnLLflºL\$LT$)D$@9L\$LT$II1HI$LLT$bLT$ IUHIUL2AtAHr#ZLT$I_I9HD$(Lt$0H\$(HD$0L|$81LHLL $onL $H|$0ILHtH98tHBHHuHD$8Hn?H9GLLeLLL $[L ${HL$0@Hi>H5ME1H81H$H$ME1wE1MLLT$L\$L\$LT$LL $ΐL $YHx HI(LL$M1H=H5E1H81GL,$LL$E1H$8H$E1MᆪH >H0I9HC`LL$LL$9HD$H<1E1H5H8ҐH$LL$E1ҾE1%LLLLL $L $GL-LT$LL$twH{`XL莏L聏LL$H=&DH=H0I9uHHC`HHH-L,$M1E1H$LH{`HC`H\AWHTfIAVHHfHnAUH-`ATfHnHUfHnHSHHMhx)D$)D$ )D$0fHnHflHD$@)D$PfHnH flH$)D$`fHnHDŽ$fl)D$pH5LOM(H_HHcHfDHV0tHT$@HV(tHT$8HV tHT$0HVtHT$(HVtHT$ HVtHT$HtHT$HL$HT$PHIH5H4PyY^\L|$(MyHT$0HKLD$8MHl$@HHH|HCHtyH|HCHtcH|HCHtNH|HCHt8H|zHCHt"H|dHHt H|QLt$H\$Ld$ IFLD$LH5TSHHLD$IFH5QLLHH ЅLNH=KIPLLD$胏LD$HItAEIEH5PLHHIIEMPxHIEH^8I9@fLD$Ld$hHD$PLt$XH\$`)D$p)$Ht$ 1HLl$ HD$(H\$0{IIExHIE MIEHIELvf.1۾;@HE1Hu E1}AHExHHEEMJE1wE1xH#IHIxHIH'D |I1E1IHLE1Mf{L$HhE1E1E1DE111{ILE11afMsIkAtAEtEIx HIfInfInHt$ Hfl)D$ II-HI LtLyIHE1E1Q@LL$zL$HzHME1fDHLHH{H5*5HIHpHEAHHE3Hs&fDE1E1E1DL1ҾE1E1vL$HIE1E1HstL5!;AtAH'7Ht$(LHD$ HD$(HIx HIbHHHEHHEH4$r4$DHrqLrH;HsIH8H; AH;Du`L;tWLL$vL$AIEM1E1E1E1rME1IEHILqLqE1*f.EADESLqME1SM1E1E1E1HWH5(eE1H8MrL$HgqM1E1E1HL$AqL$L0qHT$LqILqPL1_HD$LE1dHD$HHHtHHtHuH0H94sHExHHEAAM2HopL$jHIPLLpsL?pRL2pxE1۾ME1JI9cJTME1۾1BME111$MFI^AtAtIx HItxfInfHnL$Ifl¿HD$0)D$ OrL$HI1ALtHHt]H@HHD$Ht3ILL$oL$sMHn\M1ҾE1E1MmI^; ME1E1HھIE1AWAVIAULjATIUSHHxHD$(ML;qHHu 1DHLHLtHI9uHD$XH4HD$PMM|$MMMLl$PINMLID$A NLT$(1@II|LHunfDHPHHt[H;:uIL)LЋ t HHI9uM J|(Lt$(HHtHT$(OfDHD$@HH9G LHL$@LLT$L|L\$LL$H<$H<$LL$L\$LT$@t"HHH|H5`H81irH|$(HtHxHHulf.HExHHEH=mE1!HxL[]A\A]A^A_@H-A,EE DM L3AtALt$(IFH51LHH> IM ID$H5l2LHH II$MxHI$LIGHH9H;bEL`pMI|$AmIH HLAT$IIExHIE Md Ix HIHt$@HLd$HD$@:IHI$xHI$AtAfInH=Q.fIn1Ll$PflHL)D$P:oIIx HIM Ix HIID$H50LHH H$H<$ A$tA$ID$H50LHH[ IMt~IAH9H;;HXpHH{HLL$kLL$HIt.HLSHILL$x HID HMAcH\iH@hH-H@H LI HXhH H{HH LL$LLL$HH HLL$LSLL$HUHHH xH5dAVL BxAHxH81WnY^HD$@II ‹tHIJIGL`A$:A$1LAhL4h+IMg A$uH$E1AI$xHI$MtNIxGE1E1HIMtI$xHI$MtIx HIDH=hIMtIx HIE1H<$tH4$Hx HHtAIx HIt'HEHHEH gLgH gLf2LLT$fLT$Lf>LfsIAHPHIAHЋtIx HIH.1H=,HLLd$PHD$XH\$`kII$xHI$Hx HHMI$xHI$H+H=%HSHiIHtA$ID$H5A)LHHII$MxHI$HC+H=%LL$HSHiLL$HI*tA$ID$LL$LH5)HHLL$II$MtxHI$HE1HI9AfInfInĿHT$flLL$LT$HD$`)D$PgLT$LL$HHT$IjH (IKtItLLLT$`LT$L\$LL$ohMLL$L\$LT$HtI$xHI$VIx HIaIx HI6Ix HIZH9Ix HIdAtAfHnfIn1LH=(*flH)D$P`hIIx HIMvfIHH4$L`D$tH$IG HHHMIVIASM\rfDLLL$ cLL$LLT$bLT$9E1LMbjLbWE1lLb"HbshIIAHxI\LqbVLHL$@LLT$L9rL\$LL$H<$2LT$L\$LL$H<$QUhIidIHtWHLcIIELL\$LL$LT$aL\$LL$LT$LaH$1AIx HIt I@LaLL $aL $1ILHu:J@tHHL)HD(HHI9H H0LLL$H $ hH $LL$HuLL$H $?dH $LL$Ht3LLL$`LL$#L`oAH$H=aT LLL$LT$}`LL$LT$TM羑fH$%HHs H(pL oAVAH oH5[H81eXZHLL$aLL$HIHL`MLLL$_LL$LL\$LL$_L\$LL$~L_eIL_dL}_M羒aH^IHmLAoeIvL/_LL$PeLL$II9HD$0Lt$8H\$0HD$8L|$@1LHLL $ec$L $H|$8ILHtfH98tHBHHuHD$@H^ H9GLL^nLLL $KL $uHL$8@LL$`H6LL$HIA4H=n_E1MaIYA$tA$tIx HItcIٺ1MAI߾LLymLLL $vL $@LLT$c]ILT$1ۺXH^H LL$H8^LL$_LL$H*fAWH"AVAUATUHSHxHD$PHXHD$@HD$HHD$XHD$`HLIIMHHHHHkH kHNHlL DiLNL@HH UHHlH5WH81bXZH|$HHtHx HH H=@]1Hx[]A\A]A^A_HVtHT$HHtHT$@ID$L,L|$PO4/I1LT$@fIM\LHuHPHHL;uITL)LЋ t HHI9uHD$HHEH|$@H"H|@HHt H|@LD$PHD$XcHH|$@Ht HxHHuHD$ZHD$H|$HHHHHHD$ZHD$fDHD$8H`I9CLHL$8LLLdjLT$LL$L\$=L\$LL$LT$t"LH^H"jH5PNH81_H|$@HHHHYfDHH;HFtH>HD$HtH|$@L|$PHHH hH5TUL iAHliH81/_Y^JHD$8ITI ‹tHH>tHH|$@tHD$HL|$PYHtHD$HLHL$8LLLhLT$LL$L\$輾LT$LL$L\$jLLL$ YIE1LL$LHu5tHIL)HD@HHM9HtSH0LLL$K_LL$HuLL$[LL$Ht H=DYHD$ HD$M9HD$(Hl$0H\$(HD$0Ll$81HHL^\IH|$0LHtfDH;8tHBHHuHD$8H^H9Gu,LtgLLLStHHL$0LHgLLL7`ff.AWH_fAVfHnAUATIUSHH^HPH-)$fHnflHDŽ$H$PHDŽ$X)$@H)HH>UIHHHHIT$tH$I1HH$H$@HHjP`AXAYHAHOHCHt(H3HHtHH$H$HD$H IT$(tH$IT$ tH$H Il$EtEIt$ H$Ht$D$tHD$IT$(H$tH$1H$HnH|$HHD$H;H$`H$H<t$LL$(H fL$^_H$H$H$(Ht$0H$ HD$Ht$PH|$(HH$L5RL9w sXf.sHEH5ZHHHIMH|$1L;=H$pH H$pH<AWLL$(H qL$PZYAH$H$H$`HD$pH$Ht$HlIx HI HEH5HHH3IMIGH5LHHIIMx HIc H|$1L;%{H$pH H$pH<ATLL$(H L$PA]A_H$H$H$`HD$hH$H$HI$xHI$> HEH5HHHQIM9M9w L:VD$Xf(f.50Ix HI HEH5HHHIMH$E11LHD$xHOIx HI7 L53H=tIVLUIHtA$ID$H5LHHHD$ H|$ I$xHI$ H|$PRIHHEH5HHHIMIEH5lLHHIMmIExHIE811ҾL褷IH:Ix HIT JSIHfInfInHfl@HEH5>HHIMIEH5-LHHIMIExHIE HD$ H=H9xL$HDŽ$ HDŽ$~RIHDHHPtHl$ LH$HL$ HDSIIx HI3I$xHI$*IExHIE!HExHHEM L$@1L;=DLH$H. H$H=AWH )HL$IA[[H$HH$@fo$Pfo$H\$@fHnH$fDo$`HD$ fDo$pfDo$)$ fDo$D$@fDo$)$`fo$fo$H$fo$H$XD)$0fo$fo$D)$@D)$PD)$pD)$)$)$)$)$)$)$H$(fo$ H$`fo$`)$@)$P)$HaIx HI9 H|$P$DŽ$)$p)$D)$D)$D)$)$D)$D)$)$)$)$)$ )$0VHt$(H|$@E1HD$HHcAL4LL$8HNA܉\$(H$HD$0A쉴$IHD$`CILlHL$H$HD$ML$HcD$0H$H$HfDHH$HT$`Ht$fHnHH|$xfHn#D$EH$1H߉$LD$Hc$EH$H$Ht$L$D$H<HD$8H(HT$@HHcHD$HL9AH9AE AAEMTL9 LE1ff.fBfBfYfXBIM9uDT$0D9T$(t(YXHI9\H$HD$HH$HD$8HL$`Ht$HHIIH;t$Pc$81H{H5$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8$8HHP f.H|$pH;=tHtW80Ht$ H;5tHtV8DH|$hH;=`tHtW8H$HtHx HH^H$HtHx HHQH$HtHx HHDHL$H; eQ8R H\$H<HH/HHD$HHD$@H$E11HH$@HB\HPZY=HHHH5&CL TSAH VH[H81XM^_HD$:H$HtHx HH.H$HtHx HHH$HtHx HHuHL$A8H=H1H[]A\A]A^A_Ld$hHDŽ$HDŽ$BLF1LFG9HD$PHD$(HD$0L|$pHD$HDŽ$A|$Xf((CF9F/FL"FLFLFLE(fDLT$@LLT$8YIHAXBABM9uID$EE|$(D$XJ#HfDHH9uHcD$09D$( Ht$@l$XHHt$8,0HD$EEHD$HD$1EHD$HD$EHD$8H\$HHHHDHD$<HpHHbHD$H;#<JI_HD$p=HD$hL|$ DH=F"1LSDLFD(HD$h?\JIH\$hH@HH3HHD$CHD$eH\$pHHHHHD$CHD$UH\$ HHHHHD$CHD$II6HD$hE1?HD$ Ix HIE1MtI$x HI$txH|$ tH\$ Hx HHthHD$ MtIEx HIEtRMkI`HISLBFLBnLB{HBLBHD$h=E1E1HD$pHD$ LUB8EH*GIx HItHD$ LBHD$ G$HIKh HIIQIODL}IHtIFHD$hM?Sfo$PfIn1fo$fDo$`fDo$p)$)$ fDo$fDo$)$`fDo$fo$HDŽ$(fo$HDŽ$`fo$fo$fo$D)$0fo$ fo$`D)$@D)$PD)$pD)$)$)$)$)$)$)$@)$P)$L|$ HD$@HDŽ$$E1E1K@[FHD$ LE1E1KH?L?L?L?L?fo$@fo$PfDo$`fDo$pfDo$fo$fDo$fDo$fo$fo$fo$fo$fo$@E1oEIWbEIvHD$hE1E1=HD$ 3EIM?L@HhAtAEtEH|$ Hx HHNfInfInLD$ HDŽ$ fl)$vALD$ HI6HHPLD$ Ht$LHL$ ;BLD$ IIHIL>12DI L|$ nqfK)$@pt"H=01蟡K~rH=0"1LD$ =rH=09$1_rH=m07$1ILD$8_=LD$8rH=C08$1Hl$ MǽKff.fAWHOfAVfHnAUATUHSHH^HPH-)$fHnflHDŽ$H$ HDŽ$()$H)HI.;IHHH H HUtH$LI1H$H$HHPPQ]A\ HAHܰ HCHt(Hİ HHtHܰ L$L$f.Hf HU(tH$HU tH$H& LmAEtAELe L$A$tA$HU(L$tH$1H$L;%H|$HHZH$H$H<ATLL$ H hL$PA[[H$L$HD$@H$HD$H$HD$(MH$HH9_t @=HD$HIEH5_LHHHHH|$1H;-HHaH$@O H$@H<ULL$ H L$ AYAZZH$H$Ht$xH$0HD$ H$H0HExHHE9 IEH5zLHHLHH3HEH5HHHIHEMxHHEuH 9H|$1L;5pHH>H$@ H$@H1AVLL$ H <A?L$ g_AXj H$H$HD$XH$0HD$PHIx HI" IEH5LHHIMI9^ L=$$W;HD$0H Ix HI$ IEH5LHHIMH$E11LHD$HH6{Ix HI L5H=[IVL:IHLtAIGH5vLHHKIMS Ix HI H|$8IHkIEH5LHHIM:IALL$`LH5THHLL$`HH Ix HIy 11ҾH茝IH Hx HHU LL$`-9LL$`HHg fInfInLfl@IEH5HHvIMTIALL$`LH5HHNLL$`IMIxHIuL5H5iI9v!H$HDŽ$HDŽ$U8IH HzHPtLLLL$`MH$L$H9LL$`IHx HH Ix HI Ix HI IExHIE~ M L$1L;5LHHH$ L$H=AVH LL$PY^H$L$fo$ fo$`HD$0fInH$`fDo$0fDo$@)$fDo$PHD$`fDo$pD$0fDo$)$0fo$fo$D)$L$()$fo$fo$fo$D)$D)$ D)$@D)$P)$`)$p)$)$)$L$fo$H$0fo$0)$)$ )$`MIx HI H|$D|$hDŽ$)$@)$PD)$`D)$pD)$)$D)$D)$)$)$)$)$)$Ht$(HT$@EE1L$H\$0f$H$HcƉ$HL$L$HD$pHt$xLAGLT$xHH)|$0L|Ht$L$ILMIDHLD$@LH|$HHL$xLL$(fHnHHt$fHnHt$LL$(fHcLD$@(T$h1fHHHA9wD$ExH|$PHD$XIL8DIc HIHT LfDff HHA ffYffYf(f\fXfX@H9uIIM9uILl$pH\$`L9L$L$L$H$$1HH5$$$$$$$$$$$$$$$$$$$$$$$$$HH` HD$@H$E11LH$HCHP臟ZY=FHHHmL <ASH W>HCH8H5*14A[[E1:H$HtHx HH)H$HtHx HHH$HtHx HHuAD$8_H=#0>HD$HD$H[]A\A]A^A_HD$XLHD$PH<.AGIx HIE1DH=/HD$ H;wtHtHøC86MtL;-NtAE8H;-1tHtE8H$HtHx HHH$HtHx HHH$HtHx HHL;%AD$8I$HI$L,xDHD$HD$(HD$@A,,Hl$ HD$xHDŽ$,A~$A~$\c,Y,O,LE1?, L2,uKI$HI$L ,xL+zHLL$`+LL$`p$H=1誏1E1MMAKfIx HIMtIEx HIEttE1MtIx HItvHJH?HH2HD+%D$h1Hf(t$0HH4A9waLLL$E1+LL$uL*}LLL$*LL$7E1<L*L;%%<0H\HD$ E1A=M_Lq*HD$ I1E1E11A=Ix HItE1ML *E1A?>0HHEUHHEGH):IEHIEL)RH\$ HHHH)Lt)f/I4I1E11A?AGm/IAKAIJ/IPAI+LdIHtIf. /Ifo$ ME1fo$`fDo$0fInfDo$@)$fDo$PfDo$p)$0fDo$fo$HDŽ$fo$HDŽ$0fo$fo$fo$D)$fo$fo$0D)$D)$ D)$@D)$P)$`)$p)$)$)$)$)$)$ )$`HD$`ALM@E11AKHLL$`n'LL$`hLLL$`W'LL$`eLE'lL8'u^-IVL'fo$fo$ fDo$0fDo$@fDo$Pfo$`fDo$pfDo$fo$fo$fo$fo$fo$,LL$`H1,IA?=MFMnAtAAEtAEIx HILfInfHnLD$`HDŽ$fl)$(LD$`HI6HHPLD$hHt$LɺLLL$`L$)LD$hLL$`IIHILLL$`%LL$`m+LL$`IfAK)$#pI&H==1MAnpK&H=1pJ&H=1p$H=1ΈLLD$`$LD$`AKLD$hMAKd@AWIAVAUATUSH HGHt$H5HH$H$`L$HvIMyH$1H$ HHzH$HH$(I9qH$H<AUL$0H ~HL$螼AZA[H$H$H$0 H$H$hH!IExHIE<IGH5/LHHIMH$ 1DŽ$HHyH$L;$(H$H$ MH$H5HH$8 H$L$L$0 H$8IEH$H$@ HH$HiHH\H OxH$H HHHH$HHHH>H$HCHH6Ht)HD$E1E1۽HDŽ$HDŽ$AiIHD$E1E1ҽHDŽ$HDŽ$HDŽ$E1E1۽HDŽ$HDŽ$E1HD$I`LLD$LD$*IEHD$E1E1۽HDŽ$cWHIIEx(HAHDŽ$IELHDŽ$E1cLL\$ L\$HD$E1E1۽HDŽ$IHDŽ$MսZPLD$LD$LIIH6HD$E1E1۽HDŽ$R$c$f(XAYXAY\Xc\\^$fD$$f(f(XAY McXAY\b\f(\^t$8\$HT$DD$`f(f(l$Dt$XAYD|$(D%bAYD\$PDT$Dl$0\\f(XXY$\\\$@f(AXXAXf(fA(\XfA(AYA\DYf($AYAXAXD$\l$ \f(AYAXY$A\XfA(AYY5b\$X$Yf(XA\A\AXAXXY=af($XAXf(fA(XA^AXA^$fD(fA(D$XX$A^fD(f(f(AX]D$AXf(f(]A^f(\\AY\fA($$T$h$$f( T$hH`$$$fD(f($$DYfD(f($$DYYy`fE(fLnAYEYDl$h$$f(D$Y$f(Y$fHn H_$$Dl$hfLnf(fHn$AYEY$$D$$f( H_$$fHnf(h D|$ $D$DT$f(fD(D$($EYDl$h$$DY$$D$$H^D$D$EYfLnEXfD(EYAYD$EYAXfE(fD(DYDY|$PDYYDXD$0DYAYD$YAYAXfE(EYDY|$@Y$XEY|$DY$Y$AXXT$Y$AXXf(AYYT$8DYDYl$XX]YAXfD(EYDYl$HAYEYDXf(YAYYAYDYAYD$Yl$`HD$pDYH$0L$8DY$Y$AXDXDXAXDXDXD4HHD$pH;$p1MH$H$H$H$H$H$H$0H9$H$8"H$01fo$@Hx^H5^H$HH$)$0H$$$$$$$$$$$$$$$$$$$$$$$$$$$IHHHD$E1E1۽@H$H=q[Hcp:H=G1(cp:H=11cMսLD$ LL$LL$LD$ LD$ LL$ML|$MͽAWIAVAUATUSH8HGH4$H5HH$HL$L$HIMH$ 1H$`HHTH$HҫH$hI9RH$H<ATL$pH 2HL$ҖAZA[H$ H$ H$H$` H$H-I$xHI$7IGH5cLHHVIMUH$`1DŽ$HHSH$L;$h|H$H$`MH$H5FHΞH$` H$ L$ H$p H$H$h H$H$xI$H7-xHI$4IGH5LHHdIM+ID$H5<LHHII$MixHI$QH$`1HHRH$L;$hqH$H<ASL$pH L$L\$ 譔AXAYL\$H$ H$ H$H$` H$H$0H;,Ix HIIGH5LHH IMHI9D$L$X$`HD$HI$xHI$IGH5 LHH IM E1LH$H$(HXI$xHI$,L5:H={IVLIHtA$ID$H5LHH*IMfI$xHI$uLLD$LD$H$LD$LD$HIIGH5HH *LLD$IMC*IFLD$LH5PHHLD$IMIx HI11LϾLD$ LL$~`LL$LD$ HIzIx HILD$LD$HIFfInfInLD$ LflLL$@IGH5HH)LL$LD$ IMh)IFLD$ LLL$H5ҼHH)LL$LD$ IMX)Ix HI(H7I9@`)LD$ L$ LL$HDŽ$ HDŽ$ LL$LD$ HIEH4HP%LL$ H$ LLLD$HL$ LL$ IIx HI'I$xHI$'Ix HI'Ht$Hx HH'Mq)H$1H$HHMH$0L;$h/%H$0H=AWL$H L$蹏^_u)H$fo$H$fo$@)$ fo$PfDo$ Ht$fLnfDo$0fo$pfo$)$` fo$fo$`)$P H$H$PH$fo$fo$D)$0 fo$H$hH$8D)$@ )$p )$ )$ )$ )$ )$ )$ DT$D)$pH$( H$` D)$ D)$0fDo$ )$pfo$` D)$@D)$PD)$`)$)$)$)$)$)$)$)$H'Ix HIR%fo$0$hDŽ$)$`fo$@$)$pfo$P)$fo$`)$fo$p)$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$fo$)$  H$H$M H$Ht$IHDŽ$H$H$ HD$$H$pH$h$HHH$H$PH$H$@H$H$HfDHIH$HH$ H$@fHnHIH$(fHnʻfE $%H$0HcE1HDŽ$pD%rIHڍ@HcH4HcH H$HH$H4H$H$PH$xH$H$LDIHHHİH$MH$f$H$H$pH$H$`L$L$LH$H$DHcHHH HIILAo4:Ao|LvBo40zrL9uH$H$H$$( D$(D$AYD$DD$(D$H D$ HcƒD\$D$ $EYH$Hc4D|$EYf(|$0EYf(HcDD$PH H$\ً\HcЃ,HfD(\$D\$\fD($ D\$d$ $ f(AY|$8D$@ D$0 $8 ,$EYAYEYD|$@D$h |$X$` EYAYD|$xD$X |$pf(EYAYD$D$P $EYD|$HfD(f(AYD|$\f(AY$f(fA(fD(AYDYYX$( EXYAXD$ DYAXAXD$ DYXD\|$8A^$$ Y\l$0AXD|$XA^$$( YAXXfA(\l$8\$ Y\d$0fD(E^X\fA(AYA^D$t$hfA($D\$AY$8 YfA(AYX|$@Y$0 \fA(AY$X$H YY$@ AXXf(\f(|$XA^\d$`d$P\Xf(\$H AYA^AXD$8 EYDXD$@DXDXt$ $fA(DD$(A^$$@ AYf($0 \AY\|$pXf(AYX$X Yf(fA(Xl$HA^AYY$P $\f(AY$$fA(AYX$h YY$` XX$\XA^T$pT$x\XXf(A^L$x$h H$$X L$AYAYDY$` XL$HDY$P XXfA(\\fA(\A^X\$AXXD$A^$Xd$pA^D$PD$hX$X$A^$X\$xD$XD$`AXX$A^D$@$AXX$A^D$Hf(AXA^D$0f(XA^D$8H$DeH$@H$H HDLcуHcBփHcXHcHcXHA^$XH$XH$H$xH$ A^$H@AfEfLnAA$@$f(XAYXAY\i@\\^$HL$1HDŽ$I$E11L$HDŽ$HDŽ$xAt$$XAt$$`QLLr`LeE1E1E1HDŽ$HDŽ$I$xHI$HDŽ$E1MtIx HIMtIx HIMtIx HIMtIx HIH=E1`H$H$hH9tHtHøC8H$H$hH9tHtHøC8:H$H$hH9tHtHøC8=H$H$hH9tHtX8CH8L[]A\A]A^A_HDŽ$ML$HDŽ$0HDŽ$LLL\$LD$L $mL\$LD$L $6LLD$L $ILD$L $?LL $/L $CLL $L $GL SLL\$L\$LR IMEH@E1E1E1HDŽ$HDŽ$HDŽ$HDŽ$H$hH$HHHHOuIE1E1E1HDŽ$HDŽ$HDŽ$I/H$HHHH>H$HHHHH$HHHHrE1E1E1HDŽ$HDŽ$mIE1E1E1HDŽ$HDŽ$HDŽ$E1E1HDŽ$ IaE1E1HDŽ$LD$ILLD$ LL$LD$ LL$ E1E1E1HDŽ$ILLD$MLD$I$x(HAHDŽ$I$LLHDŽ$E10HDŽ$MܽIE1E1E1HDŽ$p9LIH-E1E1E1HDŽ$fD$9$f(XAYXAY\9\\^$fD$L$$fD(f(DXAYk9DXAYD\9\\D^$DL$$D$$fD(f(fA(f(f(fA(fD(EYAYAYAYAYD$AY$AYA\\D$\f($\f(X$AYXD$ X$A\\f(XL$(XfD(DYf(f(XAYY$AYA\fA(Dl$hXA\Xl$0f(Xl$@f(\AYfA(fE(AYXEYf(XY-7f(A\\\$D\$x$D$\$fA(A\AYDT$pX\$8X\$HfE(fE(EYXfA(AYYh7A\\D$ \fA(fD(AYX$D$Xf(\L$(AYAXfE(EX\XL$fA(AX\t$(D$D$D$D$\f(Xt$PYXt$0AYf(f(AYY|$`AYXf(fA(\AYfA(XAYfA(AXY5h6A\\\$ \\$hfD(X\$XX\$8\fA(D$AY\$XfA(AYY%6fD(f(fA(\AY$\$`D$XAY\fA(XD$AY$XfA(AXfD(AX\L$EYAYAX\|$D\$X\XL$\|$`X|$PX|$@f(AYAYAXXfA(AXY=B5fD(f(E\D|$HD\ $\f(XE\EXEXAXY4XD$P$P$(D$D$$8$0A^$@$HfD(f(D$`XAXA^fD(f(D$hXXD$@A^f(f($PXAXA^f(f($XXXD$0fA(A^fD(f(D$@XXD$8A^f(f(fA($HAXD$fE(AXE]A^A]D\fD(fA(A\E\EYD$$D$D$$0f(AXXA^$8fA(@H13D$D$$fLnfA(fE(D$AYfA(fHnD$AYEYf($YD$$fA(AYf(fA(AY$H2D$$D$$fLnfE(fA(D$ D$EYAYAYfA(DA2Y$f($(EYAY$fA(D$$fHnAYD$f(fA(AY$fA(fD(YEY$D$H1D$$D$$fLnfA(fA(D$ D$AYD$AYYf(561DYfD(AYEYY$($D$f(fA(Y$(AYfHnEYAYf(fA(D$AYEYEY$$ D$ D$wDt$XD$D$fD(D$$Hl$$PEY$0$@Y$fA(D$\$DYD$PfD(fE(DD$hD\$EYEXfE(D$ D\$EYEXD$DY$(fA(fEAY\fA(\$DXfE(Dl$xDY$DXD\$fA(D$ DYAYfA(fD(EYA\XfD(EXD$`EYfA(D$DYAYfA(fD(EYA\D$X$hAYA\fD(DXf(\$fA(X$Y$\$$Dl$@YD$H$DY|$EYX$DX$Y$DY$DYD$PDY$DX$A\fD(D\$Xf(AXD$PEYf($(YAYf($8fD(EYA\D$DY\$8X$Y$XA\Dl$ DY$D\$XAXDl$0EYf(fA(D$DY$HA\D$DY$8XfA(D$@EYA\D$XEXXfA(D$0EYEXEXA\XL$XAYDXEXD$(DYL$`Y$ DX$Y$D$DY\$pDX$EXD$hY$XEY$`XAYDX|$Y$X$X$XfA(D$EXAYDY$XDXt$HAYDX$DX$AXDX$Y|$@f($Y$XDX\$8XAYDX$Yd$0AXD$DY$PXDXAXDL$(DY$DX$AXX$H$pH$pL$x$HY$@AYX$8AYX$Y$0XXfHH9$H$pH{*fLnH$H$H$ H$H$8H$pH9$AH$H$h1fo$pHGH5+H$xH$8)$`H$$($($($($($($($($($($($($($($($($($($($($($($($($($(IHHE1E1E1@H$H5(H4XaL$D$$Ff$XH$p1$@HHH9wLL$ fo$fMnfo$@L$fDo$0fo$pD)$p)$ fo$Pfo$fo$fo$HDŽ$( fo$fo$)$` fDo$ fo$`D)$ D)$0fDo$ )$P HDŽ$` D)$0 D)$@ )$p )$ )$ )$ )$ )$ )$ D)$@D)$P)$pfo$` L$HDŽ$8HDŽ$hD)$`)$)$)$)$)$)$)$)$'LLD$ LL$ALD$ LL$]IE1E1E1۽HDŽ$HDŽ$L=HsL9L@LLLD$LD$IE1E1E1۽HDŽ$FHDŽ$E1ɽMܽHDŽ$E1lLD$ LL$I_HDŽ$W?LD$ LL$IrI@MPHD$AtAHt$D$ tIx HI_fInfInLT$(flLL$ HDŽ$ )$ yLL$ LT$(HIPHHP+LL$(LT$ H$`H|$LL$ /LT$ LL$(IISHIFLLL$ LL$ /E1E1E1E1HDŽ$pS<H=11pR<H=11sU<H=1o1pT<H=x1Y1fM)$"LLL$(LT$ NLT$ LL$(MLL$(LT$ MLD$MԽff.AWH/fAVHPfHnH-AUATUHSHHH^)D$0fHnflHD$`HD$@HD$h)D$PHHIIHHHHHUtHT$0HL$0I1HT$PHHLPIHUHHUHH$ZH$IfDHHeqHL AUAH GH5H81XZ1AH|$0HtHx HHH|$8HtHx HHgH|$@HtHx HH?uE8DH=e@x1HH[]A\A]A^A_@HD$pH(qI9BLHL$pLLLLL$L$ 1L$LL$Lѻ1AH!pHKH5H81LH$H$%H$H$H$H$AD$HD$pHI tHE1E1E1&bXNgLHL$pLLLLL$L$(LL$L$1AHEeHHEWHJLD$H $H $LD$HH9AfHI$L1Hu0ftHHL)HD0HCHHt8I9H0HH $CH $HuH $H $HtI9HD$Ll$ H\$HD$ Lt$p1LHHyI$H|$ LHtH;8tHBHHuHD$pH~nH9Gu|LLLLs.tyHmHL$ HH5H81"PDp8H=A1"$rH=081 $L~LLL&{fAWAVIAUATUSHHBbD$Pd$HtL%oH=IT$LCHH tEHEH5HHH?IMHExHHEH$lI9D$H$LHHDŽ$L$L(fHD$HExHHEzH|$Ix HItH|$H5qHGHHHH111H%IHWHExHHE~HCH5$HHHZHHYHL賾IH6I$xHI$N HExHHEO L;kL;:kuH dkHL$(I9Ix HI" hH-`H=}HUH5IH tAEIEH5LHHHIEHxHIEXH|$H5hHGHHIML%H=}IT$LIH`tAIALL$LH5HH!LL$IMIxHIuLLD$蚼LD$H^iH9EH$HHL$ LD$IHDŽ$L$VcLD$IIExHIEuLLD$LD$IxHIuLIxHIuLML;%bi@L;%i@H4iHD$(I9LƿŅMA4E11HD$@WH{yHnLaLLD$oLD$eHD$@A1E111E1E1E1HD$0HD$ HD$8eHuL@I$xHI$iH5H|$IHD$Pd$HLHL$LD$L≄$DŽ$$hLD$HIXIx HIH5~H|$HHD$Pt$HHLDŽ$H$$HHHExHHEuH͹H=naIHH5HHD$qLT$HHIx HIH5L=IH H*fAE1IH9Et fInfInƿLT$HDŽ$ fl)$LT$HIH}IPtHfLLHJ$LT$LD$H$ 踼LILT$LD$Ix HIIx HIHExHHEMH5~LL H5|HL |AEtAEHD$0LHD$@^HD$ 1E1E1HD$8E1HD$0HD$@HCeIA11HD$(IExHIEM/#IE1x HIHtHExHHEMtI$xHI$MtIx HIMtIx HIDH=k1kHD$8HHt$(H9HA8 HD$ H9AHA EuHL$ A8u MtIx HIHtHx HHXMtIExHIEJHL$@HtHx HH9H|$0HtHx HH(HD$HxHL$HH!HH[]A\A]A^A_HD$ HAH;D$(A LLT$HLL$LD$蹵LT$HLL$LD$LLT$LL$蓵LT$LL$HLT$LL$rLT$LL$LLT$LL$QLT$LL$LLT$5LT$L#HL HLQHشLLD$ƴLD$HLD$说LD$L蝴#LHHHaE11E1HD$ E1E1HD$8HD$0HD$@HD$(Lt$A/fDE1Lt$H5zL HD$@HH5yL IHTH5T{H9H@H;xaI@P Ix HIHaHD$(Ht$D$tH55yHM IHoLt$fHnHD$L$Hz1LH=yHfInflH$ )$ϷLH LD$Ix HI~HH5vH IHHExHHEHL$Hx HHH=IxLL$7LL$HIH5uHG LL$HIIExHIEH=wLT$LL$LL$LT$HIjH5vH LL$LT$HH IExHIEH^AE1II9BfInfInLT$flLD$LL$HDŽ$ )$zLL$LD$HLT$IHuHPtLK4/LLLL$ LT$LD$H$ 2LD$HD$L HELT$LL$ xHHEWI$xHI$bIx HIoH|$Ix HIfH=WvJIHH5tH_ HHIExHIEH5wH|$, IH111HbIHIExHIEH5vH|$LD$ LD$HI11ҾHLD$HIIExHIELD$袲LD$HIPfInfInfl@HwtIU(H D\E1HH9MfInfInI4Hfl)$FVLHD$0 IExHIEHExHHEH|$0t1LHt$(HH(H$H9t$CH$H<Mt$H 6YL$TG^_sH$H$`L$H$ HD$8H|$XH@1LDŽ$ HHHL$(H$H9L$0H$HMt$8H W=L$FZYH$H$`L$HD$ Ht$hHS11AHLBvl$pD$T MMj$D~-jD~5QHD$`~&H1LH葮D~-8D~5D$P|$PE1fE%HHcD 1DHDd$d$H$xIHfA(fA(fA(DF JHPE9pAMcfA(E)fE(fA(OlfA(fA(J,IL$pL$ Mc (G McIXCA\A A\ f(Yf(YXfD. Qf(fD(EVE11E1HD$ E1E1A1HD$8HD$0HD$@HD$(THU1E1E1HD$ E1A4HD$8HD$0HD$@HD$(HD$ 1E1E1HD$8E1E1HD$0HD$@52HHkUE11E1HD$ E1A1HD$8HD$0HD$@HD$(H%U1E1E1HD$ E1A4HD$8HD$0HD$@HD$(HHh HTE1HD$(Ix HIEHD$L%hH@HPpHWHRHJH|$LHHHt$Hx HH Hl$3LɦCL輦tH(TE1HD$ E1HD$8A7HD$0HD$@HD$(FfDDd$L\L%nA$tA$HmLH$HDŽ$H$8HI$xHI$Hu H)HExHHEHD$ E11E1HD$8A2HD$0HD$@HSE1E11HD$(]HHHI@蓫HHR1E1E1HD$ E1E1E1HD$8A4HD$0HD$@HD$(T:IH|$`H=!lIH H5lLHHIExHIE H=gCIHH=`Q1HH9}H5fHH$L$H$HVKHI+IExHIE9 HExHHE0 MAI$xHI$ D$TL|$hD$TLt$X9D$pTH5jH|$0IHH5dHw IHIExHIEAtAH5{dH|$@LD$财LD$HI-fInfHnH=i1flH$H)$ͧLD$HLI$LD$xHI$Ix HIE11E1HE1E1AY@H|$`螡ԨLL$IHD$LLL$HII@L}LuAtAAtAHExHHEfInfInǺLflH$LD$L$ )$ ILD$IIHILLD$ϡLD$H6OE11E1HD$ E11A4HD$8HD$0HD$@HD$(MLuuD$H$H$H$H$$LD$xDL$t$D$$$$$$2LD$fE$$fMnLjD$$H$$H$fMn$LD$xH$LcL$tH$D~5UD~-\$$?Hx HI HMHD$(LHLL$LL$;HLL$LL$=HݟsLПLD$7L辟>L豟0HD$ A9HD$8HD$0HD$@HD$ A8HD$8HD$0HD$@HFiL9H; LLǺLD$腟LD$HH H;LAH;2LDH]LHD$(H9HLD$LD$AHEm EVA>E11kHLE11E1E1E11A>HD$ HD$8HD$0HD$(%HKE11E1E1E11A<HD$ HD$8HD$0HD$(p*H=1p*H=1E11E1LL$1E1ABHD$ E1E1HD$8HD$0HLT$LL$藝LT$LL$LLT$LL$vLT$LL$}LLL$ZLL$zLHHD$ E1HD$8HD$0HD$@HJE1E1A6HD$(HpJE11A5HD$@HD$(HD$ E1HD$8HD$0HD$@H$JE11A7HD$(gHD$ E11HD$8HD$0HD$@ME11E1E1HD$ E1AAHD$8HD$0LLT$(LT$LL$LLT$LL$HD$ 1E11Ll$E1E1E1HD$8AAHD$0 L进H+IE11E1HD$ E1E11HD$8A5HD$0HD$@HD$(?LL$1E1E1E11E1ABHD$ HD$8HD$0yHLD$'LD$La1E1E1E11AUHiHE1AxAHD$(HӚHl$+IAA1HD$ 1E11HD$8E1E1ABHD$0LL$QHGE11E1HD$ E1E1A2HD$8HD$0HD$@HD$(MBMbAtAA$tA$Ix HIcME1A.LL$1E1E1HD$ E1E1ABHD$8HD$0HD$ 1E11LL$E1ABHD$8HD$0UHD$ E1HD$8HD$0HD$@HFIE1E1HD$ E11A7HD$8HD$0HD$@HD$(UHFIE1LHD$ E1A7HD$8HD$0HD$@HD$(LuLeAtAA$tA$HExHHELAE1EHD$1E1HD$XHD$8H][LP8HEEHHEHLD$ LD$fE1SfA.@HvEAHD$(DELHחLʗ1E1E1E1HD$ E1E1ACHD$8HD$0HD$ HD$8HD$01E1E1E11AC+LS1E1E1E1HD$ ACHD$8HD$0LLD$LD$LLD$3E11E1E1HD$ E1A?HD$8HD$0H@hHHxHIDI9D$ID$HH)AD$HHH|$HrHMLBHCHD$(HD$0E1HD$hHD$ ^HD$ E111E1AEE1E1HD$84HHHkH%CH0腖unHD$ E111E1A?E1E1HD$8HD$0[HHH)HHtZHuDAl$AD$HH ID$L`՗HBH5_LH81dLmHAl$AD$HH HLIHH0HIE^HIEPL軔CH|$L9WH1E1E1E1HD$ E1ACHD$8HD$0E1E11E1E1E11AFHD$ E111E1AFE1E1E11E1MLAYLLD$ 1E1E1E1E11AY%1E1E1E11AYH]LetA$tA$HExHHEL1HD$ E1HD$8LeLuA$tA$AtAHEx HHEtL1HL11E1E1E1HD$ ACHD$8HD$0E1ACLĒI1E1E1E1E11AULLL$E1ALD$膒LD$LL$MHLT$LA^E1LT$MACHHEH?E1A>HD$(IE1H1E1ME1AWE11E1AHE1E11LLD$ϑLD$@E11E1E11AU}HL袑1!fDAUHXATUSHHhHD$0H8HD$8H-HD$@HHD$HD$HD$ HD$(HD$HHD$PH"LIHMH&HHcHHVtHT$(HVtHT$ HVtHT$HtHT$HL$HT$0HIHH4PY^HMH|HCHt7H|uHCHt"H|`HHt H|MH|$ Hl$Ld$HHGdHGHCH)‹GHHcЉH9jwH|$(HH<H9G趓f.xLHT$0H\$4D$0D$8vIH*H|$HtHx HHH|$HtHx HHH|$ HtHx HHH|$(HHHHHHL ASH H;HžH5H81eXZ'H|$HtHx HHH|$HtHx HHH|$ HtHx HHH|$(HtHx HHH=uE1BHhL[]A\A]HHH*HH9H )HMHSL LDHHH)HHHHcЉH9H5H:H5+H8#螐Hv)fD\fDHVtHT$(H~tH|$ LfA$tA$H.Ld$EtEHl$fDGfD1@諌DfD蛌fD苌`fD{2fDk8fD[FfDKfD'H=@f.D$_D$HhSGWHH HcЉH9_GWHH HHcЉH94H@`HHHIHH@H;9uDLIE|HIEnL9aHHPttH-8HѾH{H81ttIEHIELΊvHhH7H5H8uMH7H5:|H81HfDAWHQfAVfHnAUATUHSHxH-xfHnHH)D$@)D$PfHnHflH$HGx)D$pfHnflH$HD$`HDŽ$)$HLyIMH? HHcHHV tHT$`HVtHT$XHVtHT$PHVtHT$HHtHT$@ID$L,Lt$pO .W I1L\$@IMTLHuHPHHL;uITL)L؋ t HHI9uHL$PHGLt$XM]H\$`HtLd$@HcH|@<HEHtMH|@#HEHt8H|@HEHt"H|@HHt H|@Hl$HHD$8H6I9B LLHL$8LL:L\$LL$LT$LT$LL$L\$-t"LH4HH5{H81~H|$@HtHx HHzH|$HHtHx HHH|$PHtHx HH\H|$XHtHx HH4H|$`HtHx HH H=E1;HĨL[]A\A]A^A_HKHEHE1E1HNtHL$PHnEtEL&Hl$HA$tA$Ld$@HMrHOL-2IH=[FH $IULH $HIrtAI@HL$LL$H5LHHL$HL$IIMx HIH2I9GfH $H$HDŽ$HD$pLd$x$蒈HHt H $E1IH5IHutH$H JHM tH JL$HM(tLt$pHLL$I4LH$L$IMtIxHIu LDHExHHEIx HIMIExHIEID$H5KLHHgHHNHExHHEuHXH1H9ID$H5DKLHHHHID$H5KLHHIMsID$H52ILHHO IMI@ I@H{H)A@HHcAH9AIx HI1ID$H5NJLHH) IM@H0I9@LL$(L$f.$Ix HILLHD|$tD$pD$xIHEMxHHEIExHIEID$L$LLH53GHHfL$Ix HII܃tH|$@HtHx HHH|$HHtHx HHH|$PHtHx HHH|$XHtHx HH4H|$`HHHH袁H?H^ tH\$`LvAtALt$XHHL .AUH Hm.HgH5|H81XZh!| rLH $H $L׀HʀL轀HD$8ITI ËtH1E11H$HHtLt$XHL$PML5-AtAH\$`Lt$XHH-tH\$`rH-tH\$`L5-AtALt$XrH$HHtHL$PNH $`LȻH $HIwAfDH=>E1^4THH H֎AHNEOD@HL 5U1H A@6(,~LL$E1ILHu<~fDtHIL)HD@HHM9H>H0LLL$wLL$HuLL$賀LL$HtHL$L$I2AI}HIpE1L}M\IEPHIEBL|5MGMoAtAAEtAEIx HIffInܿHL$$fInflL$H$HDŽ$)D$p[L$HL$HH<Ix HIt A/L3|L)|AiDHL${$HEAHHEH{ALL${L$HL${L$A賁HWHExHHEuHA[{聁IRM9^HD$(Hl$0H\$(HD$0Ll$81HHLL $EL $H|$0ILHtH98tHBHHuHD$8H(H9GLLۊLLL $L $wHL$0@諀IgLD$$}$LD$HEHEx HHEtlIx HI"AEIH}L$ALHL$L$yL$HL$HL$yL$LLډLLL $L $vH@`HHHL$LL$HIH@H;&uULLD$L $L $LD$AIHILL$ yL$AHPLL$H%HѾHiH81BL$LL$dIHILxL$L${L$HH%H5օH8,yL$Ht%H5iL$H81}LL$L$Iy]MM1Af.AWAVIAUIATUSHxHT$HL$LD$tL%u=H=7IT$LI{HHtEHEH5:HHHHHEHxHHEH*$H9CHt$HHLl$HHHHD$@8IHExHHEMIExHIEIFH5<LHHHHID$H5X=LHHIM_I@L-$L9#H;d#.LxpMI1LD$ BxLD$ HHt/HLAWIHLD$ x HHOMAIxHI<@DH=yAi*HExHHEDDH=xy*1I$xHI$Hx[]A\A]A^A_fHutHxuLhusIxI@L8AtAIx HIHEH5;HHHIMI@L9vH;!LhpM$I}1LD$ vLD$ HOLHD$(HAUL\$(LD$ HIxHIHIx HICHLtIHIx HIKHx HHOL;!L;N!L;t!LLD$ xLD$ AIx HIUE$HEH599HHHIMH5;L9HI@H;!I@uHHIx HI-L-:AEtAEH8Ht$HLHD$@HD$HIIExHIE7 MtLIx HI6 Af.H@hH;H@H.LD$ L1LD$ InD1LD$ ltLD$ HI[IxHIuLPrIxHIuL8rA5DDFtL HH\MAh)LHD$qHD$Hx[]A\A]A^A_HqH@hH#H@HLD$ L1LD$ HDIxI@H@LPqIxMxALqIx}IXxLLD$ pLD$ HLD$ pLD$ fE1E1E1AhMHEx HHEt|HtHx HHMtIx HIMtIx HIMpIeHIXLpKHLL$LD$oLD$LL$cHLL$LD$oLL$LD$TLLL$LD$oLL$LD$ELLD$oLD$@uHLhoL{HkAtAEtEHx HHfInfInHt$@Hflº)D$@IIHILnAi DtHI*AHHHHnDtI1LD$ \pLD$ HHEHL`oAxDIxHIuL nHEH54HHH"IM1LǹLD$ LD$ HH Ix HI H5'51HnIHHx HH L;L;)L;LLD$(oqLD$(D$ ~ Ix HI L$ L-L9l$HEH53HHHOIM61LǹLD$(LD$(HIvIx HI Ht$LmIIMx HI L;L; M9 LLD$(^pLD$(Ix HI{H3tH=2L9HD$H@t H;Ht$*rIMHt$HHLl$HHD$@sIIExHIENHx HHRMtL Ix HI{ARf.D$ @AEtAEHExHHEIExHIEID$H51LHHxHHZHSHBpHH@HH5}+HHHDHx HHIFH51HLHH/ ЉHExHHEMID$H5/LHH HH H5y1H9XHEL=L9| HEH1H@ HExHHE2 IT$H-*HBpH H@H HLHHH50HLV HExHHE H=.ܦHH` H@H5=.HHHb HHEH` xHHE6 H5/LHH& H5,HIH(HExHHE H=C.LL$1LL$HH H59,HALL$HI0HExHHEHHt$HE1HH9CfInfInHLL$flLT$ )D$@L|$P LT$ HLLL$Ix HI4Ix HIHx HHH H5,HL1IHExHHEH5d,L4HHFH;H;-L9HKkADžVHExHHE H\$H;H;1 L9 E`L=AtAHD$Ht$HLHD$@HD$HfHIx HIHGH5*HLcHExHHEcAULAUvDHExHHEBID$H5+LHH HHe H5V-H9uHEL9 HElHHhHExHHEuHeD$ HA$tA$H5,LLL$HtH|$@HHH%ML%H|$@IHtHx HHQH|$HHtHx HH)H|$PHtHx HHH|$XHtHx HHH|$`HHHH?HLF AtALD$`HNtHL$XHHL LAUH NHJHDOH5|:H81DXZ>!>>>>>>>>HD$8ITI ËtHE111LAtALD$`H tHL$XH$HPtHT$PLAtALD$`H tHL$XH$HPtHT$PE1xHH +MHMAHNEOD@HL zJUwH LALLHL$8LLML\$LT$LL$XL\$LT$LL$LLT$=IE1LT$LHu:tf.tHIL)HD@HCHHt1L輴HHHIx HI<L H ~M9HL$ I9L;-LLL$(+;LL$(M9L;d$ L;%QLLL$(:LL$(IFLL$(LH5HHHwLL$(IFLL$(HLH5BHHLL$(!IFLL$(LH58HHWLL$(IM9I$xHI$L=hM9HL$L9H;L$ L9H9Ru L9|$[AtAfInHD$H= 1D$fInH$H)$fHnflH$)$9LI)M)I$xHI$At AHExHHEbH|$PHtHx HHTH|$XHtHx HHFH|$`HtHx HH8H|$hHtHx HH*H|$pHtHx HH,H|$xHtHx HHH$HtHx HHH$HoHdHHW3Mf.HHL @AUH CHHCH5/H81e9XZH|$PHtHx HHH|$XHtHx HHgH|$`HtHx HH9H|$hHtHx HH H|$pHtHx HHH|$xHtHx HHH$HtHx HH~H$HtHx HHtQ:H=5E1]HL[]A\A]A^A_HEHYHPHcHf[2fK2xfD;2GfD+2fD2fD 2fD1fD1afDHD$Ln0AEtAEL$Lf(A$tA$Ld$xH^ H\$D$tHD$HD$pH^tH\$hHNHL$D$ tHD$HnHD$`EtEL6Hl$XAtALt$PHVH|$MMXH|$L }AtAL$LL$HD$E1HD$E1E1@HD$E1E1HD$HD$E1E11HD$H^8H\$D$tHD$H$a=L AtAL$LL$>@L iAtAL$MfDH HL$ D$tHD$ HD$xIDL=AtAL|$pL|$I_tH\$h[IFH5MLHHHЅ IHHg>H i>HNHUL ;LD#I_tH\$hfL 1AtAL$MfDH HL$ D$(tHD$ HD$xILDL=AtAL|$pL|$LLD$ #.LD$ fL.L%H=LL$(IT$Lp1LL$(HItAICLL$0LL\$(H5HHL\$(LL$0IIMx%HIuLLL$0LD$(c-LL$0LD$(H"E1II9@fHnfInǿLD$(flLL$8HL$0HDŽ$)$/LD$(HI>H5[H=DHL$0LL$8HptH$H$LLH4LLL$8LT$0LD$(HD$@0MLD$(LT$0LL$8It8Ix1HIu(LLD$0LT$(V,LL$8LD$0LT$(Ix%HIuLLL$0LD$(,LL$0LD$(IxHIuLLL$(+LL$(M#IFLL$(LLH5HH LL$(I$ xHI$ H5eLLL$0XHHHHD$(2LD$(HIILL$0x HI H5LLLT$(LL$0LT$( ILL$0x HI H=LL$0hH H5HHD$(襄L\$(HIILL$0x HI HtI9@FfHnfLD$(flLL$0HDŽ$)$U-LD$(HI?LL$0E1IH H5IKtH$Ht$@LLLL$HHLL\$8LD$0-LHD$(؃L\$8LT$(LD$0LL$HIx HIz Ix HI LL$(M H5LLLT$0'~LT$0LL$( Ix HI H5LLL$0HHD$(&H5LLT$(HI H5H{)LT$(HI ILL$0x HI LLT$0L\$(LL$8/L\$(LT$0HI ILL$8x HI HLLLT$(LL$0<$( ILL$0x HI Ix HI H5LLL$(IH` H5vLIHi HLHD$0)LT$0HI= ILL$(x HI Ix HIL H5LLL\$(LL$0@|L\$( ILL$0@HI3LLL$(i'LL$(H=LL$(dIHpH@LL$(LL\$(H5HLL$0H_L\$(LL$0IIMx HIxH=LD$(LL$0ldLD$(HIz H@LL$0L\$(LLD$0H5&HLL$8H L\$(LD$0LL$8IIMx HIbH!I9@ fHnfLL$8flLD$0ILT$(HDŽ$)$(E1LT$(LD$0HLL$8HHHQtLLH4LL$HL$LT$8HL$0LD$(L\$@)L\$@ILxLT$8LD$(HL$0LL$HIx HIHx HHIx HIMdHExHHELANDH=N(E1AQLL$(o'L`LL$(HIAV'LL$(d*LL$0L\$(IH${$fDk$fD[$fDK$fD;$fD+$fD$fDL$&L_IH>ABABI E1HItZMp MIxHIMIHIrLr#eDLLD$[#LD$M`MxA$tA$AtAIx HIfHnfInĿLL$(HDŽ$fl)$%LL$(HII$HI$AXMIHIE1LLT$"LT$(L\$ IAG^ABIMHI@L@"3H0"pADLALL%A$tA$HLH$HDŽ$H$蛴II$xHI$AEMLAE5IEHIEsLs!f$ARQ'IAJ9AH.AtAH5LLL$0zIH*fHnH=fIn1flH$H)$%LHD$(zI$LD$(LL$0xHI$dA]MIHILLL$(t LL$(LLL$0LD$(X LL$0LD$(gHT$H5MLtAbASR#LLL$( LL$(LLL$8LD$0LT$(LL$8LD$0LT$(sAOLLL$(LL$( LLL$8LD$0HL$(LL$8LD$0HL$(HLL$0LD$(lLL$0LD$(LLL$(PLL$(LLT$(9LL$0LT$(HLL$(LLL$(K"LL$(LLL$(LL$(AV %LL$0L\$(I:LLD$(LL$0LD$(MAVMAV*MxM`AtAA$tA$Ix HISM1ALLL$89LL$8LD$0LT$(eAOALLNLLL$0LT$(LL$0LT$(3AXA\#LL$(I LL$(MAOE1D#LL$8LD$0L\$(IAWA_NMAOIMXMxAtAAtAIx HI}fInfHnLT$0flL\$(LL$8HDŽ$)$L\$(LT$0HHtMLL$81AfDIEHI8LLT${LT$!AWAWSLLL$(NLL$(L<LL$0LD$(LLL$8L\$0LL$8L\$0LT$(&A`@AX8DLAX AXAX-LLL$0LT$(LL$0LT$(LLL$(LL$(.LLL$(zLL$(+LLL$0L\$(^LL$0L\$(LLL$8L\$0LT$(8LL$8L\$0LT$(TAYAYAYLLL$(MLL$(1AMA]AAZE1AZMAYAZWAZAYLLL$8LT$0L\$(tL\$(LT$0LL$8XLLL$(SLL$()MIkME1AO}MA1MAXRMAVgHHBuffer is not indirectly contiguous in dimension %d.Buffer and memoryview are not contiguous in the same dimension.C-contiguous buffer is not contiguous in dimension %dC-contiguous buffer is not indirect in dimension %dBuffer exposes suboffsets but no stridesC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sInterpreter change detected - this module can only be loaded into one interpreter per process.Shared Cython type %.200s is not a type objectShared Cython type %.200s has the wrong size, try recompilingmetaclass conflict: the metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its bases__int__ returned non-int (type %.200s). The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__int__ returned non-int (type %.200s)value too large to convert to intunbound method %.200S() needs an argument%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectUnexpected format string character: '%c'Acquisition count is %d (line %d)%.200s() keywords must be strings%s() got multiple values for keyword argument '%U' while calling a Python objectNULL result without error in PyObject_Callinvalid vtable found for imported typejoin() result is too long for a Python string%s() got an unexpected keyword argument '%U'__annotations__ must be set to a dict object__qualname__ must be set to a string object__name__ must be set to a string object__kwdefaults__ must be set to a dict objectchanges to cyfunction.__kwdefaults__ will not currently affect the values used in function calls__defaults__ must be set to a tuple objectchanges to cyfunction.__defaults__ will not currently affect the values used in function callsfunction's dictionary may not be deletedsetting function's dictionary to a non-dictcalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringDoes not understand character buffer dtype format string ('%c')Expected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Buffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)Buffer not compatible with direct access in dimension %d.Buffer is not indirectly accessible in dimension %d.memviewslice is already initialized!scipy/interpolate/_interpnd.pyxscipy.interpolate._interpnd.__defaults__%.200s() takes %.8s %zd positional argument%.1s (%zd given)scipy.interpolate._interpnd.NDInterpolatorBase._scale_x'%.200s' object is not subscriptablescipy.interpolate._interpnd.NDInterpolatorBase._calculate_triangulationscipy.interpolate._interpnd.LinearNDInterpolator._evaluate_doublescipy.interpolate._interpnd.CloughTocher2DInterpolator._evaluate_doubleobject of type 'NoneType' has no len()'NoneType' object is not iterabledictionary changed size during iterationneed more than %zd value%.1s to unpack'NoneType' object is not subscriptable'NoneType' object has no attribute '%.30s'scipy.interpolate._interpnd.LinearNDInterpolator.__pyx_fused_cpdefscipy.interpolate._interpnd.CloughTocher2DInterpolator.__pyx_fused_cpdef__mro_entries__ must return a tuplescipy.interpolate._interpnd.LinearNDInterpolator._evaluate_complexscipy.interpolate._interpnd.CloughTocher2DInterpolator._evaluate_complexscipy.interpolate._interpnd.NDInterpolatorBase._check_call_shapescipy.interpolate._interpnd.CloughTocher2DInterpolator._calculate_triangulationscipy.interpolate._interpnd.LinearNDInterpolator._calculate_triangulationscipy.interpolate._interpnd.LinearNDInterpolator.__init__too many values to unpack (expected %zd)'%.200s' object is unsliceablescipy.interpolate._interpnd.NDInterpolatorBase.__call__scipy.interpolate._interpnd.CloughTocher2DInterpolator.__init__scipy.interpolate._interpnd._ndim_coords_from_arraysscipy.interpolate._interpnd.NDInterpolatorBase._preprocess_xiscipy.interpolate._interpnd.LinearNDInterpolator._do_evaluatescipy.interpolate._interpnd.CloughTocher2DInterpolator._do_evaluatecannot fit '%.200s' into an index-sized integerscipy.interpolate._interpnd.estimate_gradients_2d_globalscipy.interpolate._interpnd.CloughTocher2DInterpolator._set_valuesscipy.interpolate._interpnd.NDInterpolatorBase._set_valuesscipy.interpolate._interpnd._check_init_shapescipy.interpolate._interpnd.NDInterpolatorBase.__init__Module '_interpnd' has already been imported. Re-initialisation is not supported.compile time Python version %d.%d of module '%.100s' %s runtime version %d.%dbase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typeint (__pyx_t_5scipy_7spatial_6_qhull_DelaunayInfo_t *, PyObject *, int, int, int)void (int, double *, double const *, double *)int (__pyx_t_5scipy_7spatial_6_qhull_DelaunayInfo_t *, double *, double const *, int *, double, double)int (struct __pyx_array_obj *)struct __pyx_array_obj *(PyObject *, Py_ssize_t, char *, char const *, char *)PyObject *(PyObject *, int, int, __Pyx_TypeInfo const *)struct __pyx_memoryview_obj *(struct __pyx_memoryview_obj *, PyObject *)int (__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int)char *(Py_buffer *, char *, Py_ssize_t, Py_ssize_t)PyObject *(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int)__Pyx_memviewslice *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)void (struct __pyx_memoryview_obj *, __Pyx_memviewslice *)PyObject *(struct __pyx_memoryview_obj *)PyObject *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)char (__Pyx_memviewslice *, int)Py_ssize_t (__Pyx_memviewslice *, int)Py_ssize_t (Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char)void *(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int)int (int, Py_ssize_t, Py_ssize_t)int (PyObject *, PyObject *, int)int (__Pyx_memviewslice, __Pyx_memviewslice, int, int, int)void (__Pyx_memviewslice *, int, int)void (__Pyx_memviewslice *, int, int, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, int)void (__Pyx_memviewslice *, int, size_t, void *, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *)init scipy.interpolate._interpnd_cython_3_1_6.fused_cython_function_cython_3_1_6.cython_function_or_method_cython_3_1_6._common_types_metatypescipy.interpolate._interpnd.__pyx_defaultstakes no arguments%.200s() %s (%zd given)takes exactly one argumentBad call flags for CyFunctiontakes no keyword arguments%.200s() %s_cython_3_1_6__pyx_capi____loader__loader__file__origin__package__parent__path__submodule_search_locationsneeds an argumentan integer is requiredkeywords must be stringsscipy._cyutilityendunparsable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'buffer dtypeBuffer not C contiguous.Function is not fused_scale_xexactly_calculate_triangulation_evaluate_doubleat leastat most__pyx_fused_cpdefgetNo module named '%U'_evaluate_complexname '%U' is not defined_check_call_shape__init____call___preprocess_xi_ndim_coords_from_arraysestimate_gradients_2d_global_set_valuesbuiltinscython_runtime__builtins__scipy.interpolate._interpnddoes not matchmemoryviewscipy.spatial._qhull_get_delaunay_info_barycentric_coordinates_find_simplex_allocate_bufferarray_cwrappermemoryview_cwrappermemview_sliceslice_memviewslicepybuffer_indexint (__Pyx_memviewslice *)transpose_memslicememoryview_fromsliceget_slice_from_memviewslice_copymemoryview_copymemoryview_copy_from_sliceget_best_orderslice_get_sizefill_contig_strides_arraycopy_data_to_temp_err_extents_err_dimint (PyObject *, PyObject *)_errint (void)_err_no_memorymemoryview_copy_contentsbroadcast_leadingrefcount_copyingrefcount_objects_in_slice_slice_assign_scalar__orig_bases____doc____signatures____self____module____reduce____dictoffset____vectorcalloffset____weaklistoffset__func_docfunc_name__name____qualname__func_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutineCythonUnboundCMethod__pyx_fuse_1_do_evaluate__pyx_fuse_0_do_evaluateconst double complexconst intconst doubleONNONNNNN ONNNNNNNNNNNNNNNNNNNNNNNNNOONNNO ONNNNNNNONNOrpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppprpprpppppdrprpp|rpprqqppqppppppppppppp rrrp0rJrrqppqpppprpponnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnonnonnnnnoonnonnVobononnzonnnnnnnnnnnnnoonno0oJonnnonnnnonnqppqppppprrpprpprrrppppppppppppppppqq*spsrrrpprpppqrpqsr3o3osr3o3o3o3o3osrsr3o3osr3o3orrsr3o3o3o3o3o3o3o3o3o3o3o3o3o3o3o3oirs}r3o}r}ririr3o3oir3o3o3oirir3oirLpDoDoLpDoDoDoDoDoqqDoDoqDoDoqqqDoDoDoDoDoDoDoDoDoDoDoDoDoDoDoDoLpLprDo,rrqqDoDoqDoDoDoLpqDoLpsrrrrrrrrrsrrsrrrrrrrrrrrrrrrrrrssrrrrrr+srrrrrrrrrrrrrrrrr%urussrsrrrrrrrrrrrrrrrrrrrBurrrrrtrrrsrrrrrrrrrrrrrrrrrrrrgvrrrrqtrrrr'tҼjU@988888TTTpT^TLT:T(T[p[`[Z[CQ2Q QQPsXbXPX>X,XXvdRudR@. ̰$wpwpw wvEuOt;Dm@'F@'F&& &E%A9M9[#@2E  @__pyx_fatalerror00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 Sets the values of the interpolation points. Parameters ---------- values : ndarray of float or complex, shape (npoints, ...) Data values. Convert a tuple of coordinate arrays to a (..., ndim)-shaped array. interpolator(xi) Evaluate interpolator at given points. Parameters ---------- x1, x2, ... xn: array-like of float Points where to interpolate data at. x1, x2, ... xn can be array-like of float with broadcastable shape. or x1 can be array-like of float with shape ``(..., ndim)`` Check shape of points and values arrays, and reshape values to (npoints, nvalues). Ensure the `points` and values arrays are C-contiguous, and of correct type. LinearNDInterpolator._do_evaluateLinearNDInterpolator._do_evaluate[double complex]CloughTocher2DInterpolator._evaluate_complexCloughTocher2DInterpolator._do_evaluateCloughTocher2DInterpolator._do_evaluate[double complex]this mode of interpolation available only for %d-D datainvalid shape for input data pointsdifferent number of values and pointscoordinate arrays do not have the same shapePiecewise cubic, C1 smooth, curvature-minimizing interpolator in N=2 dimensions. .. versionadded:: 0.9 Methods ------- __call__ Parameters ---------- points : ndarray of floats, shape (npoints, ndims); or Delaunay 2-D array of data point coordinates, or a precomputed Delaunay triangulation. values : ndarray of float or complex, shape (npoints, ...) N-D array of data values at `points`. The length of `values` along the first axis must be equal to the length of `points`. Unlike some interpolators, the interpolation axis cannot be changed. fill_value : float, optional Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is ``nan``. tol : float, optional Absolute/relative tolerance for gradient estimation. maxiter : int, optional Maximum number of iterations in gradient estimation. rescale : bool, optional Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude. Notes ----- The interpolant is constructed by triangulating the input data with Qhull [1]_, and constructing a piecewise cubic interpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme [CT]_. The interpolant is guaranteed to be continuously differentiable. The gradients of the interpolant are chosen so that the curvature of the interpolating surface is approximatively minimized. The gradients necessary for this are estimated using the global algorithm described in [Nielson83]_ and [Renka84]_. .. note:: For data on a regular grid use `interpn` instead. Examples -------- We can interpolate values on a 2D plane: >>> from scipy.interpolate import CloughTocher2DInterpolator >>> import numpy as np >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> x = rng.random(10) - 0.5 >>> y = rng.random(10) - 0.5 >>> z = np.hypot(x, y) >>> X = np.linspace(min(x), max(x)) >>> Y = np.linspace(min(y), max(y)) >>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation >>> interp = CloughTocher2DInterpolator(list(zip(x, y)), z) >>> Z = interp(X, Y) >>> plt.pcolormesh(X, Y, Z, shading='auto') >>> plt.plot(x, y, "ok", label="input point") >>> plt.legend(loc="upper right") >>> plt.colorbar() >>> plt.axis("equal") >>> plt.show() See also -------- griddata : Interpolate unstructured D-D data. LinearNDInterpolator : Piecewise linear interpolator in N > 1 dimensions. NearestNDInterpolator : Nearest-neighbor interpolator in N > 1 dimensions. interpn : Interpolation on a regular grid or rectilinear grid. RegularGridInterpolator : Interpolator on a regular or rectilinear grid in arbitrary dimensions (`interpn` wraps this class). References ---------- .. [1] http://www.qhull.org/ .. [CT] See, for example, P. Alfeld, ''A trivariate Clough-Tocher scheme for tetrahedral data''. Computer Aided Geometric Design, 1, 169 (1984); G. Farin, ''Triangular Bernstein-Bezier patches''. Computer Aided Geometric Design, 3, 83 (1986). .. [Nielson83] G. Nielson, ''A method for interpolating scattered data based upon a minimum norm network''. Math. Comp., 40, 253 (1983). .. [Renka84] R. J. Renka and A. K. Cline. ''A Triangle-based C1 interpolation method.'', Rocky Mountain J. Math., 14, 223 (1984). NDInterpolatorBase._preprocess_xiNDInterpolatorBase._check_call_shapeNDInterpolatorBase._calculate_triangulationLinearNDInterpolator._evaluate_doubleLinearNDInterpolator._evaluate_complexLinearNDInterpolator._do_evaluate[double]Gradient estimation did not converge, the results may be inaccurateFunction call with ambiguous argument typesCloughTocher2DInterpolator._evaluate_doubleCloughTocher2DInterpolator._do_evaluate[double]CloughTocher2DInterpolator._calculate_triangulationCloughTocher2DInterpolator.__init__A %QkWF!1 T#1A%Rq RxrBfBa R!$fBat9AU!scipy/interpolate/_interpnd.pyxnumber of dimensions in xi does not match xinput data must be at least 2-D Simple N-D interpolation .. versionadded:: 0.9 -Rv5K181A$i}A F& 6s!  &1 6A  !  &vQa,.e1F& N"KqG82Q 4q qJb 2!4q4:"A gQa qJb 2! r e1ARescaling is not supported when passing a Delaunay triangulation as ``points``. LinearNDInterpolator(points, values, fill_value=np.nan, rescale=False) Piecewise linear interpolator in N > 1 dimensions. .. versionadded:: 0.9 Methods ------- __call__ Parameters ---------- points : ndarray of floats, shape (npoints, ndims); or Delaunay 2-D array of data point coordinates, or a precomputed Delaunay triangulation. values : ndarray of float or complex, shape (npoints, ...), optional N-D array of data values at `points`. The length of `values` along the first axis must be equal to the length of `points`. Unlike some interpolators, the interpolation axis cannot be changed. fill_value : float, optional Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is ``nan``. rescale : bool, optional Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude. Notes ----- The interpolant is constructed by triangulating the input data with Qhull [1]_, and on each triangle performing linear barycentric interpolation. .. note:: For data on a regular grid use `interpn` instead. Examples -------- We can interpolate values on a 2D plane: >>> from scipy.interpolate import LinearNDInterpolator >>> import numpy as np >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> x = rng.random(10) - 0.5 >>> y = rng.random(10) - 0.5 >>> z = np.hypot(x, y) >>> X = np.linspace(min(x), max(x)) >>> Y = np.linspace(min(y), max(y)) >>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation >>> interp = LinearNDInterpolator(list(zip(x, y)), z) >>> Z = interp(X, Y) >>> plt.pcolormesh(X, Y, Z, shading='auto') >>> plt.plot(x, y, "ok", label="input point") >>> plt.legend() >>> plt.colorbar() >>> plt.axis("equal") >>> plt.show() See also -------- griddata : Interpolate unstructured D-D data. NearestNDInterpolator : Nearest-neighbor interpolator in N dimensions. CloughTocher2DInterpolator : Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D. interpn : Interpolation on a regular grid or rectilinear grid. RegularGridInterpolator : Interpolator on a regular or rectilinear grid in arbitrary dimensions (`interpn` wraps this class). References ---------- .. [1] http://www.qhull.org/ LinearNDInterpolator._calculate_triangulation Common routines for interpolators. .. versionadded:: 0.9 CloughTocher2DInterpolator._set_values,Az('SAqz(! Br Cq Eas! q7#Qarj6!1BgS1KvQ Cxy !4uA;aq 6s! uCqxrAxrA 1A 6T*$d! rqT &F#Sbb&TaqT#V1Ad"AD Earq N!1F!+,BarBaq+,G5 yAEaqq%q U!11Be1 U!4qEaq )1q%s!2S!1Crq!qA 6T34q*$d! rqT &F#Sbb&TaqT#V1Ad"AD  U!2V1A!aqa/0!2Q/0uA9DU!11Be1EaqU!4q%vQiq A!1AU$ay#Rq!1AQauD!9Cr0& #Sq%qq2"F! 6a :Qhe1 qj q V1 q)! 1 R)(&! 4q    !  "E(%q  '4q  4qQ arWBfA  4q 4uCq )$a =>@@?@!!@ư>________________;4PIw9ȵ U4 -`  _@(\)0xPpp(<TPlp0@$8T hh@L0p4 l  0   @ P p  @ d  |`!h@""0##0$$ %L0&l,-P.H@1\6;@=PP@t@pAAPGLJO`STWLY0]]bTc`di0ihjpkn$ty0\`hDD40&`: Kx Q k"0P#@$0% %4&P&`'0|'d'mP(zRx $FJ w?;*3$"DXl!4\AA ABDF T P\Ul h Jd e$8W w B `H d D @`AGG0k GAF d DAG Z CAJ 0 < 8kAJ i AK  Dab  4bah G Pdx%(8BAD ] DBF x BEI K(D0A8Gp"xIDDDDAABAABIp8D0A(B BBB4@AB M w8T0BEH A(A0m(D BBBH}.BEL E(A0A8E@8A0A(B BBB8_{BBE D(A0b(D BBB4BDD  GBG AAB4PVBED y BBH ABB.GAE Dq K K E 89BBB D(D0v(D BBB44 BAD  DBI \ DBF x8 BBE B(D0D8Dc 8G0A(B BBBF ] 8D0A(B BBBF Q 8I0A(B BBBM HثBEB B(A0A8GPk8D0A(B BBB( BAG ABH,ŷBEE E(A0D8E@w8D0A(B BBBxLD`G4MBEA (M0T(A SBBDbAGLX:BBD D(D@ (A ABBJ V (I ABBL xLH'BBB E(A0A8D@_ 8A0A(B BBBF _ 8A0A(B BBBG _ 8F0A(B BBBB @BAD D0  AABG `  DABI @ hBDD { ABH Q AEI A CBE $PenBDA cABx(BAG \ DBD ,`8NBSB B(A0A8G` 8D0A(B BBBE ` 8A0A(B BBBE H0 $-BBB B(L0A8DP 8D0A(B BBBF `|  5BBB B(D0D8G` 8A0A(B BBBF  8C0A(B BBBH d BEF E(A0D8Dr 8C0A(B BBBG  8A0A(B BBBA H e|h` dh4x \vBIA | BBD _DB Do E C E  PzH  BEE B(A0D8GP> 8D0A(B BBBK 4 CtNL SDNd DM G  txD~ F o xD~ F o( 4ADD d AAA ( ADD d AAA  <D~ F o I X8 CBEB D(D0D2 0A(A BBBA P 0A(A BBBH P BBA  BBD D BBH H IBM A EBH ( lBAD ] DBF  d( QBB B(A0D8DP`HPg 8D0A(B BBBD H %BBB B(H0D8GP  8D0A(B BBBA < )GD sABAP m *A  G H H @-wAU J I G d0.Aq N .)Act.BHB E(D0A8Gz 8C0A(B BBBE  8A0A(B BBBD HUAH3)BBB E(A0D8GP 8D0A(B BBBA td6lBBE E(D0D8Go 8C0A(B BBBH  8A0A(B BBBD HVAp;oBKF D(D0F (I DBBF u (I DBBJ  (D ABBE (I ABBDP>ZBDA [ ABK p(^0I(A  DBB |?BBB B(A0A8DP 8A0A(B BBBH  8A0A(B BBBE  8A0A(B BBBB 8lBBBA A(D0] (D ABBH LTDBBA D(D@ (D ABBD X (D AEBD PGddGBBB B(A0D8FP  8A0A(B BBBI I 8A0A(B BBBM 4 TLAAL  AAF g CAE 4X MAAL n AAB g CAE hMBIB A(A0G`dhVp_hA`S 0D(A BBBB nhOpGhB`hApFhA`4QAAL  AAC g CAE 44RAAL a AAG g CAE 4lSAAL n AAB g CAE HSSBBB B(A0A8DP 8D0A(B BBBG V<BIB B(D0A8DeW_As 8C0A(B BBBA  8D0A(B BBBE W_Alx\[BIB B(D0A8DeW_Au 8A0A(B BBBA W_Al`BIB B(D0A8DeW_Au 8A0A(B BBBA W_AdXAe J Il BIB B(D0A8DeW_Au 8A0A(B BBBA 1W_A|DBIB B(A0A8GeV_AS 8A0A(B BBBH tLGB=KFA|BIB B(A0A8GeV_AS 8A0A(B BBBH tLGB=KFAxD BPQ H(L0A8JOFANgA 8D0A(B BBBE { DY p]BBE F(D0A8G 8D0A(B BBBE W_AW_A|( BPQ H(L0L8J&OFA.NgA 8D0A(B BBBI ^ D^ Lt(BBB B(D0A8D 8D0A(B BBBI pTnBBE F(D0A8G 8D0A(B BBBE tW_ACW_AlDP+BIB B(A0D8DHYAu 8A0A(B BBBA _V_A00BMG B(D0A8G  H G B L N Z A  L Z A  L [ B  L Y A b W L G G G G G G G G G G G G G G G G G G G G G G G M n A F A Q V _ A  8A0A(B BBBA 0IlBMG B(A0D8G  H F B > L [ A  K [ B  I e B , L X A  W L G G G G G G G G G G G G G G G G G G G G G G G M z A F A Y U a A  8A0A(B BBBA `%BEB B(A0A8GLaBLcBJ_AM 8D0A(B BBBA  GGGGGGGGGGGGGGGGGGGGGGGGGP 1BEB B(A0A8G((L)a(B((L)c(B((L)](A( 8D0A(B BBBA o(G)G)G)G)G)G)G)G)G)G)G)G)G)G)G)G)G*G*G*G*G*G*G*G*G*P( 4BMT B(A0D8GDGBKSBfPFA_V_A 8A0A(B BBBI l!TBMG B(A0A8J KRA1W_A 8A0A(B BBBE l"j.BBE B(A0A8J 8D0A(B BBBA 3LZALZAhp" BIA A(GOFANgA (D ABBH { DQ h"HvBMG B(A0D8]9 8D0A(B BBBH NgA HE dH#\ 3BBE E(A0A8DO 8A0A(B BBBC  8A0A(B BBBH h# nh ep  0  (   @ 3 $ `$< D L \u } N           ؀ GE ЀN ЀW Ȁ` i n  @<  P    `q' 0 9 B ={c   e |L )}* 0W t @ : '   ~n#  `6  K  0c  PN  `  -  5    v(  pzQ  i  C  PS   @x  x  @9  W  q  @C     `  P    ;  PR  `wl   )   h*  `)  l-  oU  p Zs         @d 6 m  p "$ #[ # $S '< -Y 3 8+) d+l @! o~q  ɂ p49 4  > П ),    0 ]y (  @( pne   h" h>*q h*@* $l+ hZ h @=%*! c1 4 0K j. `  pv6 3 T &!  ׃/; L 0g`   )x**p*:`*NX*rP*H*8*0*(* *,*G*g**)))))3)V)x)))`! 8@!  ! ! 2   |     !  ]!`  !@  "  Y"  " # h# # $` S$@ $  % d% % "& & & h& '&'PB']'@@v''`' 'P' ' ( $@( 4i( `0( 8( (( ,) `-<) 'd) `I)  ) ) ,) `* D+* H* l* .* @** 2* "+ '<+ &e+ ~ + + @+ + ,, @%>, "g, , P, `, , @P'- 1- P C- д V- Pf- q- |- - г-  - H- - - . . '. G.  T. m. . .  . P. -. .  / / &A/ @Q/ @ e/ / / з/ / / ݶ/ ׶/ Ѷ/ 0 @ 0 ̷,0 0 >0 c0 |0 00 0  0 80 p 0 0 ޷0 ȷ1 k 1 1 f$1 a11 X >1 S1  {1 1 `$1  1 1  2  2  %2 /2 92 {H2 R2 H _2 0o2  2 A2 2 p 2 02 8 2 ķ2 02 а 3 !3  53 ۷@3 (P3 ,x3 ˶3 3 f3 3 _3 3  3 3 +3  4 p4 Ŷ,4 <4  M4 W4 e4 &r4 4 4 4  4 4 @4  5 `'5 !45 p E5 ` X5 f5 P y5  5 5  5 5 5 5  5 86 6 "6  46 @6 XO6  d6 n6 {6 ` 6 ط6 6  6 6 36! 70!7 @u7 O7 o8 J8U8 W8 j8 8!8x8 08pJ888 G88 9!;9N9!Z9+ `p99999999:: ,:9:F:U:l::::::::;;&;=;N;];m;};;;;;;; <<1<D<S<c<s<<<<<<<< ='=7=) K=\=m=~=======>>->>>L>_>p>>>>>>>??'?8?N?g?x???????? @@'@9@M@`@s@@@@@@@@A"A6ALAdAuAAAAAAAAB"B0B?BOBaBlB}BBBBBBBBCC,C>CYC|CCCCCCCC DD*D;DSDdDyDDDDDDDD E*E9EJE\EmE}EE l EEEE"EE FF)F=FQFiFuF_interpnd.c__pyx_tp_traverse_5scipy_11interpolate_9_interpnd___pyx_defaults__Pyx_CyFunction_get_qualname__Pyx_CyFunction_get_globals__Pyx_CyFunction_get_closure__Pyx_CyFunction_get_code__pyx_typeinfo_cmp__pyx_tp_new_5scipy_11interpolate_9_interpnd___pyx_defaults__Pyx_PyObject_SetAttrStr__Pyx_CyFunction_get_annotations__Pyx_CyFunction_get_dict__pyx_check_strides__Pyx_CyFunction_CallMethod__Pyx_SelflessCall__pyx_memview_get___pyx_t_double_complex__pyx_memview_set_double__pyx_memview_get_double__Pyx_CyFunction_get_name__pyx_CommonTypesMetaclass_get_module__Pyx_CyFunction_get_doc__Pyx_CyFunction_repr__Pyx_PyObject_GetAttrStrPy_XDECREF__Pyx_CyFunction_get_defaults__Pyx_PyCode_New__pyx_mstate_global_static__pyx_tp_dealloc_5scipy_11interpolate_9_interpnd___pyx_defaults__Pyx_copy_spec_to_module__Pyx_ImportFunction_3_1_6__pyx_pymod_createmain_interpreter_id.24__pyx_m__Pyx_CyFunction_traverse__pyx_FusedFunction_traverse__Pyx_VerifyCachedType__Pyx_CyFunction_Vectorcall_O__Pyx_CalculateMetaclass__Pyx_PyLong_As_int__Pyx_CyFunction_CallAsMethod__Pyx_FetchCommonTypeFromSpec.constprop.0__Pyx_CreateCodeObjects.constprop.0descr.0__pyx_k_2_F_6a_Qhe1_q_j_q_V1_q_1_R_4q_Edescr.1__pyx_k_Adescr.2__pyx_k_Rv5K1_81A_i_A_F_6_s_1_6_A_vQa_e__pyx_k_A_R_1_2V2S_4wfAQ_AQ_qdescr.3__pyx_k_A_4wc_1_Cr_Yb_Adescr.4descr.5__pyx_k_A_Qk_WF_1_T_1A_Rq_Rxr_BfBa_R_fBadescr.6__pyx_k_A__Ba_4q_aq_Qa_r_HA_s_Rt1__pyx_k_A_z_S_A_q_z_B_r_Cq_E_as_q_7_Qardescr.7descr.8__pyx_k_2_F_1F_Qdescr.9__pyx_k_A_G5__pyx_k_A_t_Qdescr.10descr.11__pyx_k_A_6T_d_r_q_T_F_S_b_b_T_aq_T_V1Adescr.12descr.13descr.14descr.15__pyx_k_7Gq_Qa_q_as_S_j_r_AQhb_q_A_q_Adescr.16__pyx_k_2_A_HA_L_1F_q_81_0descr.17__pyx_k_Rv5K1_avX_L_mmrrs_4xwa_4AT_t18descr.18descr.19descr.20__pyx_k_A_6T_34q_d_r_q_T_F_S_b_b_T_aq_Tdescr.21descr.22descr.23__Pyx_CyFunction_New.constprop.0__Pyx_CyFunction_Vectorcall_NOARGS__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS__Pyx_PyList_Pack.constprop.0__Pyx_ImportType_3_1_6.constprop.0__Pyx_BufFmt_TypeCharToAlignment.constprop.0__pyx_fatalerror.constprop.0__func__.25__Pyx_SetItemInt_Fast.constprop.0__Pyx_MatchKeywordArg_nostr.constprop.0__Pyx_GetItemInt_Fast.constprop.0__Pyx_PyObject_Call.constprop.0__Pyx_GetVtable.isra.0__Pyx_PyMethod_New__Pyx_PyDict_GetItem__Pyx_CyFunction_reduce__Pyx_PyUnicode_From_long.constprop.0DIGIT_PAIRS_10__Pyx_PyUnicode_Join.constprop.0__Pyx_MatchKeywordArg_str.constprop.0__Pyx_ParseKeywords.constprop.0__pyx_memview_set___pyx_t_double_complex__Pyx_PyErr_GivenExceptionMatches.part.0__pyx_FusedFunction_New__pyx_tp_clear_5scipy_11interpolate_9_interpnd___pyx_defaults__Pyx_CyFunction_set_doc__Pyx_CyFunction_set_annotations__Pyx_CyFunction_set_qualname__Pyx_CyFunction_set_name__Pyx_CyFunction_set_kwdefaults__Pyx_CyFunction_set_defaults__Pyx_CyFunction_set_dict__Pyx__PyBytes_AsDouble__Pyx_Raise.constprop.0__Pyx_CyFunction_get_kwdefaults__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx_PyObject_FastCallDict.constprop.0__Pyx_CyFunction_clear__pyx_FusedFunction_clear__pyx_FusedFunction_dealloc__Pyx_CyFunction_dealloc__Pyx_ValidateAndInit_memviewslice.constprop.1__pyx_memoryview_new__pyx_FusedFunction_call__Pyx_ValidateAndInit_memviewslice.constprop.0__Pyx_PyObject_FastCallDict.constprop.1__pyx_FusedFunction_descr_get__pyx_FusedFunction_getitem__Pyx_CyFunction_get_is_coroutine__Pyx__CallUnboundCMethod0.constprop.0__Pyx_UnboundCMethod_Def__Pyx_CallUnboundCMethod0.constprop.0__Pyx_AddTraceback.constprop.0__pyx_pf_5scipy_11interpolate_9_interpnd_4__defaults____pyx_pf_5scipy_11interpolate_9_interpnd_6__defaults____pyx_pw_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_9_scale_x__pyx_pf_5scipy_11interpolate_9_interpnd_10__defaults____pyx_pf_5scipy_11interpolate_9_interpnd_8__defaults____pyx_pf_5scipy_11interpolate_9_interpnd_12__defaults____Pyx_PyObject_GetItem_Slow__pyx_pw_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_3_calculate_triangulation__pyx_pw_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_5_evaluate_double__pyx_pw_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_7_evaluate_double__pyx_pw_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_9_do_evaluate__pyx_builtin_TypeError__pyx_pw_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_11_do_evaluate__Pyx_PyObject_GetAttrStrNoError__Pyx_ImportDottedModule__Pyx_PEP560_update_bases__Pyx_Py3MetaclassPrepare.constprop.0__pyx_pw_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_7_evaluate_complex__pyx_pw_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_9_evaluate_complex__Pyx_GetBuiltinName__Pyx__GetModuleGlobalName__pyx_pw_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_7_check_call_shape__pyx_builtin_ValueError__pyx_pw_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_5_calculate_triangulation__pyx_pw_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_3_calculate_triangulation__pyx_pw_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_1__init____pyx_pw_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_13__call____pyx_pw_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_1__init____pyx_f_5scipy_11interpolate_9_interpnd__ndim_coords_from_arrays.constprop.0__pyx_pw_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_11_preprocess_xi__pyx_pw_5scipy_11interpolate_9_interpnd_1_ndim_coords_from_arrays__pyx_fuse_0__pyx_pw_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_11_do_evaluate__Pyx_TypeInfo_double__const____Pyx_TypeInfo_int__const____pyx_f_5scipy_7spatial_6_qhull__get_delaunay_info__Pyx_TypeInfo_double__pyx_f_5scipy_7spatial_6_qhull__find_simplex__pyx_memoryview_fromslice__pyx_fuse_1__pyx_pw_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_13_do_evaluate__Pyx_TypeInfo___pyx_t_double_complex__const____Pyx_TypeInfo___pyx_t_double_complex__pyx_pf_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_12_do_evaluate.constprop.0.isra.0__pyx_f_5scipy_7spatial_6_qhull__barycentric_coordinates__pyx_pf_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_14_do_evaluate.constprop.0.isra.0__pyx_fuse_1__pyx_pw_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_15_do_evaluate__pyx_fuse_0__pyx_pw_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_13_do_evaluate__pyx_f_5scipy_11interpolate_9_interpnd_estimate_gradients_2d_global.constprop.0__pyx_pw_5scipy_11interpolate_9_interpnd_3estimate_gradients_2d_global__pyx_pw_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_3_set_values__pyx_pf_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_4_set_values.constprop.0__pyx_pw_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_5_set_values__pyx_pw_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_1__init____pyx_pymod_exec__interpnd__pyx_string_tab__pyx_string_tab_encodings__pyx_CommonTypesMetaclass_spec__pyx_CyFunctionType_spec__pyx_FusedFunctionType_spec__pyx_builtin_Warning__pyx_type_5scipy_11interpolate_9_interpnd___pyx_defaults__pyx_array_allocate_buffer__pyx_array_new__pyx_memview_slice__pyx_memoryview_slice_memviewslice__pyx_pybuffer_index__pyx_memslice_transpose__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview_slice_copy__pyx_memoryview_copy_object__pyx_memoryview_copy_object_from_slice__pyx_get_best_slice_order__pyx_memoryview_slice_get_size__pyx_fill_contig_strides_array__pyx_memoryview_copy_data_to_temp__pyx_memoryview_err_extents__pyx_memoryview_err_dim__pyx_memoryview_err__pyx_memoryview_err_no_memory__pyx_memoryview_copy_contents__pyx_memoryview_broadcast_leading__pyx_memoryview_refcount_copying__pyx_memoryview_refcount_objects_in_slice__pyx_memoryview_slice_assign_scalar__pyx_memoryview__slice_assign_scalar__pyx_mdef_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_1__init____pyx_mdef_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_3_calculate_triangulation__pyx_mdef_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_5_set_values__pyx_mdef_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_7_check_call_shape__pyx_mdef_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_9_scale_x__pyx_mdef_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_11_preprocess_xi__pyx_mdef_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_13__call____pyx_mdef_5scipy_11interpolate_9_interpnd_1_ndim_coords_from_arrays__pyx_mdef_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_1__init____pyx_mdef_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_3_calculate_triangulation__pyx_mdef_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_5_evaluate_double__pyx_mdef_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_7_evaluate_complex__pyx_fuse_0__pyx_mdef_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_11_do_evaluate__pyx_fuse_1__pyx_mdef_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_13_do_evaluate__pyx_mdef_5scipy_11interpolate_9_interpnd_20LinearNDInterpolator_9_do_evaluate__pyx_mdef_5scipy_11interpolate_9_interpnd_3estimate_gradients_2d_global__pyx_mdef_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_1__init____pyx_mdef_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_3_set_values__pyx_mdef_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_5_calculate_triangulation__pyx_mdef_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_7_evaluate_double__pyx_mdef_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_9_evaluate_complex__pyx_fuse_0__pyx_mdef_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_13_do_evaluate__pyx_fuse_1__pyx_mdef_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_15_do_evaluate__pyx_mdef_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_11_do_evaluate__pyx_moduledef__pyx_FusedFunctionType_slots__pyx_FusedFunction_members__pyx_FusedFunction_getsets__pyx_CyFunctionType_slots__pyx_CyFunction_methods__pyx_CyFunction_members__pyx_CyFunction_getsets__pyx_CommonTypesMetaclass_slots__pyx_CommonTypesMetaclass_getset__pyx_k___pyx_k_CloughTocher2DInterpolator__pyx_k_CloughTocher2DInterpolator___ini__pyx_k_CloughTocher2DInterpolator__calc__pyx_k_CloughTocher2DInterpolator__do_e__pyx_k_CloughTocher2DInterpolator__do_e_2__pyx_k_CloughTocher2DInterpolator__do_e_3__pyx_k_CloughTocher2DInterpolator__eval__pyx_k_CloughTocher2DInterpolator__eval_2__pyx_k_CloughTocher2DInterpolator__set__pyx_k_Common_routines_for_interpolato__pyx_k_Delaunay__pyx_k_Expected_at_least__pyx_k_Function_call_with_ambiguous_arg__pyx_k_GradientEstimationWarning__pyx_k_Gradient_estimation_did_not_conv__pyx_k_LinearNDInterpolator__pyx_k_LinearNDInterpolator___init__pyx_k_LinearNDInterpolator__calculate__pyx_k_LinearNDInterpolator__do_evaluat__pyx_k_LinearNDInterpolator__do_evaluat_2__pyx_k_LinearNDInterpolator__do_evaluat_3__pyx_k_LinearNDInterpolator__evaluate_c__pyx_k_LinearNDInterpolator__evaluate_d__pyx_k_LinearNDInterpolator_points_val__pyx_k_NDInterpolatorBase__pyx_k_NDInterpolatorBase___call__pyx_k_NDInterpolatorBase___init__pyx_k_NDInterpolatorBase__calculate_tr__pyx_k_NDInterpolatorBase__check_call_s__pyx_k_NDInterpolatorBase__preprocess_x__pyx_k_NDInterpolatorBase__scale_x__pyx_k_NDInterpolatorBase__set_values__pyx_k_No_matching_signature_found__pyx_k_Piecewise_cubic_C1_smooth_curvat__pyx_k_Rescaling_is_not_supported_when__pyx_k_T__pyx_k_TypeError__pyx_k_ValueError__pyx_k_Warning__pyx_k__2__pyx_k__3__pyx_k_args__pyx_k_arguments_got__pyx_k_asanyarray__pyx_k_asarray__pyx_k_ascontiguousarray__pyx_k_asyncio_coroutines__pyx_k_axis__pyx_k_broadcast_arrays__pyx_k_c__pyx_k_calculate_triangulation__pyx_k_call__pyx_k_check_call_shape__pyx_k_class_getitem__pyx_k_cline_in_traceback__pyx_k_complex128__pyx_k_complexfloating__pyx_k_coordinate_arrays_do_not_have_th__pyx_k_d__pyx_k_defaults__pyx_k_df__pyx_k_different_number_of_values_and_p__pyx_k_disable__pyx_k_do_evaluate__pyx_k_do_evaluate_double__pyx_k_do_evaluate_double_complex__pyx_k_doc__pyx_k_double__pyx_k_double_complex__pyx_k_dtype__pyx_k_dummy__pyx_k_empty__pyx_k_enable__pyx_k_enumerate__pyx_k_eps__pyx_k_eps_broad__pyx_k_estimate_gradients_2d_global__pyx_k_evaluate_complex__pyx_k_evaluate_double__pyx_k_f__pyx_k_fill_value__pyx_k_float64__pyx_k_func__pyx_k_fused_sigindex_ref__pyx_k_gc__pyx_k_get__pyx_k_grad__pyx_k_i__pyx_k_imag__pyx_k_info__pyx_k_init__pyx_k_initializing__pyx_k_input_data_must_be_at_least_2_D__pyx_k_interpolation_points_shape__pyx_k_invalid_shape_for_input_data_poi__pyx_k_is_complex__pyx_k_is_coroutine__pyx_k_isenabled__pyx_k_isimplex__pyx_k_issubdtype__pyx_k_j__pyx_k_k__pyx_k_kwargs__pyx_k_m__pyx_k_main__pyx_k_maxiter__pyx_k_maxiter_2__pyx_k_mean__pyx_k_metaclass__pyx_k_module__pyx_k_mro_entries__pyx_k_name__pyx_k_nan__pyx_k_ndim__pyx_k_ndim_coords_from_arrays__pyx_k_need_contiguous__pyx_k_need_values__pyx_k_np__pyx_k_npoints__pyx_k_number_of_dimensions_in_xi_does__pyx_k_numpy__pyx_k_nvalues__pyx_k_offset__pyx_k_out__pyx_k_points__pyx_k_pop__pyx_k_prepare__pyx_k_preprocess_xi__pyx_k_prod__pyx_k_ptp__pyx_k_pyx_vtable__pyx_k_qhull__pyx_k_qhull_2__pyx_k_qualname__pyx_k_r__pyx_k_range__pyx_k_real__pyx_k_rescale__pyx_k_reshape__pyx_k_scale__pyx_k_scale_x__pyx_k_scipy__pyx_k_scipy_interpolate__interpnd__pyx_k_scipy_interpolate__interpnd_pyx__pyx_k_scipy_spatial__qhull__pyx_k_self__pyx_k_set_name__pyx_k_set_values__pyx_k_shape__pyx_k_signatures__pyx_k_simplices__pyx_k_spatial__pyx_k_spec__pyx_k_split__pyx_k_start__pyx_k_strip__pyx_k_test__pyx_k_this_mode_of_interpolation_avail__pyx_k_tol__pyx_k_tol_2__pyx_k_transpose__pyx_k_tri__pyx_k_values__pyx_k_values_shape__pyx_k_w__pyx_k_warn__pyx_k_warnings__pyx_k_xi__pyx_k_y__pyx_k_y_has_a_wrong_number_of_items__pyx_k_zeros__pyx_k_Simple_N_D_interpolation_versio__pyx_methods__pyx_moduledef_slots__pyx_doc_5scipy_11interpolate_9_interpnd_26CloughTocher2DInterpolator_2_set_values__pyx_doc_5scipy_11interpolate_9_interpnd__ndim_coords_from_arrays__pyx_doc_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase_12__call____pyx_doc_5scipy_11interpolate_9_interpnd_18NDInterpolatorBase___init__crtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END___fini__dso_handle_DYNAMIC__pyx_module_is_main_scipy__interpolate___interpnd__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyUnicode_FromFormatPyObject_SetItemPyList_NewPyExc_SystemErrorPyType_FromMetaclassPyDict_SetItemStringPyDict_SizePyException_SetTracebackPyMethod_Type_ITM_deregisterTMCloneTablePyFloat_TypePyTuple_TypePyList_AsTuplePyObject_ClearWeakRefs_PyThreadState_UncheckedGetPyModuleDef_Init_Py_ascii_whitespacePyEval_RestoreThreadPy_EnterRecursiveCallPyFrame_NewPyMem_FreePyCapsule_GetNamevsnprintf@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyByteArray_TypePyUnicode_JoinPyDict_ContainsPyList_SetSlicePyImport_AddModulePyBytes_FromStringAndSize_PyObject_GenericGetAttrWithDictPyBytes_TypePyObject_SetAttrStringPyNumber_FloatPyErr_WarnEx_Py_Dealloc_PyByteArray_empty_stringPyModule_NewObjectPyErr_NoMemoryPyErr_SetObjectPyObject_GC_DelPyObject_StrPyArg_ValidateKeywordArgumentsPyObject_RichComparePyGC_DisablePyImport_GetModuleDictPyObject_GC_TrackPyExc_RuntimeErrorPyCMethod_NewPyErr_GivenExceptionMatchesPyErr_SetStringPyObject_IsInstance_PyObject_GC_NewPyObject_GetItemPyExc_ValueErrorstrrchr@@GLIBC_2.2.5PyExc_DeprecationWarningPyExc_TypeErrorPyInterpreterState_GetIDPyTuple_GetItemmemset@@GLIBC_2.2.5PyMem_ReallocPyComplex_TypePyErr_ExceptionMatchespow@@GLIBC_2.2.5PyOS_snprintf_Py_FatalErrorFuncPyTraceBack_HerePySequence_GetSlicePyObject_CallFinalizerFromDeallocPyNumber_InPlaceTrueDividePyLong_FromSsize_tPyFloat_FromDoublePyType_ReadyPyLong_FromLongmemcmp@@GLIBC_2.2.5_PyList_ExtendPyLong_AsSsize_tPyOS_string_to_doublePyObject_RichCompareBoolPyModule_GetNamePyErr_ClearPyList_AppendPyCapsule_IsValidPyExc_KeyErrorPyImport_GetModule_PyUnicode_FastCopyCharacters_Py_FalseStruct__gmon_start__PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrormemcpy@@GLIBC_2.14PyNumber_RemainderPyType_Type_PyDict_SetItem_KnownHashPyObject_SetAttrPyErr_Occurred_Py_EllipsisObject_PyUnicode_IsWhitespacePyLong_AsLongPyImport_ImportModule_PyDict_GetItem_KnownHashPyObject_CallObjectPy_LeaveRecursiveCallPyObject_VectorcallDictPyTuple_GetSlicePyDict_GetItemStringPy_VersionPyObject_Size_Py_NoneStructPyExc_ModuleNotFoundErrorPyObject_VectorcallPyFloat_AsDoublePyObject_IsTruePyImport_ImportModuleLevelObjectPyObject_Hash_Py_TrueStructPyLong_AsDoublePyDict_SetDefaultPyDict_NewPyExc_IndexErrorPyObject_GC_IsFinalizedPyDict_TypePyDict_NextPyBaseObject_Typememmove@@GLIBC_2.2.5PyObject_VectorcallMethodPyLong_TypePyGC_EnablePyUnicode_FromStringPyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringPyUnstable_Code_NewWithPosOnlyArgsPyExc_ImportErrorPyDict_SetItemPySequence_TuplePyExc_AttributeErrorPyBytes_AsStringPyExc_StopIterationPySequence_ListPyExc_RuntimeWarningPyObject_CallPyUnicode_TypePyType_IsSubtypePyUnicode_AsUTF8AndSizePyUnicode_DecodePyComplex_AsCComplexPyComplex_FromDoublesPyErr_FormatPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDict_ITM_registerTMCloneTablePyUnicode_FromOrdinalPyNumber_IndexPyObject_GetAttrsqrt@@GLIBC_2.2.5PyCFunction_TypePyNumber_InvertPyMethodDescr_TypePyInit__interpndPyUnicode_FormatPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5PyNumber_SubtractPyUnicode_NewPyTuple_PackPyCode_NewEmptyPyNumber_TrueDividePyObject_GC_UnTrackPyDict_GetItemWithErrorPyList_TypePyFloat_FromString.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``$8 @ Hov v lUo!!Pd8"8""nBDDP x``s ` `~iiGG PPi 4HHx%ppxxh  @ ! 0/= xOF