ELF>@P@8 @yyŭ ŭ 0 0 0 TTP P P @4E 888$$Ptd QtdRtdP P P GNUTWԾ Mc _ n@'  R  2a e   [  m,   :i m AF"K  G  |) Fd   j __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyObject_SetAttrPyDict_NewPyExc_TypeErrorPyErr_FormatPyExc_SystemErrorPyErr_SetStringPyDict_SizePyObject_VectorcallPyThread_release_lockPyUnicode_FromStringPyUnicode_InternFromStringPyUnicode_FromFormatPyObject_GetAttr_Py_DeallocPyArg_ValidateKeywordArgumentsPyDict_NextPyTuple_NewPyDict_SetDefaultPyBytes_FromStringAndSizePyBytes_AsStringPyUnstable_Code_NewWithPosOnlyArgsPyObject_GetAttrStringPyDict_SetItemStringPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyModule_AddObjectPyCapsule_NewPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyDict_SetItemPyType_ModifiedPyObject_HasAttrPyObject_CallMethodObjArgsPyThreadState_GetPyInterpreterState_GetIDPyModule_NewObjectPyModule_GetDictPyExc_ValueErrorPyType_IsSubtypePyType_TypePyLong_AsLongPyErr_OccurredPyExc_OverflowErrorPyLong_TypePyExc_DeprecationWarningPyErr_WarnFormatPyMethod_NewPyTuple_GetSlicePyTuple_GetItemPyMem_MallocPyMem_FreePyErr_NoMemorystrrchrPyImport_AddModulePyDict_GetItemWithErrorPyType_FromMetaclassPyList_New_PyObject_GC_NewPyObject_GC_Trackvsnprintf_Py_FatalErrorFuncPyObject_RichCompareBoolmemmovePyMem_ReallocPyThread_acquire_lockPyObject_GetItemPyExc_RuntimeErrorPyList_TypePyTuple_TypePyLong_FromSsize_tPyUnicode_NewmemsetPyUnicode_FromOrdinal_PyUnicode_FastCopyCharactersmemcpymemcmpPyObject_HashPyUnicode_TypePyBaseObject_TypePyErr_GivenExceptionMatchesPyExc_RuntimeWarningPyErr_WarnExPyException_GetTracebackPyMethodDescr_TypePyCFunction_TypePyCMethod_NewPyObject_VectorcallDictPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyObject_IsSubclassPyErr_SetObjectPyTuple_PackPyObject_GetBufferPyBuffer_ReleasePyObject_GC_UnTrackPyObject_ClearWeakRefsPyObject_GC_Del_PyThreadState_UncheckedGetPyExc_StopIterationPyErr_PrintExPyErr_WriteUnraisablePyException_SetTracebackPyNumber_IndexPyLong_AsSsize_tPyExc_IndexError_Py_FalseStructPyImport_ImportModuleLevelObject_Py_TrueStructPyFrame_NewPyTraceBack_HerePyCode_NewEmptyPyBytes_TypePyLong_FromLongPyObject_VectorcallMethodPyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyFrozenSet_TypePyFrozenSet_NewPyList_AppendPyList_SetSlicePyList_AsTuplePyObject_SetItemPyExc_NameError_PyDict_GetItem_KnownHashPyMethod_TypePyErr_FetchPyErr_RestorePyObject_RichComparePySlice_NewPyNumber_AddPyObject_IsTruePyUnicode_ConcatPyFloat_TypePyObject_FormatPyObject_GetIterPyNumber_InPlaceAddPyEval_SaveThreadPyEval_RestoreThreadPyFloat_AsDoublemallocPyGILState_EnsurePyGILState_ReleasefreereallocPyLong_FromSize_tPyThread_allocate_lockPySet_NewPySet_ContainsPySet_Discard_PyBytes_JoinPySet_AddPySet_Size_PySet_NextEntryPySequence_ContainsPySet_TypePyExc_KeyErrorPyObject_ReprPyFloat_FromDoublePyExc_ZeroDivisionErrorPyNumber_PowerPyNumber_InPlaceMultiplyPyLong_FromLongLongPyNumber_MultiplyPyDict_TypePyThread_free_lockPyExc_ExceptionPyNumber_NegativePyNumber_TrueDivide_setjmpqsortPyNumber_SubtractPyBool_TypesqrtPyUnicode_AsEncodedStringPyObject_SetAttrStringPy_VersionPyOS_snprintfPyUnicode_FromStringAndSizePyUnicode_DecodePyImport_GetModuleDict_Py_EllipsisObjectPyType_Ready_PyType_LookupPyDict_DelItemPyImport_ImportModulePyImport_GetModulePyExc_ModuleNotFoundErrorPyCapsule_Type_PyDict_SetItem_KnownHashPyGC_DisablePyGC_EnablePyInit__qhullPyModuleDef_Initstderrpowstrlensprintfstrncatstrpbrk__ctype_b_locstrstrcallocstrncpyfreopen64stdin__ctype_toupper_locclockfflushfgetslongjmplocaltimestrcpystrchrstrtodstrtolexitvfprintflibm.so.6libc.so.6GLIBC_2.2.5GLIBC_2.14GLIBC_2.3 ui ui ii P PX ` ` )  )  " У @        0 x% @  P  `  p @    @   Ф        ) 0 ) @  P ` ` @ p  @ @  P!  Х  @  @!    0  @ ` P ) ` ) p <)  9) ) ( # Ц x ( 6) '  " # 0 ` @  P  `  p @ `     0! Ч @      `   0 @ @  P @ ` h p   3) 0) ,) z( Ш )) @ ( U)   ' 0 # @ " P X& ` p p 0  X   () Щ &) H h% x"   ( 0 ' @ ( P ` ` u( p ( ' h" P&  ' Ъ ` X" p( '  X% H" 0 ' @ S) P ' `  p P ' @ '  ! ! Ы H% 8 k( !  8"  & 0 Q) @ Q) P ( ` & p f( ' ( ( & ( Ь ' # (    8 0  @ ' P & ` & p ( # # 8% (%  Э ' (" & &   a( 0  @ ' P " ` X( p ( #) (     Ю   "    % 0 N( @ ! P  ` O) p O) &   % I( Я @(  8(    3( 0  @ .( P & `  p  # $ ' # & а z' M) )( K)  & ( 0 ( @  P  ` I) p  )  ( ( ( x#  б h# ( X#   &  0 ( @ t' P G) ` ( p H# ( $ 8# & (# в # n'  %  ) % 0 ( @ $ P # ` " p h'  @ ` & ! г % b' ( ]'  E)  0  @ & P  ` W' p !  & $ ( % д $ " ! P'  % % 0   @  P $ ` J' p D' h &  " $ е %  % &  % ! 0  @  P  `  p  '  $ ' $ ж  >' " '  ' 8' 0 ( @ 2' P ! `  p (  '  ( ( з & % " X  ( H 0 % @ @ P  ` x& p p& r$ C) g& % % и     `  h$ ! 0 ! @ ,' P `& ` 8 p  '  A) % ) й  X$ ?) &'  ( @ 3; ; @ ; &; @ /;   { ` d x  n " 0* % k  ` @  * 9 ( 4` 9 9 9 9 @ 9 H @!P Bh : p @!x B : ! @I : ! @I #:   H 0:    K0 :: 8 @  KX C: ` @ P: @ \: ` i: ` u:  : ( H : P @WX pJp : x @W pJ : " I : P G : {@ 0d X ` h  9 0! :  ( 9 0  @  H    :  x % `g @ ` 0 @` n4 h 2p p Y4 3 Ђ ;  3 p" ; @ 2 H @` 2 h 0x  5 1 4 0 4   4 X gs   =5 ( pp8  @ I4 H X  ` u3 h x ` 4  @ 4 p  3 U 2 Ж 3 ( 0@ 3 H @` 3 h x p G3 q 3   4   @ 4   G3 ( @ 3 H `  h   @ 4 Н G3  3  O3   .3 ( 8 @u @ 4 H $X  z ` 5 h  ox z )6  { 5   3 X  +5   3     ( @@ 4 H p` G3 h ; 3 P 4 0  @ G3  2  2  Ѓ  3 ( 0&@ 3 H QX  ` 2 h Ж 3 U 4 p  4  @ u3  ` I4    =5 ( pp8  @ gs H ` 4 h X 4   4 0 5 1 2 0  2  @   ( o 0  8  @ % H 5 P = X | ` B h  p K x L Q |      $ / A JȾ Kо Mؾ N k o p t v y  ( 0 8 @ H P X ` h p x          ȿ п ؿ    ( 0 8 @ H P  X  `  h  p  x                ! " # % & ' (( )0 *8 +@ ,H -P .X 0` 1h 2p 3x 4 5 6 7 8 9 : ; < = > ? @ B C D E F G H I L( O0 P8 Q@ RH SP TX U` Vh Wp Xx Y Z [ \ ] ^ _ ` a b c d e f g h i j l m n p( q0 r8 s@ uH wP xX z` {h |p }x ~                     ( 0 8 @ H P X ` h p x                      ( 0 8 @ H P X ` h p x               HH> Ht+H5? %? @%? h%? h%? h%? h%? h%? h%? h%? hp%? h`%? h P%? h @%? h 0%? h %z? h %r? h%j? h%b? h%Z? h%R? h%J? h%B? h%:? h%2? h%*? hp%"? h`%? hP%? h@% ? h0%? h %> h%> h%> h%> h %> h!%> h"%> h#%> h$%> h%%> h&%> h'p%> h(`%> h)P%> h*@%> h+0%> h, %z> h-%r> h.%j> h/%b> h0%Z> h1%R> h2%J> h3%B> h4%:> h5%2> h6%*> h7p%"> h8`%> h9P%> h:@% > h;0%> h< %= h=%= h>%= h?%= h@%= hA%= hB%= hC%= hD%= hE%= hF%= hGp%= hH`%= hIP%= hJ@%= hK0%= hL %z= hM%r= hN%j= hO%b= hP%Z= hQ%R= hR%J= hS%B= hT%:= hU%2= hV%*= hWp%"= hX`%= hYP%= hZ@% = h[0%= h\ %< h]%< h^%< h_%< h`%< ha%< hb%< hc%< hd%< he%< hf%< hgp%< hh`%< hiP%< hj@%< hk0%< hl %z< hm%r< hn%j< ho%b< hp%Z< hq%R< hr%J< hs%B< ht%:< hu%2< hv%*< hwp%"< hx`%< hyP%< hz@% < h{0%< h| %; h}%; h~%; h%; h%; h%; h%; h%; h%; h%; h%; hp%; h`%; hP%; h@%; h0%; h %z; h%r; h%j; h%b; h%Z; h%R; h%J; h%B; h%:; h%2; h%*; hp%"; h`%; hP%; h@% ; h0%; h %: h%: h%: h%: h%: h%: h%: h%: h%: h%: h%: hp%: h`%: hP%: h@%: h0%: h %z: h%r: h%j: h%b: h%Z: h%R: h%J: h%B: h%:: h%2: h%*: hp%": h`%: hP%: h@AWIAVI E1AUIfAATMUSHH8HT$ HHHL$ЃLL$(HHT$D$HDHT$LL$(H1H9}IttHtHHHLIHuE1E1E1LAIHtCt?1E1%D$IHHIHt|L$1LIHHI E1L$HHAHK 5K ATSt$ t$(t$HPPAUPPAWH`IHt ǀLޔL֔HExHHEuHMH8L[]A\A]A^A_AVIAUIHATUSDHt@H;n1 HuE1tHLLAHEx2HHEu)HH1 AH8tE1[D]A\A]A^AWIAVIH5 AUIH=Z ATUIHu=HIHtA$H=SZ LH50 x]1LL;HHtHHLLx6HExHHEuHI$xHI$uL1HSLK]A\A]A^A_AWIAVIH5 AUIATUSHAPIHtLH7HHt%tGEB1LHLbLH5@ HH/ H81tLHguLPIѹ1҃/w ΃LHHLA0tA0MHHuHXAWAAVIAUMATUHSLHH= C HT$HT$HOfInfHnDIflH@(H@p@Ht EtEWIl$ AD$@tAEIT$PID$XID$8Ml$`tAEHttAFWI\$hID$xA$%IDŽ$A$t6tKuQHID$0w=t#=u5HID$0[HdID$0MHID$0?ID$04H' H5 H8NI$xHI$uL%E1LHL[]A\A]A^A_AVIHAUIATUDSHZIHH@u H' LLH5 H81sML$(ID$ Mt ILLIL9v#H~' ILLH5f H81,u3H9s.RL1IPMH= 11tY^y LE1裊[L]A\A]A^ATE1UQH5L tHtN1HHbIHu HuH& H5 H8HExHHEuHLZ]A\ATH Ht$Ht$HT$HHL$H$船1IH LA\ATIUQH5J 1HHu dE1LHAąxH蠉DZ]A\AWAVAUATIU1S1H(LLt$L9MlIEt Hu-1H5I LD1HHu#HtLHy}LLd$HD$HD$H|$IHx HHurMIEt~HHuLHHx}IEHHuA$A$HgIHEHHEHH$ H5X H8IEy HE1%bHIEuLH8HHt1H92ILHUH ‹tHHIE-LV H(L[]A\A]A^A_AWMAVIAUMATUSH(HtlIH5I H/HHtHHt$HLd$HHD$H\$߶IHEx%HHEuHHuq2IMtdH5G LL(y I$y5DH53I LLxMt,H5D LLyHI$uLFE1H(L[]A\A]A^A_AWAVAUATUSH8H-M Ht)1H9{H" H5s H8s{tH=L gH < HktH== cHttH; H:H= :HttH; HH; H=WL H5 3H" H0HH u1H; HuiHHLd$`AQHLA L RH PH P1H 1LW1H= cH ; H71H= H: HHF H ~! fHnH8L- flfHnH)w; fHn~ ! Lfl; ~" fl); L3MtqC t9@t L*<sHc$t1LITL?sLHclHtKI$HHt:HI1HH IHCHH Hu1E1E1E1E1D$E1H HD$HBH HtH4H HtH&H HtoHH Hs UHH HYd;HG H?H"HG H&IHD$E1E11HD$E1E1H LHT$ LT$褂H蜂L蔂L茂H|$肂LT$LuLmH=H tQH=;8 tD$HT$ tH= H=H HtAHH Hx/HHu' HuH9 H5R H81H=pH vH5 1HHHH5* 1vHF HExHHEuHH=wF H1H5% 8Hy7 H=6 uHHe$HA H5A H=G AH5v HAHtH== *HAF H HoG H5= H(H=B *HE HH=C; *HE HH=< j*HE HH=B N*HH=< 9*HzE HhH=9 *HVE HLH=D *H2E H0H=j@ )HE HH=^: )HD HL- LLLH7 HH5D LLH6 HHH56 1H6 HHMD H56 1bH6 HaHC H5 D 18H6 H7HC H5C 1Ho6 H HC H5(6 1HM6 HHeC H55 1H+6 HH-k H5 1HH6 HHNC H1gH5 HfH=(C LL5H5 HHAH5c5 1H5 HH5@C 1H5 HH5C 1Hr5 HL1H[5 HH-; 1HH=5 HLH1rH#5 HqLHH1MH5 HL8HH;H? Ll$`IH N: H? H=@ L~ LHD$`H4 H<? =n: ILc H=@ H : LHt? H= flHD$p)D$`*Hc4 H(C? H |; ILp fm@ H#? LH= )D$`H 4 HH? ILH 8 H> H== L HD$`H= HD$hH; HD$pH; HD$xHv= H$HG: H$H8 H$H; H$Hj8 H$Hc9 H$H9 H$HX3 HH0> ILH S: H> H=e Lb HD$`H< HD$hH< HD$pH3 Hl= %.? ILLl H7 H &? LH= H= f)D$`HD$pYH2 HHz= ILH => H^= H= Ly HD$`Hw2 H(?; H7 ILn (-; (%8 Lfl-= fl%]9 H$D((=; (5: fD = f=P9 f59 (P8 fg7 f.9 (7 ( : fG8 f = D(< H 8 fD%8 D)L$pD)D$`)$)$)$)$)$)$)$)$H"< H=[ HO1 H(; H; IL fm: H 8 LH; H= H$( ?8 ((: )T$`f 8 f: )L$p)$_H0 H(-87 Ha8 IL` H 7 HY; LH= ( X< H$f 7 (`8 (6 f9 f6 (; )L$pf6 )$)T$`)$)$H)0 HhH: IL LHD$`H07 HD$hH7 HD$pH7 HD$xH; H$H8 H$H6 H$H: H$H; H$HI9 H$H8 H$H9 H$H4 H$H5 H$H6 H$H9 H$H4 H !6 H9 H= H$H/ H>(?5 (5: IL> fl7 H'5 LH 5 Hn9 )$H= ( 9 H$f g7 (@9 )L$pf4 )$)T$`Hy. HH9 ILH 8 Hm9 H= L/} HD$`H>. He8 =7 IL| H 8 H9 LH= fl)D$`_H- HH7 IL> LHD$`H8 HD$hH3 HD$pH1 HD$xH1 H$H<5 H$H4 H$HF5 H$H5 H$HP6 H$H95 H$H25 H$Hk4 H$H4 H$H5 H$H5 H$Hg1 H 3 Hy7 H$H6 H=k H$H6 H$H8 H$Hf4 H$H, H H3 ILH 3 H6 H= Ln (6 HD$pf+6 )D$`HJ, HY H6 ILH E1 H6 H= Lu HD$`^H, H H6 ILH Z1 Hc6 H=L LUz HD$`H+ H H 47 H-6 ILH= L\ (6 fY5 )D$`H+ H H85 ILH / H5 H= La (5 ( 5 fo2 f 4 H$)L$`)D$p_H(+ H ( x1 H !2 ILwa fl 1 HX5 LH=& (4 f4 )$(/5 )L$pf14 )T$`H* H H 6 H4 ILH= Lb (4 f%4 )D$`Ht* HS H4 ILH o. H4 H=a Lx HD$`H3 HD$hHJ4 HD$p@H!* H Ha4 ILH \3 HE4 H= Lw HD$`H) H H4 ILH 4 H4 H= Lg HD$`H) Hr (1 ( ,2 IL[ fm0 fm 1 L(3 H 4 fl- H3 )T$pH=6 (3 )$f~0 )$)\$`,H%) H (u0 ( 1 ILZ fml0 fm t1 LH:3 H K4 H 3 H= )T$p(0 (2 f)3 f`/ H$)\$`)$)$H( HF H2 ILH B- H2 H=, L HD$`H/ HD$hH/ HD$pH/ HD$xH]0 H$H0 H$H/ H$H0 H$H0 H$H , H$H0 H$H,2 H$H' HgH1 IL[ LHD$`HW3 HD$hH+ HD$pH?2 HD$xH3. H$H. H$H+ H$H, H$H, H$H1 H$Hy. H$H2 H$H/ H$H2 H$H2 H$H/ H$H , H0 H=a H& HLH0 ILH / H0 H=" L{Y HD$`H'2 HD$hH 2 HD$pH// HD$xH- H$H 2 H$H, H$Hf- H$H1 H$H1 H$H. H$H% H|/ %n1 ILV H1 H &- LH/ H=5 flHD$p)D$`jH% H"H c0 H|/ ILH= LXq (10 f0 )D$`HG% H_* -/ ILFp H ) H/ LH= f)D$`H% HH8. ILH + H. H== L[ (O+ ( . f. f - H$)L$`)D$p_H$ H - 5y& IL  h. =- LH, H H/ flH=. f)D$pH= H$)L$`H+$ HH . ILH ' H- H=H LAr HD$`H, HD$hH- HD$pH# HGH- ILH , H- H= Lp HD$`LH# HHm- ILH . HQ- H= Lf HD$` Hb# H( ") H ) IL! fl ) H- LH=@ (Q, f8, )$(, )L$pf+ )T$`H" HIH - H, ILH=ֵ L?e (, f+ )D$`EH" HHf, ILH & HJ, H={ Lp HD$`H@+ HD$hH+ HD$pH[" HH , ILH + H+ H= LQo HD$`H " H_H+ ILH + H+ H=ʹ L\ HD$`dH! HH+ ILH ( Hi+ H= L HD$`H' HD$hH ( HD$pH' HD$xH* H$H( H$H]* H$HY! HH + H* ILH= L (* f* )D$`H! H<H* ILH H$ H* H= LW HD$`H& HD$hH3* HD$pH_% HD$xH+ H$H,& H$Hu$ H$H' H$Hz HH* ILH U& H) H= LHm HD$`H? HtZH) ILH % H) H= L_ HD$`_H HtHExdHHEu[H*QHEHHEHE1E1E11E1һHD$Hv D$H H5zH={y DH H57\H=ly "H4 H5%hH=^ Hj H5\H=HHjH5# LsaHD$H^H5# H9uH5# Lj IHucH|$rÅuE11E1jH5# HL! I$H5# eÅu L#H;l$H1H5# LHH bH5# LIHt>H5# HLx}I$H5# Åu LxWHtPHuFL{HD$E11E1HD$ HD$E1E1E11E1E11Hu2H| IT$H5 H81HD$E111E1H|$_H|$_L_H_L_H=r yHHAHHo H5r H} HQHExHHEuHӿH=2s HHA HHlo H5s H# HAH HHr H5r cH HA0HHr H5r 2H HAHHr H5rr H H\AHHir H5Ar H H+AHH@r H5r HV HAHHr H5q nH- HAHHq H5q =H HAHHq H5}q H HgAHHq H5Lq H H6AHHqq H5q H HAHH9q H5p yH` HAHHq H5p HH7 HAHHp H5p H HrAHHp H5Wp H HAHExHHEuHüH=p HHA@HHp H5fp H HHGHHExHHEuHLH=Cp HHApHHq H5p H, HtlHHt[AHHo H5o H Ht.HHtHExGHHEu>H蟻41HE1E1E1Z1E1E1D$H?k #H=|o 譿HHqH H HH5no fNH E H HH5Po A)H x H HH52o HExHHEuHɺH=n HHH H+ HH5n H H HH5n H ؓ H HH5n |dH H HH5n W?H  Hw HH5n 2H HJ HH5n H zn H HH5n H o H HH5rn H H HH5bn H Ք H HH5Tn yaH Hi HH5:n T<H H< HH5%n /H  H HH5n H  H HH5n H  H HH5m H 7 H HH5m H R H[ HH5m v^H U H. HH5m Q9H m H HH5m ,H m H HH5m H  H HH5m H ) Hz HH5m H , HM HH5pm H 7 H  HH5\m sx_H N H HH5Vm Rx>H e H HH54m 1xHExGHHEu>H41HE1E1E1=V1E1E1D$Hf fL5e LݹIHH5 HHHu 腹H5a HIHu HExH5H; L;-S uL;- tLtHHEuH 1LoUHtHExHHEuHI$x"HI$uLȵHtǸ2E1HHtH5 E11HL蠺IHTMxH5 H= LֻI$xHI$uLEHD$HHD$PHD$X襳HhhHLeMt L;%f uHmHuE1E1&A$tA$Il$EtEL(IH=k IHu4H H8貶起H=k IHH5k LIIxHIuLdMH I9Ft:H/ H5В H8HI~HIrLe1LjH IxHIuLH HuH H5]j H8ڴ=H v&H5_ H H81ĺ"Hc H5w H81蕺HY D$uH, H5 H8E|$tH H5 H8#bHyRLqRLiRL 1L VH q 5 H H5 _AXIH H L0HC`Hu AgLxM9uBHa H=i A:HL$XHT$PHHt$Hs~!IFHIFHD$1H9D$~ M;|tH1H9T$jItI9pIGA@HFHs]@tTIXHtLI1I9~5H;tHLHH9HuH;5 HZsLHT$mHT$LHT$DHT$IWtmA@tcs]A@tSIXHt$HJ1H9WL;t`HMtMM9uEL;5V 8LL谱 L= AtAHS Ht$hLHD$`HD$hЗIIxHIuLVMt!1L跂IxHIuL0AH{hLLHE1E11E1muH|$H nOH|$PdOH|$XZO1SOH DH=xf E1E1D$H_ mH5 H= H  I$xHI$uL|P 0@"hAAx|H=j ZYIHH1־HHH L LHL> HIHH  L9u#H5o LLHIH-H5ue HtyE1E1E1Hg^ PH5 H= HIxHIuLaIxHIuLJHExHHEuH1I$xHI$uLL Y LZ H=. H / H ;IH!H5 H=  H)+I$xHI$uL設L  L H= H  Hh ˿IHH5@ H= H蹺I$xHI$uL8L  Lz H= H O H  [IHH5x H=) HII$xHI$uLȬL ! L  H=~ H  Hx IHH HtH5z H= LùI$xHI$uLBL  L H= H Y H" eIHgH5z H=3 HSqI$xHI$uLҫL ; L H=H H H IH>H5J H= HHI$xHI$uLbL  L H= H y Hz 腽IHH5: H=S HsI$xHI$uLL k L4 H=( H H IHH5: H= HI$xHI$uL肪L  L H= H HZ 襼IHH5 H=s H蓷I$xHI$uLL  LT H= H ) H 5IHH5: H= H#I$xHI$uL袩L 3 L H=x H H ŻIHqH5 H= H賶{I$xHI$uL2L Lt H= H I H UIHHH5R H=# HCRI$xHI$uL¨L c L H=X H Hb IHH5Z H= H)I$xHI$uLRL L H= H i H uIHH5 H=[ HsI$xHI$uLL L$ 1H=; H H IHH5 H= HI$xHI$uLuH L  1L H5 HIHH H9XH5 H uHNH H蜤D$E1E11HD$E1E1HV D$E1E11E1E1H~V gE1E1E1E1HD$1#HVV ?E1E1E1E11HQ 'D$E1E11E1HQ HD$H5 HE1躶3H Z HH= HqL H9HDuLHPH E11H5v E1E1H81D$E1HqP HD$QHuYH tOHHH L1H5v E1E1E1H81艧D$E1HP HD$H7ܠH= H 蓢H% Å٥L L. 1H=% H  Ho HHtHH HtH5 I9\$uHNHLgUHLEE1E1E1E1HD$H"O =E1E1E1E11HO ;HExHHEuH L LN 1H=% H & H 2HHt2H5 I9\$uHNHL蝢SHL=CE1E1E1E1HD$HXN H H= HHExHHEuHvI$xHI$uL]H= IHHƿ1趣HHI$xHI$uLHIHH1蜪IHH L A LHL H腲IHL9u HEx@-HH5XQ HWyE1E1һHMJ 6HHEuHkL L L 1H= H Hn 葬HHNHn HtH5 H I9_uHNHLܝJHLy7E1E1E1E1HD$HI 6uE1E1E1E1HtI 6XE1E1E1E1HD$1HGI 0E1E1E1E1HD$H&I  E1E1E1E1HD$HI E1E1E1HD$HH HD$E1E1HH 页HD$E1E1HH N遵E1E1E1E1HH `dHExHHEuH艘L r L 1H= H H 诪HHt1H5 I9_uHNHLGHL軕7HD$E1E1HG gE1E1һNHG 驴HExHHEuHΗL L 1H=' H H HHtGH HtH5 I9_uHNHLJGHL7HD$E1E1H G wE1E1һgHF سAHExHHEuHL AtAL L. 1LT$H  H) H= LT$HIHD$hHD$hLHLT$ HD$`HD$}LT$ HIExHIEu LcLT$ IxHIuLGHu HD$E1E1HE zܲH5k I9_uHNHLCHL膓3HD$1zHE 鏲E1E1һwHE x,HExHHEuH蝕L-F AEtAEL L 1H= H H 谧IHHt$LHD$hHD$`HD$ |LT$ HIxHIuLIExHIEuLHu HD$E1E1HD ~鑱H5 I9_uHNHL蛘CHL;3HD$1~H[D DE1E1һzHDD -,HExHHEuHRH tL L L 1H=< H ] H iIHHt$HHD$hHD$`HD$ M{LT$ HIxHIuLΓHxHHuH跓Hu HD$E1E1HhC LH5 H I9_uHNHLOBHL2H\$E11HC E1E1һ~HB 9HExHHEuHL AtAL  L8 1LT$ H  HK H= LT$ HIHt$LLT$HD$`HD$hyLT$HIExHIEu LuLT$IxHIuLYHu HD$E1E1H B H5 I9_uHNHLCHL蘏3HD$1HA 顮E1E1һHA 銮,HExHHEuH译L-X AEtAEL L 1H=U H H £IHHt$hLHD$hHD$`HD$xLT$HIxHIuL'IExHIEuLHu HD$E1E1H@ 飭H5 I9_uHNHL譔CHLM3HD$1Hm@ VE1E1һHV@ ?HExHHEuHdL L 1H= H ~ H 芢HHtGHc HtH55 I9_uHNHLGHL耍7HD$E1E1H? 酬E1E1һH? nHExHHEuH蓏L L 1H= H H 蹡HHt1H5 I9_uHNHL%GHLŌ7HD$E1E1H> kʫE1E1һH> 鳫HExHHEuH؎L L 1H=1 H H HHt1H5G I9_uHNHLjGHL 7HD$E1E1H+> E1E1һkH> HExHHEuHH56 LLLOHHNH5 H=> HVPHExHHEuHōIxHIuL讍IxHIuL藍I$xHI$uL~L L 1H= H Hy 褟IHH5a H= H袓I$xHI$uLL R LS 1H=* H + H 7IHH5 H= H5I$xHI$uL褌H= IHH= HHH5u H+IHHExHHEuH@H= HHH51 Hi+IHHExHHEuHHD$hLHHD$`HLl$hLd$pHD$ZHIExHIEuL見I$xHI$uL荋IxHIuLvHu)E1E1E1E1E1H'; HD$HExHHEuH/H= IHHƿ1舓IHI$xHI$uLL賠IHH1nHHH L LHL HWIHM9u IxF4LH5+A H*yH\$E1E11H:  HIuL8L Lz 1H=1 H R H ^IHH3 HtH5 Hf I9EuHNLL詍vLLFcHD$E1E1Hd9 HE1E1һHH9 1E1E1E1E1HD$1H 9 E1E1E1E11H9 E1E1E1E1HD$1H8 ¥E1E1E1E11H8 飥E1E1E11E1H8 HD${E1E1E1E1HD$Hq8 UE1E1E1HD$HI8 2E1E1E1HD$H&8 HD$E1E1H 8 E1E1E1E1HD$1 H7 ǤE1E1E11HD$H7  颤E1E1E11HD$H7  }E1E1E11HD$Ht7  XH\$E1E11HV7  :H\$E1E11H87 E1E1һH7 IxHIuL,L } Ln 1H= H F H RIHt8H53 Ht I9EuHNLL跊LLLWM.tAEHHH []A\A]A^>Pff.SHH1Pt [H[~Pff.LG8AtALff.fLG@AtALff.fLGHAtALff.fATUHSHHGH; H;= t[HXpHH{tHQIH#HHSI$xKHI$uALHD$OHD$-@Ht HyHGtH;Es}HDtH[]A\fDHXhHtWHCHtNHyutHH[]A\Ht HyHGtH9EvHUH‹u@HPIHtHHHOI$e@HHtHt$HHt$HxHHCd12HB Ht$H8Pt QHCHt$2ff.LGPAtALff.fAVL: AUATUSHH\$Hc‰HHiQH%)kd)ʉ1щ) HAfu1 HHD$H)؅y C-HHHHIHHcIAI){UIH0@ ;I}8M~L NHf.HIcLBI*HJ471HfoHH9uHHHH9I)H)IvH4 HJ41HHHH9 HB 2HHH9~mtJ7HH@tH9}VHLB 7HHH9~AtHH@tH9~.tHH@tH9~tHH@tH9~D HL[]A\A]A^IU(I}8@HED;H[]A\A]A^LS11AWAVIAUIHATAUSHH(SH IAAG D$HA <IG8HD$L9IDE1HD$0DHr8A9t_I1LL?NIIL9l$IUHZHtHH)L9|EJ  tHr(Hz8@HDA9uD$LHډHHH|$TNfH H5 H8zKIx HIE1H(L[]A\A]A^A_ÐAH?HHFAAED$AG AA IO(IW8@HDHL$f.LImAWAVAUATIUHSHH(LwHL$LD$IHEHIL$(IMl$8HL$IGIHHL9puL@M;D$uDX AT$ Dމ@@@8uA >Hx8 M\$8@LIKuHD$I)IL8H([]A\A]A^A_DH9Ml$(M|$8HH9HHL;puL@M;D$uDX AT$ Dމ@@@8uA Hx8 M\$8@LIJuHB HT$LH5 H81QO3H(1[]A\A]A^A_L\$@MDHx(H8A@HDHx(H8A@HDSLIH@MMD6ff.AWAVIAUMATL$UHSH8H$LL$GtfI$HtqM1M9+tH4$LHL)HIGIHt9I9H0HOHuKHtH8[]A\A]A^A_1I9HD$Ll$ H\$HD$ L|$(D1LHHHLtI$H|$ LHtH;8tHBHHuHD$(H& H9GuYLD$LLLtKH9 HL$ H5HT$H81FM$H81[]A\A]A^A_LD$LLL;롐AWAVAUATUJ,SH8M~bIIII1HL$(fDHUMdHHuMDHPHHt;L;"uIL)LЋ2t2HHL9uH81[]A\A]A^A_fDHD$(H I9D$LD$pHLLLL$LT$HL$SHL$LT$LL$t9t%H HT$pLH5LH81 LH8[]A\A]A^A_HD$(II4‹tH8LD$pHLLLL$LT$HL$VLL$LT$HL$nfLGH?t HA`HtH>HHA`@HH5 IH aH5H81BK1Hff.H?IIHHWtLWHw8HBLL@Ht#LIHw8HHBLLHH HH H53H81J1HLVIIM1fHI9tM9Duf.1fDITHBtv@tmL9tIXHt,HqH~S1HH9t?H;TufDLDHH9xHuH;< ffDHI9k1HLOH?tHu`HHu'IA1HHtsHu~H>HDHA~ IIH \H5hH81KI1H@HytH H~ IH5H81IDH HywHHtGHH9t.HXHtRHJH~q1DHH9t_H;tuHfDH} H5H8jB1HHDHH9tHuH;5} tfDH)} HNH5HWH818H1@HG@t~HFHtt@tkH9t.HXHt*HJH~A1DHH9t/H;tufHH9tHu1H;5} f1DcAt@Ht+tLGXHwXMtIx HIt1fH5q| HL@1Hff.fAWfD(If(AVAUATIUHSH@~]HcHwX1H IWPAXf/wHH9t.A A\f/vAH@D[]A\A]A^A_AGfE(E1fDW X D$4~L|$(ALHx0DA[AÉډ\$H|$HcH4f.z7u5fA(HLDAD9l$4fHD$(D뜐T$~H\$(DECIcHf(f w H[ H<fW% H<$LT=HL H\$8DHL|JDHD$DAHHHD$ E1ADAÉljD$0D$H|$HH4f.HD$ A HH<E~QH1f(A\HYHXI9uAHH4$\AH9L$uD$0Ht$8DHH 1/ffA/r1fA(Xf/r"HPH9HDD9,uf/sIM9\Eff.AWf(If(AVIAUATUSH(D!/HL$ HcOH|$EhHcHHPHHIH?H>HHH)H?H)HT$A9`EH|$D$H$f(-f MfW% |$Ht$AHV0HL…E1A%@f(˸Xf/DBIAG9~gELLLމDCDf/vD$AHD$HcH@ H$H $H9L$AKfDMAtH|$f(f(LLAHD$ D H(D[]A\A]A^A_fHHAHHIH?H>HHH1H)H?H)HT$H|$xEE1D$MwHD$ D Aff.HH;5}w tKHtFHF tQtLHMtIx HIt1HfD1@L:fDHv H5JH8;ATIUHHLHMtIx HItHMtI$x HI$tAHtHEx HHEt H]A\fHH]A\1:L(:fDL:fDHHtOHFtBtLGPHwPMtIx HIt 1HDL9fDHu H5rH8:HHHtOHFtBtLGHHwHMtIx HIt 1HDL@9fDH9u H5"H82:HUHSHHXu H9tHHucHHu H5-H88tHHHtHx HHt 1H[]8fHF uHt H5H8}9fDUHSHHt H9tHHucHHt H5H88tHHHtHx HHt 1H[]7fHFuHs H5}H88fDHHtOHF tjtLG@Hw@MtIx HIt 1HDL`7fDHYs H5H8R8HH1s H5H8*8AWIf(AVAUATUSHD'H|$Ht$HT$HL$E~lIcIpXH1H&f.IPPXf/wHH9t4\f/vH[]A\A]A^A_fHD$@~H\$E|$x9D11LD$IcfEI HELL$1DAAYHXH9uHD$HcE\$Y@@X@HHH(HcdDH<1HffAYHXfXH9uD؃AtHHcYDĨXEE~= 5( AAIDfA/EHD$11Lh DHAtAAHcDExLHcL1ҐfAfAYHXfXL9uIcE9tHYTԨXf(ԸfTXYXf(f.GGfTfUfVA9@HD$HT$f(Ht$H|$HH[]A\A]A^A_1gAA4HD$Hc@@AYX@HHH(dt E\$p1AMAWIAVIAUIATUSHH_`HG`HLcA$tA$HHL$4HL$HHt tEA$tA$tIEhM&IH)L(HI$x HI$tDHtHEx HHEt=MtIEx HIEt6H1[]A\A]A^A_DL2fDH2fDL2fDHGhHHHL(H{ATUSHHGH?H0HGHHHHtqH}HVo H9t5HXHHqH1 HH9H9TuHE(HP@HSC H{u0Hk1[]A\D[]A\fD9HmHExHHEuH11fHDHH9|HuH;,n jfDH5qn H9t 8`HE@ RHEHEH;m 811H=Tz H,2IH0HUx HHUtLHL 1fDAUIIIATI?UHSHH^ HwMItCH9HF8HDHHH1L[L]A\A]@H9H=`m H9LXMI[H~&1@ILH9"H9HH9un MHH1L[L]A\A]}4DH9H=l H9LXMI[H~&1@ILH9H9HH9uHL% HH==.1LHI3MHL[]A\A]@HE0HDHH9t4HuH k H9t#HHH9tHuH9FfDHMA1HYE1 uLeH=c-1LI3ML2IHH.j H5?H8/ HHH9t4HuH j H9t#HHH9tHuH9fDHMAM)HYE1 uLeH=,uL;E1HMA@HMAuHLH1[]A\A]4AUIATUHHH@H;5i HHt'H5PH?HPi ]A\A]H8K.A@HLfI$@t'M9LL3HEHEtE1HL3IHExHHEMt|IL$@LL,I$xWHI$uM]LA\A]_,H5@Hu3tA@t1/HHY]A\A]f]LA\A]C,H1q4H@]LA\A],H++tHL]A\A]+Hg LH5H812ATSHLMtA$tA$HL[A\DHHHtYHHtL`A$LtA$HW HtHxHHu+LDL%Ig off.HWD_@GDHtWH H1LH9t)HRLIHL1f.HW@HVH@HXLHt*HJ1H~@H;tgHH9u[HH9GHuH;5)J I2fDtL[`HC`M1ttff.fAVIAUATUS L``HH@`MMl$IT$(AE1AE1Ht HՃt AEHՃtAEA$tA$Ht EtEH9Lc`HIExHIEHtHExHHE1ELmII9l$(H{`Lc`HtHx HH^MtIExHIE3HtHExHHEMLIx HI[]A\A]A^f.H A$HՃLH H{`Lc`HHHHg f11E1$ LLI@H=G []A\A]A^@A$gA$^f[L]A\A]A^ H L  fDH GL HLAAUATIUSHHH!G H9FHFHH)ŋFHHuID$H;QG H; F HXpHtMH{tFH~ HHHLSHUxHHUH[]A\A]HXhHHCHHUHHL[]A\A]HxsID$HH9v~ID$HЋtH[]A\A]fHID$HH9s:IDWfDHfID$H(DHDHp HHtHLY HU HID$H;E tH;D HzID$HHAHxIHtHH HIEHIE LcfDHHH)HHHuRVFHH HGH;"E HH;C HHD$HD$H HqHC HH2t*HCL` HD H5LH81f1fnFHH H HHLHxHHCHGHfC H8. t5 HC_ff.AUATUSHLMt"A$tA$HL[]A\A]Hu,L%B A$ЃtA$tA$LfH-e /IHtEtEID$E1L11H(H=b n II$xHI$MtpIEHLHHHIEx HIEtoHt:LMHEHHEtTLH-4B Et H5H8GfAWAVAUATUHSHIą H=vg HD^g DƃJHcH;\11D~.H9})HcHT9}9|9A9HHH;X}L(AEtAEHW 1LL9HHX(HIExHIEuL(HExHHHE&H[]A\A]A^A_M|$`ID$`MMGAtAMw(Mt AtAHLD$H=` LD$HItnM9w(WI|$`M|$`HtHx HH MtIx HIMtIx HILڮIx HIIx HIMIHLIH[]A\A]A^A_fDHH=o IHE1E1W1fDIEuHIEgL눐LhL[LD$LLD$LLLD$BLD$L Lff.USHHHtRHtH;-7< HEt H;; uDH{@Hx HHtHk@1H[]H-; EtEHHH; H_H5^H81HўH= fHHcPHtHfH=HD$HD$HAUH?a ATUSHH8HD$HD$ HD$(H LAHMHHt}HH: HL SAH H5gH81XZH|$HtHx HH=HH=q1H8[]A\A]HtHT$HG~HL$HT$ HMHH4IP Y^lH H|!Hl$$H H.EtEHl$HEH50_ HHHIMI$xHI$qH9 I9HEH5^ HHHIMEA$tA$H=Y Ht$ 1HLd$ HD$(II$x HI$xHI$MIExHIEuLHEH5,^ HHHHЅH؃tH|$HH HHHD$8HD$fDL YfDLI$#LSH=1`TfRfIHT$Ht$ HL f[I5[fDATH] USHH0HD$HD$ HD$(HLAHMHHtwHH6 HL SAH H5H81XZH|$HtHx HHVH=f1H0[]A\HtHT$HGHL$Ld$ HMH_H4ILP^Y^oH HlHE0DHH.EƒULd$ Hl$tEH=V 1LHl$ HHD$(HUx HHUtkHHx HHH5 tH|$HHHHHD$FHD$@HHD$+HD$@Hl$E+ _fDHmHl$Ld$ WH=$HD$HD$JLd$ HT$HL L$cff.@SHZ HH0HD$HD$ HD$(HLAHMHHtrHH?4 H L B SAH $H5H81:XZH|$HtHx HHzH=V1H0[ÐHtHT$HGHL$HT$ HMHx H4IP話Y^wH H|,H|$"HH>tH|$HGH5X HHtVHtWH|$HBH7HH*HD$HD$DfD륐|H=<HD$HD$HT$Ht$ HL ~  fSHX HH0HD$HD$ HD$(HLAHMHHtrHH?2 H L B SAH $H5H81:XZH|$HtHx HH H=~1H0[ÐHtHT$HGHL$HT$ HMHx H4IP詯Y^wH H|,H|$"HH>tH|$HGH5V HHtVHtWH|$HBH7HH*HD$HD$DfD륐 H=dHD$HD$HT$Ht$ HL ~  fSHV HH0HD$HD$ HD$(HLAHMHHtrHH?0 H L B SAH $H5H81:XZH|$HtHx HH H=1H0[ÐHtHT$HGHL$HT$ HMHx H4IP詭Y^wH H|,H|$"HH>tH|$HGH5T HHtVHtWH|$HBH7HH*HD$HD$DfD륐 H=HD$HD$HT$Ht$ HL ~  fSHT HH0HD$HD$ HD$(HLAHMHHtrHH?. HL B SAH $H5H81:XZH|$HtHx HH H=ι1H0[ÐHtHT$HGHL$HT$ HMH]H4IP詫Y^wH H|,H|$"HH>tH|$HGH5R HHtVHtWH|$HBH7HH*HD$HD$DfD륐 H=HD$HD$HT$Ht$ HL c fAUATUHH:Hu}LgML%, A$tA$HL]A\A]HHE, E1E1RL ; HAH8H 'H51@XZLH]A\A]ÐE1HyxsHH=豐@L-T AEtAEHJ Ht$LH$HD$HIEx HIEtFHt$1HHExHHEuHeoH=$L@ff.AWAVAUATIUHSHIŅH=sS H D[S DƃGHcH;\.1f.~.H9})HcHT9}9|9A9HHH;XL A$tA$HC 1LL1HHX(HI$xHI$uL HExHHHE&H[]A\A]A^A_M}`IE`MMGAtAMw(Mt AtALHLD$VLD$HItlM9w(MI}`M}`HtHx HHMtIx HIMtIx HILҚIx HIIx HIMIHLIH[]A\A]A^A_fDLHkIHE1E1@W1fDI$}HI$oL됐Lh'L[LD$LLD$LLLD$BLD$L Lff.SHpM HH HD$HD$HD$HaLAHMQHH~HH' H›L SAH H5hH81XZH|$HtHx HHHH=H 1[fDHtHT$HGHL$HT$HMHH4IP Y^kH H| H5M H=XO +H= HsH|$HWHLHH?x5HHtHT$KfDHT$Ht$HL R觢;fATH'M USHH0HD$HH$HD$HD$HD$ H LAHMHHHHH% HL SAH H5hH81XZH<$HtHx HHH|$HtHx HHH=vE1H0L[]A\fHVtHT$HtH$HGHLd$HMH%H4ILPעY^9H H<HHt H<H,$HT$EtEfHnfHnL1H=}F flH)D$IHExHHEMH<$HtHx HHH|$HHHHfDHH.EtkEHVH,$ t EHT$Ld$DMfD{fDHh7[PfDfH=}f.Ld$HL oHL膟LATUHSH0L= Ht$M= =H=tlH=]= HGH;"< Hl$HD$H\$ qtPH@8HHtCHt$1HH0[]A\Ht$1ɺAH0[]A\Ht$1ɺH0[]A\fDAH0[]A\@Ht$AH0[]A\f.VIHtI\$HU< ^< t<1LHI$6HI$(LH$|H$LHfDH=< HHH=; 衲x5H=; H=; {; aDHG01ATHGF fHUHfHnHSHH@)$fHnflHD$0HD$HD$8)D$ HLGMHHtH-HtH$HGHLd$ HMHjH4ILPPY^HD$H(H5H<rHSHt H<ZHHt H<HH,$HL$UtUfHnH=? L1fHnHD$0Hfl)D$ fIHExHHEuHyMI$xHI$JL% A$tA$H<$HtHxHHu (H|$HtHxHHuH|$HtHxHHuH@L[]A\DHHVtHT$HVtHT$&DHHL ASH H} HH5OH81XZH<$HtHx HHH|$HtHx HH`H|$HtHx HH2 H=~E1H@L[]A\fHHupHFtHD$HNtH.HL$UULd$ H,$HH 0t0UHD$Ld$ fDHH HAHMEIHL ? SDH AfL1;fH tHD$fDfDfDhfDH,$Ld$ H@Ld$ HL HL3 H=ܨH AATHwA fHUHfHnHSHH@)$fHnflHD$0HD$HD$8)D$ HLGMHHtH-HtH$HGHLd$ HMHH4ILP耙Y^HD$H(H5H<rHSHt H<ZHHt H<HH,$HL$UtUfHnH=: L1fHnHD$0Hfl)D$ IHExHHEuHMI$xHI$JL% A$tA$H<$HtHxHHu XH|$HtHxHHu1H|$HtHxHHuH@L[]A\DHHVtHT$HVtHT$&DHHL ASH H HȏH5H81XZH<$HtHx HHH|$HtHx HH`H|$HtHx HH2 H=ޥE1H@L[]A\fHHupHFtHD$HNtH.HL$UULd$ H,$HH 0t0UHD$Ld$ fDHH HAHMEIHL o SDH AfL81;fH1 tHD$fDfDfDhfDH,$Ld$ H@Ld$ HL ˍHL3 H=<OH ًAATH< fHUHfHnHSHH@)$fHnflHD$0HD$HD$8)D$ HLGMHHtH-HtH$HGHLd$ HMHʌH4ILP谔Y^HD$H(H5H<rHSHt H<ZHHt H<HH,$HL$UtUfHnH=-6 L1fHnHD$0Hfl)D$ IHExHHEuHMI$xHI$JL%  A$tA$H<$HtHxHHu H|$HtHxHHuaH|$HtHxHHuAH@L[]A\DHHVtHT$HVtHT$&DHHL ASH BH HH5H81XZH<$HtHx HHH|$HtHx HH`H|$HtHx HH2wH=6E1H@L[]A\fHHupHFtHD$HNtH.HL$UULd$ H,$HH 0t0UHD$Ld$ fDHH HAHMEIHL SDH AfLh1;fHa tHD$fD+fDfD hfDH,$Ld$ H@Ld$ HL HLF3xH=H AAWAVAUATUSHHG:HIHH; H53 1HHH + HELd$H$H9H= H9LXMMHM~.1@ItH9H9HI9u+H@8HDHHt$1HHIHExhHHEu^HnTHLatI|$`ID$`tf.KHCHPH4 H55E1H81HHL[]A\A]A^A_fDHuVtTE1 H^uLmH=u*LLI4M3IHE1fH9HE0fDHt$1ɺHI@HWHHIH I|$`H(HLoL9HEH.IUA@x@kIXHt4HJH~1f.HH9cH;lu?ML9/MuH;-  0HDHH9t1H|$HtHx HHt=H|$HHHHHD$HD$mHD$HD$HsLxEI|$ID$H(EtEI$xHI$IFH5+ HLHHJЉHExHHE(IFH5E, LHH,IMA$tA$fLd$ D$('IHH' H . HPtH=q* HL$(LLH/HI$HI$JIx HII$xHI$HIFH5* HLHHXЉHE=xHHEIFH5+ LHH$IMA$tA$fLd$ D$(IHcH% H y- HPtH=%) HL$(LLHHI$DHI$EIx HI$I$xHI$HIFH5( HLHHEЉHExHHEuHH I$A]aHI$t/…HI$LA]A,@L0I$f.H(AZH,LLLL1IHHLHIhAZuDHxA\;D[C@LHLl$ HT$HL wLUI|$HIl$EfDA[DHHIIH*HLHIc@I2PLX;LHA]%D+A\ HDI$A^"IDIA^A^IA]luIxHI$cL[I$RfAWH" AVAUATUSHHxHD$PH8HD$@HD$HHD$XHD$`HLAHMHHHHH HDuL ʰ SAH tH5H81XZH|$@HtHx HHH|$HHtHx HHH= 1Hx[]A\A]A^A_HVtHT$HHtHT$@HGEHL$@HT$PHMHktH4IP}Y^8H"H|@HHt H|@Lt$@Ll$HHD$0HD$8HD$PH HD$HhhLeI9t M~HmHuE1E1IEH5 LHH[HHT$0HIFH5c LHH7H|$0AHxHHuHD$0HtHExHHEMtI$xHI$MtIxHIuLH؃tH|$@HtHx HHH|$HHHHHHD$&HD$@H7L6AtALnLt$@AEtAELl$H=A$tA$Il$EtEL IdHtHx HHHD$L & HD$0H@`HEHxI9IAHHW@A@HXHHJH1f.HH9L;LuH=0蛽H|$HL$PHT$8Ht$0ҌIEH5 LHHIMI@LD$LH5 HHLD$IMIx HIGIFLL$LH5Y HHLL$IM]I@LL$LLLD$H53 HHLD$LL$IxHIuLLD$袿LD$IxHIuL腿H|$0HtHxHHu ffDHD$0H|$8HtHxHHu 8HD$8H|$PHtHxHHu HD$PHD$H@hH8L HtHxHHu ξfDH"HEHHEH蝾苾%fD{fDHD$fHD$@HI9lHuL; ZfDAE1E1HD$H@hH8L HtHx HHHtHExHHEMtIx HIH|$0HtHx HHH|$8HtHx HHH|$PHtHx HHLMtIx HIMtIx HIDH=1L:H LLZVLLL$LL$HHT$@Ht$PHL *m&uArAE1E1aL}JfxHHEuH H=fٙ1=fIExHIEHtHExHHEMtI xHIuLt$詜t$H蘜 qfDkH^HhHXRHH.L8L( HfD fDHT$Ht$ HL LgTcfH؛LțH踛軞LHH}Jf{I^苞LIHgHCI6HMNI^AtAtIx HIfInfHnHt$ HflLL$)D$ iLL$IIHIL輚I]MutAtAIEx HIEtpfInfHnHt$ Lflº)D$ diHHHHHA7LLL$#LL$ Lff.@AWH fAVfHnAUATUHSHHhHx)D$0fHnflHD$`HD$@HD$h)D$PH' LAHM H1HtHHtHT$0HG~ HL$0HT$PHMHIH4IPISY^$H\$@Hq H8H|0HEHt"H|0HHt H|0Ll$0Lt$8AtAIFH5 LHH HH H5 HIH HExHHE L=m L;% M9u L;% I$xHI$[ c L% H=U IT$LXHH tEHEH5O HHHIHEM xHHEP HQ I9D$ Ht$XLLt$XLHHD$PffH$HExHHE< H<$ Ix HIM H- H=o HUHsIH tAIALL$LH5B HH LL$HH Ix HI IEH5 LHH IM L5 LLL$LLݝLL$HH Ix HIx HL$蹙HL$HI H tH<$fHnfHnflHWAAHBpHI H@H< LL$LLL$HHX Ix HIqIEHL$LH5 HHG HL$IMF H/ H9Ee Ht$XHHL$XHHL$HD$PLd$`>dHL$IIHx HH+I$xHI$Ix HIM H<$H5 HWHBpH6 H@H) L\$L\$HH LHL\$L\$HI IxHIuLrHExHHEuHXH5i LHD$HH` D$tHL$Hl$PH== HHD$XHHL$P1ÙHL$IHxHHuHLL$ΓLL$M9 L; ) M9hM9_LLL$肘LL$A Ix HI E) AEtAEIEH5U LHHIMX fInfIn1H$H=" L\$H)D$PfHnfl)D$`軘L\$IIExHIE Ix HI MIx HI} A6 AL1E1E1fI$xHI$:HL$HtHx HH,MtIx HI#MtIExHIEHtHx HHH$HxH$HHH|$0HtHx HHH|$8HtHx HHH|$@H HHH|HHVtHT$@HVtHT$8DHHL 6} AUH AH HAH5WH81-XZH|$0HtHx HH}H|$8HtHx HHOH|$@HtHx HH!X H=Z1^HxH[]A\A]A^A_@HHuhH^tH\$@LvAtAL.Lt$8AEtAELl$0H[L=5 AtAL|$@L<DHH [@H]@AHMEIHL { UDH 0@AfL蘔ŅmHD$1z L4$M1IE1Ix HI1E1E11E1MtIx HIMtIx HIHtHx HHHtHExHHEH= Y1賋MZkDHȎgL踎1SfL= AtAL|$@Lp{fDkfD[yfDHHLHL$6HL$xLL\$L\$ LL\$LD$L\$LD$HL\$LD$L\$LD$MD$Il$AtAEtEI$xHI$LfInfInHt$PHflºLD$)D$Ps\LD$H$IHILJDDL(HLLHH،LLL$ 1E1t$E11HL$谌HL$t$E1LL$ Cf.LL\$ t$HL$zL\$ t$HL$)L߉t$HL$Ot$HL$Hωt$4t$Ht$t$"H1fD?fDL؋HT$0Ht$PHL <7Df蛓H1E1E1E1HD$E1E1ɾz L4$1fDHD$E1E1 HEx HHEtM1E1E11fHLL$(L\$ t$HL$LL$(L\$ t$HL$L@L4$1E1E1HD$z uLHL$ÊHL$qfL%I A$tA$HE Ht$XLHD$PHD$XqHI$xHI$Hy1H\HExHHEHD$1E11E1E1{ E1E1fLSHH1E1E1E1HD$E1E1ɾ~ RL4$1E1E1HD$~ X蟑IHBhLHgHx\H<$LL$~LL$HHD$1E11E1E1E1E1ɾ~ VHIH5HD$1E11L4$E1E1E1۾ LL$H)L4$1E1E1HD$E1E1۾ S1E1L f1E1E1 HD$K蒐I HBhHHxH<$L\$}L\$HL_L1E1E15HL$IHD$E1E1۾ LLL$LL$OLMLEAtAAtAHExHHEfInfHnLǺflHt$PLL$HL$LD$Ld$`)D$PVLL$LD$IHL$IKHI>LL\$HL$LD$ZL\$HL$LD$HD$1E11L4$E1E1E1ɾ LvHD$L4$Mܾ jHD$1E1ɾ L؆rL4$1E1E11E1E1ɾ 4LLL$L\$裆LL$L\$H茆OL4$1E1E11E1۾ L4$1E1E1 1E1LL$EL$H= IHH5 HHD$`%L\$HIIx HI[H E1HI9YfInLHtLL$D$)D$PTLHD$ %LL$L\$Ix HIM 11L߹L\$5L\$HIEIx HIAEtAEH= 1HLl$PHHD$XҊLIg$IExHIEMZNIH,AtAHh MytIQ H<$LLL$LL$HIIx HIIEH;&  AEMtAEH=Q LLL$LL$HHvIx HICH= sIH?H E1HI9IfHnfInLLL$flHt)D$PRLHD$#LL$L\$Ix HIMaL1L\$UL\$Ix HIL4$ 1E1E1(IH<$LL$蒬LL$HDL4$1E1E11E1۾ yH<$L\$\L\$H+1E1E1E1HD$E1E1ɾ{ :HHL$LD$LL$褂LL$LD$HL$LLL$胂LL$LqL\$L4$1E1E11E1ɾ LDL7QL4$1E1E11 MiIYAEtAEtIx HII1LсcLāL跁L\$)LL4$E1E1ɾ L4$1E11E1۾ L4$1E11E1E1ɾ L4$11E1۾ H;߽ LPXIML4$11E1۾ L4$1E1ɾ LL4$Mܾ eMqIAAtAtIx HIteI1L4$1E1۾ $L蝀EH;Y JH5 L~I$CfH߽SlfDIExHIEuL)lIx HItaMtIx HIt\HtHx HHtWMoI$cHI$ULkHLkfDLkfDHkfDnL˴IH|f.KsIIEHIELq)k@ sItE11۽ nHDHHI{1۽rIE1体wMQMaAtAA$tA$Ix HIHG Ht$ LLT$ L$HD$(_9L$HIvHIiL8j\rIMMMEAtAAtAIExHIEfInfInfInLflHt$ LL$)D$ fInflL$)D$08LL$L$HIhHI[LL$iL$FsmLL$`iL$LLD$L $FiL $LD$FAWHo AVAUATUSHH8HD$HD$ HD$(HLAHMHH}HHҤ He L T SAH H5/H81oXZH|$HtHx HHe H=I3L4OL'OuLE1O H=KLD$(\LL\$ LD$LT$NLT$LD$L\$ VH?MHl$IA JHl$MA MHl$MA !H|$vNHl$ H=h+K&E1LLD$A;NILD$1a AWAVAUATUHSHH H;=J HDŽ$XHDŽ$`HDŽ$hHDŽ$xHDŽ$pHDŽ$HDŽ$HDŽ$8HDŽ$0HDŽ$HDŽ$D$8tNHtIH$8L$HAH, /H$pH$h:@H H=Z HDŽ$@fHnH$xHfl$hL HBH;-, L:HD$ tJHtEH$L$HAH /H$H$6H) fH5 $fHnHH$fl$H@H:DŽ$DHDŽ$PLrHD$@HC H$H=` H@HD$HE H- HHUHHD$0FPH$HHD$tH<$H5f HGHH HH $HHx HHG Lcl$LLl$NH$H LMIH1HD$(NL\$(HHD$ ~$fInH=n fl@L- IULcOH$HH+D$(tH<$H5; HGHH'IMhH4$Hx HHqHR H9E8fL $D$HDŽ$)$ML $HIH HPtE1IH LLHLD$HL$LL$(L$NLD$HL$HD$`LL$(Mt*Ix#HIuLLL$(L$ILL$(L$H|$Hx HHIx HIIx HIHExHHEHD$`HH; H$xH- tH9$H$xNHfHî H$$xfHnfl$H-{ H0H=1 LhHUHt$XH,MIH-AtAICL\$LH5 HHUL\$H$H<$RIx HIhHD$0Hc$JIH<HD$(D$Hc$JL\$(HHD$5H|$JL\$(HH uKL\$(HIfInHh(H=$ D$HD$(@LO IPLLD$LLD$LT$(HH"tEHELT$HH5ۤ HHLT$IHEMxHHEH$1H= HH9xcfInfHnſL\$(flLT$Ht$PHT$HHDŽ$)$\JLT$L\$(HIH / HT$HHt$PHHtH$H<$LLT$HHL$L\$(LD$H$BKHLD$L\$(HD$hLT$HtHExHHEPIx HIJIx HIIx HIH<$Hx HHHD$hHgH;2  H$H- tH9$H$DHP fH$$fHnHfl$l$8Y-BH2H@HjH$HrH$Ht$($ hKT$0H$($Ht$fHDŽ$5f(%/HD$H~DŽ$DŽ$IH$HD$@HHt$IƉ$H$$Ɖ$HH$$HH$FHH$H$DH$H$H$H$<H$H$4H$HLI@HD$`f(H@H$E1E1E1Ld$H$H$D $H$HH H$HL$pH$8HHL$0H$xH<HH|$xH$HL$@HL$(H|$8H|$LHD$PHD$IH$HL$H1H|$H$IHD$pHcHyHH|$IHL$0Ht$H|$(N!J1A HD$@HH|$8HT$PJ4&IǃLA\L9t.HcHyHLIA\L9uҋ$A1Ld$ LL$HLT$XL\$9|H|$$%HD$xH$HcH(HHHH5BHLL$(#BLL$(xL$xHDŽ$L-AHD$`H;I~ Ht$`ALL$Hz D$AH$EH$hH$`AH$XH; vGfH$hH$`$xH$XfHnH flH$$?HD$`HDŽ$hHDŽ$`HDŽ$XHD$hHD$`H H\$hHHH@H@iL@FLL$@L$LL$(L$@LL$(L$HD$`E1AH$Hx HHHtHExHHEMtIx HIH\$HtHx HHMtIxHIiDk>L``HH@`MMt$AtAMl$(Mt AEtAEH$xt"H H9$H$x>H$t"H H9$eH$>H$8t"H H9$xH$8U>H$t"Hc H9$H$(>Mt M9l$(H}`Le`HtHx HHHMtIx HIMtIExHIEDH= T;H|$`t"HD$`HxH\$`HHuHZ>HD$hHD$hH []A\A]A^A_f.$H$$4$8L$H$<L$$@H$H$$Ho $DHff(%~fHn$~VH$~J$Ht$1KLL$(D@fH71f.L9uLD9u׋$$$H$H$H$Ht$$9$H$(;H\$h$tH$xt"H H9$H$x;H$t"H H9$xH$;H$8t"H H9$x:H$8;H$t"H H9$H$^;HD$`H H\$hHHHH;@D $$$1H$Ld$f(L$L$L$$HȃtjJf(fHfTXfXH9uJ9t fTX_LFf(A9Hȃuf(E1E1HDŽ$xHDŽ$HDŽ$nHDŽ$HD$`HH=5 HP$H$P$0H$H$L$pL$h8 H $ HDf(%~f/$PfHnfvDŽ$D$DHD$`H$8HH=[: HH$H$PPH$Hc$HvHPL$L$H$n $dHfH f(%~fHndfDHD$`AJL9z9HLT$L\$c9LT$L\$HLT$L$C9LT$L$LL$)9L$HL$9L$L9PL8^;H4HD$`HALH$HLL$(HL$L$m=L$LL$(HD$`u@HHD$`E1E1AHD$HD$HD$`L$E1AfDLL568HD$`E1AHD$L7HLD$HLT$(L\$7LD$HLT$(L\$:L H$H]f?I:HրIHAHD$`E1ALELmAtAAEtAEHExHHE9fInLL$(D$L$HDŽ$)$q:L$LL$(HIHE HPLA1H5W H&H$xL$xH-y H9$ZL$xL5sHLT$(L\$L6LT$(L\$(>L\$H$HD$E1A6L6LLD$5LD$LLD$(L\$5LD$(L\$HDŽ$H$HDŽ$H<$4HD$hH<$H;q Ht$hAL$HQn H$H$HDŽ$HDŽ$xHDŽ$wHD$E11A{E1AmE11A]HD$IA1I>HI1LLT$L\$4LT$L\$sH.EtELfHl$A$tA$H~Ld$tH|$ HLj H9GGk.wfD[.IfDK.fDHD$6.HD$-@HD$.HD$@D$2D$H|NfD1H- HD$it:H5f D$Y1HLD$9D$EH|$HtHx HHtoH|$HtHx HHt\H|$ HtHx HHt1W1-1Kf.HT$Ht$0HL ,,@AUATUHHL%j H- I|$HH@H;-i HUA$@FHLmI@t'M9LL'3HEHEtE1HL3IHExHHEhMtkIM@LL',IExGHIEu=L+3Ht Hg H5H8,Ht3L+HH=P<]1A\A]t)A$@t1.HHtf.HAg H5H8:,HHg E1L  RH HH8H512X1Z]A\A]ÐHyUHH=;HL*H*H13H%fHL*HQf LH5oH81e1IAWHo AVAUATUSHH(HDŽ$H$HDŽ$H,LAHMHHHHe H H5SL  AHH810Y^H$HtHx HHH=2E1*&H(L[]A\A]A^A_DHtH$HG~ H$H$HMHIH4PAXAYUHHܨL$&fDHL6AtAL$IFLHDŽ$HDŽ$H5 HHDŽ$HDŽ$HDŽ$HIM`Ix HITL;=ud E1IFH5y LHH IMo H$tH&k H9$HtlH$&MtIx HIt:H$H?H4HH'|'Lh'fDHDŽ$HfK'fDIFH5} LHH IM L$I(AkH5q LlMH$L$H-V_ H9$HL$L$H$$H$9D$|7LL$MgH|$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$hHDŽ$`HD$@D$xHEL$HHt$ fHHHHoHfH9ufoHfsHffD$@tEHt$ H\$HPH HL$@HL$@H9v$HHHHL$@HH9v HHHT$@H-{ H=o HUHIH+ tA$ID$H5x LHHII$M xHI$V HD$HxHH~HD$8HH-yz HXH=.o HUH2HHitHCH5x HHH&HD$(H|$(H_x HHH)U I9EfHDŽ$D$8)$IH$Hv HP E1IHD$(LLH LLL$PLD$HH$LL$PLD$HIMtIx HI'HT$8Hx HHHT$(Hx HHIx HIIExHIEMCL;%T  H$H-[ tH9$H$HH} fH$$fHnHfl$HH-ox HH=%m HT$HHUHHD$PHHUtHCH5Gu HHHIHMsx HH H|$@LD$(LD$(HH8LD$(HHD$8K H-w HXH=kl HUHoLD$(HHtHCLD$(HH5u HHLD$(IHM x HH H\R I9@tLD$(E1ۻfInÿLL$XD$8L\$@HDŽ$)$L\$@LL$XHHHs HPtHغH|$(HH)H?L$L\$XH ItLL$@L$L\$XLL$@HMtIx HI HT$8Hx HHIx HIHExHHEHL$(Hx HH H7H;Q H$hH-X tH9$ H$h^fHz H$$hfHnfl$H$L$1H$hLH$LL1H9T$H;T$PHL$ H4HN L9s8LLl$L0HHkItHD,HD)L9 LL9uHP 1ҽH5H81HP`HD$(H@`HLBAtALj(Mt AEtAEH$ht6HIW H9$H$hLD$@HT$8LD$@HT$8H$t6HW H9$H$LD$@HT$8LD$@HT$8Ht L9j(HD$(Hx`HP`HtHx HHMtIx HIMtIExHIEHOH=m#MoI$:HI$6HaE1H$MJH51v LLxjI$xHI$HD$H\$0HH|$HtH}HGH9uH|$8H|$ .H|$$;AHDŽ$HDŽ$II$HDŽ$HI$LL%v A$tA$H\k LH$HDŽ$H$HI$xHI$Ht 1HHExHHEp!HH=A$"H|$L%u A$tA$Hj LH$HDŽ$H$fHI$xHI$Ht 1HNHExHHE&QHLL谨H|$qH|$ gL%8u A$tA$Hj LH$HDŽ$H$HI$xHI$iHt 1HHExHHEQ,H HHIŋD$|.LHDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$hHDŽ$`HD$@DL(HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$hHDŽ$`LkH!LHLHHt9Hx2E1HHHHtHx HHt AHDŽ$HDŽ$IHDŽ$E1E1*HDŽ$9HDŽ$iHD$(LLLD$HH$HH$LD$HI ARL L 1LI HLD$( LD$(/L{ ;Ln IHLLD$@HT$8d LD$@HT$8PH1۽~VIHHD$@15L|$@Et#HT$AD$HHlH;H H9uH|$ H|$ H|$ L%fq A$tA$H2f LH$HDŽ$H$HI$xHI$P Ht 1HHExHHE?8HD$8LE1E1~Hx'E1HHMtIEx HIEtdH|$8tHT$8Hx HHt3LMI1ۅtHIgL ZHLD$( LD$(LLD$( LD$(HLD$(t LD$(ZUIHH|$HzMMM]AtAAtAIExHIEfInL\$P~D$8LL$HHDŽ$)$dLL$HL\$PHIIx HItMMLD$(LLD$HL\$@ L\$@LD$HLLD$H LD$HdHD$(Hb h HSHHH\$8H\$8E1~E1HE1~E11۽~HLL$@LD$( LL$@LD$(7HLD$( LD$(WHLD$H LD$H HLD$8 LD$8L L~ L$HDŽ$LL;%E 8L$ALLHB x2H$H$)8HD$8H$H$~H$Hn fH$H$$H$fHnHK flH$LE1$HDŽ$HDŽ$HDŽ$Hx HHt1H18MXI@MXHD$(AtAHT$(D$@tIx\HIVLLL$XL\$@L\$@LL$X5LLL$@HLL$@LL$@1LH}HpH$hHDŽ$H|$(}H;C H|$( MAHH@ H$H$H$H-l fH$H$$hH$fHnHJ flH$$HDŽ$HDŽ$HDŽ$"fIE1E1~Ai HOHHH5[ LlH$L$H-VI H9$L$L LD$(I H:c HPuoHD$(LLߺH$LL$XLD$PL\$HH$[ L\$HLD$PLL$XIMLLL$PL\$H_L\$HLL$P5M1A4LD$(FHyNLD$(HH'L~E1HtA 1ҽH5H81 HL$PH9L$Ll$HLl$C)6HHA$tA$LetH$hH] t"HG H9$H$hH$t"HG H9$H$bI$x.HI$lHIF\HHx HHtII<HC@ 1ҽH5]H81 _HDŽ$1HDŽ$MH5-Y HtRH$hH$h'H-F H9$H$hH|$(kH|$(LLD$(E1~ff.AWAVAUATUSHHHHH1HD$(HD$0HD$8HD$XHD$P7H/ tH=!_ L|$@1HLH\$@HD$HHHx HHHHExHHEL-b DsP{\HCIUH=>W AL{XDA3HHtEHEH5Z_ HHH IM2 HExHHEIcHHHIcIHnH$L $HIPfHnfInfl@H< I9E Ht$HLLD$HHL$HD$@L$MHIx HI=Ix HIHH;-< ; H|$XL-C tL9$JH|$XfHf L$D$XfHnfl$L8LhuIHCHE~WLcxLT$XIE~BAFE11HLHKHLH9uLMLA9uLEtEH H H|$X HB H9$QH|$XIHExHHEHĸL[]A\A]A^A_DHH|$XHDŽ$H<$PH;-q; H<$AMHHg7 rAH$ELT$8LL$0HL$(LLLT$HLL$L%ed H $fHT$8Ht$0D$XH|$(fInHA flH$$H $LL$HD$8HD$0LT$HD$(LT$LL$H $H $LL$HD$8IHELT$HD$0HD$(xHHE2$ID$hL0HM>L;5#: MnAEtAEM~(Mt AtALLLHHID$hH8L0HHtHx HHMtIExHIEMtIx HIH\$0Lt$(L|$8Ht L;s(I|$`I\$`HtHx HH^MtIx HIOMtIx HIHD$8HD$0HD$(Lp`HH@`MM~AtAMf(Mt A$tA$H|$XH? H9$.H|$XJM;f(H{`Ls`HtHx HHMtIx HIrMtI$xHI$d4$H=E1yH 1LLL $L $Hq`HdHWHJHHB7 E1E1RL 8HH8H $H51=XZLIDHH0$aLT$8LL$0HD$8HD$0IHL$(HD$(Ix HIE1E1E1H|$XH= H9$H|$XH{`HC`HHHHsE1E1#/E1Hy@HH=y˚HDŽ$L $\L $HD$8HD$0IHEHD$(IExHIEMtIx HI$LT$8LL$0HL$(zL\LO$1HDŽ$$9HD$8HD$0IIEHD$(qHIEcE1LL $L $2LLT$8LL$0$HL$(TLbLnL{qLdHD$8HD$0IHEHD$(HHEE1HL $ML $XiIYLLT$E1E1LL$E1HL$HL$LL$LT$HLT$LL$H $H $LL$LT$H|$XE1E1HDŽ$H{`HC`HbHtHx HHMtIExHIEMtIx HIH|$8HtHx HHzHD$8H|$0HtHx HH]HD$0H|$(HtHx HH@HD$(1$ HD$8ID$`HD$(ID$`HD$0HHHHL$8tH@(HD$(HMUMMAtAAtAIExHIE0fInfInLLflºLT$LD$L $)D$@LT$L $HLD$IHILLL$L$LL$L$LL_Ls`|H5K H藳LT$8LL$0HL$(H|$XH|$X L-x8 L9$H|$XH<$LD$0L\$(WLLD$(LD$(MLSLeL-K AEtAEH@ Ht$xLHD$pHD$xIIExHIEf M 1LIx HIp h g{L/IH i H=IA~Ix HIe Ls" L9EtEHE Ht$ 1L\$(H=C Hl$pHHD$xL\$(IHExHHEMT HExHHEL; AtAHH fLD$()D$pHD$xHD$L\$0H$L$)$LD$(HIHgC L\$0HPtHD$HC H$IW tHl$xLLL\$0HHLD$(L$LD$(L\$0HIx HIUIx HI*L\$(HL%? H=9 IT$LL\$(HItAIGL\$(LH5)C HHZL\$(IM4Ix HIH I9AAfL\$0D$LL$(HDŽ$H$)D$p;LL$(L\$0HIHnB HPE1IHt$ LLLL\$0LD$(LL$ L$!LD$(LL$ L\$0HMtIx HIIx HIIx HIHEHExHHEMH|$H5A HGHH,L\$HT$L\$ALALd$ML;- I9I9LL\$(IL\$(~L5< AtAIx HIH|$L\$(H5D HGHH;L\$(IL\$(M1ҾL=IHGI$L\$(xHI$H5E LϺLL$(L\$0(LL$(HIIL\$0x HIL;% I9M9LL\$( L\$(I$xHI$lH5\< LL\$(HHIL\$(x HII+LL$IAi Ld$I1ILd$LE1D,cLL$ILL\$(YL\$(LGL\$0LD$(MNMFAtAAtAIx HIfInfInLD$(flLL$HDŽ$)D$pSLL$LD$(HIH&= HPLL$8Ht$ LLǺL\$0LD$(L$ILL$8LD$(HD$L\$0InHIaLLD$0L\$(;LD$0L\$(@@IAi x HIt1E1LLD$LD$HL\$(L\$(>MAi 븾i H=E1LHLLL\$(HLL$ L$JLL$ L\$(HBSI2LL\$0LL$(AL\$0LL$(0HL\$(%L\$(eLL\$(LL$ L\$(LL$ LL\$ L\$ LLd$ML\$(L'L\$(HIdz H=ܩLlLd$HL\$ L\$ H;< uLIHH; H9L;% rLAI$xHI$oLd$j EIx HIEf.| L5'7 A~|Ld$LAx LL\$(LL$ L\$(LL$ Tx H=LE13Ld$au H=Ld$FL6LL\$($L\$(L%LE1h H=.LL$8BLd$LAz L\$(ILMAMQAtAAtAIx HIZfInL\$8D$LT$0LD$(HDŽ$H$)D$pLD$(LT$0HL\$8IbH9 HPM1ALL\$0LL$(L\$0LL$(:Az 5LL\$(L\$(`I$DHI$LHT$L\$ L\$ Lr MLd$ELL\$(XL\$(CLLD$(LL$H81|XZH|$@HtHx HHH|$HHtHx HHH|$PHtHx HHH|$XHtHx HHH|$`HtHx HH|NH=E1pHĸL[]A\A]A^A_III1E1HNHL$D$tHD$HD$PLfA$tA$HLd$HH\$D$tHD$H|$HD$@MHA$tA$EtEL=]5 H=* IWLIHtAIFH5Y4 LHHIIMx HI|AtAfInHD$pfIn1H=y3 flHLL$HHD$ )D$pLL$IIxHI@x HIMH L;5H I9u L;5 VDIx HIEzL=&4 H=( IWLIHtAIALL$LH5/ HHLL$IMIxHIuLL=3 H=a( IWLeIHtAIALL$LH5<0 HHTLL$IMaIx HIHV I9F\Ld$xHDŽ$HD$pIHH/ HPtLHt$xLL\$(HL$L\$(MHD$Ix HIIx HIIx HIH|$ I$xHI$H|$H51 HGHH6IMH55 L9IFH;  IFHHHuIx HIL%5 A$tA$H+ Ht$xLHD$pHD$xlII$xHI$=M1LPIx HI#TH= E1Ld$fDIHn EtEHl$`LnAEtAELl$XLPADžPIx HIH=E1DI$xHI$RHtHExHHEgH|$@HtHx HHYH|$HHtHx HH H|$PHtHx HHH|$XHtHx HHH|$`HHHHTCfD3zfD#LfDfDfDLLLL$LL$mLLLL$IHD$1E1VDH tHl$`H\$XIHrL AtAL\$`LSHY tH\$PH\$fLq AtAL\$`LH tH\$XIH tH\$PH\$H (~AHL AT6IH ~H}AHNEOD@@1|LIHiARM1E1Ix HIMtIx HIMtIx HIDH=ZH'E1HHHH@LfDfDH{fDkfDLt$E1Qt$H=@LLL$+LL$LLHT$@Ht$pLL |gfL#IH#PH=LAPCD{ILLD$0L\$(nLD$0L\$(WLLD$(KLD$(ML8SL(eL-/ AEtAEH% Ht$xLHD$pHD$xMIIExHIE M 1L1Ix HI QgLIH RH=ۖFIA~Ix HI L L9EtEH) Ht$ 1L\$(H=' Hl$pHHD$xL\$(IHExHHEM HExHHEL AtAH& fLD$()D$pHD$xHD$L\$0HDŽ$H$L$)$LD$(HIHC+ H $ L\$0HPtHk' H$IW tHD$H' H$IW(tHl$xLLL\$0HHLD$(L$LD$(L\$0HIx HIVIx HI+L\$(H L%# H= IT$LL\$(HItAIGL\$(LH5*' HH[L\$(IM5Ix HIH I9ABfL\$0D$LL$(HDŽ$H$)D$pvIH>I$L\$(xHI$H5) LϺLL$(L\$0)LL$(HIIL\$0x HIL;% I9M9LL\$(!L\$(I$xHI$=H5] LL\$(HHIL\$(x HI~ILL$IqARLd$I1ILd$LE1\fD+cLL$ILL\$(YL\$(LGL\$0LD$(MNMFAtAAtAIx HIfInfInLD$(flLL$HDŽ$)D$pSLL$LD$(HIH&! HPLL$8Ht$ LLǺL\$0LD$(L$ILL$8LD$(HD$L\$0I>HI1LLD$0L\$(;LD$0L\$(@IARx HItE11LLD$LD$HL\$(L\$(MAR븾RH=E1膿LbLLHL\$(HLL$ L$JLL$ L\$(IASI1LL\$0LL$(AL\$0LL$(/HL\$(%L\$(5LL\$(LL$ L\$(LL$ LL\$ L\$ LLd$ML\$(L L\$(HIccH=LlLd$LL\$ L\$ H;< kLIHcH; H9uL;% hLAI$xHI$eLd$SEIx HIEf.eL5/ A}{Ld$LAaLL\$(LL$ L\$(LL$ SaH=ΌLE13Ld$1^H=Ld$L6]LL\$($L\$(L%LE1QH=VLL$8BLd$LAcL\$(IL赿^MAIiAtAEtEIx HIFfInL\$0D$LD$(HDŽ$H$)D$pLD$(L\$0HINH HPI1ALL\$0LL$(L\$0LL$(CAc>LL\$(ҾL\$(iI$DHI$L袾HT$L\$ L\$ L[MLd$LL\$(bL\$(LLLD$(LL$FLL$LD$(1WH=E1Ld$QH=mغAF1f.ddfA.FDA[SL\$(IL讽L衽Ld$LA[Ht$ LHL\$0LD$(L$2LD$(L\$0IILIBL\$(qLL\$0LD$(&LD$(L\$0\TH=a̹Ld$Ld$SILd$LAcIXE1SH=|Ld$zfAWH fAVHfHnAUATUSHHLfHpH)$fHnH-()$fHnH8)$fHnHflH|$)$fHnflHDŽ$)$fHnflH$HDŽ$)$Ht/HH謹H~IH rJcHDIHsJcHfDHKHtH$HK@tH$HK8tH$HK0tH$HK(tH$HK tH$HKtH$HU$H$1IMH$HkHHStY^\H$HmL$M<H$HD$(HH$HD$8HH$HD$H:IJID$IHID$MtvHjID$It\HPID$ItBH6ID$It(HIItJL$L$H I9H R D$0D$0I9Mt H5 I9t$t I9 H H9Et H9H I9Ft I9/HD$H5 H9pt H9lHDŽ$A$HDŽ$HDŽ$HDŽ$tA$EtEHDŽ$HDŽ$HDŽ$XHDŽ$PI9L$L$LAHF LΚHD$8E1E1H$HD$@E1E1E1HD$ D$E1HtHx HHMtIx HIMtIx HIMtIx HIMtIExHIEHP`IH@`HLJAtAHZ(Ht tH$Xt6H H9$PH$XLL$HT$ALL$HT$H$t6HE H9$'H$LL$HT$LL$HT$Ht H9Z(_I}`IU`HtHx HHMtIx HIHtHx HHdt$H=AH|$ tHL$ Hx HH]H\$@HtHx HHOMtIx HIFHt$8HtHx HH8MtIx HI/I$xHI$)HtHExHHEH$HtHx HH H$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HcHXHHK蚴ADIHL AATH dHt HAeH5F{H81脻XZH$HtHx HH!H$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HH+H=A$HD[]A\A]A^A_H$H$L$HD$(H$HD$8H$HD$Lc A$tA$LkL$AEtAEL$H HMH|$(YH|$8%H|$tH$H\$fDH$L$HD$(H$HD$8H$HD$Hk(EtEH$$@H$HD$(H$HD$8H$HD$Ls0AtAL$H$HD$8H$HD$HK8HL$(D$tHD$(H$먐H$HD$HK@HL$8D$tHD$8H$fDHsHHt$D$tHD$H$;fD+7fDfD fDIfDfD۰JfDHy HDŽ$fHnH H$fl$H9\$ Ht$H$XL$AH[ 舵IHD$LML=A H@HDŽ$AtAH$fLHHHD$P)$~H$IHtHx HHHDŽ$Ix HIM HD$Hx0Hx HHHD$L= H= LP0IWL迳IHtAL$IBH5 LHHgIH$M^Hx HH!L= H=; LT$HDŽ$IWL.LT$HIBtAL$ICLT$LH5 HHLT$IH$MPHx HHHDŽ$E1H HHD$I9BWfInfInǿLT$@flLD$ HT$HHDŽ$)$kLD$ LT$@HH$H H56 HT$HHptHt$LH$L$LD$@HLT$ HD$HUMLT$ LD$@HD$tIx HIIx HIaH$Hx HH-HDŽ$Ix HIHD$HH9H$H6 t(H9$fL$HD$ LHD$ fH5a H$$fHnfl$I$xHI$HD$Ht$H@ HPHVPFTZL% H= IT$L蓰IH-tAIGH5j LHHtIIMNx HI H I9B3HD$Ht$PLHLT$ HDŽ$H$zLT$ H$MI$xHI$M L$MAtAHt$H1H=o HL$LT$ HDŽ$LT$ IIx HI, H$Hx HH HDŽ$ML= L;4 AM9Du I9 EIx HI E1tHD$ HH9H H" !1HIMv!H|$ LL\$@)L\$@HI!Ix HIIxHIu L@Ht$(H;5L L9 H9 H誮rI9H H+" "1LIMq"LLT$XRLT$XHHD$@""Ix HIL H|$ LLT$X貨LT$XA[$AuNLU H|$@LLT$X胨LT$XA.AuL5& H|$@L٬ƒ-Ht$@H|$ IHr#Hx HIHL$8H; L9H9HQrHD$8E1AEtAEH5Q L9H I9EH H9N„xIUH;VF A8E HhH I} iIEDxHIE\HD$DxXI9\L# I@HH %IMMM HDŽ$IJHIp M@H9HHHII9yHD$D`\认IH"Ht$D$0tIBHt$H0HD$Hx Hx HH8HD$1LP WIH5'HD$Hx(Hx HHiHD$Ht$ H=E LP(脮IH&H@I9t H;8 :HD$Hx8Hx HHKHD$LP8AEtAEHD$Hx@Hx HHHD$Ht$(Lh@D$0tHD$HxHHx HHHt$(HD$H=A HpHL IH&H5b HHD$(LT$(HH$H&Ix HIHD$Hp8貤H$IH&Hx HHiHDŽ$HExHHE[HD$Ik H@0H$tHt$H1H= HL\$0H$HDŽ$脪H$HD$(DLT$(L\$0HDŽ$M%Ix HIL\$(蕪@"IL\$(IHD$MLP,(H@0LL\$(HpɸHt$1L\$(H9tHFH\$L\$E1IHHKH\$STsPH{PHC0pjΒH LA菢EL\$%H$Xt,H H9$H$XL\$迢L\$L$M+H H9$#H$L\$E1L\$Ld$LDM2D$Ix HI#HD$8E1E1H$HD$@E1E1HD$ fH} $XfHnH flH$$CL= AtAL$L|$8@L= AtAL$L|$(@H tH$IH tH$HsHa tH$H\$fD1E1fDHDŽ$HDŽ$IHRH RHMHATL LD @L= AtAL$L|$8@L=a AtAL$L|$(@tH$IZtH$H1LLT$۠LT$)HȠH踠L訠H蘠L舠LxHh[fDKfD; fD+fD-fD >fDHLLT$E1E1LD$E1՟H$LT$E1HD$8LD$HD$@HD$ L蘟 LL$膟LL$@LpL\$(LT$LD$TL\$(LT$LD$TLL\$LD$.L\$LD$LLL\$ L\$GLRLT$LT$Z@LT$ΞLT$@LT$趞LT$LL\$ 菣L\$ ALd$E1E1L\$HD$8HD$@HD$ D$HD$HH\$HHH$E1E1E1LLLT$ LT$ #L\$ L\$ 2LܝCLL\$ ʝL\$ H$E1E1E1f.HLT$E1E1荝H$LT$E1pLT$ LD$aLT$ LD$fHHNLٍH$HtHx HH;H$HtHx HH$H$HtHx HHH$HtHx HHH$HtHx HHoH$HtHx HHXH$HtHx HHA1H Lnjf.HƹHMH虌@HƹHnMLq@L LILHH$H$TfD1HH; {AfL$HD$@LL\$ HDŽ$zH9\$L\$ HD$@yLL$HHt$LAH L\$ }L\$ oH$H$L\$H$͠I9L\$LL$HLLAH -}H$:H$9H$9Hn H5gH8wHDŽ$HDŽ$HDŽ$HD$8E1E1HD$@HD$ D$DLLT$ LT$ @LLT$ ۙLT$ HD$8E1E1H$HD$@E1E1E1HD$ D$H=2 tHR H$LT$H$HDŽ$H$謀H$LT$IHx HHP HDŽ$MR1LLT$L\$okL\$LT$I HI HD$8E1E1H$HD$@E1E1HD$ D$ L虘HD$8E1E1H$HD$@E1E1HD$ D$PHHLL$HT$SLL$HT$}?LwH$IHD$1E1E1HD$8E1E1HD$@HD$ LLT$@LD$ ˗LT$@LD$ _觟IHD$8E1E1E1HD$@E1HD$ D$sLT$聚LLT$HH$ID$1E1E1HD$8E1HD$@HD$ HD$8E1E1E1HD$@E1HD$ D$ԞLT$IYvMzIRAtAtIx HI HD$IҺcHD$@E1HD$8LT$E1E1HD$@E1E1H$HD$ D$2H5 HaTH$L$HK H9$}L$LL\$ L\$ L7 H|$ LLT$@ELT$@u"H H|$ HHD$@蘙H5 H|$ HD$8Ld$E1E1HD$@E1E1E1D$%H$"fH $fHnH[ H$fl$H$H$H$*nH=n tH Ht$PH$HDŽ$H${H$IHx HH HDŽ$ML1LT$fLT$I HI HD$8Ld$E1E1HD$@E1E1H$HD$ E1D$L% HDŽ$A$tA$H LHt$PHDŽ$H$ {H$HD$ 3I$LT$HDŽ$xHI$ ML1LT$eLT$I HI- HD$8Ld$E1E1HD$@E1E1H$HD$ E1D$L=IHI!HD$8Ld$E1E1HD$@E1E1H$HD$ D$D$Ld$E1dvIH9uuuLIHp(H; M9 I9 LLT$XLT$XIx HI jBH5I L9H I9EH H9N„IUH;VF A8E H0H I} 11iIHH5 H'H5 LH5p LЗH5y L蹗H5z L袗1蓎HD$8H?(HDŽ$L聏HD$XAtAHDŽ$HD$XI;FE1H$Ll$`H$Dd$hIML|$xIH\$pHD$XI;FIHL$HLLL_p H$tL/HHHDŽ$跑 uHt$8HFH;F tHL$8HQHHHA`D$1E1E1HD$8Ld$E1E1HD$@HD$ MzMbAtAA$tA$Ix HIZHt$HfInǺLD$)$A^H$IHILHD$8E1E1H$HD$@E1E1HD$ D$ L\$ΎL\$LT$D$1E1E1HD$8Ld$E1E1HD$@HD$ ||$0H5 H9~H: H9F HE1HD$@XH H?E1E1H5S[H81ALd$E1E1D$AH$LLT$E1E1ލE1LT$E1D$ H$HD$8HD$@HD$ L%< HDŽ$A$tA$H LHt$PHDŽ$H$tH$HD$,I$LT$HDŽ$xHI$ ML1LT$z_LT$I& HI HD$8Ld$E1E1HD$@E1E1H$HD$ E1D$HD$8Ld$E1E1HD$@E1E1E1D$H$fIEALLT$@JLT$@]LMP>L@PHƹHH)HHHHB`L$HLL$H$ARL-IHHfLOMIWILOXML$MD$AtAAtAI$xHI$fInfHnͿLD$flL $HD$0)D$ RL $LD$HItxH HPLL$LHt$ LL$Ll$0SLL$L$HIkHI^LL$NL$I@IHILL$|NL$HBhHHHHxCIL@NL3N AIHILNALL$ML$LMHMLAHBhHHH7Hx,BILM@L{MIAA1E13HSMaLFM>AAxA@HH =AxA@HH H&TIAE1VLL$AwTIULLL$L$LL$LL$WAE1y vILAX@L$NL$HuIH H8UN^XOH1AHx HMHE1RHI$x"M1E1A>1A1]E11A5AWAVIAUAATILUSHHH5 DD$@HD$XHD$`HD$hHDŽ$HDŽ$HDŽ$(HDŽ$ HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$hHDŽ$`HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HHDŽ$@HDŽ$HDŽ$IFHHIMHɆ I9 fH $fHnH H$Hfl$8IFH5 LHHwHD$HwH9fH $hfHnH/ H$fl$IFH5 LHHmHD$HmH9fH9 $fHnHŌ H$fl$IFH5& LHH;HD$ HH9fHϮ $fHnH[ H$fl$IFH5 LHHHD$(HH9fHe $HfHnH H$fl$xIFH5b LHHgHD$0H/H9ffH $fHnH H$(fl$IG HL$LA~OHPHIAD$HA A$HAD$HD$H@HD$HD$ ~D$@AL$AD$ IFH5ը HHmHD$H=H^ H9PtHdLf.\FHD$HxHT$HH IFH5m AD$@LHH#HD$HH H9PHKf.HD$HxHL$HHAD$H? ID$0HD$E ID$8HD$8D$@IFH5 LHHIMIEH;/ IUHImEtEMu AtAIExHIEGH9I9HH$t"HC H9$(H$EH9fHt $fHnH H$(fl$H$t"Hڈ H9$H$DI9~fH $fHnH H$fl$A~FEAD$`fD@fDLHD$ fLIMgHD$0E11HD$(HD$ HD$HD$HD$8HD$D$@@E1MtIExHIEMtIx HIaBL``HH@`MMt$AtAMl$(Mt AEtAEH$t"HK H9$H$CH$t"H H9$(H$BH$Ht"H H9$H$HBH$t"HĆ H9$H$BH$t"H H9$HyH$\BH$ht"Hj H9$dH$h/BH$t"H= H9$_H$BH$(t"H H9$hJH$(AH$t"H H9$5H$AH$t"H H9$( H${AMt M9l$(K H{`Lc`HtHx HH:MtIx HI1MtIExHIE&t$@H=AE1>HL$HtHx HH?HT$8HtHx HH1MtIx HI(HtHExHHEMtIx HIH\$HtHx HHHL$HtHx HHHT$ HtHx HHH\$(HtHx HH<Ht$0HtHx HH.HHD[]A\A]A^A_fE1E1xDHDŽ$HDŽ$hHDŽ$HDŽ$(HDŽ$"HDŽ$(7HDŽ$LHDŽ$aHDŽ$HvHDŽ$H?Hx?Hh?HX?LH?H8?L(?H?H?H> L>>fDL>L>LLD$H>LD$H/f@|fDf1E1AD$`H$HD$0H@HD$@HD$(~D$@@AD$Pt"H H9$ H$Q=H$t"H_ H9$() H$$=H$Ht"H2 H9$ H$HI|$`I\$`HtHx HHMtIExHIEXHtHExHHE-HD$HD$ HD$(KDHEyhE11fD$HD$HD$ IHEHD$(x=HHEu3HA"%!HHEuH%@A"D#$HD$HD$ IHEHD$(IA"HILS%fDA$CDH0%L %%sfDL%L$$fDHtHx HHYMtIExHIEHMtIx HI<H|$HtHx HH+HD$H|$ HtHx HHHD$ H|$(HtHx HHHD$(A$HD$ID$`HD$(ID$`HD$ HHHHL$tH@(HD$(Hh]V@HHEH# DHH!k#Ga#LT#LG#=#3#ff.AW1AVAUATIUSHHHD$hHD$pHD$xc#&HD$ HA$tA$H$01H=b HHL$0HDŽ$8HD$HO(HI$xHI$> H]HExHHE AD$XD$H- H=xw HUH|&IHtAIGH5 LHHIMIx HI H-O H=w HUH &IHtAIGH5 LHHXIMIx HIH] E1II9FH| LD$HDŽ$@L$0H$8$LD$HHD$HW~ HPtHD$HHL$LLL$@H4LD$%MLD$HtIExHIE Ix HIHL$Hx HHIx HIH_H$`1DŽ$H|$XHHv\ HD$H9HT$XH$H$H#  fDo$`fDo$pfDo$fDo$fo$fo$D)$0fo$fo$D)$@fo$fo$D)$PH$`)$fo$fo$ )$fDo$HD$D)$`D)$p)$)$)$)$)$)$D)$D)$D)$D)$D)$)$)$)$)$)$ )$0)$@)$PHwH$I|$Ld$(~ VHD$0H$~ H HD$@H$fIH\$P\$HD$8 Mfև MA9D$h` ID$@IT$PLpLhAD$q2HBHD$CHH;D$@; A9E$t0AE$IuLcL|$8L|$0OIAHD$(Hx A9F$ HL$PAD$hH9L$tLd$MSHD$Ld$(\$H\$H9tHøC8EtEHc|$IH<fHnfHnſHDŽ$@flHD$)$0^ LD$HIH~ HPtHX Ht$HLLD$H=~ HH$@W"HILD$Ix HI8IExHIE/MIx HIwEtEI$h!3 HHl$ [AF$IvLcLl$8Ll$0GHT$PAEHD$(Hx AD$hH9T$NWDHBHD$LMIƍCHH;D$@HD$HT$H9tHA8)EtEHEH5} HHHIMIGH;/X  H;V $HPpH HzHT$ 1PHGHT$HD$0HLRL\$0IIx%HIuLLD$LD$f.MHD$D$MILd$(HD$LD$(LD$(HD$hHD$pHHD$xIx HIIMI$1HD$ H;H=7HD$ U@LD$VMLD$HD$hHD$pHHD$xtIExHIEHU D$1HD$Ix HIMtIx HIHChL0HML;t$MnAEtAEM~(Mt AtAHL$xHT$pHHt$h I$2HHChH8L0b HtHx HHaMtIExHIE6MtIx HI L|$pLt$xLd$hMt M;w(oH{`L{`HtHx HHMtI$xHI$MtIx HIHD$hHD$HD$pHD$xHH;D$ Ët$H=uHL$A8 HHExHHEHD$ H[]A\A]A^A_HL$Hy$@E1E1E1DfHHHHuH/DL LELLD$efDMGAtAIx HI I@H;ZS H=z I@HGLD$H)A@HHLD$IMIx HI IGH;R Lhz IGH\H)AGHHIMmIx HI fInfHnſLD$HDŽ$@fl)$0?LD$HI~Hw HPtHQ Ht$HLLD$H=w HH$@8LD$IHExHHE Ix HI~ Ix HI MkIx HI H|$X1D$dHH;l$c HT$XH$H|$dH8fDo$`fDo$pfDo$fDo$fo$fo$D)$0fo$fo$D)$@fo$fo$D)$PH$`)$fo$fo$ )$fDo$HD$D)$`D)$p)$)$)$)$)$)$D)$D)$D)$D)$D)$)$)$)$)$)$ )$0)$@)$PH H$HD$0H$HD$@H$HD$8HD$(HxX IHD$ sfHdLLD$(LD$(fLnLLD$(LD$(;fLLD$(1HN LD$(D$HD$LhLXKfDL8)L(fDfDo$pfDo$H$`fDo$fDo$`fDo$fo$D)$@fo$fo$D)$0fo$fo$D)$Pfo$fo$ D)$`fo$)$D)$p)$)$)$)$)$)$)$D)$D)$D)$D)$D)$)$Hl$)$)$)$)$ )$0)$@)$P*f.L5)k H=e Ld$(IVLIH tAEHL I9E Hk H$8LMHHDŽ$0H$8!IIx HIJM! 1LgIx HIcD$E1E1DLD$(FLD$(HD$hHD$pHHD$xefDLLD$LD$+Lx#HhLXH@hHH@H1LIIGLA)'HQK D$E1E1HD$HD$HD$hHC`HD$xHC`HD$pHHHHL$htH@(HD$xHfDHtHxHHu NfDMt#IExHIEuL)fMtIxHIu LH|$hHtHxHHu HD$hH|$pHtHxHHu HD$pH|$xHtHxHHu HD$H\$HD$xD$H9H xfL-q AEtAEHf LH$8HDŽ$0H$8qHIExHIEH1HUHExHHEH I E1E11HD$D$HD$DH\$HHHHu {HUHHHH D$E1E1HD$HD$_LLD$ LD$DI HQH D$E11HD$HD$_fL iHUHHHG D$E1HD$HD$ffDo$pfDo$H$`fDo$fDo$`fDo$fo$D)$@fo$fo$D)$0fo$fo$D)$Pfo$fo$ D)$`fo$)$D)$p)$)$)$)$)$)$)$D)$D)$D)$D)$D)$)$Hl$)$)$)$)$ )$0)$@)$Pf.LLD$ LD$ fLLH1F D$1HD$HD$B@LLL$ LL$kLLL$ LL$gfLE1u D$E1DLX [HH tMnI^AEtAEtIx HI>IA1fDLcD$HD$hHH E HD$pHD$xHD$HD$NHD$MLd$(E1D$IHD$HLD$0LL$fLD$0LL$ ;IHT$HHHHH;C LLD$VLD$IrfHD$E1E1D$@LH;qC LLIAtAIMDžLk A`AX@HC LD$LH@`PLD$IDLD$0Ld$(IID$LD$0HD$hHHD$HD$pHD$xHD$D$E1HHH)HHHH7C LLH@`I~HD$Ld$(E1E1D$HD$fD1HHLHD$LL$IIHILLD$LD$iD$E1E1& L9OIHIkDLLD$IA1LD${I]M}tAtAIExHIEH` Ht$HLH$0H$8SIH'HHH0 L#LHbA D$E1E1HD$HD$pBH=B1ӯIHD$D$HD$L|AAGHH AAGHH HhH\$H;HH.HV!E1yH=}pEAH=1A@LD$XyLD$IAXGYILXpBH=-1辮I ILd$($D$HD$hHHD$HD$pHD$xHD$ff.@HHHuRH)fHH=? E1L 7RH ,HH8H51; XZ1HfHyxtHH=踣fDAWHe AVAUATUSHHHHD$HD$ HD$(HLAHMHH}HH> HvL SAH gH5?H81} XZH|$HtHx HHM H=1HH[]A\A]A^A_HtHT$HGFHL$HT$ HMHѳH4IPY^lH H|!Hl$$H H.EtEHl$HEH5c HHH-HHHx HHH;= tjHEH5?c HHHTHYH|$HHHHHD$HD$L=I= AtAL57e AtAL-e AEtAEHEH5b HHHbIMA$tA$H=@c Ht$ 1HLd$ HD$(II$x HI$xHI$MH; LD$0HD$ HD$(IEH;SU 0H@8IDHH\$(LD$1LHHLD$IIx HIIExHIE~MMHEH5za HHHOIM1IFH;T Ld$(HD$ Ll$0H@8IH1HLHII$xHI$zIExHIEDIx HIMHLLD$(LD$HD$ LD$IIx HI]Ix HI9MtvHEH5A` LHHHSЉI$x7HI$L@fDxHI$ H= {1@HXH\$(1ɺLHLD$LD$I1ɺHLIvfD }fDHLUILLD$LD$fLuLOfD fDHT$Ht$ HL fLLD$sLD$fLLD$SLD$fLLD$3LD$ofLLD$I$LD$DLLIE0  Ix HIMtIx HItJMtI$x HI$tCMIEHIEL`LPfDL@fDL0tE1佑 PIF0E1 0 #fDIE1E1E1 D@AWAVAUATUHSHgHT$0Ht$(H|$ sHExHHEH1HD$8HD$@HD$Hz]IHH}HtF>H}HT$Ht$[dH}T$HED$H}0H;=/6 t(HG1HHQHx HHHHHHExHHEH|$ HT$0Ht$(H} HtHHE x HHH}(HtHHE(x HHH}0HtHHE0x HHtH}8HtHHE8x HH_H}@HtHHE@x HHJH}HHtHHEHx HH5H}`HtHHE`x HH@H}hHtHHEhx HH+H}pHtHHEpx HHHHtHDžHx HHtgHEHH@HĘ[]A\A]A^A_fDH7IHufDH=1T뒐{fDkfD[fDKfD;fD+ fDfD fDfD9fDL-iQ H="L IUL&IHtA|$IH |$ҨIH:HX IUH|$`Ll$hHD$`HR Lt$xHD$pHrW H$IFHT$褪HHIExHIEIx HInH1 I9GHt$XLH\$XMHHD$PIHx HH+Ix HI$Mt%1LIExHIEu LqHD$8HD$@HHD$HHChL(HML;-1 iMeA$tA$Mu(Mt AtAL|$8HL$HHHT$@LHL$H$H$HL$0HHHChH8L(|HtHx HHSMtI$xHI$(MtIx HILl$@Ld$HLt$8Mt M;e(H{`Lk`HtHx HHMtIx HIMtI$x HI$t`HD$8H=xHD$@HD$H=@IExHIEuLfDE1E1DLfDLxlkFfDLXLH;fDHtHx HH5MtI$xHI$$MtIx HIH|$8IH|$@HD$86H|$HHD$@#HD$HDLH蕊LH{LnLaJLLa HD$8HD$@HHD$HIx HItIMtIEx HIEtBMIHIL@LfDLL:IH- E1HD$8HD$@HHD$H47*^LjH{E1JtH9>H<$-IH<$L9uEZff.AWAVAUATUSH8H<$Ht$HHT$`HD$HD$XHD$ HD$HD$8HD$0HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$D$PtH$1HTHHiH $D$TtL<$H=8 H$ 1HHDŽ$(L$ rHD$(HIxH4$HH! HD$HtHExHHE L%; H=0 HD$(HD$IT$LHH{ HD$ tEHEH5_7 HHHILd$MY HD$ HxHT$ HHo HD$ H5k I9t$H$8IL|$H|$LHfInD$H)$0oHD$(IMtHt$Hx HH HD$HD$HxHT$HHHD$MH|$HLd$HHx HHID$H5.: HH=LHHl$(HpH5= H9HEH;= !HEHHHucHExHHEH > HT$$tL|$Hh8 H$HHDŽ$@LH$HHD$(HD$IIxHt$HH'HD$M%1LNI$%HH\$I$rLeDH$HHHHD$HD$0HD$8HD$XH|$8tH\$8Hx HHJH|$0tH\$0Hx HHH=F1H\$HtHx HH]!H\$XHtHx HH"!H|$HtH\$HHx HH H8[]A\A]A^A_1HHt2LHIHExHHEf(L|$(MH|$(HDŽ$HDŽ$HHDŽ$HDŽ$HDŽ$HDŽ$tHt$(Hx HHgH|$tHt$Hx HHH|$ tHL$ Hx HHH|$tHt$Hx HHH|$8tHL$8Hx HHH|$0tHt$0Hx HHHChH$H8HH[H;=h :HWtHG(Ht tH$H$H$H$H$HH$ӡH$HH$L$IHChL$H8HMMHtHx HHMtIExHIEMtI$xHI$L$L$L$Mt M;e( H{`Lk`HtHx HHMtIx HIMtI$xHI$^HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HD$0HD$8HD$HD$ H|$ tH\$ Hx HHH|$H\$HHHHf.Hx HHK111HrHHH HuHhL["LN0DL7-WL cHtHx HHMtIExHIEMtI$xHI$~H$HtHx HHjH$HDŽ$HtHx HHGH$HDŽ$HtHx HH$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HC`HDŽ$HC`H$H7HHH$tH@(H$H LHD$ HHv6Hvl111vHYHLH?5>H(}HExHHEID$H5o3 LHHHHl$(H1ҾH-HD$IH\HExHHEHD$(H$Lx L;= IIGHHL$(Iω$tIGH52 LHHHHl$HHD$(HxHL$(HH31ҾH[HD$(IHHExHHELLTHD$IHSHD$HxHT$HHHD$HD$(HxHL$(HHkHD$(L;- @L;-[ @u L;-  @Ht$Hx HHCID$H51 LHHHHl$HH52 H9dHEH;T /DuAHExHHE{HD$E/H$D@XEqx\0H H9H xHD$ H=. HD$(IHdH5t* HtmHD$8IHDIxHT$(HHuHHD$8H5 H9pI~D$ fInԿHDŽ$fl)$$HD$(IHH* HPtH H|$8LLH,H$(H|$ HD$HlIHD$ x HIHD$(HD$8HxHL$8HH]HD$8H!H$Hx HW HGHHH9H9UtUHWH,HHGHExHHEH5`# LHD$HD$(IH$tAH=) fInH$P1HD$`)$PLHD$HkHD$(HD$8HxHt$(HH\HD$(H&H5" LSHD$(IHHHHD$8IHHExHHEsHD$(HxHT$(HHrH=+ Ll$XHD$8HD$(HD$H{H5' HIjHD$ HHXIxHL$HHH5! LvHD$H"HI]HD$0IHIxHt$HHH=<+ HD$HH5* HIiHD$HD$pHIxHT$HHHD$IHzH tfHnHD$LLD$p@HD$IH;HD$HxHL$HHBLLHD$IHHD$0HxHt$0HHHD$0HD$HxHT$HHH= * HD$HH5& HIhHD$0IHIxHt$HHHD$ H  H9HIAffIn޿HDŽ$)$~D$(fl)$MHD$HHH%& HPtH) H r! L$HU tH~% H$HU(tH H|$ LJ<HH$H|$(HD$8IgHD$HD$(HxHT$HHHD$HD$0HxHL$0HHHD$0HExHHEHD$HD$ HxHt$ HHxHD$ ML;% Ld$[LLxqHE4H tH H$H$HxCH/H$Ld$HHDŽ$@It$ID$HD$Ht$D$|tHT$$tI$HH$0AI$LH;H ?H IHtJH; AH;k DL;= L"AIEmIHD$H=& _HD$(IHH5# HeHD$ HHmIxHT$(HHH5( LdHD$(H711HIuHD$8IHIxHL$(HHH$@Px$HcHD$(HHD$0HD$hHHD$8fInD$(@H=x% SHD$(IHH5+" HdHD$8IHaIxHT$(HHHD$ H5E H9pIA~D$HDŽ$D$h)$HD$(HH H ! HHtH|$ LHJ<L$H|$HD$IccHD$0HD$HxHL$0HHHD$0HD$8HxHt$8HHHD$8HExHHEHD$(HD$ HxHT$ HHHD$ M L;-  H5  LLLl$HD$EH$Hp0Ht$0$tL|$0H= 1ɽH$`HHDŽ$hL$`LIHD$8bHD$0MSHD$8HxHt$8HHH$H\$8H@HH$< H4$H\$H~vXHC HKLJ L|$IG I_L MYL4$1L$01H.IG HI~H@HI9H$1MHF$I~H…uH H{LHH LdŅ@`YLSgLFu<2(HHEH HHHH$0A8LH$HxSH4$HFV\ǀ\ H~(H;= GHW HGHt$HHH9TH9Kډ\$@tH\$HWHHHGHD$H$H@ HCTTH{HH JHɾHCHǀ ? HnH2 H~ H;= HHW HGHHH9fH9]HL$ډ\$DtHL$HWH HHG%HHpH$HxH- H= HD$0HUHIHHD$tA$H$HX0H\$ D$xtH\$ H=2 H$p1HHDŽ$xH$pHD$HHtH\$ Hx HHHD$ HHD$H) L$IH9XEH\$0fHnLLH|$fHnfl)$*HD$8IHtH\$0Hx HHHD$0HExHHEKHD$HD$HxH\$HHHD$M1LI$HHD$8I$H|$(HDŽ$HDŽ$HHDŽ$HDŽ$HDŽ$HDŽ$tHL$(Hx HH~HD$(H|$tHt$Hx HH:HD$H|$ tHL$ Hx HHHD$ H|$tHt$Hx HHHD$H|$8tHL$8Hx HHHD$8H|$0tHt$0Hx HHkHChH$HD$0H8HHH;=d HWtHG(Ht tL$L$H$L$H$LLLHH$ƇH$H$L$L$H@ǀ HChH8HHtHx HHMtIExHIEMtI$xHI$L$L$L$Mt M;e(*H{`Lk`HtHx HHMtIx HIMtI$xHI$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$ HxHHu=111KHt$H0LL޹Lѹ-HĹH跹'H誹DH蝹H萹H胹uLv;lH HgkH5H81sH H>kH5\H81J HXHD$IHsLLLHP9Hϸ LL϶L貸3HD$8 H蒸H腸HxoH\$(HtHx HH^H\$HZHHHH"HxHXH@HD$H\$0$tH\$$tI$HL$AI$\L詷OH;e 5H*IH.H; AH; DL;5 L;AIx HIEHExHHEPE H]LL޶THѶLĶHH$诶H$HH$蒶H$HH$uH$H5 Lt2HUHD$ H= HD$IH*H5U HUUHD$0HH IxHT$HH#H=d ?HD$HH5 HITHD$IHIxHt$HH HD$0H 1 H9HIAffInHDŽ$ )$~D$ fl)$覸HD$HH+H~ HPtH H L$HU tH H$HU(tH+ H|$0HLJ<H$ kH|$ HD$8ISHD$HD$ HxHT$HH5HD$HExHHE1HD$HD$0HxHL$0HHHD$0Mt$L;%_ H5 L2rmH"}H轳IE~HIqL蔳[zHWH H5H8wEE1f.:Z-ZAf.EDEL+H:H\$L$AHH`H5~ LqItjH課H蝲L萲H胲Hv'HiaIEHIL@E1ff.EADEoHHI빐LHHHH@HD$ HL$$tHL$ $tHEx4HAAHEH腱 HxE1AH]HPQLC5L6OH)aH{HD$ HPH@HD$ HT$($tHL$ $tHEx HHEt\E1AH賰H覰FL虰L茰LHrAHE1A\QHpH@HD$8Ht$ $tHt$8$tIx2HAI)L1AH|$h迯L貯H襯H蘯4HHH@HD$0HL$ $tHt$0$tHEx4HAAHEH2L%E1AH HHdH H`H5{H81pH谮ff.UH HSHHHHD$ H-HHD$HD$HD$(HD$0HLAHMHHHHH^H ^L H&HNLNHSL@H H`H5tH81XZH|$HtHx HHH|$HtHx HHH=|X1HH[]HVtHT$HtHT$HGHL$HT$ HMHV_H4IP?gY^@HT$HWH"H|HHt H|Ht$HH|$Ht)Hx"HHuHD$诬HD$f.H|$H HHHHD$pHD$fDHtZH$HVtH6HT$tHt$MHL .ASH m\ fH6tHE Ht$tHT$D˫-fD軫fDH tHT$fDHT$Ht$ HL ]cUfAW1AVAUATUSHHHHDŽ$HDŽ$HDŽ$HDŽ$8HDŽ$0HDŽ$HDŽ$zJ HD$ H[tH$1H=} HHH$HDŽ$HD$(jHHx HHcHJHExHHE$H Cx$t H H{pHx HHH| H- H=f HCpHUHfIHtA$ID$H5 LHHH$H<$I$xHI$yH-2 H= HUHIH;tA$ID$H5l LHHIMI$xHI$%H$H H9P0HH H$HHL$LT$HDŽ$H$wLT$IIx HIHExHHEM0L;= H{`Hx HHL{`1HHH{hHx HH H{HkhE1HAHA<&Lc`Hc{xID$LppM$I~\HHHA HHNIHExHHEuMLLAVIIExHIE9ML; H{`Hx HH HCpH; LS`HD$@1HD$HtH- H=~ HUH肫IHtAEIEH5 LHHIMIExHIE Hc{TPIHtH-= H= HUHIH~tA$ID$H5 LHH|IMI$xHI$H I9GH$LHL$L$LHDŽ$L$tL$HD$IExHIECIx HIHExHHEH|$HD$H; H$L- tL9$H$莤H fL$$fHnHfl$HHKTHT$HH$HD$PHt$H1~fHH9uHCE1L$L M I<$CPH{It$R9CT~6HT$HRHHL$PHHHHHHD$HH$H1HHMtIx HICIt$H{E1D$0D$H\$XID$IcHD@hxL5 AtAHclIHLLH$HDŽ$H$ L$HIx HIB Ix HI> HHU HEHHH9F H9= tHUHHHEHx HH@ AD9|$H\$XHEHHHT$HBHR HHH9H9UtUHL$HQH,HHAM$$IH貦HD$ HD$@g1HD$(HD$HD$HD$;KfDH8L(zHLLT$LT$fLhHhAEtAEEtEH$HxHHuHLT$诡LT$H Ht$(HL$L$L$H$upL$IIEHIELL$HL$lL$0D$0)LLHRsfDHPH H5vnH81E1E1E1E1HD$0H$HD$(1HD$HD$HD$D$@tLT$HLT$HHDŽ$HDŽ$IHDŽ$MtIx HIMtIx HIMtI$xHI$H $HtHx HHMtIExHIEHT$0HtHx HHIFhL HMpL;% CIt$Ht$ $tMl$(Mt AEtAEH$H$LH$VkNHr=HIFhH8L HtHx HHYHt$ HtHx HHKMtIExHIEH$L$L$Ht L;c( I~`I^`HtHx HHMtIExHIEMtI$xHI$bHDŽ$HDŽ$HDŽ$葜L``HH@`MM|$AtAMl$(Mt AEtAEH$t"H H9$H$՜H$8t"H H9$xH$8訜Mt M9l$(H{`Lc`HtHx HHwMtIx HInMtIExHIEct$@H=hlE1ЙHtHExHHEEHD$HtHxH\$HHH?HD$HtHxH\$HH4H|$tHL$Hx HH#HL$(HtHx HHHĘL[]A\A]A^A_I$xHI$uL&fDE1E1DE1E13DHDŽ$=HDŽ$xR˛fDL踛L訛H蘛HD$XLT$LHD$({HD$XHD$(@H`HPH@L0fH tLLLHLКL賚>fDL蠚F蓚fDH耚s"fDL$_L$fDLHL8HD$0E1E1E1H$E1HD$(HD$HD$HD$D$@ibfHDŽ$IF`HDŽ$IF`H$H}HHH$tH@(H$HSHAHtHxHHu NfDH\$ HtHxHHuH&fDMtIExHIEu LH$HtHxHHu ޘfDH$HDŽ$HtHxHHu誘f.H$HDŽ$HtHxHHurfHDŽ$D$@A[HHHHD$0E1H$HD$(E1E1HD$HD$HD$D$@nl@HßH$f.HD$0E1E1E1HD$(1HD$HD$HD$D$@nLL}LL$TL$SHHH HD$0E1fDHH-IHl$(H\$XE1MH$E11HD$0E1HD$D$@BfL踖蛞IOHD$0E1E1@LH荔HD$0E1E1H$@HH~HD$0E1E1H$HD$(1HD$HD$D$@LH5 LT>ME1E1E1HD$0H$HD$0E1E1E1H$E1HD$(HD$HD$HD$D$@of.H$HDŽ$HdHD$H; LL$(Ht$HAH ~wvH$H$It$6H ߩHcID$Hx蹓H{H訔L蘔LL$脔L$LL$lL$#HD$0H$!f.Hl$(H\$XE1E1H$E11HD$D$@Lt$0H5 LL$-RL$^HD$0E1E1E1H$f1HE1E1 fE1E11HD$0H$HD$(HD$HD$HD$D$@wfDHl$(IE1H\$XH$E1E11HD$0HD$D$@1E1E1E12H$E1HD$0HD$(HD$HD$HD$D$@tKH$E1E11HD$0E1E1HD$(HD$HD$D$@}苕HHH<HD$0E1E1E1H$HD$(HD$HD$D$@D I+HSIHIlәI|H$E1E11HD$0E1E1HD$(HD$D$@f.MgIoA$tA$EtEIx HIfInHt$(fInHflL$L$)$(`L$HD$I$*HI$LL$L$LH{3H5y H OH$H$L- L9$EH$H赏^H$H$H$H- LfH$H$$H$fHnH| flH$$cHDŽ$HDŽ$HDŽ$LT$E1E1E1HD$0H$H$E1E11HD$0E1E1HD$Lt$(D$@H$E1E11HD$0E1E1Lt$(HD$D$@LL$HL$HEH5 H8H9tEHGH; xHGHAHu E1AAE1而IHHExHHELfDH=9 Lt$XIHz H54 H-IHIExHIEHc{PIHÑH$HHw tfInfHnH$fl@H= tIHH5Q H9-IH IExHIEH x 1HI9O L4$HL$(fHnLL$fInH4LT$0fl)$m\HHD$,ILT$0x HIIx HI Ix HI H|$HD$H;_  H$8L-A tL9$x\ L$8LfHv L$x$8fHnfl$hH$p1Ld$E1Hl$`HLxHCHT$hL H$HD$pH fHnfl)T$0IMtIE8HgAUhtIu@H{E9uhECuhH$ID$ IcH;A$tA$H|$`]+H$8t%H+ H9$x1H$8HH fol$0fH$xH $8$hD$`t H I$xHI$A$tA$C|6HcٍHHc{PHD$`LD$`HI' fInfInĿLD$hflH$HDŽ$HD$`)$cLT$`LD$hHHH HPtH Ht$(HLT$hH= LD$`HH$RLI)LD$`LT$hIx HIKIx HINHExHHEEM Ix HI5A$tA$L;%V P H$8t-H6 H9$xu HDŽ$xH$8HH fo|$0fH$x$8$hH$pLd$`HLxH HT$hHxH HHKP~9H4$AUhHH HT$hH$8DHLH9uH{H4$ Iu`HqIE8H|$H&Hl$(E1E1E1HD$0E11H$HD$D$@#H;d ,IH~ H; AH; DsL; fLL$9L$AIx HI[E5Hl$(E1E1E1HD$0E11H$HD$D$@kHL$߇L$LHl$(E1E1E1HD$01H$HD$D$@HDŽ$xH{1$yD$HLL$ILd$xLd$pHC`HcI}LHLtL'I}LIղIwI}AŲE9uT~=Ht$PHIcHH 0HHH 2Ht$HHHHH$HHHH9,$tLd$xD$IL$L衆:HD$0E1E1H$HD$XD$@1HD$HD$(L[HNH<$@LT$0LLT$)LT$XHD$0E1E1LLT$`LT$`LHLՅIcHl$`SIHqH HH$HL$HHD$0RIx HILt$0H|$LIH Ix HI3L; =H$8L-| t#L9$xH$8L$;L$fH L$x$8fHnfl$hHD$HxHT$HH\L$/L$HIAtAHS`MWtIW HShtIW(HT$$tHD$HT$IG0$tHD$HL$IG8zEL$HH$t*HV H9$H$L$L$H$8t*H! H9$xoH$8L$L$HHEH\$XLT$H\$(L$8HDŽ$xL虂HD$H; LL$(Ht$LAH( eH$H$H$H- fH$H$$8H$fHnH' flH$x$hHDŽ$HDŽ$HDŽ$LT$E1E1E1HD$0H$Ln6La=L|$IE1E1HD$0H$HD$XLHD$(HD$@D$@HD$HD$0E1E1E1H$uHD$0L|$ME1H$L|$MHD$XL$E1E1HD$0Hl$HD$(HD$@D$@HD$IoMgEtEA$tA$Ix HIM1HD$0E1H5 Hx?H$8L$8L-b L9$xL$8L$IEHILˀ'f._H5I L>H$8H$8t%H H9$xVH$8HLL$(LHAH, bH$H$H$fo\$0H$fH$H$H9 $8H$x$h~HDŽ$HDŽ$HDŽ$HD$XLT$E1E1HD$0E1HD$(HD$@LH$HD$D$@E1E1L$8L$HDŽ$xLj~L$L; "LL$(LֹLAH L$aL$H$H$H$ʄHD$L$H;" +LL$(Ht$LAH L$aL$H$H$L$H$|L$HDŽ$HDŽ$HDŽ$HD$0HD$XE1E1E1H$HD$(D$@HD$XE1E1E1HD$0E11H$HD$(D$@_H$BH$5H$(H H5ZJH8~L$/fH> $8fHnH flH$x$hLY}HDŽ$xHD$XLT$D$@HD$(HDŽ$H|$0L$}L$H5 LL$,;L$H$8L$8L- L9$xZL$8L$L{L$nHD$XLT$E1E1HD$0E1H$HD$(D$@HL$U|L$LLT$M<|LT$1III$HDŽ$xHl$(E1E1E1HD$01H$HD$D$@KIx(H\$XLT$H\$(Ix(HI HD$Hx-H\$XH\$(HD$HxH\$HHHD$XHD$(@HHHuRHfHH- E1L 'gRH +H!-H8H5A1+XZ1HfHyxtHH=,fDAWAVAUATUSHHHIHHH1HD$HD$ HD$({~H~tH= Ht$01HH\$0HD$8 HHx HHHRHEx HHEtx3H{HwHxH3}HH& tHH[]A\A]A^A_fDHzf.Hy{HxyPHHm E1L geRH \)HiH8H5*@1kXZ1HH[]A\A]A^A_1HyNH$\HH=iH$,(H=tHuHH1[]A\A]A^A_fDCwHD$HD$ IH@hHD$(L(HML;-ߴ yImEtEMu(Mt AtAL|$HL$(LHT$ LHL$H$[DH$HL$Hn}9|HID$hH8L(HtHx HHLHtHExHHEMtIx HIH\$ Hl$(Ll$Ht H;k(I|$`I\$`HtHx HHMtIExHIEHtHExHHEHD$*HD$ HD$(1@/#fDIExHIE E1E1v_fDLvgHvLvvfDHvBLLxIHtHx HHHtHExHHEMtIx HIt`H|$H|$ HD$}H|$(HD$ j/HD$(LuHHs0Luu\HujfAWH AVAUATUHSHHD$pH-HD$xHH$H-HD$PHD$XHD$`HD$hH$HDŽ$H LAHM H H_HcHfDHVtHT$hHVtHT$`HVtHT$XHtHT$PHGHL$PHT$pHMH&H4IP.Y^L|$`M H\$hH HMH|PNHEHt7H|P5HEHt"H|P HHt H|P Ld$PLt$XHD$8AHD$@HD$HtAID$H5V LHH[HH=HExHHEo L-د L97L;= L;=~ u M9 H- H= HUHwIHtAICL$LH5 HHL$IIMx HICID$L$LH5 HHL$IML$0pL$HIHPAL:tALrH 1HH$I9@fInfHnſLD$flLT$HT$HDŽ$)D$puLT$LD$HIH p H5 HT$HHtHD$pLLLT$H$H4$LD$HHD$yvHLD$LT$H$t6HEx.HHEu$HLD$LT$rqLD$LT$Ix HI Ix HI Ix HI H<$Ix HI L6 AtAID$L\$LH5w HHWL\$IMVIGL\$LH5 HHgL\$IMfIx%HIuLLT$L\$dpLT$L\$ID$LT$LL\$H5 HHtL\$LT$IMLI@LT$ LL\$H5 HLD$HVLD$L\$LT$ IM)Ix%HIuLLT$L\$oLT$L\$ID$LT$LL\$H5" HHo L\$LT$IMI@LT$ LL\$H5 HLD$H LD$L\$LT$ IMIx HIT fLL$ )D$p)$)$fIn$L\$LT$HDŽ$D$x8rLT$L\$HLL$ IH HPtH L$IP tH6 L$IP(tH HK H$IP0tLLHt$xLL$(HLT$ LD$L\$H$rLT$ L\$HLD$LL$(Ix HI Ix HI Ix HI Ix HI Ix HI H A$tA$fHnHt$H= 1HfInfl)D$psII$xHI$M6Ix HI ID$H5 HLHH Ѕ ID$H5a LHH HHHx HH'H9twEtEHt$1H=N HHl$pHD$x)rIHExHHETL4$MI$xHI$AEL4$AEL4$f.HHL WAUH :Hէ HH52H81rXZH|$PHtHx HHMH|$XHtHx HHH|$`HtHx HH1H|$hHtHx HH`H=:E1gHĸL[]A\A]A^A_fHHHHHVH FHMHUL VLDID$H5L LHH`HH%EtEHD$pfInH= 1fHnHHH$flHD$)D$ppIHEx HHExHHEm1MIx HIYA$tA$ID$H5x LHHIM/fInHt$1L $H= fInHfl)D$p[oL $HI$xHI$NIx HIHHExHHEAEt AEfIx HIlH|$PHtHx HH^H|$XHtHx HHH|$`HtHx HHH|$hH}HrHHeh[fLhm1fH=8E1eH&HEHHE H$hHh1E1LvAtAL&Lt$XA$tA$Ld$PMHL- AEtAELl$hLL- AEtAELl$hL2L= AtAL|$`@SgfDCgfD3gfD#gfDH^tH\$hL~AtAL|$`D1@L= AtAL|$`@ffDffDLffH~fCHqfHE9L`f7LLD$NfLD$ LLD$7fLD$L%fLL $fL $mLT$L\$I@E1仅Ix HIMtIx HIMtIx HIL4$MtI$x HI$tOMI1x HItLMIHILCefDLL $,eL $fDLL $eL $fDLLD$LL$LT$dLD$LL$LT$ DLLD$LL$dLD$LL$LLL$dL4$LL$DE1HT$PHt$pHL ffD;lHL% A$tA$H Ht$xLHD$pHD$xjKHI$xHI$`H1HI6HExHHEp1WHcLcLL$cL$LscofH觬HH,kHkL$I3L4$E1E1E1һE1!jI4L4$E1E1仄2jL$I0L4$E1ɻ1XML4$E1E1LLL$ LT$L\$bLL$ LT$L\$IhMxEtEAtAIx HIH$MML4$E1I껄SLLD$ LL$bLD$ LL$L\$4LLD$ LL$L\$aLD$ LL$L\$LLD$L\$aLD$L\$LL\$aL\$ LaLa1ciL\$IE1E1E1һBHﻁ1DaL7a1iL\$IME1E1_1HD$8HD$@IHD$HNIFhL8HMM9kIOHL$D$tMo(Mt AEtAEHL$HHT$@LHt$8HL$(HT$ Ht$,Ht$HT$ HL$(.H5 LIH HxHI$L9t`EtEH= Ht$1HHl$pHD$xeHIOMI$xHI$DIFhH8L8HtHx HH.HL$HtHx HHMtIExHIE Ll$@Ld$HL|$8Mt M;e(I~`Mn`HtHx HHMtIx HIMtI$xHI$HD$8L4$HD$@HD$HmE1E1仆fLT$L\$IMĻE1fLT$ L\$LD$ILr^OHe^E1仇BIExHIEuL9^HD$E1E1MĻE1fLT$ L\$LD$IL]H]aL4$]LLT$]H$LT$MQeHL]WLt]j]H]]LP]F]L9](L,]6LHt$I~hLLa"H|$8gH|$@HD$8TH|$HHD$@AL4$HD$H_LLZbIAWH' fHAVHfHnH-AUATUSHH)D$@fHnflHD$pHD$PHD$x)D$`HLGM|HHtH HtHT$@HGHL$@HT$`HMH H4IPY^Lt$PM>H8H|@?HCHt"H|@&HHt H|@H\$@Hl$HHCL- HHD$(HD$0H5׼ HLHD$8HCЅ tfHnH=D fHn1Ld$`flHL)D$``IHxHHuHZMw Ix HIL;5 L;5 AM98Lh_+XAAHD$(HD$0IHD$8IFhHHHL$HsL9l$JHIHL$D$tHD$Lh(Mt AEtAEHL$8HT$0LHt$(%HCH5] HHHHHHx HH(H9tlEtEH=Q L1HHl$`HD$h'_IHExHHEMI$xHI$IFhHL$H8HHtHx HHHL$HtHx HHMtIExHIEH\$0Hl$8Ld$(Ht H;k( I~`I^`HtHx HHyMtI$xHI$hHtHExHHE6HD$(HD$0HD$8DH= (T1H|$@Ht#HxHHuHD$WHD$@H|$HHt&HxHHuHD$WHD$H|$PHtHxHHuHD$WHD$HĈ[]A\A]A^A_DHnHVtHT$PHVtHT$H@DMHCH5ʸ HHHHHHxHHuHVH9trEtEH= L1HHl$`HD$h\IHExHHEAFMjI$xHI$bAULUAULfHHL ^BASH HE HH5H81U]XZH|$@HtHx HHH|$HHtHx HHH|$PHtHx HHy=H=%R1H&Hu`LvAtALt$PHnEtEHHl$HtH\$@ML5o AtALt$PfHH HAHMEIHL ASDH pAfHCH5} HHHHЅ@SACHD$(HD$0IHD$8PLTE1L5 AtALt$P@KT}fD;TOfD+T!fDLTA>DHT$@Ht$`HL g fWIExHIEu LS@HD$E1HD$fDHSAEODH`[HNH`SLSS/IWwHLeHEIBxHHEIH- H=ҥ HUHTIHtAIGH55 LHHHD$H|$Ix HI1MIH@Lc M9A$tA$I|$1E1ID$HJ,EtEHtHx HHMHc{P4RIHpLHLH$VL$HIQIx HIL $RL $HIH tHUfHnfInflHBpA@HH@HL$LHL$IMIx HIkIGI;G %AtAIWL HIGIx HIVIM9t$I$xHI$HExHHEHD$H H9XL|$HD$ HD$QIHH H " HPtLl$HL$ Ht$LHLRIx HI6I$xHI$5IUxHIUHuW@A:H H5H8zNHExHHEADH=J1H8[]A\A]A^A_fDE1HEHLl$AHEIx HIMtIExHIEAMtI$xHI$FMtIx HIMFI;HI.LtL!LL $\LL $HHLL8LL(LLl$AHEHH8[]A\A]A^A_DHKIFHk L9H}u1NIHt*HHMI$xHI$HLA0fDLL $lKL $[KfDHHM E1L G7RH <HaH8H5 1KRXZ1H8[]A\A]A^A_LLD$L $JLD$L $LL $JL $.HD$AHdH\$HHRIE1E1E1@LLD$L $JLD$L $LLD$L $_JLD$L $1HyH$\HH=dH$HBhLHHx HL$Y?L$IDHLD$L $IL $LD$fLHIHBfLLL $LL $E1XDE1E1E1E1AaKQHD$HQ H5AE1H8AJLl$E1E1!H! H5"AH8JHL$\rL$II$yHI$kLH^LH$HH$LH$HH$LH$HH$LH$nHH$H]HLPHHhLhEtEAEtAEH\$Hx HHt`fInfHnſHD$ fl)D$pKIHuv H5H81eAHEHLt$HEt 1H1:=fDH91Am=fDH91AnDAm1sH@hHH@H1LHI~IFH(EGH;>v HD$ HfHnHD$fHnHD$(fl)D$PfHnHD$0fHnHD$8flHD$p)D$`?IH$HExHHEIG1LHT$LAHT$HHIHH(HuLAH){Ix HIL|$ Lt$MAm1HAmH 9;ArgHUHHEL8AtALpL|$ AtAHHLt$tHL$(HHtHP HL$0tHT$8>H>I18IHLL7HIAsZ:PHDr H50AmH81`=&:fL6L 6$9LJHD$0IH1AuL5{L5t9(H5Ix HIHT$&Lt$HT$u.HH!H !HEHZq H5H81 L;=j L;=j L;=j LT3ŅIIx HI C IEH5 LHH| HD$ H|$ A AEtAEIEH5m LHH IM I@H9 H;i  HXpH@H{5HL$/L$HIHD$HLSL\$IL$Ix HI M Ix HIo H H=) 1H$HHL$H$L$2HD$8IExHIE Ix HI H|$8 IExHIE L%- H= IT$L0HH tEHEH5Ȉ HHHB IHEM xHHE) HL$8$tH- H=b HUHf0IHtAICL$LH5> HHL$HH Ix HIg L|$8fHn1HH= HfInfl)$B1IIx HI HExHHE1 ML5f M9t$H$LLD$HL$LHDŽ$LD$H$Ix HIB HExHHE9 H<$VH$H;g H$(H-m tH9$hH$()fH H$h$(fHnfl$XH$Ht$@E111H$Lh [L% H=d IT$Lg.HHtEHEH5 HHHIHEMxHHEg H$LD$H@ H8*,LD$HH Hc$ ,LD$HI,LD$HIfInfHnH=~ fl@H- HUH-LD$HIDtA$ID$LD$LH5T HHLD$HHDI$xHI$QM9pLD$HDŽ$HDŽ$L$,LD$HIHڅ HPtH$LLLD$HH$-IIx HIAHExHHE8I$xHI$HL$Hx HHMAtAL;5d H$H-j H9$L$HDŽ$L&L;5c pIALLH>` H$LMH$H$-Hnj fH$$H$H$fHnflH3j H$$%D$Ll$8HDŽ$HDŽ$HDŽ$.ID$IlEHFHXhH HCH HHL$LL$HHHCHL$LL$IHD$ 1H$D$yIxxHAAIfL%YD$E1Ll$8E1E1E1HDŽ$HDŽ$hL|%fE1E1Hd%QLl$8LLO%UHB%iH5%wL(%L%LL$ %LL$L$LL\$$L\$L$JL$XLL\$LD$$L\$LD$HL\$LLD$w$LD$L\$H`$L$LO$LB$I@IPL|AA,IMmHD$ 1E11H$HD$8D$yML|$8IE1H@L#L#I@M|AuIL#HD$ E1E1H$D$yN+IjME1E1HD$ H$D$y6LLLL$/!LL$L #.H#L% A$tA$HІ LH$HDŽ$H$ HI$xHI$uL"H 1HHExHHEuHr"HD$ 1E11H$E1D$zHD$8_L9"Ll$8H$E1D$MHL$"L$HS$IHHLH$8#L$(HDŽ$hL H$H;^ .H4$IALHzZ 1H$H$H$H I'fH$H$$(H$fHnHyd flH$h$X`HDŽ$HDŽ$HDŽ$L<$D$1H$Ll$8H$1E11HD$8E1D$}(HD$ |L H Ls L$LLD$] LD$H$E1E11HD$ D$y4HLl$8E1LE1H$E1D$~H$L$YH- Y H9$L$L/H$1E1E1HD$ HD$8D$zLl$8D$LMHD$8fH$nLLT$.LT$~ID$MHPLl$8LL|$8MD$LT$Ll$8D$L1HD$8HP H8HEHMD$Ll$8LMLD$Ll$8E1MD$mHP L$H8SL$t*VHCL$HHHMLE1E1H$E1D$~E1E17IHH$E1E11HD$ E1D$yfSHu HH@HD$ HHD$HD$HD$(HD$0HLAHMHHHHH=O HnL 3SAH "H5H818XZH|$HtHx HHxH|$HtHx HHJkH=v1H@[ÐHVtHT$HtHT$HG4HL$HT$ HMHH4IPwY^GH"H|HHt H|H|$Ht$H|$HtHx HHH|$H3H(HHHD$HD$fDHnH>tHvH|$tHt$kfD{fDk~fDHD$VHD$T@HT$Ht$ HL tf.AWH_s AVAUATUHSHHHD$ H-HD$HD$HD$(HD$0H LAHMt HHHHHL H L UAH H5aH81XZH|$HtHx HHO H|$HtHx HH! E H=  1HH[]A\A]A^A_HVtHT$HtHT$HG< HL$Ll$ HMH3H4ILPY^5H"H|HHt H|H\$Ld$tH=m 1LH\$ HHD$( HHx HHE H HEH;J  HUH L}AtALu AtAHExHHEID$H5El LLHH ЉI x HIID$H5k LLHH Ѕ Ix HItH=l 1LH\$ HHD$(HHx HHF H ID$H5yk HLHH ЉHE3 xHHE tH=Yq 1LH\$ HHD$(OHHx HH H HEH;$I  HUH LuAtAL} AtAHExHHEd ID$H5j LLHHЅf Ix HI ID$H58j LLHHTЉI x HI ID$H5i LHH!HHHUH5"c HBpH1 H@H$ HIHEM0xHHE ID$H5i LHHHHt HUH5b HBpH H@H HIHEM xHHEL HHIx HIHL%IH Ix HIHExHHEID$H5+j LHH HH HLW IH IxHIuL HExHHEuH ID$H5i LLHH ЉIx HIw HCH5j HHHIM H5ln L9 IGH;F `IG H1Hu 1A@Ix HIl tH=;h 1LH\$ HHD$(IHx HHj MID$H5%m LLHHaЉI x HI H-c H=^ HUH IH[ tAIFH5\l LHH&HIHx HI HD H9E Ht$(HLd$(IHH\$0HD$ IIx HI M IExHIE ID$H5g LHHIMiIGH5j LHHVIIM5 x HI 1LϹLL$]LL$HI Ix HI IWH;UD H5k kIG|HH¸H)AWHHx IIM x HI6 H5g LLLL$褢LL$J Ix HI H5e LdHCH5|i HHD$GLL$HI Ix HI 11L1IHJIx HI H5g LLLL$LL$o Ix HI HB 81HL&A$tA$H^Ld$ƒttLl$ H\$ fDfDHHL<LlH\$Ll$ H5H81Y HEE1HHEuHMIHIfHkL@L3fDxLAH dAF vDIHIE1AL E1AH DH(EHBhHHHxTIIA; HI9u1IHLH H5 HEH< H81AJ MAJ JAJ H;p= HzIHEMxHHE IALL$LHLL$HILLL$HILLL$HLL$OLL$BIHILDAJ =HUHHUL:AtALrAH0HHHNH TAJ HEH"; H5H81IHEHBhHHHx@I!HERHHEDHI!AL E1Ix HIH: H5 b Lə AQ &Q5HH.: H5AF H81JHEfL|kE1AL HHEAF E1HUHHHUL2AtALzAa_AL IHIsLVfAL G1H.HExAL H9 H5AJ H813HEfLQLHFIHAS L&AO .HEAJ E1ZHLL$gLL$$AN "=IL=H0LLL$LL$%IL2LnAU AU wLH;7 LPIHtHH;8 @H;7 @L;57 LeIYAN $IAF I#HILLL$LL$AV LAS HAO L}LuAtAAtAHExHHEfInfInLLflH\$0)D$ oIIHILLL?h%IHLL$ LL$E1AF LLL$LL$ILL$HD$(x HI]HD$PM?H53B LLLL$~ LL$IHILVsLIUHYIEH(UtUHHHl$0tHL$8HHtHL$@HHtHP HL$HtHT$PH$1A 0HzH$A HH$A A 1E1HW H5HH81~H$H9HEL(LH$1E1A E1{IHH $D$tH$IGHo8 x8 1LLHIHILHt$XLAHA XHHUH; L=nE HEHvH¸H)ЋUHHxIL|$(McHExHHEHD$(LHt$X1ɺLAH'1A %Ix HI IHLH H5تHEHe H81E1A Ix HIHD$HH H5C L}{A LLL$LL$LHIL $L $+H; LMHHtKH; H;= rH;= eH|$bH|$H;A LGLL$A A "LLHXH-5 H.H=5 Q`H=5 H-5 ~5 fHHILA #H; #LHD$@IHIx HIIBLT$LHD$HLALT$HHD$PHD$LALT$HHD$(LALT$LL$HHLT$LL$TKLT$LL$QIx HIHD$@L{HA HHH H{HEH\ H5H81ILL$QL7H|$(A A (LRHLt$01E1A H$LXLLL$LL$gLLHD$H\LD$D$oLrLeIWHIWL AtAHRLL$PtHT$(HL $H$1E1E1A A XA MH$1A [H H5A H813A AtAL|$(}H;A LHIOIQMyHT$(tAtAIL|$@x HIM1HHHD$D$AG1f.fA.GDHƹHH)HHHHB`LHImLvM1ELLT$ZLT$E1Ix HItxHD$@A IH /HLHEEUHH EUHH HLLL$LL$L{pXEIHH/R~LL$LT$AAWAVAUIATUSHHGH59 HDŽ$HHDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HHDŽ$@HDŽ$HDŽ$HHD$HH; H$HH HD$tH9$3H$HH\$fH> $HfHnH$fl$xHH@H5: HD$HIEHL$PHHLHD$HH;W H$H9 HD$tH9$H$H\$fHg= $fHnH$fl$HL`IEH57 HL$`HHsLHHrHEaHEH H)‹EHHcЉH97 D HExHHE IEH57 LHHHHHEEHEH H)‹EHHcЉD$2LD$HI9fInfInHD$H=* fl@L- 6 IULLL$HItAI@LL$ LLD$H5=4 HHILD$LL$ IMIx%HIuLLT$ LL$LT$ LL$H AE1HH9EfInfInǿLT$ flLL$HT$(HDŽ$)$ LL$LT$ HIH 1 HT$(HHtH$LHLL$ J4(L$LT$HD$XMLT$LL$ ItIx HIIxHIuLLT$LT$IxHIuLIxHIuLHExHHEuHMAEtAEL;- H$H HD$ H9$( H$HDŽ$(HcL;- m LL$XLHAHy 脵H$ME1H$H$H8 fHD$$H$H$fHnH$flH$($D$HDŽ$HDŽ$HDŽ$)f.H$HHDŽ$HdHD$H; Ht$AHL$Hp {AH$EH$H$H$Hx7 fH$H$$HH$fHnH flH$$xHDŽ$HDŽ$HDŽ$Ll$D$E1E1HD$HD$IEHIELf.H$HDŽ$HHD$H;0  Ht$AHL$H +AH$EH$H$H$H(6 cfH$H$$H$fHnH flH$$zHDŽ$HDŽ$HDŽ$Ll$D$E1E1HD$MtIx HI|D$E1E1Ix HI2HtHExHHEMtIx HIMtIxHIDLh`HH@`MImEtEM}(Mt AtAH$t"HV H9$(xH$H$Ht"H) H9$cH$HH$t"H H9$NH$Mt M9}(i H{`Lk`HtHx HHHtHExHHE^MtIx HI5t$H=jMtIx HIE1MtI$xHI$H|$tH\$Hx HHeH\$HtHx HH7HL[]A\A]A^A_fE11nfDHDŽ$(wHDŽ$HDŽ$HHH)HH(HHFHcЉH9Hu HuH H5JH8Hf.HHH)HHHtzHHcЉD$LL$LT$ cH HLHD$E1E1D$@HD$ H$HHb/ fL$tH|$H|$H[HPHHCHD$зHD$/fD軷 fDHT$Ht$ HL ipKfAWAVAUATIUSH(HGH5 HD$(HD$0HHD$8HDŽ$HDŽ$HD$hHD$`H HH~HExHHEH;-IE11ID$H5Z LHH IM H|$htHH9$H|$hµH$t"HH9$H$蕵HtHExHHEjMtIExHIE_H(L[]A\A]A^A_f.HH;-YH- H== HUHAIHE tAIAL $LH5a HHQ L $IIMT xHIuLID$H5  LHHIMb L $ĸL $HId H- LHH=r HUHvHHJ tHCH5 HHHt IHMO x HHHrI9F L $HD$PHD$@L|$H L $HIKH HPt Ht$HLLLL$PHL $ L $MHIx HIIx HIIExHIEIx HIHID$H5L HLHH ЉHEU xHHE,ID$H5 LHH HHq EtEH H=f L|$@1HLHl$@HD$HIHEx HHExHHEM IExHIEID$H5 LHH HH HUH5 HBpH H@H HIHEM xHHEID$L $LH5 HH L $HH ID$L $LH5 HH L $IM{ H5 LL $kL $HH Ix HI LHHL $EL $q HExHHEw Hx HHt Ix HIB ID$H5 LHH1 IM L;- H|$hHtt H9$H|$hH$6H$H fH$D$hfHnHfl$L0ID$HH5D HH LHHm H;- H$Ht#H9$H$H$蕯H$H  fH$$fHnHfl$HLxID$H5 HL$HHx LIM[ LL $UL $D$g Ix HId H5  L OHc HH$TL $T Ix HI* T$訵H$D$~zT$L$H|$hxeLl$Ll$E1E1Hl$DJ@K 1fHcHJ40HHHH8uDLD9uAMD9uHl$Ll$H<$詭@HخLȮHDŽ$=HDŽ$$E1fDL``HH@`MM|$AtAMt$(Mt AtAH|$htHH9$H|$hGH$t"HUH9$H$Mt M9t$(:H{`Lc`HtHx HHMtIx HIMtIx HI4$H=~E1E E1E1'DHDŽ$.HDŽ$@H ]fDLcLl$d@˴I軴Ih$E11HL $褬L $LLL$L$臬LL$L$ZfLL$dL$PLL$LL$NL8RM$LME11Ix HItXMtIx HIt3HjH_HHRHʫEDL踫fDL訫fDLL襩蛮HHHIH`CL $I$E11E11Ix HItM LfDHE1MDLت$E11f˭HIHwHHL $茪L $$E11I>ZIHZHE?$1E1E1HEx HHEt 1E1E1Mf.HLL$LL$I^MFtAtAIx HIfInfHnÿLL$flL$HD$P)D$@L$LL$HIt|H HPtLHt$@LLL$PLL$L$%L$LL$HH HHHLL$L$ LL$L$fHHHHLL$L$L$LL$HBhHHGHx<I*L詨L $蛬Hl$hH$HDŽ$H觧L;-H$dMALHHƊ0H$H$SL!HL $xHL $L $w$E1gүHj$1LH$HD$H<$HDŽ$ڦH;-H<$HD$3AMHHAH$E1HT$(Ht$0H|$8H 8fHT$(Ht$0$H|$8fHnHqflH$$XHD$(HD$0HD$8I$1E1E1$E1G貮H$1E1g$E1E1E1cL $HG$13`L $I]L\Lω$L$$$E1$1IHT$8Ht$0H|$(H fHT$8Ht$0D$hH|$(fHnHflH$$HD$8HD$0HD$(M$E11E1E1PH5"LctH|$hHl$hHH9$Hl$hHk$LHnLLL$L$ L$LL$/H5H,cH$H$9HH9$H$H<$ףH<$ $LzIIL $茨L $H$E1E1$L $D$TL $T$H$E1E1SHP HH0HD$HD$ HD$(HLAHMHHtrHHH VL SAH SH5|jH81躪XZH|$HtHx HHH=t)1H0[ÐHtHT$HGHL$HT$ HMHqUH4IP)]Y^wH H|,H|$"HH>tH|$0H|$H[HPHHCHD$萢HD$/fD{ fDHT$Ht$ HL TZKfAWAVIAUATUHSHHHT$HD$XHD$`HD$htL% H=OHDŽ$HDŽ$IT$LHDŽ$HDŽ$"IH6 tAIGH5LHH6IM8Ix HI HI9ALH$L $HHDŽ$H$)pL $IMIExHIE MHExHHE ID$H5V LHHIMIEH;H;u HhpHt~H}twHIHHLUIIx HIMH$E1E11HD$E1HD$D$F@HhhH HEH HUHLHP!HpHELIwfDIEHPH IEL AtAIExHIE HCL $HH5HH$L $HHLϺHL $L $HIIx HIr HExHHEl L;=uL;=L;=ALˣŅ)Ix HI- MID$H5! LHHfH$H<$5A$tA$ID$H5 LHHyHHKHEH;H H;LhpMP I}E HiIHHD$HHAULT$IIx HIrMyHExHHE H 1H=HL$H$H$HL$HD$ L9$#L$HDŽ$L臖L;5LL$ LLAHyHT$XHt$`IMH|$hHfHT$XHt$`$H|$hfHnH(flH$$Lt$HD$XHD$`HD$hD$VIx HIE1@LL $dL $LPBH@QH茘IH@HLuIIf'LL $L $MIEHtMLAfL訕H蘕L舕苘LIH-H$IE11HD$D$CLt$IM1E1fDMtIx HIHtHExHHEMtIx HIMtIx HIEHX`HH@`HL{AtALk(Mt AEtAEH$t"HH9$hH$苓H$t"HH9$(SH$^Ht L9k(gH}`H]`HtHx HHMtIx HIMtIExHIEt$H=geE1臐HD$HtHxHL$HHMtIx HIH<$tH$Hx HHHL$HtHx HHI$xHI$HĸL[]A\A]A^A_E1E1}DHDŽ$HDŽ$(HȒ/Lt$IL谒0H蠒?H萒ML耒SLL\$(LT$ fL\$(LT$ @HL\$(LT$ >L\$(LT$ 3LL\$ L\$ .L9L)fDLؑLhhM3 I}( IEHHHqHpHAUIf.HEHUL|AACIH$HD$D$CHD$IE1E11ILt$HILL\$0LL$(LT$ L\$0LL$(LT$ MyMiAtAAEtAEIx HI fHnfInǺLflH$)$q_IIDHI7LN*fIE1E11H$HD$D$CI=H$E11HD$D$FDHЏL|LH轍HEL|A$fDLxSH$E1MHD$D$F@3L $HH$IE11HD$E1HD$D$FIEx HIEtMLt$fDLL\$0LL$(LT$ LT$ LL$(L\$0L討L蘎L舎LLL$(sLL$(fLXIMMeHL$(D$@tA$tA$IExHIEMAE1PID$ULE1HD$L|$(HH3@L?L谍XHD$H$HD$D$FA~|$f(H-EtEHHH$HDŽ$H$tIHExHHE M> 1Lo_IExHIE H$E11E1HD$D$G}LL $贌L $TLLL$蛌LL$L舌ZHD$IE1E1HD$D$KUD$IE11E1HD$fH$fL$HDŽ$(L4HD$H;PLL$ Ht$LAHNnHT$hHt$`H|$XH`蛑fHT$hHt$`$H|$XfHnHflH$($軉HD$hHD$`HD$XL|$D$KIHD$HD$fLLHD$E1MD$J@˒HHLL$ÊLL$fHD$E1E1D$JN@蛍LIH-ID$KE11HD$fID$JE11HD$E1MHD$  IGID$KE11HD$MID$UE11HD$E1H=I$IH H5H(IHv IExHIE9 H=IH H5HHD$(LL$HI Ix HIP H E1HI9O HL$ fInfInLflH4)$WLIA(I$xHI$ Ix HI MH5WL'HD$H} IExHIE HD$H=HPH;] H@ H HL$H¸H)ЋQHHH HI9ALLL$(誌LL$(D$f(f.-. I(HIL荇HD$膊LLT$HIIDH$sfHL$$fHnfl$L$@E11H޺LL8';H\$H;RH;H;H訋xӌ1E1HD$@HD$0HHD$(H~|Lt$0L$8MHl$8Ll$ HH\$HSD$LL狄$@L$AIHH@FH$L$*LL9t$(uLt$0Hl$8H|$@AtAH<$HWHBpHSH@HFH5IHpfHnH=fIn1flHt$pH)D$p_LI$Ix HIMH$t"HH9$H$jH$t"HxH9$(IH$=HD$HNLt$IJ8H$E1E11HD$E1HD$D$FfD蓌LT$IPfDHIHmHHHD$ȅuID$KE11HD$E1E1HD$0[1E1HL$THD$@HD$0HHD$(HHl$HL$8LLt$8Ll$ Lt$L|$0IHfD$@HLLIVD$L$HHHLH$L$B:L|$0H9l$(uLt$8Hl$HnfID$KE11E1M}MeAtAA$tA$IExHIEfInHt$ fInLflźLL$)$QLL$HD$IiHI\LLL$辂LL$E@H5QH@IH$L$L%L9$(ML$L荁fLLL$(CLL$(CfLLL$(#LL$(7fL5L;L3IHID$UE11|f@ՅHD$衉D$8:fDH舁qnInID$UE1LLXjID$UE11HD$E1E1,IZHL\$HLL$@ID$JE11HD$ME1HD$LրaHDŽ$(HDŽ$hIx HILt$IHHRIMH5NH81蜇Lt$D$iE1E11E1E1IID$UE11HD$+L\$@LL$(I ID$QE11H$Aqt$f(%ID$U1E1H$E11HD$D$GbL|$D$QgH57L=H$L$L%L9$L$Ls~L6ID$W1E1LLL$LL$ID$Y1E1L~(L~/L~ID$i1qL~?HLL$(~LL$(HH8脀q臁HEHMwMoAtAAEtAEIx HIM1$LL\$@MA~E1L\$@OD$QIMaH;_H<~I!LL$(LL$(HPIHI ID$SE11E1;HL$IɉD$(ibHB`Ht$PIEILt$E1E1D$i1E1M)HUH8tM$HrH$HD$HD$D$FLt$IMD$VLD$tH<$HHH tHL$@H tHL$>fDH9tHT$fDxnfDw@fDwfDw\fDHNtHL$HVtHT$1@HtHT$fDHHt$ L *H/@@AWHfAVfHnAUATUHSHH(fHnHH)D$@)D$PfHnH@flHD$`)D$pfHnflH$HDŽ$)$HLAHMHHaHcHfDHV tHT$`HVtHT$XHVtHT$PHVtHT$HHtHT$@HGFHL$@HT$pHMH&H4IP!0Y^DH\$XHYLl$`M+HcH|@HEHtMH|@HEHt7H|@HEHt"H|@HHt H|@HD$@Lt$HL|$PHD$AtAAEtAEL%H=IT$LyHH_tEHEH5HHHIMqHExHHEAtAfInHD$pfIn1H=flHLD$HHD$)D$p[zLD$IIxHIx HIfMLH fL;%I9HL$L;%L yŅ0I$xHI$,*H-}H=6HUH:xIHtAI@LD$ LH5qHHLD$ HHIx HIEtEfInHt$H=1HfHnfl)D$pyIHEx HHE3xHHEMsL;%tL;d$1L;%B$LwŅ'I$xHI$4mIGH5!LHHIMIFH5LHH!IMIAH;YH;AHhpHH}LL$ wtLL$ HI HD$(HLULD$(HLL$ Ix HIHIx HIHUH;GH5HEHFH)NjEHHtIMHExHHErLL$ tLL$ HHLHHLqIHI$xHI$wHExHHExL; LL;L$L; LLL$ uLL$ Ix HI8L% H=IT$LtHH<tEHEH5HHHIMHExHHEL%H=SLD$ IT$LQtLD$ HHtEHELD$ HH5#HHLD$ IMHExHHEH;I9@fInfL\$(flLD$ HDŽ$)D$prLD$ L\$(HIHHP1IHD$LLL$H4LL\$0LL$(LD$ sHLD$ LL$(L\$0ItHExHHEIx HIIx HIIx HIMIx HIJL5H=IVLrHHFtEHEH5yHHHqIMpHExHHEH=kL\$ AL\$ HH~H@H5HHHL\$ IMHExHHEH*E1HI9C_fInfInƿL\$(flLD$ HT$0HDŽ$)D$ppLD$ L\$(HIH qHT$0HHtHD$LLLD$(L$H4(L\$ qML\$ LD$(ItIx HIIx HIIx HIIx HIiMDH|$LL$ LH5RHGHHLL$ Ix HILbM9\AEtAEH}Ht$1LT$ H=Ll$pHHD$xqLHD$$ L\$LT$ MqIExHIEL=$AtAH-EtE11LL\$LT$0mL\$HIH5AH|$L\$ HD$u LD$L\$ HIffInLD$ )D$p)$fInflL$L\$HD$(HDŽ$D$x>nL\$LD$ HLL$(IHLT$0HPtHSL$IU tHoH$IU(tHt$xLHLT$8HL\$0LD$(L$LL$ nLD$(LL$ L\$0LT$8HD$Ix HIBIx HIfIExHIEqHExHHE|H|$LT$(BH=/L\$ L\$ LT$(HhH5cHL\$(LT$0HD$ LD$ L\$(HIILT$0x HIHޤ1HI9E HD$fHnſL\$ D$LT$8HL$0HT$(HDŽ$H$)D$pElL\$ HIH5}HT$(HL$0LT$8HptHt$LLT$(L\$ HLH$H=IT$LOHHn tEHEH5HHH H$H<$HExHHEIcHMHHHcD$PHHD$`MIH NIH fInfHnfl@H=kFIHw!H@H5LHH!IM!Ix HIJH$H7E1HD$IH9P!fInfInĿLD$HDŽ$`fl)$PMLD$HHH HHtH<$Ht$HLHt$XL$`LD$(NMLD$(HD$t$I$xHI$uLLD$ILD$Ix HIIx HIHExHHEH$Hx HHHD$HH;"H$8H-tH9$xH$8BHHfH$x$8fHnHfl$hH2H@HRH=aHt$pHT$hHD$x-IH"H5LHHPIx HI H KIH(H=ғIHd"H5OHIHY"Ix HICH$H˃IH9E-"~$fInLD$HL$(HDŽ$`fl)$PIKLD$HI!H!HL$(HPtHD$XLHLD$L$`H4LKLH<$HD$0ILD$x HIIx HII$xHI$HExHHEHD$0H H;W$H$H-9tH9$gH$EfHqH$$fHnfl$HH=&H$IHk$H5~LIHIx HIO HHIHH|$`HIHIH$HfInfInfl@H=_IH(H5ܤH$IH2)Ix HI3#He1II9D$)fHnſLD$($HT$HDŽ$`)$PHLD$(HI#H HT$HHtHD$XLLLD$L$`H4LIHHD$@uH$LD$Hx HH"Ix HI"Ix HI"I$xHI$"HD$@H"H;)H$XH-χtH9$!H$XCH fH$$XfHnHfl$H2H@HRH=H$H$H$tIHS)H5L9IH'Ix HI&'HQFIH&D$PxHc6FH$Ho*GHHJ)fIn$@H=ڎH$HH)H5HIH-Hx HH(H~E1II9G-fHnfInĿLD$flL $HDŽ$`)$PSFLD$HI(H+L $HPtHD$XLLLL$`H4L$WGLHD$8HEL$xHHEb(Ix HI_(Ix HIX(Ix HIQ(HD$8H'H;g~*H$H-ItH9$#(H$ AHfH$$fHnHfl$HH=3H$HZH$HXH$H"(H5zHIIH(Ix HI(H=С諌H$IH'H5$HlIH)Ix HIW(H|E1AII9F)HL $LD$HDŽ$`L$PH$X"DLD$HH)HL $HPtHD$XHLLL$`J4 L$&ELHD$(L$Ix HI)HExHHE)Ix HI)HD$(H')H;J|*H$xH-,tH9$B*L$xL>fHaH$$xfHnfl$HH@H$HD$(H$H@ H$EHt$`~=.yHD$H$IEHflDŽ$L HDŽ$HI)$H$LH$HD$hHD$xHD$`H$H$H$Ht6HS8Ht-AMX4CrI};<HHuH$L=Hc$AIH[+HzHH$HEL$HH+Ix HIA+H|$(HkIH^+HExHHEf+L$|AL$HI]+H\$$tHD$H\$@IG$tHD$@H\$8IG $tH\$0~D$8fInflAG($tHD$0IIG8BAH*H$xt"HH9$*H$xb,=HHChH8H( HtHx HH Ht$ HtHx HHMtI$xHI$L$0H$8L$(Mt I;l$(/ H{`Lc`HtHx HHNMtIExHIECHtHExHHE8HDŽ$(HDŽ$0HDŽ$86Hh`HH@`HLmAEtAELe(Mt A$tA$H$xt"HzH9$H$x6H$t"HzH9$H$6H$8t"HzH9$x~H$8i6H$t"HwzH9$iH$<6H$t"HJzH9$8TH$6H$Xt"HzH9$?H$X5Ht L9e(C H{`Hk`HtHx HHMtIExHIEMtI$xHI$t$HH=QE1 3H|$tHT$Hx HHH|$tH\$Hx HHHL$0HtHx HHHt$@HtHx HHHL$(HtHx HHHt$8HtHx HHHT$HtHx HHHĸL[]A\A]A^A_@HsPI}蛆;D$PHS8ClHD$HHH$D4A@Iw59HD$ HeD$HVHD$HD$8HD$(HD$@HD$0HD$HD$H4Hx4 Lh4HLX4LD$:fD3IEPJD@lHD$H H$XB 0Lt$PI1L$HKL$H$LHH9CH$Hs`AHzCrH$H$H$$H[8Cq%|$PHc$HT$pE1HH$H$IIHC@IcHDHpOHT$hH$8ADLHHH$DHSPHTJlHL$HH$ H$XLAI}A{L$XHDŽ$L"HD$@H; _`LL$XHt$@LAH\!H$H$NLLD$t"LD$H5 xHH$L$H-eH9$L$LG!E1E1vLLD$!LD$H!LD$L!L!L! H$E11E1E1MHLD$A!H,$LD$HD$I}ruLc$Hl$(E~LD҉$H$@$H$H$I}LIIHH$xH$H$LH$H$H$L$xClHD$HH$HI}AH$HIHpFLA$DAD9$ $HS`HI}H$DHLdL!H$H$L;0!$EtEH|$臿H$xt"HUcH9$qH$xH3cffo$H$H\$x$D$t H[HExHHEEtEC|?Hc"IHqfHnHD$fHnHflǿHDŽ$hH$`)$P"LD$HI HHPtH[Ht$XLHH=L$L$H$h$HHD$*L$LT$L$Ix HIIx HI]M Ix HIWEtEH;-ZH$x$HaH9$H$xHDŽ$H|$6H;-WZH|$LL$XAHHJWU& H$(H$0E1H$8#fH`fo$H$(H$0H$H$8$x$H$LD$(HDŽ$(HDŽ$0HDŽ$8D$H$E11E1LD$PBH$HD$(LD$PHD$HGYHD$(}1E1TH$E11HD$8E1HD$(HD$D$H~;L1E1Il$Mt$EtEAtAI$xHI$3M1AH$AH$H$H$xEfo$HU_fH$H$x$HH@H$H$XH$HxHXHH$Hl$nHHDŽ$~H$(H$0H$8HA!fH$(H$0$XH$8fHnHq^flH$$XHDŽ$(HDŽ$0HDŽ$8H$E1E11LD$@E1CHLD$LALD$1H$E11E1H51pHtH$XL$XH-]H9$aL$XLqzE1E1cH<$LD$#LD$E1E11E1H$M0HL$LLLL$HDŽ$LHD$8H;ULL$XHt$8LAHiRH$H$E1D$HE11E1HD$(E1HD$E11RLLT$LT$LHFLL$LL$L$LL$7L$L$H<$^H<$LD$LD$H$8H$0H$(H~YfH$8H$0$H$(fHnH[flH$$pHDŽ$8HDŽ$0HDŽ$(LD$8E1E11H$E1HD$8HD$(HD$D$H~TM~InAtAEtEIx HIIE1AD$HE11E1HD$(HD$H5lH|$8=H$L$H-kZH9$GL$L-`H$Lt$(D$H$E1E1E1LE1E1H$HD$(HD$D$H1L[HdLwkH5lHH$xH$xPHYH9$ H$xH|$MH|$Lt$(L$E1D$HMgI_A$tA$tIx HI#IA1HD$8E1E1HD$(HD$D$H~"L$xHDŽ$LHD$(H;QLL$XHt$(LAHNH$LLD$MA LD$1pH5jH|$(0H$xL$xuH-XH9$2L$xLKH$H$(H$0H$8H+zffH$(H$0$xH$8fHnHWflH$$}HDŽ$(HDŽ$0HDŽ$8LD$(E1E11H$E1HD$(HD$D$HjME1HDŽ$8+HDŽ$GLL$I1L$A}H$LD$(E1D$H=IDHD$HGHDŽ$(HDŽ$xDHDŽ$`H$E1E11D$HE1LLL$IE1L$AH>H$E1E1E1D$HH81yHEx HHEtH=s HDAUATSH@Ld$hH<$t$T$HL$DD$0LL$MnH$H DH4xHt$H=tHt$H=sudL,$HT$`L1LF!\$AuoH|$ug~H<$H 1Hx ]H@E1D[A\A]DH<$L1H `*A(H@D[A\A]~4H<$H1H Hx t$DL$,DD$(AZA[H$HAątIH$ǀ H@D[A\A]fDLHzHyLL L,$Ht$ADž LdEMPEt ADžH$DED$H|$pDhIcH HhIH!E~qHL$p\$HQCI9KBK1HDHt$pf A H)L$ H9u΃HIHD$p9tt$H<$HL$T$ e|$0AHƅ(DL,$T$LL]]L5H|$`LH$DVH`K=H/HP"H$H 1Hx HǶ11ҾH趰Lhf.1@H\$pHAHH9uHt$DD$0Dl$@H<$_`f.H|$DD$4HD$8 DD$4Ht$8DDH LhnAWIAVAUATEUSHDD$PBHIM̓(ffHHfHofoHfdfof`fhfofefofafifofffofefafiffH9ufofsffofsff~F ؃'HcTAэP9HcTAэP9HcTAэP9HcTAэP9HcTAэP9HcTAэP9HcTAэP9HcTAэP9~{HcTAэP 9~iHcTAэP 9~WHcTAэP 9~EHcTAэP 9~3HcTAэP 9~!Hc҃TA9~HDADE9111 y@uGA9bHcH9~t@u܃A9AH[]A\A]A^A_fDHcI4ADHcfDHcI4L1DD$ Ix H >11ҾL-DD$ 4DD$PELIx HA1[H ]A\A]A^A_E9*EẂ1DD$ Hx H 輲11ҾL諬DD$ E1wfDAVIAUATAUHSAMcL[IHtLLL []A\A]A^@Hx HA1H ڱt(11ҾHDt f.FNYBYJ\NYBY \fWANYBY \ADUSHcH(D$HHIɃpHVHFHbRHhf(f(yqYYYYY\Yf(Yf(f(\Y\YHP\fXf(f(fW fTfUfVYPf/vAH([]fDHFHfJY@YHP\f(f(fW HfTfUfV/YPf/vAHx H u1H|$H|$11ҾH(f[]ىLD$:SHc‰H)HH HTYHH9uD$fWH([]f.`x _f(ƒXf(__f( fHx H X#AWAVAUIATUHSH8 L( LD$ HHBIHIH L]HyAL\$NH|$H $A|$ILl$(MJ| fH;T$ITAAÃ<$AELPL9E1fDfBfBLf\BIL9uLN ;\$t \AIDLHHH9L$oLl$(Lt$ LLL5A~LE&HL$H0HALIx ATAD$H {膭XZ$H8[]A\A]A^A_E1DBB\DBIM9uIDLH=Ll$(E1A9>Ix LA1H w11ҾLf t\tK1HfffHfYXfXH9u݉HHH9t YXf(ff(fH8*f(f.f(QYf(򋇼]Yf(Y%XY%f(YXf(H8f.H|$Hx H T$(l$ d$t$趫T$(H|$l$ d$\$~Hx f(f(H d$ed$H8f(f(H|$l$d$L$  T$ H|$l$d$f(fDATUHHDxAȅAIcfLcDIH15~=f(AHcHf(DEf(A9thI9%}H4Lf(fD0HfD(]D_f(fA(H9rfA(\fWA__f(f(X_Hf(I9mf(DHl$xl$ fY ܾ_f(~0Hx f(ͺHH qD$虩D$H]A\EPA9f(XY=f(\Tf/v f(f(f(f%$f(UH H1H5HS(ff(Y0f*xYf.QY 8YY @E@f/v \E@EHf/vffHffXfXtMu DEt'1H5EH$DD$EtDEsU@EHf]]]f(f*xf.Qf(Y Y\f.tQYf*xYX`Xf/v `f(YXf/v `f(DE9Yh f/XvH}th f/f/vbutMf/vH1H5H$$f/Mu5U@Xf/EHM1H5H?MYpf/v pf(Yf/vp1HpH5WH] Xf/v U,`f(x f(fW  f(X__f(gH]fXE@ڹf/EHf/[\EHHMH1H5H$$$fE`Hx f(˺YHH A] ȡ\Yf/MxefD\1EHv@H`1H5/H$`$Hx vHH $k11ҾHZ$ffDžt*xf.sQYXXf/vXHX1H5H$=$$xHBH1HH5DHx HHH  ]sH1HH5$$f\E@HM@1H5#H$Y$EHf/\EH>1Hx HH 谡E@f/v\E@_EHf/%\EHH1H5H$$ffYPf*xJ\$ $\$ $p\$$\$$f"f($$Yh XtXf/XXf/vj~Bf(fWf/vTff(f(fWfWfTfUfVf(fTfUfVf/v4^ff(^f/wfWʝff/wf(DAWAVIAUAATIԍVUSHhH L( DL$__f(\fA/ v A f/v AH4$LLLT$AXLD$HL$ AH4$LL,LT$AYEYIPE~~LLLT$86LD$LD$L"HL$ HMT$AIPLf(Ix H uR\DD$$?^_LT$8AtEuxID9d$MELd$HEHXL[]A\A]A^A_AHEEAEuu A,fDAyIx LAA LT$H ljf(\bLT$0f(AHMIx 1LL҉H ,#HMtFIt$I\$Ht7L%LHtHL-#AL1̂HsHuH HL1.#誂Ld$HIx 1LH 8胂L$ \fx f(_X f.HHx H D$D$Hff.AWfAVMAUIATUSHHhf/ t$8HL$0DD$<I6H)Ń @f *D$9l$8ED$ D$ @D$ D$$M$L$Y -L$ L$H ~YH $l$(D$<xE1HT$0HH,H9|HL|$0LIf.Ic$xMLuƋL$$ILD$\LLoff/vfW]~f/$vD$\D$ uA$u f/D$($LifImM}HH }Ll$E1MAH $@ImIHtcI>HI9tuILD$\DHHff/vfW}f/$vID$\I$ImD$ HuL$fLl$Y 5єYt$(4$f/ f(%^f/.M?t$ 3D$ D$D$ LLH~XL$LHY L$Hx T$(H $DL$ AHL$~D$ L$9L$86,$l$fDLIHMUHx H1E1H Ј~^~11ҾHMxD$ D$Mt |$ {1L$ L$M t/D$<xHT$0HH,H9tctLHT$@?Hx T$@H $DD$ AHL$(v}@Hh[]A\A]A^A_ÅjLHL$@L$@$HHx DD$ AH f(L$( }1LHT$HL$@xHx T$HH ą$DD$ AHL$@|LH$MIEIMHw llE11f/f(_LGf/]f(HGHHf(Hu\LH$L$.I6HG$$I6H$)$ŃIH5ˏHoDx$A@9LH#T$<$HHx H >D|{{11ҾHjuHx D$(HH ΃DD$ :{Hx H g1{11ҾH u< E11xT$~3HD$M$@AILH*#H߸tM9uH HH1+#IsL;t$uH([]A\A]A^A_ff.@AUIATIUHSHHI1H ,#sMtFIuI]Ht9L-dDHHLL-#AH1LsHsHuH Z.#HLH1[]A\A] sHtHHqHYHt;L-\HHLL/#AH1rHsHuH 0#DAWIAVAUEATEUSH(Lt$`D\$hHL$BHӃffHHfHofofoHfdfof`fhfefofafiffofeffofafiffH9ufoȉfsffofsffA~E'HcTAэP9HcTAэP9HcTAэP9HcTAэP9HcTAэP9HcTAэP9HcTAэP9HcTAэP9~{HcTAэP 9~iHcTAэP 9~WHcTAэP 9~EHcTAэP 9~3HcTAэP 9~!Hc҃TA9~HDADE9IcIcHHAE11ABLtUDDNAL$ubE1Et#IH$M$AILH*#H߸kM9uH HH1+#IkL;t$uLL$Dt$$L|$(Sf.AWAVAUATUHSHHLt+xILHH[]A\A]A^A_DDxEAMcLkIHt'LLLMLDžHx HE1H jtj11ҾHdff.fAUf(If(ATIUSH(f(f(Ax f\Ah A(f/vg~/hf(fWf/vQff(f(fWfWfTfUfVf(fTfUfVf/v5^f(@f(^f/fWgff/w|AEPIx t$3f(fLH ,u|$i|$t$11ҾLt$|$cct$|$f( ^ff(YHcˍUHID \f(΅tu(YXHȃsH([]A\A]DYXHȃsfDHx f(T$fҺH sL$D$hl$L$|$f.f(f(f(Lf|$H tQht$|$AWAVAUATUSHhLD$HcIAAHD$ML$E1D}D4}fIIL9l$:GHD$EfE/F fE/wLAoE=|5|LALf(_]f(f(sfA(AfDTfUfDVfA(WPAfDTfUfDVȅt ABD9fA((fD(A\D\f/f(fW df/ff(f(E1fWdfA(ffTfUfVfA(fW {dfTfAUfVf/Hx f(f(fA(fA(L\$XH sDT$TLL$HDD$PDd$@|$8t$0DD$(DL$ H|$fH|$11Ҿ`LL$HL\$XH{DT$TDd$@|$8fInfLnH{t$0DD$(DL$ DD$PH|$fLnfA(fA(YY\A^EteLAfYXLsfE/ffA(fA(f/v f(f/vLs܋.Ef(IHx fA(fA(f(H r L\$ IDT$PH|$dL\$ DT$PHyH|$fLnHyfLnL9l$Hh[]A\A]A^A_@Lf(_]f(f(s YXLsfE/vHfA(fA(f/v f(f/vLs܋A8fA(fA(fA(^f/wfWaE1f/8A^fLAoE=x5x&fDfE/[Hx fA(fA(EL\$HH 3pDT$@DD$P|$8t$0DL$(DD$ H|$cH|$11Ҿ ]L\$HDT$@Hx|$8t$0DL$(fLnDD$PH|$HxDD$ fLnfA(fA(x=w5wfD(JAVAUATUHSLt4x[LHLL]A\A]A^DDxEAMcLbHHt'LLHI趼HDž|Hx HE1H ata11ҾH[ff.fAVIAUAATAUHHEEL$AD$1EDLHAEHI@HPf(YAt@AtmH 8f@HfYXfXH9uJE9t YXLڃHB A9uAh  uf/w3H]A\A]A^HHx AH n1 `DDHLAx Ap H]A\A]A^fAUATIUSH(HM'I$h 1H5MtL~A$4 ~2uAY$ iuA$h _f/LYHT$1LH5sD$A$A$I$A$xM$A$h $X^tD$tfW^BH9HD$Hx UHH eOlHgSA$IHHHx VSM9uHx H1H W`SH[]A\A]A^A_@f/%PH1$$Hx H dSYH1Hx H ]gR$$f(f(LLD1fHfW^AHH9uOL!THx f(ĺUHH cxRAWAVAUIATAUHSH8T$LD$|$AAHcHRIHt$Lt$(IcLt$L1HL|$(HHIHL$fLl$9\$trHT$(HLOL5Mt$DHZYuH|$QAغ`HHx H c1|Q11ҾHkKLl$9\$uLt$H8L[]A\A]A^A_fHx H bH1 #QfDDD$Hﺈ1Hx H bP11ҾHJATUHSx4' L IM%xMS8LcMLfI9tQfIcA@DHHH)!HWA 1f/H9uzH9uIB8LHtZII9uAPEtHcIIKI)1f/AHI9uLcxIB8LDHuE1f.ALHD[]A\Hx EH1H d OD[]A\ËxE1@AWAVAUATUSHHHT$HL$HLnIIA@AE1E1H$!dLfEI@LDAxM$IMIT$1)Dž111f(Hf.ff,Hf\fYXfXH9uىHHH9t\YXȅxpf/v f(MMHcA9~hHD9HD$3cHHD$HQHH[]A\A]f(A^A_ff.w\Q@O,IL; $HD$f.LHD$LvHHf([]A\A]A^A_鑬f(7f(f(LD$8LL$0LT$(L\$ \$[\$L\$ fLT$(LL$0f(LD$8@HHL$HHf.AWAAVAUATIUAoSHHh HT$@eHLH$69tOD9A$ H4$L LAI$x H ^1L11ҾLFHD$@HD$XIIYI$ M$( EDMQE_1HI,IAHtALH9t'HHHu\ EHtHH9uHHHuHHHH9uK41fLf(ːH HHYXH9uL HH9uHD$TDLLHHD$  "af(D$HA$0f/f/aff(f(fW=IfTfUfVf/^L$HL$EAGED|$E1D$8DHl$ HHDHD$H ID$PHuSEZI` AHcD$PALgDHG^ID$PHtDLhL@MtE1LEALMISf.MAEH` AHc LBMDHBM/IMtwA;mhtAmhAEruHL$(Ht$ LHLD$HD$D$hLD$HD$f/6l$0f/wMZIMMoMuI߉DEMM9EHt$|$\M)AhD$)A9`}A`D$XtAA~kHD$Ht$ LHD$+\$\HD$8D$D`l7Ix SH SUAD$`LPATD$(DL$xp<H HD$8Hx[]A\A]A^A_Ht$HLHAMq@AErtT$Tf/Cfd$@f(X\f/\$0v2HD$pMtJLl$8AD$XHD$Ll$8D$XDKILl$8ME1D$Xff.AWIAVAUATIUSHhH$4$HT$(DD$DLL$D$L X XAA 288Af(,$AA_XAXx XY\f(D$8t$ tfW8f(]D$ A\$h1E1Ld$0D$HD$@D$D$@EAD$pD$1f%f A~VHD$0HED$lH PIx LDHlRD$TPD$PHD$0T$XL$@9H ID$PHu^EI` ATHcD$LgD$@DHGE5D$1AfLhL@MtE1LALMISM/E+H` AHc LBMDHBM/IME;ehtEehAEruHt$(HL$XLHLD$D$XLD$H$HD$f/AErD$EuDDL$DE>f/C3l$8f(X\f/d$ v pE1HD$Ll$0D$H $fA/EAEM@IMMoMIDMME$uBH$|$L)AhH$$)A9`}A`D$HxA~mH$Ht$(LHD$+\$LHD$0$D`lIx SH ]NUAD$PLPATD$ DL$h57H HD$0Hh[]A\A]A^A_DLH` HAMf.t$t8 LYL$ f/<$5X|$ f/VIt$PLdD$/IDAEu/fA/T$,HD$AT$A{ArfA/T$f.AWIIAVIAUATUSHHXHKDD$0L$HD$HLL$D$4 h HHz8AxD$0A G,-A 2=3E(3EAYGD$,Ax _YT$8HD$HtAEAEELE1IAML\$ MHD$MMu|$tVL D$MtD$L$,LMƃɈD$+ID$8H)f|$MIuL\$ MMMLMHLT$MLD$HILD1L^D$HH|$LT$IAtMf/AEAAEA9}AA'D$4AHXL[]A\A]A^A_f.LLHHt$AAEf/D$HHt$vAD$rJLd$ D$HID$8HIID$8HI9u |$+E|$hAD$ru끐LLHHt$=AAEHt$f/D$HAv&AD$rtf/Erf/D$8Ld$ D$HID$8H]IID$8HLL9u |$+IMAGquEuE;ohtEohAGruӃEH4$HLH|$f/D$8vAGrH|$uHL|$Hl$IL$IH$M>IMHAGquuE;ohtEohAGruԃH4$HLLH$/Ef/D$8H$vAWrfA/D$riQDL$(ECH|$oL|$H$LL$D$8AHD$xHDDuH$LHL$L|$L|$D$8D$ IL$$HHl$HH|$VHt$Lt$8ILLH%HD$6@IHLL$$‹9~HD$ELH$Dxl^Hx DHAD$$EH DPD$(PD$+DL$8H1Hx AEH Dp+FH1Hx D< H AL+x GHHx D H D+XZZD EJL莭A99f.IHHl$ZHLLHID$$AEu9f/Er2AGrD|$(EHD$HD$D$8Ht$D$8FrHDHD$HfW(f/D$8KHFDž ,HH?Lt$8HHH LLHD$@HD$IL|$ HLMIIK JL^L9thf(1|$fvWff fYf\ HH9uL$8L9L$tAY \ ID9L|$ 1fDATLHY\LHH9uNA3MCIHf(ºKHx H >T$#DL$HHHfP HfYXfXH9uH 9t YXff.t$dQjff.L$lE&DLHl$,HHD$M$fHL9A(HL$zT$,L$tDLL$赓L$HYf/T$sHT$1LD$L$sD$AL$AMIx f(LE< H 5f.Ffl$YYXf.f(LL$LD$$yLD$LL$f(fW fAFf^AF@^f\$A*^f.QEcAt;Df(LfHLHH9uDM4A9"AH8[]A\A]A^A_NfF|$YYYXXf.DN^FYYYXf(X1AF^AFH8[]A\A]A^A_wE1E15DATIUHSHH D$xIT$IHKD$H9HJ@H9@txGvpf(1fHfDff fYf\A HH9uHHI H9tY \ HL[]A\1fD Y\A HH9uHL[]A\ff.AWMAVIAUATUHSHHXH$L$HD$tDcA4$tHX[]A\A]A^A_fDHBHfl$0@\BA \YAIYXf.Z Qf/vf/0~5)t$EufWAAW^^AAWYHD$YSXfWD$A$HX[]A\A]A^A_DHx D< HX1[HH q1]A\A]A^A_.fDf.L$0 ~5)t$E IGMLl$LHD$(AIL;t$((ALL$ QuDT$LL$ EtLL$ .L$ 0Yf/T$0s8DfAEt1Hx f(HD< H =0.fDAAWHRIfIF|$0AZHaR\\@\\YY\A!iYBX\\\Y\Y\AI)qYXb\\\XY\Y\AAYXf. Qf/vf/0~=)|$EAA_AG^^A^A_AGYf(|$YCHD$f(f(SYXXfW(IFH9tCAOAYHYXAWYPX\f/fWf/IFH9tAAOAYHYXAWYPX\f/wef(t$fWf/wUIH9oHAYAYOXHAYOX\f/wfW\$f/.A$!HJH2HRIF~^jJ@`DA\\v\\D~5D\yf(D)t$\Yf(YAYYYfA(\Y\Yf(BAY\\Yf(H\\Y\XfWA?DFfYrBXHDIA\\>\A\E\DAf(D\Yf(YAYAY\!\Yf(AY\\\Yf(AY\\YXAiDNYFDBrXxD\DY\\DQ\D\D\fA(Xf(f(fYl$0YAYAYA\AYEY\ A\\YYf(A\A\Y\Xf(fDWEwBYDVDnDBf(ApD`E\A\DA\A\E\DQXfA(E\YfD(AYf(AYEYAYEY\A\A\f(2Yf(A\A\Yf(A\\YXAAYXf.|Qf/vf/0E!AAoAgAG^^f(A^Ao^AgAGYf(t$YkHD$Ycf(YCXf(XXfW8IFH9tRAOAYHYXA_YXXA_YXX\f/fWf/IFH9tXAOAYHYXA_YXXA_YXX\f/Ef(t$fWf/1IFH9tXAOAYHYXA_YXXA_YXX\f/f(|$fWf/IH9HAYAYOXHAYOXHAYOX\f/fWT$f/kf.L$0E~- )l$fWIGLl$LHD$8LHD$(HH9D$8(LL$ HD$(lDD$LL$ EtLL$ L$  Yf/T$0s fIGAAA_AGAff.L$0,EufWL$IG Ll$LHD$8LfDHD$(HH9D$8(LL$ HD$(kL$LL$ tLL$ L$ Yf/D$0s fAAG6AAoAgAGAfWfWfWL$D~5)t$fDf(z(AAG f(f(f(^f("((~=BAf()|$^f((~-A')l$AGf(f(^Hx f(HD< H $ Hx f(HD< H $ f(DD$ hDD$ f(lf(DD$lhDD$f(f(DD$PhDD$f(BfAWIAVIAUDnATDUH͉SLH(LL$hDD$LD$t$ LLd$`D$eDT$ EtQAJIcҋt$E1HcfH)HH DIf/v AHH9uEtt$HD$hEAEHIDDHD$$LLPDD$(DT$+AXAYDT$ D$t HD$hDE1E1HLMY 1fW DA $Et$DDYDH\A $H9uH([]A\A]A^A_fL1DT$ Ix E< H D#DT$ DHDLLHD$$IDPDD$(DT$@Y^|$DT$ AAL1DT$ Ix E< H #-DT$ AWAVAUIATIUSHXID$@ D$DH@LxI|$D$4M9 "AxID$HD$ /HD$DHD$(I( ID$@I HHL@H@HnALd$8AL1ɉ\$MwHIl$MMLt$fDIIHL9xtHDqH@WH;T$AÃ|$A,HHH91DffAf\ HI9uHH ;t$t A\IILIcHlLd$8H AHtfM tZntLfI@AILA*AYFAFI9uAxtuI( ED$qt$(HLt$(LML$AA[]Dt$DEAD$rAD$rEUPEt?IcxIT$AE<LEXf/fDEEuAyAIT$@ADžAX HVHZLrHEHl$HHsL9APHLL D$Hff/vfWA AfA/(D$HXA fA/x A(fA/(Ax A< AT$lLD$ DK HsL$T$DL$L$Ix LAQT$H ) RD$0 DL$1LE1E1H5GLZYIIHAX AAC1ҹLLhM9 HX[]A\A]A^A_Df(fW tfA/(AIL$@M( HHAHD$HAHI Ld$8L|$(HT$1ILd$AWO$Lp@HI.DALIIAAT$øYD$AD$I9uHD$HD$Hl$M( H@AxH IeHt&HQHt1DHRIHHTHuHD$DLLLED$qHD$(Pt$(AML$AAxXZ{D$D>jfWXf/yAD$rlAxfA/h \1fDA\IHI9uED$lL1AD$Ix H QH-[Ax~3ID$HRLIx ظH&A9xIx H -L1S(LL`EEIx L1E< H IIcwAED$lLADžIx H LD$41oML1E< Ix H KE EIx LO1H JIx LAeID$D$4Ix LLAHX[]A\A]A^A_HD$L|$(Ld$8H8HHPHcHHHHL$I HH|u)L|$(Ld$8Ix H L1N_f.AWAVAUATIUHHSHHUH=I1H5@LL+\Ht"LUH5@I|\LLpUDLIADTUID)IAO~\A9~ %HcLLVH[]A\A]A^A_DHx MH1H "HfDHcH5TL+VDfHAHx 1ATAHH 11ҾHZYff.A1DHHt&,Hc9uEuu߉,ff.@AW AVAUIATUSHHX: H|$D$9 D$= D$AD$B fL$FuHS| t6Lt$I1H Ix L11ҾLH5>HWHt6Lt$I1H Ix L11ҾLE}E1Y[HD$H(E}IE IDE tHL$9D$$HL$HL$HHL$(DE}IEIDE uE1A-AME&EMnATL|$HDd$:L]ZHA'LxRH|$MH 1AD'1Hx D$$E}EtHD$H(I[DD$$tH|$11ҾmHX[]A\A]A^A_fDAFLA Dd$CE}ErItEf LoftcLt$=HDD$#LD|$?1YDD$#HA 1DL|$BHDLfD$DXHMDDAQu"ftAbtA t]BDEuUHt$(膱L9l$HLHC|$HHT$MAIH*tEf $IHGDEu]D|$?Lt$=LHQXHu;LA u ML1DLt$BHDLfD$DXHtMD|$DGLoLt$BD$E땐HAWfAVAUATUSHHHGTU fo]H|G LJpHG`HGhHGpHGxHLJLJHLJLJLJLJLJ8HLJ@ HcHLHHHL$HJL$LM L<M9M4LAM9H,AE!AE!M9AE!M9AE!M9AE2I9)Dhf(!GL1Ef( AIIAA T HI9uD)A9t  HA  AH4Hǃ,HǃH)1HHcuAHMHcu7HMH[]A\A]A^A_ƄHctƄǃPH[]A\A]A^A_LL$ I)J HIA  AHL9ufDUHx H1H LrH11Ҿa1]ff.fUHH H H HH` HxHPHִ|HH躴|HH螴|HH肴|HHfxH HPHxH( H,H0 fHDžP HtH@ HtHH HtHhHtH`HtHfHDž0 `@ Ht u`HHt u"]SHDž~Hx HH H6]1AHDžfDHx H 21fAUATAUSHHsH Ht1HpHhHt$f.HHH菲HuHuH Ht,HpHhHtDHHHWHuHuH Ht,HpHhHtDHHHHuHufH HHǃ  lH輜~Hx H H1H Ht 1HϣE.H HfDH ǃHǃH HHM8HHuJDHA8HHt9HHBHHtHPH@HtH`HBHuHA8HHuL%lf.HuXHHu`HHuPH܇HuHHЇHu@HćH}8HH^WH HEqt r=HEHHpHpLhH_FuIFIuH@FtHILIuHufDHH HpH>u0HݯHǃ Hǃ BfxHH谯fHǃ  H H腯Hǃ H[]A\A]t*H HuHuHHmHtH}u䋃xHT$ HǃHǃH p蹊H AHYH}8KHuXH詆Hu`H蝆Eq tEuHm8Hu@HuPHtHuHHhHu@H\Hm8HufDHx H H1{rfDHx H 1VnHx DElL1H3fDHuHH\yff.USHHLJ ~Hx H 1HHe~Hx H H1%H{H1HHǃ HH) Hǃ H[]ff.@UHHHt]Hx HAH ]@AWAVAUATUSHH pI9| >ǃ H HH  HH ͈HH` x4HHP|4襦HH|4艦HH|4mHH|4QHHƋ| HcHLHLHL$HJLM M<M9H,L4AM9M$AE!݃AE!L9AE!M9AE!I9AEM9Dhf( c;H1Ef(AIIfA DA HL9uD)A9t( HA A ƋxHߍpHH x4H( H[]A\A]A^A_fD DLL$ YYI)J@HIA A HI9uOff.UAHASHV0H uWHxxHۮ HͮsH®HzHH[]̬@H 蛮HH莮ff.AWAVAUATUHSHuDEtUxu DMPEWHx H H1G11ҾHEXDžHE1E1E1L(Yƒ EL'HI9tuHAI9uEt EPEtExLVHx H H111ҾHEx~.Hx H H111ҾHDEt' ETDLEt>x]Xx;Hx H H1+11ҾHxHuDExDEXEJD9EXH[]A\A]A^A_A]DAMD:Hx H 0DuLHx H H1;11ҾH*DL1҅tH5<)HH5*)HP~ EHx HH1[H ]A\A]A^A_D}PEuNDEuBf/w0DEu$DE=]tu D]dE)Dž1H5b(H 3f/h (Hx H )H1NE }Hx H 2 H1fDLEXH[]A\A]A^A_Hx LH _'1 ?f.Hx H }XDEuDEuDEHx H H1DžHDžE DLE}XHx Hﺪ1H Q11ҾH@Dž1H5s&H(ff.AWIAVAUATUSHhDWP|Ht$Ht$XEtDE HD$T$0HAtBMAHD$H0IHcAHL$8IHD$ HIHT$0HD$(Lt$@A)ĉD$HPH9t-H f/wf/vAGpHPH9uH|$t AGpHh[]A\A]A^A_DHCHD$X{u@ABH8HxH|$XHIDV GAbuHPBbDVtoLt$XLLcA92HD$X8: AbIIuB€8nHPHPDVuIx 1ELH eH\$HD$XIuHHD$XfLKL\$XLL$X-IyH|$XHGIDF DD\$ vDm1H5 5mt%Dn1H5Q6_nAsH )1H5=H[]A\A]A^A_t$ q19H51D\$ q7Dt$ r1:H5D\$ rDAWAVIAUIATUHHSHH+1H=/I1H5\LL7MtL0AH5)I<1f7Ht!L0H5I<@7LL0DLIAD0ID)IAO~`D9} )HcLL1H[]A\A]A^A_fHx MH1H "fDHcH5iLc1Df.HAHx 1AUAHH $11ҾHZYff.AWIAVAUATUSHHX Ht$Ht$8%H|$IH9IH9D+EIHT$ MN7D$HT$ EHD$HH#DL{L|$8DKEILDP uA-)HH\$8;L{L|$8 Q5H58!HcH@L|$8E1gIx H j LHL$8HAHHD$fDHEIHDP HL$8D IEuMEEtfA/h |$tAw`uA0,H|$t AW5ApHX[]A\A]A^A_@H\$8D+Et05HIDP >HH\$8D+EuAtfA/h qIx H DDIx 1LEH dL|$8IGHD$EIGfDH9EHEIAƇH,Ht$HH).LD$DL$1LIx H E)11ҾLAIx H xL1n1H5L3L|$8AdžLAFPIGEH9f.EHEIDP DH1|Ix H LAPE L|$HEIGHD$AZA[E[HEIDP IL|$8EEu*1H5LYL|$8AdžIGED1H5E*L+1A,Hcȃ= &HHu&fD1H5L1A,Hcȃ^%HHuf.1H5kL1A,Hcȃ %HHuf1H5L_1A,Hcȃq%HHuZf1H5L1A,Hcȃ1k%HHuf1H5)L1A,HcȃI%HHuf1H5LLL|$8AFPIGEHS-*DPn Ix H cHKDHu - Ht$8L‰IH5wA9HKDHu -u Ht$8L臉IH5DALL|$8EIGDKExIL%D P A-IH|$8A7V9' IcLHSDP Ix H _1LL|$8IGHD$E'DKED$ IL%>fDDP IH|$8E/AUЀJIcLDKEyIL%DP IH|$8E/AU/IcLAdžLd$@LLH|$@H;|$8L-`+HH|$@DLH|$8軇H|$@H;|$8NtHMHDQ u<,tIx ILL15L11Ҿ$H|$@DKEIL%@DP IWHT$8AA<7IcLHS-DP Ix H *]HKDH . -)Ix H X[HKDH|.|-3Ix H Z1A,Hct HHuDKEbIDP IH|$8A7V2H5HcHL|$8L/HD$HD$4HD$88:HL$HHT$4AdH5 LL|$8EEHEIDP TIOH91H5LL|$8Adž(E1H5LL|$8AF`E1H5LL|$8AdžE]IWDPIx H r1H5DL7L|$8AdžEIWDP_Ix H `b#IWDPIx H ^1LL|$8IGHD$EDL|$8E1fIx H ZLHL$8HAHHD$fDHEIHDP HL$8D IEuD$M1H5L'L|$8AdžEEtHEIDP `D$IO1H5LL|$8AdžE1H5ZLL|$8AdžE1H5+LL|$8AdžE_1H5L^L|$8Adž$E51H5L4L|$8AdžE 1H5L L|$8AdžE1H5[LL|$8AFTE1H5*LL|$8AdžE1H5LL|$8Adž EfIWDPEFXEx+Ix L1H eH|$8HGHD$Ht$8IVX1LAFXH5L|$8ELHt$8ÁL|$8AEEHEI%I9L)H"I`HH HT$@LL)1H5 LI`1LnL|$8EIGdIx H L1eH\$8L|$8E1oIx H LRHL$8HAHHD$fDHEIHDP HL$8D IEu{L|$8E1dIx H LHL$8HAHHD$fDHEIHDP HL$8D IEu L|$8E1zIx H rLrHL$8HAHHD$HEIHDP OHL$8D IEu1H5 LHt$8VIH5 LAL|$8AdžIGE-Ht$8LIVHH5M LAFH[AdžAdžL|$8EIG;-%Ht$8L~IH5 LAAdžHt$8~I1LAH5 hL|$8AdžpEHt$85~IH5 LAL|$8AdžpE]Ht$83~I1LAH5 L|$8E&Ix L1H kiHD$|$HD$Ht$8L}IVH5L LAFAFHt$8LN}IH5LAAdžIx H a7Ix H 1`Ab]Ht$8Ht$(}L|$8Ht$(HD$HD$0EA:;D$ VAbAdžHHD$HHL$HHT$0LH5 }L|$8EWIx H Y}1LHD$HD$Ix 1\LH L|$8IGHD$E_1H5L^1A,HcȃtHHuf.L|$8E1H5RL1A,Hcȃtυ}HHu1H5L1A,Hcȃ t)HHu끐1H5>LL|$8AF0EfDE?HEI1H5La1A,HcȃHHu@1H5L1A,HcȃtFHHuAdžpL|$8EZ1H5L1A,HcȃHHut@1H5L1HHJA,HcЅuL|$8ADŽ,E1H5\L@1A,Hcȃ/HHu1H5:L1A,HcȃHHufA Adž EOI!1H5L1A,HcȃRHHu;1H5.LW1A,Hcȃ  HHuf.1H5L1A,HcȃHHuf1H5L1A,HcȃDHHurf1H58LL|$8AF4E1H5Lh1A,Hcȃ"HHu 1H5L'L|$8AdžpE1H5L1A,Hcȃ>HHu1H5L1A,Hcȃ yHHubf1H5]L1A,Hcȃ 9HHu"f1H5L?1A,Hcȃ2HHuf1H51L1A,HcȃHHu1A,HctHHuEOI1H59L萿L|$8AdžE@E/HEIj1H5LQL|$8AF$E1H5L-L|$8AdžE1H5SLL|$8Adž<Eu1H5LܾL|$8Adž4EK1H5L貾L|$8AE%1H5L茾L|$8AdžE1H5iLbL|$8AdžE1H50L8L|$8AdžE1H5LL|$8AdžE}1H5LL|$8AF,EV1H5L载L|$8AdžE,1H5L蓽L|$8AFEHt$@CtEntD$4E H|$@H9|$86> HT$41H5JLD$4AFt1H5LL|$8AdžE1H5lLL|$8AdžHEX1LH5迼H|$8HEHDPIx H 1LںL|$8IGHD$EIODHu - Ht$8$sD$4A HT$41H5LL|$8EIODH-Idžh EOIkHt$@rE~dD$4E HT$8H;T$@B :- HT$41LAFdH5Y*L|$@L|$8E1H5LfL|$8AdžE1H5VLIx LMH \11ҾL)1H5L胱L|$8AF8E1H5FL\L|$8AdžE1H5 L2L|$8AF E1H5L H$L|$8I4Ew1H5LްL|$8AdžEMH|$8Ix 1hEGH FLHL$8HAHHD$HEIHDP {HL$8D IEuAdžH#HD$HHL$HHT$0LH5L|$8E1H5LL|$8AFEAGAD$sH HH1#f1H yHHߺ#AD$q 1H ZHHߺ#ЉAD$qj1H ?HHߺ#詉AD$rQ1H 'HHߺ#脉AD$q81H HHߺ#]AD$q1H HHߺ#6AD$s1H HHߺ#AD$rH HH1#I9HD@lH H1#H豈@It$XH0IL$XHHH#HH߸A$H FYI|$`HH;$It$`HHD$If0LH #HHAH 1ID$`H LxHHHL$ML5LHM #HHDxA1L$H DT$莇DDT$DM,Et,fDAILH#H߸GM9u1H WHHߺ#)HD$HD$LxMI4It$`H;/IL$`H#HHHt$HL$(LH߃@B#HHD$(H 蝆Mt$@1$HLH kHxMtSIFMnHtFL5HpDx HIEL$AH1H)IEHuH 7HH1$1#HH WHID$PHtuL`H@HthL-q,fDD@lL#HH1诅I$IHt3HtdHu1H HHߺ#IyID$HuHH1#H yVX H8[]A\A]A^A_H HH1#kf.MH HHߺ#HH߸H Ԅ#HH߸AD$ H 襄AHH1H ;#耄A$H1H HYn@H?D@lH H1#H*DEH .HHߺ#1DT$f.EH HHߺ#1ԃDT$Pf.It$XH+#HHAH f1藃LHAMDx1HHLH N#DL$TDDL$4DL5M|Et+@AEILH#H߸M9uH HH1#hIt$`H+#HHAH 1跂Lt$HL7AM1LHHH p#DxtDEt6L|$L-&O4AILH#H߸/M9uH AHH1#1EH HHߺ#1DL$EH HHߺ#1ʁ`DAVBAUIATUIcSHD!9|lHLH+A'tA"t[]A\A]A^DCHSu[]A\A]A^ÈHBHtA8uz\uDcDHx II1DBH 11ҾL{Zff.AWIAVAUIATAUSH8LD$LL$ H1D$11HT$(AIAD$ D$)E Et+AD$hIMID$8HAD$quEEEAD$rMD$PMtIPfDH HHtArtLLA\$h;(AD$q AD$pA%=D$It$`Ht L'D$ Md$8M=Dt$ELl$(MMuMmMDMMMAfDAD$qt A uSEkA%AD$rIt$PHt%HFfBr2HHHuAD$hM'IMuMA DA HD$HD$ \$HD$p\$(HD$xH$\$ \$H$H8[]A\A]A^A_MD$PyAIt$H1LytID$8It$HLs&D$Zf.AIt$H1LIt$PLA\$h&AD$q tBAD$pD$%=D$It$`HL%D$ DIt$HL%D$DAD$r @E1E@AD$r;@A0 @D$11D$ D$D$HAWIAVIAUATUHSHHt$P HT$XHL$HLD$xHDŽ$k%xL DŽ$H$DO|$pDL$ HDŽ$HcIH\$E IWINGHrH9Hq@H9@@r i Df( ڙ1HHff,fXfYHH9u|$ tHH|$XY2H|$HHD$HLhLpMsL$1E1L|$h,IU(HLHIMnMtEUhEuM.IAMuDd$t9\$ |<|$ttHT$Ht$hHH$L H$ HH$#HHH$HD$PHPtDD$tEtHT$HHZH$IE11ɋt$ H~H$1HH$L LhHXL$MM D$pLE1H$xD$ |$LAH|$`AD$HIHD$ LMf.DAI9HHH$HAMIuL( HHH$HI9tT$ O$A~OH$I9AHQI9Aк|$DffAdf\AHI9uLL$ Dt$K N D9t$ t A\LMLcH$>fDH( t$ A~N$H$HVI9IUAI9Aкr|$gffA\f\AHL9uLL$ Dt$K ND9t$ t A\LMLcH$PfDHx DL$ H AHHD$@LT$8L\$0HL$(;HD$@LT$8H$L\$0HL$(f.L( IO$3LMAH$LHPH$St$$nHD$hA]A^HpH9uxt HD$PHp@|$ HLbff/v|$~uL$ fW$tV|$pLt@f(HLDfHfWHH9u|$ I9t fWDDEDEH$H$$HL$xH9tH$H&Ht$hH%HĸL[]A\A]A^A_LL$`A\DIAHM9u1DLL$`A\DIAHM9uDHD$PHHpoHD$HD$XHpZDL$tAEH$H$H9HDŽ$HHFHH$AL$D|$DhILIL/f.H$HcHHtH$L9_H$ uHD$H|$ LLH$HAPff/vfWrAfA/v AAAXAPChHLIx H PDL$ DD$(^tXZIu@H/IE(HLcRLcxH$D$t1HD$hHx 1AHH Hs11ҾHmH$L _HLH$ Ht$|$ HL⃅Pff/f/vXVDD$ EHD$XLL$t$pHPHD$PHHHAI9HB@I9@t$ 1LH@ff<f\HH9u|$ tHH|$\Dl$ Lt$1HDLYLLDH$ff/w`\of/vfW1p$Mf/vXNXofWopDD$EHHx H q}$HD$x7 $LD$1XHYAHH9uH|$H D\$ EuH$D$tHL$hP HH$HHH$HD$PHP H$D$tHD$h]L( E13f/vXHHE$Hx H PDD$(D$ p^_D$/LD$1@\HAHH9uH|$HLoLwMDL$ EH$D$tH|$hfAVILAUATIUHSHLHHLD$IvHIVHsHAGHLHAVxA1H ?DB7$oxXZ~@1L5ADLLH8$HMox9LH9$D$H VoLH:$H *1oH[]A\A]A^AWIAVAUATUSHH Hl$A LH$HD$HCHt`L`HXMtSAIDAD$q@t/AT$ht}tIT$(HL tLLL L#HMuH4$LH (HcH$HxHLH$H[]A\A]A^A_DEtLLLHLcE1MIAWAVIAUATUHSHH(Ht$ y HHD$fIvHD$H?HFHVHHt@H`qHAHuH{Lt$HtkHGA|$qL HMuE*H LH1#Is>InH|$  DD$1L麥#LHA>H$H9EHEHtLxH@Hu#HIOI9HEIIHjHpH~#LLAH1=HEHPI9uLxH[]A\A]A^A_ÐHHhH@HfDHpHHL麦#LAH1h=HEHuf.DxLLHߺ#14=ff.@AVIAUATIUHS#AFqxIF@HtwHXH@HtjL-x$f.HHKH9HEHHHt=HpH*#LLAH1<IF@HPH9uHXHHu[LHﺬ#]H sA\1A]A^H< OIF@HtHXH@HtL-ǎHpHH蘾L麪#LAH1;HCHuyfHr@#LHAH n1;fDHt2HtDHt骪f.H #1};DH Ύ#1e;DH Î#1M;ff.fMAVAUAATIUHSLHEI1#H };DEt2N4L-fHL#LH:L9u[LH#]H A\1A]A^:f.EtN4L-NHL#LH`:I9uf1EH TL#H,:E6cff.AUIATIHUHSHH肼ILL拍xHHA[]A\A]ff.AWAVIAUEATIUHSHH(H DHL$HADMD1HHHD$DLHHHD$Ht>LxLpMt1IwHĻIwHL$HIHtM~MuHutHumHHK8HHt^EHC`HtLxLpMLfDLH==HL$HIL|M~MuHS8HuH|$t4HD$HXLxHt"EHC`H(IIHuHt$HHt$HHH^`…HL$E1HAHTfHAHHXH9u}4Dxu[LH tH1$7Ht$HusU4%Ht$H2H([]A\A]A^A_Ë}4DxE1ɅtAH L1AP$LHAQLS7Y^Ht$HtHL~{D$uE1L-XKDMtjE4LH蕹xIׅt-AILL#H6L9uH LH1#6HD$AIcL|D9t$uU4H vLH1$q6@M>IMHS8H[fDM>IMHXLpHHH蟸x,HT$HIH\I^HHHsyIIHu{fDDECrNHCPHH FrH0HHuDDECrHCPHH BrHHHuDDEHsH1H!mHC`H`LxLpM#JfDDEHsH`1Hɫ9A@CrHC`HuHzf.D1EDECr}fDH wLH1$3f.AW1H AVAUIATIUHSHDB$3AEe 5@ 1H LH $t3Mu1$LYH FvLHP3MtSIFI^HtFL5HpDx HH謵EL$AL1H3HCHu1H LH$2IEHt>IUHt5DJlD@lHL[HH ] $A\1A]A^A_2fDH[]A\A]A^A_fH aLH1$g2f1H 0LH$G2AED1H LH$2AExD1H ŅLH$1AEHD1H LH$1AED1H LH$1AEff.fAWAVIAUATIUHSHBqt LH L1#L1HuHHt$HFHVHtfDH`HBHuAxHEPE1Ht.HHLxHt!HI7IGHt H0HHuLÃA9uoHEHHt(HPHXHtfBt"HHHuH[]A\A]A^A_LLHyHSHuH[]A\A]A^A_Ð1H LL#70HEHHtDHXH@Ht7L-ȃf.D@L1#LLH/HCHuH LL1#/ @1H ˃#/HEHHtBHXH@Ht5H-FD@H1#LLHs/HCHuHLL#[H q]1A\A]A^A_C/HVH^Hu]HHHtLHBH9H9uBuڃLLHBAHL$HSHL$HufDHuHIIHLÃEqA H LL1$~.fHBPL~E1Mu:xLLLAGA?L1Hr5IHt AGtHuH1AUIATIUHHtTHtfHt1I|$HtLLH]A\A]1]A\A]f.H $#1-H #1-H #1m-ff.AUATUHL ID$8HtA9t$ltIMu]A\A]fLp It/ItDLLHI|$HtLLH]A\A]TH :LH1#,H ,LH1#,ff.AWIAVIAUATEUHSHH(H DL$Ht$HHu Hʀ`(H HHuMINLLHL$q~}HL$MnIDE1HD$@HtIAwt~HqLHL$肮HL$A;Gtu"HHEE1D$$HLPAXZIIML;l$uE1H(D[]A\A]A^A_ff.AWEMAVL5AUIATIUHS1H(tXL5^ tG t=Hx A1E1H tKDL$ 1#+11ҾH%DT$ DLL$LD$LLHrE1AHH11HD$8LH$AH g~1*HL$ALLHAHt$H#H([]A\A]A^A_@AWAVAUATIUHSHHHrZ IAٺ$LAH ~H15*I]HtAxt7L@H xLH1%$"f.AWAVAUIATIDUHLSH( T$LL$LL$LD$HD$HHLLxHT$E1HJLTEHL9I9tlMtIGEAHtHPH@HtE119؃HHHt@huHHAHuuEtH@E1Ƀ|$Ht$LL=5HHLPDL$ H (v1AxDB'$h!AxZYDpt0fDH6LHL*$fHn,!As1H ;HL+$ !Mu MfDIID$8Ht:AT$ht9vA8 Ww׋T$M1HLӍID$8HuAH<$tLH$LpL`Mt;|$L=DuJfAFh9spM4$IMuHt$H"LLv$ E1LLIFH|$E1E11H TpHL2$IFHH HL15$HD$AIcLtD9$$}Mt|$E1H oHL2$1}A8 wT$M1HLeDM4$IMAFht9v빐|$}Ht$LH([]A\A]A^A_fABENlEL$L1-$HA8 D$GVM1ɺHLI轋Mt$D$M6fDHPH@HgE1E19AHHHt@huHHAHu|$tAA*E11H znHL.$IFHEN EH r10$HLfLpH@Hu fDEuCIIHD@hEtA9sH mHL14$f.H mHL13$E1dfLxH@HHD@hEtA9rIIHu"f1H lmHL/$IIGHuDEH {HL1$1DD$1&$HH :{LAxDxt0f.f($HLH 0pAs1H pHL)$QMAL=p fIID$8HAT$h9stEL$lEP1L,$HLDT$ A8 DT$ wM1ɺHLֈDT$ ID$8HE{H nHL16$eEfHHH֋xHXLc1fDHI9t9uHHI9u)HHcHOH1HHD HJHH)Ѓr1҉փH<19rD11@9tLcƒBHHuq1bAWIAVIAUIATUHSLHHQIwLL$X>HHD$}x` EMlEGl1#H nLHHHCH[H$Hol$ qHD$pHD$@HD$xf(f(HD$HHD$hYHD$0HD$lHD$8LMI\h.Y|$^L$H$HH#LH$H >n$$D$lD$hHHsy蔛H n#A1LHH$H$HXHbHsHL$@LH@HsLHHL$HD$H|$0YD$xT$\D$pL$ xL$H|$8D$ D$YD$p\D$xT$wD$h D$l\$ f(tff(ًxB:LcHsI}J MWLD xHL$(HcHL$PH LL$LL9D$ M9AD"L$ D$ DL$ }M9tfAf(fA$$f(ffLD$(L$ffYfODAAfXf!ffYfXfAAt?fASfafAt$ff(ffYffYfXfXfA@у)9tHAY YXXĀq$LH$$#$H kv@H k#Ax_HĨ[]A\A]A^A_fDHL$PAYYXX̀J%HcALYYXXĀBCTBDHcȃYYBXDX̀BY\BDHcCYLXXԀEXHD$X#LHH 8tPH0UXH iLH1#HD$X#LHH gPHvAAH iL#H1f.AWAVAUATUSH8 DHL$BhE,IHIBqtD E IT$HHLjHzH|$MH-#gD9AhEEt ArA~TAvXEL$lEH iHL#1IEHAFXx3HD$#HLH iPH@HD$HD$LhMt$A IMI98IM/H8[]A\A]A^A_fLL$MELHLLxHxH<$M@HD$(HD$IwHL$LLA@E1IwLLD$(IAx~:fDE9nXtzCHHL#IAxD91H HL#[A LL)H$H$LxMCsfDID9sfAlHEE#A H @gHLP1ZYff.AWAVAUATUSH8 DHT$HL$BhEoIHBqt UHL$HQPHCLbHJHL$M-H-OdHD$AWXEL$lD@lH ?pHL1#HD$(HAGXx/HD$#HLH VfPHHt$(L軧HD$HD$L`MA A9D$htAtAD$rtH|$HD$E1AxH+GPHw@LHHHFAOTHD$(LL$HT$ILHL]DH8[]A\A]A^A_ÐLhL`MAxE1~Bf.E9wXtbIEH麡#HLBIAxD9H ϠHL1#IMl$Mu}@ID9DA HL1H d#W5fAWAVIAUIATIUHLSHhHT$ H\$@LD$HT$HLLD$ \D$@~  H$fTf/wD$(\D$HfTf/1H ]dHL#L=aHD$XHD$L#HLHH;\$uLL#HLAH d1TH\$Lt$8L= HX[]A\A]A^A_üED$pH R8#AHXLH1[]A\A]A^A_@ID$`HLpLPML|$0@LLLHL$+HHpLHHALAAD$lD#HH 1TPD$@0LT$ZYM2IMuHh7 AD$f/UxL%t-@HaLLHB#fHnuH ƎLH1C#HL$01LHAD$\D$0fI~ID$HDM4EDxE1HsE9fID$BHLH<#I D9xfInǺ=#LHH LHH 1>#HX[]A\A]A^A_At$fI~3It$PHˤ?#LHAH L1oID$PHHXH@HL%L1A1L@#LHH#HCHD@hEuD@lA@H R3#AD$rt/1#LHAD$ H H 2#HXLH1[]A\A]A^A_f8 M1ɺHXLH[]A\A]A^A_{hIt$`H蛣4#LHAH K1?ID$`HtBHpHXHt5L%vKHH}LL5#AH1HsHuH 6#%fHT$(1LH>AD$\D$(fI~KH N#IH M#IHXLLH[]A\A]A^A_xiED$lH M7#sf.IT$HxpHcL|$0 HHHHIHL (H)XYf/Vf/HHHH9uLLH$x9t!E1E1LHxAT$qL LLHq@It$@HkF#LHAH lI1ID$@HtFHXH@Ht9L%FIHpHHp{LG#LAH1HCHuH ։H#fDE48 M1ɺ@PfDH A#~-(HL1fInǺ:#H b fW),$L5N x)ID$L;#LHfW$H9xED$l9#LHH M  HM|$x~5W0IAL$HhfW)4$f/2AfW$L@^XIwLII9z@M9AD!΃ADIt$HH9IT$@I9@AT$f( k HfHDfAf<fWf^fXAHH9uAADHHrLI7HA9tfW$A^D$XLHxxt:MP$кe#PH1L-&LxHAYAZHcHHT$H9\$IDMt`$Hp MM$ƅt(fAILH޺#HoM9u1H xHH#QxHcM4L9t$w\$H HL`LxMt}\$L5D$Hp M,ԅt1f.A$ILH޺#HM9uH wHH1#IMgMu\$xH HuXCq uBDChEt98 Ww+Hp I1HJSHC8HBDHHC8Hu,DxADLEt A'%AA91$$ Tf(X Xf/v  f( t" XYf/v  f(]@0f/wu=DEt1]Hf/v& \Yf/v  f(f/v  f(h f/ tmuu tOL$LLHH$t #H H$H迓 8D$LH1H 7Y#f.D8 ED$LH1DxH c7K#D$LH1H =7i#f.D$LH1H 7f#_of.LDx"u4D$]APH 6Lg#AQLLH1ZY fDD$LH1H }6I#f.D$LH1H M6J#f.Lt.(t$Hx H ~GH1_ x D$LH1H 5Z#.fD$LH1H 5a#f.D$LH1H m5c#f.D$LH1DxH 35b#D@H 5L1]#HcsfDD$LH1D$H 4[#/?HM8$D$HAAA/Ad#H 7ATF (AVD$AH a4L1h#HH 7LH1`#DEXf/ Hx H EH1GcDEu DETETHx H CH1 Dx!;ETt H$DŽ$Mt>I܋\$Ll$MI}8tLAL1HފMm8MuLl$MtMIUMeHt@H$Ll$MI܋\$AL1H萊IUIHuLl$$N#LDž LLH H +51 8DE(D LH1H G5X#GIu'$ukHx H 5BH1Nt H HmDEPD$tE$t AD$EH 54LH1P#$H64D`u#RfD1HٺR#LHAr1Ai= wH nLH1Q#v1H 3LHS#HO0T$D`uNf1HٺU#LH+Ar1Ai= wH &nLH1T#H1H Q3LV#xH$ HH|$H$8HHHD$H9Lt$ Ll$0IDePEt D]$Eb}Ld$HHLA$LHIH f(t$`DxLp HDŽ$HDŽ$AH)$)$ED$D$HMLcHL$@LL\$0H)HI|5L%D$HL$@D$L\$0IcJ4HHT3I|H9wnHf(fDItfLffffYfXft)fVfZff(ffYfXfHD)D9tHcYX  LD$LHLHD$0DxD$0fWD$PAHE!D$D$HM LcHL$@LL\$0H)I|1!L\$0L$@D$HD$ LcHL$@LL\$0H)I|1!L\$0L$@D$HD$gBYX 3ApB HcAHHYX  HcYXL A@HYXL }BYX 3ApB HcAHHYX  HcYXL A@THYXD 5LHHXH\$MPH$Lt$`L$ MHD$H$H$HD$ Ll$PfDLcHL$@LL\$0H)HH<3L!D$HL$@D$L\$0IcJ4HIT6I|H9Hf(fDH4fLffffYfXft)fVfZff(ffYfXfHD)A9tHcYAX  LD$LLLHD$0蜶DxD$0fWAHED$D$HMLcHL$@LL\$0H)HH<3L7 D$HL$@D$L\$0IcJ4HIT6I|H9Hf(fDH4fLffffYfXft)fVfZff(ffYfXfHD)D9tHcYAX LD$ LLLHOHD$HD$LpMN~=7HD$PDx Lh)$f(=7HDŽ$AHHDŽ$)$E"D$D$HM LcHL$@LL\$0H)H<1L\$0L$@D$HD$ LcHL$@LL\$0H)H<1kL\$0L$@D$HD$BYAX 6ApB HcAHHYAX  }HcYAXL A@QHYAXD 1BYAX 6ApB HcAHHYAX  HcYAXL A@UHYAXL 1Lt$`Ll$P0L$,DEIvH1H9I~jIuH1H8z$D@D$TLLH1LH &L#ep LLHH LH1^#,w LLHLLH1LH %M#H LH1O#AHx 1HH $fD HLH(afAFrI~HD1EAErKHx 1HH T$߿f(L$L$f( ff.AWMAVIAUEATAUHSHHXDW4LJX EtЃ3*EA?AEAsAAAMA{ALEMLDHHLMt2@Hx8t'HEDHHHD$蠽HD$H@8HuMt4IOIGHt'EDHHHD$jHD$HHHuEMLDHHRmX HX[]A\A]A^A_Hx H :$H1fDLDLHYHHHD$8#HHDxI1H h贽Mt_xtfELLHH̓AtjAuPEMLHHߺ;EMLHHߺ"EMLHHhrADEMLHHז@fAWAVAUATUSH8Ht$T$L$DL$uH8[]A\A]A^A_DH HMIL9M@HsPLILl$(OaLtaHD$(A A L9M@DA L4$A9FhtAFhLLLvSIFPHtL@L`MtA A9@htSt$A@hAtPA@rI@PHt$H fDBruZHHHufDM$IMuCfDAumIpLD$Ht1L%/LD$t@LLLRM$IM9@AtLLLwRDA@reLLLWRDL$LD$(L1ɋT$Ht$LLfH8[]A\A]A^A_H$1,ff.@AWAVAUATUHSHhH c_1D$J,HH,HT$D}4D+X L Lp DžEtDAEAAAAAA0AA$DLE4E1E1LDLHMjMt)DI8tLE1DLHM8MuE1E1LDLHdDX HH9\$1NHD(EtDEDt+ ~0"Hx 1HEH Hx];D$Hh[]A\A]A^A_Hx H 2H1YfDLDePE11LHE]xefD11LHOHHHD$Hɒ#LHDxIHD$1H % qMt[xt8L|$L-M4fAILL#H/M9uH AELH1#Ht$ HsHt$HHc@DLELE1E1LDLH"DLLH1LH #聳@ChfDLLH1LH #Al@e^fDLH1#H  LH# H (LH# H Dz#LHH C1讲fHD$D11LPHHD$HPHD$HPHD$TPLL$TLD$P1H 11LHMD|$0L$@HD\$DDHHD$HED+D$4L$ D\$,DL$(DD$$\Z HH AƋD T$D+ D$(ZD\$,LHASDL$0AQDD$4APL$8DxQH rAWAVAUT$TRT$PD 1#蛱H@HHt$HaHL$X1HHT$P9#LHL$XD$PH LNyfE11LLHmwXE11LLH轊8AAE1E1LLH#E1E1LLH E1E1LLH_h f/w,"Hx 1HUE1E1LLH藍rHp HZ2AGH HIXHx HH XA1HhH1[1]A\A]A^A_ʩf.Hx HY@Hx HHrHx HuxHHx A AHH ?HPRhP P1jxj09H0UHSHH [WH!YHH H:W9uH[]H HWHx HH xA>1蹮HH1[1Ҿ]風fAWIAVAUATUSHH|$t$H|$H`tHx H 1LHc|$H.HHD$HhH1M6D$D$Lt$(D$D$)HDH$@M'E HIBDb tIGIDB uLLMeL|$(M9HCH;$uIUIDB tIGIDB uLLeL9|$(t6H\$M1H HHx H911ҾH(D$H[]A\A]A^A_HD$H|$0Hh IHt D$H\$DL$A1H 'Hx H軬11ҾH誦D$uHx H1H }耬11ҾHoHx HHH 1JH11Ҿ9Hhff.fAWAVAUIATUSHH`HD$HHcHܫIhIHH|$?1Ld$@ALcA9|ZHD$IAF8u.A9D)1LH<H[]A\A]A^A_DHxH|$xuIx AL1M`H c)Ix H L111ҾLMh fDHx H zOȪ11ҾL跤AAWAVAUATUHSH_PHt$pHT$`HL$ HDŽ$D$,tD1ED$,DU0HE1E1H$EH$HD$D$|1L$D$\H|$Hh H$HH^A?begi?BEGILH|$҈T$tk H|$HT$IDI4$VHW t.H$HHHRHF uSLu!aH$Hu'DauS~NDH$E}0HA1GA렀n D$| D$DH$D$i6@HH$~D|$\nNED$|D$|H$\$AHx EH1H L$11ҾH\$DDD$D=T$,xHt$`CHD$pt$D0Ll$`AuEA9Hx AEHH N1脧11HsAulL$H$Ll$Hh LH$IHfDAEtAtLA}begit6A}BEGIt uH$LA}NuA}nuI $HHDHtLHHT$$_HT$H$AHHDB tHGHH$HHDJ uH^AE1 }0Ht$`DžL$DHD$pE$Ht$pȃHD$`0 ? HDŽ$HDŽ$HD$=# 8 Hc蔥H0 HD$ HD$p8HD$`8HcHgH$HH H$HH0 sDEtH@ YHD$PDd$,EtOD]$EtFHD$`H$D$DHH4ƍBHt$PtHH)LHI$tHI\$ItDX t[L]A\A]A^SHuHxaLx I1H HLff.AUIATAUH-H DHkqu HH t-HH H]A\A]f.H Ht,Lf8Mu!fIHID$8LHuLHmjH1~X1]A\A]ff.@AWAVAUATUHSH(LJHD$X H7II,Ë 9f/(DžDž t%  W9z 9 9}X < H([]A\A]A^A_Ð Z>DsH HD[H Dž H;HA8Hu -@HHP8AhHHuD SH Dž HHHu @HHA$HHufDHbfH*H( HrfH*LHL$LH\^ "L$kM  L$D HADWAf(D + + EY\ D< D+ D+ MtA|$lHLx AWRPAVAUASAPAARVLQH WD$pHL$h蘐 L$hH`   H ' Lt$LMLI=H4fH*H( HfH*ȃ@LLHHL$\D ^Z!D+D$DKMD$tAD$lHENEFHP H "Hx P SP P P AWPAPL$`IHPHƒfHH H( H*XHHƒfHH H*XyfAD$lHAHHx DH P1迎Y^Hx HD H 莎11ҾH}Ld$LsL;HcHfH*H( HfH*DKDCHﺶ< Hx H \^xP P P +P PP迍H0H([]A\A]A^A_@H HyVHx HD H o11ҾH^^fHƒfHH H*X fHƒfHH H*XfHƒfHH H*XfHƒfHH H*XfATE1AE1UH5UHHHLJ HLJ HLJ }HDH1]1A\zf.AWIAVAUATIUHSHHDHL$ LD$E~+ZlIx LAAH 1HD$H\$ LLAHLLALJ AD$rtM AL$qAID$ DA D$($Md$8MAD$qtA8!It$PL3A IT$PAD$hHtLrHZMtLLd$MILl$8$IffDAfW׈f/EAgsAAGrtHD$A M<$IMA A9GhtAGhLLHALFD$8Af/dAHLL LLNAOqIG A AGrtHD$ A\LE1E11H5LIzM|$MALd$$MMd$8MU<$AHH[]A\A]A^A_fDAOsAfA/h v(E0 EtEEuEEED$(EtGff/9fA/x v Ax fA/ v A fA/Gv AGAD$ $EOlHLDL$,k Ix  $H DL$,A LD$計E1E11LH59LyIx ED$lLH `1LLNfIx LV1H 0#1LL@A f/A HIx LD$0H BPHD$0PA PHD$(DD$ D1蝇H AA cLeHH[]A\A]A^A_LE1E11H5LLxM A MD$(<fA/h v9A0 t.Au#AuH5LfHLe Ix LAH 1赆A c~11ҾL蚀$I 1LyH5Lgpf/h v D0 Etu tP'AVAUIATE1UHSHH H H9HAT$D9 AH{XHHcHЋTJEDxE_Cr!Ef/AxE1H;D ff*^'%DD)*Yf(fTf.v3H,f-fUH*f(fT\fVf(H D,HtGHS8Ht7HsXHt"HcHȋLyEDžtD9A)HHS8HuD Hx ENHH d11ҾHS~H H H9HH1[]A\A]A^DHsXHD$H[8D$H4ofDHsXHH[8H AHtDHlDClAHx 1HH z襃H荭HHE1HDž H E1H5HDž HDž ]t11ҾHL}qH/H Lp0I~XHMuH[]A\A]A^fDAAHDHlA @HHmiH{X@H E1H8DHC8H)H9 HsXHtH*H[8AHu@HI~Xt IvXH-LHbH LHH @I]HDH[]A\A]A^5"uI]H{XH[]A\A]A^HfH ֐AWIAVAUIATUHSH(D O,ELt$HAHD$LPLL$ wKAXAYIċD$0AD$qCxtAUPD$~ tXfWf/@D|$EDMPEf/h tuD$f/x D LLLHf H([]A\A]A^A_HE1AHD$PHD$ PLt$0AVPH IfWf/*D$I|$XMt$XHHA$LLHL$D$f/L$DxA $ECUD$f/v f/`E1 D$\~ d}fWf/Ff/h v$0 tu_ftXfWf/AT$lLHA_lT$HAHT$Hx A1H R~E1E1LLH5QHHDž HDž HDž oH11x^_%LLH"xD$A$H L9t AD$q@qtH H A~{L$fWf/ttXfWf/TPDD$f/EAA$E1fD Et$qLHA\$lAWHAHx AAAH p1AV'}AZA[H([]A\A]A^A_@mA\$lLHHx HAAH w1|5E1;D0 EH5F H}D@LHA\$lL$L$HHx AAH f("|eDLH=LHH AL$qAcH5H@AWAVIAUATAUHSHHHDE~Hx H 1{DLU$AL$Adž HD$0HL@EIcxL vfIHfHnfHnDfHnHflflHHfDfoHfPH9uDMʃ)LMLA9tIL˅tIXL˃tIXDL,HtEHEH]Ht8HpL,HT$0HHHDHCHuIvhLx+AW9tA 9tHT$0HHDIvxHtEEAN,A 2wQAwtwAYFAAx A+x=I A0HD$8A HD$(_|$YT$ Hf.Adž Ht$0HtKLHn!Aą~81fDHI HLbHD$0HcHlD9uAdž AHt$0LAAdžo(AqHH[]A\A]A^A_fLLHt$0DL*H[8HL$H{8 ALLkXD$DE1pdHt$0HCXHtLL~ D$~1E1ZHL$(HLLALD$04D$8\$ LD$f/v1HT$0IcAL|HcL|9l$tgMuHT$0A Mf/D$voLLLqt$8HT$0Mt$HHH MLLL)d$#f.LLLLD$HT$0LD$6fDHT$0D$MDALHT$0HHD@IZAtKfDHtHD$0HcHlA9GrfAV,AI L1iHH[]A\A]A^A_ff.AWEAVAUIATIUHSHH8HD$(D$~a fHtLH$Et$lD$]$EHHx AH +RAWD$uA^XDž HMD$ AFqD$ f/x w=tHH8[]A\A]A^A_fHu M9 Yf/@f/(x Dž w r< LHE~lD$A\$l$<$AHHx AH R AWD$ztLE1E1LH5H_eXZAVlLHE|$l$HEHT$Hx A1H R tE1E1LLH5HHDž HDž HDž d11ҾHmA_XKEHDMPE1HD$ LLHPHD$,PHD$8P7CH IDMPD$(EDEtD$ fW pf/Dž D$ A^lLH$f$AHHx AH ]rH8[]A\A]A^A_@I~`Mf`HHt)HL$(LH|.D$ f/D$(LLH IVHIt$Off/*D$ HL$ HLLHD$ AHPLL$,;AZA[Id@LLH xDIv@H\$A\$lE~lf(D9.L9P 9T$  $XYT$f/LHHAHAWT$AH L$Hx f( qY^ LLHDž , Dž H8[]A\A]A^A_DLHFHHAAWT$AH L$Hx f(zp_AXhfXfW @nf/BLH$A^lHHAWHx AAD$H oY^DIv@H$"D$ E~lLHA\$lD$;HAHAWL$AH D$ Hx soA[[a;  D$ LH $D$HAHAWL$AH pD$Hx n1LHhAYE~lAZA\$l $J$D$ LHD$G $AHHx D$AH -n1LHthA\$lE~l $LH$A^lHHHx AWD$AAH pnXZ @AWAVIAUIATIUHSH(H  Y`f/~ 'HD$^HT$LHD$CH Ht&H^8Hu @HHHC8HHuI\$HHLHAC1H謪D$ulLLDHHZH([]A\A]A^A_HZH0HhH0H(1[]A\A]A^A_1LHANrD HeHD$rD$AWAVMAUIATIUHSHI D $$ Eu 1 LH!jffҋ INj + f*+$ *x*Yf* ^\ȅ $HH!H $ $Xf(YX~GEo LHHAHAUL$AHx H f(kXZHL[]A\A]A^A_ÐLLLH $NE1D$LHL$L$"AMrE1ff.AWAVAUATIUHSHt$3DEt f/EH A$E1Hu}HHEIHI~8HsXHtH=HSXA$) HHs`HttH[8H(CqH{XsH{`hfDL I~8pHx H1H .ai11ҾHPc=HrLzHQLHIaIwHu-HHHS`AH3HrLzH"DT$Eu-DD 1LHIIwHufLHIIwHuH HD$ H HttHXLxHtgL$L5@HsHt7C( u1H HH;  A1HK( IIHu@DE~/HE$ED$Hx H HP1gXZH[]A\A]A^A_fDHsHt/C( u)H HH; HK( IIHugEfDH H H sHx DJlD@l 1gHx DC L1Hf1Ҿ1H`H HsfHx DC L1Hf1Ҿ1H`H Hsft$E1H H H Hx @lAHPDD$1BfH _AXHBf.AVAUIATIUHSH@LJp D$ MHHtLHLE1E1HD$(1LHPHD$,PLt$HAVg5IċD$@D\$HH H;C(uZHsHA tD9u{Hx H1H b^H[]A\@Hx DC L1H^11HIE1H5?O11ҾHXZ@D@lHx 1HٺHk^HT$1HWXHD$H@8HD$HH H\$H ? ~ +x9HT$HtlHHHHuxuVD Et~Hx H H1]H[]A\fDxt1HfD EufD~Hx DBH1H #%]Hx H1H ]11ҾHVBAVHSHxHLJ0 H<$HD$DH|$~ÅtMH$ph f/xǀ@ vxH$ǀH HH4$D4 h Zqf/A2u EH$ǃHiHc4 H$H1H4 H5H94 H$ pf/h vH!H$H%Hpf/h H$H H1 wD9EH$ǀ0 H[A^H<$ƄHLJPfH $ twDH$ǂ1H4$ HPH@H$HxtH( u H(HHHu%pof/(s0tdIUHx H }LZ11ҾLTE4 UHHDHH( Eunf/h 7u HtfH H'蒰H+( Dž H( ~Hx H mH1 CYH]D  ~Hx H H1X DžX3;@H1Hx H XfDHfDH6 t5H(ID1EuM@H5H*DE2H H9 v11ҾHHmE XtHqtp H\LH HHx HH A11W11ҾH Qx~DEu=DEM@HH5MHHH511HH1Hx H $gVfDž HT$ 1HHDž 腿1H覓KAWAVIAUATUHSH8H DD$/I A LAIvhL)É\$TI LD$EP EqAFP M fDD$ E11MtXfDIG8HtIIw`HLAGrt"AGq AGp%=AM8MuT$x"A9tA 9A)EE\INEP AA ELAEE<EA~tD$uAvduE1E@lj|$)ЉD$E ExEHLH I$12TDH IHLTA R 11ҾLMI EfPIEXEP EHE1H HC8HtCq crHHC8HuE M fDH HL1H$gSfAGrIDIw@L|A;xD$ fD)ЉD$E_AFP{AExE1H aHLY$R1EZ$H VHLRDD$1HH l[$LRt2AL AH kHL\$1aRE 1HLE+ H \]$:RE) L$ [LDL$ _$HLH w1R1EVPE#A D$Avp1@lj|$)ЉD$EuD|$A<D$UExEHLH J$1zQE~$DL$HLH]LK$EH LD1CQD$+\$;ED+D$D+D$ED\$LHJE H O$HLEID1IPDl$ EEMHL1MH g$PEAH HL1h$mPE8HL1H j$MPk$HLEH 1-PE~PEPEHL1EH Em$EODl$E]E E)EEuA VEE.EEuEEhfA ff.zf/tE 1HLH 2^$ED$ L%Adž D$ +ff.AVAUATLcUHSLED9 H H L ( JcD,H HDL"L M$ I<$D)@  $ H:-[L]A\A]A^ÐH H E1[D11ҾH>H ,D , ؉D ;H wLDIHt} }, HMH4 H )D 1yQD QH SIDH L[]A\A]A^fH LDIHuH HA1H C11ҾH=M@0 HML H)D 1QH VLAUCH @H H1H {C11ҾHj=D A( D9< H E HcICIH0H D8 D@ I$BDL !L D< HcID)L AAЉ E)D8 E9u( GfDH 1DHH 8B11ɾHr< ( L D)Ic͉ DL)P H $0 HMH$ H D 1)ѺQL QH AUAH H HE1H A11ҾH;UHSHHNH D Ht H5d1y@_@ Hc L H 11I1HtDHHuHH9uD@ A9t1H HA1H C@11ҾH: u7H[]H H H1@Hc J1H HA1H[H e]b@A@DH5Qc1M?3?ff.H7UH 9 }54 D )щ4 D H]?fD0 H HcL 0 LcH B L OM@ )ʉL LMI( ]$ ( HAL D 0A)1APLIRQH 2?H ]@, HL AD 0LA)1APIQH {Rz>H H]>ff.@UHSH, +4 H D HtDHHu>Hu HDž uKH H HDž HDžX H)` 1HH H[]H >H =H =f.HLJ IH HLJDH)` 1HHtI LDHLH0I BAVfAnfAnAUfbAATLcUHS  fև LLH IH Mt:Ht5 []A\A]A^H [EHH ]{A\1A]A^<H H H1<11ҾH6 fSHHc H H mH Hc D DD D E9A9AxHcH4<H H$ H DBv\HcDfnfoHDfpHHf H)@foHffp@H9uD)D9t Hc‰BtHctHc‰ x.H 11@HcDD9}H9 }[HH HPH e16;11ҾH%5ZD YH HߺH :11ҾH4ff.@ATAUHS  F#D!à hHc HHHH)H @H H9t$H9uD A9~uH  []A\DH AH1H " :sH H 1911ҾH3(H [Hﺔ]H 1A\9ff.@AUIATUHSH H, 4 D$ LHP D( P8 P)PD PH PP P < P@ PL P0 QH P1R>$9DT HpE ~c1L%f.H E1HHtDHAHuH LLHA$D1H89 HLHB$[H ]1A\A]m8ffLHA*Ⱥ?$*X H ^88@$LHH 18f.D , +4 L $ ( +0 AH AHD$8 fDHHH@9J@tff/Dff.fHHH@;J@tftBf/@DfD1f/Dff.HH@$9B$ff.AWAVIAUATUSHHfqHvPLCHHHnHVHD$HHH`qHBHuMt;I@IHHt.HPH9HJq@HAHuH4HnLAąHCHE1H$D$D$HLI!IFPAIcHlE9HtEq@uH÷Iv@E1DxHIDIEAFq9 fInfHnAUflAEEq@ AEAFst |$tAMH4$LH,HuHLH 9 L fLD$tDH{PRHuH[]A\A]A^A_fDHHD$H(M?ufH@HHq@HAH/HffHnfInAUflAEEq⟃ @ AEElHEEHx H 2HPENl1S4ZY@M2I@D$IHHD$vAVAUIATIUSIM@I}HHdHAHQHtH`(HBHuHt`HGHwHuQHHHt9HHtHPH@HtHH(HBHuHHHuHHAE1M$ fC(t"HHH@Hu[D]A\A]A^A$@I}@HH{L7HsL+tA$HA듀K(HLL{A$HA$~DC H L1I$x 2HtHGHwHE1[]DA\A]A^Hx EEl1H _:2@EMlDC LI$x H 122f.AWIAVAAUIATUSHHn A1HcIlA9D9u@uAHE8EHtxHE0HtHHE(HtP Hu HtF HuAHtDNlHuAHtDFlHIx AVWLQH R P1H0LLA:HcIlA9-H[]A\A]A^A_f.AWAVAUIATIUHSH(DNsEy tA}siA@t :L L McMZAErt AD$rfȾHH) $fInfInf( $flH XX@I@f@ @0CH $  L  A|$sA}sIu@I|$@h@AL$sAMsLLHWA~@ U~^H HIVHHHx H DJlIVDBlP t$AF@P17/H SH([]A\A]A^A_@H1L$Hx H $.11ҾH(L$$]fȾHH) $fInfInf( $fl@@I@f@ @0HHH$ ^H LHA~@ H HYIVHHAFHx H DJlIVDBlP t$AF@PA-H HEMlED$lHL$ Hx H >SD$}-11ɾHl'XZ$L$f. HED$l 1j Hx H HE-Y^Hx EMlH1ED$lH ,LLH fAEsAUlHHED$lSAH RHx AAPP1R ,H0H([]A\A]A^A_f.Hx EMlHED$lH iL,LLHi@AL$s@H Hpx@ fL1LH_fDAL$sLLH@Hx EMlHH ED$l:L$$+$L$ff.AWAAVAUIATMULSH(H H4$HT$D$HLfL$fInHH(M C~$HAGD$D{@C fHnflKC0 wXDHL4A uKHML9HLLkAK@4L5HLL;A~`K@MtAT$HtEAVIx LQH vR PHD$(D$0DH HD$ D@ *H H([]A\A]A^A_fAMtEL$AHtDEL1LT$Ix H )H1ҾL#LT$Hx E11H )11ҾLr#$ff.fAWIAVAUIATUSH IU@A Me HD$HJWA Q$MLt$@M9t{Md$ MtqAD$r@uID$@HtHXHhHtA 9C$t.HLLHyA c(C$H]Ht9C$uH]HHuM9uHD$AH[]A\A]A^A_f.LHIx LH A15(HD$H[]A\A]A^A_ÐAWf(AV]IAUIATI1USHHHL$0HT$8D$L$t$N=<ID$@<$HtwHhLxHuhI/IHtTID$@HtHXH@HuHHHtH9vAxHpH}]$$Ad$0A`_d$8\$EXAXF__^f(Eu&f/$HH[]A\A]A^A_fHED$lEMlLA< D$0Ix H mPT$ L$(D$\$0&_AX\$ f/T$d$(xHEMlED$lLA< d$f(Ix H PT$L$%&D$d$ #Y^^f/wUAVPu.AF LLLHH[]A\A]A^A_Ix H AL1%Ix H L1%댐AUATIUSHL L褨LLiA$ A$ AEhIIE8HtdIUPHtHZHjHtA$ fD9ChHLH8HLA$ ChH]HuIE8HuM$ 1HMuEOA$ A9Eht4I$x 1HLEEl$IE8LHtFII}8uHu4H[]A\A]fDH]HH7IE8HeIHLL1[]A\A]&fDHAUIATIUHjSHHZHuDI9tH]HHtiHSHCL9u{@HtHlDJl1HIx WLQED$lH #HSHKL谖H]XZHuH[]A\A]f.ff.@AVAUATUHSH Ht=H~t6mHx HAH 1 #11ҾHL L5Mu PIIE8Ht=IUHHtLbHZMtfDAD$L#HMuIE8HuL L5)MuMm8MAEqIEHHtL`HXMtAD$uL#HMtAD$tED$EMlLHHx 1H"LLHLcMuMm8Mt[]A\A]A^fDED$EMlLHHx 1H!LLHLcMIE8HAWAVAAUATUHSH8L MHD$(HD$ IID$8H8It$P HtHLn1@HD$D$ fDID$@HcLHL| AO$Iw`HL$ND$(Yf/r-DDž EEf/ID$PHcLl9\$ tD `Ll$fEu6HD$Ht,H@@Ht#Hf 9{$aHHHuID$8HXDEeE\L Hx EH1H DH8[]A\A]A^A_fDL LMuX uhL @HJPHIAq &Br!HzHH@8Hu͋ bHx H 6H1@f1H8[]A\A]A^A_fHsHL$LH`%D$(Yf/lDDž Et f/L~HD$HED$lH Hx DHlC PmDDž >DIlDBl1Hx H H1AG HEMlH ED$lHx PH_AXH8[]A\A]A^A_Ã~L fIH~fHNHGHHtCHPH@Hu4fH9HtHHHtH9HuH9tHA@HDHAlMx H PGlLPDF1LHfDAVIAUATUHSErSHuPH$LfH^ML-@L#HMAD$ruAD$qA HID$@A HuaHE@HtHf;J$uHHHuA [LHL]fA\ A]A^f.HPH@HtHH$HBHuzIx DElL1EL$lLvLHL蓎"HuPLA;x[]A\A]A^@A~Ix DEl H [L]1A\A]A^DHx DEl 1H HIx DElL1EL$lH f HH ;LA@Ix DElH RfAWAVAUATIUHSHEHEHt%HPH@HtHH(HBHuI$ HLH^*ADžE1L5)H9AI$ IcH\E9HC0HS8H9uA$HK(HCLI$x DI HK DA MQRLR@ PLHC0H H9tw`I$ DLAd\HEHHxHHHEHHxH8HHL[]A\A]A^A_A$~:HS8@b|HLUkHFHDE Hx H DHlHE@lP1nXZ(~@ t fHV0HN8BBAA~HHF(DIH RDBLx @ PHF L֋@ P1HAWAVAUIATILUHSHH(H6HT$6A$HD$H([]A\A]A^A_HCSHD$DxlHCT$DplHD$HpD` HIEHpDh ؙHEHAWHx AH AVT$RATSD$8 H0\AUMHATIUHSLH(BrtArtIHt BrtOuTHL$LD$LHAMf/v'HD$PL$L#HD$XL$AEH([]A\A]ÐHv(HL$LH eff*xYD$f/wHD$D$vDD$fWHD$U@AWAVAUATIUHSHHHHv@H $LD$HD$ 8 A~H*E1HxTD9} I|$(AD9}aID$HHtWLxH@HtJLt$ -t$DHIt$MLD^_IIHt@tHHL9uHHHD$ AHEuHH[]A\A]A^A_D@lAVH HEL$lAU HD$Hx HD$HD$0ZYHH[]A\A]A^A_LD$H $HLHAHD$ `IT$PHrLzLrMaHD$8HD$HD$0HD$It$(HL$(LH ff*xYD$(f/D$(FHD$0D$8 f/v&L$0H$L|$ L$8HD$M>IMAD$rtAGrtHL$ HtArtEGLD$HL$LLHD$(u@ED$lHﺀ1Hx H s1LH ILHID$(x\DHx 1HE1ED$lH }1LH HD$ D$0fWjHD$8D$(fDHD$ HtE1Rff.ATUHSL L H MMHIx.HFH HA4H H#HAHATA1Hx H ܾ11ɾH XZH H(H H[H H]A\fDHLx 1HVH ȽLK1ɾ1H: H Y^H Hu5H Ht HxH^H~NDHxIyHIHE1Ht:HPH@Hu+HHHt49p@uHHH9tL9uH9xuADÐL9@uE1DfATxAMUE1HDSHˍHH|HcfH9tH1A9tHTHcHuH\[]A\fAWAVIAUIATMUHSHHD$PT$HULL$ME1xHQ|HM|Mt>L9t[AHL$LIH}迤u&9\$tFHcM|MuHD$PE1uHL[]A\A]A^A_HD$P9\$uM}1MuHD$PE1u뺐SL HL H MtzHHx HPH 111ɾHXZ H HH j HH UH [@MuHxFq tZUHHHH]<@DEl1H|$Hx H rH|$HH]ff.@AWAVAUIATUHSHT$ HHE8HHHuHbr?Hq8HHuIE1 DIH@8HAGr tIWPHtLbHZMuѐL#HMtdIAD$r tI|$PLH LLLfHAfHn2AOrLcMu@IG8HSED$ A~'Ix EL1H % AHHHU8Ht5Er<@uEq tHL_HU8AHuI Ht|HXHhHtoL%~@H]HHtU{@uHs~rHSHPL详LsAFq tA`LLHH]HuH[]A\A]A^A_AOr@>fDIt$@I@:"AdH LLLfAfHn}AOrSHx DElA1H  Xf.LCH~PLu HsHSHCLH Ix DJlD@l1 HKHSL}Ix HE1[L]A\H A]A^A_v Ix EFlL1LY ~Ix DElH1L7 Ix H L1  Ix EGlL1EL$lH  qDxAWDzAVDrAUIAATUSHH8HF@q uf@pu,AtHCAf.H8[]A\A]A^A_ÐH@HHtHhL`HtMcDI,$IHtH9tHHEHJH9HuJLJ9LuAt%fDH4H94uHI9uA9uHL$(HT$ HLT$H|$H|$LT$IÃ~zHD$DH H THD$ LT$Hx D@ HE@lPHE@lPHC@lPHC@lPEPCPD$XH|$8]LT$HL\$@H0H|$D$(IILHt$ LT$H|$MH|$KLT$AWAVAUATUSHHx~rG8tkIHvHHt_H|$L~Aƅ~JCH|$E1҉D$ CLXfIGL9Af@r!t'ID$HIcL|E9HH[]A\A]A^A_fDE9~It$HLcl$ D+@f@r!uHUIJLJ9Lt-A9iHcHlHEL9uHEf.HJH9HuɃ|$ t,f.L L9 uAHI9uD9D$ uHL$8HT$0LL\$(DT$ H|$H|$DT$ HD$IGH;EL\$(~jHD$L\$(HH DT$(Hx #DH HD$8D@ AD$lPEPAGPD$XH|$8 L\$HDT$@H H|$HT$Ht$0IMD$8 L\$ DT$H|$^AOH|$MDT$It$HL\$ @IcL|IGL9IGIWH;U rHt$HL$0RlDN DA H Hx R(@lPEPAGPD$XH|$84H H|$DT$ L\$(ff.AVAUIATIUS AEq KIEHHt5HPH@Ht(A$ DHpH@HNhHhHBHuIuPL5rH^Hu@A$ 9EhuYHHkHEqtI$x 1LLDMlEElBHLL_wEhA9$ tA$Eq %A$H}PL8HuPL,A;$xI}PHHkH[DIuPLA;$x~[]A\A]A^DHDMlEElLA$< I$x 8H P1eY^Eq LoHHHLA$f fHnTA$7DElH "L1I$x fDHDElEMlLA$< I$x H ]P1HLLuXZEElLH 1I$x E$< n1LL\tHx EEl1H g2?Df LLA$ L0A$KI$x [L1EEl]H A\A]A^AWAVIAUATIUHSHlLHL 躄LHaAD$p%  AD$pI^ [DHH腄LHH(HCH Lc KqHtH@HCPHtH@L9LHLk ~&Hx DClH1EL$lH `H `H HPHx D@lH1H 11ҾHsfI|$(tIt$@H蛨AxA9~r1H[]A\A]A^A_fHx H j1uHx EFlH1EL$lH H S[]A\A]A^A_@ It$(H西ID$(mAWIAVIAUATUSH( H^ Ht$h H/IfDH[ Ht;khtCqt LL!khI9uA AA AFhIvPD$Ht5HFHVHt(;hhA HHhHBHuL訣A:HD$D$Lh Mt7IFPMMHD$DIGPHu7L9|$tM MuMAH([]A\A]A^A_HXLhHtLMI\A; Ht$HLHsPLLLA HSHD$ChHuyI$IHtdCh9tCq uH{PLA 9ChtHsPLLItHt$HLdA D$ChI\$HuMHf.L9xtrHHHaL9xuLpRAVHL3H{PLg)fHBHHD$HfDLpIx DClL1H )DL$DD$L1Ix H(H []A\A]A^A_Ix H jL1sIx H L1Q&DAWIAVAUATIUSH8Ht$A It$H1D$Ht6HFHVHt)HhL9D$9EhHHHuL蒠AYHD$D$,D$(Lp Mt>ID$HHD$@IvHHuGAFq t InPHL9t$t Mv MuAH8[]A\A]A^A_LnH^MLMIy@L9I9tJL9tEIx EGL1H L1ҾLL9tLD$9EhHt$LLHlL{MtSIGD$(IWL9uHMgL9uM9 tmLLHYL L9L{MuIvHMH1LFMgHR@H}HLTM9 uIDž fDHBHHHHhL9Hhf.H]HLAH݅8L1Ld$MEI@IGPHcHlA9D$9EhtEq tL){Iw@E1AxLIIEAGq9tvAM@~D$Hl$ D$ Ht$LLAE輓HuHLL譓A A9 uM D$,D@LLd$MIJDHD$AM fHnHD$ f.DL$,DD$(L1Ix H8H r[]A\A]A^A_[Ix H L1>Hx H 1f.AWIAVAUIATUHSH(A LLDpDuhrLHD$IE@HPHD$HHD$pHD$HL`HXM I H$8@LHIt$HL(ID$Hxt\L#HMIt$AL$(HtHVHFHtD9rhtHHHtD9rhuH@HHHu끐AA~0ElHED$ LIx EMlH PP1XZH}@LH辊H4$LLAL$(YLcM@@Ht$L A1H([]A\A]A^A_fHx H 1FUIx DMlL1EElH  H([]A\A]A^A_ff.AVAUATIUHSHHV@LEPH{PHBLrHS@MhHJHrH9MHH9tiI9LGDQ D9P wfHBH95fInfInMIflGIuPHHLA$[]A\A]A^LLGDQ MD9P vfHnfHnflBSqMIƉуу ʈSq'MILGF A9F veLrH9fInfInflGTClEMlLEF I$x H ƬPElP1XZ[]A\A]A^fHnfInflBCqMƒ҃ ЈCqLMIML#ff.fAWIAVAUIATIUSHA IT$PA Ht!HJHRHt@HBhHQHuI}PHt~H_HoHtqMt$P<I9t HLLmHsPLLLKH]HHt1A 9ChuCq u\H{PL9otBLH覆H]HuI}PL葆I|$PHL[]A\A]A^A_vfDLhvAFHL fDJlHx 1EElH ;fIx DClL1H ff.fAVAUIATIUSHIUHHtJHrHjHBHu7fDHHuHEHt!H9^tH9^uLHuHEHuHCHHtFHPHhHt9MuH#bLjLLH蹌HUHtH9ZuڀbLj[]A\A]A^DJlHx 1DClH C'fAWAVAUATIUHSHHHF@LhM|$@MwAD$qE1M9tIt$@L1HAHC@HLxLpM EH HD$$&DHLHH菘M>IMIM9u<$uHIGHxu΃~2AD$lHEG HHx DKlH P1n_AXI|$@LIjAO(LHHt$M~Mi~&Hx DClH1EL$lH  HID$P Ht HPH@HtHHhHBHuHCHH#LxHHHPH $M ID$HHD$]fDIt$PLH@IvPLHH AFhI9_AgH$MgL:HBH$MMwI9M9AFr +Ht$LH軉 A9Fh[AFq I~PH9_RH I9_fH$AgMgL:HBH$MfH[]A\A]A^A_@MwM9HLHH$I|$PH菁H$fDI~PHDClENlHAD$lHx H P1APLHھHaY^H$IFPHENlHEGHx H H9XP A9FhPAD$lP1H }L踀IvPLHHHNHHLHPHpHtHb(HVHuHtXHQfDH HHt=HqH9L9uHHt#HJHRHtDHJ( HQHuHtH @AE(tL(HMuE1ILLHAAD$qAE(DLH$[pLH MD $'Hx DCl1HH iD $#HC@D $HLxLpM@L9afLHȴAD$lHEM HHx DCl H 9P1XZH[]A\A]A^A_ËBlHEE Hx DKlH HP1SA[A^f.IMAF(t9M7IMuID$@E1LpM9HEfLHInLHKMwMuIT$@HLrLzMtAF(tM7IM]AF(uLHD $IhnLH-KMwD $Mu&AD$lHEE HDKlHx H )P1)AYAZHx EFlH1H a'f.ATIUHSH˃~-AlHHx H .ED$ PDJl1XZH{@L}AL$([LH H]A\>ff.AWAVIAUIATUHSH|H H<H@ENlHHx EElH :p< P1 L 11H5~E1HIE@Y^HL`HXML LLLH_L#HMtsMD$ A9D$$uLL{ID$Hxu˃I~@LHf|LLHAL$(LcMufL Mt>HHE11[1H5]A\A]A^A_IE@HtL`HXMH[]A\A]A^A_DJlHx 1EElH ]fAFlHED$ HHx EMlH P1qXZf.AWIAVIAUATUHSH(脏I6LAvLAIE+xAut$ HXHD$HLmLeMHl$#LHLI薁Ml$MtdHHtAM B 9w9s'DHHLaHHtB AM 9rwHLIH9Ml$MuHHl$HtHHL HHuHt$Lt;D$ .LL}HD$LIcH([]A\A]A^A_@Ix L1H P11ҾLAVAUATIUHSH HNHAHuBq HHHuHAHQHHp@HHR@HQDHD$HHH|$LTyIt$HtlHrAŅ~]ID$1Lt$A9tB~HcLHHDHP@ CHD$H@HID$A9u=HD$H []A\A]A^H 1[]A\A]A^ÐHvHD$H2Ht$A\$ H趌Aٺ HHx A1H S댐LHHD$ɓHD$H []A\A]A^AWIAVAUATIUHSH(Ht$Bq t~HB@HHPHXHE1 9B$>B$LHHAx~HSHuҋ AwhEt H([]A\A]A^A_ÐHBH HMHXLhH<xE1D$HHD$I]IHtHCL99phuH;HL$HWH9t@HD$|$HDL_DQ E9S rD;P rL9tH9DfH_Ht* 9B$t|B$LHHAf}HSHu֋ RfHHHHCIH9D$t|$H9O wHHHo DAwhH([]A\A]A^A_f. AGhH([]A\A]A^A_@AGqEHHx H PAGlPHD$DH 1XZH([]A\A]A^A_HmyH;HHWAUIATIUHSH "LMHD$IA$ xA$ MA$ IQIYpH.HHHyhHHHuA$ u$Mt2IEIMHt%Hp$HAHuMtAIQIYHt4Ll$"LHLHnHSHtH;uLD$A$HL[]A\A]Ð] LL蒈I$x LH AA1 .LD$H[]LA\A]A$ pA$ u$MtIEIMHmA$ u$MuQff.AWIAVAUATUHSHHH`HFHL$LD$HVHD$ HD$(,$t$@q Bq Hp@HR@H6>HHHD$0v;xJH|$0L]rHt$0HPAxA9$XD$YHT$0D$HLjLbMML%fxIwI}-ifInf/$IL|$(Ll$ MnMvfI~DJlD@lH1Hx H ݚ;HSHKHVQHSHCfHt$0HCHSHHHx H DJlHSDBlP 1HKHSHP^_DM.IML$$fInf/t$HT$0HLjLbMMu"M.IMpHT$0HtLbLzMuM'IMtAE A9D$ v鋕xIuI|$g$$f/vLd$(Ll$ $fHt$0HL$(HT$ HI$L9|$ HD$<$Ht$0H8sHD$ HHL$H~nHSHpHDh DzlHSDrl^HHD$(HpD` ^AWE AVHx AHAUH SD$ H HD$(HH[]A\A]A^A_f/D$$w+4$f/t$HT$0HLbLjMHD$8HD$(@Ht$HIMl$MHT$0LHHD$8HtLpLxMtf.xIuI~e $f/v"ILt$ Ll$(Mw$MuqM7IMu_f(X-,$f(;fHD$(L|$(HD$ @HCHHHx H rDHlHCD@l< P1HKHSHMHD$0ZYff.@AWIAVAUATUHSHXHT$0D$(~8^ Hv\AٺLIx D$(AH HD$0L1E1AI A`XAXGf(Ax _f(A fWt__D$8I H%LwH_M=Ll$HHD$Ld$@HD$ HD$|$9T$f/vHL$@HD$Lt$HL$ D$L3HMAF@t[IVAHtDJlIVAHtDBlHIx LPH 111ɾLXZMLHLLD$HH9C YL$f/+HLt$HD$@^eLsHl$HD$ D$M.H|$t$(D$f/^D$8f/H\$HC@suHSBsVAH\$ LE1Ix H DK H\$DC H\$HSRlR@lPL$rA[I [fDLH3I jHHuHXD[]A\A]A^A_DI E1@H9l$twLt$Hl$IFHHx@nHIFHx@n9 AD$LE1E1HT$ Ht$A&I NA(HEI AIP HD$0HD$ HuL] D` XHLAD$ATAH YTIx _AXIFIx LH ߗDHlIFD@lHD$ @ PE P1Y^AHD$ H\$LIx H DH HD$D@ HC@lPHC@lP1~XZH\$ Rlf(LIx H E1DK H\$DC R@lPD$0AYI AZHtkATIUSHnH^HtE(tH+HHu[]A\fHLHXHL5HkHu[]A\ff.@AWAVAUATUSHH HBHnI|Å,dAE1fI~F@HU(B(u]EfInAFf/vfI~EAI$ IcHlD9HE HU(HHDH(AtA$~eHU8HtzHU0HtJHU(D@ AI$x WALQB(H ĖPB P1}H }@ I$ DLsHHL)@HEHSHlHUDJ AH1LI$x QH HUL1ɾ_HE AXHU0HM8BBAA$A8HE(DILH |DBI$x @ PHE @ P1qY^f.HUAHt JlAD@ f.AfInIcA^$`f/ LtwEDL:rHL[]A\A]A^A_HAIF(A~@ I$x P IF @ usI~0IN8LWDIDGL;QRfInǺLPH ǕeXZIN01LPI$ >E1>AAfInǺ@H L f.HH;ymRfInH PGlLPABlPH ]AWAVIAUATUHSHHL~AGq tLnAEq Ix H L1rHKHSLCLkAEsubL{IGPI}PLL`JhHc؃tRIE@HDHEHL[]A\A]A^A_AGsuAEsoLMIMLkI}PgHc؃uIx EOlL1EElH ߕ^LLLB[ff.fFq u eD1ff.fHt VfDff.@AVIAUIHATI}IUHS0gÅIuLpIEHHPH@E1Hu%lfAL$ 9H rVHHAHtFI9uAAE&ALL51[]A\A]A^f.D)LDLL,lAe1)øtAAoE[]A\fAEA]A^AD$ HEMLIx DE H P1L1LY^AD$ HDM LIx EEH P1XLZL41DLL-E1Ix EEL1H  ?f.AWAVAUAATIUHSHH(Hv(D$HHL$LHL$f/fWE1It$(f/AE1HHL$HH詈D$f/EfW Pf/EEuzEtsIT$HsH0 D$D$MIt$(E1AHaLH&ID$(HIfE7EnXLHH_D$L$DE AH(D[]A\A]A^A_EDEt D EtEu U'L$ff/vfW f/vfW LHH]L$5XHx T$1H GL$DClHD$EL$lAfDUEIT$HsH肧 D$D$EfDT$PL$f/vwf(¹LHHpDE< HHx H EL$lDCl$PT$L$(D$ H^_CHLHEOMDIT$HsH蓦 D$D$< HHx H pEL$lDCl%PT$L$(D$ Sf.HXHC(H)@IT$HsH D$D$ff.@AVIAUATUHS IFPHHXL`Hu7yffCr uHsPHpA9xaI$IHtDCqtHx DKlH1EFlH cYHLHv;@[]A\A]A^HHHHf fHn=oAFlHDClEHx H FHP1XZ;@Hx EFl1H oDAWIAVIAUIATUSHh D$`XfW ;f(F_bf(__Yl$ D$t cA\$Iw(HAHL$0LLD$0f/D$wQAfW f/Iu(D$,E1Hu3LL貥IE(HfD$,E11Iu(HtAHL$XLLbD$Xf/D$x_D$0LLLAXL$AEEAHhD[]A\A]A^A_fL$fW E1D$,f/A1EFpl$f%f Bpf%f nAfW Of/L$fW 7f/D$,EL$fW T$0f/jHL$PLD$HLLLT$@AT$83E1HDt$  FD$@Yf/wT$Pf/Nt|$ f/ۻu AvT$PETAf/L$HD$LT$[LLLxLT$HD$A.A< L$PD$@HtP AElAMtEJ HIx EGlLQH RPT$8H fifDHL$@LD$8LLLD$PAD$Hv2I1MD$@LLL ) 臒APAI@HL$@LD$8LLL2HHD$tHL$PLD$HLLL1LT$HXD$fWAf/D$8E1f/D$HAfDA^|IUIwL蔟A D$D$XSED$,I.fDEtf/f/EEu-A\$8fW f/s\$Hf/E1ZfAff. f/f/|$P"fW T$H1f/@fDD$PLLL Q 诐#f.A )E1]LLeIG(HBf1۽!ANAPf/L$HD$LT$f(¹LLLHD$LT$AA< L$PD$@HtP AElAMtEJ HIx EGlLQH 7RPT$8hH dHEMlEGlLA< Ix H PT$(L$hD$@AYAZff(¹LLLHD$LT$f._\$8D$Hf/f(fW w fW~f(_ʹLLALHD$f(L$LT$f(蓎ATHD$LT$A< L$PHD$@tP AElAMtEJ HEGlLAQIx H R3PT$8H %fD_L$LLAXLHD$f(LT$轍A}HD$LT$A< L$PHD$@tP AElAMtEJ HEGlLAQIx H \RPT$8 H @LLLLT$HD$fDIUIwLHD$LT$讚LT$HD$D$D$@A ff.AWAVAUIATIUHSH(DEtD Ekf/ 5E1u xIt$(HHL$LHL$yT$L$f/fW1f/E1Iu(HHL$LHL$xD$L$f/fWTf/EEu,Mt%IUIt$H4 f(D$XLLH_D$L$:DL$E< Hf(Hx EMlED$l%H ʃPL$(D$ EoT$PL$f/LLH蟊L$DEAH(D[]A\A]A^A_ÐDEtD EdIUIt$HA f/f(LLHD$fAjL$Hx HH ΆEMlED$lf(芺2DEEUIUIt$HB f(D$@1A_H(DLL[Hf(]A\A]A^A_eDDUELIUIt$HҖ f(D$*@ yf(¹LLHɈL$%fDDEtD EECT$ff/vfW+f/vfWLLH]¹L$IL$EMl1HD$Hx H Nf(ED$lL$AǸofLHL$ϗL$IE(HDLHL$觗L$ID$(HY@< Hf(Hx EMlED$l$H PL$(D$ H,^_DEIUIt$H f(D$ff.AUIATUHSHH `A&A Hu@HEHHuYMsHHM8HEsuA EhHEPHtHPH@HtDH`qHBHuHEHHtHXL`Hu#CCI$IHtmC<tHSH9Bq@uA 9zhtǃ@HLBqC`K1<`+tKIKI\$HuHM8MsHI L^AUÅtoHcI H ~Hx8 I L^DA tZEAjH[]A\A]fDHSHcI H w~Hx EE9}AE~Ix HL1[H ]A\A]阵Ix H L1sff.AVAUATIUHSH Ht`fIL$8HtT IT$PAD$hHID$HAL$sIHtHPH@HtDHHHBHuMuH H]}ÅHcH H |Hx H H\D nDxH[]A\A]A^DHZLjH-f. HfHnf(HLHEu xtHCHHI]IHG 9ChtE1AD$q t DsqAAt tf/:Hk1fHnWHSIt$H? f/f(!HLHD$f=L$Hx HDKlED$lH ~f(ͲHCHHH@HHHHJH9tOL9uJI]IHDID$HAL$sIL$8Hu;IMxf.L9buJ@JfDHPH@HtI#DhD9pDp~Hx HH1[H h~]A\A]A^DZHcH H /zHxff.AUATIUHSHIt$PHY9xh HID$@ HtHPH@HtfHH$HBHuID$PHHXLhHCqfCr AD$rt CrHC@Ht&Hf 9z$ueHHHuHBLHHf fHn~-Hx DClH1EL$lH !~WI]IH?H[]A\A]@Hx DKlH1ED$lH d} HLH'#ff LL yH~Hx AH1ED$lHH |[]A\A]陯f Hx H <|ED$lDH1gfAWIAVMAUIATIUHSH(LL$HD$HtXlMAVlLLT$ CWHLIx ST$H |ED$ R&PDM 1ҮH MI]MmD$MuL+HMHLLLGtIELHp@VLD$ IEHp@VAx;D$ ,9vA~IEHEELIx H 7}HDHlE PAD$ P1RLkH MOMIt$L Vyt$A`u A~6HD$Ix L ED$ H }@lPAFlPDM 1rXZI~@LtAI|$L@HD$@q uHL1yH(LL[]A\A]A^A_pAjIEHEELIx H {DHlE PAD$ PD$$P1֬H %DuIE@q LL͢ 9F `;B WHtLiD$HYMMtsIt$LTA`fIMAq Hy@HT$DAxT$f.DT$EID$HtHhLhHXH|AD$(JH([]A\A]A^A_蛦H}@L?Eq uHL~wIEHLIʎHLHLtImHHtHLEq t薎IݐLLuSHLIx SED$ &H yjPDM 1H MtI]MmD$MMDIx DM 1LED$ H y'躪ID$HHhLhHXL51zHIx DEl1LEL$ LfHLKH}@L_>Eq uHL.vIEHLIzHLHL$ImHH3Eq qHLI;fIt$LRA`DHt$LmfDHx@HT$ pAT$ FI LLAD$(DH([]A\A]A^A_DL$AhEugID$Ht8HhHXHt+H}@LH=HLMHkHuAL$(I LLCAhAFlHED$ LIx H x PDM 1蠨_AXbAhUff.AWAVAUATUHSHDE~Hx H x1IL MIG8HL fHȀbqHH8HHuE1IG@HuWIIW8HAOq@ IOPp AGhHtHyHAtHHxuIG@AwhHtLhH@Hu뚐IEIHH@HtL`HXMup H%fHnxLLHf(tAL#HMiAD$q@u苅 A9D$htۋt tлf/ZH1fHnwIT$IwHo f/f(ALLHD$fmu3L$EGlHHx EL$lH .rf(KfDIW8HE1EAċD~ Hx EH1H bv蘥HD[]A\A]A^A_H>E1E1E1ff.AVAAUIATIUHSHL5oPD$ w HYPL4ƒH L9tL MA@(HEL$lEElH< Hx H uP1AVS軤H H L9wL 1Mt IIHtHIE1H5 HzL Mt"A@(HL$ LHtH HtH~t FqU<u"D$ u3H[]A\A]A^@kHL$ LH[D$ tH11Ҿ͝H[]A\A]A^Hx H1D< H u蜣H K Hl|E1E11LH5HV9HL$ HZ fL MLAUATUHSH( Ld$ LLHHfH*H D HD$D D+DJDKDCHADD$Hx D) x H sP ^3+ PATP5HH[]A\A]f.HƒfHH H*X:fAWAVAUATIUHSHH D@D tD EnD90DA~6AD$lHDMlHHx H sP1yDAXAYD$E1L9 >A AD$qt8Ad$pS<HE@LhAD$q tLHiLHH.LHH萤HLH貨ID$@HpL91It$@LH^>AD$q"LHHĞ LHHEH[]A\A]A^A_f A9,D rED$lH1Hx H kNfAD$qbLhHUF(tIuIH>F(uHHt$I#Ht$HlIuHu fDDDD fDHx H1H r[D$H[]A\A]A^A_fHx H H1L-L} Mu ,M Mt"Hx EGl1L麆HL9uHx 1HH /ȞoE1E1LHH5dH蠏OH@{nH aDID$@HHpefHx HߺP1H q31LH!@< DMlHߺǃHx H npAPAD$lD P1ӝ^_Dl$DjUHSHHbsHFHHt(HPH@Htf.H`HBHuH{(t5Hs@HESsu+x9~FSs Cst3H[]@xJ99t tڀcs Hs(H\HCHHC(HtHPH@HtH`HBHuH[]AWIAVIAUATUSH8 oEA IWHD$(qA HHjLbHxHLDHrhHPHuHD$(HD$D$I$Hu |$,HUHHHZHRHAxHLcHHHt|HBH99phuH:L;JD~sL_EW E9S rD;P rM9trI9tmLHT$L$l3L$HT$uOHHA Hu@I$VIUhHt]HDI9tJL;@Ht$LL$5A L$HB(HD$(Au At9HLCAAA9}AAHD$(H8[]A\A]A^A_EO AIx 1H m LqHD$(f.AWAVIAUIATUSHHHT$ HL$(vHD$(HAHHHpHHHuGfHHHt9HHtHPH@HtH`(HBHuHHHuH|$ HD$ HPH@Ht/DHH(@$HBHuHD$(Ht{HHHpHHui@HHHtQHHtHPH@Ht@(tH@$HBHt@(uHHHuHHHuH|$ t-H|$ HGHo@z$HHHHuHt$(LAA9 sA Ht$ L@H\$ LH@H{H laHcdAH\$(LH@L苔HtqL{H[HtdAxHME1LM HHcDH9tH19tITHcHuI\IIHuH|$ HD$ LxHxHD$8H|$HD$MyL,$LMID1LLHD$8HL`HxH|$MLMIfDAME1AxI$LM HÐHcIDHtSL9t#AH $LHI<$C,9uIEHt1HHwfDHD$HD$L`MXL,$Ht$L7FAKI Lz-HHL[]A\A]A^A_AHt$LMEHD$HD$LpML,$MAAPE1tIx EE L1E< H ]j]fDLL,$MI*H)Ht$ LHH6HHx EE 1H Ci衕HD$ Ht>HhH@Ht1HMD@ Ix 1HٺLHbHEHuHD$(Ht>HhH@Ht1H D@Ix 1HٺLHHEHuIx 1LH &HD$(HH|$ HD$ HPH@HE1AIx EE LH ]h舔Ht$ L<AAA9AHt$(L<Ht$ Lr<EG LIx SH hPEM 1 ZYk@AUIATUHHLH H$IHtd1LHH$LHHHD$IIHt XE1E1HHL$LH!Ht$HCHHBHL]A\A]@Hx EE 1H g:QDAWAVIAUIATUHSH8HvD$J;IvHA;;D$AċGEE D AV E9t;A9EM( AAF(EM AV HHHx ATH sgD@RAWD ^EM(AF(H A~vD$EEIEHL`LxMIFHD$fM'IMAD$q tI|$@L)u ~1AF HED$lHHx EM H gP1臑Y^AD$q t0LHIaZMgMt@LHHD$ Ht2|$t+HPHXHtfHx HH]HSHuIEHHHLxHIFHD$IIHAq uHLHHL$>HL$Ht$HH*CHL$HA@Ht,L`HXMtAD$(L#HMuH H9 tHHHL$IhHL$HH(HL$IqIOHJfHL$ E1E1LLHAE($<gHt$ Hj?H8[]A\A]A^A_AV EE AHHx AH dP1R蓏AYAZH8[]A\A]A^A_LHHL$H\LH!LcHL$MH H9 cfDLLLHHt$LHAIT$@HLbHBMAD$(tL HMAD$(uLHHD$LHuHD$L HMuD$1AF(RMvlMtoI^MfE1Ht_L|$(I$IHtCCquIuLHHD$5JD$L$(f/_LGf(D$~HIuEflHA] mHHHx ATD$A0AH Xd諍XZIuE11LHeAM( ATEE H +cHAWHx 1EN _H11ҾN_AX$fDED$lH1Hx H {;fEpAWIAVAUATUHSHHBH HHPHXHxIIDpMcHHHHBH9tg9HhuH:L9gJDA~rLOAt$ A9q r;p rM9tyI9ttLLD$H$+$H$LD$uVA DHBf.MhH[]A\A]A^A_I9tAIL9g?LLL$&A L$fAWAVAUIATIUHSH(Hv3Wx+ HIEP Ht"HPH@HtDHHhHBHuID$HHPH@H1DHHHt$;HhuHHHHBHufDH? HL|$3LLLHD$ H Ch~oHt$KlHL$ 2AUlEL$ HIt$AƉT$DL$ HHx HL$A1QH aAVT$ RDL$$@H HS@HIu@LHHD$UHt$Hx7HL$LHHT$IHtHL$IMHLHrHt$HU9LHJ9\Hx EMlH1ED$ H `芉1LHH5ME1pz11ҾH_E1H(L[]A\A]A^A_f.ID$HXI96HX-DATIUHSH~0AHtDJlHx DElH1H l=ڈH tXHH H HH胯HEH Le MqHtH@HEPHtH@[]A\DH HtHx D@lH1H M=K11ҾHjeDAWIAVIAUMATMUHSH8D$pD$AH /3H $ wH3HH$Eq;AFq`A AA tA AA94 !MA$fWZA(AMf/A_DMlH _A< Ix LAAFlRE f(t$SPH AD$D$ @AG uhMtc EAY`~_f(AF_f(AEf/A$~ifWf/L9t Eqy4$DElH a1Ix SLENl@LLH]_AXAxD@A A+ D9AEq tA5HLNAFq tALLNAlMtkAEfA/x v Ax fA/ vA AEfA/FvAFA A$f/v A AFs\UpAFpHL%D=OAVp % LAFp/AxoA HIF@A Ht%HPH@HtHH$HBHuwLHLIHu@IV@LLHLˑLHLAFqJAFsALLdLL)AFpLHL%AFpT$ ] t:ALLOHLLLgLL{H8LHL[]A\A]A^A_fE8E/AFqAfpD$D$ AjM)A$AMAFlHDMlLt$Ix H L\!Ax SPE H fAFqwApAMf/'ANsAyDEq&A`ZfA 9Li@A84$Ix L1SH ZRENlDEl8LLHU^_AFqHIx ENlL1DElH u^ fDIx EFlL1H !0迁f.Ix DElL1H /菁f.f/I H9tD$D$ L9ADMlALJH YIx E LD$A< PAFlt$SP1H D$ Hu@L)\$ L$3L$f(\$ f(A$A`f/AmAXIx fW&f(4$ENl^SH ZLDEl^f(aAYAZLHLzDE1E1LHH5mL%qtLIx 1SLH [Ax~)AuIx H [L111ҾLyf.Ix 1LH [D$AvHu@L'Ax9vL$LHL裍AFsAFq}ALHLDIF@HL`LhMAD$(tMeIMtAD$(uLLILLsMeMubDfWx|fA/$PA4f(4$ENl^SH XLDEl^f(;~A[XAFs f(ff.@AWAAVAUAATIUHSHHHJ0 9Eqt LIHLT$0L|$ LHMHT$LLT$gHL$(HHHT$LD$8IcgD$L$LT$f/s(-Eq#\$ fWzf/x f/T$0 f/ X v 5DHDLMjMLHsXZtQD$A?AAcxhf/pXxvpHH[]A\A]A^A_iYf/f.D$(L$IID$ D$8D$0' DMlAUDBHAD$lHx H XP1{_AXHDJlDFl1Hx QH >Xi{LHHAYAZsDp ` f/h Xp h fH8f/@XH@f.0 f/(X0a(Tf.EL$lDElf(HߺLT$Hx H W^zLT$@AWAVAUATIUHSHHX0 9*6L|$@Lt$0HHHT$ MLcHL$8LHHT$(LD$HIcE9gY`L$ I_f(AD$_f(D$(f/v f/f/w$D$ D$8MLD$0D$HD$@HLMMjHHD$0Xf/ZXvHX[]A\A]A^A_fD AD$lHDBHHx H V PDMl1xY^Hu@HL$HT$H$HD$)$LT$Hx f(f/L$vql$Hd$8HH kVEL$lL$@D$0DEl'xL$LHHL$<L$ D$(L$ld$H\$8HH VEL$lL$@D$0DElwL$AWIAVAUATUSHH~,H Ix /LAH iW1jwA LE1Hl$8# HD$8HD$0H$HD$(HD$I HD$I HHLvHLH^Df@6AFquA0Afs?A; uAAA A tmIvPLÅAA~!Ix EFlL1H vWtv1LLGIF@HzA)AHL]IHHHL(M9A~2ClHEL$lLEFlIx H VP1uAZA[HE1E1 jLLLAAXAYfA9x{L$HL$LLHT$ _AIHDLLjLL$LALD$$AXZD$ AAfA/XAAfHL$HHD[]A\A]A^A_L`HXMuDl$MLd$ L+HMtnI}LIEHxuAA~%Ix ENlL1EE H UftAM(LLLHLkMuDl$@AHtDKlIx EFlL1H ZTtLLHپ%1HLx&@lHEFlLLT$ AIx H L@LxMt1H @Ax@LHHIMGMuHt$XHEtH Hun@H(D$EtHD$(vHh[]A\A]A^A_HsPHSr;xHC8HtHHC8HtSr tfLƺHHI,,MGM8f.Crt2AGru+`XHYYf/$ DD$HL $ID$8D$PD$@D$$fDIEHx HH ODHlIED@lAGlPClP1kLHھHAYAZfD`XYXf/VIHHx HD$$H ZOPDL$01DD$4kXZHh[]A\A]A^A_f HH hH :JHx DClH1DxH N;jHt$XHHh[]A\A]A^A_@ Hx H /MH1 @jff.AWAVAUATUSHHt$ H HH H HI HDJlAHtD@lHHx H1QH SNi11ҾHcAXAYo H ǃ` AL%OflH  @EtLE1~?H HpHx DL$ HD@H N 1 if.EL} HHLu(H$($LLH~H HHHHHF0; u }@ ~5H HHx DL$ HD@H OM1#hH HH6HAHhH@HHHP@Hx DAl t9H@HLHHDHlR1$gHEZYHufD1H wMHH^gHEHuǃ` H[]A\A]A^A_H H HtHtI -#HdI AAfAWAVAUATUSHxcILE1D$ A1I AHHC8HtDSs  u߈SsCq HL;2kH[8AHuM Mt2IW8Ht)AGs tAGsIG@HIIW8HuI Hu ]HHHtKC( uC(Ax~HLHtLD$ HHuAHD[]A\A]A^A_ÐHHpHXLpHuAf.LH3LsHt1F(tLLPHtLPtAWM8MfDLHHLzHx H =K51dHIx 1AATDL$LH ^KqdXZuE1f.AWAVAUATUHSH8t$(T$,~bH AHtD`lH HI H H8 HAٺAD$(Hx H KP1ATc^_D$E1D$D$ D$D$$D$fH H H H yH H ~HD$AH HHLfHHVL~ $Ln ^@T$"EL$q $AuwAGqunD[AQLLHD$HD$D$AƃD$D$5D#HED$lAHSAGqAH IHx PAGlPD$(bH t-AL$pAOpqdLLHHD$AƃD$$D$bfLLHD$=HD$D$A0D$HEOlHED$lS D$Hx H J8aXZD$lD tx |$H HffDuD$ D$fAMtAE ED$lEOlSHPHx H I1`LLHA\A]D$,@HED$lASHx APAGlH dHH PD$(`H H*D$D$D$(DEt=D E xFD$( D$#x&DD$,EtHD$( D$t;UH Ht"HP8Hu @Hʀ`sHJ8HHu}HT$LHL fDAVAUIATAUHSHHHt HUH HI~bAMtEulH HHEHAVA1Hx H :E!ZZY~ DH*HH Hc1ҾHCW1LL,QA0A; uAAA IL$@AHqHHHtH9tCHH(HAHuHLLE1IE E1 Ljk^_$@HHHuDD$ALIx H(H B1[]A\A]A^A_OVff.@ATUHSH D$5~eH AHtDHlAغHHx H BL$$U$L$~  cfxH tLd$HLH LHt t.0H HDž ޟt$1HH []A\HLd$GH HLLHh@1L$$f3$L$H []A\f.H~L$$AUE1ATUHSHHLd$HtvHC8Ht$H{tp1LHH蠹tlH[8HuEtAHx H AfWQHT11ҾHMH[]A\A]fHxHx D$HDClH HASE`_E1E11HH51HAD:fDAUATUHSH~Hx H A 1OSL Mu}IIE8HtjAEquIU@HtHZLbHt 9C$tC$xH4HCHsLHII\$HuIE8HuDžH[]A\A]DAUIATIUHSHHv@Ht\H^ƅ~MA} 1DtFHE@HcH\9t9{ sHu@LLH[]A\A]1@H1[]A\A]AHcH9tH1A9~HTHcHuH|ff.fAWIAVMAUIATMUHSHH8HL$( D$(fA/$vA$fA/Ev-HD$xH|$xID$H9t HL$pHI ~H8[]A\A]A^A_fDHs@H[lLHAMD$D$(L$D$Hx AT$L$D$AHH w?PH8[]A\A]A^A_fAWIAVAUATUSHHhDT$4EbAEEuALJ`ALJHD$ D$0D$HD$HD$Dl$f.HC8HCrSqEEAt 1DT$EtEEA8 DD$0Eu Cq rHL.IHCPHL`LhMD$ #@ff/rMeIMAD$q t@uuHL$XLLLA0# D$XfA/vA`H5LEL$lDClH BIx AQAPD$hLIN^_Ld$MeH\$D$MRL$ $HC8D$Hu8T$t AG`dHh[]A\A]A^A_DHsPHHH5ΊLDCl1Ix H >LNH\$D$HC8HuuDAH5LiEL$lDClH AIx AQAPD$hfDLLvAą~HD$XD$$M1HD$(IAFqu IG@HcHL$(LH\LHsG D$XAf(fWJf/r6|$4f/A"ff/@IGPHcLtA9`D\$$LMEf.D$$fDLs(M+HCPHL`LhM$A LL. D$D$ FfDEudAHx H ;1KsIx DClL1H >'Kf.4Hx H ;&1KfHx H :(1vKA`H5/LANlS LD$XHsL$T$D$HENlEGlL$ Ix QT$ H <RPD$(LJH Lt$L|$D$f.AH5LYAD$XE< LANlS HsD\$LL$@T$HD$8ENlEGlLD\$LIx ASL$HQT$XH <RPD$X7JH NfDIx H =L1 JD$0dfDHL$HT$LHh[]A\A]A^A_fAH5LYANlS LD$XHsL$T$D$"HENlEGlL$ Ix QT$ H w;RPD$([DHLm(HC(IH5LAVlDK LD$XHsfA/T$8DL$HD$@vjHIx LT$@AH 9RD$PDL$XHY^1LLBD$XAfD#HIx LT$@AH 9RD$PDL$X\HXZAWAVAUATIUHSHhxT$@HL$8D$D,ED$lD D$ E9 AD$hD D9J AD$qtD E AD$p%@=@|I|$AD$quTAD$r t@H AHtDHlED$lH1Hx H 2>UGD$ AD$s  AL$lIt$@HHhAL$lIt$HHHOAL$lIt$XHH6AL$lIt$`HHAL$lIt$PHHMl$@MD$ IAfDDK E9 EI]IHtcC(tHx DC H1EL$lH 9>WFIE111H5H>7DK E9a f.D$ It$PHOIt$@H@It$HHA0AAD$q xB39t AD$s6 ID$PHD$ HHXLhHD$ HHCH;Cq@ICqI]HuID$PHtFLhHXMt9@I}PLTAEq@HAEqLkMuM|$HM MoMMH'DAOI7HHIAgM}MuID$HHLhHXMAMIuHxQ9tAIUHHHx H @DJlIUDBlP1PDA^A_MD$ MuM9,ANq@I|$PLAD$qu2AFqu+AEAAADL+HMAE%Hx EMH1ED$lH ?MCD$ AEHENlHHx ED$lMPH ]?1VCAZA[D$ +DHx EMl1HED$lH ,>HCAeqHCLl$ H ILD$ I}PEMlED$lHHx H a=APAQBXZLl$ D$ p@Hx DKl1HED$lH <IvBKq@IEH\$ H& HD$ HCHED$lH1Hx H <%B1LH<fDMuID$PAD$q gH)LXHHHL$MHD$PL|$HILHD$0HD$XHD$(fEq@FAxMt$@LH]@pMnIVHHD$XHHt1fHHt"H9o@ 9B SIUIHuHt$XLHt$PID$@HHD$PHXID$HH:DL$@EuHD$PHHt$0LeHD$HD$HhHLL|$HDL$@Eu DE8EbD$ 2Hh[]A\A]A^A_HtHXLhHtL|$IfDCq tAD$s@uCs@I]IHuLL|$qfDDT$@ED9DxN9AD$stmD9% C.؃AD$sHx AVEHSED$lH 81?Y^D$ HHx E1SED$lH Y8H\?AXAYD$ D9~xRx }<}It$HHoHLvAAÅXDl$DE1AMcAAFt!ID$HIcLtE9(AAFuE9IL$HDA9HcI>HTH2JDJ9DuHFH9GuDT$@D\$HT$ HT$D\$DT$@IL$HH AHtDHlED$lH1Hx H S5>D$ fHHt$(LHIIUfLpLPMLIH@LuHMIFL9L9uIHtHXLhHtC(tIC(I]HtC(uABlLT$LIDC ENH f:Ix PAD$lP1 =LLL6K(I]_AXHLT$xLuHM@LIF5HPH@HHH(HBHuzfHPH@HYH`(HBHuL5I ]A\HkHFE1E1E1I HD@ EuH8tW1LD\$Ix H 85E1LLM H5Ln&11ҾL]/D\$A E111 HHHK$A DC 9E9 S$HSH9t@HtB HILPIx H :14HZHYAI9 HDDHfHE2EH[]A\A]A^A_DAIx H 4L1U41ɾLI ?.E1M9 tMn0A M1E1D$ 11D$fID$8MHIML$8MAT$hA ED$l9E E9AD$hID$0L9tPHtPlAMtEMlHIx L1RH 4h3IL$0AXLAYAM9 II M9 tiI9MDM9 ED$D$ID$8HDIIM9 yHRI HA"D$ tAHtDJlED$lL1Ix H h42l$ ALI HAf.A 9HtE HIx E LP1RQH 6)2H Ht I HEEILLLE1H5"H1[]A\A]A^A_E MtAMlHIx LQH }2P1R1I H MIE8AM9 |$uLI Ht@Hx8t9D@lIx L1ENlH 3M91M A@uLI Ht@Hx8t9D@lIx L1ENlH 3M0M A@t$ I HHx8D@lIx L1ENlH 3M0M AHbfDI HH8@I H,H8"D@ L1Ix H 5 0I MtAElPIx LAPH 0PAAlEP1/I H MIAHtU RIx ELAPH \3R@ P1k/H =fAWAVE1AUIATAUHSHHHvʱDC D E9C$D D9w5Ett C(EH[]A\A]A^A_fDDC HHx HPH 151.1IE11H59HXZAEH[]A\A]A^A_Hx 1HH 4c.C$D D9xIE111H5׽H7DHx LCH1H 3A .1fHsH4HCHL`LxMHD$DI|$@HtWM'IMuEE111IH5!HH|$HT$1ɾHa'@DK ED$lHIHx H 40-IGHtLd$AIT@IE111H5HLd$xEff.@ATAUHS98 t^H HtKfHS8Ht@Cp%=tH8 Hs(tKHt> HXHC(H[8HuD8 7[]A\fHC(HHt󋕌 H HC(Hx [EHH ;3]1A\+ff.AWIAVAUATUHSH(xpHD$HHLLmD$HcD$1ALd$HD$fDLD $lT$E1HLIED $IF@EANqLLH@ANqLLLLLLlH9\$t E1뉐Ld$I Hu"}DAxLLH[8Ht]H{8tVI LKPHtHJ8Ht1$fHq8ITD@HtIcHHH9uHq8HuDLLA~Ix H 1L1M*H([]A\A]A^A_fDLLH)ANqLLيLLLLlH9\$AhATIUHHH9 t*LHHLH ]A\HLJ ATIUHHF($<t8I9$ tvHLcHuLWHHL]0A\0 uHx DE 1H 0()11ҾL#I9$ uDIDŽ$ yAWIAVIAUATUSH(Hv@LƉHD$AFq u]IF@Hl$LHHPZAFqIF@sHPHL<IF@HLHP)HD$H([]A\A]A^A_Ix ENlL1AH 301(1LL"hf.IVH1Ll$HBHHD$HL;v|@HxHtxLbHBMulH9t2L HMt[L9tI$HJHRM;t$uIHLH9uLLK9|#L9d$tXLIVHHL;vuHxHuE1Ix EFlL1AH /@'LLL-!9fDHH1HLfAWAVAUATUHSHH8;L T$LD$LL$AMH$IE1L|$(urhANruYI~tREFqAAuALLHHuAD$(fA/$vA$f/EL4$I~8Ht II~8HuHD$D(~pHD$H<$AA$D8tH$DplHHD$tH HAUHx AH u.AWAVD$(DL$<%H H$H8[]A\A]A^A_DAFruOI~tHAFquALLHHzAD$(fA/$vA$f/Ew"L4$IN8HIIN8HuHD$HD$D(~HD$L4$D8L4$KAH$/E8E1AfDAWIAVAAUEIATUHSLH0H HD$$D$$HD$PAPE1QD8AMH fW>"f/whI~BD$AHtD HED$lf(HPHx H - $XZH(L[]A\A]A^A_LL$IL1LHIċD$D$D$HD Et(Eu+Et~AM`f.AD$rtHE1LEt$DLHSAU&IċD$8D$ LLHjH1[]A\A]1f.IE@HDHtH[]A\A]AVAUATUSHH~Hx H i  1-L Lt$Mu%IuXHMm8MI}8|IEXHtHhL`HtfD u tt0LLHH贲LLHD HUI,$IHucH[]A\A]A^xtUHSH9~!xHH[]HcHDH )X9~H HcHDH[]fDH1[]1DAVIAUATIUHSHcHIŋDLPDEAxx]A9~HLd[]A\A]A^Hx HEAH 1 1m[H1]1A\A]A^T@Hx [AMHH ]A\1A]A^%DAWAVIAUATUSHH D<LAD辝D1LHI+I A Hu*"fHC`HuvHCXH H[8HH{8HC@HtHhH@HtA 9P$P$HPHLLHsHEHuHC`HtLhHhMu-xD9?HI\LmHMPIc$LLIADPDEwvyIx AMLH D 1fDHEHH2fLhHhMu(fDD9}cHI\LmHMIc$LLIADPDEuyIx AMLH 1$fIx ALEH 111ҾLkIx ALEH 111ҾLHL[]A\A]A^A_ff.AWAVAUATUHSHXDD$4E~%H Hx H A D@l16HoXDD$E~ Hx HH A H(HD$HIątXDL 4HHH/EIDHx D$HAIٺH $ Ld$HMqLHM|$詙D$}-ME11D$,HD$ D$(Ld$,$xHHL4L9uhLd$@LLHLD$4H1HD$I LE1)‰T$HFHcT$H9I LtfA/(M9 fA/(HD$8|$@HD$XD$hHD$P|$@fA/(M,Hl$PLt$XHD$8D$"LLLLL$GHD$8H$f/D$5D$f(D$hfA/(H|$8Lt$XHl$PL\$8D$Lt$XHl$PL\$8D$Is@LL\$7L\$DMl$f(Ax A_`ASlDL$XYlT$PT$HL$8Xf/+LL]HIx H T$PART$`L$HDL$hf(LAXAY$L\$Lt$XfA/(Hl$PL\$8L\$`D$Ix Lf(H 'HT$ 1LlHD$X\$@HD$`\$Ix D$H +LHT$`1L #LLL\$\HIx H T$PART$`L$HDL$hf(IMf(Ix f(AXH U^\$|$f|$@|$L\$8D${D$L\$8ff.ATIUHSH~3HAHtDHlHx DElH1H qI$HtnHP0HU0HtHj8Hh0I$HU8H9 t8H9 tI,$ []A\H I,$ []A\ÐH H I$AWAVAUATUHSHH HH^IsD$ D$E1L=$a@HH dL1E$HsPH"H hHL1G$I AIcH\D9d$ HtHsPH|$9<$tDKl1EH C$HLpHC@H[LpH@HJfD@ L1D$HLI3IFHuDH[]A\A]A^A_ÐLLvDD$IHsPHcȸf$HTH96HHw0HVLH$~D$~kH$E1AHtAHtAHtDBlF$1HLH &A\HCPIcHTD9t$uD$$[$O$$fAU H "ATL-I&E1UHSHx Hx H Hu.nfDDClHx L1HH[8HtBH{8t;AAi)\=(\wHx H )H1aH HtH H HtBlH AHtDJlH AHtDBlQHx HPH <1E1L-5%H XZHu*kDC Hx L1HHHtCH;t=AAi)\=(\wHx H (H1kfHx HH1[H fe]A\A]9fAWAVAUATIUHSHHDD$<E~&Hx D 1H ED$lLH跜L9 MD$Ld$M1E1E1I#@oM8MiI8^I$ I$ L9DAGqAAL9EEAA!DEJ9tXEGlI$x I$ AHtDHlH L11LLAOqE$ EA$  IGPIwHHHxLzIwPLzHEGlLI$x UAH 131LL!M8Y^MfLLd$Dt$H Dt$L9L ME1H\$<|@AG(AG$AO(tVEuQuMAHtDJ Hx EG H1H _}1ɾHH gM?Mt]I?tW1HLHH L9bAg(AAG$DD$D$L9 MM1Ld$1ILAHU@E$xHHHE8Ht3Uqu uHuHLxHU@AHHE8HuD|$(LLd$HD$Dt$HD$D D L9 D$<HH[]A\A]A^A_f.DL$EM9$ $IwXL8xtdE$xEI$ AHtDHlEGlH L1I$x LLI$ BfHL$<1LLA*DD HtFlAHtDJlHEGlLI$x PH q1"1LLAGqA[A]E1DLjLrMuYfDM.IMCAE(AE$uIuLAE(E1MEDIIG8HtAGquIw@H)tAIG8HuEE9!Hx EH1H L D$<HD$HD$MtH\$,HLHUHt.E(u HM HHHUHuH݋\$,L-M\$ Lt$ IID$8HtMAD$quIT$@HtHZLzHt@H{LbIIHuID$8HuLt$\$ MfHD$HD$H D HrA)A9x;\$t D$|$()ƒf.D$(1L -@AfA/D$nM?D H HrEAغHx A)H 1HD$<x;\$'+HHx HPH 1pD$LA[D A]M?MDC EL$lHLHx IAPAQI_^_Lt$MH $@Hx EG L1HD$<IwmfLiLqMYLd$ L|$IH\$M.IMA$ A9EhtZAEhI}@HJ`uEElDM LI$x H IAPAQ:IFAXAYHtjLMIfI$x 1LLDM EElMH A$ mL|$H\$LLd$ HmHGyLL|$Ld$ Ll$Hx 1AHDL$H ,xD$<|$(|$;)ƒHHx A؋|$0H 1AHAAUDL$,ZYDEu|UHHDu"uWfAWAVAUATUSHD\ HD$E DIAxAL,A LALJ詛I I I HHn81Ld$HufDHFq(uHLLHDHE8HHuAHdIx DClL1H !Lc8MHL5ID$8LHIEquHuHHtKLR~3Ix DElL1H 谩1HL螣HuHL@HE@HHH9HuAxA^HEPHHLHPL@4H1L' ID$8LHGfDA~/I LWQIx LAH 1I I (n@HLLfLvh I c<HHuLSA~1HD$AHtD@ Ix H L1hHD$LILJ I ,11LA~SAHtDClIx 1LH |A~Ix H L1E1HHu!HHU8HEq <uHuPHtLLfOƅ1/fAD$qtMd$ M9HUPHcLd9uMAD$qtMt$ DMu%t!ALL A AGpIo>IWL|$HD$IHt1f.HHtH9tS@ 9B v;HUHHuLt$LLPM4$HL[L]A\A]A^A_NHf.LLHH;HUAUIATIUImSHHHxp7=IULl$HD$Ht+@HHtH9t3@ 9B v#HUHHuHD$H[]A\A]fDHfLLHH=;HUuLff.@HGHOHHu&5Dz 9x wH9HyHDHHHtHHu1fDfH H9 H9 tkHP0HF8HV0HP0HtFHr8Hp0 DLx DFl1H L鏟H H H H9 hH \H H9 thN(HPHHVHPHt@H2Hp Lx DF 1H LߞH H ff.@AWAVAUATUSHHS<L MuMm8MAEq IEHAUhHtHhL`Hu%fDʃ( t%I,$IHt HEL9t"Hq9Phuуt$HHsHEf.HxHH1f~Hx H XH1虝L MfI|$8ID$PLhIUPAEq <HHjLrHE18DLI+EPIU@1HHI|$@H3I.IHtEqtMuIIInHuM1Mg IuPLLH{DMd$8M=DH HHu,HHHHtHAHHPHAH@8Ht@quH5H tfBqtHz 'HR8HuH[]A\A]A^A_HIuPLH6ID$HH@L9hH L`Md$8M_'Hx H $H1赛Hx EElH1EL$lH 芛LLHDH@HHHH>@qtIuPL` HHFH)Ht;HH@L`.HR8HIHw\Hx H U 1ɚ2HH {AUAATIUHSHHFrH(H HL$H|VD$A$Et+fW +f/sH[]A\A]Df/vKruxx9 G1H[]A\A]f.(H HL$HUM`D$aH5WHJ1fD< HEHHx DClH QPnXZOATIUHHM< DL9 AL9H LID$8IT$0L; L; L; HHB8HP0 MAD$p%=It$PH/I|$Ht It$HHv/It$@Hi/I|$Xt It$XHT/I|$`t It$`H?/HLHx]A\X H LHsH LHsH LHsL9 HDž L9H HDžH  It$H}W8  It$(H]WED$lH1Hx H {NfHx ED$lH 1 !@H H/H H@0#@H @H @ It$(HVAUATUHSHH >Aŋ~'Hx EH1D H cH E1Hu fH^8HAHt HFquD E9t1Hx HE1H 11ҾHDDž D9}DDD9}DL Mt-IpIXHt @HHkHsHuL HH1L[]A\A]}Gff.fAWIAVEAUIATMUHSHHHKPxHRPH9iH9iH9iH  9t{HH9iuAEH9ZumDA$19L9Hs@AMELAx6AIHL[]A\A]A^A_@AE1H9ZtH9ZH9ZH {9oHH9Zu9A $L9af.Ix DMlL1DClH HHھLA$EMLIx DClH &PElP1貓XZ AE1fA$1A$1AE1McD)ATIMZUSJ4ڃH=HcHH^J\H^H^H^ H^(L)@x 1[]A\J\L)˅yI$x AL1H u:˒1L1ɾ1[]A\DH^J\L)f.H^J\H^L)kH^J\H^H^L)OH^J\H^H^H^ L)+J1ۺA f.HL9t"DH)HHHH1ÍBNHHuAUATUSHHtAHII1 @Mt(AD$qt#Md$ 9 sLHeyMuE1HL[]A\A]ff.@UHSHvH Hu&HHC8HtCsuHHHC8Hu:f/h v&( fWf/v H[]H Hx H D@l1Ð`ff.HcATIHUHHcH4SIH\L1H9t HDHHHH;HuHH>uHHHL$ AHDIHL)HAD1ЃA~HHLHELIx I PHB@ PAAH )P1H E1D[]A\ff.fAWHcIAVIAUIATAUSH8HV@xDLD$ALLHD$AD$ HcT$ I AH\HHD$DI9HLC@IV@DHD$0ALPLL$HcL$,HSPHDHȀKr HH}PH$A…HUPIcHHDDMr I L$ r:HD$AUlD$,HEFlELL$Ix QL$QH fRPClP1,H0aH5LIFPDClLENlIx H H@@lPHCPH@@lPAUD$DP1ЋHcT$LH IdABAD$,&H5lLHtElHDClENlLPIx H a1ELLHb^_DKlDElD$LIx H t1HHLDT$9DAWAVAUATUHSH(DxD$E~Hx H o1蛊L MkD$E1Mc.I}PL1AHc\HMm8MtI}8uӋxHLt$pAYH HZ2L AMtSID$8HtFAD$q *xMDLH 9xMd$8Mu|$of $H 1HtH L\$L$H9L LMyL IBlH @H g@Hx EGlH1H 诃,f.L @L @L H; L AWAVAUATUSHHL~HHt$HT$HL$MIoMwH E1HD$8IHD$ LMIHL[]A\A]A^A_@HMlIDBXZf.IcEEDIEtExD9Eu;AYHH 1MAVAHH +SXZiDCE9~H H1H "SH LHHgQ11ҾH`MtH 1HE1H b$8S11ҾH'M E1L MIc$A\IH AE1H *"HERH LHHf11ҾHLff.AVAUATUHSHHH HtEHcLt:HT HcH L IHH@.[]A\A]A^DH HH HcDHcDDIEtEpD9EMIc$IADtDpE9EHH I1AUHH vQXZ[]A\A]A^fDH 1{H nQ11ҾH]K L E1YE1yH E1EH j"H QH LHH@e11ҾHJEH AE1H "HEPH HHHdy11ҾHJL ff.H>&AWAVAUATUHSHHIH9HHMUIc$EDIEtEhD9EL M<IcEE|IEDxL+MIcEEDIEtAD9 EHH M1AVH #HATAWOH 11ҾHwIL#MtA$LH9HH[]A\A]A^A_EGD9HH H1H h"OH LHHAc11ҾHHE1E1AD1"HDD$ H H NH LHHbU11ҾHdHDD$ L+E@H AE1H "HE*NH LHH]b11ҾHHff.ATIUHSHcڅxHc9}PI$ 1ALH ɝ%MI$ HLH}11ҾLGHcESTHD[]A\UHSHHHHAHu vfDH9t[HHHuHtyHcTugHHEHcHTHcH HUHHH@H[]@H1[]HuH[]HT릸f.AUIATIUHcSHx 9}Hc9}QI 1AAH &LiLI LLHN011ҾL?FIc$S)I|1ATSHHc[]HA\A]Ѥu AWAVIAUAATIUSHL>\L'HSLxLbA9LLHPZH5L H2EI^IDHD$.AC< K|<HĠHH9\$H+LڢHIϢDD))ƀ}At HHtDMxa "IOfAEu:f.HHJEtH<"ur"\HED"fOH1[]A\A]A^A_H[]A\A]A^A_þ/L辢HH5^LHAUATAUSHH>I軡D`tqCImMl @HL9tVH]H苡 HEd١HtAtf<"HAuHL9uHD[]A\A]Hc HHi_ NH )ii)i§AȍN‰ ~D LJ DHc f(fHHi_ NH )ii)i§AȍN* YXIH΅AT IU ,FSHcڋ LLK NH>HHfDHcAfHi_ NAH D)DiiD)iAŅ퍅NH*X^\BH9uLJ L9uHA MM[]A\Lff.@UHSHHϝHH9vx tH[]f.HHH[]fU HSHHڡHH9vz t H[]DHHH[]fSHcH<tЋ!9` H0Ƅ _fҋ` L<fH ̙` *ʺ$^Ht$H<$FH<$Ht$L0HH 1$[gF` Hf.!=7H[L0H$H F[FfffɸHt$*H $H<$*` ^EHt$H<$Cf.<lD` H Ƙ$1Ht$H<$EH<$Ht$f.H $1H<$Ht$dEH<$Ht$fD` H S$fDH E1ɋ("HH5Af&HdAAf H fHnHHfHnH ٗf flH5DfHnHH5ėxfHnH H0flH5fDH@fHnHcfHnflH`pfoAf H fDAfD, AfD8AfDAHH fH5oHLJLJ(Ƈ LJƇv LJ|Ƈ ƇA Ƈ LJHƇz (P~ OHcHH5FfDfHnƇƄ(hPHcHpH dfDƇR Ƅ(H8fHnPLJflHcfDx fHnƄ(XH$fHnflfnfpHffև("Ƅ(YHHLJfDB ÐH H5ƕ("H8AAfzH)AAHfHnHfH ǞfHnf fHnH5mH HflH5fHnH5flHHpH fofc HcHfDAfDAfD AfDHAfLH "Ƈ+ Ƈ Ƈ LJ0Ƈa Ƈ^ LJBƇ Ƈ LJƇ (PfHnH HcƄ(ԍPHHcҾfH5Ƈ Ƅ(HfHnڍPLJflHcfD fHnH HƄ(PHcHH5ܝfDjƇ Ƅ(PHcƄ(HfHnH̝fD flfHnH8fHnfHnHĸflH5 H:PHfHnHcH !flXƄ(PHLJHHcƄ(PHcHPH5!Ƅ(PHcHXH Ƅ(H6fHnH`HPLJHcƄ(PHcƄ( HefHnPHflpLJfD("Ƅ( H;Hf Ƈff.H .H58AHxHAffHnHAfnH 7fHnҺHfHnH =flf H5AHH wHc("HH5*@fHnH HflH5efHnH5f flHfHnfHnHflùfHnHfHnHf flH gfHnfHnH yHf| flH50fHnfDAfDAfDAfD AƇ3 Ƈ LJ|Ƈb Ƈ ƇX LJLJLJ"LJHH5HH fHnH5H0flf! H<f8H fHnHRHffH5zfHnH MHxflH5cHhH} fHnfHnƺfD^flAfD AfDAfD.AH(LJ`Ƈ Ƈ Ƈ LJfƇ Ƈ LJ4fD fDƇS fDFƇ fDvƇ) LJfof P H ("@fo@HHf$Ƈ ff.HeH KALJfHnHfHnѺf fHnflHfHnH?H5H؏fHnfHnH>ffoflfHnH5 fHnHflf fHnH fHn⋇("HPHflH ҏflfHnH5flfoAHHcH ALJAƇ. LJbfD LJD (PfHnH HcHhflH5bfDƇQ Ƅ(_PHcƄ(aPHcƄ(`PHcƄ(b(fHnH5Ofl8HfoհXHpHI PHcƄ(PHcHH 'fD fHnƇ~ Ƅ(PHcHfDLƇ Ƅ(PHcƄ(HLJPfHnf PflH("Ƅ(HHf\Ƈ @H5H ]("HhAH5AfFfHnHH5sfHnAH9HflfHnҾHfHnAfflH LfH5yfHnH zfHnH5?fHnflHH xfHnH5flHTfoۮHjHcƇ LJƇ_ Ƈ LJ LJ# (PfHnH OHcƄ(=HfHnHLJrflfHnHfD' fHnH $fHnflƍPfHnHcH ZflfHnƄ(HtfHnʍPfDHcflƇ Ƅ(PHHfDNƇ ("Ƅ(HHfD&Ƈ ff.H1H ("AfHnHrfHnAfHnHflH5(H yfHnH5flHAHAfHfH rfHnHUfHnH ÛfHnflH1XfHnH flf/ H5_fopHhH5fxHcfDAHH5ԛH0LJT Ƈ= Ƈ9 LJƇLJfDfD"ƇfDƇ Ƈ* (HyfHnƾfHnPflHcPLJ@f H qƄ(PfHnHcƄ(H fHnPf flHLJ4H5 fHnƉ("Ƅ(H-fHnfDflƇ hff.fH ʉH5Չ("HhAAflH AAfHwHH AfHnHcfHnHH flfH5ךfoXHH5BfDAfD AHH5HxH 'Ƈ1 Ƈ Ƈ` Ƈw LJfDƇ HLJLJq fDJƇ (PfHnH bHcƄ(,PHcƄ(+PHcƄ(PHcƄ(PHcƄ(PHcƄ(PHcƄ(fPHcHH5{Ƈu Ƅ(.H0LJ fHnHfHnHflfHnH5HNPflHcfHnH5(Ƅ(2PHHcҹf\H КƇ Ƅ(HfHnHqflfHnH(fHnfHnH flHn8fHnfHnH5 flH8HfHnfHnH HflH:XfHnfHnHuflH5:hfHnH OflHi PxfoHcƄ(PHHcҾfƇ{ Ƅ(PHH fDtƇ ("Ƅ(HHfDƇ fDH1AAfHnH ߚH{ffHnfHnH5|flfH Hʚ0fHnfHnھflf:H5ʚ("8fHnHAflAfD H ʚfoAflH(HcfoflfD APfHn־TflfDAfofDAƇLJLJ<!Ƈ LJ0LJ LJ Ƈf֏@f֏Hf֏(PfHnѹHcflƄ(1Pf֏HcƄ(0fVPHcf H LJX/Ƈ Ƅ(TPHcƄ(VPfHcH5sƇ@ fHnH5DŽf֏flƄ(UPHcfHnLJflfD> Ƅ(PPHcƄ(RPHcƇ< fDf֏Ƅ(QPHcfHnLJflfD: Ƅ(PHcƄ(PHfD LJ("PƄ(fƇ fև`H5Ѓ("HpH5[AAHAAfdH YfH˘HH fHnHAfhH5KfHnfHnH8H5flH IH H5ʘ(fHnH5rflHH f7 H*fHnfHnHflfHnHcfHnƾflfDvAfofD AfDAofD,Af H f H5Ƈ2 Ƈ Ƈ LJxƇ ƇH Ƈ LJLJ^LJp(PfHnH5(HcH`H fDƇ Ƅ(HfHnPLJflHcfD PfHnH5UƄ(rPHcƄ(pPHcƄ(oPHcƄ(sPHcHH vfDƄ(qHfHnHLJY flfHnPƇ] fHnHcH IflHƄ(PHLJHcƄ(PHcHH5Ƅ(f PHcHH5fDLJƇ Ƅ(JPHHcҾfH5Ƈ4 fHnH5Ƅ({PHcƄ(~PHcƄ(|PH("Ƅ(}HufHnHɘHflfHnLJe fHnflff.@HH5LJ fHnH fHnLJflfHnHH hfHnHfHnHfHnЋ("flH5fHnHxflfHnfHnHyflH pfoHH HxfHnfHnH }fHn1flflf5 HcH fo0"HH56(PfHnH5HcƄ(ߍPHcƄ(PHcƄ(PH("Ƅ(H~LJfHnHflfHnHnLJ  fHnfHnH<flù0fHnflHf @DHLJ HH HLJH)!1Hff.AVAUATUSHH LJLJ8H X  LJHLJPLJx HLJ @"@LJLJhLJLJLJLJxLJp)ʼnBsx f/H HAQH {PHHu8HHHu fHʀ`qHJ8HHutA<HfDJq@HF8Ht#HHBr9uHF8HuLl$HE8HtEqt Hu@HHuPHAHuHHAhDD9(}D(DD9}DUpx;p~pEq uD9x@t9} EB8H}HtxQЍDBHHuXHtH@Hu`HtH@Eq@u)@HuEqHEPHHt HE@HlHm8HH HtXHEHtLE(}HuP0HtmHU90}0Hm0PHuX H[]A\A]A^f5f/h 3EDHhL`H@H!HPHvf@q@u`Ht[HPHtRHR x f/ X v  Huf/v  I$IHufDH(L`H@HPLHHHpD$f/vf/v!I$IHu#I$IHu fDH<@x f/v f/Hx H HP 11ҾHpfC\fDSHH HGHLJH)!1HHǃ("*Q]("H3f(2ǃ!ǃ!H "1ǃ"ǃ!" f!` HH=t/HԄtҋ!` HH=u[ùH5U(1y_?f.HcSD("H(D9HcE1A5` f.!{d EDHApA9~A(AHt'tҋ!9` uHApA93D[tE1ff.@HcH7<~(` f.!Et!9` fD1DAWAVAUATIUHSHH 9BD8fEHǃHMຆ$HHLHPHH j5P1Hp[H H i$H?tC@=<0f/tCH%0f/<`HH0 /$E1H L-tx~9HPLHHߺ$BIoD9xHH yH1$E1AD("rfDMcB+(HD9FELH(1E` f.! ADAHD9~?H<t!9` uAHD9f1H HHߺ$_E9}-DEgD9~3Ic(HfDXEA9H[]A\A]A^A_DEff(A*^^Yf(f\fTRf.QD8E`fA*^^Yf(f\fTf.!Q$HH߸H $HH߸H $HH߸H atc$HH߸H S4$HH߸XH *Hx f(ºHH kf Hx H @f~uujff.AUIATIUHH HGHLJH)!1HHLHLHCHHx HH|uHx HH "H1kHx UHx HPi(Hx H߽CH H1Hx Hx H H1t u"Hx H H1PE@Hx AH1H oxHx H UH1$VoH 9$1=ff.fH $1ff.ff.DH'_UHSHHT$0HL$8LD$@LL$Ht7)D$P)L$`)T$p)$)$)$)$)$H$D$HnHD$HD$ D$ 0HD$u#H;HT$H]H[]fH;H5D1mZff.Tff.[f.AUIATAUHSHHLD$@LL$Ht7)D$P)L$`)T$p)$)$)$)$)$HHS DH5:H1YH$HT$LHHD$HD$ D$ D$ 0HD$\HtA$=wD@ C\uXH[]A\A]f.AnA$=oDH5H1 YVHXZH[]A\A]f.HtCH5111ɾǃ@ HmS bDLH5fa1R%@  HHtakes no arguments%.200s() %s (%zd given)takes exactly one argumentBad call flags for CyFunctiontakes no keyword arguments%.200s() %s_cython_3_1_6__pyx_capi____loader__loader__file__origin__package____path__submodule_search_locationsneeds an argumentan integer is requiredkeywords must be stringsMissing type objectunparsable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'buffer dtypescipy/spatial/_qhull.pyxbytesExpected %s, got %.200scloseexactly__del__check_active__setstate_cython__scipy.spatial._qhull.tsearchat leastat most_update_copy_docstrname '%U' is not definedget_hull_facetsdual_verticesadd_halfspacestransform__init___get_barycentric_transformssimplices__reduce_cython__vertex_neighbor_verticessetlist.pxdscipy.spatial.setlist.initscipy.spatial.setlist.tocsrget_hull_pointsmode_optionrequired_optionsstartswithget_paraboloid_shift_scalefloat divisionlift_pointsvolume_areaget_extremes_2dridge_dictappendget_voronoi_diagram_add_pointsget_pointsplane_distanceconvex_hullvertex_to_simplexget_simplex_facet_arraybuiltinscython_runtime__builtins__does not match_get_delaunay_info_barycentric_inside_barycentric_coordinates_lift_point_distplane_is_point_fully_outside_find_simplex_bruteforce_find_simplex_directed_find_simplexnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncscipy._lib.messagestreamMessageStreamscipy._cyutilitymemoryviewscipy.linalg.cython_lapackdgecondgetrfdgetrs_allocate_bufferarray_cwrappermemoryview_cwrappermemview_sliceslice_memviewslicepybuffer_indexint (__Pyx_memviewslice *)transpose_memslicememoryview_fromsliceget_slice_from_memviewslice_copymemoryview_copymemoryview_copy_from_sliceget_best_orderslice_get_sizefill_contig_strides_arraycopy_data_to_temp_err_extents_err_dimint (PyObject *, PyObject *)_errint (void)_err_no_memorymemoryview_copy_contentsbroadcast_leadingrefcount_copyingrefcount_objects_in_slice_slice_assign_scalarnumpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy.import_array__orig_bases__init scipy.spatial._qhull__reduce____module____dictoffset____vectorcalloffset____weaklistoffset__func_doc__doc__func_name__name____qualname__func_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutineCythonUnboundCMethodscipy.spatial._qhull._Qhullfurthest_sitendimintp_tnpy_doubledouble_tnpy_int%s() got an unexpected keyword argument '%U'C function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sInterpreter change detected - this module can only be loaded into one interpreter per process.Shared Cython type %.200s is not a type objectShared Cython type %.200s has the wrong size, try recompilingtoo many values to unpack (expected %zd)metaclass conflict: the metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its bases__int__ returned non-int (type %.200s). The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__int__ returned non-int (type %.200s)value too large to convert to intunbound method %.200S() needs an argument%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectAcquisition count is %d (line %d)%.200s() keywords must be strings%s() got multiple values for keyword argument '%U'Unexpected format string character: '%c'invalid vtable found for imported typejoin() result is too long for a Python stringCannot convert %.200s to %.200s__annotations__ must be set to a dict object__qualname__ must be set to a string object__name__ must be set to a string object__kwdefaults__ must be set to a dict objectchanges to cyfunction.__kwdefaults__ will not currently affect the values used in function calls__defaults__ must be set to a tuple objectchanges to cyfunction.__defaults__ will not currently affect the values used in function callsfunction's dictionary may not be deletedsetting function's dictionary to a non-dict while calling a Python objectNULL result without error in PyObject_Callinstance exception may not have a separate valuecalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringDoes not understand character buffer dtype format string ('%c')Expected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Buffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zd byte%s) does not match size of '%s' (%zd byte%s)Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)Buffer exposes suboffsets but no stridesC-contiguous buffer is not indirect in dimension %dBuffer and memoryview are not contiguous in the same dimension.Buffer is not indirectly contiguous in dimension %d.Buffer is not indirectly accessible in dimension %d.Buffer not compatible with direct access in dimension %d.memviewslice is already initialized!Argument '%.200s' has incorrect type (expected %.200s, got %.200s)cannot fit '%.200s' into an index-sized integerscipy.spatial._qhull._Qhull.mode_option.__set__scipy.spatial._qhull._Qhull.ndim.__get__%.200s() takes %.8s %zd positional argument%.1s (%zd given)scipy.spatial._qhull._QhullUser.closescipy.spatial._qhull._QhullUser.__del__scipy.spatial._qhull.Delaunay.pointsscipy.spatial._qhull.ConvexHull.pointsscipy.spatial._qhull.Voronoi.pointsscipy.spatial._qhull.HalfspaceIntersection.halfspacesscipy.spatial._qhull._Qhull.check_activescipy.spatial._qhull._Qhull.__setstate_cython__scipy.spatial._qhull.ConvexHull.add_pointsscipy.spatial._qhull.Voronoi.add_pointsscipy.spatial._qhull.Delaunay.add_points'%.200s' object is not subscriptablescipy.spatial._qhull._QhullUser._updatescipy.spatial._qhull._copy_docstr__mro_entries__ must return a tuplescipy.spatial._qhull._Qhull.get_hull_facetsscipy.spatial._qhull.HalfspaceIntersection.dual_verticesscipy.spatial._qhull.HalfspaceIntersection.add_halfspacesneed more than %zd value%.1s to unpackscipy.spatial._qhull.Voronoi._updatescipy.spatial._qhull.Delaunay.transformscipy.spatial._qhull.ConvexHull.verticesscipy.spatial._qhull.ConvexHull.__init__scipy.spatial._qhull._get_barycentric_transformsscipy.spatial._qhull._Qhull.__reduce_cython__Out of bounds on buffer access (axis %d)scipy.spatial._qhull.Delaunay.vertex_neighbor_verticesscipy.spatial._qhull._Qhull.get_hull_pointsscipy.spatial._qhull.Voronoi.__init__scipy.spatial._qhull.Delaunay.__init__scipy.spatial._qhull._Qhull.__init__Buffer acquisition failed on assignment; and then reacquiring the old buffer failed too!set changed size during iteration'NoneType' object has no attribute '%.30s'scipy.spatial._qhull._Qhull.get_paraboloid_shift_scale'%.200s' object is unsliceablescipy.spatial._qhull.Delaunay.lift_pointsscipy.spatial._qhull._get_delaunay_infoscipy.spatial._qhull._Qhull.volume_areascipy.spatial._qhull._Qhull.get_extremes_2dscipy.spatial._qhull.Voronoi.ridge_dictscipy.spatial._qhull._Qhull.__dealloc__scipy.spatial._qhull._Qhull.closescipy.spatial._qhull._visit_voronoi'NoneType' object is not subscriptablescipy.spatial._qhull._Qhull.add_pointsscipy.spatial._qhull._Qhull.get_voronoi_diagramscipy.spatial._qhull._Qhull.triangulatescipy.spatial._qhull._QhullUser._add_pointsscipy.spatial._qhull._QhullUser.__init__object of type 'NoneType' has no len()'NoneType' object is not iterablescipy.spatial._qhull._Qhull.get_pointsscipy.spatial._qhull.Delaunay._updatescipy.spatial._qhull.Delaunay.plane_distancescipy.spatial._qhull.HalfspaceIntersection._updatescipy.spatial._qhull.ConvexHull._updatescipy.spatial._qhull.Delaunay.convex_hullscipy.spatial._qhull.Delaunay.vertex_to_simplexscipy.spatial._qhull.Delaunay.find_simplexscipy.spatial._qhull.HalfspaceIntersection.__init__scipy.spatial._qhull._Qhull.get_simplex_facet_arrayscipy.spatial._qhull._Qhull.options.__set__Module '_qhull' has already been imported. Re-initialisation is not supported.compile time Python version %d.%d of module '%.100s' %s runtime version %d.%dint (__pyx_t_5scipy_7spatial_6_qhull_DelaunayInfo_t *, PyObject *, int, int, int)int (int, double *, double const *, double *, double)void (int, double *, double const *, double *, int)_barycentric_coordinate_singlevoid (int, double *, double const *, double *)void (__pyx_t_5scipy_7spatial_6_qhull_DelaunayInfo_t *, double const *, double *)double (__pyx_t_5scipy_7spatial_6_qhull_DelaunayInfo_t *, int, double *)int (__pyx_t_5scipy_7spatial_6_qhull_DelaunayInfo_t *, double const *, double)int (__pyx_t_5scipy_7spatial_6_qhull_DelaunayInfo_t *, double *, double const *, double, double)int (__pyx_t_5scipy_7spatial_6_qhull_DelaunayInfo_t *, double *, double const *, int *, double, double)base class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typemultiple bases have vtable conflict: '%.200s' and '%.200s'Unable to initialize pickling for %.200svoid (char *, int *, __pyx_t_5scipy_6linalg_13cython_lapack_d *, int *, __pyx_t_5scipy_6linalg_13cython_lapack_d *, __pyx_t_5scipy_6linalg_13cython_lapack_d *, __pyx_t_5scipy_6linalg_13cython_lapack_d *, int *, int *)void (int *, int *, __pyx_t_5scipy_6linalg_13cython_lapack_d *, int *, int *, int *)void (char *, int *, int *, __pyx_t_5scipy_6linalg_13cython_lapack_d *, int *, int *, __pyx_t_5scipy_6linalg_13cython_lapack_d *, int *, int *)int (struct __pyx_array_obj *)struct __pyx_array_obj *(PyObject *, Py_ssize_t, char *, char const *, char *)PyObject *(PyObject *, int, int, __Pyx_TypeInfo const *)struct __pyx_memoryview_obj *(struct __pyx_memoryview_obj *, PyObject *)int (__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int)char *(Py_buffer *, char *, Py_ssize_t, Py_ssize_t)PyObject *(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int)__Pyx_memviewslice *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)void (struct __pyx_memoryview_obj *, __Pyx_memviewslice *)PyObject *(struct __pyx_memoryview_obj *)PyObject *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)char (__Pyx_memviewslice *, int)Py_ssize_t (__Pyx_memviewslice *, int)Py_ssize_t (Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char)void *(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int)int (int, Py_ssize_t, Py_ssize_t)int (PyObject *, PyObject *, int)int (__Pyx_memviewslice, __Pyx_memviewslice, int, int, int)void (__Pyx_memviewslice *, int, int)void (__Pyx_memviewslice *, int, int, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, int)void (__Pyx_memviewslice *, int, size_t, void *, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *)_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule was compiled against NumPy C-API version 0x%x (NumPy 1.23) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtime../../tmp/build-env-99e64tom/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd_cython_3_1_6.cython_function_or_method_cython_3_1_6._common_types_metatype|\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\d\\\\\4@\\L\\X\\\\\\\\\\\\\\\\\\\\\p\bffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffnfffffffff&2>ffJfffffffffffffVfffzffffCCCCC]]C9MMM999999```````~``````````7Ar`=","""!!======OZ:Z%ZZYYYYususabcDccc[J8&r`p^L! )!  B P ! 4! c pB 2 P! #! @ c  B @B b jb X ~! { `y! w4! w c pwB pvi t fB eM! `e ! dc c6DB 0 !  ! <!3a / ,#! `"&a !]a tc QA >a ! __pyx_fatalerror00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 add_halfspaces(halfspaces, restart=False) Process a set of additional new halfspaces. Parameters ---------- halfspaces : ndarray of double, shape (n_new_ineq, ndim+1) New halfspaces to add. The dimensionality (ndim) should match that of the initial halfspaces. Like in the constructor, these are stacked inequalites of the form Ax + b <= 0 in format [A; b]. The original feasible point must also be feasible for these new inequalities. restart : bool, optional Whether to restart processing from scratch, rather than adding halfspaces incrementally. Raises ------ QhullError Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled. See Also -------- close Notes ----- You need to specify ``incremental=True`` when constructing the object to be able to add halfspaces incrementally. Incremental addition of halfspaces is also not possible after `close` has been called. tsearch(tri, xi) Find simplices containing the given points. This function does the same thing as `Delaunay.find_simplex`. Parameters ---------- tri : DelaunayInfo Delaunay triangulation xi : ndarray of double, shape (..., ndim) Points to locate Returns ------- i : ndarray of int, same shape as `xi` Indices of simplices containing each point. Points outside the triangulation get the value -1. See Also -------- Delaunay.find_simplex Notes ----- .. versionadded:: 0.9 Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from scipy.spatial import Delaunay, delaunay_plot_2d, tsearch >>> rng = np.random.default_rng() The Delaunay triangulation of a set of random points: >>> pts = rng.random((20, 2)) >>> tri = Delaunay(pts) >>> _ = delaunay_plot_2d(tri) Find the simplices containing a given set of points: >>> loc = rng.uniform(0.2, 0.8, (5, 2)) >>> s = tsearch(tri, loc) >>> plt.triplot(pts[:, 0], pts[:, 1], tri.simplices[s], 'b-', mask=s==-1) >>> plt.scatter(loc[:, 0], loc[:, 1], c='r', marker='x') >>> plt.show() lift_points(self, x) Lift points to the Qhull paraboloid. plane_distance(self, xi) Compute hyperplane distances to the point `xi` from all simplices. find_simplex(self, xi, bruteforce=False, tol=None) Find the simplices containing the given points. Parameters ---------- xi : ndarray of double, shape (..., ndim) Points to locate bruteforce : bool, optional Whether to only perform a brute-force search tol : float, optional Tolerance allowed in the inside-triangle check. Default is ``100*eps``. Returns ------- i : ndarray of int, same shape as `xi` Indices of simplices containing each point. Points outside the triangulation get the value -1. Notes ----- This uses an algorithm adapted from Qhull's ``qh_findbestfacet``, which makes use of the connection between a convex hull and a Delaunay triangulation. After finding the simplex closest to the point in N+1 dimensions, the algorithm falls back to directed search in N dimensions. Vertices of facets forming the convex hull of the point set. :type: *ndarray of int, shape (nfaces, ndim)* The array contains the indices of the points belonging to the (N-1)-dimensional facets that form the convex hull of the triangulation. .. note:: Computing convex hulls via the Delaunay triangulation is inefficient and subject to increased numerical instability. Use `ConvexHull` instead. Neighboring vertices of vertices. Tuple of two ndarrays of int: (indptr, indices). The indices of neighboring vertices of vertex `k` are ``indices[indptr[k]:indptr[k+1]]``. Lookup array, from a vertex, to some simplex which it is a part of. :type: *ndarray of int, shape (npoints,)* Affine transform from ``x`` to the barycentric coordinates ``c``. :type: *ndarray of double, shape (nsimplex, ndim+1, ndim)* This is defined by:: T c = x - r At vertex ``j``, ``c_j = 1`` and the other coordinates zero. For simplex ``i``, ``transform[i,:ndim,:ndim]`` contains inverse of the matrix ``T``, and ``transform[i,ndim,:]`` contains the vector ``r``. add_points(points, restart=False) Process a set of additional new points. Parameters ---------- points : ndarray New points to add. The dimensionality should match that of the initial points. restart : bool, optional Whether to restart processing from scratch, rather than adding points incrementally. Raises ------ QhullError Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled. See Also -------- close Notes ----- You need to specify ``incremental=True`` when constructing the object to be able to add points incrementally. Incremental addition of points is also not possible after `close` has been called. close() Finish incremental processing. Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding more points is no longer possible. Compute barycentric affine coordinate transformations for given simplices. Returns ------- Tinvs : array, shape (nsimplex, ndim+1, ndim) Barycentric transforms for each simplex. Tinvs[i,:ndim,:ndim] contains inverse of the matrix ``T``, and Tinvs[i,ndim,:] contains the vector ``r_n`` (see below). Notes ----- Barycentric transform from ``x`` to ``c`` is defined by:: T c = x - r_n where the ``r_1, ..., r_n`` are the vertices of the simplex. The matrix ``T`` is defined by the condition:: T e_j = r_j - r_n where ``e_j`` is the unit axis vector, e.g, ``e_2 = [0,1,0,0,...]`` This implies that ``T_ij = (r_j - r_n)_i``. For the barycentric transforms, we need to compute the inverse matrix ``T^-1`` and store the vectors ``r_n`` for each vertex. These are stacked into the `Tinvs` returned. Compute the extremal points in a 2-D convex hull, i.e. the vertices of the convex hull, ordered counterclockwise. See qhull/io.c:qh_printextremes_2d Return the voronoi diagram currently in Qhull. Returns ------- voronoi_vertices : array of double, shape (nvoronoi_vertices, ndim) Coordinates of the Voronoi vertices ridge_points : array of double, shape (nridges, 2) Voronoi ridges, as indices to the points array. ridge_vertices : list of lists, shape (nridges, *) Voronoi vertices for each Voronoi ridge, as indices to the Voronoi vertices array. Infinity is indicated by index ``-1``. regions : list of lists, shape (nregion, *) Voronoi vertices of all regions. point_region : array of int, shape (npoint,) Index of the Voronoi region for each input point. Returns the facets contained in the current Qhull. This function does not assume that the hull is simplicial, meaning that facets will have different number of vertices. It is thus less efficient but more general than get_simplex_facet_array. Returns ------- facets: list of lists of ints The indices of the vertices forming each facet. Returns all points currently contained in Qhull. It is equivalent to retrieving the input in most cases, except in halfspace mode, where the points are in fact the points of the dual hull. Returns ------- points: array of double, shape (nrpoints, ndim) The array of points contained in Qhull. Return array of simplical facets currently in Qhull. Returns ------- facets : array of int, shape (nfacets, ndim+1) Indices of coordinates of vertices forming the simplical facets neighbors : array of int, shape (nfacets, ndim) Indices of neighboring facets. The kth neighbor is opposite the kth vertex, and the first neighbor is the horizon facet for the first vertex. Facets extending to infinity are denoted with index -1. equations : array of double, shape (nfacets, ndim+2) Uninitialize this instance 4A 2Saq *AQ%QhfBa 6s! *AQ >A t1   vV1Cs!! M avX_N!#1)1F'Q Qself._lock,self._qh cannot be converted to a Python object for picklingnumpy._core.umath failed to importnumpy._core.multiarray failed to importinvalid size for new points arrayfeasible point is not clearly inside halfspace: Qhull internal error: loop in facet listNote that Cython is deliberately stricter than PEP-484 and rejects subclasses of builtin types. If you need to pass subclasses then set the 'annotation_typing' directive to False.Input points array must have 2 dimensions.Input interior point cannot be a masked arrayInput halfspaces cannot be a masked arrayHalfspaceIntersection.halfspacesHalfspaceIntersection.dual_verticesHalfspaceIntersection.add_halfspacesFailed to allocate memory in setlist.init()Delaunay.vertex_neighbor_verticesA'q 2Saq *AQ 2Saq *AQ >JfARq *AQR),fBa b 2!3C61 >A A zq3a! M aa{'\(l!&d!)1F'QA N$05EQ O5 0 N$m5 A Tb$oURVVXX\\] 5c  U"2!  Q(!6 HD 6#Rq ITF!1A& M  Q t1j  2V1Er q AR}A AR( DARq  !5 DARq*AQ5jYb1jYb1 j!2QjYb1jYb1 j!2Q:RrHF!1q q,fARq9Aq7)3d$ar;d$arA]*ATwa!7)3d$ar;d$arA]*ATwa![D16A q q 9A 1  QA& M  Q Q t1a t1a D RvR{!DEaqU!1are1ATQ 1  QA \ LLLKt14A  5  gQe86A Ja vS%Q 4q  E ITl! 5c  U"2!  Q LJfAQ(!6AX M  Q  A   !64t2Q #1 at6a7Gt4qPRRS) !^2T t>d! a 2V1D Ba U!4qAV1 TQb 'V1+1Dd%q1Jat6q2Rt1 c!1QEaz$fF!yj!2Q 1rQ4q'qgQc!3a|3bJas$a!waqq ! rrT1 DARq &E5 1^1De1+1E1),U/DARq Q#!N![?$kAEaq,Bb%ZuIRq!%ZqF&"!3&7q(yZr"A%Qc):&&aU!=!5 1Ba!1DfAas%q$9E2Qb!#U&U!1!#U%waqQcuAuAEaz$fE$IU,b1%]!4vWG1AzN!1%&$*!$/q$'war:Rs#Ya$/q$A[ZqF!$A[V1E$A[ZqF&PQ)e1E 8;k>> import numpy as np >>> import matplotlib.pyplot as plt >>> from scipy.spatial import Delaunay, delaunay_plot_2d, tsearch >>> rng = np.random.default_rng() The Delaunay triangulation of a set of random points: >>> pts = rng.random((20, 2)) >>> tri = Delaunay(pts) >>> _ = delaunay_plot_2d(tri) Find the simplices containing a given set of points: >>> loc = rng.uniform(0.2, 0.8, (5, 2)) >>> s = tsearch(tri, loc) >>> plt.triplot(pts[:, 0], pts[:, 1], tri.simplices[s], 'b-', mask=s==-1) >>> plt.scatter(loc[:, 0], loc[:, 1], c='r', marker='x') >>> plt.show() non-simplical facet encountered: incremental mode not enabled or already closed`halfspaces` should be provided as a 2D array are incompatible with incremental mode Wrappers for Qhull triangulation, plus some additional N-D geometry utilities .. versionadded:: 0.9 Voronoi(points, furthest_site=False, incremental=False, qhull_options=None) Voronoi diagrams in N dimensions. .. versionadded:: 0.12.0 Parameters ---------- points : ndarray of floats, shape (npoints, ndim) Coordinates of points to construct a Voronoi diagram from furthest_site : bool, optional Whether to compute a furthest-site Voronoi diagram. Default: False incremental : bool, optional Allow adding new points incrementally. This takes up some additional resources. qhull_options : str, optional Additional options to pass to Qhull. See Qhull manual for details. (Default: "Qbb Qc Qz Qx" for ndim > 4 and "Qbb Qc Qz" otherwise. Incremental mode omits "Qz".) Attributes ---------- points : ndarray of double, shape (npoints, ndim) Coordinates of input points. vertices : ndarray of double, shape (nvertices, ndim) Coordinates of the Voronoi vertices. ridge_points : ndarray of ints, shape ``(nridges, 2)`` Indices of the points between which each Voronoi ridge lies. ridge_vertices : list of list of ints, shape ``(nridges, *)`` Indices of the Voronoi vertices forming each Voronoi ridge. regions : list of list of ints, shape ``(nregions, *)`` Indices of the Voronoi vertices forming each Voronoi region. -1 indicates vertex outside the Voronoi diagram. When qhull option "Qz" was specified, an empty sublist represents the Voronoi region for a point at infinity that was added internally. point_region : array of ints, shape (npoints) Index of the Voronoi region for each input point. If qhull option "Qc" was not specified, the list will contain -1 for points that are not associated with a Voronoi region. If qhull option "Qz" was specified, there will be one less element than the number of regions because an extra point at infinity is added internally to facilitate computation. furthest_site True if this was a furthest site triangulation and False if not. .. versionadded:: 1.4.0 Raises ------ QhullError Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled. ValueError Raised if an incompatible array is given as input. Notes ----- The Voronoi diagram is computed using the `Qhull library `__. Examples -------- Voronoi diagram for a set of point: >>> import numpy as np >>> points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], ... [2, 0], [2, 1], [2, 2]]) >>> from scipy.spatial import Voronoi, voronoi_plot_2d >>> vor = Voronoi(points) Plot it: >>> import matplotlib.pyplot as plt >>> fig = voronoi_plot_2d(vor) >>> plt.show() The Voronoi vertices: >>> vor.vertices array([[0.5, 0.5], [0.5, 1.5], [1.5, 0.5], [1.5, 1.5]]) There is a single finite Voronoi region, and four finite Voronoi ridges: >>> vor.regions [[], [-1, 0], [-1, 1], [1, -1, 0], [3, -1, 2], [-1, 3], [-1, 2], [0, 1, 3, 2], [2, -1, 0], [3, -1, 1]] >>> vor.ridge_vertices [[-1, 0], [-1, 0], [-1, 1], [-1, 1], [0, 1], [-1, 3], [-1, 2], [2, 3], [-1, 3], [-1, 2], [1, 3], [0, 2]] The ridges are perpendicular between lines drawn between the following input points: >>> vor.ridge_points array([[0, 3], [0, 1], [2, 5], [2, 1], [1, 4], [7, 8], [7, 6], [7, 4], [8, 5], [6, 3], [4, 5], [4, 3]], dtype=int32) Takes care of basic dealings with the Qhull objects Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled. R!  6qyaq&&vRq BfBjASvRq$aq  LQa U!1QiuEq )6EaqQbfAYay1 QiuAQira M& !  1 ! ! !1Cq9AWAU& uCqauAS '%qqWAQ611 uCqauASya$E$bARq5 uCqEat1AU!1Qira 1_Qhull.get_paraboloid_shift_scaleInput points cannot be a masked array HalfspaceIntersection(halfspaces, interior_point, incremental=False, qhull_options=None) Halfspace intersections in N dimensions. .. versionadded:: 0.19.0 Parameters ---------- halfspaces : ndarray of floats, shape (nineq, ndim+1) Stacked Inequalities of the form Ax + b <= 0 in format [A; b] interior_point : ndarray of floats, shape (ndim,) Point clearly inside the region defined by halfspaces. Also called a feasible point, it can be obtained by linear programming. incremental : bool, optional Allow adding new halfspaces incrementally. This takes up some additional resources. qhull_options : str, optional Additional options to pass to Qhull. See Qhull manual for details. (Default: "Qx" for ndim > 4 and "" otherwise) Option "H" is always enabled. Attributes ---------- halfspaces : ndarray of double, shape (nineq, ndim+1) Input halfspaces. interior_point :ndarray of floats, shape (ndim,) Input interior point. intersections : ndarray of double, shape (ninter, ndim) Intersections of all halfspaces. dual_points : ndarray of double, shape (nineq, ndim) Dual points of the input halfspaces. dual_facets : list of lists of ints Indices of points forming the (non necessarily simplicial) facets of the dual convex hull. dual_vertices : ndarray of ints, shape (nvertices,) Indices of halfspaces forming the vertices of the dual convex hull. For 2-D convex hulls, the vertices are in counterclockwise order. For other dimensions, they are in input order. dual_equations : ndarray of double, shape (nfacet, ndim+1) [normal, offset] forming the hyperplane equation of the dual facet (see `Qhull documentation `__ for more). dual_area : float Area of the dual convex hull dual_volume : float Volume of the dual convex hull Raises ------ QhullError Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled. ValueError Raised if an incompatible array is given as input. Notes ----- The intersections are computed using the `Qhull library `__. This reproduces the "qhalf" functionality of Qhull. Examples -------- Halfspace intersection of planes forming some polygon >>> from scipy.spatial import HalfspaceIntersection >>> import numpy as np >>> halfspaces = np.array([[-1, 0., 0.], ... [0., -1., 0.], ... [2., 1., -4.], ... [-0.5, 1., -2.]]) >>> feasible_point = np.array([0.5, 0.5]) >>> hs = HalfspaceIntersection(halfspaces, feasible_point) Plot halfspaces as filled regions and intersection points: >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax = fig.add_subplot(1, 1, 1, aspect='equal') >>> xlim, ylim = (-1, 3), (-1, 3) >>> ax.set_xlim(xlim) >>> ax.set_ylim(ylim) >>> x = np.linspace(-1, 3, 100) >>> symbols = ['-', '+', 'x', '*'] >>> signs = [0, 0, -1, -1] >>> fmt = {"color": None, "edgecolor": "b", "alpha": 0.5} >>> for h, sym, sign in zip(halfspaces, symbols, signs): ... hlist = h.tolist() ... fmt["hatch"] = sym ... if h[1]== 0: ... ax.axvline(-h[2]/h[0], label='{}x+{}y+{}=0'.format(*hlist)) ... xi = np.linspace(xlim[sign], -h[2]/h[0], 100) ... ax.fill_between(xi, ylim[0], ylim[1], **fmt) ... else: ... ax.plot(x, (-h[2]-h[0]*x)/h[1], label='{}x+{}y+{}=0'.format(*hlist)) ... ax.fill_between(x, (-h[2]-h[0]*x)/h[1], ylim[sign], **fmt) >>> x, y = zip(*hs.intersections) >>> ax.plot(x, y, 'o', markersize=8) By default, qhull does not provide with a way to compute an interior point. This can easily be computed using linear programming. Considering halfspaces of the form :math:`Ax + b \leq 0`, solving the linear program: .. math:: max \: y s.t. Ax + y ||A_i|| \leq -b With :math:`A_i` being the rows of A, i.e. the normals to each plane. Will yield a point x that is furthest inside the convex polyhedron. To be precise, it is the center of the largest hypersphere of radius y inscribed in the polyhedron. This point is called the Chebyshev center of the polyhedron (see [1]_ 4.3.1, pp148-149). The equations outputted by Qhull are always normalized. >>> from scipy.optimize import linprog >>> from matplotlib.patches import Circle >>> norm_vector = np.reshape(np.linalg.norm(halfspaces[:, :-1], axis=1), ... (halfspaces.shape[0], 1)) >>> c = np.zeros((halfspaces.shape[1],)) >>> c[-1] = -1 >>> A = np.hstack((halfspaces[:, :-1], norm_vector)) >>> b = - halfspaces[:, -1:] >>> res = linprog(c, A_ub=A, b_ub=b, bounds=(None, None)) >>> x = res.x[:-1] >>> y = res.x[-1] >>> circle = Circle(x, radius=y, alpha=0.3) >>> ax.add_patch(circle) >>> plt.legend(bbox_to_anchor=(1.6, 1.0)) >>> plt.show() References ---------- .. [Qhull] http://www.qhull.org/ .. [1] S. Boyd, L. Vandenberghe, Convex Optimization, available at http://stanford.edu/~boyd/cvxbook/ Feasible point must be a (ndim-1,) array Delaunay(points, furthest_site=False, incremental=False, qhull_options=None) Delaunay tessellation in N dimensions. .. versionadded:: 0.9 Parameters ---------- points : ndarray of floats, shape (npoints, ndim) Coordinates of points to triangulate furthest_site : bool, optional Whether to compute a furthest-site Delaunay triangulation. Default: False .. versionadded:: 0.12.0 incremental : bool, optional Allow adding new points incrementally. This takes up some additional resources. qhull_options : str, optional Additional options to pass to Qhull. See Qhull manual for details. Option "Qt" is always enabled. Default:"Qbb Qc Qz Qx Q12" for ndim > 4 and "Qbb Qc Qz Q12" otherwise. Incremental mode omits "Qz". .. versionadded:: 0.12.0 Attributes ---------- points : ndarray of double, shape (npoints, ndim) Coordinates of input points. simplices : ndarray of ints, shape (nsimplex, ndim+1) Indices of the points forming the simplices in the triangulation. For 2-D, the points are oriented counterclockwise. neighbors : ndarray of ints, shape (nsimplex, ndim+1) Indices of neighbor simplices for each simplex. The kth neighbor is opposite to the kth vertex. For simplices at the boundary, -1 denotes no neighbor. equations : ndarray of double, shape (nsimplex, ndim+2) [normal, offset] forming the hyperplane equation of the facet on the paraboloid (see `Qhull documentation `__ for more). paraboloid_scale, paraboloid_shift : float Scale and shift for the extra paraboloid dimension (see `Qhull documentation `__ for more). transform : ndarray of double, shape (nsimplex, ndim+1, ndim) Affine transform from ``x`` to the barycentric coordinates ``c``. This is defined by:: T c = x - r At vertex ``j``, ``c_j = 1`` and the other coordinates zero. For simplex ``i``, ``transform[i,:ndim,:ndim]`` contains inverse of the matrix ``T``, and ``transform[i,ndim,:]`` contains the vector ``r``. If the simplex is degenerate or nearly degenerate, its barycentric transform contains NaNs. vertex_to_simplex : ndarray of int, shape (npoints,) Lookup array, from a vertex, to some simplex which it is a part of. If qhull option "Qc" was not specified, the list will contain -1 for points that are not vertices of the tessellation. convex_hull : ndarray of int, shape (nfaces, ndim) Vertices of facets forming the convex hull of the point set. The array contains the indices of the points belonging to the (N-1)-dimensional facets that form the convex hull of the triangulation. .. note:: Computing convex hulls via the Delaunay triangulation is inefficient and subject to increased numerical instability. Use `ConvexHull` instead. coplanar : ndarray of int, shape (ncoplanar, 3) Indices of coplanar points and the corresponding indices of the nearest facet and the nearest vertex. Coplanar points are input points which were *not* included in the triangulation due to numerical precision issues. If option "Qc" is not specified, this list is not computed. .. versionadded:: 0.12.0 vertex_neighbor_vertices : tuple of two ndarrays of int; (indptr, indices) Neighboring vertices of vertices. The indices of neighboring vertices of vertex `k` are ``indices[indptr[k]:indptr[k+1]]``. furthest_site True if this was a furthest site triangulation and False if not. .. versionadded:: 1.4.0 Raises ------ QhullError Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled. ValueError Raised if an incompatible array is given as input. Notes ----- The tessellation is computed using the Qhull library `Qhull library `__. .. note:: Unless you pass in the Qhull option "QJ", Qhull does not guarantee that each input point appears as a vertex in the Delaunay triangulation. Omitted points are listed in the `coplanar` attribute. Examples -------- Triangulation of a set of points: >>> import numpy as np >>> points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]]) >>> from scipy.spatial import Delaunay >>> tri = Delaunay(points) We can plot it: >>> import matplotlib.pyplot as plt >>> plt.triplot(points[:,0], points[:,1], tri.simplices) >>> plt.plot(points[:,0], points[:,1], 'o') >>> plt.show() Point indices and coordinates for the two triangles forming the triangulation: >>> tri.simplices array([[2, 3, 0], # may vary [3, 1, 0]], dtype=int32) Note that depending on how rounding errors go, the simplices may be in a different order than above. >>> points[tri.simplices] array([[[ 1. , 0. ], # may vary [ 1. , 1. ], [ 0. , 0. ]], [[ 1. , 1. ], [ 0. , 1.1], [ 0. , 0. ]]]) Triangle 0 is the only neighbor of triangle 1, and it's opposite to vertex 1 of triangle 1: >>> tri.neighbors[1] array([-1, 0, -1], dtype=int32) >>> points[tri.simplices[1,1]] array([ 0. , 1.1]) We can find out which triangle points are in: >>> p = np.array([(0.1, 0.2), (1.5, 0.5), (0.5, 1.05)]) >>> tri.find_simplex(p) array([ 1, -1, 1], dtype=int32) The returned integers in the array are the indices of the simplex the corresponding point is in. If -1 is returned, the point is in no simplex. Be aware that the shortcut in the following example only works correctly for valid points as invalid points result in -1 which is itself a valid index for the last simplex in the list. >>> p_valids = np.array([(0.1, 0.2), (0.5, 1.05)]) >>> tri.simplices[tri.find_simplex(p_valids)] array([[3, 1, 0], # may vary [3, 1, 0]], dtype=int32) We can also compute barycentric coordinates in triangle 1 for these points: >>> b = tri.transform[1,:2].dot(np.transpose(p - tri.transform[1,2])) >>> np.c_[np.transpose(b), 1 - b.sum(axis=0)] array([[ 0.1 , 0.09090909, 0.80909091], [ 1.5 , -0.90909091, 0.40909091], [ 0.5 , 0.5 , 0. ]]) The coordinates for the first point are all positive, meaning it is indeed inside the triangle. The third point is on an edge, hence its null third coordinate. ConvexHull(points, incremental=False, qhull_options=None) Convex hulls in N dimensions. .. versionadded:: 0.12.0 Parameters ---------- points : ndarray of floats, shape (npoints, ndim) Coordinates of points to construct a convex hull from incremental : bool, optional Allow adding new points incrementally. This takes up some additional resources. qhull_options : str, optional Additional options to pass to Qhull. See Qhull manual for details. (Default: "Qx" for ndim > 4 and "" otherwise) Option "Qt" is always enabled. Attributes ---------- points : ndarray of double, shape (npoints, ndim) Coordinates of input points. vertices : ndarray of ints, shape (nvertices,) Indices of points forming the vertices of the convex hull. For 2-D convex hulls, the vertices are in counterclockwise order. For other dimensions, they are in input order. simplices : ndarray of ints, shape (nfacet, ndim) Indices of points forming the simplical facets of the convex hull. neighbors : ndarray of ints, shape (nfacet, ndim) Indices of neighbor facets for each facet. The kth neighbor is opposite to the kth vertex. -1 denotes no neighbor. equations : ndarray of double, shape (nfacet, ndim+1) [normal, offset] forming the hyperplane equation of the facet (see `Qhull documentation `__ for more). coplanar : ndarray of int, shape (ncoplanar, 3) Indices of coplanar points and the corresponding indices of the nearest facets and nearest vertex indices. Coplanar points are input points which were *not* included in the triangulation due to numerical precision issues. If option "Qc" is not specified, this list is not computed. good : ndarray of bool or None A one-dimensional Boolean array indicating which facets are good. Used with options that compute good facets, e.g. QGn and QG-n. Good facets are defined as those that are visible (n) or invisible (-n) from point n, where n is the nth point in 'points'. The 'good' attribute may be used as an index into 'simplices' to return the good (visible) facets: simplices[good]. A facet is visible from the outside of the hull only, and neither coplanarity nor degeneracy count as cases of visibility. If a "QGn" or "QG-n" option is not specified, None is returned. .. versionadded:: 1.3.0 area : float Surface area of the convex hull when input dimension > 2. When input `points` are 2-dimensional, this is the perimeter of the convex hull. .. versionadded:: 0.17.0 volume : float Volume of the convex hull when input dimension > 2. When input `points` are 2-dimensional, this is the area of the convex hull. .. versionadded:: 0.17.0 Raises ------ QhullError Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled. ValueError Raised if an incompatible array is given as input. Notes ----- The convex hull is computed using the `Qhull library `__. Examples -------- Convex hull of a random set of points: >>> from scipy.spatial import ConvexHull, convex_hull_plot_2d >>> import numpy as np >>> rng = np.random.default_rng() >>> points = rng.random((30, 2)) # 30 random points in 2-D >>> hull = ConvexHull(points) Plot it: >>> import matplotlib.pyplot as plt >>> plt.plot(points[:,0], points[:,1], 'o') >>> for simplex in hull.simplices: ... plt.plot(points[simplex, 0], points[simplex, 1], 'k-') We could also have directly used the vertices of the hull, which for 2-D are guaranteed to be in counterclockwise order: >>> plt.plot(points[hull.vertices,0], points[hull.vertices,1], 'r--', lw=2) >>> plt.plot(points[hull.vertices[0],0], points[hull.vertices[0],1], 'ro') >>> plt.show() Facets visible from a point: Create a square and add a point above the square. >>> generators = np.array([[0.2, 0.2], ... [0.2, 0.4], ... [0.4, 0.4], ... [0.4, 0.2], ... [0.3, 0.6]]) Call ConvexHull with the QG option. QG4 means compute the portions of the hull not including point 4, indicating the facets that are visible from point 4. >>> hull = ConvexHull(points=generators, ... qhull_options='QG4') The "good" array indicates which facets are visible from point 4. >>> print(hull.simplices) [[1 0] [1 2] [3 0] [3 2]] >>> print(hull.good) [False True False False] Now plot it, highlighting the visible facets. >>> fig = plt.figure() >>> ax = fig.add_subplot(1,1,1) >>> for visible_facet in hull.simplices[hull.good]: ... ax.plot(hull.points[visible_facet, 0], ... hull.points[visible_facet, 1], ... color='violet', ... lw=6) >>> convex_hull_plot_2d(hull, ax=ax)
# may vary >>> plt.show() References ---------- .. [Qhull] http://www.qhull.org/ A M t51ATqqF!9AQ1DG183b83a*A"! t;gQJfA  QA M  Q t4q!#4t1BnAAR{"DARq#2TQb "A#1#1 %Q  QA( M  Q Q t1a t1a D Bd$a DA &+Zq Q  &E!AEaqQce7!1#^5A5 1BaaZqF&7!1ZuIRq!QgQaQ 81  QA KuKq HDaq Kt86! MXT%q MXT%qA BfAQfCs#QfBbfBa &Q %vQb$avQ %vT %vTqA 4*#Q 4q d! t1 A& Qa U!1Eat1A U!4q #9ARs#Yar$.d!1F)1Bd)STTVVW-.,-8aqAQat1A 4#3a &bbLb #5! #1D F$is! $a A t1 4qLQaU!4q")1Ja3ayAq 1t1A 2V2S4q *AQ 2Q RxrBfBa B 7!2Q!1!1F&3abbqD F"Aq  U!7!1Eat1q '4uAS5 !1F#Qs(!83cDA1P R{!1 rrCt1j2Q RxrBfBa B 7!2Q!1 4s! $b&81 !Dbb&vRqq!1F&3a 1Eawaq7qq!&$e1AQaEawaq}AQfA-6avRt5-.gU!as(!83a"/@ 4xs! ,aq 1 R|1AT9E F!4wnA#4wa)WA'v_A HAQJa6Aq  G;axq HAT4A 2Saq *AQ%QhfBa 6s! *AQ >A t1   vV1Cs!! M avX_4EQ%_L)1F'Q Q2! 2Saq *AQ%QhfBa >A A vV1Cs!! M avX_4EQ#1)1F'Q)D :V2Q *AQ R{!1$azd($6GrSXXY c 5A 81F!2T Zq "H *AQ LYd!A \ t1$$?q LLLKt14A LJfAQ N! "! )(!6A M  Q %Q!4vTQb TQb 4t1Ba 81  Qthread lock allocation failed_Qhull.get_simplex_facet_arrayHalfspaceIntersection._updateHalfspaceIntersection.__init__Cannot compute for Delaunaywrong dimensionality in xivertex_neighbor_verticesget_paraboloid_shift_scale_get_barycentric_transformsDelaunay.vertex_to_simplex_Qhull.get_voronoi_diagramPoints cannot contain NaN_vertex_neighbor_verticesscipy/spatial/_qhull.pyxmemory allocation failedQhull instance is closedget_simplex_facet_array_Qhull.__setstate_cython__Delaunay.plane_distanceA 4}Cq t1Cq1G4}G1(,At1A 3at#3a 4~Qa 2\$d'U$aQNeed at least 2-D data_Qhull.get_hull_points_Qhull.get_hull_facets_Qhull.get_extremes_2d_Qhull.__reduce_cython___QhullUser._add_pointsHalfspaceIntersectionDelaunay.find_simplexConvexHull.add_pointsscipy.spatial._qhullDelaunay.lift_pointsDelaunay.convex_hullvertex_to_simplexget_voronoi_diagramDelaunay.add_pointsConvexHull.verticesA$ 4|3a 9$a:>a:ridge_pointsridge_dictpoint_region_is_coroutine_initializingfind_simplexextremes_arrcheck_active_add_pointsRuntimeErrorvolume_areatriangulatetransformrcond_limit__mro_entries__mode_optionlower_boundlift_pointsincrementaldual_volumedual_pointsdual_facets_copy_docstrconvex_hullconcatenate_Qhull.closeMemoryErrorImportErrorA M  Qat1  Qvertices_verticesstartfacet_ridge_dict__pyx_vtable__point_ndimoption_sethalfspacesget_pointsfirst_violfacet_ndimcur_regionbruteforceatleast_2dasanyarrayadd_pointsValueErrorQhullErrorConvexHull_transformsimplices__reduce_ex____pyx_statenumpointsnumfacetsnextremesnextfacetneighborsncoplanarmin_bound__metaclass__max_boundisoutsideisenabledequationseps_broaddual_areaTypeError_QhullUserQbb Qc QzA 4xwa vQ  !A 4uCq ,aqxi_shape verticesupdate__setstate____set_name__refcheck__qualname__property_pointsnsimplexneighborisimplexinf_seen__getstate__extremesexitcodecoplanarbestdistadd_noteDelaunayx_shapevertexBvertexAtsearchtotlongrestartreshaperegions_qhullqhull__prepare__optionsnpointsnonzeronewaxisivertexfacetsidisablecurlong ;c  9Ks)1asarrayVoronoivolumevertex_updateuniquetolistresize__reduce__points pieces)option__module__latin1ipointid_mapfacetsencodeenabledoubled 3m1Acenterbad_hsastypezerosviolsstartsplitshapercondrangeqhull pointout_ordernumpynineqmsizeiworkisnanfinfofacetemptydtypedistscloseclear bytes (arrayanormTinvs_Qhullwork__test____spec__sizesetsselfnrhsndim__name____main__joinipivintpintc__init__infogood__func__filldistcopyaxisareaQxAt1ziptritoltmpsumsrcpopoutmsgminmaxmapldbldagetepsdstdot__doc____del__arrany__all__QbkQbbQbBQBkQ11A F!xinpmagc?Qz QxQuQtQcQJQGzxvpnmkjidcT +Q! LHC ?@@@@Y@qhull qhull error (qh_new_qhull): start qhull_cmd argument with "qhull " or set to "qhull" qh_new_qhull: initialize Qhull qh_new_qhull: build new Qhull for %d %d-d points with %s qhull error: insufficient memory for 'Hn,n,n' qh_projectpoints: projected %d points from dim %d to dim %d qhull internal error (qh_projectpoints): newdim %d should be %d after projection qhull error: insufficient memory to copy %d points qhull internal error (qh_determinate): only implemented for dimension >= 2 qh_detmaxoutside: MAXoutside %2.2g from qh.max_outside %2.2g, ONEmerge %2.2g, MINoutside %2.2g, DISTround %2.2g qhull internal error (qh_detsimplex): #points %d < dimension %d qh_detsimplex: det=%2.2g for point p%d, dim %d, nearzero? %d qh_distround: increase roundoff by random delta %2.2g for option 'R%2.2g' qh_distround: %2.2g, maxabs %2.2g, maxsumabs %2.2g, maxdistsum %2.2g qh_detjoggle: joggle=%2.2g maxwidth=%2.2g qh_detroundoff: increase qh.ANGLEround by option 'R%2.2g' qhull option error: the joggle for 'QJn', %.2g, is below roundoff for distance computations, %.2g qhull input warning: minimum visibility V%.2g is greater than minimum outside W%.2g. Flipped facets are likely. qhull internal error (qh_facetarea_simplex): #points %d != dim %d -1 qh_facetarea_simplex: area=%2.2g for point p%d, toporient %d, nearzero? %d qh_findgooddist: p%d is %2.2g above good facet f%d qh_findgooddist: no good facet for p%d above f%d qh_furthestnewvertex: v%d dist %2.2g is furthest new vertex for f%d qh_furthestvertex: all vertices of f%d are in f%d. Returning 0.0 for max and mindist qh_furthestvertex: v%d dist %2.2g is furthest (mindist %2.2g) of f%d above f%d computing area of each facet and volume of the convex hull qh_getarea: computing area for each facet and its volume to qh.interior_point (dist*area/dim) qh_maxmin: dim min max width nearzero min-point max-point %3d % 14.8e % 14.8e % 14.8e %4.4e p%-9d p%-d last coordinate scaled to (%4.4g, %4.4g), width %4.4e for option 'Qbb' qh_maxmin: found the max and min points (by dim):qh_maxouter: max distance from facet to outer plane is %4.4g, qh.max_outside is %4.4g qhull internal error (qh_maxsimplex): qh.MAXwidth required for qh_maxsimplex. Used to estimate determinate qhull precision error (qh_maxsimplex for voronoi_center): %d points with the same x coordinate %4.4g qhull input error: input is less than %d-dimensional since all points have the same x coordinate %4.4g qh_maxsimplex: searching all points for %d-th initial vertex, better than mindet %4.4g, targetdet %4.4g qh_maxsimplex: searching all points ('Qs') for %d-th initial vertex, better than p%d det %4.4g, targetdet %4.4g, ratio %4.4g qh_maxsimplex: searching all points for %d-th initial vertex, better than p%d det %4.4g and mindet %4.4g, ratio %4.4g qh_maxsimplex: searching all points for %d-th initial vertex, better than p%d det %2.2g and mindet %4.4g, targetdet %4.4g qhull internal error (qh_maxsimplex): not enough points available qh_maxsimplex: selected point p%d for %d`th initial vertex, det=%4.4g, targetdet=%4.4g, mindet=%4.4g qh_rotatepoints: rotate points byqh_scalelast: scale last coordinate from [%2.2g, %2.2g] to [%2.2g, %2.2g] qhull input error (qh_scalelast): can not scale last coordinate to [%4.4g, %4.4g]. Input is cocircular or cospherical. Use option 'Qz' to add a point at infinity. qhull input error (qh_scalelast): can not scale last coordinate to [%4.4g, %4.4g]. New bounds are too wide for compared to existing bounds [%4.4g, %4.4g] (width %4.4g) qhull input error: 'Qb%d' or 'QB%d' inverts paraboloid since high bound %.2g < low bound %.2g qhull input error: %d'th dimension's new bounds [%2.2g, %2.2g] too wide for existing bounds [%2.2g, %2.2g] qh_scalepoints: scaled %d'th coordinate [%2.2g, %2.2g] to [%.2g, %.2g] for %d points by %2.2g and shifted %2.2g qh_setdelaunay: project %d points to paraboloid for Delaunay triangulation qhull error: insufficient memory to joggle %d points qhull input error (qh_joggleinput): the current joggle for 'QJn', %.2g, is too large for the width of the input. If possible, recompile Qhull with higher-precision reals. qh_joggleinput: joggle input by %4.4g with seed %d qhull internal error (qh_projectinput): dimension after projection %d != hull_dim %d qhull error: insufficient memory to project %d points qh_projectinput: updating lower and upper_bound qhull internal error (qh_projectinput): HALFspace defined without qh.feasible_point qh_projectinput: projected points to paraboloid for Delaunay qhull input error: feasible point is not clearly inside halfspace feasible point: qh_sethalfspace: halfspace at offset %6.2g to point: qh_sethalfspace_all: compute dual for halfspace intersection qhull error: insufficient memory to compute dual of %d halfspaces The halfspace was at index %d qhull internal error (qh_voronoi_center): need at least %d points to construct a Voronoi center qh_voronoi_center: at infinity for qh_voronoi_center: det %2.2g factor %2.2g _max-widthError-roundoffAngle-premerge-with-randomAngle-postmerge-with-randomCentrum-premerge-with-randomCentrum-postmerge-with-random_one-merge_near-insideVisible-distanceU-max-coplanarWidth-outside_wide-facetqh_facetarea: f%d area %2.2g p%dinput has same x coordinate%6.3g QJoggle_joggle-seed %6.2g%6.16g at offset: and distance: halfspace: qh_sharpnewfacets: %d p%d dist %.2g, center:ʡE3$ʡE3$$@)\(?<L=L@@@@<T@{Gz?MbP???A??ʡE3$qh_distplane: from p%d to f%d Last merge #%d Last qh_addpoint p%d,Matrix:qh_gausselem: resultqh_getangle: %4.4g Last merge was #%d. Current summary is: DISTANT%2.2g 0`Pqh_findbesthorizon: test neighbors of f%d bestdist %2.2g f%d ischeckmax? %d noupper? %d minsearch %2.2g is_5x? %d searchdist %2.2g qh_findbesthorizon: p%d, newbest? %d, bestfacet f%d, bestdist %2.2g, numfacet %d, coplanarfacets %d, numdist %d qhull topology error (qh_findbestnew): merging has formed and deleted a cone of new facets. Can not continue. qhull internal error (qh_findbestnew): no new facets for point p%d qh_findbestnew: point p%d facet f%d. Stop? %d if dist > %2.2g, Last qh_addpoint p%d, qh.visit_id %d, vertex_visit %d,qh_findbestnew: bestfacet f%d bestdist %2.2g for p%d f%d bestoutside? %d qh_findbest: point p%d starting at f%d isnewfacets? %d, unless %d exit if > %2.2g, testhorizon? %d, noupper? %d, Last merge #%d, max_outside %2.2g qh_findbest: neighbors of f%d, bestdist %2.2g f%d qh_backnormal: zero diagonal at column %d. zero diagonal on back substitutionqh_gausselim: 0 pivot at column %d. (%2.2g < %2.2g) zero pivot for Gaussian eliminationqhull internal error (qh_getcenter): not defined for %d points qh_getcentrum: for f%d, %d vertices dist= %2.2g qh_normalize: norm=%2.2g too small during p%d qh_sethyperplane_det: degenerate norm during p%d, use qh_sethyperplane_gauss instead. qh_sethyperplane_gauss: nearly singular or axis parallel hyperplane during p%d. qh_sethyperplane_gauss: singular or axis parallel hyperplane at normalization during p%d. qh_setfacetplane: facet f%d created. Last point added to hull was p%d.qh_setfacetplane: flipped orientation due to nearzero gauss and interior_point test. During p%d qh_setfacetplane: ====== vertex p%d(v%d) increases max_outside to %2.2g for new facet f%d last p%d qh_setfacetplane: f%d offset %2.2g normal: ;f?3Ey?;f?;f?3Ey?3Ey???qhull internal error (qh_option): option (%d chars) has more than %d chars. May overflow temporary buffer. Option '%s' qh_option: option would overflow qh.qhull_options. Truncated '%s' qhull internal error (qh_checkflags): hiddenflags must start and end with a space: "%s" qhull internal error (qh_checkflags): hiddenflags contains commas, newlines, or tabs: "%s" qhull option error: option %s is not used with this program. It may be used with qhull. qhull internal error (qh_clock): use qh_CLOCKtype 2 in user_r.h qh_freebuffers: freeing up global memory buffers qh_freebuild: free global sets qh_freebuild: free temporary sets (qh_settempfree_all) qh_freebuild: free memory from qh_inithull and qh_buildhull qh_freebuild: delete the previously-seen ridges of f%d qh_freeqhull: free global memory qh_freeqhull: clear qhT except for qh.qhmem and qh.qhstat qhull input error: more than %d characters in command line. qhull option error: transparent Delaunay('Gt') needs 3-d Delaunay('d') w/o 'GDn' qhull option error: option 'Fp' is only used for halfspace intersection('Hn,n,n'). qhull option error: option 'Ft' is not available for Voronoi vertices ('v') or halfspace intersection ('H') qhull option error: option 'FC' is not available for Voronoi vertices('v') qhull option warning: 'QJ' (joggle) will usually prevent coincident input sites for options 'Fc' and 'FP' qhull option error: Mathematica and Maple output is only available for 2-d and 3-d convex hulls and 2-d Delaunay triangulations qhull option error: Geomview output is only available for 2-d, 3-d and 4-d qhull option error: no output specified for Geomview qhull option error: Geomview output for Voronoi diagrams only for 2-d qhull option warning: coplanars, vertices, and centrums output not available for 4-d output(ignored). Could use 'GDn' instead. qhull output warning: ignoring coplanar points, option 'Qc' was not set for the first run of qhull. qhull option warning: drop dimension 'GD%d' is only available for 3-d/4-d Geomview qhull option warning: no dimension given for Print option 'P%c' at: %s. Ignored qhull option warning: dimension %d for Print option 'P%c' is >= %d. Ignored qhull option warning: value %2.4g for Print option 'P%c' is > +1 or < -1. Ignored qhull option warning: no dimension given for Qhull option 'Q%c' qhull option warning: dimension %d for Qhull option 'Q%c' is >= %d. Ignored qhull option error: see previous warnings, use 'Qw' to override: '%s' (last offset %d) qh_lib_check: Incorrect qhull library called. Caller uses non-reentrant Qhull with a static qhT. Qhull library is reentrant. qh_lib_check: Incorrect qhull library called. Caller uses non-reentrant Qhull with a dynamic qhT via qh_QHpointer. Qhull library is reentrant. qh_lib_check: Expecting qhullLibraryType QHULL_NON_REENTRANT(0), QHULL_QH_POINTER(1), or QHULL_REENTRANT(2). Got %d qh_lib_check: Incorrect qhull library called. Size of qhT for caller is %d, but for qhull library is %d. qh_lib_check: Incorrect qhull library called. Size of vertexT for caller is %d, but for qhull library is %d. qh_lib_check: Incorrect qhull library called. Size of ridgeT for caller is %d, but for qhull library is %d. qh_lib_check: Incorrect qhull library called. Size of facetT for caller is %d, but for qhull library is %d. qh_lib_check: Incorrect qhull library called. Size of setT for caller is %d, but for qhull library is %d. qh_lib_check: Incorrect qhull library called. Size of qhmemT for caller is %d, but for qhull library is %d. qhull internal error (qh_lib_check): Cannot continue due to QH%d. '%s' is not reentrant (e.g., qhull.so) or out-of-date. Exit with %d qhull internal error (qh_initflags): qh.NOerrexit was not cleared before calling qh_initflags(). It should be cleared after setjmp(). Exit qhull. qhull input warning: no maximum cosine angle given for option 'An'. A1.0 is coplanar qhull input warning: no centrum radius given for option 'Cn' qhull option error: expecting a positive number for maximum roundoff 'En'. Got '%s' qhull option warning: no maximum roundoff given for option 'En' qhull option error: expecting 'Hn,n,n,...' for feasible point of halfspace intersection. Got '%s' qhull option warning: missing random perturbation for option 'Rn' qhull option warning: missing visible distance for option 'Vn' qhull option warning: missing coplanar distance for option 'Un' qhull option error: expecting a positive number for outside width 'Wn'. Got '%s' qhull option warning: missing outside width for option 'Wn' qhull option warning: unknown 'F' output option 'F%c', skip to next space qhull option warning: missing dimension for option 'GDn' qhull option warning: can only drop one dimension. Previous 'GD%d' ignored qhull option warning: unknown 'G' geomview option 'G%c', skip to next space qhull option warning: missing facet count for keep area option 'PAn' qhull option warning: missing facet area for option 'PFn' qhull option warning: missing merge count for option 'PMn' qhull option warning: unknown 'P' print option 'P%c', skip to next space qh_initflags: project dimension %d qhull option warning: missing number of test points for option 'QTn' qhull option warning: unknown 'Q' qhull option 'Q1%c', skip to next space qhull option warning: can not follow '1', '2', or '3' with a digit. 'Q%c%c' skipped qhull option warning: good point already defined for option 'QGn'. Ignored qhull option warning: missing good point id for option 'QGn'. Ignored qhull option warning: missing random seed for option 'QRn' qhull option warning: good vertex already defined for option 'QVn'. Ignored qhull option warning: no good point id given for option 'QVn'. Ignored qhull option warning: unknown 'Q' qhull option 'Q%c', skip to next space qhull option warning: output file undefined(stdout). Option 'Tz' ignored. qhull option warning: missing point id for cone for trace option 'TCn' qhull option warning: missing frequency count for trace option 'TFn' qhull option error: cannot open 'TI' file "%s" qhull option warning: qh.fout was not set by caller of qh_initflags. Cannot use option 'TO' to redirect output. Ignoring option 'TO' qhull option error: cannot open file "%s" for writing as option 'TO'. It is already in use or read-only qhull option warning: missing count of added points for trace option 'TAn' qhull option warning: negative point id for trace option 'TPn'. Expecting 'TP-1' for tracing after qh_buildhull and qh_postmerge qhull option warning: missing point id or -1 for trace option 'TPn' qhull option warning: missing merge id for trace option 'TMn' qhull option warning: missing rerun count for trace option 'TRn' qhull option warning: missing furthest point id for trace option 'TVn' qhull option warning: missing max width for trace option 'TWn' qhull option warning: unknown 'T' trace option 'T%c', skip to next space qhull option warning: unknown option '%c'(%x) qhull option warning: missing space after option '%c'(%x), reserved for sub-options, ignoring '%c' options to next space qhull option warning: 'TCn' (stopCone) ignored when used with 'QJn' (joggle) qhull option warning: additional output formats ('Fc',etc.) are not compatible with Geomview ('G'). Use option 'Po' to override qh_initflags: option flags initialized qh_initqhull_globals: for %s | %s qhull input error (qh_initqhull_globals): expecting between 1 and %d points. Got %d %d-d points qhull option warning: 'Q0-no-premerge' ignored due to exact merge ('Qx') or pre-merge ('C-n' or 'A-n') qhull option warning: joggle ('QJ') produces simplicial output (i.e., triangles in 2-D). Unless merging is requested, option 'Qt' has no effect qhull internal error (qh_initqhull_globals): if qh.VORONOI is set, qh.DELAUNAY must be set. Qhull constructs the Delaunay triangulation in order to compute the Voronoi diagram qhull option error: can not use Delaunay('d') or Voronoi('v') with halfspace intersection('H') qhull option error: use upper-Delaunay('Qu') or infinity-point('Qz') with Delaunay('d') or Voronoi('v') qhull option error: can not use infinity-point('Qz') with upper-Delaunay('Qu') qhull option error: can not use merge-pinched-vertices ('Q14') with good-facets-only ('Qg') qh_initqhull_globals: disable qh.MERGEpinched for 2-d. It has no effectqhull option warning: option 'Qbb' (scale-last-coordinate) is normally used with 'd' or 'v' qhull option error: test vertex neighbors('Qv') needs a merge option qhull error: dimension %d must be > 1 qh_initqhull_globals: initialize globals. input_dim %d, numpoints %d, malloc? %d, projected %d to hull_dim %d qh_initqhull_globals: trace last of TR%d runs at level %d qhull configuration error (qh_RANDOMmax in user_r.h): random integer %d > qh_RANDOMmax (%.8g) qhull configuration warning (qh_RANDOMmax in user_r.h): average of 1000 random integers (%.2g) is much different than expected (%.2g). Is qh_RANDOMmax (%.2g) wrong? qhull input error: not enough points(%d) to construct initial simplex (need %d) %s %2.2g, qh_freebuffers: finished qh_initqhull_outputflags: %s PgoodFvoronoiFverticesQcoplanardelaunayincidencemathematicanormalsoffFileAngle-premerge-Angle-postmergeCentrum-premerge-Centrum-postmergeDistance-roundoffHalfspace-aboutHalfspaceRandom-perturbVisibleU-coplanarW-outsideFareaFArea-totalFcoplanarsFCentrumsFd-cdd-inFD-cdd-outFFacets-xridgeFinnerFIDsFmergesFMapleFneighborsFNeighbors-vertexFouterFOptionsFpoint-intersectFPoint-nearestFQhullFsummaryFSizeFtrianglesFVertex-averageFxtremesGall-pointsGcentrumsGintersectionsGinnerGno-planesGouterGpointsGridgesGtransparentGverticesGDrop-dimPdrop-facets-dim-lessPDrop-facets-dim-morePgood-facetsPGood-facet-neighborsPoutput-forcedPprecision-ignorePArea-keepPFacet-area-keepPMerge-keepQallow-shortQbBound-unit-boxQbbound-lastQb-project-dimQbound-dim-lowQBound-dim-highQcoplanar-keepQfurthest-outsideQgood-facets-onlyQinterior-keepQmax-outside-onlyQrandom-outsideQsearch-initial-simplexQTestPointsQupperDelaunayQvertex-neighbors-convexQxact-mergeQz-infinity-pointQ0-no-premergeQ1-angle-mergeQ10-no-narrowQ11-trinormals QtriangulateQ12-allow-wideQ14-merge-pinched-verticesQ15-check-duplicatesQ2-no-merge-independentQ3-no-merge-verticesQ4-avoid-old-into-newQ5-no-check-outerQ6-no-concave-mergeQ7-no-breadth-firstQ8-no-near-insideQ9-pick-furthestQGood-if-dont-see-pointQGood-if-see-pointQRotate-idQRandom-seedQV-good-facets-not-pointQV-good-facets-pointQwarn-allowTannotate-outputTcheck-frequentlyTflushTstatisticsTverifyTz-stdoutTCone-stopTFacet-logTInput-fileTOutput-fileTA-stop-addTrace-pointTrace-mergeTRerunTV-stop-before-pointTV-stop-after-pointTWide-trace_pre-mergeQbbound-last-qj_zero-centrumQ3-no-merge-vertices-dim-highQRotate-randomrun-idjH0HHHHHHHHaHg,HHHHHHHHHHHHHHHPHHHDHHHH<```'``x```P`P`(`````````````g``@``````````````h```Is}S)aMCawM#^(vL'([4l+4b$De~DDDDDDDDDDDDDDDDDDDDDDDDDDDDTD*DDDDDDDD[D4D D9 cccqhull_r 8.0.2 (2020.2.r 2020/08/31)2020.2.r 2020/08/31433AYAA%d %d %d- f%d - flags: top bottom simplicial tricoplanar upperDelaunay visible newfacet notG seen seen2 isarea coplanarhorizon mergehorizon cycledone keepcentrum dupridge mergeridge1 mergeridge2 newmerge flipped notfurthest degenerate - area: %2.2g - replacement: f%d - was horizon to f%d - merges: %dmax - merges: %d - normal: %8.4g - offset: %10.7g - center: - maxoutside: %10.7g p%d: - outside set: Furthest - coplanar set: - vertices: - neighboring facets: p%d(v%d) MERGEridge DUPLICATEridge f%d%d %d %d )); VECT 1 2 1 2 1 # f%d %8.4g %8.4g %8.4g 1.0 { OFF %d 1 1 # f%d 0 %8.4g %8.4g %8.4g %8.4g 1.0 } [%16.8f, %16.8f, %16.8f]}]{%16.8f, %16.8f, %16.8f}, [Polygon[{ MERGEridge DUPLICATEridge NULLfacet %s | %s begin %d %d real %d %d - r%d nonconvex mergevertex mergevertex2 simplicialtop simplicialbot vertices: - ridges (tentative ids): - ridges: - all ridges: NULLvertex - p%d(v%d): %5.2g delridge neighbors: 1 %d 0 # infinity not used %d %d %d 1 # %d f%d # p%d(v%d) VECT 1 %d 1 %d 1 OFF 3 1 1 # intersect f%d f%d %8.4g %8.4g %8.4g %8.4g # p%d(coplanar facets) projected p%d OFF 3 1 1 # f%d # r%d between f%d f%d 3 0 1 2 %8.4g %8.4g %8.4g # ridge between f%d f%d VECT 1 2 1 2 1 # p%d VECT 1 1 1 1 1 %8.4g %8.4g %8.4g 1 no normal for facet f%d %d %d %d %6.16g %8.4g %8.4g %8.4g 0 1 }}} Vertices and facets: LIST # %s | %s 4VECT %d %d 1 # 1 point per line 1 # 1 color for all 0 1 1 1 # color of points 4OFF %d %d 1 %s | %s begin %d %d real PLOT(CURVES( PLOT3D(POLYGONS( { %d %d %d %d 0 2 %6.16g %6.16g beginBEGINENDThe halfspace was on line %d ./rbox D4 - shares same visible/horizon as f%d - owner of normal & centrum is facet f%d - outside set(furthest p%d): - outside set: %d points. - furthest distance= %2.2g - coplanar set(furthest p%d): - coplanar set: %d points. furthest distance= %2.2g qhull error: filename is more than %d characters, %s qhull internal error (qh_detvnorm): too few points(%d) to compute separating plane qh_detvnorm: Voronoi vertex or midpointqh_detvnorm: points %d %d midpoint dist %2.2g qh_detvnorm: points %d %d angle %2.2g nearzero %d qh_detvnorm: points %d %d Voronoi vertex %d dist %2.2g qhull internal error (qh_detvridge3): neighbors of vertex p%d are not connected at facet %d qh_eachvoronoi: Voronoi ridge of %d vertices between sites %d and %d qh_markkeep: only keep %d largest and/or %d most merged facets and/or min area %.2g qh_markvoronoi: isLower %d numcenters %d qh_order_vertexneighbors: order facet neighbors of v%d by 2-d (orientation), 3-d (adjacency), or n-d (f.visitid,id) qhull internal error (qh_order_vertexneighbors): call qh_vertexneighbors before calling qh_order_vertexneighbors qhull internal error (qh_order_vertexneighbors): no neighbor of v%d for f%d 3 %d %d %d %8.4g %8.4g %8.4g 1 # f%d f%d 3 %d %d %d %8.4g %8.4g %8.4g 1 #r%d f%d f%d qhull warning: no facets printed qhull internal error (qh_printend): number of ridges %d != number printed %d and at end %d qhull internal error (qh_printextremes_2d): loop in facet list. facet %d nextfacet %d %8.4g %8.4g %8.4g %8.4g %8.4g %8.4g [[%16.8f, %16.8f], [%16.8f, %16.8f]] Line[{{%16.8f, %16.8f}, {%16.8f, %16.8f}}] between f%d and f%d - horizon ridge to visible facet qhull internal error (qh_printvdiagram): unknown print format %d. {appearance {+edge -face} OFF %d %d 1 # Voronoi centers and cells # p%d is coplanar or isolated 3 0 1 2 %8.4g %8.4g %8.4g 1.0 OFF 3 1 1 # ridge between f%d f%d qhull input error (qh_printafacet): option 'Fp' needs qh->feasible_point {appearance {-edge -normal normscale 0} { INST geom {define vsphere OFF 18 32 48 0 0 1 1 0 0 0 1 0 -1 0 0 0 -1 0 0 0 -1 0.707107 0 0.707107 0 -0.707107 0.707107 0.707107 -0.707107 0 -0.707107 0 0.707107 -0.707107 -0.707107 0 0 0.707107 0.707107 -0.707107 0.707107 0 0.707107 0.707107 0 0.707107 0 -0.707107 0 0.707107 -0.707107 -0.707107 0 -0.707107 0 -0.707107 -0.707107 3 0 6 11 3 0 7 6 3 0 9 7 3 0 11 9 3 1 6 8 3 1 8 14 3 1 13 6 3 1 14 13 3 2 11 13 3 2 12 11 3 2 13 15 3 2 15 12 3 3 9 12 3 3 10 9 3 3 12 16 3 3 16 10 3 4 7 10 3 4 8 7 3 4 10 17 3 4 17 8 3 5 14 17 3 5 15 14 3 5 16 15 3 5 17 16 3 6 13 11 3 7 8 6 3 9 10 7 3 11 12 9 3 14 8 17 3 15 13 14 3 16 12 15 3 17 10 16 } transforms { TLIST %8.4g 0 0 0 # v%d 0 %8.4g 0 0 0 0 %8.4g 0 {appearance {-normal -edge normscale 0} {INST geom { define centrum CQUAD # f%d -0.3 -0.3 0.0001 0 0 1 1 0.3 -0.3 0.0001 0 0 1 1 0.3 0.3 0.0001 0 0 1 1 -0.3 0.3 0.0001 0 0 1 1 } transform { {INST geom { : centrum } transform { # f%d qhull warning: output for ridges and intersections not implemented in 2-d qhull warning: output for outer/inner planes and centrums not implemented in 4-d qhull warning: output for vertices not implemented in 4-d qhull warning: 'Gnh' generates no output in 4-d {appearance {linewidth 3} LIST # %s | %s {appearance {+edge -evert linewidth 2} LIST # %s | %s qhull warning: input sites of Delaunay regions (option 'i'). Use option 'p' or 'o' for Voronoi centers. Disable warning with option 'Pp' qhull warning: output is the Delaunay triangulation qhull internal error (qh_printbegin): can not use this format for dimension %d qhull warning: CDD format is not available for centrums, halfspace intersections, and OFF file format. Options selected for Qhull %s: %s 10 %d %d %d %d %d %d %d %d %d %d 2 size in bytes: merge %d ridge %d vertex %d facet %d normal %d ridge vertices %d facet vertices or neighbors %d qhull internal error (qh_produce_output2): temporary sets not empty(%d) qhull internal error (qh_produce_output): temporary sets not empty(%d) qhull input error: feasible point(dim 1 coords) is only valid for halfspace intersection qhull input warning: feasible point(dim 1 coords) overrides 'Hn,n,n' feasible point for halfspace intersection qhull error: insufficient memory for feasible point qhull input error: coordinates for feasible point do not finish out the line: %s qhull input error: only %d coordinates. Could not read %d-d feasible point. qhull input error: halfspace intersection needs a feasible point. Either prepend the input with 1 point or use 'Hn,n,n'. See manual. qhull input warning: more coordinates for 'H%s' than dimension %d qhull input error: short input file. Did not find dimension and number of points qhull input error: dimension %d (first or smaller number) should be at least 2 qhull input error: expecting between 1 and %d points. Got %d %d-d points qhull option error (qh_readpoints): can not use Delaunay('d') or Voronoi('v') with halfspace intersection('H') qhull input error: dimension %d (first number, includes offset) should be at least 3 for halfspaces qhull input error: dimension %d of feasible point is not one less than dimension %d for halfspaces qhull error: insufficient memory to read %d points qhull input warning: the input appears to be in cdd format. If so, use 'Fd' qhull input error: for cdd format, point at line %d does not start with '1' The input appears to be in cdd format. If so, you should use option 'Fd' qhull input error: line %d contained more than %d characters qhull warning: instead of %d points in %d-d, input contains %d points and %d extra coordinates. qhull error: instead of %d points in %d-d, input contains %d points and %d extra coordinates. Line %d is the first comment. Line %d is the first point. Line %d is the first short line. Line %d is the first long line. Continuing with %d points. Override with option 'Qa' (allow-short) This is the qhull test case. If any errors or core dumps occur, recompile qhull with 'make new'. If errors still occur, there is an incompatibility. You should try a different compiler. You can also change the choices in user_r.h. If you discover the source of the problem, please send mail to qhull_bug@qhull.org. Type 'qhull' for a short list of options. qh_readpoints: read in %d %d-dimensional points qhull input error: missing "begin" for cdd-formated input qhull input error: missing quote after filename -- %s qhull input error: filename expected, none found. >>L>>L>L>|>>>>>>>>> 8Ǎ`@pp hIDtD$dTdd44$Mb`?{Gz?????qh_joggle_restart: qhull restart because of %s At %02d:%02d:%02d & %2.5g CPU secs, qhull has created %d facets and merged %d. The current hull contains %d facets and %d vertices. Last point was p%d qh_buildtracing: start trace T%d for point TP%d above facet f%d At %02d:%02d:%02d & %2.5g CPU secs, qhull has created %d facets and merged %d. The current hull contains %d facets and %d vertices. There are %d outside points. Next is point p%d(v%d), %2.2g above f%d. qh_addpoint: add p%d(v%d) %2.2g above f%d to hull of %d facets, %d merges, %d outside at %4.4g CPU secs. Previous p%d(v%d) delta %4.4g CPU, %d facets, %d merges, %d hyperplanes, %d distplanes, %d retries qhull internal error: qh_checklists failed on reset of qh.visit_id %u qhull internal error: qh_checklists failed on reset of qh.vertex_visit %u qh_findhorizon: find horizon for point p%d facet f%d qhull internal error (qh_findhorizon): does not work for tricoplanar facets. Use option 'Q11' qhull internal error (qh_findhorizon): visible facet f%d does not have neighbors qh_findhorizon: point p%d is coplanar to horizon f%d, dist=%2.7g < qh->MINvisible(%2.7g) qhull topology error (qh_findhorizon): empty horizon for p%d. It was above all facets. qh_findhorizon: %d horizon facets(good %d), %d visible(good %d), %d coplanar qhull internal error (qh_nextfurthest): null facet or infinite loop detected for qh.facet_next f%d facet_tail f%d qhull internal error (qh_nextfurthest): num_outside %d is too low by at least %d, or a random real %g >= 1.0 qhull internal error (qh_partitionpoint): cannot partition p%d of f%d into visible facet f%d nearly incident point (narrow hull)qh_partitionpoint: point p%d is outside facet f%d newfacet? %d, newoutside? %d (or narrowhull) qh_partitionpoint: point p%d is coplanar to facet f%d (dropped) qh_partitionpoint: point p%d is inside all facets, closest to f%d dist %2.2g qh_partitionall: partition all points into outside sets qh_partitioncoplanar: partition coplanar point p%d starting with f%d dist? %2.2g, allnew? %d, gh.repart_facetid f%d qh_partitioncoplanar: point p%d is more than near-inside facet f%d dist %2.2g allnew? %d qh_partitioncoplanar: point p%d is inside facet f%d dist %2.2g allnew? %d qhull internal error (qh_partitioncoplanar): cannot partition coplanar p%d of f%d into visible facet f%d qh_partitioncoplanar: repartition coplanar point p%d from f%d as an outside point above corner facet f%d dist %2.2g with angle %2.2g Qhull internal error (qh_partitioncoplanar): infinite loop due to recursive call to qh_partitionpoint. Repartition point p%d from f%d as a outside point dist %2.2g nearest vertices %2.2g Qhull topology error (qh_partitioncoplanar): can not repartition coplanar point p%d from f%d as outside point above f%d. It previously failed to form a cone of facets, dist %2.2g, nearest vertices %2.2g Qhull precision warning: repartition coplanar point p%d from f%d as an outside point above twisted facet f%d dist %2.2g nearest vertices %2.2g Qhull precision warning: repartition coplanar point p%d from f%d as an outside point above hidden facet f%d dist %2.2g nearest vertices %2.2g qh_partitioncoplanar: == p%d from f%d increases qh.max_outside to %2.2g of f%d last p%d qh_partitioncoplanar: point p%d is coplanar with facet f%d (or inside) dist %2.2g qh_buildcone: created %d newfacets for p%d(v%d) new facet balance %2.2g qh_partitionvisible: partition outside and coplanar points of visible and merged facets f%d into new facets f%d qhull topology error (qh_partitionvisible): all new facets deleted as degenerate facets. Can not continue. qh_partitionvisible: partition %d deleted vertices as coplanar? %d points into new facets f%d qhull internal error (qh_partitionvisible): all new facets deleted or none defined. Can not partition deleted v%d. qh_partitionvisible: partitioned %d points from outsidesets, %d points from coplanarsets, and %d deleted vertices qhull internal error (qh_addpoint): NULL facet. Need to call qh_findbestfacet first qhull internal error (qh_addpoint): infinite loop (%d retries) of merging pinched vertices due to dupridge for point p%d, facet f%d, and %d vertices qh_addpoint: added p%d to convex hull with point balance %2.2g qh_buildhull: start build hull qhull internal error (qh_buildhull): visible or new facet f%d in facet list qhull internal error (qh_buildhull): new vertex f%d in vertex list qh_buildhull: stop point or cone P%d in initial hull qh_buildhull: stop after adding %d vertices qhull internal error (qh_buildhull): %d outside points were never processed. qh_buildhull: completed the hull construction qhull input error: %d attempts to construct a convex hull with joggled input. Increase joggle above 'QJ%2.2g' or modify qh_JOGGLE... parameters in user_r.h qh_qhull: all facets are clearly convex and no coplanar points. Post-merging and check of maxout not needed. qh_qhull: finished qh_buildhull and qh_postmerge, start tracing (TP-1) Testing all coplanar points. qhull internal error (qh_qhull): temporary sets not empty(%d) at end of Qhull qhull internal error: qh_checklists failed at qh_printsummary Early exit due to 'TAn', 'TVn', 'TCn', 'TRn', or precision error with 'QJn'. Furthest-site Voronoi vertices by the convex hull of %d points in %d-d: Voronoi diagram by the convex hull of %d points in %d-d: Number of Voronoi regions%s: %d Total number of deleted points due to merging: %d Number of nearly incident points: %d Total number of nearly incident points: %d Number of%s Voronoi vertices: %d Number of%s non-simplicial Voronoi vertices: %d Furthest-site Delaunay triangulation by the convex hull of %d points in %d-d: Delaunay triangulation by the convex hull of %d points in %d-d: Number of input sites%s: %d Number of%s Delaunay regions: %d Number of%s non-simplicial Delaunay regions: %d Halfspace intersection by the convex hull of %d points in %d-d: Number of non-redundant halfspaces: %d Number of %s halfspaces: %d Number of intersection points: %d Number of 'good' intersection points: %d Number of%s non-simplicial intersection points: %d Convex hull of %d points in %d-d: Number of 'good' facets: %d Number of%s non-simplicial facets: %d Number of triangulated facets: %d Number of points processed: %d Number of hyperplanes created: %d Number of facets in hull: %d Number of distance tests for qhull: %d Number of distance tests for merging: %d Number of distance tests for checking: %d Number of merged facets: %d Number of merged pinched vertices: %d CPU seconds to compute hull (after input): %2.4g Percentage of runs with precision errors: %4.1f After %d retries, input joggled by: %2.2g Maximum distance of point above facet: %2.2g Maximum distance of vertex below facet: %2.2gERRONEOUScoplanar horizonempty horizonnearly incident point_runFirst post-mergeFor post-mergingFor testing vertex neighborsQhull: algorithm completed and at-infinity 'good'similar and redundantsimilarcoplanar and interiorApproximateTotal Number of halfspaces: %d Number of vertices: %d Number of %s points: %d Number of facets: %d Statistics for: %s | %s QR%d Input joggled by: %2.2g %s facet area: %2.8g %s volume: %2.8g (%.1fx) .AA0C>@@?qhull error (qh_memalloc): negative request size (%d). Did int overflow due to high-D? qh_mem %p n %8d alloc quick: %d bytes (tot %d cnt %d) qhull error (qh_memalloc): insufficient memory to allocate short memory buffer (%d bytes) qhull internal error (qh_memalloc): short totbuffer %d != totshort+totfree... %d qh_mem %p n %8d alloc short: %d bytes (tot %d cnt %d) qhull internal error (qh_memalloc): qhmem has not been initialized. qhull error (qh_memalloc): insufficient memory to allocate %d bytes qh_mem %p n %8d alloc long: %d bytes (tot %d cnt %d) qhull internal error (qh_memcheck): qh is 0. It does not point to a qhT qhull internal error (qh_memcheck): either qh->qhmem is overwritten or qh->qhmem is not initialized. Call qh_meminit or qh_new_qhull before calling qh_mem routines. ferr 0x%x, IsTracing %d, ALIGNmask 0x%x qh_memcheck: check size of freelists on qh->qhmem qh_memcheck: A segmentation fault indicates an overwrite of qh->qhmem qhull internal error (qh_memcheck): totfree %d not equal to freelist total %d qh_memcheck: total size of freelists totfree is the same as qh->qhmem.totfree qh_mem %p n %8d free short: %d bytes (tot %d cnt %d) qh_mem %p n %8d free long: %d bytes (tot %d cnt %d) qhull error (qh_meminit): insufficient memory qh_meminitbuffers: memory initialized with alignment %d qhull error (qh_memsetup): largest mem size %d is >= buffer size %d or initial buffer size %d qhull error (qh_memsetup): insufficient memory qhull internal error (qh_memsize): qh_memsize called after qh_memsetup qh_memsize: quick memory of %d bytes qhull warning (qh_memsize): free list table has room for only %d sizes memory statistics: %7d quick allocations %7d short allocations %7d long allocations %7d short frees %7d long frees %7d bytes of short memory in use %7d bytes of short memory in freelists %7d bytes of dropped short memory %7d bytes of unused short memory (estimated) %7d bytes of long memory allocated (max, except for input) %7d bytes of long memory in use (in %d pieces) %7d bytes of short memory buffers (minus links) %7d bytes per short memory buffer (initially %d bytes) %7d calls to qh_setlarger %7.2g average copy size freelists(bytes->count): %d->%dmakeridges: appended r%d to ridges for f%d. Next is ridges for neighbor f%d qh_remove_extravertices: test non-simplicial f%d for extra vertices qh_remove_extravertices: v%d deleted because it's lost all ridges qh_remove_extravertices: v%d removed from f%d because it's lost all ridges qh_remove_mergetype: remove merge f%d f%d v%d v%d r%d r%d dist %2.2g type %dqh_appendmergeset: f%d is already redundant (%d) or f%d is already redundant (%d). Ignore merge f%d and f%d type %d qh_appendmergeset: f%d is already degenerate. Ignore merge f%d type %d (MRGdegen) qhull internal error (qh_appendmergeset): expecting temp set defined for qh.facet_mergeset (0x%x) and qh.degen_mergeset (0x%x). Got NULL qhull internal error (qh_appendmergeset): except for MRGdupridge, cannot merge a non-flipped facet f%d into flipped f%d, mergetype %d, dist %4.4g qh_appendmergeset: dupridge will merge a non-flipped facet f%d into flipped f%d, dist %4.4g qhull internal error (qh_appendmergeset): facet f%d or f%d is already a mirrored facet (i.e., 'redundant') qhull internal error (qh_appendmergeset): mirrored facets f%d and f%d do not have the same vertices qh_appendmergeset: append merge f%d and f%d type %d (%s) to qh.degen_mergeset (size %d) qh_appendmergeset: append merge f%d and f%d type %d (%s) dist %2.2g angle %4.4g to qh.facet_mergeset (size %d) qhull internal error (qh_appendvertexmerge): expecting temp set defined for qh.vertex_mergeset (0x%x). Got NULL qhull internal error (qh_appendvertexmerge): expecting two distinct ridges for MRGvertices. Got r%d r%d qh_appendvertexmerge: append merge v%d into v%d r%d r%d dist %2.2g type %d (%s) qh_basevertices: found %d vertices qh_check_dupridge: dupridge between f%d and f%d (vertex dist %2.2g), dist %2.2g, reverse dist %2.2g, ratio %2.2g while processing p%d qhull topology error (qh_check_dupridge): wide merge (%.1fx wider) due to dupridge between f%d and f%d (vertex dist %2.2g), merge dist %2.2g, while processing p%d - Allow error with option 'Q12' - Experimental option merge-pinched-vertices ('Q14') may avoid this error. It merges nearly adjacent vertices. - A bounding box for the input sites may alleviate this error. qhull internal error (qh_checkconnect): f%d is not attached to the new facets qhull internal error (qh_checkdelfacet): cannot delete f%d. It is referenced by merge f%d f%d mergetype %d qhull internal error (qh_checkdelridge): expecting empty qh.vertex_mergeset in order to avoid calling qh_delridge_merge. Got %d merges qhull internal error (qh_checkdelridge): unexpected 'nonconvex' flag for ridge r%d in newfacet f%d. Otherwise need to call qh_delridge_merge qhull internal error (qh_checkdelridge): unexpected 'nonconvex' flag for ridge r%d in visible facet f%d. Otherwise need to call qh_delridge_merge not concave, flipped, or dupridgeqh_checkzero: skip convexity check until first pre-merge qh_checkzero: testall %d, facets are %s qh_checkzero: qh_premerge is needed. New facet f%d or its horizon f%d is non-simplicial, flipped, dupridge, or mergehorizon qh_checkzero: facet f%d and f%d are not clearly convex. v%d dist %.2g qh_checkzero: facet f%d and horizon f%d are not clearly convex. v%d dist %.2g qh_copynonconvex: moved nonconvex flag from r%d to r%d between f%d and f%d qh_degen_redundant_facet: test facet f%d for degen/redundant qh_degen_redundant_facet: f%d is flipped, will merge later qhull internal error (qh_degen_redundant_facet): facet f%d has deleted neighbor f%d (qh.visible_list) qh_degen_redundant_facet: f%d is contained in f%d. merge qh_degen_redundant_facet: f%d is degenerate. qh_delridge_merge: delete ridge r%d between f%d and f%d qh_delridge_merge: drop merge of v%d into v%d (dist %2.2g r%d r%d) due to deleted, duplicated ridge r%d qh_drop_mergevertex: unset mergevertex for r%d and r%d due to dropped vertex merge v%d to v%d. Sets mergevertex2 qh_findbest_ridgevertex: best pinched p%d(v%d) and vertex p%d(v%d) are closest (%2.2g) for duplicated ridge r%d (same vertices) between f%d and f%d qhull internal error: cannot call qh_findbestneighor for f%d while qh.CENTERtype is qh_ASvoronoi qhull internal error (qh_findbestneighbor): no neighbors for f%d qh_findbestneighbor: f%d is best neighbor for f%d testcentrum? %d nonconvex? %d dist %2.2g min %2.2g max %2.2g qhull internal error (qh_freemergesets): expecting mergesets. Got a NULL mergeset, qh.facet_mergeset (0x%x), qh.degen_mergeset (0x%x), qh.vertex_mergeset (0x%x) qhull internal error (qh_freemergesets): expecting empty mergesets. Got qh.facet_mergeset (%d merges), qh.degen_mergeset (%d merges), qh.vertex_mergeset (%d merges) qhull internal error (qh_initmergesets): expecting NULL mergesets. Got qh.facet_mergeset (0x%x), qh.degen_mergeset (0x%x), qh.vertex_mergeset (0x%x) qh_makeridges: make ridges for f%d qh_mark_dupridges: identify dupridges in facetlist f%d, allmerges? %d qh_mark_dupridges): dupridge due to duplicate vertices for subridges f%d and f%d qh_mark_dupridges: found %d duplicated ridges (MRGdupridge) for qh_getpinchedmerges qh_mark_dupridges: found %d duplicated ridges (MRGdupridge) for qh_premerge. Prepare facets for merging qh_mark_dupridges: restore missing neighbors and ridges due to qh_MERGEridge qhull topological error (qh_mark_dupridges): multiple dupridges for f%d and f%d, including reverse qh_maybe_duplicateridge: will merge v%d into v%d (dist %2.2g) due to duplicate ridges r%d/r%d with the same vertices. mergevertex set qh_maybe_duplicateridges: will merge v%d into v%d (dist %2.2g) due to opposite oriented ridges r%d/r%d for f%d and f%d qh_maybe_duplicateridges: will merge v%d into v%d (dist %2.2g) due to duplicate ridges with the same vertices r%d/r%d in merged facet f%d qh_maydropneighbor: test f%d for no ridges to a neighbor qhull internal error (qh_maydropneighbor): not valid for simplicial f%d while adding furthest p%d qhull internal error (qh_maydropneighbor): facet f%d has deleted neighbor f%d (qh.visible_list) qh_maydropneighbor: facets f%d and f%d are no longer neighbors while adding furthest p%d qhull internal error (qh_maydropneighbor): not valid for simplicial neighbor f%d of f%d while adding furthest p%d qh_maydropneighbors: f%d is degenerate. qh_mergecycle_facets: make newfacet new and samecycle deleted qh_willdelete: move f%d to visible list, set its replacement as f%d, and clear f.neighbors and f.ridges qhull internal error (qh_willdelete): expecting qh.visible_list at before qh.newfacet_list f%d. Got NULL qh_mergecycle_facets: merged facets from cycle f%d into f%d qh_mergecycle_neighbors: delete shared neighbors from newfacet qh_mergecycle_neighbors: update neighbors qh_mergecycle_neighbors: deleted %d neighbors and added %d qh_mergecycle_ridges: delete shared ridges from newfacet qh_mergecycle_ridges: add ridges to newfacet qhull internal error (qh_mergecycle_ridges): bad ridge r%d qh_mergecycle_ridges: found %d old ridges and %d new ones qh_mergecycle_vneighbors: update vertex neighbors for newfacet qh_mergecycle_vneighbors: deleted v%d when merging cycle f%d into f%d qh_mergecycle_vneighbors: merged vertices from cycle f%d into f%d qh_mergefacet2d: merged v%d and neighbor f%d of f%d into f%d qh_mergeneighbors: merge neighbors of f%d and f%d qh_mergeridges: merge ridges of f%d into f%d qh_mergesimplex: merge apex v%d of f%d into facet f%d qh_mergesimplex: merge opposite v%d of f%d into facet f%d qh_mergesimplex: update vertex neighbors of f%d qh_mergevertex_del: deleted v%d when merging f%d into f%d qh_mergesimplex: merge ridges and neighbors of f%d into f%d qhull topology error (qh_mergesimplex): f%d is a dupridge of f%d, cannot merge f%d into f%d qh_mergesimplex: move r%d with f%d to f%d, new neighbor? %d, maybe horizon? %d qh_mergesimplex: merged simplex f%d v%d into facet f%d qh_mergevertex_neighbors: merge vertex neighborset for f%d into f%d qh_mergevertex_neighbors: of f%d into f%d at furthest p%d f0= %p qhull internal error (qh_mergevertices): facets did not share a ridge qh_neighbor_intersections: %d vertices in neighbor intersection of v%d qh_neighbor_vertices_facet: found %d vertex neighbors for v%d in f%d (simplicial? %d) qh_neighbor_vertices: %d non-subridge, vertex neighbors for v%d qhull internal error (qh_findbest_pinchedvertex): expecting merge of adjacent, simplicial new facets. f%d or f%d is not simplicial qhull internal error (qh_findbest_pinchedvertex): expecting subridge of qh.hull_dim-2 vertices for the intersection of new facets f%d and f%d minus their apex. Got %d vertices qhull internal error (qh_findbest_pinchedvertex): did not find best vertex for subridge of dupridge between f%d and f%d, while processing p%d qh_findbest_pinchedvertex: best pinched p%d(v%d) and vertex p%d(v%d) are closest (%2.2g) for duplicate subridge between f%d and f%d qh_getpinchedmerges: try to merge pinched vertices for dupridges in new facets with apex p%d(v%d) max dupdist %2.2g qhull internal error (qh_getpinchedmerges): expecting MRGdupridge from qh_mark_dupridges. Got merge f%d f%d type %d qh_getpinchedmerges: dupridge (MRGdupridge) of coplanar horizon would produce a wide merge (%.0fx) due to pinched vertices v%d and v%d (dist %2.2g) for f%d and f%d. qh_mergecycle_all will merge one or both facets qhull precision warning (qh_getpinchedmerges): pinched vertices v%d and v%d (dist %2.2g, %.0fx) would produce a wide merge for f%d and f%d. Will merge dupridge instead qh_getpinchedmerges: will make the apex a coplanar point. apex p%d(v%d) is the nearest vertex to v%d on dupridge. Dist %2.2g qh_getpinchedmerges: will merge new facets to resolve dupridge between f%d and f%d with pinched v%d and v%d qh_getpinchedmerges: will merge pinched v%d into v%d to resolve dupridge between f%d and f%d qhull internal error (qh_next_vertexmerge): expecting two vertices for vertex merge. Got v%d v%d and optional f%d qh_next_vertexmerge: drop merge of v%d (del? %d) into v%d (del? %d) due to deleted vertex of r%d and r%d qhull topology error (qh_next_vertexmerge): no nearly adjacent vertices to resolve opposite oriented ridges r%d and r%d in f%d and f%d. Nearest v%d and v%d dist %2.2g (%.1fx) qhull topology error (qh_next_vertexmerge): no nearly adjacent vertices to resolve duplicate ridges r%d and r%d. Nearest v%d and v%d dist %2.2g (%.1fx) qhull topology error (qh_next_vertexmerge): no nearly adjacent vertices to resolve dupridge. Nearest v%d and v%d dist %2.2g (%.1fx) qhull internal error (qh_opposite_horizonfacet): expecting merge of simplicial facets, at least one of which is mergehorizon. Either simplicial or mergehorizon is wrong qhull internal error (qh_opposite_horizonfacet): merge facet f%d not connected to mergehorizon f%d qhull internal error (qh_renameridgevertex): oldvertex v%d not found in r%d. Cannot rename to v%d qh_renameridgevertex: ridge r%d deleted. It contained both v%d and v%d qh_renameridgevertex: swapped the top and bottom of ridge r%d qh_test_centrum_merge: concave f%d to coplanar f%d, dist %4.4g and reverse dist %4.4g, angle %4.4g during p%d qh_test_centrum_merge: concave f%d to f%d, dist %4.4g and reverse dist %4.4g, angle %4.4g during p%d qh_test_centrum_merge: coplanar f%d to f%d dist %4.4g, reverse dist %4.4g angle %4.4g qh_test_degen_neighbors: test for degenerate neighbors of f%d qhull internal error (qh_test_degen_neighbors): facet f%d has deleted neighbor f%d (qh.visible_list) qh_test_degen_neighbors: f%d is degenerate with %d neighbors. Neighbor of f%d. qh_test_nonsimplicial_merge: concave centrum for f%d or f%d, dist %4.4g and reverse dist %4.4g, angle %4.4g during p%d qh_test_nonsimplicial_merge: twisted concave f%d v%d to f%d v%d, dist %4.4g and reverse dist %4.4g, angle %4.4g during p%d qh_test_nonsimplicial_merge: concave coplanar f%d v%d to f%d v%d, dist %4.4g and reverse dist %4.4g, angle %4.4g during p%d qh_test_nonsimplicial_merge: concave f%d v%d to f%d v%d, dist %4.4g and reverse dist %4.4g, angle %4.4g during p%d qh_test_nonsimplicial_merge: coplanar f%d v%d to f%d v%d, dist %4.4g and reverse dist %4.4g, angle %4.4g during p%d qh_test_appendmerge: coplanar angle %4.4g between f%d and f%d qh_getmergeset: %d merges found qh_getmergeset_initial: %d merges found qh_test_redundant_neighbors: test neighbors of f%d vertex_visit %d qh_test_redundant_neighbors: f%d is degenerate with %d neighbors. qhull internal error (qh_test_redundant_neighbors): facet f%d has deleted neighbor f%d (qh.visible_list) qh_test_redundant_neighbors: f%d is contained in f%d. merge qh_renamevertex: rename v%d to v%d in %d ridges with old f%d and neighbor f%d qh_renamevertex: renaming v%d to v%d in several facets for qh_redundant_vertex or MRGsubridge qh_renamevertex: ignore duplicate check for r%d. top f%d (size %d) will be degenerate after rename v%d to v%d qh_renamevertex: ignore duplicate check for r%d. bottom f%d (size %d) will be degenerate after rename v%d to v%d qh_renamevertex: rename vertices in non-simplicial neighbor f%d of v%d qh_renamevertex: renaming v%d to v%d in oldfacet f%d for qh_rename_sharedvertex qh_renamevertex: renaming pinched v%d to v%d between f%d and f%d qh_test_vneighbors: testing vertex neighbors for convexity qh_test_vneighbors: found %d non-convex, vertex neighbors qh_tracemerge: trace facet and vertex after merge of f%d into f%d type %d (%s), furthest p%d qh_tracemerge: trace vertex deleted at furthest p%d At %d:%d:%d & %2.5g CPU secs, qhull has merged %d facets with max_outside %2.2g, min_vertex %2.2g. The hull contains %d facets and %d vertices. qh_mergecycle: merge #%d for facets from cycle f%d into coplanar horizon f%d qh_mergecycle: ========= trace merge %d of samecycle %d into trace f%d, furthest is p%d qhull internal error (qh_mergecycle): does not work for tricoplanar facets. Use option 'Q11' qh_mergecycle: end of trace facet qh_vertexridges: found %d ridges for v%d qh_find_newvertex: find new vertex for v%d from qh_find_newvertex: vertices not in ridges for v%d qh_find_newvertex: found v%d for old v%d from %d vertices and %d ridges. qh_find_newvertex: no vertex for renaming v%d (all duplicated ridges) during p%d qh_redundant_vertex: check if v%d from a deleted ridge can be renamed qh_rename_adjacentvertex: merge #%d rename v%d (%d neighbors) to v%d (%d neighbors) dist %2.2g qh_rename_adjacentvertex: ignore rename. Either v%d (%d) or v%d (%d) is deleted qhull internal error (qh_rename_adjacentvertex): expecting neighbor facets for v%d and v%d. Got %d and %d neighbors resp. qh_rename_adjacentvertex: simplicial f%d contains old v%d and new v%d. Will be marked degenerate by qh_renamevertex qh_rename_adjacentvertex: partition old p%d(v%d) as a coplanar point for furthest f%d dist %2.2g. Maybe repartition later (QH0031) qhull internal error (qh_rename_sharedvertex): v%d's neighbors not in f%d qh_rename_sharedvertex: p%d(v%d) is shared by f%d(%d ridges) and f%d qhull internal error (qh_mergefacet): merge f%d into f%d for mergetype %d (%s) does not work for tricoplanar facets. Use option 'Q11' qh_mergefacet: ========= trace wide merge #%d(%2.2g) for f%d into f%d for mergetype %d (%s), last point was p%d qh_mergefacet: ========= trace merge #%d for f%d into f%d for mergetype %d (%s), furthest is p%d qh_mergefacet: #%d merge f%d into f%d for merge for mergetype %d (%s), mindist= %2.2g, maxdist= %2.2g, max_outside %2.2g qhull precision error (qh_mergefacet): wide merge for facet f%d into f%d for mergetype %d (%s). maxdist %2.2g (%.1fx) mindist %2.2g (%.1fx) vertexdist %2.2g Allow with 'Q12' (allow-wide) qhull precision error (qh_mergefacet): wide merge for pinched facet f%d into f%d for mergetype %d (%s). maxdist %2.2g (%.fx) mindist %2.2g (%.1fx) vertexdist %2.2g Allow with 'Q12' (allow-wide) qhull internal error (qh_mergefacet): either f%d and f%d are the same or one is a visible facet, mergetype %d (%s) qhull topology error: Only %d facets remain. The input is too degenerate or the convexity constraints are too strong. Option 'Qx' may avoid this problem. qh_mergefacet: end of wide tracing qh_mergefacet: check f%d and f%d for redundant and degenerate neighbors qhull internal error (qh_merge_nonconvex): expecting mergetype MRGcoplanar..MRGconcavecoplanar. Got merge f%d and f%d type %d qh_merge_nonconvex: merge #%d for f%d and f%d type %d qh_merge_nonconvex: avoid merging old facet f%d dist %2.2g. Use f%d dist %2.2g instead qh_merge_twisted: merge #%d for twisted f%d and f%d qhull precision error (qh_merge_twisted): twisted facet f%d does not contain pinched vertices. Too wide to merge into neighbor. mindist %2.2g maxdist %2.2g vertexdist %2.2g maxpinched %2.2g neighbor f%d mindist %2.2g maxdist %2.2g qhull precision error (qh_merge_twisted): twisted facet f%d with pinched vertices. Could merge vertices, but too wide to merge into neighbor. mindist %2.2g maxdist %2.2g vertexdist %2.2g neighbor f%d mindist %2.2g maxdist %2.2g qh_merge_degenredundant: merge %d degenerate, redundant, and mirror facets qhull internal error (qh_merge_degenredunant): f%d is redundant but visible f%d has no replacement qh_merge_degenredundant: merge redundant f%d into f%d (arg f%d) qh_merge_degenredundant: facet f%d has no neighbors. Deleted qh_merge_degenredundant: deleted v%d because f%d has no neighbors qh_merge_degenredundant: facet f%d has %d neighbors, merge into f%d dist %2.2g qhull internal error (qh_flippedmerges): facet_mergeset (%d merges) not at top of tempstack (%d merges) qh_flippedmerges: merge flipped f%d into f%d dist %2.2g during p%d qh_flippedmerges: merged %d flipped and %d degenredundant facets into a good neighbor qh_forcedmerges: merge dupridges qhull internal error (qh_forcedmerges): qh_settemppop (size %d) is not qh->facet_mergeset (size %d) qhull internal error (qh_forcedmerges): f%d and f%d had a dupridge but as f%d and f%d they are no longer neighbors qh_forcedmerges: dupridge f%d is degenerate with fewer than %d neighbors qh_forcedmerges: merged %d facets, %d flipped facets, and %d degenredundant facets across dupridges qhull internal error (qh_merge_pinchedvertices): qh.visible_list (f%d), newfacet_list (f%d), or newvertex_list (v%d) not empty qh_merge_pinchedvertices: merge one of %d pinched vertices before adding apex p%d. Try to resolve duplicate ridges in newfacets qh_merge_pinchedvertices: merge %d pinched vertices from dupridges in merged facets, apex p%d qh_merge_pinchedvertices: merge degenerate f%d into an adjacent facet qh_merge_pinchedvertices: merge f%d into f%d mergeType %d qh_reducevertices: reduce extra vertices, shared vertices, and redundant vertices qh_reducevertices: renamed %d shared vertices and %d redundant vertices. Degen? %d qh_all_merges: starting to merge %d facet and %d degenerate merges for new facets f%d, othermerge? %d qh_all_merges: drop merge of f%d (del? %d) into f%d (del? %d) mergetype %d, dist %4.4g, angle %4.4g. One or both facets is deleted qh_all_merges: drop merge of f%d (tested? %d) into f%d (tested? %d) mergetype %d, dist %2.2g, angle %4.4g. Merge independent sets of coplanar merges qh_all_merges: merge f%d and f%d type %d dist %2.2g angle %4.4g qhull internal error (qh_all_merges): expecting concave, coplanar, or twisted merge. Got merge f%d f%d v%d mergetype %d qh_all_merges: skip qh_reducevertices due to post-merging, no qh.VERTEXneighbors (%d), or hull_dim %d ==2 or >%d qh_all_merges: merged %d coplanar %d concave %d concavecoplanar %d twisted facets and %d degen or redundant facets. qh_postmerge: postmerge. test vneighbors? %d qh_all_vertexmerges: starting to merge %d vertex merges for apex p%d facet f%d qh_mergecycle_all: merge new facets into coplanar horizon facets. Bulk merge a cycle of facets with the same horizon facet qhull internal error (qh_mergecycle_all): f%d without normal qh_mergecycle_all: merged %d same cycles or facets into coplanar horizons and %d degenredundant facets qh_premerge: premerge centrum %2.2g angle %4.4g for apex p%d newfacet_list f%d clearly convexTRACEqh_getmergeset: started. MERGED same cycle:MERGING CYCLEv%d r%d MERGINGqh_flippedmerges: begin reason %s with 'C%.2g' and 'A%.2g' noneanglecoplanarconcaveconcavecoplanartwistedflipsubridgedegenmirror4@?I@qhull precision error: facet f%d is flipped, distance= %6.12g A flipped facet occurs when its distance to the interior point is greater than or equal to %2.2g, the maximum roundoff error. qh_vertexneighbors: determining neighboring facets for each vertex qhull precision error: point p%d is outside facet f%d, distance= %6.8g maxoutside= %6.8g nearest vertices %2.2g qh_checkconvex: check that facets are not-flipped and for qh.ZEROcentrum that simplicial vertices are below their neighbor (dist<0.0) qh_checkconvex: check that facets are not-flipped and that simplicial vertices are convex by qh.DISTround ('En', 'Rn') qh_checkconvex: check that facets are not-flipped and that their centrums are convex by qh.DISTround ('En', 'Rn') qhull precision error: f%d is flipped (interior point is outside) qhull precision error: initial simplex is not convex, since p%d(v%d) is %6.4g above opposite f%d qhull precision error: initial simplex is not convex, since p%d(v%d) is within roundoff of opposite facet f%d (dist %6.4g) qhull precision error: f%d is concave to f%d, since p%d(v%d) is %6.4g above f%d qhull precision error: f%d is clearly not convex to f%d, since p%d(v%d) is %6.4g above or coplanar with f%d with qh.ZEROcentrum qhull precision error: f%d is coplanar to f%d, since p%d(v%d) is within %6.4g of f%d, during p%d qh_checkconvex: starting with f%d, also check that centrums of non-simplicial ridges are below their neighbors (dist<0.0) qhull warning: recomputing centrums for convexity test. This may lead to false, precision errors. qhull precision error: f%d is concave to f%d. Centrum of f%d is %6.4g above f%d qhull precision error: f%d is coplanar or concave to f%d. Centrum of f%d is %6.4g above f%d qh_checkfacet: check f%d newmerge? %d qhull internal error (qh_checkfacet): unknown facet id f%d >= qh.facet_id (%d) qhull internal error (qh_checkfacet): expecting f%d.visitid <= qh.visit_id (%d). Got visitid %d qhull internal error (qh_checkfacet): facet f%d is on qh.visible_list qhull internal error (qh_checkfacet): redundant facet f%d not on qh.visible_list qhull internal error (qh_checkfacet): degenerate facet f%d is not on qh.visible_list and qh.degen_mergeset is empty qhull internal error (qh_checkfacet): facet f%d does not have a normal qhull internal error (qh_checkfacet): f%d is 'dupridge' but it is not a newfacet on qh.newfacet_list f%d qhull internal error (qh_checkfacet): f%d is 'newmerge' but it is not a newfacet on qh.newfacet_list f%d. Missing call to qh_reducevertices qhull internal error (qh_checkfacet): deleted vertex v%d in f%d qhull internal error (qh_checkfacet): vertices of f%d are not in descending id order at v%d qhull internal error (qh_checkfacet): for simplicial facet f%d, #vertices %d + #neighbors %d != 2*qh->hull_dim qhull internal error (qh_checkfacet): for facet f%d, #vertices %d or #neighbors %d < qh->hull_dim qhull internal error (qh_checkfacet): for facet f%d, #ridges %d < #neighbors %d or(3-d) > #vertices %d or(2-d) not all 2 qhull internal error (qh_checkfacet): facet f%d still has a MERGEridge or DUPLICATEridge neighbor qhull internal error (qh_checkfacet): facet f%d has deleted neighbor f%d (qh.visible_list) qhull internal error (qh_checkfacet): facet f%d has neighbor f%d, but f%d does not have neighbor f%d qhull internal error (qh_checkfacet): facet f%d has a duplicate neighbor f%d qhull internal error (qh_checkfacet): facet f%d has a duplicate ridge r%d qhull internal error (qh_checkfacet): ridge between f%d and f%d has %d vertices qhull internal error (qh_checkfacet): for facet f%d, neighbor f%d of ridge r%d not in facet qhull internal error (qh_checkfacet): ridge r%d is nonconvex (%d), mergevertex (%d) or not tested (%d) for facet f%d, neighbor f%d qhull internal error (qh_checkfacet): facet f%d does not have a ridge for neighbor f%d qhull internal error (qh_checkfacet): vertex v%d in r%d not in f%d intersect f%d qhull topology error (qh_checkfacet): vertex v%d in f%d intersect f%d but not in a ridge. Last point was p%d qh_checkfacet: vertex v%d in f%d intersect f%d but not in a ridge. Repaired by qh_remove_extravertices in qh_reducevertices qhull internal error (qh_checkfacet): facet f%d skip %d and neighbor f%d skip %d do not match qhull internal error (qh_checkfacet): ridges r%d and r%d (f%d) have the same vertices qh_checklists: check qh.%s_list f%d and qh.vertex_list v%d qh_checklists: check %slist f%d and qh.vertex_list v%d qhull internal error (qh_checklists): either qh.facet_tail f%d is NULL, or its id is not 0, or its next is not NULL qhull internal error (qh_checklists): f%d already in facetlist causing an infinite loop ... f%d > f%d ... > f%d > f%d. Truncate facetlist at f%d qhull internal error (qh_checklists): unknown or overwritten facet f%d, either id >= qh.facet_id (%d) or f.visitid %u > qh.visit_id %u. Facetlist terminated at previous facet f%d qhull internal error (qh_checklists): expecting f%d.previous == f%d. Got f%d qhull internal error (qh_checklists): qh.visible_list f%d is after qh.newfacet_list f%d. It should be at, before, or NULL qhull internal error (qh_checklists): qh.facet_next f%d for qh_addpoint is not on qh.facet_list f%d qhull internal error (qh_checklists): qh.newfacet_list f%d is not on qh.facet_list f%d qhull internal error (qh_checklists): qh.visible_list f%d is not on qh.facet_list f%d qhull internal error (qh_checklists): either qh.vertex_tail v%d is NULL, or its id is not 0, or its next is not NULL qhull internal error (qh_checklists): v%d already in vertexlist causing an infinite loop ... v%d > v%d ... > v%d > v%d. Truncate vertexlist at v%d qhull internal error (qh_checklists): unknown or overwritten vertex v%d, either id >= qh.vertex_id (%d) or v.visitid %u > qh.visit_id %u. vertexlist terminated at previous vertex v%d qhull internal error (qh_checklists): expecting v%d.previous == v%d. Got v%d qhull internal error (qh_checklists): new vertex list v%d is not on vertex list qhull internal error (qh_checkvertex): unknown point id %p qhull internal error (qh_checkvertex): unknown vertex id v%d >= qh.vertex_id (%d) qhull internal error (qh_checkvertex): expecting v%d.visitid <= qh.vertex_visit (%d). Got visitid %d qhull internal error (qh_checkvertex): neighbor f%d does not contain v%d qh_clearcenters: switched to center type %d qh_createsimplex: created simplex qhull internal error (qh_delvertex): vertex v%d was deleted but it was not partitioned as a coplanar point qhull internal error (qh_facet3vertex): only %d vertices for simplicial facet f%d qhull internal error (qh_facet3vertex): ridges for facet %d don't match up. got at least %d qh_findfacet_all: p%d, noupper? %d, f%d, dist %2.2g, isoutside %d, totpart %d qh_findbestfacet: f%d dist %2.2g isoutside %d totpart %d qh_findgood: f%d is closest(%2.2g) to thresholds qh_findgood: found %d good facets with %d good horizon and qh.GOODclosest f%d qhull warning: good vertex p%d does not match last good facet f%d. Ignored. qhull warning: point p%d is not a vertex('QV%d'). qhull warning: point p%d is a vertex for every facet('QV-%d'). qh_findgood_all: f%d is closest(%2.2g) to split thresholds qh_findgood_all: undo selection of qh.GOODclosest f%d since it would fail qh_inthresholds in qh_skipfacet qh_findgood_all: %d good facets remain out of %d facets qh_prependfacet: prepend f%d before f%d qh_furthestnext: made f%d next facet(dist %.2g) qh_furthestout: p%d is furthest outside point of f%d qhull internal error (qh_infiniteloop): potential infinite loop detected. If visible, f.replace. If newfacet, f.samecycle qh_matchdupridge: find dupridge matches for f%d skip %d hash %d hashcount %d qh_matchdupridge: duplicate ridge due to duplicate facets (f%d skip %d and f%d skip %d) previously reported as QH7084. Maximize dupdist to force vertex merge qhull topology error (qh_matchdupridge): missing qh_DUPLICATEridge at f%d skip %d for new f%d skip %d hash %d ismatch %d. Set by qh_matchneighbor qh_matchdupridge: allow tricoplanar dupridge for new f%d skip %d and f%d skip %d qh_matchdupridge: make good forced merge of dupridge f%d skip %d into f%d skip %d, keep new f%d skip %d and f%d skip %d, dist %4.4g qh_matchdupridge: make forced merge of dupridge for new f%d skip %d and f%d skip %d, maxdist %4.4g in qh_forcedmerges qh_matchdupridge: try good dupridge flipped f%d skip %d into new f%d skip %d at dist %2.2g otherdist %2.2g qh_matchdupridge: try good dupridge flipped new f%d skip %d into f%d skip %d at dist %2.2g otherdist %2.2g qh_matchdupridge: try good dupridge f%d skip %d into new f%d skip %d at dist %2.2g otherdist %2.2g qh_matchdupridge: try good dupridge new f%d skip %d into f%d skip %d at dist %2.2g otherdist %2.2g qh_matchdupridge: try furthest dupridge f%d skip %d new f%d skip %d at dist %2.2g qhull internal error (qh_matchdupridge): no MERGEridge match for dupridge new f%d skip %d at hash %d..%d qhull internal error (qh_matchdupridge): no maximum or good match for dupridge new f%d skip %d at hash %d..%d qh_matchdupridge: keep dupridge f%d skip %d and f%d skip %d, dist %4.4g qhull internal error (qh_nearvertex): qh.VERTEXneighbors and facet->center required for tricoplanar facets qhull internal error (qh_nearvertex): did not find bestvertex for f%d p%d qh_nearvertex: v%d dist %2.2g for f%d p%d qh_findbestlower: all neighbors of facet %d are flipped or upper Delaunay. Search all facets qh_findbestlower: f%d dist %2.2g for f%d p%d qhull error (qh_newhashtable): negative request (%d) or size (%d). Did int overflow due to high-D? qhull error: 2^32 or more vertices. vertexT.id field overflows. Vertices would not be sorted correctly. qh_newvertex: vertex p%d(v%d) created qh_makenewfacets: created %d new facets f%d..f%d from point p%d to horizon qhull internal error (qh_opposite_vertex): opposite vertex in facet f%d to neighbor f%d is not defined. Either is facet is not simplicial or neighbor not found qh_outcoplanar: move outsideset to coplanarset for qh->NARROWhull qhull internal warning (point_add): unknown point %p id %d qhull internal error (point_add): point p%d is out of bounds(%d) qh_check_bestdist: check points below nearest facet. Facet_list f%d qh_check_bestdist: check that all points are within %2.2g of best facet qhull output completed. Verifying that %d points are below %2.2g of the nearest %sfacet. qhull precision error (qh_check_bestdist): point p%d is outside facet f%d, distance= %6.8g maxoutside= %6.8g %d points were well inside the hull. If the hull contains a lens-shaped component, these points were not verified. Use options 'Qci Tv' to verify all points. qhull precision error (qh_check_bestdist): a coplanar point is %6.2g from convex hull. The maximum value is qh.outside_err (%6.2g) qh_check_bestdist: max distance outside %2.2g qh_check_points: check all points below %2.2g of all facet planes qhull input warning: merging without checking outer planes('Q5' or 'Po'). Verify may report that a point is outside of a facet. qhull input warning: exact merge ('Qx'). Verify may report that a point is outside of a facet. See qh-optq.htm#Qx qhull input warning: no outer plane check ('Q5') or no processing of near-inside points ('Q8'). Verify may report that a point is outside of a facet. Output completed. Verifying that all points are below outer planes of all %sfacets. Will make %2.0f distance computations. Output completed. Verifying that all points are below %2.2g of all %sfacets. Will make %2.0f distance computations. qhull warning (qh_check_points): missing normal for facet f%d qhull precision error (qh_check_points): %d additional points outside facet f%d, maxdist= %6.8g qhull precision error (qh_check_points): a coplanar point is %6.2g from convex hull. The maximum value(qh.outside_err) is %6.2g qh_check_points: max distance outside %2.2g qh_check_maxout: check and update qh.min_vertex %2.2g and qh.max_outside %2.2g qh_check_maxout: determine actual minvertex Qhull precision warning: in post-processing (qh_check_maxout) p%d(v%d) is %2.2g below f%d nearest vertices %2.2g qh_check_maxout: p%d(v%d) is %.2g from f%d nearest vertices %2.2g qh_check_maxout: determine actual maxoutside Qhull precision warning: in post-processing (qh_check_maxout) p%d for f%d is %2.2g above twisted facet f%d nearest vertices %2.2g Qhull precision warning: in post-processing (qh_check_maxout) p%d for f%d is %2.2g above hidden facet f%d nearest vertices %2.2g qh_check_maxout: p%d is %.2g above f%d Qhull precision warning (qh_check_maxout): f%d.maxoutside (%4.4g) is greater than computed qh.max_outside (%2.2g) + qh.DISTround (%2.2g). It should be less than or equal qh_check_maxout: p%d(v%d) is qh.min_vertex %2.2g below facet f%d. Point p%d for f%d is qh.max_outside %2.2g above f%d. %d points are outside of not-good facets Qhull precision error (qh_check_maxout): large increase in qh.max_outside during post-processing dist %2.2g (%.1fx). See warning QH0032/QH0033. Allow with 'Q12' (allow-wide) and 'Pp' Qhull precision error (qh_check_maxout): a facet merge, vertex merge, vertex, or coplanar point produced a wide facet %2.2g (%.1fx). Trace with option 'TWn' to identify the merge. Allow with 'Q12' (allow-wide) Qhull precision error (qh_check_maxout): large increase in qh.min_vertex during post-processing dist %2.2g (%.1fx). See warning QH7083. Allow with 'Q12' (allow-wide) and 'Pp' Qhull precision error (qh_check_maxout): a facet or vertex merge produced a wide facet: v%d below f%d distance %2.2g (%.1fx). Trace with option 'TWn' to identify the merge. Allow with 'Q12' (allow-wide) qh_printlists: max_outside %2.2g all facets: qh.visible_list f%d, newfacet_list f%d, facet_next f%d for qh_addpoint qh.newvertex_list v%d all vertices:qh_checkpolygon: check all facets from f%d, qh.NEWtentative? %d qhull internal error: qh_checklists failed in qh_checkpolygon qhull internal error (qh_checkpolygon): f%d is 'newfacet' but it is not on qh.newfacet_list f%d or visible_list f%d qhull internal error (qh_checkpolygon): f%d is on qh.newfacet_list f%d but it is not 'newfacet' qhull internal error (qh_checkpolygon): f%d is 'visible' but it is not on qh.visible_list f%d qhull internal error (qh_checkpolygon): f%d is on qh.visible_list f%d but it is not 'visible' qhull internal error (qh_checkpolygon): f%d has outside points before qh.facet_next f%d qhull internal error (qh_checkpolygon): expecting empty f.neighbors and f.ridges for visible facet f%d. Got %d neighbors and %d ridges qhull internal error (qh_checkpolygon): v%d is 'newfacet' but it is not on new vertex list v%d qhull internal error (qh_checkpolygon): unknown point %p for vertex v%d first_point %p qhull internal error (qh_checkpolygon): actual number of facets is %d, cumulative facet count is %d - %d visible facets qhull internal error (qh_checkpolygon): missing vertex neighbors for v%d qhull internal error (qh_checkpolygon): vertex neighbors inconsistent (tot_vneighbors %d != tot_facetvertices %d). Maybe duplicate or missing vertex qhull internal error (qh_checkpolygon): facet f%d occurs twice in neighbors of vertex v%d qhull internal error (qh_checkpolygon): facet f%d is a neighbor of vertex v%d but v%d is not a vertex of f%d qhull internal error (qh_checkpolygon): v%d is a vertex of facet f%d but f%d is not a neighbor of v%d qhull internal error (qh_checkpolygon): actual number of vertices is %d, cumulative vertex count is %d qhull internal error (qh_checkpolygon): #vertices %d != #facets %d qhull warning: #vertices %d + #facets %d - #edges %d != 2. A vertex appears twice in a edge list. May occur during merging. qh_replacefacetvertex: replace v%d with v%d in f%d qhull internal error (qh_replacefacetvertex): f%d is not simplicial qhull internal error (qh_replacefacetvertex): f%d already contains new v%d qhull internal error (qh_replacefacetvertex): f%d does not contain old v%d qh_resetlists: reset newvertex_list v%d, newfacet_list f%d, visible_list f%d, facet_list f%d next f%d vertex_list v%d -- NEWfacets? %d, NEWtentative? %d, stats? %d qh_initialhull: ignore f%d flipped. Test qh.interior_point (p-2) for clearly flipped qh_initialhull: initial orientation incorrect, qh.interior_point is %2.2g from f%d. Reversing orientation of all facets qh_initialhull: initial orientation incorrect, qh.interior_point is %2.2g from f%d. Either axis-parallel facet or coplanar firstfacet f%d. Force outside orientation of all facets initial Delaunay cocircular or cosphericalQhull precision error: initial Delaunay input sites are cocircular or cospherical. Option 'Qs' searches all points. Use option 'QJ' to joggle the input, otherwise cannot compute the upper Delaunay triangulation or upper Voronoi diagram of cocircular/cospherical points. Qhull precision error: initial Delaunay input sites are cocircular or cospherical. Use option 'Qz' for the Delaunay triangulation or Voronoi diagram of cocircular/cospherical points; it adds a point "at infinity". Alternatively use option 'QJ' to joggle the input. Use option 'Qs' to search all points for the initial simplex. input sites with last coordinate projected to a paraboloid Qhull precision error: Initial simplex is flat (facet %d is coplanar with the interior point) qh_initialhull: simplex constructed qhull input error: either QGn or QVn point is > p%d qh_initbuild: create sentinels for qh.facet_tail and qh.vertex_tail Trace level T%d, IStracing %d, point TP%d, merge TM%d, dist TW%2.2g, qh.tracefacet_id %d, traceridge_id %d, tracevertex_id %d, last qh.RERUN %d, %s | %s qhull input error: 'Qg QVn' (only good vertex) does not work with merging. Use 'QJ' to joggle the input or 'Q0' to turn off merging. qhull input error: 'Qg' (ONLYgood) needs a good threshold('Pd0D0'), a good point(QGn or QG-n), or a good vertex with 'QJ' or 'Q0' (QVn). qhull input error: point for QV%d is inside initial simplex. It can not be made a vertex. qh_initbuild: initial hull created and points partitioned qh_triangulate_facet: triangulate facet f%d qh_triangulate_link: relink neighbors f%d and f%d of null facet f%d qh_triangulate_link: relink neighbors f%d and f%d of mirrored facets f%d and f%d qhull internal error (qh_triangulate_link): neighbors f%d and f%d do not match for null facet or mirrored facets f%d and f%d qh_triangulate_mirror: delete mirrored facets f%d and f%d and link their neighbors qh_triangulate: triangulate non-simplicial facets qh_triangulate: delete null facets from facetlist f%d. A null facet has the same first (apex) and second vertices qhull internal error (qh_triangulate): ridges still defined for f%d qh_triangulate_null: delete null facet f%d qh_triangulate: delete %d or more mirrored facets. Mirrored facets have the same vertices due to a null facet qh_triangulate: update neighbor lists for vertices from v%d qh_triangulate: identify degenerate tricoplanar facets from f%d qh_triangulate: and replace facet->f.triowner with tricoplanar facets that own center, normal, etc. qh_triangulate: delete visible facets -- non-simplicial, null, and mirrored facets qh_triangulate: delete f%d. All tricoplanar facets degenerate for non-simplicial facet qhull internal error (qh_triangulate): tricoplanar facet f%d not owned by its visible, non-simplicial facet f%d qh_triangulate: all tricoplanar facets degenerate for last non-simplicial facet f%d flipped facetnon-convex initial simplexconcave ridgecoplanar ridgevertices for fridges for foutsideset for fcoplanarset for fneighbors for fvertices for rqh.facet_good hash %d f%d neighbors:neighbors for vqh_initialhull: qh.interior_pointinitial simplex is flat_narrow-hullqhull %s Statistics: %s | %s _Gqh_appendfacet: append f%d to facet_list qh_appendvertex: append v%d to qh.newvertex_list and set v.newfacet qh_attachnewfacets: delete interior ridges qh_attachnewfacets: attach horizon facets to new facets qhull internal error (qh_attachnewfacets): could not find visible facet for horizon f%d of newfacet f%d qh_attachnewfacets: clear f.ridges and f.neighbors for visible facets, may become invalid before qh_deletevisible qh_checkflipped: facet f%d flipped, allerror? %d, distance= %6.12g during p%d qh_removefacet: removed f%d from facet_list, newfacet_list, and visible_list qh_deletevisible: delete %d visible facets and %d vertices qhull internal error (qh_deletevisible): qh->num_visible %d is not number of visible facets %d qhull internal error (qh_facetintersect): f%d or f%d not in other's neighbors qh_facetintersect: f%d skip %d matches f%d skip %d qhull internal error: negative hashsize %d passed to qh_gethash [poly_r.c] qh_makenewplanes: make new hyperplanes for facets on qh.newfacet_list f%d qh_matchvertices: matched by skip %d(v%d) and skip %d(v%d) same? %d qh_matchneighbor: newfacet f%d skip %d hash %d hashcount %d two new facets with the same verticesqhull topology warning (qh_matchneighbor): will merge vertices to undo new facets -- f%d and f%d have the same vertices (skip %d, skip %d) and same horizon ridges to f%d and f%d qh_matchneighbor: f%d skip %d matched with new f%d skip %d a ridge with more than two neighborsqhull topology error: facets f%d, f%d and f%d meet at a ridge with more than 2 neighbors. Can not continue due to no qh.PREmerge and no 'Qx' (MERGEexact) qhull topology error (qh_matchneighbor): matchfacet f%d is in f%d neighbors but not vice versa. Can not continue. qh_matchneighbor: new f%d skip %d duplicates ridge for f%d skip %d matching f%d ismatch %d at hash %d qh_matchneighbor: no match for f%d skip %d at hash %d qh_matchnewfacets: match neighbors for new facets. qhull internal error (qh_matchnewfacets): expecting simplicial facets on qh.newfacet_list f%d for qh_matchneighbors, qh_matchneighbor, and qh_matchdupridge. Got non-simplicial f%d qhull internal error (qh_matchnewfacets): %d neighbors did not match up qh_matchnewfacets: maxdupdist %2.2g, new facets %d, unused hash entries %d, hashsize %d qh_newfacet: created facet f%d qh_removevertex: remove v%d from qh.vertex_list qhull internal error (qh_makenew_nonsimplicial): simplicial f%d sharing two ridges with f%d qh_makenew_nonsimplicial: created facet f%d from v%d and r%d of horizon f%d qh_makenew_simplicial: create facet f%d top %d from v%d and horizon f%d skip %d top %d and visible f%d skip %d, flip? %d qhull warning: more than 2^32 ridges. Qhull results are OK. Since the ridge ID wraps around to 0, two ridges may have the same identifier. qh_newridge: created ridge r%d qh_update_vertexneighbors: update v.neighbors for qh.newvertex_list (v%d) and qh.newfacet_list (f%d) qh_update_vertexneighbors: delete %d of %d vertex neighbors for v%d. Removes to-be-deleted, visible facets qh_update_vertexneighbors: delete interior vertices for qh.visible_list (f%d) qh_update_vertexneighbors: delete interior vertex p%d(v%d) of visible f%d qh_update_vertexneighbors: delete old vertices for qh.visible_list (f%d) qh_update_vertexneighbors: will delete interior vertex p%d(v%d) of visible f%d qh_update_vertexneighbors_cone: update v.neighbors for qh.newvertex_list (v%d) and qh.newfacet_list (f%d) qh_update_vertexneighbors_cone: deleted %d visible vertexneighbors of v%d qh_update_vertexneighbors_cone: delete interior vertices, if any, for qh.visible_list (f%d) qh_update_vertexneighbors_cone: will delete interior vertex p%d(v%d) of visible f%d qh_update_vertexneighbors_cone: delete interior vertices for qh.visible_list (f%d) qh_delfacet: delete f%d ridge with multiple neighbors L%s set is null %p%s set=%p maxsize=%d size=%d elems=qhull internal error (qh_setaddnth): nth %d is out-of-bounds for set: qhull internal error (qh_setcheck): actual size %d of %s%d is greater than max size %d qhull internal error (qh_setcheck): %s%d(size %d max %d) is not null terminated. qhull internal error (qh_setdelnth): nth %d is out-of-bounds for set: qhull internal error (qh_setdelnthsorted): nth %d is out-of-bounds for set: qhull internal error (qh_setnew_delnthsorted): nth %d is out-of-bounds for set: qhull internal error (qh_settruncate): size %d out of bounds for set: qhull internal error (qh_setsize): current set size %d is greater than maximum size %d qhull internal error (qh_setreplace): elem %p not found in set qh_settemp: temp set %p of %d elements, depth %d qhull internal error (qh_settemppop): pop from empty temporary stack qh_settemppop: depth %d temp set %p of %d elements qhull error (qh_settemppush): can not push a NULL temp qh_settemppush: depth %d temp set %p of %d elements qhull internal error (qh_settempfree): set %p(size %d) was not last temporary allocated(depth %d, set %p, size %d) qhull internal error (qh_setzero): index %d or size %d out of bounds for set: (PQQPQDPQ4QTQP.EXE.exe *0 cnt*%7.2g%7d%7.3gprecision statisticsconcave half ridges in outputflipped facetssummary informationnumber of vertices in outputmaximum number of ridgesmaximum number of neighborsmaximum number of verticesfacets created altogetherridges created altogethervertices created altogetherfacets before post mergenumber of facets in outputtotal area of facets maximum facet area minimum facet area maximumbuild hull statisticspoints processed max. random jogglemax. vertices at any one timeaverage new facet balance standard deviation countaverage partition balancedeterminants for facet areapoints ignored (pinched apex)good facets found max. facets tested ave. facets tested ave. clearly betterresets of visit_id max visit_id/2 resets of vertex_visit max vertex_visit/2total vertices deletedcalls to findbest ave. coplanar searchcalls to findhorizoncalls to findbestnewcalls to findbestlowerinside pointsdistance tests for outputdistance tests for statisticspartitions of a pointdistance tests for best mergeconcave ridges in getmergesettwisted ridges in getmergesetstatistics for mergingmerge iterationsvertices deleted by merging max. facets ave. facets per cyclenew facets mergedmerged a simplexnon-convex vertex neighbors average merge distance maximum merge distancemerges due to coplanar facetsmerges due to concave facetsmerges due to dupridgesmerges due to twisted facetsstatistics for vertex merges found new vertex in ridge deleted max. found for a vertex ave. angle to ridge max. angle to ridge ave. distance to ridge max. distance to ridgebounded ridgesbounded ridges with ok normalVoronoi ridge statistics max. new facets created%6.2e ave. distance of a new vertex to a facetmax. distance of a new vertex to a facetmax. distance of an output vertex to a facetmin. distance of an output vertex to a facetmin. denominator in hyperplane computationprecision problems (corrected unless 'Q0' or an error)coplanar horizon facets for new verticescoplanar points during partitioningcoplanar half ridges in outputnearly singular or axis-parallel hyperplaneszero divisors during back substitutezero divisors during gaussian eliminationdegenerate hyperplanes recomputed with gaussian eliminationdupridges with multiple neighborsdupridges with flip facet into good neighbordupridges with flip facet into good flip neighbornumber of non-simplicial facets in outputsimplicial facets that were non-simplicialaverage number of neighbors per vertexcpu seconds for qhull after input maximum merges for a facet (at most 511)average merges per facet (at most 511)average number of neighbors per facetaverage number of ridges per facetaverage number of vertices per facetaverage cosine (angle) of facet normals for all ridges maximum cosine of facet normals (flatest) across a ridge minimum cosine of facet normals (sharpest) across a ridgeretries due to precision problemsave. visible facets per iteration ave. visible facets without an horizon neighbor ave. facets deleted per iterationave. visible vertices per iterationave. new or merged facets per iteration maximum (includes initial simplex)searches of all points for initial simplex determinants not computed because vertex too lowdeterminants for initial hull or voronoi verticespoints ignored (!above max_outside)points ignored (!above a good facet)points ignored (didn't create a good new facet)distance tests for facet visibilitydistance tests to report minimum vertexpoints checked for facets' outer planesave. horizon facets per iteration ave. distance tests per checkpartitioning statistics (see previous for outer planes) maximum vertices deleted per iteration calls due to qh_sharpnewfacets new bestfacets during qh_findbesthorizonangle tests for repartitioned coplanar points repartitioned coplanar points above a corner facet repartitioned coplanar points above a hidden facet repartitioned coplanar points above a twisted facet inside points that were coplanar with a facet with rare search of all facets facets per search of all facets with search of vertex neighborsdifference in max_outside at final checkdistance tests for partitioningdistance tests for initial partition near inside points kept with a facetdistance tests for checking flipped facetsdistance tests for checking convexitydistance tests for checking good pointtotal number of distance testspartitions of coplanar points or deleted vertices distance tests for these partitionsdistance tests for computing furthesttotal lookups for matching ridges of new facetstotal lookups of subridges (duplicates and boundary)average number of tests per subridgeaverage number of tests to match a ridgeduplicated ridges in same merge cycleduplicated ridges with flipped facetsstatistics for matching ridgesstatistics for determining mergesangles computed for ridge convexitybest merges used centrum instead of verticesdistance tests for centrum convexitydistance tests for checking simplicial convexitycoplanar angles in getmergesetcoplanar centrums or vertices in getmergesetconcave-coplanar ridges in getmergesetdistance tests for vertex convexitymax distance of vertex or coplanar point above facet (w/roundoff)max distance of vertex below facet (or roundoff)centrums frozen due to a wide mergecentrums frozen due to extra verticestotal number of facets or cycles of facets mergedsimplices merged into coplanar horizoncycles of facets merged into coplanar horizonvertices deleted by merging into coplanar horizonvertices deleted by degenerate facetmerges due to flipped facets in duplicated ridgehorizon facets merged into new facetsave. initial non-convex ridges per iterationinitial non-convex ridges for post mergingnew facets merged into coplanar horizonnew facets merged into horizon ave. additional non-convex ridges per iteration maximum additional in one pass additional non-convex ridgesmerges due to redundant neighbors detected by qh_test_nonsimplicial_merge instead of qh_test_redundant_neighborsmerges due to angle coplanar facetsmerges due to concave-coplanar facetscoplanar/concave merges due to avoiding old mergemerges due to degenerate facetsmerges due to removing flipped facetsmerge pinched vertices for a duplicate ridgemerge pinched vertices for a dupridgerenamed vertices shared by two facetsrenamed vertices shared by multiple facetsrenamed vertices in a pinched facetrename failures due to duplicated ridgesmerge degenerate facets due to dropped neighborsdropped neighbors due to renamed vertices facets deleted because of no neighborsdeleted ridges due to renamed verticesvertices removed from facets due to no ridges tot. merge pinched vertex due to dupridgeretry qh_addpoint after merge pinched vertex max. merge pinched vertex for a qh_addpoint ave. number found per vertexintersections found redundant verticesintersections failed to find a redundant vertexvertex intersections for locating redundant vertices ave. number of ridges per tested vertex max. number of ridges per tested vertexmemory usage statistics (in bytes)for facets and their normals, neighbor and vertex setsfor input points, outside and coplanar sets, and qhTfor ridges and their vertex setsfor vertices and their neighbor setsnon-simplicial Voronoi vertices for all ridgesbounded ridges with near-zero normal ave. distance of midpoint to ridge max. distance of midpoint to ridgeTriangulation statistics ('Qt')non-simplicial facets triangulated ave. new facets created (may be deleted)degenerate new facets in output (same ridge)mirrored pairs of new facets deleted (same vertices)null new facets deleted (duplicated vertex)qhull internal error: qh_checklists failed on qh_collectstatistics qhull internal error (qh_initstatistics): increase size of qhstat.id[]. qhstat.next %d should be <= sizeof(qh->qhstat.id) %d qhull warning (qh_stddev): expecting num > 0. Got num %d, tot %4.4g, tot2 %4.4g. Returning 0.0 %s qhull invoked by: %s | %s %s with options: %s precision constants: %6.2g max. abs. coordinate in the (transformed) input ('Qbd:n') %6.2g max. roundoff error for distance computation ('En') %6.2g max. roundoff error for angle computations %6.2g min. distance for outside points ('Wn') %6.2g min. distance for visible facets ('Vn') %6.2g max. distance for coplanar facets ('Un') %6.2g max. facet width for recomputing centrum and area %6.2g max. distance for near-inside points %6.2g max. cosine for pre-merge angle %6.2g radius of pre-merge centrum %6.2g max. cosine for post-merge angle %6.2g radius of post-merge centrum %6.2g max. distance for merging two simplicial facets %6.2g max. roundoff error for arithmetic operations %6.2g min. denominator for division zero diagonal for Gauss: BC) W&(Awtyz*Ixnו78i?D56Z\[]cedfg__cc'uگ9:;<>EjmklSOF@$%Gv؊-!#" /H^4NM3KLZZkj-%s VERTEX: %s RIDGE: %s FACET: %s OTHER FACET: printfacetlist: vertices printfacetlist: facetlist printfacetlist: %d facets printfacetlist: end center point distance= %4.2g _maxoutside While executing: %s | %s At error exit: at error exitERRONEOUS and NEIGHBORING FACETS to output A Qhull error has occurred. Qhull should have corrected the above precision error. Please send the input and all of the output to qhull_bug@qhull.org Precision problems were detected during construction of the convex hull. This occurs because convex hull algorithms assume that calculations are exact, but floating-point arithmetic has roundoff errors. To correct for precision problems, do not use 'Q0'. By default, Qhull selects 'C-0' or 'Qx' and merges non-convex facets. With option 'QJ', Qhull joggles the input to prevent precision problems. See "Imprecision in Qhull" (qh-impre.htm). If you use 'Q0', the output may include coplanar ridges, concave ridges, and flipped facets. In 4-d and higher, Qhull may produce a ridge with four neighbors or two facets with the same vertices. Qhull reports these events when they occur. It stops when a concave ridge, flipped facet, or duplicate facet occurs. When computing the Delaunay triangulation of coordinates > 1.0, - use 'Qbb' to scale the last coordinate to [0,m] (max previous coordinate) When computing the Delaunay triangulation: - use 'Qz' to add a point at-infinity. This reduces precision problems. If you need triangular output: - use option 'Qt' to triangulate the output - use option 'QJ' to joggle the input points and remove precision errors - use option 'Ft'. It triangulates non-simplicial facets with added points. If you must use 'Q0', try one or more of the following options. They can not guarantee an output. - use 'QbB' to scale the input to a cube. - use 'Po' to produce output and prevent partitioning for flipped facets - use 'V0' to set min. distance to visible facet as 0 instead of roundoff - use 'En' to specify a maximum roundoff error less than %2.2g. - options 'Qf', 'Qbb', and 'QR0' may also help To guarantee simplicial output: - use option 'Qt' to triangulate the output - use option 'QJ' to joggle the input points and remove precision errors - use option 'Ft' to triangulate the output by adding points - use exact arithmetic (see "Imprecision in Qhull", qh-impre.htm) A Qhull internal error has occurred. Please send the input and output to qhull_bug@qhull.org. If you can duplicate the error with logging ('T4z'), please include the log file. qhull precision warning: The initial hull is narrow. Is the input lower dimensional (e.g., a square in 3-d instead of a cube)? Cosine of the minimum angle is %.16f. If so, Qhull may produce a wide facet. Options 'Qs' (search all points), 'Qbb' (scale last coordinate), or 'QbB' (scale to unit box) may remove this warning. See 'Limitations' in qh-impre.htm. Use 'Pp' to skip this warning. The input to qhull appears to be less than %d dimensional, or a computation has overflowed. Qhull could not construct a clearly convex simplex from points: The center point is coplanar with a facet, or a vertex is coplanar with a neighboring facet. The maximum round off error for computing distances is %2.2g. The center point, facets and distances to the center point are as follows: These points are the dual of the given halfspaces. They indicate that the intersection is degenerate. These points either have a maximum or minimum x-coordinate, or they maximize the determinant for k coordinates. Trial points are first selected from points that maximize a coordinate. Because of the high dimension, the min x-coordinate and max-coordinate points are used if the determinant is non-zero. Option 'Qs' will do a better, though much slower, job. Instead of 'Qs', you can change the points by randomly rotating the input with 'QR0'. The min and max coordinates for each dimension are: If the input should be full dimensional, you have several options that may determine an initial simplex: - use 'QJ' to joggle the input and make it full dimensional - use 'QbB' to scale the points to the unit cube - use 'QR0' to randomly rotate the input for different maximum points - use 'Qs' to search all points for the initial simplex - use 'En' to specify a maximum roundoff error less than %2.2g. - trace execution with 'T3' to see the determinant for each point. If the input is lower dimensional: - use 'QJ' to joggle the input and make it full dimensional - use 'Qbk:0Bk:0' to delete coordinate k from the input. You should pick the coordinate with the least range. The hull will have the correct topology. - determine the flat containing the points, rotate the points into a coordinate plane, and delete the other coordinates. - add one or more points to make the input full dimensional. %d: %8.4g %8.4g difference= %4.4g qhull error while handling previous error in qh_errexit. Exit program Last point added to hull was p%d. Qhull has finished constructing the hull. Qhull has started post-merging.qhull exit due to qh_ERRdebug A Qhull topology error has occurred. Qhull did not recover from facet merges and vertex merges. This usually occurs when the input is nearly degenerate and substantial merging has occurred. See http://www.qhull.org/html/qh-impre.htm#limit A wide merge error has occurred. Qhull has produced a wide facet due to facet merges and vertex merges. This usually occurs when the input is nearly degenerate and substantial merging has occurred. See http://www.qhull.org/html/qh-impre.htm#limit qhull internal error (qh_errexit): exit code %d is greater than 255. Invalid argument for exit(). Replaced with 255 qhull internal error (qh_errexit): either error while reporting error QH%d, or qh.NOerrexit not cleared after setjmp(). Exit program with error status %d @QH%.4d qhull internal error (userprintf_r.c): fp and qh not defined for qh_fprintf '%s' qhull internal error (userprintf_r.c): fp is 0. Wrong qh_fprintf was called. [QH%.4d];ph(4fpJx0zHPLh_"T.|..`AYAYMZ[\\ ] h]4]H]\]p]_x```Ha bdcxhcxcccHdhddd((e`eflXghii,HjXlxlpDp`rrtD(udHuxhuu8w Xw y|X{},8 $8X\Ȅ(؇D x`   !h0!P!8!x"@""@#8l#(#Ȣ#4$$x$4%X%Ht%%%ط &x&&ؿ 'p''($(x(()<)x))*l***d++4,,,,l-H - .h/T/t/x#/+<0D0R(1[1Ha1wx2X2(@33(3T44xL5h_5f@6Hy6Ț7`7787hH8x8(8X`9x9:IP:HJ|:xO ;xh;t<}<ؑ=hT==>t> > ?!P?"?H?M<@t@A84AA8XBB(BCTChCHCC(C(DXDhlDDlEE(FXdFhFXFF(GpG8GGHGH8H|HHxHxI|IIJPJ J J (KxKLLXL4M M!M)@NH*xNX.N2@O88O=,PDPGQ(KhQhLQXMQORPdRhURxURV8SdSgToThqUq,Uu|UxUxU8{ V8\VVHV(VW(WH(XX8X(LYYHY Z8ZZZ(ZXZxZH$[Hp[x[H \XX\8\H(]ht]] ^x^h ^ _8P___HX`h|``HaHpa a#b$Xb%bx(bH)c,hcX.cH/c1hAHBHHDDHE8G8xIK OdHST VHVxV(cdlgȦhj(8kdHlXn Xu\upvvШwXxTy{x<ؕ8(̬(ܭ8سԮ8@ȼhTX(@|8бx8XtسxX(@(t( ȶh(L(xH,@xXl(XܹH$ph ĺ8 غ   p( x лx 8\xXܾ8H Կ!("P#$$(%%(x&X&&)+ / 346HH9\;p?ChGIIOP8QXRlWW(Z0[|(\8_aP8cxddd8hl@mT(mh8mHmn(n8nzRx $ FJ w?;*3$"DFXGlHHcHH,I8IDIPI!4lI\AA ABDF 0JD G nPKdKUl h|KJd e@ LAGG0k GAF d DAG Z CAJ |M M^M M (Mbah G D NDab`TNt`NlN%4NhADD m CAF M CAG (NBAD ] DBF (TOBJ0` BB I BE x,hBEI K(D0A8GpxHADDDAABAABIp8D0A(B BBB8BEH A(A0m(D BBB8BEL L(A0(B BBBH .BEL E(A0A8E@8A0A(B BBB4lxBEE A(D0k(D BBB8Ǻ{BBE D(A0b(D BBBDN4NBDD  GBI AAB4,XOBDD  GBG AABdGAE |ODq K K E PQD t H 8qBBB D(D0v(D BBB4P BAD  DBI \ DBF 0RxDRBBE B(D0D8Dc 8G0A(B BBBF ] 8D0A(B BBBF Q 8I0A(B BBBM HBEB B(A0A8GPk8D0A(B BBB =D`H$BEE E(A0D8GP8D0A(B BBBDpBHE A(D08I@T8A0P(D BBBTAGxU'BBB E(A0A8D@_ 8A0A(B BBBF _ 8A0A(B BBBG _ 8F0A(B BBBB P4VDbLhV"BBB A(J0 (A BBBF (A BBBX2AV I MXX X$ InBDA cAB@< XBAD D0  AABG `  DABI  $ZX 0Z-BKB A(A0D@ 0D(A BBBH _ 0A(A BBBE H \BBE H(D0A8I`" 8D0A(B BBBB `< ]5BBB B(D0D8G` 8A0A(B BBBF  8C0A(B BBBH ` d_BBE E(E0D8Dp| 8F0A(B BBBA  8C0A(B BBBA ` `nBBB B(A0E8Dpk 8C0A(B BBBG  8A0A(B BBBA h ae|h bdh |b HcDo E C E cDE G \ D  d ,eSDNH teBNB B(D0D8DxU 8D0A(B BBBA Hl gBME B(A0A8D`t 8D0A(B BBBC  iDM G 4 jBDG M ABC D DBF  hjxD~ F o, jxD~ F o(L (kADD d AAA (x kADD d AAA  0lD~ F o I d l/BIB B(A0A8Go 8F0A(B BBBJ ) 8D0A(B BBBE H,xo8BEE E(A0A8DP 8C0A(B BBBF 8xlpBAA  ABF A FBG pqoBKF D(D0F (I DBBF u (I DBBJ  (D ABBE (I ABB(EBD0yEhHtBEA A BBK  EBL z BBJ A EBH Y EBH \ BBH (@vBAD ] DBF vdyQBB B(A0D8DP`HPg 8D0A(B BBBD H\~BBB B(H0D8GP  8D0A(B BBBA \ BEF G(J (A ABBH  (F ABBF _ (A ABBK k (A ABBG iHRA8,AAG  CAF  CAC <h|GD sABAP m ̈A  G H H )Ac\̋nBED D(G (C ABBB PHYAd (A ABBD $H܏Ds I y G \ D pCAZ E  A `BEB A(A0S (A BBBK  (A BBBI Y (D BBBE \BBD A(G@ (A ABBI g (G ABBE h (A ABBJ 8XBBA A(D0] (D ABBH LBBA D(D@ (D ABBD X (D AEBD dp"BBB B(A0D8FP 8A0A(B BBBA  8A0A(B BBBK (L8AAG E AAH x̝@D R J _PBIA A(G`ChVp_hA`u (A ABBH phRpFhA`HHBHA GPCXV`_XAPu  AABD pXU`FXAP88AN@CHVP_HA@u AB pHRPFHA@8tAN@CHVP_HA@u AB pHRPFHA@8DAN@CHVP_HA@u AB pHRPFHA@8AN@CHVP_HA@u AB pHRPFHA@L(̪RBBA D0o  DBBH D8N@g8A0G  ABBB dxܫ"BBB B(D0D8FP 8A0A(B BBBI  8A0A(B BBBK 8AN0G8V@_8A0z CG p8R@F8A0HHBHA GPdXV`_XAPS  DABJ XU`FXAPlhBAD DP  AABH S  AABI U  AABG G  AABE Q  AABK dBOS G`hUpFhA`Q  DABF hNpghA`q  DABC  hHpJ d@BOS G`hUpFhA`Q  DABF hNpghA`q  DABC  hHpJ d|BOS G`hUpFhA`Q  DABF hNpghA`q  DABC  hHpJ HBBB B(A0A8DPn 8D0A(B BBBG \=lp BIB B(A0D8DeV_AS 8A0A(B BBBH BUFAlT{ BIB B(A0A8GeV_AS 8A0A(B BBBH BRFA0Pd3zEA D@  AABA @pbBB A(A0D@S 0D(A BBBF $HLBDA AABHlBBB B(D0C8F`8D0A(B BBBD< BEE E(A0A8D`8D0A(B BBB@PBBE A(A0D@z 0D(A BBBD ,>Ae J I\LBBB B(A0A8G- 8D0A(B BBBE \NgAdHBIB B(A0A8GpGxV_xApu 8A0A(B BBBD pxRFxApxBMG B(A0D8QRFANgAq 8D0A(B BBBE  HJ l,8 BIB B(A0A8JeV_AV 8A0A(B BBBJ BUFAh! BIB B(A0A8GGV_Au 8A0A(B BBBD pRFAdL*^BIB B(A0A8GpGxV_xApu 8A0A(B BBBD pxRFxApxpD/BIB B(D0A8GRFAOgA 8D0A(B BBBB { EX tDABBB B(A0D8J 8A0A(B BBBK PRIGjdRIYtLd``BOS GpxRFxApixV_xAps  AABG DdBBA l DBI T(R0`(C A BBB hXg2'BIB B(A0A8JPV_A| 8D0A(B BBBF yRGB\h ,BBB B(A0A8G| 8D0A(B BBBF NgAx lBPN B(D0A8_RFAOgA 8D0A(B BBBD  IE xD!BPN B(D0A8_RFAOgA 8D0A(B BBBD  IE !$VBMN B(A0A8JDFA-OgA 8D0A(B BBBH 8TGBIH EU \T")xBBB B(A0A8D 8D0A(B BBBB \V_Al"0_BIB B(A0D8DeV_AS 8A0A(B BBBH BRFAL$#Bu!BBE E(G0C8G  8D0A(B BBBJ \t#c"BBB B(A0A8D 8D0A(B BBBD DNgAL#jBDB B(D0A8G 8A0A(B BBBI ($$zDN N DR `AF C hP$T,BIB B(A0A8GGV_Au 8A0A(B BBBD pRFAL$ BBB B(A0D8G 8A0A(B BBBH \ %؛BBB B(A0A8G 8A0A(B BBBH V\Cdl%(% BBE B(D0D8G 8A0A(B BBBE  8A0A(B BBBJ L%.BBB B(A0A8G 8A0A(B BBBA L$&.AKG`hDpdhA`S AAH BhRpFhA` hNpN Lt&0BDB B(A0A8J 8D0A(B BBBI (&pzDN N DR `AF C &'BBB B(A0A8D 8A0A(B BBBG DR`AF 8A0A(B BBBI E 8C0A(B BBBG x'dBIB B(A0D8GRFANgA 8D0A(B BBBC { DQ |', BPT B(A0A8JRFA4 8A0A(B BBBF 'NgA  HJ |(8 BBB B(A0A8Dp 8A0A(B BBBG 0 8A0A(B BBBF xR`xApF 8A0A(B BBBI l)LABIB B(A0D8GeV_AV 8A0A(B BBBJ BUFALx)TBBB E(A0A8G 8D0A(B BBBA <) tANPeXV`_XAPS AB BXR`FXAPl*\vBIB B(A0D8DeV_AS 8A0A(B BBBH BUFAlx*܏BIB B(A0A8JhV_AW 8D0A(B BBBC BUFAL*< BBB E(A0A8G 8D0A(B BBBC 88+AN@CHVP_HA@u AB pHRPFHA@Lt+BBB B(D0A8GT 8D0A(B BBBK 8+AN@CHVP_HA@u AB pHRPFHA@L,4&BBE B(A0D8J 8D0A(B BBBD \P, BHGpxRFxAp DBD GxNgxAp DBF w xDU x, &BMG B(A0D8]RFANgA 8D0A(B BBBE { DQ L,-3>BDB E(A0A8G 8D0A(B BBBE (|-qzDN N DR `AF C (-qAAG E AAH -{BBB B(A0A8GbHHK2RTBETcAC8A0A(B BBBX. \l.r/BBA D`  GBBF d  DBBD LhYpQhB`i  DBBG d.ujBEB B(D0A8DPK 8A0A(B BBBG  8I0H(B BBBE 84/x{EEB D(D0h (A BBBE p/$yk@/yAAG@ AAG  EAD [AA/L{mX/{.BBB E(A0D8FpVxO`xApI 8A0A(B BBBA 80|}i L0}jP@u K  E (p0$BAG0w ABD ,0AW   AJ c UH 0h0YBBE E(G0A8D 8A0A(B BBBA P`AJ 8A0A(B BBBA n 8E0A(B BBBA lp1ĎBEB B(A0A8D 8A0A(B BBBA 7IbIrFMBH1DSBEB B(D0D8Fp 8A0A(B BBBA H,2XBIB E(D0D8D` 8D0A(B BBBA \x20BEE B(A0A8D= 8D0A(B BBBB `[`A02QDG@ AAK L 3ȚBBB B(A0A8G~ 8A0A(B BBBA \3hjp3ğS\3BEE B(A0A8DsrYA@ 8D0A(B BBBH 3Pbt mL3BFE E(A0A8Gy 8A0A(B BBBA L4Y`4T_4t4ADJ0g AAH  AAF @4hBBE D(A0GP[ 0A(A BBBH 4DD5BGL B(L0D8G`8A0A(B BBB8L5BED D(D0z (I ABBE d5\JBEB E(D0A8D` 8A0A(B BBBG i 8J0F(B BBBE H5DBHE B(A0A8Dp 8A0A(B BBBA H<6ظBBB B(A0D8G@j 8A0A(B BBBH 86lpBMD C(FP (A ABBF L6BBB B(A0A8D 8A0A(B BBBE 87BBB A(D0X ([ BBBL HP7>BEE D(G0 (A BBBA I(A BBBL7.BBD A(DP7 (A ABBF  (A ABBF 7xBBB B(A0D8DPX]`PXAPeXN`CXBPYXM`LXBP1 8A0A(B BBBD T 8I0D(B BBBO  8F0H(G BBBE |8t-BBB B(D0D8DPH 8F0A(B BBBE  8C0A(B BBBG  8F0A(B BBBE X9$BBB E(D0D8DpxOLxApV 8D0A(B BBBJ 8l9X\BAD  ABA d ABA d9|,BBB B(A0A8DZ 8A0A(B BFBJ | 8E0A(B BBBF $zRx , %L:D QLd:BEB B(D0E8G8 8A0A(B BBBA 4:pBEA D(D@t(D ABBL: BED D(G0/ (Q FDBN ] (A ABBA t<;eBBE B(D0A8DaEBcHPGTI 8A0A(B BBBI t;fBEB B(D0A8D'[JEcHPGTI 8A0A(B BBBF p,<xBHE B(A0A8G 8D0A(B BBBK afAFFA<BBB B(D0D8D 8D0A(B BBBF EA[SBMVbDL$=@BHB B(D0L8Ih 8A0A(B BBBG dt=BEB B(D0A8FI 8A0A(B BBBA Y 8H0A(B BBBE ,=2AG  EH y AN , >BAD  DBA L<>BBA D(GP (D ABBE I (D ABBF H>BEB E(D0D8D` 8E0A(B BBBG |><BEE E(A0A8Fp 8A0A(B BBBG  8A0A(B BBBD  8A0A(B BBBA X?| <l?xBDD G0  DABD m DAB|?HNBEE B(A0D8GM 8A0A(B BBBG  8A0A(B BBBF R 8C0K(G BBBK `,@=BEE F(D0F8G`hUpQhB`z 8A0A(B BBBC |hUpPhA`@BBB E(D0A8DJVALpAO 8A0A(B BBBF XDZAO 8A0A(B BBBA \,A(tBBB B(D0G8J 8A0A(B BBBF LNlAAHALABGB E(A0A8G 8A0A(B BBBG `A4 LFB B(A0A8GP; 8A0A(B BBBD i 8A0A(B BBBA TB"3Aq pB"GA H k M 8B%BBD A(G@Z (A ABBH $B)ACG AABl*LA^ A gHC*BBB B(A0A8GPN 8A0A(B BBBG (dC0-APN k DAI |C-5BBB B(A0D8D@y 8A0A(B BBBD  8F0H(G BBBE ( 8A0A(B BBBH D3BEB B(A0A8D 8A0A(B BBBF M[A 8A0A(B BBBA K[A`D:;BEE E(D0A8FP 8A0A(B BBBD  8C0A(B BBBM \E;BBE E(A0G8J 8A0A(B BBBJ TNlA\`ED=0BEB B(A0A8J 8A0A(B BBBE Z\BlEm BEB E(D0C8GpxGTJPp 8A0A(B BBBA VxMlxAp 0F4yHAW H x H (TF`zANK@AA(F{ANK@AAHFX}BOK D(GP (A ABBH e(F ABBF,&A`G@;(Gl!ADG W AAK KAA0$e>AIG W AAF KAA440e AG  OL f AI L MG lgimqxttЮv`y<}H xA 45@HBBB A(A0G@ 0A(A BBBC xFA A D D ̯X[XbBBB B(D0D8G@|H]PTXA`k@ 8A0A(B BBBA (<dBED PBB8h*MG  OJ fAAH L MO HwBEB E(D0D8G@ 8A0A(B BBBE $wLeh BBB A(D` (D EBBJ d (D BBBB LhYpQhB`i (D BBBE Hx,RBEB E(D0D8G@b 8A0A(B BBBG <ı@BEE D(D0% (R BBBO 7F  G  Ğ4О@HܞuBPI D(D0D@ 0A(A BBBE $BED C(G0Ȳܲ D(ADG AAJ 4PHLL\HBED D(J (A ABBK O (A ABBK P` )  `) `  " `@ ` ` `  ` h  `x% ` ` ` `@ ` `  `@ ` `   ` "`  ` , ) ) @) ` `` `@ ` %`@ $`@ @ !`P! ` * . @ + & @! `    `  ) @) @<) @ `9) @) @( @# x ( @6) @' `" `# `` ` ` ` `@ `` `  ` ` `0! `@ `  ` ` "`` `  `@ `  @ ) h   ` `3) @0) @,) z( @)) @@ ( `U) ` > ' `# `" `X& `p `0 ` `X `   `() &)  H `h% x" ` `( `' `( `` ( u( `( `' `h" `P& ` `' `` `X" `p( `' `X% `H" `' S) `' ` `P `' `@ `' ` ! `! `H% `8 `k( `! `8" ` & `Q) @Q) `( `&  f( `' `( `( `& `( `' `# `( ` ` `8 ` `' `&  & `( `# `# `8% `(% ` `' `(" `& `& ` 1 a( ` `' `" `X( `( `#)  ( ` `  ` ` ` `" ` ` `% `N( `! ` . O) @O) `& ` ` / % `I( `@( ` `8( ` ` `3( ` " .( `& ` ` `# $ `' `# `& `z' `M) `)( `K) `& `( `( ` ` `I) ` ) ` ( `( `( `x# `  h# `( `X# ` `& ` `( `t' `G) `( `H# `( `$ `8# `& `(# `# `n' ` " % `) `% `( `$ `# `" `h' ` ( @ # ` `& `! `% `b' `( `]' `E) ` ` `&  `W' `! ` `& `$ `( `% `$ `" `! `P' % `% `    `$ `J' `D' `h `& ` `" `$ `% ` `% `& `% `! ` ` ` ` `  ' ` H $ `' `$ ` `>' `" `' `' `8' `( `2' `! `  ( ` `' `  ( `( `& `% `" `X `( `H `% `@   x& `p& `r$ `C) @g& `% `% ` ` `  `` `h$ ! `! `,' ``& `8 ` `' `  A) `% `) ` 3 X$ `?) `&' `( `3; I; I; R&; R/; I  - P X o`0   hh8)0? o(oo'ov{ 6FVfvƀր&6FVfvƁց&6FVfvƂւ&6FVfvƃփ&6FVfvƄք&6FVfvƅօ&6FVfvƆֆ&6FVfvƇև&6FVfvƈֈ&6FVfvƉ։&6FVfvƊ֊&6FVfvƋ֋d M 4nB"20*G%3k@ H` I@ 6*9 49  9 @9 09 (9 @!B: @!B: !@I: !@I#: H0:  K::  KC: @P: @\: `i: `u: : : @WpJ: @WpJ: "I: PG: {0d ` I 9 0!: 9 : @%`g@ ` 0@n4 2pY4 3Ђ; 3p"; 2 @2 0 5 14 04 4 Xgs =5 pp I4  u3 ` 4 @ 4 p 3 U2 Ж3 03 @3 p G3 q3 4  @4 G3 3   @4 НG3 3 O3 .3 @u 4 $ z 5 oz )6 { 5  3 X +5  3  @4 pG3 ;3 P4 0 @ G3 2 2 Ѓ 3 0&3 Q 2 Ж3 U4 p 4 @ u3 ` I4  =5 pp gs 4 X4 4 05 12 0 2 @  o   % 5 = | B  K L Q | GCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11)8`0'(8)hh    -  0  H P X `        `> @w  `c H  @+ `H !b u @  0 PU  J# ?  R ^~ !  0!  @!b !D  "" "< @"%G p"h " #  (    .6 0O {b y p$ % % 2G &8 'Q\ yu (  * 0*   # @@F >{ `>e ʖ - o  .' /J p0"p 22 2 3 3Q nh @3 4 5- o  @7 95  P;4  <nY  `?  A  A  BS  B  EA  Gb  0H  Hx  @Ix  I  pJ  K  K/=  N8Q  0Po   Qo  E  @U  @W  W"  Z@  `Y  Pe   @  @  `g  0j  k  n)#  onR @ he H z  ps  @tC  u  0x  {  }! "@ Ђz @ Ѓ  @L @ @ @ @R0 K "j Жh   Л НK  p @ P=  " { Q` n 3 @ \L    @>1 l h 0 'p @  s   ^  4Ab@ h|h p `  QD U X2'x  @ h9 m P 0V x $_T 7u! X" _ pz4 ,jX |P    0 %  .S 0. `0 h z/ 'f 0  0&  1  ;B O o q ? p   @ G &  &  `2>M ppz p {  p  @ * ` D  [ H u  o }  @$   @  o    ?  xo   po   R! ho  ! uH!  ^o! `o w! Xo ! `! '! ` ! Po ! ! Ho ! ` " @o %" @ N" 8o W" " 0o " (o " X) " o " " o " o "  7" o # $ # o # ) (# n 1# NY# n b# ` #  # n # n #  j# n # p) # n $ ( $ n $  59$ @ a$ n j$ ` $ n $ n $ $  Y$ n $ n %  /% kW% n `% n i% ' x% 0& % n % n %  % ` % xn % pn % hn & `n &  $&& P& Xn Y& Pn b&  3z& Hn & @n & 8n & ` 5& 0n & @ & (n & ' n "'  I' n R' n [' ` *u' ' 'X 'P '@  (8 /(0 D(( ]( x( ( ( ( ) ) ?) _) ) ) ) ) )  * .* P* {* * * * + =+ t+ + +` -,@ f, , , %- f- - -` #.@ c. . . / F/ / /` /@ )0 ^0 0 0 1 Z1 1` 1@ 2 ;2 l2 2 2 3 S3` 3@ 3 3 04 d4 4 4 %5` p5@ 5 6 h6 ,6 @E6` ^6@ w6` 6 P6 ) 6  6 ) 6  7 " 7 @ 57  P7  n7  7 h7  7 x% 7  7  8  *8 @ G8  e8  8 @ 8  8 8  8 "&9  I9 ,r9 )9 ) 9  9 ` 9 @  : %6: @ $_: @ @: !: P! : *: .; @ +?; &g; @! {;  ;  ; ; ` ; )  < ) < <)  <  :< 9) E< ) Q< ( ]< # o< x < ( < 6) < ' < " < # < ` <  =  =  8= @ P= ` n=  =  =  = 0! = @ =  >  0> "X> ` q>  > @ >  > @ )? h ?  3?  M? 3) X? 0) c? ,) n? z( {? )) ? @ ? ( ? U) ? >? ' @ # @ " (@ X& 8@ p O@ 0 g@  @ X @ @  @ () @ &) @ H  A h% A x" -A  BA ( NA ' \A ( hA ` (A u( A ( A ' A h" A P& A  A ' B ` B X" 1B p( >B ' MB X% ^B H" qB ' B S) B ' B  B P B ' B @ B ' B ! C ! "C H% 3C 8 JC k( WC ! kC 8" ~C & C Q) C ( C & C f( C ' C ( C ( C & C ( D ' D # "D ( 9D MD aD 8 wD D ' D & D & D ( D # D # D 8% D (% E  E ' ,E (" ?E & NE & ^E 1E a( E  E ' E " E X( E ( E #) E ( F  'F  ?F  WF  oF  F " F  F  F % F N( F ! G .:G O) DG & SG gG /G % G I( G @( G  G 8( G  G   H 3( H "?H .( LH & [H  qH  H # H $ H ' H # H & H z' H M) H )( H K) I & I ( #I ( /I CI WI I) aI ) lI ( yI ( I ( I x# I  I h# I ( I X# I J & J +J ( 7J t' EJ G) OJ ( \J H# nJ ( {J $ J 8# J & J (# J # J n' J "K % K ) #K % 3K ( @K $ QK # cK " uK h' K (K @ #K ` K & K ! L % !L b' /L ( ;L ]' IL E) SL  lL  L & L  L W' L ! L  L & L $ M (  M % M $ .M " @M ! SM P' aM % qM % M  M  M $ M J' M D' M h M & N  N " *N $ ;N % KN  dN % tN & N % N ! N  N  N  N  O  %O ' 2O H[O $ lO ' yO $ O  O >' O " O ' O ' O 8' O ( O 2' P ! P  ,P ( 8P  NP ' [P  P ( P ( P & P % P " P X P ( P H P % Q @ (Q PQ x& _Q p& nQ r$ Q C) Q g& Q % Q % Q  Q  Q  R ` 2R h$ CR ! VR ! iR ,' wR `& R 8 R  R ' R  R A) R % R ) S 30S X$ AS ?) KS &' YS ( eS hS S 0S@ S` T -] ] P ] @] #] 0 ^ ?^ ( ,^ P> <^ .E^ }T^ p/b^  Rn^ `f^ P}s^ P^ {^ S^ B^ 0^ ^ _ P .!_ ! /_ * 7_  F_ >L\_ `m_ 9_ _ _ Pd _ _ `n_ _ _  ` ` w` `&` pE` ` IM` ^` Pm` @ C~`  ` " ` Т` ` pA`  w` ]` p` ` a 0a `!a y 3a 0Ja PlYa bea zsa + ~a a p ca Ya - a Ka PWa 9a a Pzb  b b @0b W=b Rb `z.nb @ I~b Pb ib `b }b b @ .b Gb S0b 7c c p-c @c Zc + dc uc @ c @c c c c P" c c ` Gd d p >d P F/d Ad @ Td 0 _d Sld 0 >vd  d \d 0<d @ d ]d  d  d 0 d pd P'u e W  e ^12e 0 Ce 0Re 0be p9 te 03e ` e 0 1e /&e ye ge e q/e f f (f 0J9f pi HGf 2Sf =`f P;mf _xf @ f f @ f f * f  f Df !f @f 7g @#g 3m Nm VZm em rm m m cKm m @Nm m n  n @3 ~n 3%n e ;n On P an |sn  n n )n n Gn n n  o o @^2o `y{@o `No 0" do U ro (o q Zo 5o xo o  o 6 o o p )p fN_m|Ax̀ !,@Tc}ʁف&4J_nЂ܂)5DP\qӃ(>St]nDŽք(:O[k Åׅ&7IZm{"džՆ#3G[t_qhull.c__pyx_f_5scipy_7spatial_6_qhull__barycentric_inside__pyx_f_5scipy_7spatial_6_qhull__barycentric_coordinates__pyx_f_5scipy_7spatial_6_qhull__distplane__pyx_f_5scipy_7spatial_6_qhull__is_point_fully_outside__Pyx_ErrFetchInState__Pyx_CyFunction_get_qualname__Pyx_CyFunction_get_globals__Pyx_CyFunction_get_closure__Pyx_CyFunction_get_code__pyx_typeinfo_cmp__pyx_tp_new_5scipy_7spatial_6_qhull__Qhull__pyx_vtabptr_5scipy_7spatial_6_qhull__Qhull__Pyx_PyObject_SetAttrStr__Pyx_CyFunction_get_annotations__Pyx_CyFunction_get_dict__Pyx_CyFunction_CallMethod__Pyx_SelflessCall__pyx_f_5scipy_7spatial_6_qhull__lift_point__pyx_f_5scipy_7spatial_6_qhull_6_Qhull_release_lock__pyx_CommonTypesMetaclass_get_module__Pyx_CyFunction_get_doc__Pyx_CyFunction_get_name__Pyx_CyFunction_repr__Pyx_PyObject_GetAttrStrPy_XDECREF__pyx_setprop_5scipy_7spatial_6_qhull_6_Qhull_furthest_site__Pyx_CyFunction_get_kwdefaults__Pyx_RejectKeywords__Pyx_PyCode_New__pyx_mstate_global_static__Pyx_copy_spec_to_module__Pyx_ExportFunction__pyx_m__Pyx_ImportFunction_3_1_6__Pyx__SetItemOnTypeDict__pyx_pymod_createmain_interpreter_id.48__pyx_f_5scipy_7spatial_6_qhull__barycentric_coordinate_single__pyx_tp_traverse_5scipy_7spatial_6_qhull__Qhull__Pyx_CyFunction_traverse__Pyx_VerifyCachedType__Pyx_CyFunction_Vectorcall_O__Pyx_IternextUnpackEndCheck.part.0__Pyx_CalculateMetaclass__Pyx_PyLong_As_int__Pyx_PyMethod_New__Pyx_CyFunction_CallAsMethod__Pyx_FetchCommonTypeFromSpec.constprop.0__Pyx_PyList_Pack.constprop.0__Pyx_CyFunction_New.constprop.0__Pyx_CyFunction_Vectorcall_NOARGS__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS__Pyx_ImportType_3_1_6.constprop.0__pyx_fatalerror.constprop.0__func__.49__Pyx_MatchKeywordArg_nostr.constprop.0__Pyx_BufFmt_TypeCharToAlignment.constprop.0__pyx__insert_code_object.constprop.0__pyx_f_5scipy_7spatial_6_qhull_6_Qhull_acquire_lock__pyx_getprop_5scipy_7spatial_6_qhull_6_Qhull_options__pyx_getprop_5scipy_7spatial_6_qhull_6_Qhull_mode_option__pyx_getprop_5scipy_7spatial_6_qhull_6_Qhull_furthest_site__Pyx_GetVtable.isra.0__Pyx_GetItemInt_Fast.constprop.0__Pyx_CyFunction_reduce__Pyx_PyUnicode_From_int.constprop.0DIGIT_PAIRS_10__Pyx_PyUnicode_Join__Pyx_MatchKeywordArg_str.constprop.0__Pyx_ParseKeywordDict.constprop.0__Pyx_ParseKeywordsTuple.constprop.0__Pyx_PyErr_GivenExceptionMatchesTuple__Pyx_TypeTest__Pyx_PyErr_GivenExceptionMatches.part.0__Pyx_CyFunction_set_doc__pyx_f_5scipy_7spatial_6_qhull__find_simplex_bruteforce__pyx_f_5scipy_7spatial_6_qhull__find_simplex_directed__Pyx_CyFunction_set_annotations__Pyx__ExceptionReset.isra.0__Pyx_CyFunction_set_qualname__Pyx_CyFunction_set_name__Pyx_CyFunction_set_kwdefaults__Pyx_CyFunction_set_defaults__Pyx_CyFunction_set_dict__pyx_f_5scipy_7spatial_6_qhull__find_simplex__Pyx__GetException__Pyx_TryUnpackUnboundCMethod__Pyx_UnboundCMethod_Def__Pyx_PyObject_FastCallDict.constprop.1__Pyx_Py3ClassCreate.constprop.0__Pyx_Raise.constprop.0__Pyx_CyFunction_get_defaults__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx__GetBufferAndValidate.constprop.0__Pyx_minusones__Pyx_zeros__pyx_tp_clear_5scipy_7spatial_6_qhull__Qhull__Pyx_PyObject_FastCallDict.constprop.0__Pyx_CyFunction_clear__Pyx_CyFunction_dealloc__Pyx_ValidateAndInit_memviewslice.constprop.0__Pyx_TypeInfo_int__pyx_memoryview_new__Pyx__ArgTypeTest__Pyx_IterFinish__Pyx_WriteUnraisable.constprop.0__Pyx_PyObject_GetIndex__Pyx_CyFunction_get_is_coroutine__Pyx__CallUnboundCMethod0.constprop.0__Pyx_AddTraceback.constprop.0__pyx_setprop_5scipy_7spatial_6_qhull_6_Qhull_mode_option__pyx_getprop_5scipy_7spatial_6_qhull_6_Qhull_ndim__pyx_pw_5scipy_7spatial_6_qhull_10_QhullUser_3close__pyx_pw_5scipy_7spatial_6_qhull_10_QhullUser_5__del____pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_7points__pyx_pw_5scipy_7spatial_6_qhull_10ConvexHull_7points__pyx_pw_5scipy_7spatial_6_qhull_7Voronoi_7points__pyx_pw_5scipy_7spatial_6_qhull_21HalfspaceIntersection_7halfspaces__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_3check_active__pyx_builtin_RuntimeError__Pyx_AddTraceback.constprop.1__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_31__setstate_cython____pyx_builtin_TypeError__pyx_pw_5scipy_7spatial_6_qhull_3tsearch__Pyx_CallUnboundCMethod1.constprop.0__pyx_pw_5scipy_7spatial_6_qhull_10ConvexHull_5add_points__pyx_pw_5scipy_7spatial_6_qhull_7Voronoi_5add_points__pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_5add_points__Pyx_PyObject_GetItem_Slow__Pyx_PyObject_GetItem__pyx_pw_5scipy_7spatial_6_qhull_10_QhullUser_7_update__pyx_pw_5scipy_7spatial_6_qhull_5_copy_docstr__pyx_builtin_AttributeError__Pyx_PyFrozenSet_New__Pyx_PyObject_GetAttrStrNoError__Pyx_setup_reduce_is_named__Pyx_PEP560_update_bases__Pyx_Py3MetaclassPrepare.constprop.0__Pyx_GetBuiltinName__Pyx__GetModuleGlobalName__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_23get_hull_facets__Pyx_TypeInfo_nn___pyx_t_5numpy_double_t__pyx_pw_5scipy_7spatial_6_qhull_21HalfspaceIntersection_9dual_vertices__pyx_pw_5scipy_7spatial_6_qhull_21HalfspaceIntersection_5add_halfspaces__pyx_builtin_ValueError__pyx_pw_5scipy_7spatial_6_qhull_7Voronoi_3_update__pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_9transform__pyx_pw_5scipy_7spatial_6_qhull_10ConvexHull_9vertices__pyx_pw_5scipy_7spatial_6_qhull_10ConvexHull_1__init____pyx_pf_5scipy_7spatial_6_qhull__get_barycentric_transforms.constprop.0__Pyx_TypeInfo_nn_npy_int__pyx_f_5scipy_6linalg_13cython_lapack_dgetrf__pyx_f_5scipy_6linalg_13cython_lapack_dgecon__pyx_f_5scipy_6linalg_13cython_lapack_dgetrs__pyx_pw_5scipy_7spatial_6_qhull_1_get_barycentric_transforms__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_29__reduce_cython____pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_13vertex_neighbor_vertices__pyx_builtin_MemoryError__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_21get_hull_points__Pyx_TypeInfo_nn_npy_double__pyx_pw_5scipy_7spatial_6_qhull_7Voronoi_1__init____pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_1__init____pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_1__init____pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_13get_paraboloid_shift_scale__pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_21lift_points__pyx_f_5scipy_7spatial_6_qhull__get_delaunay_info__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_15volume_area__pyx_pf_5scipy_7spatial_6_qhull_6_Qhull_26get_extremes_2d__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_27get_extremes_2d__pyx_pw_5scipy_7spatial_6_qhull_7Voronoi_9ridge_dict__pyx_builtin_zip__pyx_builtin_map__pyx_tp_dealloc_5scipy_7spatial_6_qhull__Qhull__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_7close__pyx_f_5scipy_7spatial_6_qhull__visit_voronoi__pyx_pf_5scipy_7spatial_6_qhull_6_Qhull_10add_points__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_11add_points__pyx_pf_5scipy_7spatial_6_qhull_6_Qhull_24get_voronoi_diagram__Pyx_TypeInfo_nn___pyx_t_5numpy_intp_t__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_25get_voronoi_diagram__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_17triangulate__pyx_pw_5scipy_7spatial_6_qhull_10_QhullUser_9_add_points__pyx_pw_5scipy_7spatial_6_qhull_10_QhullUser_1__init____pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_9get_points__pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_3_update__pyx_pf_5scipy_7spatial_6_qhull_8Delaunay_18plane_distance.constprop.0__pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_19plane_distance__pyx_pw_5scipy_7spatial_6_qhull_21HalfspaceIntersection_3_update__pyx_pw_5scipy_7spatial_6_qhull_10ConvexHull_3_update__pyx_pf_5scipy_7spatial_6_qhull_8Delaunay_14convex_hull.constprop.0__pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_15convex_hull__pyx_pf_5scipy_7spatial_6_qhull_8Delaunay_10vertex_to_simplex.constprop.0__pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_11vertex_to_simplex__pyx_pf_5scipy_7spatial_6_qhull_8Delaunay_16find_simplex.constprop.0__pyx_pw_5scipy_7spatial_6_qhull_8Delaunay_17find_simplex__pyx_pw_5scipy_7spatial_6_qhull_21HalfspaceIntersection_1__init____pyx_pf_5scipy_7spatial_6_qhull_6_Qhull_18get_simplex_facet_array__pyx_pw_5scipy_7spatial_6_qhull_6_Qhull_19get_simplex_facet_array__pyx_setprop_5scipy_7spatial_6_qhull_6_Qhull_options__pyx_pymod_exec__qhull__pyx_string_tab__pyx_string_tab_encodings__pyx_CommonTypesMetaclass_spec__pyx_CyFunctionType_spec__pyx_builtin_property__pyx_builtin_ImportErrordescr.0__pyx_k_A_4uCq_aq__pyx_k_A_M_t5_1_AT_q_q_F_9AQ_1D_G1_83bdescr.1__pyx_k_A_3at_3a_4_Qa_2_d_U_a_Qdescr.2descr.3__pyx_k_A01_M_Q_Rxq_vU_Bc_vQc_D_ar_qPQ_jdescr.4__pyx_k_A_M_Q_t4q_4t1BnA_AR_D_ARq_2T_Qb__pyx_k_A_M_Q_Q_4vT_Qb_T_Qb_4t1Ba_81_Qdescr.5descr.6__pyx_k_A_M_Q_at1_Q__pyx_k_AJ_M_Q_Q_t1_T_r_t1_a_RvQd_ar_F_Adescr.7__pyx_k_A_M_Q_Q_t1_a_t1_a_D_RvR_D_E_aq_Udescr.8__pyx_k_A_M_Q_Q_t1_a_t1_a_D_Bd_a_D_A_Zqdescr.9__pyx_k_AX_M_Q_A_6_4t2Q_1_at6_a7Gt4qPRRSdescr.10__pyx_k_A_M_Q_t1_j_2V1E_r_q_AR_A_AR_D_ARdescr.11descr.12__pyx_k_Qdescr.13__pyx_k_R_6_q_y_aq_vRq_BfBj_AS_vRq_aq_Ldescr.14descr.15__pyx_k_a_Ja_q_Ja_vWD_V1descr.16__pyx_k_A_4xwa_vQdescr.17__pyx_k_A_Fdescr.18__pyx_k_A_KuKq_HD_aq_Kt86_M_XT_q_M_XT_qdescr.19__pyx_k_4xs_aq_1_R_1AT_9E_F_4wnA_4wa_WA__pyx_k_4A_2S_aq_AQ_QhfBa_6_s_AQ_A_t1_vdescr.20descr.21__pyx_k_A_t1_q_L_L_L_Kt1_4A_L_JfAQ_N_6descr.22__pyx_k_Ldescr.23__pyx_k_A_t1descr.24__pyx_k_A_4_3a_9_a_a_F_6_t1__pyx_k_A_4_3a_b_b_L_b_5_1D_F_is_a_A_t1descr.25__pyx_k_A_4_Q_4q_d_t1_A_Qa_U_1_E_at1A_Udescr.26descr.27__pyx_k_A2_D_D_t1_4q_b_b_wfBa_a_A_L_Qa_U__pyx_k_A_1_P_R_1_r_r_Ct1_j_2Q_Rxr_BfBadescr.28descr.29__pyx_k_A_2V2S_4q_AQ_2Q_Rxr_BfBa_B_7_2Q__pyx_k_A_BfAQfCs_QfBb_fBa_Q_vQb_avQ_vTdescr.30descr.31__pyx_k_d_3m1A__pyx_k_c_9Ks_1descr.32descr.33__pyx_k_2_2S_aq_AQ_QhfBa_A_A_vV1Cs_M_av__pyx_k_A_L_L_L_Kt1_4A_5_gQe86_A_Ja_vS_Qdescr.34descr.35descr.36descr.37__pyx_k_A_4_Q_Rwat1_t1__pyx_k_4A_2S_aq_AQ_QhfBa_6_s_AQ_A_t1_v_2descr.38descr.39__pyx_k_A_Kt_a_T_0_O1_6descr.40descr.41descr.42__pyx_k_A_4_Cq_t1Cq_1G4_G1_A_t1descr.43__pyx_k_A_q_2S_aq_AQ_2S_aq_AQ_JfARq_AQ_Rdescr.44__pyx_k_A_N_0_5EQ_O5_0_N_m5_A_T_b_oURVVXdescr.45__pyx_k_D_V2Q_AQ_R_1_az_d_6Gr_SXXY_c_5descr.46descr.47__pyx_k_A_4_Q_Rwar_q_A_t1__pyx_vtable_5scipy_7spatial_6_qhull__Qhull__pyx_type_5scipy_7spatial_6_qhull__Qhull__pyx_array_allocate_buffer__pyx_array_new__pyx_memview_slice__pyx_memoryview_slice_memviewslice__pyx_pybuffer_index__pyx_memslice_transpose__pyx_memoryview_fromslice__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview_slice_copy__pyx_memoryview_copy_object__pyx_memoryview_copy_object_from_slice__pyx_get_best_slice_order__pyx_memoryview_slice_get_size__pyx_fill_contig_strides_array__pyx_memoryview_copy_data_to_temp__pyx_memoryview_err_extents__pyx_memoryview_err_dim__pyx_memoryview_err__pyx_memoryview_err_no_memory__pyx_memoryview_copy_contents__pyx_memoryview_broadcast_leading__pyx_memoryview_refcount_copying__pyx_memoryview_refcount_objects_in_slice__pyx_memoryview_slice_assign_scalar__pyx_memoryview__slice_assign_scalarPyArray_API__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_3check_active__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_7close__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_9get_points__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_11add_points__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_13get_paraboloid_shift_scale__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_15volume_area__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_17triangulate__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_19get_simplex_facet_array__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_21get_hull_points__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_23get_hull_facets__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_25get_voronoi_diagram__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_27get_extremes_2d__pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_29__reduce_cython____pyx_mdef_5scipy_7spatial_6_qhull_6_Qhull_31__setstate_cython____pyx_mdef_5scipy_7spatial_6_qhull_1_get_barycentric_transforms__pyx_mdef_5scipy_7spatial_6_qhull_10_QhullUser_1__init____pyx_mdef_5scipy_7spatial_6_qhull_10_QhullUser_3close__pyx_mdef_5scipy_7spatial_6_qhull_10_QhullUser_5__del____pyx_mdef_5scipy_7spatial_6_qhull_10_QhullUser_7_update__pyx_mdef_5scipy_7spatial_6_qhull_10_QhullUser_9_add_points__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_1__init____pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_3_update__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_5add_points__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_7points__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_9transform__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_11vertex_to_simplex__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_13vertex_neighbor_vertices__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_15convex_hull__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_17find_simplex__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_19plane_distance__pyx_mdef_5scipy_7spatial_6_qhull_8Delaunay_21lift_points__pyx_mdef_5scipy_7spatial_6_qhull_3tsearch__pyx_mdef_5scipy_7spatial_6_qhull_5_copy_docstr__pyx_mdef_5scipy_7spatial_6_qhull_10ConvexHull_1__init____pyx_mdef_5scipy_7spatial_6_qhull_10ConvexHull_3_update__pyx_mdef_5scipy_7spatial_6_qhull_10ConvexHull_5add_points__pyx_mdef_5scipy_7spatial_6_qhull_10ConvexHull_7points__pyx_mdef_5scipy_7spatial_6_qhull_10ConvexHull_9vertices__pyx_mdef_5scipy_7spatial_6_qhull_7Voronoi_1__init____pyx_mdef_5scipy_7spatial_6_qhull_7Voronoi_3_update__pyx_mdef_5scipy_7spatial_6_qhull_7Voronoi_5add_points__pyx_mdef_5scipy_7spatial_6_qhull_7Voronoi_7points__pyx_mdef_5scipy_7spatial_6_qhull_7Voronoi_9ridge_dict__pyx_mdef_5scipy_7spatial_6_qhull_21HalfspaceIntersection_1__init____pyx_mdef_5scipy_7spatial_6_qhull_21HalfspaceIntersection_3_update__pyx_mdef_5scipy_7spatial_6_qhull_21HalfspaceIntersection_5add_halfspaces__pyx_mdef_5scipy_7spatial_6_qhull_21HalfspaceIntersection_7halfspaces__pyx_mdef_5scipy_7spatial_6_qhull_21HalfspaceIntersection_9dual_vertices__pyx_moduledef__pyx_CyFunctionType_slots__pyx_CyFunction_methods__pyx_CyFunction_members__pyx_CyFunction_getsets__pyx_CommonTypesMetaclass_slots__pyx_CommonTypesMetaclass_getset__pyx_k___pyx_k_AttributeError__pyx_k_C__pyx_k_Cannot_compute_for_Delaunay__pyx_k_ConvexHull__pyx_k_ConvexHull___init__pyx_k_ConvexHull__update__pyx_k_ConvexHull_add_points__pyx_k_ConvexHull_points__pyx_k_ConvexHull_points_incremental_F__pyx_k_ConvexHull_vertices__pyx_k_Delaunay__pyx_k_Delaunay___init__pyx_k_Delaunay__update__pyx_k_Delaunay_add_points__pyx_k_Delaunay_convex_hull__pyx_k_Delaunay_find_simplex__pyx_k_Delaunay_lift_points__pyx_k_Delaunay_plane_distance__pyx_k_Delaunay_points__pyx_k_Delaunay_points_furthest_site_F__pyx_k_Delaunay_transform__pyx_k_Delaunay_vertex_neighbor_vertice__pyx_k_Delaunay_vertex_to_simplex__pyx_k_Failed_to_allocate_memory_in_set__pyx_k_Feasible_point_must_be_a_ndim_1__pyx_k_H__pyx_k_HalfspaceIntersection__pyx_k_HalfspaceIntersection___init__pyx_k_HalfspaceIntersection__update__pyx_k_HalfspaceIntersection_add_halfsp__pyx_k_HalfspaceIntersection_dual_verti__pyx_k_HalfspaceIntersection_halfspace__pyx_k_HalfspaceIntersection_halfspaces__pyx_k_ImportError__pyx_k_Input_halfspaces_cannot_be_a_mas__pyx_k_Input_interior_point_cannot_be_a__pyx_k_Input_points_array_must_have_2_d__pyx_k_Input_points_cannot_be_a_masked__pyx_k_MemoryError__pyx_k_Need_at_least_2_D_data__pyx_k_No_points_given__pyx_k_Note_that_Cython_is_deliberately__pyx_k_Points_cannot_contain_NaN__pyx_k_Q11__pyx_k_QBk__pyx_k_QG__pyx_k_QG_option_present__pyx_k_QJ__pyx_k_QbB__pyx_k_Qbb__pyx_k_Qbb_Qc_Qz__pyx_k_Qbb_Qc_Qz_Q12__pyx_k_Qbk__pyx_k_Qc__pyx_k_Qhull__pyx_k_QhullError__pyx_k_QhullUser__pyx_k_QhullUser___del__pyx_k_QhullUser___init__pyx_k_QhullUser__add_points__pyx_k_QhullUser__update__pyx_k_QhullUser_close__pyx_k_Qhull___reduce_cython__pyx_k_Qhull___setstate_cython__pyx_k_Qhull_add_points__pyx_k_Qhull_check_active__pyx_k_Qhull_close__pyx_k_Qhull_get_extremes_2d__pyx_k_Qhull_get_hull_facets__pyx_k_Qhull_get_hull_points__pyx_k_Qhull_get_paraboloid_shift_scal__pyx_k_Qhull_get_points__pyx_k_Qhull_get_simplex_facet_array__pyx_k_Qhull_get_voronoi_diagram__pyx_k_Qhull_instance_is_closed__pyx_k_Qhull_internal_error_loop_in_fac__pyx_k_Qhull_options__pyx_k_Qhull_triangulate__pyx_k_Qhull_volume_area__pyx_k_Qt__pyx_k_Qu__pyx_k_Qx__pyx_k_Qx_2__pyx_k_Qz__pyx_k_Raised_when_Qhull_encounters_an__pyx_k_RuntimeError__pyx_k_T__pyx_k_Takes_care_of_basic_dealings_wi__pyx_k_Tinvs__pyx_k_TypeError__pyx_k_ValueError__pyx_k_Voronoi__pyx_k_Voronoi___init__pyx_k_Voronoi__update__pyx_k_Voronoi_add_points__pyx_k_Voronoi_points__pyx_k_Voronoi_points_furthest_site_Fa__pyx_k_Voronoi_ridge_dict__pyx_k__2__pyx_k__3__pyx_k_add_halfspaces__pyx_k_add_note__pyx_k_add_points__pyx_k_add_points_2__pyx_k_all__pyx_k_anorm__pyx_k_any__pyx_k_are_incompatible_with_increment__pyx_k_area__pyx_k_arr__pyx_k_array__pyx_k_asanyarray__pyx_k_asarray__pyx_k_ascontiguousarray__pyx_k_astype__pyx_k_asyncio_coroutines__pyx_k_atleast_2d__pyx_k_axis__pyx_k_bad_hs__pyx_k_bestdist__pyx_k_bruteforce__pyx_k_bytes__pyx_k_c__pyx_k_center__pyx_k_check_active__pyx_k_class_getitem__pyx_k_clear__pyx_k_cline_in_traceback__pyx_k_close__pyx_k_concatenate__pyx_k_convex_hull__pyx_k_coplanar__pyx_k_coplanar_shape__pyx_k_copy__pyx_k_copy_docstr__pyx_k_cur_region__pyx_k_curlong__pyx_k_d__pyx_k_del__pyx_k_disable__pyx_k_dist__pyx_k_dists__pyx_k_doc__pyx_k_dot__pyx_k_double__pyx_k_dst__pyx_k_dtype__pyx_k_dual_area__pyx_k_dual_equations__pyx_k_dual_facets__pyx_k_dual_points__pyx_k_dual_vertices__pyx_k_dual_volume__pyx_k_empty__pyx_k_enable__pyx_k_encode__pyx_k_eps__pyx_k_eps_broad__pyx_k_equations__pyx_k_exitcode__pyx_k_extremes__pyx_k_extremes_arr__pyx_k_facet__pyx_k_facet_ndim__pyx_k_facets__pyx_k_facetsi__pyx_k_feasible_point_is_not_clearly_in__pyx_k_fill__pyx_k_find_simplex__pyx_k_finfo__pyx_k_first_viol__pyx_k_func__pyx_k_furthest_site__pyx_k_gc__pyx_k_get__pyx_k_get_barycentric_transforms__pyx_k_get_extremes_2d__pyx_k_get_hull_facets__pyx_k_get_hull_points__pyx_k_get_paraboloid_shift_scale__pyx_k_get_points__pyx_k_get_simplex_facet_array__pyx_k_get_voronoi_diagram__pyx_k_getstate__pyx_k_good__pyx_k_halfspaces__pyx_k_halfspaces_should_be_provided_a__pyx_k_i__pyx_k_id_map__pyx_k_incremental__pyx_k_incremental_mode_not_enabled_or__pyx_k_inf_seen__pyx_k_info__pyx_k_init__pyx_k_initializing__pyx_k_intc__pyx_k_interior_point__pyx_k_intersections__pyx_k_intp__pyx_k_invalid_size_for_new_points_arra__pyx_k_ipiv__pyx_k_ipoint__pyx_k_isMaskedArray__pyx_k_is_coroutine__pyx_k_isenabled__pyx_k_isimplex__pyx_k_isnan__pyx_k_isoutside__pyx_k_ivertex__pyx_k_iwork__pyx_k_j__pyx_k_join__pyx_k_k__pyx_k_latin1__pyx_k_lda__pyx_k_ldb__pyx_k_lift_points__pyx_k_lower_bound__pyx_k_m__pyx_k_ma__pyx_k_main__pyx_k_map__pyx_k_max__pyx_k_max_bound__pyx_k_memory_allocation_failed__pyx_k_metaclass__pyx_k_min__pyx_k_min_bound__pyx_k_mode_option__pyx_k_module__pyx_k_mro_entries__pyx_k_msg__pyx_k_msize__pyx_k_n__pyx_k_name__pyx_k_ncoplanar__pyx_k_ndim__pyx_k_neighbor__pyx_k_neighbors__pyx_k_newaxis__pyx_k_nextfacet__pyx_k_nextremes__pyx_k_nineq__pyx_k_non_simplical_facet_encountered__pyx_k_nonzero__pyx_k_np__pyx_k_npoints__pyx_k_nrhs__pyx_k_nsimplex__pyx_k_numfacets__pyx_k_numpoints__pyx_k_numpy__pyx_k_numpy__core_multiarray_failed_to__pyx_k_numpy__core_umath_failed_to_impo__pyx_k_nvoronoi_vertices__pyx_k_option__pyx_k_option_set__pyx_k_options__pyx_k_order__pyx_k_out__pyx_k_out_2__pyx_k_p__pyx_k_paraboloid_scale__pyx_k_paraboloid_shift__pyx_k_pieces__pyx_k_plane_distance__pyx_k_point__pyx_k_point_ndim__pyx_k_point_region__pyx_k_points__pyx_k_points_2__pyx_k_pop__pyx_k_prepare__pyx_k_property__pyx_k_pyx_state__pyx_k_pyx_vtable__pyx_k_qhull__pyx_k_qhull_2__pyx_k_qhull_3__pyx_k_qhull_did_not_free__pyx_k_qhull_options__pyx_k_qualname__pyx_k_range__pyx_k_rcond__pyx_k_rcond_limit__pyx_k_reduce__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_refcheck__pyx_k_regions__pyx_k_required_options__pyx_k_reshape__pyx_k_resize__pyx_k_restart__pyx_k_ridge_dict__pyx_k_ridge_dict_2__pyx_k_ridge_points__pyx_k_ridge_vertices__pyx_k_scipy_spatial__qhull__pyx_k_scipy_spatial__qhull_pyx__pyx_k_self__pyx_k_self__lock_self__qh_cannot_be_co__pyx_k_set_name__pyx_k_sets__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_simplices__pyx_k_size__pyx_k_spec__pyx_k_split__pyx_k_src__pyx_k_start__pyx_k_startfacet__pyx_k_stringsource__pyx_k_sum__pyx_k_swapped_index__pyx_k_test__pyx_k_thread_lock_allocation_failed__pyx_k_tmp__pyx_k_tol__pyx_k_tolist__pyx_k_totlong__pyx_k_transform__pyx_k_transform_2__pyx_k_tri__pyx_k_triangulate__pyx_k_tsearch__pyx_k_tsearch_line_2206__pyx_k_tsearch_tri_xi_Find_simplices_c__pyx_k_unique__pyx_k_update__pyx_k_update_2__pyx_k_v__pyx_k_vertex__pyx_k_vertexA__pyx_k_vertexB__pyx_k_vertex_neighbor_vertices__pyx_k_vertex_neighbor_vertices_2__pyx_k_vertex_to_simplex__pyx_k_vertex_to_simplex_2__pyx_k_vertices__pyx_k_vertices_2__pyx_k_vertices_3__pyx_k_viols__pyx_k_volume__pyx_k_volume_area__pyx_k_voronoi_vertices__pyx_k_work__pyx_k_wrong_dimensionality_in_xi__pyx_k_x__pyx_k_x_shape__pyx_k_xi__pyx_k_xi_has_different_dimensionality__pyx_k_xi_shape__pyx_k_z__pyx_k_zeros__pyx_k_zip__pyx_k_Wrappers_for_Qhull_triangulatio__pyx_methods__pyx_moduledef_slots__pyx_methods_5scipy_7spatial_6_qhull__Qhull__pyx_getsets_5scipy_7spatial_6_qhull__Qhull__pyx_doc_5scipy_7spatial_6_qhull_6_Qhull_6close__pyx_doc_5scipy_7spatial_6_qhull_6_Qhull_18get_simplex_facet_array__pyx_doc_5scipy_7spatial_6_qhull_6_Qhull_20get_hull_points__pyx_doc_5scipy_7spatial_6_qhull_6_Qhull_22get_hull_facets__pyx_doc_5scipy_7spatial_6_qhull_6_Qhull_24get_voronoi_diagram__pyx_doc_5scipy_7spatial_6_qhull_6_Qhull_26get_extremes_2d__pyx_doc_5scipy_7spatial_6_qhull_21HalfspaceIntersection_4add_halfspaces__pyx_doc_5scipy_7spatial_6_qhull_2tsearch__pyx_doc_5scipy_7spatial_6_qhull_8Delaunay_20lift_points__pyx_doc_5scipy_7spatial_6_qhull_8Delaunay_18plane_distance__pyx_doc_5scipy_7spatial_6_qhull_8Delaunay_16find_simplex__pyx_doc_5scipy_7spatial_6_qhull_8Delaunay_14convex_hull__pyx_doc_5scipy_7spatial_6_qhull_8Delaunay_12vertex_neighbor_vertices__pyx_doc_5scipy_7spatial_6_qhull_8Delaunay_10vertex_to_simplex__pyx_doc_5scipy_7spatial_6_qhull_8Delaunay_8transform__pyx_doc_5scipy_7spatial_6_qhull_10_QhullUser_8_add_points__pyx_doc_5scipy_7spatial_6_qhull_10_QhullUser_2close__pyx_doc_5scipy_7spatial_6_qhull__get_barycentric_transformsgeom2_r.cqh_projectpoints.constprop.0qh_vertex_bestdist2.coldcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entryqhull_misc.cgeom_r.cqh_findbesthorizon.constprop.0global_r.cqh_option.constprop.0io_r.cqh_printcenter.part.0qh_printfacetheader.part.0libqhull_r.cqh_joggle_restart.part.0qh_intcomparemerge_r.cqh_makeridges.part.0qh_remove_extravertices.part.0qh_remove_mergetype.part.0poly2_r.cqh_checkflipped_all.part.0qh_vertexneighbors.part.0poly_r.cqset_r.crandom_r.cstat_r.cqh_printstatlevel.part.0user_r.cusermem_r.cuserprintf_r.c__FRAME_END__qh_allstatCqh_mergeneighborsqh_mergevertex_delqh_allstatEqh_detsimplexqh_mergevertex_neighborsqh_sethyperplane_gaussqh_memfreeqh_merge_pinchedverticesqh_detmaxoutsideqh_readpointsqh_appendvertexqh_setlarger_quickqh_getmergeset_initialqh_sethalfspaceqh_voronoi_centerqh_furthestvertexqh_setfreeqh_printvertexlistqh_printbeginqh_allstatGqh_allstatIqh_srandqh_test_vneighborsqh_init_Aqh_addfacetvertexqh_printendqh_newvertexqh_scalelastqh_checklistsqh_makeridgesqh_projectinputqh_mergeverticesqh_printstatisticsqh_remove_extraverticesqh_freeqh_detvridge3qh_checkflipped_allqh_opposite_vertexqh_argv_to_commandqh_premergeqh_printfacet3geom_simplicialqh_findbestqh_printcenterqh_setdelaunayqh_delfacetqh_setcopyqh_printend4geomqh_maybe_duplicateridgesqh_printvridgeqh_findgood_allqh_newhashtableqh_check_pointsqh_setinqh_settruncateqh_checkflagsqh_errprintqh_partitionvisibleqh_readfeasibleqh_memallocqh_printextremes_dqh_printridgeqh_printpointqh_updatetestedqh_vertexneighborsqh_prepare_outputqh_update_vertexneighbors_coneqh_mergefacetqh_exitqh_countfacetsqh_init_qhull_commandqh_flippedmergesqh_joggle_restartqh_facetverticesqh_pointidqh_test_nonsimplicial_mergeqh_hashridge_findqh_test_appendmergeqh_printextremesqh_checkvertexqh_memfreeshortqh_stddevqh_rotateinputqh_printhyperplaneintersectionqh_randqh_printverticesqh_facet2pointqh_deletevisibleqh_facet3vertexqh_nearvertexqh_willdeleteqh_copynonconvexqh_markvoronoiqh_printstatsqh_setdellastmergetypesqh_settemppushqh_printpoints_outqh_outerinnerqh_setvoronoi_allqh_rename_sharedvertexqh_printfacetsqh_maxouterqh_all_mergesqh_fprintfqh_maxminqh_setequal_skipqh_minabsval_finiqh_setaddsortedqh_next_vertexmergeqh_skipfilenameqh_setendpointerqh_determinantqh_matchnewfacetsqh_allstatE2qh_memstatisticsqh_hashridgeqh_partitioncoplanarqh_test_redundant_neighborsqh_checkflippedqh_printvdiagram2qh_distnormqh_orientoutsideqh_eachvoronoi_allqh_buildtracingqh_printvoronoiqh_setlastqh_initflagsqh_vertexridges_facetqh_makenewfacetqh_printvertexqh_vertex_bestdistqh_buildcone_mergepinchedqh_mallocqh_makenewplanesqh_settemppopqh_merge_degenredundantqh_comparevisitqh_removefacetqh_setappend_setqh_printhelp_narrowhullqh_argv_to_command_sizeqh_setlargerqh_settempqh_strtolqh_initstatisticsqh_facetintersectqh_attachnewfacetsqh_setsizeqh_maxabsvalqh_strtodqh_furthestnextqh_find_newvertexqh_dvertexqh_matchverticesqh_randomfactorqh_distplaneqh_normalizeqh_setdelnthqh_facetcenterqh_printpointvectqh_checkpolygonqh_test_centrum_mergeqh_matchneighborqh_printpointsqh_copyfilenameqh_check_bestdistqh_compare_anglemergeqh_printvdiagramqh_setequal_exceptqh_mergecycle_ridgesqh_setfeasibleqh_hasmergeqh_postmergeqh_new_qhull_scipyqh_initmergesetsqh_setcompactqh_divzeroqh_projectpointsqh_resetlistsqh_getangleqh_freeqhullqh_lib_checkqh_mindiffqh_randommatrixqh_qhullqh_setnewqh_triangulateqh_printhelp_wideqh_detvnormqh_appendmergesetqh_compare_facetvisitqh_memsetupqh_printhelp_degenerateqh_printmatrixqh_mergecycle_vneighborsqh_degen_redundant_facetqh_setindexqh_checkconnectqh_gausselimqh_printline3geomqh_initqhull_memqh_mergecycle_allqh_findhorizonqh_printfacet3vertexqh_geomplanesqh_check_pointqh_fprintf_stderrqh_merge_twistedqh_isvertexqh_furthestnewvertexqh_vertexintersectqh_printfacetqh_maybe_duplicateridgeqh_scaleinputqh_setnew_delnthsortedqh_mergecycle_facetsqh_mergeridgesqh_printfacet4geom_nonsimplicialqh_checkfacetqh_nextfurthestqh_printfacet3mathqh_baseverticesqh_nostatisticqh_eachvoronoiqh_triangulate_facetqh_printpointidqh_mark_dupridges__dso_handleqh_maydropneighborqh_furthestoutqh_setfree2qh_forcedmergesqh_setfreelongqh_versionqh_allstatDqh_order_vertexneighborsqh_allstatBqh_makenew_simplicialqh_newverticesqh_printpoint3qh_vertexintersect_newqh_allstatHqh_init_Bqh_printfacetNvertex_simplicialqh_allstatFqh_merge_nonconvexqh_neighbor_intersectionsqh_initthresholdsqh_setzeroqh_joggleinputqh_pointqh_mergecycle_neighborsqh_check_maxoutqh_vertex_bestdist2qh_prependfacetqh_freebuffersqh_reduceverticesqh_gram_schmidtqh_printafacetqh_initqhull_startqh_projectpointqh_skipfacetqh_getmergesetqh_checkdelfacetqh_findfacet_allqh_sharpnewfacetsqh_checkconvexqh_setuniqueqh_vertexridgesqh_setdelqh_getpinchedmergesqh_freemergesetsqh_facetarea_simplexqh_compare_facetmergeqh_optionqh_update_vertexneighborsqh_printstatlevelqh_getreplacementqh_pointfacetqh_appendvertexmergeqh_printfacetridgesqh_createsimplexqh_getdistanceqh_newridgeqh_errexitqh_buildhullqh_clearcentersqh_errexit2qh_getareaqh_detvridgeqh_detjoggleqh_tracemergingqh_test_degen_neighborsqh_removevertexqh_sethyperplane_detqh_printfacet3geom_nonsimplicialqh_redundant_vertexqh_dfacetqh_nextridge3dqh_addhashqh_replacefacetvertexqh_all_vertexmergesqh_printfacetlistqh_produce_outputqh_newstatsqh_printfacetNvertex_nonsimplicialqh_addpointqh_setdelnthsortedqh_neighbor_vertices_facetqh_facetareaqh_delridge_mergeqh_findbestnewqh_printvnormqh_printfacet2geom_pointsqh_copypointsqh_normalize2qh_printhelp_internalqh_printlistsqh_rename_adjacentvertexqh_initbuildqh_mergefacet2dqh_gethashqh_printfacet2geomqh_initqhull_globalsqh_point_addqh_sethalfspace_allqh_printfacet3geom_pointsqh_printvneighborsqh_findbesthorizonqh_meminitbuffersqh_compare_nummergeqh_printfacetheaderqh_remove_mergetypeqh_partitionpoint_DYNAMICqh_backnormalqh_makenewfacetsqh_checkdelridgeqh_memtotalqh_printsummary__pyx_module_is_main_scipy__spatial___qhullqh_setcheckqh_pointdistqh_projectdim3qh_compare_facetareaqh_partitionallqh_check_outputqh_setaddnthqh_printspheresqh_markkeepqh_memsizeqh_printfacet4geom_simplicialqh_findbest_pinchedvertexqh_printallstatisticsqh_build_withrestartqh_findgoodqh_initialhullqh_distroundqh_tracemergeqh_crossproductqh_findgooddistqh_printhashtableqh_findbest_ridgevertexqh_vertexsubsetqh_matchdupridgeqh_check_dupridgeqh_pointvertexqh_getcenterqh_version2qh_triangulate_nullqh_setreplaceqh_settempfreeqh_findbestfacetqh_zeroqh_mergecycleqh_nextfacet2dqh_setequalqh_newfacet__GNU_EH_FRAME_HDRqh_inthresholdsqh_nearcoplanar__TMC_END___GLOBAL_OFFSET_TABLE_qh_user_memsizesqh_makenew_nonsimplicialqh_initqhull_buffersqh_initialverticesqh_printneighborhoodqh_settempfree_allqh_printcentrumqh_triangulate_linkqh_triangulate_mirrorqh_outcoplanarqh_setdelsortedqh_setfacetplaneqh_neighbor_verticesqh_scalepointsqh_buildconeqh_freebuildqh_setprintqh_maxsimplexqh_printhelp_topologyqh_rotatepointsqh_detroundoffqh_renamevertexqh_clockqh_new_qhullqh_mergesimplexqh_buildcone_onlygoodqh_initqhull_start2qh_opposite_horizonfacetqh_collectstatisticsqh_renameridgevertexqh_appendprintqh_delvertexqh_findbestneighborqh_printextremes_2dqh_delridgeqh_appendfacetqh_produce_output2qh_infiniteloopqh_memcheckqh_getcentrumqh_meminitqh_drop_mergevertexqh_setappend2ndlastqh_printfacet2mathqh_clear_outputflagsqh_printhelp_singularqh_setappendqh_allstatAqh_initqhull_outputflagsqh_checkzeroqh_printpointvect2qh_allstatisticsqh_findbestlowerqh_setduplicateqh_findbest_test__ctype_toupper_loc@@GLIBC_2.3PyUnicode_FromFormatPyNumber_NegativePyObject_SetItemPyList_NewPyExc_SystemErrorPyType_FromMetaclassPyDict_SetItemStringfree@@GLIBC_2.2.5PyDict_SizePySet_Newlocaltime@@GLIBC_2.2.5PyException_SetTracebackPyMethod_Typestrncpy@@GLIBC_2.2.5_ITM_deregisterTMCloneTablePyGILState_ReleasePyFloat_TypePyTuple_TypePyObject_FormatPyErr_RestorePyList_AsTuplePyObject_ClearWeakRefs_PyThreadState_UncheckedGetstrcpy@@GLIBC_2.2.5PyModuleDef_InitPySet_SizePyEval_RestoreThreadPy_EnterRecursiveCallPyFrame_NewPyMem_Freeqsort@@GLIBC_2.2.5PyCapsule_GetNamePyNumber_InPlaceAddPyBuffer_Releasestdin@@GLIBC_2.2.5strtod@@GLIBC_2.2.5vsnprintf@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyObject_CallMethodObjArgsPySet_ContainsPyList_SetSlicePyImport_AddModulePyBytes_FromStringAndSize_PyObject_GenericGetAttrWithDictPyBytes_TypePyInit__qhullPyObject_SetAttrStringPyErr_WarnEx_Py_DeallocPyModule_NewObjectPyErr_NoMemoryclock@@GLIBC_2.2.5PyErr_SetObjectPyObject_GC_DelPyNumber_MultiplyPyLong_FromSize_tPyThread_acquire_lockPyArg_ValidateKeywordArgumentsPyObject_RichComparePyGC_Disablestrlen@@GLIBC_2.2.5PyImport_GetModuleDictPyObject_GC_TrackPyExc_RuntimeErrorPyCMethod_NewPyErr_GivenExceptionMatchesPyErr_SetStringstrchr@@GLIBC_2.2.5_PyObject_GC_NewPyException_GetTracebackPyExc_ExceptionPyExc_ValueErrorstrrchr@@GLIBC_2.2.5PyExc_DeprecationWarningPyExc_TypeErrorPyGILState_EnsurePyInterpreterState_GetIDPySequence_ContainsPyUnicode_AsEncodedStringPyTuple_GetItemPyErr_PrintExmemset@@GLIBC_2.2.5PyMem_ReallocPyErr_ExceptionMatchespow@@GLIBC_2.2.5strncat@@GLIBC_2.2.5PyOS_snprintf_Py_FatalErrorFuncPyTraceBack_HerePyLong_FromSsize_tPyFloat_FromDoublePyType_ReadyPyLong_FromLongmemcmp@@GLIBC_2.2.5fgets@@GLIBC_2.2.5PyLong_AsSsize_tPyObject_RichCompareBool_setjmp@@GLIBC_2.2.5calloc@@GLIBC_2.2.5PyModule_GetNamePyErr_ClearPyList_AppendPyCapsule_IsValidPyExc_KeyErrorPyImport_GetModule_PyUnicode_FastCopyCharacters_Py_FalseStruct__gmon_start__PyTuple_Newstrtol@@GLIBC_2.2.5freopen64@@GLIBC_2.2.5PyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyDict_DelItemmemcpy@@GLIBC_2.14PyType_Type_PyDict_SetItem_KnownHashPyType_ModifiedPyObject_SetAttrPySet_DiscardPyErr_Occurred_Py_EllipsisObjectPyLong_AsLongPyImport_ImportModule_PyDict_GetItem_KnownHashPy_LeaveRecursiveCallPyObject_VectorcallDictPyTuple_GetSlicePyDict_GetItemStringPy_Versionmalloc@@GLIBC_2.2.5fflush@@GLIBC_2.2.5_Py_NoneStructPyExc_ModuleNotFoundErrorPyExc_ZeroDivisionErrorPyObject_VectorcallPyFloat_AsDoublePyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectstrpbrk@@GLIBC_2.2.5PyThread_allocate_lockPyObject_HashPyThread_release_lockrealloc@@GLIBC_2.2.5_Py_TrueStructPyDict_SetDefaultPyDict_NewPyExc_IndexErrorPyBool_TypePyObject_GetBufferlongjmp@@GLIBC_2.2.5PyDict_TypePyDict_NextPyBaseObject_Typememmove@@GLIBC_2.2.5PyObject_VectorcallMethodPyLong_TypePyCapsule_TypePyGC_EnablePyErr_FetchPyUnicode_FromString_PySet_NextEntryPyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringPyModule_AddObjectPyUnstable_Code_NewWithPosOnlyArgsPyExc_ImportErrorPyDict_SetItemPyObject_HasAttrvfprintf@@GLIBC_2.2.5PyExc_AttributeErrorPySet_AddPyBytes_AsStringPyObject_IsSubclassPyExc_StopIterationPyExc_RuntimeWarningPyObject_ReprPyObject_CallPyUnicode_TypePyCapsule_NewPyType_IsSubtypePyUnicode_DecodePyErr_Formatsprintf@@GLIBC_2.2.5exit@@GLIBC_2.2.5PyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDictPyFrozenSet_Type_ITM_registerTMCloneTablePyLong_FromLongLongPyUnicode_FromOrdinalPyUnicode_ConcatPyNumber_InPlaceMultiplyPyNumber_IndexPyObject_GetAttrsqrt@@GLIBC_2.2.5PyCFunction_TypePyMethodDescr_Type_PyBytes_JoinPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5PyNumber_SubtractPyUnicode_NewPyThread_free_lockPyTuple_PackPySet_Typestrstr@@GLIBC_2.2.5PyNumber_PowerPyCode_NewEmptyPyNumber_TrueDividePyObject_GC_UnTrack__ctype_b_loc@@GLIBC_2.3PyErr_WriteUnraisablePyDict_GetItemWithErrorPyList_Typestderr@@GLIBC_2.2.5.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``$8 @00Ho''Uo((`d8)8)0?nBhhhhxs ~ۡ - - 0 0   H H P P X X ` ` P   h    8 0 / Ќ T‡R