ELF>F@@8 @x0x0@@@M M PPPaa @ hp ppppp$$ 00PtdQtdRtd   GNUMU1B!lA=wwTVy%)4 } 2:%Ky R ]?a, ;F"jj8qo5.U5(hF\'/ty@K$w:-xP0[]b u__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizesincosclog__muldc3cabs__divdc3cexpldexplog1pfexplclogf__mulsc3expm1fmodcoshfsinhf_PyArg_ParseTuple_SizeT_Py_NoneStructlog1pexpm1flogllog1plfmaasintanhatan_ZdaPv__gxx_personality_v0modffrexpcsqrtfmaxccoshcsinhcsinfmin_ZSt7nothrow_ZnamRKSt9nothrow_tcabsf__divsc3csqrtfacoslog10atan2asinhccosroundcpow_Znwm_ZSt20__throw_length_errorPKcPyErr_Occurred__cxa_guard_acquire__cxa_guard_release__cxa_atexit_Unwind_Resumesincosfsinf_ZnamPyExc_RuntimeErrorPyErr_SetStringmemcpyPyInit__special_ufuncsPyImport_ImportModulePyObject_GetAttrStringPyCapsule_TypePyCapsule_GetPointerPyModule_Create2PyModule_AddObjectRef_Py_BuildValue_SizeT_Py_TrueStruct_Py_FalseStructPyExc_ModuleNotFoundErrorPyErr_ExceptionMatchesPyExc_ImportErrorPyErr_Print_Py_DeallocPyErr_ClearPyErr_FormatPyExc_AttributeErrormallocfreePyGILState_EnsurePyExc_DeprecationWarningPyErr_WarnExPyGILState_ReleasePyExc_RuntimeWarningcexpfmemsetlog10fatanfcpowf_ZNSt8ios_base4InitC1Ev_ZNSt8ios_base4InitD1Ev__tls_get_addrPyOS_snprintfPyOS_vsnprintf_ZdlPv__cxa_allocate_exception__cxa_throw_ZNSt9bad_allocD2Ev_ZTVN10__cxxabiv120__si_class_type_infoE_ZTISt9bad_alloclibstdc++.so.6libm.so.6libgcc_s.so.1libc.so.6ld-linux-x86-64.so.2GLIBC_2.3GCC_3.0GCC_4.0.0GLIBC_2.14GLIBC_2.2.5CXXABI_1.3GLIBCXX_3.4 A ii V)0P&y ``Z' h70 rui }0ӯkt)ui }^[ ]((8P0XK`0KhK#,U###!?!@!A!B!C!D!E!G!H!I"K"L"M"N "O("P0"R8"S@"TH"UP"VX"W`"Xh"Yp"Zx"["\"]"^"_"`"a"b"c"d"e"g"h"i"j"l"m#n#o#p#r #s(#t0#u8#vHH}HtH5%@%h%h%h%h%h%h%h%hp%h`%h P%h @%h 0%h %zh %rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %h%h%h%h %h!%h"%h#%h$%h%%h&%h'p%h(`%h)P%h*@%h+0%h, %zh-%rh.%jh/%bh0%Zh1%Rh2%Jh3%Bh4%:h5%2h6%*h7p%"h8`%h9P%h:@% h;0%h< %h=%h>%h?%h@%hA%hB%hC%hD%hE%hF%hGp%hH`%hIP%hJ@%hK0%hL %zhM%rhN%jhO%bhP%ZhQ%RhR%JhS%BhT%:hU%2hV%*hWp%"hX`%hYP%hZ@% h[0%h\ %h]%h^%h_%h`%ha%hb%hc%hdjkLH.LHHmLHHHtHHHHtH(HtH Ht|eHLHHHtMHu0HHHt,HLFHL2HLHrL H^LHHHtHHHHtH(HtyH HthQHHHtMLHm(H"HHt"HHtHHtHHHtHnHHHtHHtHHtHHHHtqHH(HtXH HtGHHt6HHHt LH@HLH!HuL HaLHMLH9LH%LHLHLHLHLmHLYHLEHL1HLHqL H]LHHHtHHHHtyHHtxHHtgHHtVHHAHHHt(HHtH?H(HtH HMCLlHHXLHDLH0LHLHHLHHLx3H&HHHu7HLH;HHHtHHtHHtHDHHHtHHsiHHtsHHtbKHHHtGHH2HHHHHtHHt HHHtHHtHH(HtH Htz HH LHLHLyHLeHLQHL=HL)H}LHiLHULHALH-LHLHLHLHLuHLaHLMHL9 HL HHHtHHHHtH(HtH Ht LHH LHLHLyHͿLeH蹿LQH西L=H葿L)H}LHiLHULHALH-LHLHLHLH(HtHH H3L趾HNH袾L:H莾L& HHHtHH(HtH HtHHtH$LHLH(HtgH HRHѽLiH L贽HLH蠽L8HCHHHHHtHHtHHHtHfqHHHtmVHHHtRHּ/HHHt+HHtHHtHHtHHtHHPHtHLeHHXHtHhHtH`HthcHH Ht_L@H8Ht?H0Ht.H(HtHL螻H萻L(H|LHhLHTLH@LH,LHLHLHLHܺLtHȺL`H贺LLH蠺L8H茺L$HxLHdLHPLH<LH(LHLHLHLHعLpHĹL\H谹LHH蜹L4H船L HtL H`LHLLH8LH$LHLHLHLHԸLlHLXH謸LDH蘸L0H脸LHpLHWLHHHtHHHHtH(Ht|H HtkTOLHHӷLkH迷LWH諷LCHHHtH'HHHtH(HtH HtL@HH,LHLHLHLHܶLtHȶL`H诶LGHHHtH+HHHtH(HtH HtLDHH0LHLHLHLHLxH̵LdH賵LKHHHtH/H"H(HtH HtHHtLHHH4LH LH LHLHL|HдLhH輴LTH訴L@PeHnH5HHHHHH=H=HJH5=u'HF@ =u'H&@ =Wu:HH ;H@1 [[= u:HH$H@1 =t=tAHHRH; H@1 H&HSH@1 kg냐H=HH9tH6Ht H=H5H)HH?HHHtHHtfD=Iu/UH=Ht H=:h!]{f.ff.@Ht ff.@Ht ff.@Ht qff.@Ht Qff.@Ht 1ff.@Ht ff.@Ht ff.@Ht ff.@Ht ff.@Ht ff.@Ht qff.@Ht Qff.@Ht 1ff.@Ht ff.@Ht ff.@Ht ff.@Ht ff.@Ht ff.@Ht qff.@Ht Qff.@Ht 1ff.@Ht ff.@Ht ff.@Ht ff.@HHH51HL$ HT$A1Ett$ |$H{Hff.U1H1SHCvu f('EH[]ff.f.~ff/wTf.OE„u-f.PD„uf.z=u;HPfHnf(ff(f(f.f(fWzf(@H(H|$Ht$D$oD$L$fW ^\L$H(^f(@f(f.ATIUSHg ohP$G@d$Xg(fW |$HHDd$`g0Dg|$PDO`f(d$h%^NDwDGXL$XD$xt$pf(\w8$f(fE(fA(\$HAXf(YA\AYA\XT$Pf(f(AYY\Xf.fD(fD(f\$Xf(T$`*Dl$pXXDX^YDXf(^DXf(A^fD(DXf(XD$hXXD^Y^$EXfE(YY\$xDYf(Yf(YD\fA(YXfD.BX4$Xl$fA(T$@fA(Dt$8DL$0DT$(Dd$ Dl$4$l$L$D$$YOMHLf/D$Dl$Dd$ DT$(fHnDL$0Dt$8T$@wZ9"Al$hfE11fEfDE$EL$H=El$XLHĐ[]f(A\fEfEfDAl$h$L$E$EL$El$XHĐ[]A\f(f(fA(D$DL$@DT$8Dd$0D|$(D\$ t$l$YDL$@D$DT$8Dd$0fD(f(D|$(D\$ t$l$,\$Hf(fA(Dt$8DL$0DT$(Dd$ |$DD$HJDt$8DL$0|$fD(fD(DT$(Dd$ f(f(DD$fHnfff.@xJf(f(fT%Xf/vf(H`H^f(H f/HYXH YXHYXH YXHYXH YXHYXH YXHBYXYXYXHV`HGYH HXYXH YXHYXH YXHYXH YXHYXH YXHYXYXYXYXB^f(Ð_\YX kYXf~Hf~H H fHnff.\_YYX HXff(f(HHY $f(\$L$d$D$(T$(f(fWMhd$L$Yd$\$(Y $XXf(Xf(D$0D$0\D$8T$8D$0HH\ff.f(Xd$d$\d$d$\T$T$d$\T$f(DD$|$Xd$A\T$T$X\T$T$\\$T$\$\T$t$l$T$\Xf(XXT$T$\T$\$T$\Xf(XD$D$\D$T$D$\ff.fAUIATIUHSHHHf/I f(If/&f/ LDGwF11fD(f(~5R-BIDYfD(f(f(f(AYYXY^X^^X^XfD(D^DXfDTfD/wD% MD MAYEYDY Ef(AXDLA^aHAYfA(A<$A^f(X@Y^X^XY^DX^XXfD(D^fDTfD/wEYAYtDXEYDMHH[]A\A]@fA(\ff(A\AE@ff. f(Qf(L$D_EXl$DD$YA^f($gl$f$DD$L$f(f.Qf(SD5JXf(^IYYYXIX5IYYXIX5IYYXIX5IYYXIX5IYYX{IX5IYYXkIX5IYYXX^5FY^=IYX=IYX=IYX=IYX=IYX=IYX=IYAUIYXIXYXIYX IYX IYXIYXIYX^=-IY^Yf/ I, IYf(\'IYX IYXIY\ HY\IYX HYXHY\ HY\HY^f(\IYXHY\HYXHYXYY^A $ HY\ HYX HY\ HYX HYf(\ H^XY]Pf. pD~-@f(fWMQY Aff.Y^ ACQDAoDd$(H|$8D DDHt$0DCD^D^fA(AYDYXD\ CYXkDYDYX DD\ CYXMDYDYXCD\ CYX/DYDYXCD\ CYXDDT$ YDYXCD\ hCYXCYDYXCD\ JCYXCYDYXmCD\ ,CYXCYDYXOCD\ NCYYDYXACD^DX ?DL$XlCtCX ADD$XT$YXGCYXKCYXCYX;CAYYX2CYX.CYX*CYX&CYX"CYXCYX"C^f($$DL$|$0t$8fA(f(DT$ T$YYDYY\ BYAXAYX BAYYX BAEBXYA$X BYXBYX BYXBYX zBYXBYX jBYXBYX ZBYX~BYX BYXnBYYXfBYXjB^fBY\bBY\^BY\ZBY\VBYX J=\JBjBDD$d$(Y%5@XY~-\BYX9BYfW\ BYX%BY\AYXBY\AYXBY\!BYXAAYYXAYXAYXAYf(XAY^f(YYYX\YYuHH[]A\A]x<HHf( $W $f(f( $; $f(f( $ $f(D$f(DD$L$$L$d$DD$$f(ff.@ff.@ff.@ff.@ff.@ff.@ff.@ff.@ff.@ff.@ff.@ff.@ff.@ff.@ff.@H8f($ff.zuf/wq<Y $H|$(Ht$ D$f(D$Y$\$ t$(\$t$\$L$H8f(YYf(Df(WfH8f(f.fH8f(f/f(.Bf/r_5=:f(f(fTf.v3H,fu9fUH*f(fT\fVf(f.A9f/w;f/vE-]9f/v7\f(^f/Xwf(^X\f/r9f/Af/f(%AY^f(Y\AYXAY\AYXAY\AYXYD$f(T$L$k8L$T$^\\D$XH8d$H|$(D$fL$f.Y8L$9L$f77@\^f(fDY,у~,7@ff(*ȃ^X9u\58H8f(@f1ҾH=17 f(f( ??\\%?\%?\%?YX ?Y\?YX ?Y\|?YX ?Y\l?YX ?Y\\?YX ?YX|?YX^YY%l?H8XXff.@Vf(HGHTffDf(f(f(HY\X@H9u\Y*6ÐHUHSHHحèuu2uHu^H[]fD1HHt1H:Hgt1H8HLtHHH01[]+ff.AWGAVAUATUHSHHDŽ$HDŽ$v&ff(HĘ[]A\A]A^A_fDAHD$ L$(#-4fD(f/%5f/d$f(fA(A^AYf/|$ t$(f(f(YYYf(\Xf. |$(t$ f(f(YYYY\fH~f(XfHnf.f(C AYH3fD4DL$0=@D5p@H$5o@fLnfD(fLnfI~fLnID$fE(fD(fI~1@X=8@DX5/@Ff(fD(fD(fD(fHnfA(f(^^f(AYYf(AY\f(YXf.^$fHnA^X$\$X\$fA(A^f(fD(AYEYf(AY\f(AYAXf.bfInEXXA^fInXfE(D]fI~fInXfI~DYD$AYfA/fIn~"f(%^9DL$0fWfWYYf.D$DL$fD/ >f(fD/ >vED$ L$(t$|$ t$(f(f(f(f(YYYY\f(t$Xf.`ff/|$ 0>f(|$(YYpf.F@f/l$ 4@f=t2H1E1-=fLn|$f(f5=f/|$(=DH$DD$F DD$D~ Vf/<|$ t$(f(f(YYYf(\Xf.^|0 l7fYYYY\X7X/fEf(fDff/*f/|$ Av-<f/"Y52f(D~ %<fAW\f/D0A%k<0DH$D) $DD$jfD( $DD$ K<|$($t$ $fAWYfAWYEf(f(f(YYY\f(YXf.f(f(f(f(賿fDfH~%1HD$H$-6;fD/L$|$ T$(f(f(YYYf(\Xf.I|$D4$f(fA(YYY\fA(YXf./5 /.YYYYXXf(f(AD$ L$(,$d$|$ t$(f(d$,$f(f(YYYY\Xf. <:,$d$YY|,$d$f(f(f(f(f(YYY\f(YXf.f(f(f(f(D9ff.z @fVA9f/Y5|/-9\f/ff(E|@AYAYf(Yf(f(YY\f(YXf.VA^A^-DfIn~ f(%/3DL$0fWfWYYUt#ff(Efff(DH+E1D~ ufLn=,A|$fD(f(cH_+-G8E1D~ +fLnf(fA(fA(DL$xDt$p|$hDT$`DD$Xt$PD\$Hl$@d$8DL$xDt$p|$ht$Pf(DT$`DD$XD\$Hl$@d$8 f(fA(Dl$xDL$pDd$hDt$`|$XDT$PDD$Ht$@D\$8TDl$xDL$pDd$hDt$`f(f(|$XDT$PDD$Ht$@D\$8 L$(D$ t$T$ f(f(f(׺f(f(f(f(DD$f(貺DD$L$(D$ $$DL$艺$$DL$fH~f(T$ f(f($$DL$f(L$$DL$f(f(\$f(fA(l$0d$l$0d$f(f(f(T$ l$0f(d$f(׹l$0d$f(f(D$ L$(譹,$d$f(-fAVGAUATIUSHHDŽ$HDŽ$v(ff(HĐ[]A\A]A^f.HD$ L$(脹5(f(f/5V)f/t$0f(f(^Yf/t$(|$ f(f(YYYf(\Xf. t$(|$ f(f(YYYY\f(XD$f.fI~ YHV'D%1AD5N4D-1HD$fLnfHnD54IfLnfE(fH~ff(d$fD(4fDDX-3DX53Af(fD(fD(f(T$fInA^A^f(f(AYYf(Y\f(AYXf.{D$fMnfInE^XfI~\$X\$A^fA(fA(YAYf(AY\f(YXf.~fHnEXEXd$A^XXfE(E]d$DYD$0AYfA/f(\$(D$ fIn%,YYYYd$T$(L$ YY\Xf.H,YY\\f(f(̃D$ L$(l$d$(t$ |$(f(d$l$f(f(YYYY\Xf. 1l$d$YYl$d$f(f(f(YYY\f(YXf.3f( f.D$d$f/%'1fD(f/%1vA$D$ L$(DL$"t$ l$(f(fD(DL$f(f(AYYYAY\f(Xf.iff/t$ 0f(t$(YYf.2,f/d$  f5$H}#E1-Z0fLnt$0f(ff/t$(=0H$5 0P-DD$|$FDL$ DL$|$DD$?ff/.)T$ L$(YY)fW \CDA$fHĐf([]A\A]A^fff/f/t$ -5/f/SDY %f(fW/A\f/D v"A%.9# ,H$DD$|$DL$ЏDD$|$DL$ .$$YYEfA(f(fA(YYY\f(YXf.fA(f(f(f(%fH%!D$ \$(-1(f(HD$o( #f.z L@fV;-f/)DY #--D\fD/ff(A$fAYfA(AYf(Yf(YY\fA(YXf.DA^A^tff(A$ff(DHE1fLn@5!At$0fD(f(KH-,E1fLnfA(f(fA(t$xD\$pDT$hDL$`Dd$XDt$PDl$H|$@l$83t$xD\$pDT$hDL$`f(Dd$XDt$PDl$H|$@l$8fA(d$xt$pDD$hD\$`DT$XDL$PDd$HDt$@Dl$8觯d$xt$pDD$hD\$`f(f(DT$XDL$PDd$HDt$@Dl$8L$(D$ fA(f(DL$DD$|$/DL$DD$|$PT$L$(f(d$D$ l$d$l$fA(f(f(DL$f(DL$L$(D$ l$d$蘮l$d$D$fI~+\$(f(f(l$d$f(Yl$d$f(f(f(f(f(/f(f(D$ L$(l$d$f(*ff.AVfAUATUHSHPf/w&f.ǹEf.E!ЍWȃvE1HP[]A\A]A^fMuHIIT$D$ $` $D$AŋET$tuH5$T$L$辬IH$L$IT$fۺHD$ $ؘU $D$t&t!1L$$HP[]A\A]A^@H|$HHt$@ $ $~%v-f(\$@f(T$HXf(T$fTf/H$~-"$fEfWfD/f(Y|$Y$T$AA^l$8t$0f(f(\$(fTfTT$ 訬%`(T$ \$(t$0f/l$8~%=r =YYf(f(fD(YYDY\f(YAXf.YA\$A$Y\$(T$ fH~f(fTfTfH~f(5'%T$ \$(f/r[%3YYl$|$f(f(YYYY\f(Xf.YfHnYfHn\\ff(Yf(YY\fYXf.]fff.A$e_,$f.Ef.E!9AnA\l$fA&A\$$f(Yf(YY\fYXf.A9fANA$fYf(\$mD~-PL$8T$0fW\$(\$ )l$f(l$t$ \$(T$0$L$8~%E1Vff(f(ĉ$$Bf(f(fd$l$èd$l$uL$D$d$ 蛨d$ f(f(|$ }~%u|$ %f.fH8f(f.f/xf/-VH o H^\f( ff(f(f(HY\X@H9u\f. YtQ^H8f(`1ҾH=1腯H81ҾH=o1[H8fDf(T$YY\L$T$Hbf$AL$f(fT5fHnf/- H)HY\f(f(f(HY\XXH9uf(T$(\$ d$L$t$W\$ d$t$L$\YT$(YY\$ %f(f(T$Y\%YX\Y\\yf(Y\\%mf(Y\\af(Y\\Uf(Y\\%If(Y\\=f(Y\$\\+Yf(\L$DL$X \$f(T$f( $\YiYL$ H8^XYf.f(T$L$t$բt$H(f=$fD(L$fHnHT$^H\f( ff(f(f(HY\XhH9u\Y-f.AYw3Qf(^l$ f( $貧 $f(tf(T$l$L$艧T$l$L$f(뢐f( f(\p\\l\lYX Y\dYX Y\TYX xY\DYX hY\4YX XYXTYX^YYDXff.@Hf((f/f( Y^f(Y\YXY\YXY\YXY$f(L$JL$^\\$Hf.f,$Df.w~f.zxf.zu f.8{YfuH1Ҿ1H=D$ߩ~ zD$fWfTfVq{H@,cåHXHcHf(\ yCyCYXuCYXqCYXmCYXiCYXeCYXaC\ BBYXBYXBYXBYXBYXBYXB\ GBGBYXCBYX?BYX;BYX7BYX3BYX/B\ AAYXAYXAYXAYXAYXAYXA\ AAYXAYX AYX AYXAYXAYX@\ |@|@YXx@YXt@YXp@YXl@YXh@YXd@\ ??YX?YX?YX?YX?YX?YX?\ J?J?YXF?YXB?YX>?YX:?YX6?YX2?\ >>YX>YX>YX>YX>YX>YX>\ >>YX>YX>YX >YX>YX>YX>\ ==YX{=YXw=YXs=YXo=YXk=YXg=\ <<YX<YX<YX<YX<YX<YX<\ M<M<YXI<YXE<YXA<YX=<YX9<YX5<\ ;;YX;YX;YX;YX;YX;YX;\ ;;YX;YX;YX;YX ;YX;YX;\ ::YX~:YXz:YXv:YXr:YXn:YXj:\ 99YX9YX9YX9YX9YX9YX9\ P9P9YXL9YXH9YXD9YX@9YX<9YX89\ 88YX8YX8YX8YX8YX8YX8\ 88YX8YX8YX8YX8YX 8YX8\ 77YX7YX}7YXy7YXu7YXq7YXm7\ 66YX6YX6YX6YX6YX6YX6\ S6S6YXO6YXK6YXG6YXC6YX?6YX;6\ 55YX5YX5YX5YX5YX5YX5\ !5!5YX5YX5YX5YX5YX 5YX 5\ 44YX4YX4YX|4YXx4YXt4YXp4\ 33YX3YX3YX3YX3YX3YX3\ V3V3YXR3YXN3YXJ3YXF3YXB3YX>3\ 22YX2YX2YX2YX2YX2YX2\ $2$2YX 2YX2YX2YX2YX2YX 2\ 11YX1YX1YX1YX{1YXw1YXs1\ 00YX0YX0YX0YX0YX0YX0\ Y0Y0YXU0YXQ0YXM0YXI0YXE0YXA0\ //YX/YX/YX/YX/YX/YX/\ '/'/YX#/YX/YX/YX/YX/YX/\ ..YX.YX.YX.YX~.YXz.YXv.\ --YX-YX-YX-YX-YX-YX-\ \-\-YXX-YXT-YXP-YXL-YXH-YXD-\ ,,YX,YX,YX,YX,YX,YX,\ *,*,YX&,YX",YX,YX,YX,YX,\ ++YX+YX+YX+YX+YX}+YXy+\ **YX*YX*YX*YX*YX*YX*\ _*_*YX[*YXW*YXS*YXO*YXK*YXG*\ ))YX)YX)YX)YX)YX)YX)\ -)-)YX))YX%)YX!)YX)YX)YX)\ ((YX(YX(YX(YX(YX(YX|(\ ''YX'YX'YX'YX'YX'YX'\ b'b'YX^'YXZ'YXV'YXR'YXN'YXJ'\ &YX&YX&YX&YX&YX&YX&\ 8&8&YX4&YX0&YX,&YX(&YX$&YX &\ %%YX%YX%YX%YX%YX%YX%\ %%YX%YX$YX$YX$YX$YX$\ m$m$YXi$YXe$YXa$YX]$YXY$YXU$\ ##YX#YX#YX#YX#YX#YX#\ ;#;#YX7#YX3#YX/#YX+#YX'#YX##\ ""YX"YX"YX"YX"YX"YX"\ " "YX"YX"YX!YX!YX!YX!\ p!p!YXl!YXh!YXd!YX`!YX\!YXX!\  YX YX YX YX YX YX \ > > YX: YX6 YX2 YX. YX* YX& \ YXYXYXYXYXYX\  YXYXYXYXYXYX\ ssYXoYXkYXgYXcYX_YX[\ YXYXYXYXYXYX\ AAYX=YX9YX5YX1YX-YX)\ YXYXYXYXYXYX\ YX YXYXYXYXYX\ vYXrYXnYXjYXfYXbYX^\ YXYXYXYXYXYX\ LLYXHYXDYX@YX<YX8YX4\ YXYXYXYXYXYX\ YXYXYXYX YXYX\ YX}YXyYXuYXqYXmYXi\ YXYXYXYXYXYX\ OOYXKYXGYXCYX?YX;YX7\ YXYXYXYXYXYX\ YXYXYXYX YX YX\ YXYXYXYX|YXxYXt\ YXYXYXYXYXYX\ ZZYXVYXRYXNYXJYXFYXB\ YXYXYXYXYXYX\  (YX$YX YXYXYXYX\ YXYXYXYXYXYX\ YXYXYXYXYXYX\ mYXiYXeYXaYX]YXYYXU\ YXYXYXYXYXYX\ CYX?YX;YX7YX3YX/YX+\ YXYXYXYXYXYX\ YXYXYX YX YXYX\ YXYXYX|YXxYXtYXp\  YX YX YX YX YX YX \ V YXR YXN YXJ YXF YXB YX> \  YX YX YX YX YX YX \ , YX( YX$ YX YX YX YX \ [ YX YX YX YX YX YX \  YX YX YX YX YX YX \ y YXu YXq YXm YXi YXe YXa \  YX YX YX YX YX YX \ W YXS YXO YXK YXG YXC YX? \ N!N!YXJ!YXF!YXB!YX>!YX:!YX6!Df/f(rJf/v f/!^DX X`^ f/wbH f(Yf/L$|L$f(\X^NH\f(Ðf(YP XXYXD YXYY^{HXf.f(fWtVf(f(Y f/Hf/ rr@f/YXYXHYDf/ $wf(z$D$f(YD$\Hff/ rFDf(L$zL$$f( $YH\ff.@f(Yf/Hf/ Vf(fW"U $f(Yr+y $D$f(:YD$HT$yT$$f(  $YH\ff/rDff.@,dHHcHf(66YY\6Y\Y\Yf(X;6 ;6f(\Y\f(Y\6Y\6YX6Y\6YX6X5 5f(\FY\f(Y\~5Y\z5YXv5Y\r5YXn5X4 4f(\Y\f(Y\4Y\4YX4Y\4YX4XX4 X4f(\Y\f(Y\<4Y\84YX44Y\04YX,4X3 3f(\KY\f(Y\3Y\3YX3Y\3YX3X3 3f(\Y\f(Y\2YX2YX2Y\2YX2Xu2 u2f(\Y\f(Y\Y2YXU2YXQ2Y\M2YXI2X1 1f(\PY\f(Y\1YX1YX1Y\1YX1X31 31f(\Y\f(Y\1YX1YX1Y\ 1YX1X0 0f(\Y\f(Y\v0YXr0YXn0Y\j0YXf0X/ /f(\UY\f(Y\/YX/YX/Y\/YX/XP/ P/f(\Y\f(Y\4/YX0/YX,/Y\(/YX$/X. .f(\Y\f(Y\.YX.YX.Y\.YX.X. .f(\ZY\f(Y\-YX-YX-Y\-YX-Xm- m-f(\Y\f(Y\Q-YXM-YXI-Y\E-YXA-X, ,f(\Y\f(Y\,YX,YX,Y\,YX,X+, +,f(\_Y\f(Y\,YX ,YX,Y\,YX+X+ +f(\Y\f(Y\n+YXj+YXf+Y\b+YX^+X* *f(\ Y\f(Y\*YX*YX*Y\*YX*XH* H*f(\dY\f(Y\,*YX(*YX$*Y\ *YX*X) )f(\Y\f(Y\)YX)YX)Y\)YX{)X) )f(\Y\f(Y\(YX(YX(Y\(YX(Xe( e(f(\iY\f(Y\I(YXE(YXA(Y\=(YX9(X' 'f(\ Y\f(YX'Y\'YX'YX'Y\'YX'X' 'f(\ Y\f(YX&Y\&YX&Y\&Y\&YX&XR& R&f(\V Y\f(YX6&Y\2&YX.&Y\*&Y\&&YX"&X% %f(\ Y\f(YX%Y\}%YXy%Y\u%Y\q%YXm%X$ $f(\ Y\f(YX$Y\$YX$Y\$Y\$YX$X3$ 3$f(\7 Y\f(YX$Y\$YX$Y\ $Y\$YX$X~# ~#f(\ Y\f(YXb#Y\^#YXZ#Y\V#Y\R#YXN#X" "f(\Y\f(YX"Y\"YX"Y\"Y\"YX"X" "f(\Y\f(YX!Y\!YX!Y\!Y\!YX!X_! _!f(\cY\f(YXC!Y\?!YX;!Y\7!Y\3!YX/!X  f(\Y\f(YX Y\ YX Y\ Y\~ YXz X f(\Y\f(Y\Y\YXY\Y\YXX@ @f(\DY\f(Y\$Y\ YXY\Y\YXX f(\Y\f(Y\oY\kYXgY\cY\_YX[X f(\Y\f(Y\Y\YXY\Y\YXX! !f(\%Y\f(Y\Y\YXY\Y\YXXl lf(\pY\f(Y\PY\LYXHY\DY\@YX<X f(\Y\f(Y\Y\YXY\Y\YXX f(\Y\f(Y\Y\YXY\Y\YXXM Mf(\QY\f(Y\1YX-YX)Y\%Y\!YXX f(\Y\f(Y\|YXxYXtY\pY\lYXhX f(\Y\f(Y\YXYXY\Y\YXXf(\ B*Y\&YX"YXY\Y\YXXf(\ YXY\YX}YXyY\uY\qYXmXf(\ YXY\YXYXY\YXYXXf(\ o/YX+Y\'YX#YXY\YXYXXf(\ YX~Y\zYXvYXrY\nYXjYXfXf(\ YXY\YXYXY\YXYXXf(\ H(Y\$Y\ YXYXY\YXYX Xf(\ {Y\wY\sYXoY\kY\gYXcYX_Xf(\ Y\Y\YXY\Y\YXYXXf(\ A!Y\Y\YXY\Y\ YX YXXf(\ tY\pY\lYXhY\dY\`YX\YXXXf(\ Y\YXYXY\Y\YXYXXf(\ :YXY\ YXYXY\Y\YXYXXf(\ QYXMY\IYXEYXAY\=Y\9YX5YX1Xf(\ YXY\YXYXY\|Y\xYXtYXpXf(\  Y\ Y\ YX YX Y\ Y\ YX YX Xf(\ V Y\ Y\ YX YX Y\ Y\ YX YX Xf(\ M Y\I Y\E YXA Y\= Y\9 Y\5 YX1 YX- Xf(\  Y\ Y\ YX Y\| Y\x YXt YXp YXl Xf(\ + Y\ YX YX Y\ Y\ YX YX YX X   f(\bY\f(YX Y\ Y\ YX YX YX Xa  a f(\Y\f(YXE YXA Y\= Y\9 YX5 YX1 YX- X f(\Y\f(YX|YXxY\tY\pYXlYXhYXdX f(\3Y\f(YXY\Y\Y\YXYXYXX f(\rY\f(YXY\Y\YXYXYXYXX= =f(\Y\f(YX!Y\Y\YXYXYX YX Xt tf(\Y\f(YXXY\TY\PYXLYXHYXDYX@Xf(\ ?YXY\Y\Y\YXYXYXYXXf(\ YXY\Y\YXYXYXYXYXXf(\ Y\Y\Y\YX YX YXYXYXXf(\ \Y\XY\TY\PYXLYXHYXDYX@YX<X f(\Y\f(YXYXYXYXYXYXX f(\Y\f(Y\YXYXYXYXYXYXX) )f(\Y\f(YX YX YXYXYXYXYXX` `f(\Y\f(YXDYX@YX<YX8YX4YX0YX,Xf(\ kYXYXYXYXYXYX{YXwXf(\ YXYXYXYXYXYXYXYXXf(\ EYXYXYXYX YX YXYXYXXf(\ \dYX`YX\YXXYXTYXPYXLYXHXf(\ OYXYXYXYXYXYXYXXf(\  YXYXYXYXYXYXYXXf(\ ]YXYYXUYXQYXMYXIYXEYXAXf(\ YXYXYXYXYXYXYXXf(\ YXYXYXYXYXYXYXXf(\ fVYXRYXNYXJYXFYXBYX>YX:Xf(\ YXYXYXYXYXYXYXXf(\ lYXYXYXYXYXYXYXXf(\ gOYXKYXGYXCYX?YX;YX7YX3Xf(\ RYXYXYXYXYXYXYXXf(\ YXYXYXYXYXYXXf(\ dYX`YX\YXXYXTYXPYXLXf(\ [YXYXYXYXYXYXXf(\ 2YX.YX*YX&YX"YXYXXf(\ YXYXYXYXYXYXf/f/v`f/f(Yf(\f(\ YXYX bY :Y^f(D h Xf(f(^f(O H f/v* B f/^ ^f(f(~%|'\ fW^f(fWf(fDf(Yf/ v&f/ ^vؽHL$KL$f(f(HYff.fkYs fSff(f(Hf.ff.5 f/"f/ļL$ \$Y|$$,Q$f.wf(HfW%<&|$\$L$ fHnQ f(^%;Yd$hf(Y$$6f($\$fH~YfW%f(JfHnH[$f($H[f(f- T$h $f(fD(f(fDTG%fD/VfT%6%f/%Bf/@f. f.  f/f(XD-YH ˉDʺ\$PfA(fE(D$fA(fE(D\$fE(L$XY\fA(Y{T$@D\`YD\$HYDX\fA(YDY\fA(EXDYYEX\f(Dt$fE|$ f(fE(fE(YfE(|$0=|$8,ffEf(AYD*HDYL$ *Y$XT$0DYD$AY^T$8Yf(f(DXAYAYYDXf(YDXDYYXT$@YXT$YfA(YAYf/DXD~="\$PDT$fEL$X)|$ f/  f(\$`d$XDt$PDd$@D|$8Dl$0 $YD$H $Dl$0D|$8Dd$@Dt$Pd$X\$`T$hf(f/ &f(XYYAY\ f(|$xYDt$`$Dd$XD|$Pd$@f(L$8t$0l$pLl$p$f(H|$xt$0d$@Yd$hYf($fT!Yd$H-L$8D|$Pf/Dd$XDt$`$YY T$YY\YfA(A\X$fl$hD$Y$f(|$ AXfT%!fTfVYYY$H[Xf(XfDfD/׹w%f/%f/%Gfff/f(AXf/QK[Y%K[k AY5nt$XX%,^%X(f(fTf.v+H,ffUH*f(fT\f(fV\T$fA(f(5 D YfA/vD@f(f(YYXf(\^fA/YYf(f(\AXwf(f(YYX^YYff/Hf(f([ff/fA/fD.ֵ f. ff/ ff(;f(fW==Hѷ%afHnfA(DXd$\X$YAYH$d$ffXff\)$$L$H[f.f(f(f(YXfA(YAY\\ZYf(Yf(YX"^f(YAYXf(Y\YYl@f. f.l~=T$@L$8)|$ fWf(\$0Yl$d$`Bd$l$$\$0=f(5QD-X^L$8$T$@Dl$X=fD(D$fTf.v0I,ffAUH*f(AfAT\fVD$|$L$8$Y\$pl$Pf(|$0\f(fWD$ L$XYfA|$L$8l$Pf(f(L$HY|$0l$0YY4$f(\$`X^YD$@f(YYD$Xd$8@|$ft$l$0D$xd$8\D|$@\$pf($l$f/L$H $f($T$p#fL$f*\f/=t$d$P|$HXYD$D|$@XD$XL$8t$0YfWD$ @t$0$$l$`L$8fD(fD(|$HD|$@DYY|$xDYDYDXA^fD(DYDYd$PDXE^Yf(D$pAXDYDXAXYt$XYf/$f$T$2ffA(fA(~^YX^YDfD/e@f(T$HXL$@\$8l$0f(d$$Y>=d$$~5l$0f(\$8fD(T$H^|$)t$ f/$ $fW$L$@)f(f(fD(5YfE$$fE(fE(Dt$$$$Y\f(f(YY$=\|$@=|$8t$H fDf$DT$xD\$pDt$`D|$X*Dl$PYl$0U=l$0f$Y,$*DT$xYD$Hf(Dl$PD\$pD|$XDY$Dt$`DY$X$f(^l$8YY$f(YYXl$@YXl$Yf(DXAYXL$L$f(YAYYDXYDX$AYf/$T$0fE$$e@f(fD(|$xDYDt$pDd$`D|$XL$P\$@fA(DD$8,$A,$H$H$D$0f(5?,$D D$h\$@f(fT$Yd$0D$fD/DD$8L$PYD$HD|$XDd$`Dt$p|$xYD`T$DYDYA\YfA(YYY\fA(fT-fD/%AYDYd$A\YX$fA(A\Df(T$0L$pYd$`Dt$XDd$PD|$@Dl$8\$f(`:L$pd$`XDt$XDd$PD|$@Dl$8$f.$|$P$|$x|$p|$HfDfd$@*YD$fD|$8*XD$XXt$YfWD$ t$09t$0d$@f(D|$8f(YY$XD$`Yt$^D$HYDXXYf/bf\$PL$xT$f(f(%`A^YAX^YD^A^fDfA(^~=L$0\$@)|$ fWf(l$Yd$8l$d$D$Hf(l$8Xf(Yo8L$0=fEd$l$8fD(иfD(f($H5D^d$8fD(d$HY $fD(fE(|$fE(fE(H xfA(t$0fHnEY‰fEYY*YXT$0^f*HYf(DXAYAYDXYXYDXDXfA(Yf/v=L$d$8\$@ $$if(f(T$XfWL$Pf(\$@Yl$8d$06L$PfE|$l$8d$0D$HfE(f(\$@T$XfD(YfE(fE(Dt$l$x$$$$$ f$DD$p|$`Dt$XDd$P*D|$@Dl$8Yt$06t$0Y4$$YD$HDD$pDl$8DY$f(D|$@Dt$XDd$PX|$`Y$^t$f(DXAYYXDXt$f*Yt$xYY$DXDXAYf/=T$0$$$$Hf(f(r\$PL$xT$Hf(T$ L$\$<$c:T$ <$L$H;f(\$fHnf(f(fWff(ff(f(H(f.zBu@f(Yf/f/ hf(H(f.zrupf(Yf/|f/f(f(d$fW Y3d$D$f(T$fYf(f(H(Ðf(f(X\Y Df/vff/f(sܤf(fDL$e3l$f(f(fW5Zf(YD f(T$Y d$l$YQ8d$fl$T$L$f/D$rifW- f(f(\$|$f(f(Yf(f(YY\f(YXf.f(Af~5x f(fWf(|$\$f(~5O f(f(Yf(YY\f(YXf.zvif(fW\L$1L$D$f( YD$f\f(f(3f(f(f(f(3~5 f(f(hff(ff(H8f.z2u0f( $Y$$fW%E f(H8@f.zrupf( |Yf/6f/f(l$d$ 0d$ $f(# $l$\Y lf(H8=f(f/f(\XYf(YY.f/v(~ f(fTf/fTf/f(f(f|$(t$ kt$ |$($L$f(f(W5f(\$$f(\D$fW YYf( 8f(YX YX ܠH8Yf/%X~  :f(fTf/fTf/f(f(YYf/54f/5f(Z zXYf(YYYYX\\YXf(B\ ¬Y^\Y\Y^xff(f(f(fD(YYXoYYDY\f(YAXf.xXwf(f(YYf(Y\f(YXf.f(f((0fW% l$ T$f(3T$$f(- $l$ \f.lf(qf(f(d$(,$2,$d$(fD$ffW-L$ ),$$L$f(\d$f(\D$ fW;YYf(f.f($$fD(f($$DY3AYDYfD(fD(fD(DXDY\ fA(YYY\\fA(XAYY\AYYXAYAYDX YAXDW\f(YY\\fA(Y\AY\fA(D\\XAYf(5\f(DYA\YAXXYu Ɯf(D qiY\YYYX YA\^f(\YfD( X\XYX \\YY\YAYA\XYAYf(f(f(f(d$f(,$,d$,$f(f(Pff.@ff(f(HHf.z:u8f(Yf/f/ ޛf(HHf(f(X\Yf/vf/Bf(HH=f/YYf/v(~ f(fTf/fTf/f(H|$8Ht$0t$l$(d$ -d$ fl$(fW-|$0\$8f(f(|$\$|$\$t$f(f(f(YYY\f(YXf.f(T$l$(T$%l$f(YYfW \f(tL$d$(l$f(f(<d$Yf(9f @#f(Wf/%~b f(fTf/fTf/f(f(d$ Yl$Yf(T$\$'l$f(f(vT$DOf(cD \$DYd$ YXEYf(YYEXAYX;XDYY=2YYfD(E\\AXYY\Yf.f(f(f(fD(YYXYYDY\f(YAXf.Xf(f(YYf(Y\f(YXf.If(f((7f.fW%~f(ft$(|$f(|$D$ f(L$|$,|$D$f(k'\$DD$ L$f(t$(AYf(f(YAY\f(YXf.zhf(l$d$%d$l$f(Y\%іYf(Hf.zuDf(/3f(f(fA(t$v't$f(f(qf(f(f(l$f(d$B'l$d$f(f(:f(t$'t$f(f(H~f(f(f(fW/~Hf(f(fWf(fȕf(f(fT%f/^f(JHHP^f(YHf(XH4f/H HYXfUYYXH YXHYXH YXHYXH YXHYXYXYXYXBHOHJHFHXH4H HYXYXH YXHYXH YXHYXH YXHYXYXYXYXB^f(Ð`HO% Ж-YXY^f(XXYXX%f(%Y^ ,XYX XhY^X\Y^TYX%$YX%X^%4YX%PXY^%<YX%XY^%,YX%XY^XY^f(X@YYX^YXX Y^X YYXt^f(Xf(t<=L5LX-YYYf(Xf(XXX\^%XY\XX%\^,XYX=\XX\X5Y^-Y^%$YXX%TX\X-Y^%YXX%0\X5`Y^%YXX%h\X58Y^%YXX%\X-Y^Xf(-Y^YXX\X%Y^YXX\X%YY ^HYXX0\^XXf(ff.f(f(fT%f/^f(JHHJ^f(YHf(XH4f/H HYXfUYYXH YXHYXH YXHYXH YXHYXYXYXYXBHHHJHFHXH4H HYXYXH YXHYXH YXHYXH YXHYXYXYXYXB^f(ÐHLHH%|f/D$"f\$Yf.Q -/YYf/X X{YX YXkYX YX{YX ^\vfW}HD$f(=\$!\$Lff.Hhf(f(D$FL$fl$t$L$Hf(f(l$Xt$PD$@f(f(f(L$0YX D$8Yt$XfW%f(d$HzzD$ D$fHnd$^f(D$f(kDT$ L$D$(D$fA(Hd$"f(D$f('D\$(L$D$ D$fA(d$f(D$f(DT$ D$(L$D$fA(d$f(D$f(D\$(L$D$ D$fA(|d$~f(D$f([DT$ L$D$D$fA(8|$8\$0d$DD$@YDL$Ht$PYfE(fA(l$XYf(XAYDYf(AYD\XfA.f(f(|$ DT$t$l$t$l$f(DT$|$ f(\f(Yf(fD(YDY\f(YAXf.z_\\X7Hhf(AXXf(f(fA(l$fA(t$l$t$fD(f(!f(f(t$ |$DT$t$ |$DT$l$f(_fDUf(f(SHH=DAXf/"f(f(11@f(f(f(f(f(YYY\f(YXf.fPAXf(ȃ!ÉfD(̃f/sff*Y%YfA(l$ d$\$($$\$(fH~fH~f(f(@fHnd$l$ D$0fHnL$8f(L$0fff\f\) $$L$HH[]fffD(f([f(f(\$$$\$fPfD(f(!ȉf(HfLnHAXfHnf/rff.fAWf(AVUSH\HL$(f( H\$@H$H$)L$0f( f(XD$ Y)L$@f( )L$Pf( fI~)L$`f( )L$pf( )$f( )$f( )$f( )$f( )$f( )$f(YXfW fI~@fIn\$HL$d$L$D$fInf(bH9\$f(u|$ t$(Yf(f(YXYYf(f(YY\f(Xf.zHf([]A^A_T$ \$(f(f(ff.SH0D$ f(fTT$(f/f(fW5mf/fH~-vf(f(f(f(fDD$ d$T$X\YD$(^Yf(fT\$T$fHnH\$d$f(fHnXXf/sf(fT^XY f/ v%NH0f([@%fDUff(SHHXf/ff/rKf/rEf(\$ \L$d$T$T$d$L$\$ f(?ff(\$ T$L$d$\$ T$L$d$f(f(fTHf/f\Hl$Ht$(f/H\$ T$L$f(d$F=Hd$D$8XD$HX\$ T$|$L$f(\$0T$ L$d$|$t$(f(XD$Hf/\$0L$D~ DD$8YfD(T$ d$D\@f(fD(ۃXDY\A\fD(D\XEYfD(XEYYAXfD(fAWf(f*A^f/wHXf([]@=CHd$D$8XD$H\\$ T$|$0L$f(d$Kt$(D~ f(XD$HfD(fEWf/_\$ L$|$0DD$8YfD(T$d$D\fDf(fD(f(XDY\\A\fD(\EYXD^fAW^fA(AYfD(Yf(f*\fD/wHXf([]Df/l11H=HԀ-\HHXf([]ff.Uf(f(fD(HH0D~fATfATf/vfH~fD(f(f(fHnf(\$(T$ DL$d$l$ $f $D~,T$ l$f(d$DL$f(\$(fAT*\5fATf/vDf(AXf/f/+fE1fA(D%fA(fA(fA(fD(AXHfA(fE(DXAXDXDYAYYA^Yf(XfAT_f(H='fA.ztf(^fATfA/wAYfDTfH*A^DYf(AX}H0]f/fL~f(fD(fHnf(-~A\fATf/vf/w&D~5~DUH0]f(H0HfA(]DUH0f(]ff.UHSHhmff.zuf.wzuff(f* $^ $]^]f(~-f(Yf(fTf/%v15f/f*Y }YYXYf(fXL$ L$ \L$(L$(\D$0D$ L$(\D$8\$8D$0L$ \Xf(XXD$@D$@\D$PD$P\D$@f(f)<$H$HD$HhfHnfHn[]f.uvH?1f(T$ $<  $~-T$Y %}fTf.ssf.ff/|fDۉHt$@H|$PD$@~L$H)D$P.fH~fH~- 8f/wzf/|wpf( ,YYX $YX {Y YX YX YX {\^X$> $\a{ff.AWAVAUATAUHSHHhEH?1H$HT$$L$Hh[]A\A]A^A_f.ELl$PL Dt$P$ED5  $~%f(fTf.zzuf(fYf/&f(f)T$@A'ff(\gzA*Y^f/XD9BDH|$@LL$ l$PL$$f(s $~%fTf.%zzuf(fYf/Ef(f),$AD#DHT$@Hl$POHt$0HD$0~L$8)D$P),HL$kl$PL$$f($f(fT .f. ^yzuf(fYf/v XXf(+l$@f+)<$fDDH|$@H|$HT$(AH|$HT$$D$ $mHT$,DLD$PL$XQ4$l$f(f(f(f(/H|$0L$ql$0L$$f($~%8fTf.%dxzuf(fYf/D$$Ef(fAD$,D$()4$AD#Df($ $^ Yf/w^ȿX wf( $ $~%Xf.wzuusfTY w,+fDXXAfo|$@D3)<$*fDXXXXXf(ffT,*f.sfH~fH~HEfHn[f.ff.f/~ `yfTf/ vf/f(d@\Yf/wf/v@^Xf/wf. f.Y5f(\^vf(f(Y\-rY\Xjf(Y\X5^f(Y\\-Rf(Y\XFf(Y\X5:f(Y\\-.f(Y\X"f(Y\X5f(Y\\- f(Y\Xf(Y\X5f(Y\\-f(Y\\Y\X\Y&uXY^Ð~ 5Puf(f(fTf(f.wJf. f(DfHcf(tH^fH,f5otfUH*f(fT\f(fVf.끐^f(Ðf(Df/AUfATU1SHHf/D$ $T$0rA\$1f\$,D$*\ fTf/@4$ff/o5szHDŽ$\f/t$vC  $T$0H$D$$ Hĸ[]A\A]ff/vut$0\t$\$ fH~\4$f(t$t$\$ f(D$p\f(fTf/uf(ff/ HDŽ$,t$t$ D$*HsrD$(fHn8[rXT$ D$8f(T$@`L$8t$Xt$Xf(t$xL$8`L$8T$X$\$f(L$8`L$8T$@\\L$(f(L$8t$xY$L$8l$YD$ XqYL$@l$8T$8Htqt$@YfHnDf(X-Tqf.-qf.f.-q~x q|$ Xf.=qf.f.=qrqXL$XXL$f. nqxf.nf. Fq*qX$$Xd$f.%/q\%f.f.%qDpYL$A\^f/-gf(\D$(YX^Yf(Yff.z ^fTf/|$pff.y  H o-of\l$ DD$D$fHnfHn$DL$@fA(fA(ʃXXXXAYYf(XNoX^Y^X9uD$0d$@t$8_^D$D$ N^t$YD$xt$ #D$($YD$(d$@YD$ YD$ D$X$$X4$D$f(YD$t$8YD$YtfW5OL$pD$4$t$pff/4$IY$D$ X@f(\$f\$,$*\ fTf/MHDŽ$pT$0 $L$D$Lo$f/Xm\T$LL$\$ $D$LD$(D$hLD$D$ fHnhL$ l$0LD$\,$\f(l$8L$@hhL$@fD$\A*f(|$ d$ L$YD$Yd$(d$(=lX|$H$l$8\$D$ fHnf(f(|$ t$LfW55Yf(|$gLD$fH~D$gfHnLD$\$fH~sgfD$A*4$fHn\f(Y$d$(YD$f(fT%XfT_n4$Y^X$X$$D$0Z4$$Y'fD(fDf(f(Mf(ft$`f.T$Xl$PL$Hd$@|f(|$8 1|$8f(d$@L$Hl$PT$Xt$`ft$Pf.T$Hf(d$@l$80l$8d$@T$Ht$Pf(@ft$hf.T$`l$Xf(\$PL$H|$@d$8O0d$8|$@L$H\$PfD(l$XT$`t$hft$hf.T$`l$Xd$Pf(\$H|$@L$8/L$8|$@\$Hd$Pl$XT$`t$h~1ҾH=1|$8/|$8f(fWfTfVUX1ҾH=1L$H\$@|$8L$HD~|$8\$@f(d$Pl$XfAWT$`t$hfATfV: D1ҾH=.1l$@d$8Yl$@d$8T$Ht$Pf(fW 5fT -fV  1ҾH=1d$P\$HL$@|$8d$P~|$8L$@fD(\$Hl$XfDWT$`t$hfDTfDVShfD,$|$~ f/fWfWf(\$ T$0H$\$ D$D$^\$f(\ $YD$$@11H=HggHHĸ[]A\A]f(D$\$ fWWT$0 $H$D$\$ ^\$f(\t$f(YD$$gf(t$~fHD$$f(fWfW,|$ D$0t$UfH~D$rUD$$bUL$t$YfHn^$YYD$ D$ HefHnDAVff(f(ATUSHf.HDŽ$T$\$|$t$ d$0\f(fI~\f(l$#t$ fd$0D$8f.Ef.Et|$f.E„ f(d$ 1t$0t$0fd$ D$@f/f(t$ d$0d$0ff(f/t$ 91dL$=df/fD(D\D$ff/T$L$~NAf.ED L$f(fTf/w f. {dz:u8f(\D$ EfTf/f(\D$fTf/l$0l$ff/- }df/D$f(\$`\DD$Pd$Ht$@f(fH~)T$ fTf(L$07L$0f(T$ Hdct$@\d$HDD$P\$`fHnfTf( bf/-pcf/l$4f/)T$Pd$Ht$@DD$ \$0~fInf\$0DD$ f/t$@d$Hf(T$P% ݱ1l$L$p)T$`\t$P\$HDD$@f(d$ l$0.Hgbf\$Hf/f(T$`l$0fHnd$ DD$@\t$PL$pfT9f/T$ff/Jl$E~D$!QD$D$Qd$YfInd$l$D$f(YD$l$D cY$f.f( 1\fTFf/f.f( d1\f(fTf/@9Du-aHĘf([]A\A^\L$8~f( fTf/8 ff/\$Adf()T$pd$`t$P\$HDD$ ADL$f(T$p He`D\DD$ \$Ht$Pd$`fHnfDTfA/]l$0t |$@f/wf/f.\$T$f(f(H$D af($fA/1ҾH=K1l$l$ffA/@ ^1ҾH=19-_J@ Pf(fTf/f(fWf(fH~Y_f/f(f(f(t$8)T$ D$8f(t$ l$0\$X\YD$^YfTd$f(o\$fHnH^d$l$0f(fHnXXf/sf(T$ fT^XY huf/ h@-^3DL$fA(d$0T$d$0\$D$fInf(\ l$Yf(fTfTf/f(fW fA(d$ t$0d$H]T$D$f(fHn\f(^t$0f(f(d$ \l$YLfDfW% f(fA(D 9_f($NAf(fA(d$0fW Td$T$fInH\D$f(fHn\^f(d$0f(l$YfW5hf(C\f/T$ff/T$ SL$fA(l$0l$0\$H$T$D$fInf(_l$D ^Y$%fDfD(D\fATf/f/zT$ff/sd$ff/J*fIn1\fTf( f/@fHnfHnf(d$H\l$\fHnt$0^\$\$@f(f(l$8XX@H [t$0d$Hl$8D$fHn\$@t$ \Xf(d$8f(f(X~t$ \$D$0f(t$HfWfWf(\$d$~T\$Yf(f(d$ d$8fWf(t$0YD$t$0nID$fHn^IT$d$8Yf(d$@T$)D$8fInYD$8t$HL$d$@f(t$8\Yf(L$HT$t$8Yf(T$|$d$@D$8\f(YD$8l$ YD$YD$0Yl$XIff/T$\$T$f(f(H$DD$ d$0t$t$D [f(d$0$DD$ fD/ fEXf(\D$8\$DL$Pl$H,f(DD$@d$HDŽ$D*DXT$t$fA(DT$0DT$0HWXd$t$D$ fHnfA(\$Xf(f(Tt$d$HXf(DT$0f(D\$ $XfHnDD$@l$HDL$PXDd$ffA(D\׃f(fD(XD\fA(\AY\f(\YAYAYAYAYAYYfA(X^fD(9u$f(uWT$f/ff/AWf(f(AVfI~AUATUSfH~H8fW-\$Xl$`-V$\l$hff/ f.f/f(f(HDŽ$XXHDŽ$d$xfI~T$XD$h|$0L$`t$ 5>VXt$XHVfH~L$fHnf(t$p$fHnCE4$YfH~t$ f(&E|$0$f(E4$fHnWYfHn^YYD$$$fInXraf(fT nf/HUfWEH-Y&=)aHD$0D$HfI~l$0Yl$HE1HafHnl$0f*f(fW l$P $hH` $f(fHnX%TT$ L$f($$1T$ $$f(=WL$X^fTf/AA~=^f/sf(\$Pf\\TYH QTH$^fHnX ]TY\^t$P=Wf(XYf(Y^X^fT f/w-X-S^HXX-SYH9uYT$0fInTXfTfI~fT5Yf/w dAT$xfIn$L$D$xffT$X)T$) $Fx$D$p2xH+S$fHnHfInf( $f(T$f$D$h$L$`$f$D$pH$HDŽ$ $fDŽ$(f($$f(f(f(Yf(YYYf(\Xf.$X$XH8[]A\A]A^A_l$XDRf/D\L,MHQfDD$`1DL$hf(f(fHnffA(H*XHfEL*DYf(XXYYYYA^A^fD(AYfA(AYf(AY\f(AYXf.AXAXI9HfD(fD(HHKHffA(ڃHH H*XXH;HHfEHH L*EX"DfIn>?fI~@L$ L$`f(D$D$h|$XfW=At$D$0fH~|$  $fHnf(fHnf(^t$XfHnDt$0fD(|$ D%PDYfD(fD(DXt$DY,$DXf/DXvL,MiHOfE1DD$`DL$hf(f(D4$fHnDl$fD(fDffA(H*XMfI*YfA(XAXYDYYDY^D^f(f(AYAYfA(AY\fA(AYXf.f(fD(AXAXM93LfD(fE(IHAHffA(܃HH H*XXM1LLfHH H*Xf(\L,I?ifHn\L,I?wff(fDD$XfHn|$l$0f(d$ Xf(4$X\$xf(fI~d$ l$0f4$YYXX|$$$?D4$Dl$fA(fA(fA(YfE(YYDY\DXfD.f(M$$fHnfA(\$xffInDD$pf)d$0)T$ |$HDT$PD\$e$fHn&<4$D\$YfA(4$DT$PD$fA(YD$$Y$t$fH~f(q|$H$f(pq-hL\l$X$f(,$KqHDL$fHnat$f(d$0f(T$ L$`f$$D$h$,$f$f(H$HDŽ$ $fDŽ$(f(DD$p\$x$fHn$ffAfY$fX)$$L$$ff(fA(fA(fA($t$xl$pd$PDT$HDd$0D\$ DD$D $t$x$l$pd$Pf(DT$HDd$0D\$ DD$D $$f(f($f(BfA(f(f(|$HfA(t$0D\$ DT$D$$B|$Ht$0D\$ DT$f(fD(D$$fA(fA(fA($$$$D$DT$xDd$pDt$PDl$HDD$0DL$ DT$x$$f($fD($Dd$pDt$PDl$HDD$0DL$ D$lfAWfI~AVfI~AUATUSHD$@f(L$8T$X\$T8d$X\d$8D$f(fI~$\$fInfW=T$8fInffW Yf(d$ fWfI~L$H\$(fH~D$XL$7D$D$@YD$fHnt$l$\$(YYڙf/d$Pd$ t$` H,ff(H -H1l$fH*DD$D\D\D$HfH*l$8DYfIn|$0\\T$t$(Xf(YYfInf(YfInYA^A^7t$(|$0Xt$X|$ f(f(H9tjH\$Hd$ H6HƒfHH H*X!HHfHH H*Xl$\$Pd$`f(f(YYYYf(\f(X$$f.Z L$HT$@fInl$ fWS fH~D$@L$D$fInxYD$d$fHnYYD$XfH~d$Y5t$fHn\$XY\\$@Yf(\$$$L$HD$fInd$\d$-wF$$f(fTf/l$ f(l$ l$t$AD$`Xl$ $f(>jD$PD$@-jD$pD$jL$D$hD$8El$ L$D$f(\d$XXd$8l$($f(KEl$Y$l$\$8X\$f|$l$(t$ fH~t$fH~Yl$x$`$T$PXT$`\T$p\T$hf(X$YYfD(f(DYYD\XfD.z fE(fD(\$xfIn$|$h$t$f(f($XDT$HD\$0DL$(^$XXD$`D$`f(^L$@XXD$PD$Pf(^f(XD$pD$pD$\\^$X\$X|$hXXYfXI*fInYfHn^DL$($f(f($D\$0f(DT$H$Yf(YY\f(YXf.f(f(Xl$ fA(fA(t$HDXL$|$0l$ DL$L$ D$(D$YBf/D$(I|$0t$HI ID$f\$H*f/f.;fD(f(fD(fD(D$@\$xfIn$$DT$HX\D$XD\$0XXd$DL$(XXfInYfI*YfHn^DL$($f(f(f(D\$0YDT$HAYY\f(AYXf.~f(f(f(D$fA(D\$Hl$0D\$HD$l$0DL$(f(f(&fDf(fInfIn$H@L$0L$XL$D$HfHnd$x\$8|$XD$(\\f(f(t$(d$xL$YD$\Xt$(y@YD$(\$0fT$H$fD(fD(fD(f(Dl$t$1D$(Xl$ $f(dD$PD$@rdD$0D$adL$D$HD$8?l$ L$D$f(\T$XXT$8l$`f(T$ ?\$Y$\$%DL$f|$l$8T$ t$f(DYt$ XX$l$`$$T$(fE(XT$P\T$0\T$Hf(X$YAYDYD\f(YXfD.fE(fD(f(f(H\$HXDT$x$D$^D\$p$|$hXDD$`l$XXD$(D$(f(^L$@XXD$PD$Pf(^f(XD$0D$0D$\\^$X\$XXd$\$HfInYf(fH*XfYd$8^fInd$8D$f(l$X$fA(DD$`|$hYfD(D\$pDT$xYDY\fA(YAXf.cfD(f(X|$ fA(fA(d$pDXD$l$ht$`DL$XDD$|$ L$ D$8D$Y=f/D$8wOH DL$Xt$`l$hd$p1ҾH=1-<l$l$ $\$ $l$f(Yf(YYY\f(Xf.X$X$H[]A\A]A^A_f(f\f(H,H?HE-U;n1ҾH=1;\$ \$$t$ $d$f(Yf(YYY\f(Xf./$f(f($ f(fA($d$hl$`t$XDL$8wd$hl$`t$XDL$8fD(fD(fD(f(f(f(f(d$xfA(l$pDT$hD\$`|$XDD$8 d$xl$pDT$hfD(f(D\$`|$XDD$84f(f(f($DT$HD\$0DL$(DL$(D\$0DT$Hf(f($ f(f($d$Ht$0|$(Rd$Ht$0|$(fD(fD(fD(f(>\$`T$Pf(f(l$ l$$$j$L$ f($*fD_Y_NYYXOÐff._Y_NYYXOÐff.G@YDg0_8oD_(fD(f(G@DFXfE(EXEYAXfD(DXG@DYFDXDG@Y_8fAYXg8DY&f(Dg0f0N@^8DYYAXfD(DYYAXfD(DYYDXEXDODG@XfE(EXDg0f(XW f(g8^XD~(Dv DYEYEXfD(DXEYEXfE(DYEYYEXfD(EXAXDg0X_8DG@DYD_(^AYDXD_(YNAXO(YW DFEYDXDG AY_Vf(DN DYYAXfD(EYDYAXfD(DYYXAXO(AX_AXW Y>VYXYvf(XWY.oVf(YXOYff.G YDg_oD_D((G DFXE(EXEYAXD(DXG DYFDXDG Y_fAYXgDY&(DgfN ^DYYAXD(DYYAXD(DYYDXEXDO DG XE(EXDg(XW(g^ XD~DvDYEYEXD(DXEYEXE(DYEYYEXD(EXAXDgX_DG DYD_^AYDXD_YNAXOYWDFEYDXDGAY_ V fDNDYYAXD(EYDYAXD(DYYXAXOAX_ AXWY>VYXYv(XWY.oV(YXOYÐff.HXW_ N(((YYY\(YX.7fog ((D(YYD\XA.RVE((E(^ DYYDYD\(YAXD.XAXg o&N(((YYY\(YX.z>GHXHt$H|$Ht$H|$fD$Hl$Hd$L(((H|$\H|$fD$0T$0D$4A(Ht$(H|$ d$l$t$|$Ht$(H|$ fD$8d$DD$8D$<l$t$|$((Ht$(H|$ d$l$|$t$Ht$(H|$ fD$@d$DL$@L$Dl$|$t$?ff.H8W_Nf(f(f(YYY\f(YXf.7f(ffGf(f(fD(YYXD\fD.4V^fE(f(fE(YDYDYD\f(YAXfD.XAXfg&Nf(f(f(YYY\f(YXf.z0fH8Ht$H<$pHt$H<$f(f(f(f(f(H<$EH<$f(fA(Ht$(H|$ l$d$t$<$Ht$(H|$ fD(l$<$f(d$t$.f(f(Ht$(H|$ l$d$|$4$諿Ht$(H|$ l$d$fD(|$4$k^NfowfD(YY\o^.oNY\wNYY\w^6f(wf~(V YYYYYDYYXf(XYYXg X\OW(A\\g OW(^O~YY\g ^&g ~Y\W(~YY\0W(^W(DNDF(DV DYAYAXfE(EXDYAYDXf(AYfD(AYX\W8\O@0A\W8O@DF0f@DN8DYYDYAYYAYEYXfA(AXA\YAY0XX\\f(O@W8^_0fYY\W8^W8YV\O@YFY\O@^O@f^NfowD(YY\o^.oNY\wNYY\w^6(wf ~VYYYYYDYYX(XYYXgX\O WA\\gO W^O ~YY\g^&g~Y\W~YY\W^WDN DFDVDYAYAXE(EXDYAYDX(AYD(AYX\W\O A\WO DFf DNDYYDYAYYAYEYXA(AXA\YAYXX\\(O W^_fYY\W^WYV\O YFY\O ^O f.&oGY(XYVYo^YGXXWVYXGYÐff.&oGYf(XYVYo^YGXXWVYXGYff.AWH AVfEIAUATUSH_0HL-HAA6ANU](((YYY\(YX.meMM[Au4AE0((D(YYDY\(YAX.S CC\((D(YYDY\(YAX. XXmeIS[ AuvA(A(A(Ht$(H|$ t$DT$DL$DD$DHt$(H|$ fEfք$t$$$DT$DL$DD$A(Ht$HH|$@D\$8DT$0t$(d$ l$|$DL$DD$賘|$H|$@fD$pDD$Dd$pD$tDL$l$d$ t$(DT$0D\$8Ht$H'AuA(A(A(Ht$HH|$@t$8d$0l$(|$ DL$DD$D\$DT$DT$D\$fD$hDD$Dl$hL$lDL$|$ l$(d$0t$8H|$@Ht$H;fHf/w f/ v(1ҾH=΢1賜[HfDYhHXf.AUIATIUHSH\{7I1MLH=?{:DHE~DIc1HfDHrH4HL&H9u1H=ïHrH4HH~H9uDBLZ(ADHrHzjUHzA)LATjPH H[]A\A]H=z 8fH=zHz)wzғH3nH5dzH=踒ATIfHULSH0wI$G@t$D$HGHD$HGGHD$HG HD$ HG(G LHD$(oIHD$Ht,$~%1 HD$HHH51>L(Y H5%HLIHSLH5LH[kH,HH5L( H5HLIHRLH5L蛅HjH8HH5s=L( H5HLiIH~RLH5LLHjHnHH5L( H5oHLIH/RLH5OLH^jH\HH5L( H5ؑHLIHQLH5L讄HjHHH5րL(N H5֒HL|IHQLH5L_HXiHHH5KL( H5.HL-IHBQLH5LHhHDžHDžL0HcHHH9LH輁HcHHH9'dH蒁H HcvH( HH93H0H8fH }H@ @HHH@HHHHPH-HXH`莅fH HhHI@HHH@HpHHx9CtHb_H5 H8蓄8tHA_H5"H8rHHSHs H(H+HHIHHSHHHSH HHcHH(H;SLHBLILNLH5 LÁHfHHH5 L(H\ H5HLHIHNLH5ʏLfHOfHHEHH5.EL( H5HL4IHINLH5LHeH).HH5+L( H5]HLIHMLH5=LȀHeHSHH5SL( H5HLIHMLH5LyHReH(HH5!&L( H5ЎHLGIH\MLH5L*HdH*HpHHx9CtHIH5PH8n8tHIH5gH8nHHSHs H(H+HHIHHSHHHSH HHcHH(9oH;SLHH{LIL:9LH5&{LlHOHHc H5, L(H HzHLHIH8LH5zLkHOOHH HH5. L( HzHL?IH8LH5~zLRkHNHHH5L( H5 HL IH58LH5LkHNHUHH5ۚL(ù H5HLIH7LH5LjHENH6HH5L(T H5yHLIH7LH5yLejHMH7/HH5nL( H5lyHL3IHH7LH5LyLjHMHHH5ΎL(足 H5!yHLIH6LH5yLiH@MH/HH5tL(g H5xHLIH6LH5xLxiHLHZH5cHLxH €L( H5 HL8IHM6LH5LiHLHHH5cL(; H5-xHLIH5LH5 xLhH-LH~ HH5$ L( H5wHLIH5LH5wL}hHKH/wH5؇HLnH vL( H5`zHL=IHR5LH5@zL hHqKHHH5L( H5HwHLIH5LH5(wLgHKHcHH5L(q H5vHLIH4LH5vLgHJH) H5MH HL% H C L( H5HLBIHW4LH5L%gH^JH! H5` HL H P L(W H5EvHLIH3LH5%vLfHIHک HH5 L(舵 H5 HLIH3LH5LyfHIHۨ HH5 L(9 H5HLGIH\3LH5L*fHKIHDžHDžL0dHcHHH9iHcHcHHH9BHcH HccH( HH3H0H8hfH Ւ H@ @HHH$HHHHPH[HXH`gfH HhHI@HHHs$HpHmHx9CtH|AH5%H8f8tH[AH5<H8fHHSHs H(H+HHIHHSHHHSH HHcHH(gH;SLH`sLIL1LH5>sLcHFHH H5q L(H薲 H5 HLHIH0LH5LcHFH HH5H L(@ H5HLNIHc0LH5L1cH:FHHH5)L(Ѭ H5rHLIH0LH5qLbHEHtcHH5zL(肬 H5uHLIH/LH5tLbHEHHH5L(3 H5tHLaIHv/LH5tLDbH5EHHH5L( H5ztHLIH'/LH5ZtLaHDHzH5 ^HL[H ovL(' H5 qHLIH.LH5qLaHyDHwH53yHL)YH BtL( H5pHLXIHm.LH5pL;aHEH_H5^HLlH 5L(- H5mpHLIH.LH5MpL`HEHpDHH5FCL(~ H5rHLIH-LH5rL`H8EHAxHH5yL(/ H5oHL]IHr-LH5oL@`HEH:H5$HL;H z+L(b H5oHLIH-LH5aoL_HDHhH5>gHLTH ML( H5*oHLIH,LH5 oL_HGBHBH5AHH 'DL( H5nHLMIHb,LH5nL0_HAHz HH5hz L( H5nHLIH,LH5wnL^HAH9H5L@HH CL(Z H5SnHLIH+LH53nL^H\AH}H5&HLH EL(m H5HLKIH`+LH5L.^HHDžH\HcHHH9bH[HcHHH9d;H[H Hc[H( HHH0H8`fH = H@ @HHHHHHrHPH# HXH`_fH ţ HhHI@HHHHpH Hx9CtH9H5-H8^8tHc9H5DH8^HHSHs H(H+HHIHHSHHHSH HHcHH(_H;SLRH k1LH5k*IƿHHDžHYHcHHH9`HYHcHHH9T9H}YHHcaYH HHdH0H8]fH  H@ @HHHHHHAHPHHXH`y]fH n HhHI@HHHDHpHHx9CtHM7H5H8~\8tH,7H5 H8]\HHSHs H(H+HHIHHSHHHSHHHcHH\H;SHL1H iH5iHHIſHHDžHWHcHHH9_HbWHcHHH967H8WHHcWH HHH0H8[fH GH@ @HHHHHHHPHHXH`4[fH FHhH@HHHHpHHx9CtH5H5H8CZ8tH4H5H8"ZHHSHs H(H+HHHHHHSHHHSHHHcHHZH;IHL1H ogH5FgHHHLL1H=gZHIj$H^$LV$LH5fL$W HHDžHTHcHHH9\HTHcHHH94HTH HcTH( HHH0H8XfH@ @H`qHHHrHPH$@HXH`XfHh @H3qHpHorHxH7bH]HEjXfHE @HqHEH)rHEHH]HE,XfHEHI@HpHEHqHEȋ9CtH2H5H8EW8tH1H5H8$WHHSHs H(H+HHIHHSHHHSH HHcHH(WHEH9SL BLKd1ɾHNdLuH HHHDžXRHcHHH9ZH.RHcHHH95HRHHcQH HH<H0H8XVfH@ @H:oHHH/pHPHRHXH` VfHh @H oHpHoHxHgH]HEUfHE @HnHEHoHEHsH]HEUfHEHI@HnHEHHoHEȋ9CtHn/H5H8T8tHM/H5.H8~THHSHs H(H+HHIHHSHHHSHHHcHHUHEH9SHL 1ɾLaHa˾H HHHDžOHcHHH9maHOHcHHH993HZOHHc>OH HHAH0H8SfH@ @HmHHHmHPHdHXH`aSfHh @HlHpHGmHxHH]HESfHE @HlHEHmHEHH]HERfHEHI@HlHEHlHEȋ9CtH,H5mH8Q8tH,H5H8QHHSHs H(H+HHIHHSHHHSHHHcHHVRHEH9SHL ˂1ɾL _H^!H HHpHDžxMHcpHHH9_HLHcpHHH90HLpxHHcLH HH7#H0H8QfH@ @HjHHHkHPH HHXH`PfHh @HjHpHjHxHH]HEpPfHE @HjHEHkjHEH9H]HE2PfHEHI@HkjHEHjHEȋx9CtH*H5øH8KOt8tH)H5ڸH8*OHHSHs H(H+HHIHHSHHHSHHHcxHHOHEH9SHpL 1ɾLC\HM\HHmH HH@HDžHPJHc@HPHH9\H&JHc@HXHH96.HI@HH`HcIHh HH>H0H8PNfH@ @HhHHHchHPHTHXH`NfHh @HhHpHhHxHyH]HEMfHE @HahHEHgHEHH]HE~MfHEHI@H7hHEH|gHEȋH9CtHf'H5H8LD8tHE'H5&H8vLHHSHs H(H+HPHIHHSHXHHSH`HHcHHHhLHEH9SL@L M}1ɾLYHYLH HHHDžGHcH HH9ZHyGHcH(HH9+HOGH0Hc3GH8 HHH0H8KfH@ @HfHHHeHPHHXH`VKfHh @HXfHpHxeHxHH]HEKfHE @H4fHEH2eHEHH]HEJfHEHI@H fHEHdHEȋ9CtH$H5bH8I8tH$H5yH8IHHSHs H(H+H HIHHSH(HHSH0HHcHH8KJHEH9SLL z1ɾLWHVLH5#HH1H#AH=\jIPjPjP1jV JHpLHLHHHLHH5?VLvFH)HHH5L(H进 H5HL=IHRLH5L FH(HHH5L(p H5HLIHLH5LEHj(Hk HH5)P L( HUHLjIHLH5yUL}EH(H HH5% L(蝯 HVUHLIH[LH51UL)EH'H{ HH5 L(I HUHL¯IHLH5TLDHV'H HH5 L( HTHLnIHLH5TLDH&Hs HH5 L(衮 HTHLIH_LH5eTL-DH&Hl HH5UP L(M HFTHLƮIH LH5!TLCHB&H HH5 L() HSHLrIHLH5SLCH%HW HH5 L(կ HSHLIHcLH5SL1CHz$HHH5iL(Q H5nSHLIHLH5NSLBH;%H HH5 L(b H)SHL{IHLH5SLBH$H HH5F L(> HRHL'IHlLH5RL:BH{$H| HH5 L( H5RHLIHLH5vRLAH$$HO HH5C L(k HNRHL脬IHLH5)RLAH#HM HH5o L(G HRHL0IHuLH5QLCAHl#HEJ HH5 L(ï HQHLܫIH!LH5QL@H#HAH HH5 L(蟱 HpQHL舫IH LH5KQL@H"H]E HH5 L(諵 H(QHL4IHy LH5QLG@HX"H3 HH5?# L(W HPHLIH% LH5PL?H!H HH5 L( HPHL茪IH LH5ePL?H!HA HH5 L( H;PHL8IH} LH5PLK?HD!HM HH5# L( HOHLIH) LH5OL>H H HH5_ L(ױ H5OHLŪIH LH5OL>H Hz HH5 L(( H`OHLAIH LH5;OLT>H5 H HH5L L( HOHLIH2 LH5NL>HH HH5q L(耬 HNHL虨IH LH5NL=H}H HH5n L(\ HNHLEIH LH5]NLX=H!HH5HLɜH L(: H55JHLIH- LH5JL1LH5~>IƿHHDžH*HcHHH9;H^*HcHHH9 H4*HHc*H HHKH0H8.fH H@ @HHHHHHȗHPHcHXH`0.fH HhHI@HHH{HpH_Hx9CtHH5H85-8tHH5ĖH8-HHSHs H(H+HHIHHSHHHSHHHcHH-H;SHLkNH W<1H5C<覘IſHHDžHM(HcHHH94H#(HcHHH9 H'HHc'H HHpH0H8M,fH H@ @HHHDHHHHPHHXH`+fH ZHhH@HHH HpH8Hx9CtHH5|H8+8tHH5H8*HHSHs H(H+HHHHHHSHHHSHHHcHH[+H;IHL0\H /:1H5:kHLL1H=7d+HI5H)L!LH59L'H@ HH H5L(H{ H5(8HL趓IHLH58L'HHK;HH5q9L(9q H5b4HLgIH|LH5B4LJ'H{H HH5r L(:x H56HLIH-LH56L&H$HMFHH5JL(p H55HLɒIHLH55L&HH>XHH5TL(Lp H5;HLzIHLH5L]&HvHoH5HL>H L(菊 H5CHLIH2LH5#L&HH"H5HLaH z L(2 H57HLIHLH57L%H HbHH5gL(Co H5y7HLqIHLH5Y7LT%MfHH8a$HH5S:H;3'>&H;H5:'E1HeL[A\A]A^A_]L&鷔Lx&HA ߔ@L`&XLP&H y@H!H8#u-%HH5z9E1H8&ef.+&H=1%IH봐 &H=1%IHfDHH56H8&IjHI]L%PDHH59H8%Ix HItqHH5p6H_H81e"HIH58H8z%H,H5x6H81&"L$HH57H81%HH50H8%tHH50H8$4HH50H8$H9Ic&r&&H&&H&I&&&&I&I&I&I'I'('?'Hc'7'HE'Hz'a'''H}'H'H~''''H'H'H''H(HD(+(O(O(H'HD(IL(IX(Id(Ip(I|(I(I(I(I(I(I(I(I(I(I())0)H-)H)H)I)I)I)I)H)I*($*$*Ha)*H7*H(*5*5*H[*HB*Hc*l*H*H*H)*****H*He)H***H!+H+I.+$+I5+IA+IM+IY+Ie+Iq+I}+I+I+I+I+I+I+I+I+I+I+I,I,!,8,HW,e,H9,I,Ib,I,HB,I,IV,I,I,I,I,I,I,I,I,I,I -H'-H-H1-I9-IE-Y-B.I-H .H'Ha-HH-H-I--.&Ij-I--Hi---H .H-H(.././.E.b.b.Hp.H?.Hq.H.Ht.H...H..H..H/H./.H.H /I/I/I'/I3/I?/IK/IW/Ic/Io/I{/I/I/I/I/I/I/I/I/I/I/I/I 0I0I#0I/0I;0IG0IS0I_0Ik0Iw0I0I0I0I0I0I0I0I0I0I0I11&1HE1S1H'11I1I1IH1H1w1I2H1H1I1I'1H1^1I1I1I1I 2202HO2]2H12I2IZ2I2H:2I~2IN2I2I2222H2H2H2I2I3I3I3I'3I33I?3IK3ff.@AWfI~AVfI~ATUHSHH50AH]H8DH,HxHH?HH1H)H9}4H0H=,1![f]DA\A^A_DfInfInlj[]A\A^A_ ff.fAWfI~AVfI~fATL,USH,H*f.f/fI*f.f/u~ H5/HdH8H+MxHH?HH1H)L9~dH/H= +1 [f]LA\A^A_DH5/HH8~7TffInfInljD []A\A^A_AWfA~AVfA~ATUHSHHH5.AHyH8DH*HxHH?HH1H)H9}HH.H=!*1 NfD$ $~$H[]A\A^A_DHfAnfAnlj[]A\A^A_ AWfA~AVfA~fATL,USH,HH*./fI*./H5-HpH8H)Mx HH?HH1H)L9|H-H=)1 Bf $D$~$H[]A\A^A_f{H5-HH8n'8ffAnfAnΉD\ fD$L$D$ DAWIAVIAUATUSHH{HHt$XHt$xHL$hQH;!H$I~IvHD$INIHD$@HHH  ˄މ‰D$LH|$@HL$0HD$8\$TL$PD$np $fo$)$tf(fY$)$|$8$t N$fo$~C)$)$K$$fo$f)$)$d$уffY<$AH\$`H$f(DL$AY|$(\f(X\$\l$ ff $fHt$fHLf()$*YYXD$(YYYL$ $X$ T fo$fք$)$f֌$D9aH\$`fo$f)$A)$A1)$A)D9d$0F|$ff/f(fTdf(b\XL$f(f.El$IC\$Pl$TLt$(L|$0\$ @|$LEHDŽ$6E9HDŽ$fAuAD9|fo$Eu)$uft$ D$EA*$ $ f $AuA*f(AYf(YY$D9}Lt$(L|$0$ Dff(IF H\$XIIOIwI@IIG INIvIF I~HD$IHD$INIvI~H9HD$hH8JH[]A\A]A^A_fDfo$fo5)$$$)$f)$|$CgAH$L$H\$(Df(MIY\f(Xf\$ \|$fCf $f|$ fLL)$f(*^YYYL$$f\^YX$P fo$fք$)$f֌$9_H\$(D7fD$A*fWAuYd$fDD$8fff$fl$fo$$DH|$@H$)؉$*CD-$*)$^Y\^f)$EH$EHT$0f($$$)$A9$$fo$f(f)$)$D9wfo$f(El$f)$)$D)zD9q)A)ݍ\L4$AH\$@AH$fCnfHA*fHHDŽ$*C.A*fW1^^$D$$Y$/N fo$fք$)$f֌$E9c$L4$$T$E9ifD$A*Y|Au$f.H|H|$@$f(_|f(H$f($u3$D$f(fD$T$8A*f($$~ AufT$8*$$f(fA*AYYYfA*YYY~$fD$$A* $AuYY]~$f(f(f.AWIAVAUATIUSHH{HHHt$pH$H$QH;>H$I|$I$MIt$IL$HD$8H$HD$@HD$xHHL7HD$HH|$8މD$`HzDD$fHnLt$hDt$T\$Xg L|$x~5KL)$e szfLY~-0^)$T$ Yf(\^L$(f(D$ )$ue $0$8YYYOzYzXfY\YzAt HyfHn$$$f̍CHDŽ$)$fo$f)$)$bd$=UyAH$L$DH$Af(|$f(YX|$t$0SffLff(*ҍJ*^$Y\^$c fHLf()$$$YYYX\$\\$0f(YY$f\D$YX$EI fo$fք$)$f֌$D9H$fo$f)$)$1)$)9l$Hwl$ff/f(fT wH|$8f($f(L$$.fH~fHnf.l$HD$0Dt$XLd$HD}Ll$X\$`F|$TEHDŽ$D9HDŽ$fAwAD9fo$Eo)$Eufd$D$EA*$L$fL$AwA*f(AYf(YYv$D9zLd$HLl$X$f.ff(ID$ H\$pIUIMIuI}@I$IE IL$It$ID$ I|$HD$@I$HD$@IL$It$I|$H9H$H8?HH[]A\A]A^A_ffHDŽ$$)$)$|$AH$H$DIl$XL$f(Yl$0-Ful$f(Xl$f؉fLfff(*ҍP*^$Y\^$%` fLLf()$$$YYYX\$\\$0f(YY$f\D$YX$lE ؃fo$fք$)$f֌$9htAAVAAfD$A*LfWAwY t$f.D$hfL|$8$l$d$HDŽ$L$$D-L$*$$^ H$Lfo$fք$f֌$)$G:L?:HD$Hf($$$Dp)$D9fo$$$)$f(f)$9fo$f(D}f)$)$D)$E9H$Ld$C\?I݉DAG}fDAff)*҉)*^f.!Qf(f(ffW *^f.QH|$8L$L$HDŽ$$(Y$ B fo$)$Afք$f֌$E9$Ld$$@T$0D9AfD$A*{Y[qAw$H9qH|$8$f( pf(H$L$'fH~>fD$T$`A*f(\$AwfT$`*\$f(fA*AYYYfA*YYYs$-fD$T$A*T$AwYYr$Ef(f(fD$T$01T$0D$fL$L$H|$8LHDŽ$$L$$(Y$ @ fo$)$fAWIAVIAUATUSHH{HHt$PHt$pHL$hQH;H$I~IvHD$INIHD$8H&H?HHHD$(H|$8D$Hf~H HL$0fHnL$D\$Ld$@f H$$H$t0$YY$$$|$0$t 54$=CA?H$6HDŽ$?H$|$@ ]fH$Y$H\$XL$(Lt$`LIYIẢ\$ \(XfL$\|$C$f $Hߍpfl$LAHDŽ$(*YYXD$ YYYL$$X$? L$fք$fI~A9mH\$XLt$`fI~ĉLd$xf)$AA1A)D9d$(4t$@f/(T(\XL$t$.5El$\$Hl$LLt$L|$ A@|$DEDŽ$E9nDŽ$fAuAD9|xH$E}H$ufD$@EDŽ$?A* $4f $AuA*(AY(YY1$D9}Lt$L|$ $ fDf(IF H\$PIIOIwI@IIG INIvIF I~HD$IHD$INIvI~H9.HD$hH8!5H[]A\A]A^A_IHDŽ$?H$tl$@fS 1H$H\$ A(L$Lt$XIYLI\(XL$\t$AD$ffLA $HAt$HDŽ$(*^YYYL$$f\^YX$< L$fք$fI~A9hH\$ Lt$XfI~@< ffD$@A*WAuY$DD$0fff(H|$8|$@H$$D)؉$DŽ$?*CD-$*HD$xH$^$Y\^$:0Ht$x00H|$($$$$A9H$$$$H$$D9kH$El$$$H$D)D9L$)L|$A)ݍ\L4$H$MLd$8AމfC nfHA*fLDŽ$*C .A*W^^$D$@$Y$: L$fք$fI~D9rL4$L|$$$f.T$E9YfD$@A*TYhAu$f. <H|$8($DŽ$(f~D$fD$@T$(A*($AufT$(*$(fA*AYYYfA*YYYO$fD$@$A*d$AuYY$((fDAWIAVAUATIUSHH{HHt$@Ht$hHL$XQH;H$I|$I$MIt$IL$HD$H$HD$HD$HD>HH?HL7HD$ H|$D$4f~H DLt$8fHn|$Dt$0\$(6^ L|$HHDŽ$@L]\ YfLfH~fo(HDŽ$@@^H fnYYT$p\^L$t \ $$fH~foYH YfnYYXfY\Y At\$td$pCd$xDŽ$$\$|eHD$xT$xL$|HD$pF|$AH\$PL$DHl$pA(YX<$t$ @CffLf(*ЍH*^$Y\^$Z H$HLfH~foHDŽ$fnH H fnYfHnYYg\\$ X(YY$f\ $YX$f5 HD$xfD$xHD$pfH~A9H\$PfH$)D$p1)9l$ Ml$f/(T0 H|$($DŽ$?(fH~D$ t$ .5zDt$(Ld$ D}Ll$(\$4@f|$0D$xEbD9D$|fAwAD9|mHD$xEoHD$pEufD$D$x?EA* $f $AwA*(AY(YYD$|D9}Ld$ Ll$(L$xf.f(ID$ H\$@IUIMIuI}@I$IE IL$It$ID$ I|$HD$I$HD$IL$It$I|$H9[HD$XH8*H[]A\A]A^A_@HD$xfDd$x\$|HD$xDŽ$HD$p$T$xL$|tl$AHl$pH\$PDIl$(L$(YX,$d$ ؉fLff(*эH*^$Y\^$W H$LLfH~foHDŽ$fnH H fnYfHnYY\\$ X(YY$f\ $YX$1 HD$xكfD$xHD$pfH~9^fDlAAAYAfD$A* WAwYD$|fDT-fL|$D$8*|$$L$L$DŽ$?DŽ$$$U H$H$Lfք$HT$pq%Li%HD$ $$DpL$xD$|D9HT$xT$p\$tT$xHT$p\$|9gHT$xD}L$xD$|HT$pD)^E9UHl$pL$$C\?I݉@AG}fDAff)*҉)*^.Q(fW *^.QH|$LA$L$DŽ$$Y$M/ HD$xfD$xHD$pE94L$$L$xD$|VT$ D9AqfD$A*YAwD$|s@ H|$($DŽ$(fH~fD$T$4A*($(AwfT$4*$(fA*AYYYfA*YYYD$|fD$$A*$AwYYgD$|E((D$ T$ T$ D$ fL$ AL$ H|$LDŽ$$L$$Y$c- HD$xfD$xHD$pE9JDAWAVIAUIATUSHH{HhH$H$H$QH; H$I~IFHDŽ$IvIH\$D=xD0f`H/HH$=Xl$(\$8$HD$ $$)$@)$P)$`)$pD$Dt$$$$$$H|$8] fEfo$`)$fo$p)$H Dt$$$hMYfDt$$`H-YffI~L$$p$xfHnd$fEDt$f(fInf)$`f(f)$p5Xt$t-Xl$ 4$-CD$fo$p%$$fo$`)$P=)$@5~$$$`$h$p$x$@$H$P$Xfo$`ffo$pfƒ$)$`)$@)$P)$p^=^WH$ AL$@H$H$|$|$HD$0AY$AX$C?ffJ)$)$*f(AYf(AXf. |$f.$z$f(AYAYf(\Xf.XXf)$0|$f(AYX$Yf.{fo$,$fo$D$0D$8f()$0$0$8)$ Yf(YAY\f(AYXf.fD(D$(D$ fA(fA(AY\fA(AYAXf.f(f(f(AYAY\Xf.$fA(XAXAYf(AYAY\fA(AYXf.,fE(fE(fE(DD$D\D\fA(D\fA(D\AYAYfA(AY\fA(AYXf.?f(fD(fD(T$AYf(fA(D$EYt$hD$D$l$`D\f(d$XDX|$PDl$xDd$pD\$HDT$@DT$@D\$HDd$pDl$xfA(Af(fTfTfAUfAUfVfVfA(fD(f(fD(AYEYEYD\f(AYD\$HDXfA(DT$@DT$@D\$Hf(t$hl$`fA(d$X|$PD$AD$D$f(fTfTfAUfAUfVfVf(XXAYff(AY)$f(AY\f(AYXf.Ht$0fLAfo$H$Dt$@)$)$)$Z D;$fEfo$`fo$pDt$@)$@fo$ )$Pfo$0)$`)$p3=%)$HD$ f)$A)$PA1܉D$@A)$@$H$`$h)$pD9fE/ fA(fA(fT %QA\d$XL$0f(f.t$$fA.Al$Lt$ D|$8ALl$8DDd$@Dt$ADf|$(D)$` D9- fA)$pA9fo$`Enfo$p)$@)$PEu~%!D$fA(D $)$`fA*f(d$d$fEf(ff(A*f(f(AYYf(AYXf.Zf(f(f(YYY\f(YXf.HAPffHnAfEf)$pA9Lt$ Ll$8$p$x$`$hDfA(fA(fA(fA(IV IMIuIEI}IRIvIFJI~BIU IV H$H$H$IIvIFI~H9 H$H8-Hh[]A\A]A^A_fo$`fo$p,$5KD$=1$- $fo$p$fo$`)$P5$P)$@-$@$`=$H$X$hfo$`$pf$xffo$p)$@)$P)$`)$p=MH$H$ l$8H\$xL$@L$L$HA|$Dt$0AUffAfA(f)$)$D$*f(|$h fEf(f(fA(L$HAYfA(D$@AYfD(t$XfD(D\|$pDXDD$PDL$`|$hfEDD$PDL$`f(fA(Af(fTfTfAUfAUfE(fVfVf(fA(D\fA(\fA(f(;$$fEfo$fD(f(fo$)$0t$0f($0$8)$ l$HYfD(DYYYfD(d$@DXt$XD\fE.OD$(D$ fA(fA(fE(AYAYAXD\fD.#f(fA(AY\fA(AYXf.N AXAXf)$0$Dl$0f(fA(AYAYAY\fA(AYXf. fE(fD(fE(D\$D\fE(fE(D\$0D\fA(D\$8AYEYEYD\f(AYDXfE. Xf(\|$pf. fA(f(f(YAYAY\fA(YXf. AXAXf)$f(f(f(AYAYAY\f(AYXf. fLLHfo$)$)$)$ R D9AUfo$`fo$pfE)$@fo$ )$Pfo$0)$`)$pA$Al$f5$=D$)Dt$8$f*T-$f*f($$f(t$0fEf(f(fA($ AYfA($(AYf(\Xf(|$(d$d$|$(fEf(t$0f(f(f(fTfTfUfUfA(fVfVf(fA(\fA(\f(f(H|$fo$ H$fo$fo$$0$8fo$0)$)$@)$P)$ -H$fo$fo$ HH$HD$0)$)$D$ Dt$8fo$fo$PA9)$`)$p$@$H)$@$P$X)$Pff)$`)$pD9d$ tc$@Al$$H$P$Xfo$`ffo$pf)$`)$@)$P)$pD)9)D|Dt$8L$@f.ffHiIA*)$ ff*fWfHnT$(A_T$(fD$ f*L$f(d$ |$fEf(f(f($$f|$8)$f(Yf(YYY\f(Xf.f(f(f(f(AY\f(AYXf.Ht$H|$0L$8$0$@$HZM fo$`fo$pfo$)$@)$P)$`fo$T)$p9T$@u%GDEAt|A8AAfD$ $fA(A*AfEffYX)$pnD9RDD$0fA(AufD$ $fA(A*A+fEffY*)$pDfA(H|$fA(CfT٭H2Df(\$$fA(H$D$0f()fDH\$xDt$0L$H$LfED$ $fA(E*d$HDD$@fA(D\$OANfEAE*DD$@f( 2Ff(d$HfEffE*D\$E*AYfA(AYXAXf.z f(fD(f(AYEYAYD\f(AYXfA.(f(fE(fA(AYEYYD\fA(AYXfD.j f(fA(f(AYYY\fA(AYXf. f(f(f(YYY\f(YXf.Q HDffHnfEf)$pfD$ $fA(A*DD$DD$Df( Df(AYYY\f(AYXf. HDfQD$f(f(fA(d$ |$*|$d$ LHt$H|$0$@$0$8$HI fo$`fo$p)$@fo$)$P)$`$T$8f(f(t$ l$t$ l$fEf(f(f(f(fA(fA(WFfA(fA(f(l$hf(d$`Dd$XD\$PDT$HDL$@DL$@DT$HD\$PDd$Xd$`l$hT$f(f(fD$D\$pDt$hDl$`DT$XDL$Pl$Hd$@Dl$`Dt$hf(d$@l$HfA(fA(fA(DL$PYDT$XD\$pD$YY\fA(YXf.+AXAXf)$fA(fA(fA($f(d$hDt$`Dl$Xt$PDd$HD\$@d$h$Dt$`Dl$XfD(fD(t$PDd$HD\$@ $fA(fA(fA(DD$`|$Xl$Pd$Ht$@G|$XfEDD$`l$Pd$Ht$@T$fA(fA(D$$$d$hDd$`D\$XDT$PDL$Ht$@t$@DL$HfEDT$Pd$hf(D\$XDd$`$$D$T$fA(fA(fA(D$$$d$hDd$`D\$Xt$PDT$HDL$@fEDL$@DT$Hf(f(t$PD\$XAYDd$`d$h$$D$\f(AYXf.AXAXf)$03 $D$0DD$`|$Xl$Pd$Ht$@Z|$XfEDD$`l$Pd$HfD(fD(t$@Of(f(ADt$@fA(fA(Ht$0H$Lfo$f)$)$)$C D9$fEfo$`fo$pDt$@)$@fo$ )$Pfo$0)$`)$pu=fA(fA(fA(Dt$pfA(Dl$hDd$`d$X|$PDL$HDD$@ d$XfEDt$pDl$hDd$`f(f(|$PDL$HDD$@8 $fA(fA(fA(D\$pd$hDT$`t$Xl$P|$HDt$@d$hfED\$pDT$`t$Xl$P|$HDt$@WT$fA(D$D\$xd$pDT$ht$`Dd$XDL$PDD$H|$@d$pfED$D\$xDT$hf(f(t$`Dd$XDL$PDD$H|$@uT$fA(fA(fA(D$D\$xd$pDT$ht$`Dd$X|$PDL$HDD$@id$pfED$D\$xDT$ht$`Dd$X|$PDL$HDD$@ $fA(D\$`d$XDT$P|$HDt$@d$XfED\$`DT$P|$Hf(fD(Dt$@D$fA(ff(Dt$@Dt$@fEf(f(Mf(fA(fA($Dt$Xd$Pt$Hl$@Ol$@t$HfEf(d$Pf(Dt$XT$f(fA(fA(Dt$Xd$Pt$Hl$@fEl$@t$Hf(f(f(d$PAYDt$XAYf(\Xf.z]XXf)$06fA(fA(fA(Dt$Hf(l$@nl$@fEDt$Hf(f(fA(f(fA(Dt$Xd$Pt$Hl$@#l$@t$HfEf(d$Pf(Dt$XLfA(fA(f(l$hd$`Dd$XD\$PDT$HDL$@DL$@DT$Hd$`l$hf(D\$PDd$XiT$fA(D$$$d$hDd$`D\$XDT$PDL$Ht$@8t$@DL$HfEDT$Pd$hf(f(D\$XDd$`$$D$>ff(fA(f(t$@fA(l$t$@l$f(f(jf(fA(f(t$@fA(l$t$@l$f(f(Af(f([NfA(fA(fA(HX8t$XfHnl$PDT$H|$@t$XfEl$PDT$H|$@D\$#fA(fA(f(t$HfA(l$@|$t$Hl$@fEfD(|$f(Gf(f(H7fA(f(f(fHntfA(fA(t$Pl$HDT$@|$Gt$PfEl$HDT$@|$fD(f(ff.AWAVAUATUSHHH$H{H$H$H$H$QH;qH$H$HDŽ$L$HT$XH$L$HyHAH$H$@H$HqH xfHL'\$H|$D$$=HD$`)$)$)$)$$$Dd$h\$l$$$$H|$x8 f%)$p$`$hH H$H$74 fHl2D$D$D$fA(fHn$Dl$PYfA(fA(DD$0Yf(|$(Dd$HfD(DX\f(DL$@l$8Dl$PDd$Hff(f($D$ fA($L$fA(DL$@l$8f(DT$ D\$fA(f(fDTfTfUfUfA(fVfAVfA(YfE(fA(DYYD\fA(YDL$ Xf(f(T$fA(DL$ fDd$f(DD$0|$(fA(Af(fDTfDTf(fUfUf(fAVfD(fAVD\\fA(fA(SLLfo$%$$fo$)$f)$)$$$1 ffo$fo$D$)$P$$P$X)$@fA(f(f(f(YYAYY\Xf.%D$Hf(D$@DD$xH/|$pD$fA(fE(fE(D$YfA(fHnt$PDYl$HD\$0DT$(Dl$8D\fA(Dt$ EXDd$@DL$DL$Dd$@f(Dt$ Dl$8fA(AfTfAUf(fA(AfVfA(fD(EYfDTfUfAVf(AYfD(EYD\f(AYDd$ DXfA(DL$IDL$Dd$ |$pDD$xf(fA(DT$(D\$0Al$Ht$Pf(fDTfDTfUfUfA(AYfDVf(AYfAVDXXfM~fH~fA(\AYf(AYXf.#H-ffHnUff(f(f($`Yf($hYL$(t$ fD(D\Xf(DD$0l$'DD$0fl$f(f(fHnHB-fA(f(fTfTfUfAUfVfVfIn\\f(fHnf(茾At$ = -$pf|$|$($xt H,HD$$D$$$= D|$CffA؉)$D$@D|$)$D$HD=tD$PD=iD$X fo$ff)$)$fo$)$)$n H$H$L$ L$HAEff)$f)$f()$ )$0f*D-Pf(t$0*߼ff(f(f($$YYf(X\f(|$(l$ Ļl$ |$(ff(t$0f(f(f(fTfTfUfUf(fVfVf(f(\f(\f(f(,LL$$, fD$(D$ D$8D$0fA(fA(YYfD(f(D\XfA.t$0t$f(f(H)DD$Hf(f(DL$@YfHnDd$8Dl$PD\$(X|$ 膺t$|$ f(D\$(Dl$Pf(fA(f(fTfTfUfUfVfVfA(fD(f(f(AYEYAYD\f(AYDt$(Xf(|$ |$ fDt$(f(t$0DL$@f(\$DD$HADd$8fTfD(fTfUfEUfVfDVf(fA(EXXYf(AYAY\fA(Yf(Xf.fo$@L$D|$)$fD(fo$PfA()$$$DYDYYYfE(D\DXfE.D$D$fA(fA(fA(YYAX\f.f(fD(f(YDY\DXfD.T\$DXEXD|$f(fA(AYAYAY\fA(AYXf.fD(fD(fD(D!'D\E\fE(D\f(E\fD(AYEYEYD\fA(AYDXfE.f(f(fD(H&Yf(f(DL$pYfHnDD$PDd$HD\$@|$8D\f(t$0XDl$xD$DT$ l$(@DT$ l$(fD(Dl$xD$fA(fA(f(fDTfTfAUfUfDVfVfA(f(fE(f(AYEYAYD\fA(AYDT$(XfA(l$ 褶l$ DT$(f(Dd$HD\$@f(|$8t$0ADL$pDD$Pf(fTfTfAUfUfVfVf(AXAXAYff(AY)$pf(AY\f(AYXf.fHLLfo$p5Z)$`)$)$%?$ $($8$0, D9ffo$fo$)$fo$)$fo$)$)$H$L$5=)$pHL$`f)$`A)$A1݉$A)$$$)$D9T$f/Wf(f(fT \XL$ f(f.5#o i t$f.Y S EeL|$0Lt$(EEAl$lBfDf|$hD)$nE9 fA)$A9 fo$Ewfo$)$)$ufD$L$DA*~="f()$f(l$觲l$ff(ff(A*f(f(YYf(YXf.f(f(f(YYY\f(YXf.#H]"ffHnA۳ff)$A9Lt$(L|$0 f(f(f(f(H$L$H$HS IIpI@IxH RHsHCJH{BIP HS H$H HsHCH{H$H9H$H8bH[]A\A]A^A_fo$fo$fD|$ffffA)$D$@D|$)$D$HD=4)$D$PD=!)$D$X^Ld$xDd$lH$H\$pL$Hff)$f)$f()$ )$0f*P*f(t$0̱ff(f($$YYf(f(Xf(\f(l$(|$ 議|$ fl$(f(t$0f(fTfTf(fUfUf(fVf(fV\\f(f(f(LL$$! fD$D$D$D$fA(fA(YYfD(f(D\XfA.Lt$0t$f(f(HDD$Pf(f(DL$HYfHnDd$8Dl$@D\$(X|$ w|$ \$f(D\$(Dl$@f(f(f(fTfUfTfUfVfVfA(fD(f(f(AYfA(EYAYD\f(AYDt$(Xf(|$ |$ fDt$(f(Dd$8t$0f(DL$H\$ADD$PfD(fTfTfEUfUfVfDVf(EXXf(AYAYfA(f)$PfA(Yf(\fA(YXf.bfo$@L$f(D|$f)$fD(fo$P)$@fA()$$$DYDYYYfE(D\DXfE.D$D$fA(fA(fE(YYD\AXfA. f(fA(Y\fA(YXf. AXAX\$D|$f(AYffA(AY)$AY\fA(AYXf. fD(fE(fD(D%D\fD(D\$D\$D\fA(fE(YEYEYD\f(AYDXfE.* f(f(f(YY\Xf. f(f(f(AYAYAY\f(AYXf.j AXAXfA(YffA()$pYf(AY\f(AYXf.= fHLL%;=;)$`fo$p)$$ $0)$$($8" A9Effo$fo$)$fo$)$fo$)$)$fDd$fCD-D$h)$fLd$XL$H*d$L扜$@$P%HDŽ$$X% $$`K H$HLfo$`)$fo$p)$fo$)$fo$)$H$`Lfo$)$fo$)$UD$`fo$fo$H)$)$A9p$$)$$$)$ff)$)$D9l$`tb$AE$$$fo$ffo$f)$)$)$)$D)9ۉl$8DdfL|$@L$fDhE|$fff(Ή)$ff(މƉD$0))AA**T$(O芪D$0fT$(D$ ff(ލL$f(A*Kl$ |$f(d$t$f(f(ffW+f(Y)$Yf(YY\f(Xff.f(f(f(f(Y\f(YXf.Ht$XLLA$$$$ 9l$8fo$fo$fo$)$fo$)$f)$)$BHf(l$ A|$fHnHt$XLL|$l$ $$$$ 9l$8ffo$)$fo$)$fo$)$fo$)$BL|$@$$$$Zf.D w-'tsfD$f(AA*L$ݤfffY)$E9DL$ f(ufD$f(AA*L$腤fffY)$SHf(H|$XfT8~H$H9$f(fHnRD$ f(~H\$pLd$xfED$f(L$E*DL$@l$8fA(Dd$ɣAOfEAE*DL$@f( f(l$8ffEfED*Dd$E*AYfA(AYXXf.[ f(fE(f(YDYYD\fA(YXfD. f(fE(f(YEYAYD\fA(YXfD.O f(fA(fA(YAYY\f(AYXf.h f(f(f(YYY\f(YXf. H4ffHn.ff)$DfD$f(L$A*DL$4DL$-f( !f(AYYY\f(AYXf.}HfL$D$\$ T$谢\$ T$ff(f(f(f(fA(fA(|Hf(f(f(D$fHnDl$PDL$HDD$@Dd$8D\$0|$(t$ !Dl$PD$f(f(t$ |$(AYf(D\$0Dd$8AYDD$@DL$HAY\f(AYXf.fA(fA(DL$HDD$@Dd$8|$0D\$(t$ {t$ D\$(|$0Dd$8DD$@DL$H2fA(fA(f(Dt$HfA(Dl$@|$8t$0D\$(Dd$ Dt$HfDl$@|$8t$0fD(fD(D\$(Dd$ [L$fA(fA(fA(|$8DT$0l$(t$ 蠠|$8fDT$0l$(t$ HfA(fA(f(D$fHnDD$P|$HDT$@l$8t$0Dd$(D\$ 'fD\$ Dd$(fD(f(t$0l$8YfA(DT$@|$HDD$PD$\fA(YXf.~HfA(f(D$D\$PfHnDL$HDD$@|$8DT$0l$(t$ lt$ fl$(f(DT$0|$8f(DD$@DL$HD\$PD$L$D$|$8DT$0l$(t$ |$8fDT$0l$(t$ fD(fD(%T$f(fA(fA(DT$(l$ 觞DT$(l$ ff(f(ZfA(fA(f(Dl$8f(D\$0DL$(DD$ VDl$8fD\$0DL$(DD$ fD(f(SfA(fA(f(f(fA(fA(f(Dt$HfA(Dl$@|$8t$0DL$(DD$ ̝Dt$HfDl$@|$8t$0fD(fD(DL$(DD$ L$fA(fA(fA(Dd$HD\$@DT$8l$0|$(t$ PDd$HfD\$@DT$8l$0|$(t$ H) f(Dd$pDl$PfHnDL$HDD$@DT$8l$0|$(t$ ֜Dd$pfDl$Pl$0|$(f(fD(DL$HDD$@DT$8t$ H f(fA(fA(Dd$pfHnDl$PDT$Hl$@|$8t$0DL$(DD$ ;Dd$pfDl$PDT$Hl$@|$8t$0DL$(DD$ _L$D$DT$8l$0|$(t$ ӛDT$8fl$0|$(t$ fD(fD(T$f(fA(fA(DT$(l$ 聛DT$(l$ ff(f(fA(fA(f(Dl$8f(D\$0DL$(DD$ 0Dl$8fD\$0DL$(DD$ fD(f(fA(fA(fA(f(KfA(f(DD$ |$ʚDD$ |$ff(f(f(f(f(|$8f(t$苚|$8t$f(f(f(f(eHq fA(f(f(fHnB`f(f(fA(|$8fA(t$|$8t$f(f(\f(f(H f(fA(fA(|$PfHnt$HD\$@DD$8趙|$Pft$HD\$@DD$8Dd$BfA(f(f(|$@fA(t$8DD$b|$@t$8ffD(DD$f(bf(fA(|$Ht$@D\$8DD$|$Hft$@D\$8DD$fD(f(fAWIAVIAUATUSHH{HHHt$hH$HL$xQH;` H$I~IVHD$@IvIHD$8fDHbfD2 aH?H.HD$PD$`f~H HfD~H|$XH |$dH Hʋ )$)$fHnH щH|$8Dt$fHnɉ$d$  $fEo$(Dt$)$$Wwf$艚=wf$fք$$]Dt$fE$fք$$$$)$=v|$X|$tv\$|$ ED$-ѱ$fo$$=)$b$-U$$$$$$$$fo$)$)$rd$uHl$HD\$ ݉L$AY\$L$d$0AXd$(fD-ffH)$*(AY(AX.|$.|$(*L$((AYAY(\X.|XXf~Hf~H H DT$(AYDYXl$0A.D$H H$fnH$fnH (fn(AYfnAYAY\fnAYX.D(HfnfDnH fnfDnAY\fnAYAX.(((AYAY\X.A(A(XAYA(AXAYAY\A(AYX.DD$E(E(E(D\\$D\(D\D\((AYAYAYAY\X.A((A(AYAYX\.A((A(YAYY\(AYX.XA(A(YXA(AYY\A(AYX.JLLDt$ D\$$$$$ 9fEfo$D\$Dt$ fք$)$f֌$Hl$H-\fo$DŽ$=ADŽ$)$DŽ$1DŽ$)$$$$9\$PhE/ A(A(T GkA\XL$ =tq\$ .|$3-\$ A.DcL|$0D$ELt$(A܋\$`Dt$]fD|$dDDŽ$DŽ$ E9 A(A(ADŽ$DŽ$9^fo$Ew)$EufDl$DŽ$DŽ$A*$l$ $$~$d$d$$~$ڎd$fEfք$f$$A*((AYY(AYX. (((YYY\(YX.ofAfEfք$$$$$9Lt$(L|$0$$DA(A(A(A(IF H\$hIIwIWIPIIvHIVI~@ IG HD$@IF HD$@IIvIVI~H9HD$xH8VHH[]A\A]A^A_@l$ =D$$-$fo$$)$=$$$$$$-F$$fo$)$)$mHl$pL$$L$Dt$\$Cff)$A(fD$*(l$ ǐfEl$ fք$(D$(D$,A(A(AYAY(\\$HX.(A(A((d$0\A(DT$(\DL$ (=l$H$fEd$ H$fք$fnH (D$fn(D$DL$ YDT$(YYY(d$0\X.AfDnH fnA(fnAYE(AYD\XA._(A(AY\A(AYX.gXXf~Hf~H H |$ t$((YYAYAY(\X.|$E(ljH D\fnE(\D\fnE(A(D\AY((AYAY\A(AYX. AXE(D\\$HA. A(A(A(YAYAY\(AYX.- XXf~Hf~H H A(A(A(AYYY\A(AYX. LLH $$$$ 9ݍCfEfo$fք$f֌$)$@DcffD$XD\$ -D$)=sDt$*CT$$f*($$$(t$$fEt$Dt$fք$$$((AYAY(\X.A(A((Dt$\A(l$L$\d$(膌l$fo$H$fք$H|$8$$)$d$)$KH|$8L>D$P($$Dt$P$$)$$9KDD$||$f$D\$fք$D$$$D$ ((fn‰t$|$fnɉL$T$JD\$|DT$f$DL$fք$D$$(A(((lJfք$$$ A(A(A(l$ht$`DD$ |$DT$DL$ Jl$ht$`fք$DD$ $$|$DT$DL$ ^fnfn(܉D$z&Dd$|D$DD$h|$`DT$ DL$\$ IDd$|D$fք$DD$hD$$|$`DT$ DL$t$l$ D$L$H$D$|$|t$l$H|$|fH$fք$t$D$D$l$D$XT$ (A(A(DD$|$HDD$|$ffք$8$8$<(A((|$D$DL$|D\$(HDL$|D\$ffք$@|$D$@$DD$(((l$|$|$D$D$D$D\$Gl$|D\$ffք$H|$$H$LD$D$D$.$A((D$$$D$D$l$Dd$T$|FDd$l$ffք$DL$|$$D$D$$$D$A((fnʉT$9#Dd$|D$$$D$$D\$3FfD\$DL$$fք$$$Dd$|D$(D$$YD$A(\A(YX.hAXAXf~Hf~H H L$D$A(A(H$D$|$|t$l$ME|$|fH$fք$0t$$0$4l$D$a "((Dfք$P$P$TlA(A(D$D$$Dt$|D\$l$Dl$D\$$fք$Dt$|$$D$D$ A((D$$$D$D$DL$|l$Dd$CDd$l$ffք$DL$|$$D$D$$$D$(((|$|(l$t$]C|$|l$ffք$`t$$`$d ((Cfք$$$(A(D\$xDD$8|$Pt$ BD\$xfDD$8fք$|$PD$$t$ ((D\$`DD$x|$8t$PjBD\$`fDD$xfք$|$8$$t$PDL$ (((t$(l$ Bt$l$ fք$$$(A(A(l$ A(|$DT$DL$ ADL$ fDT$fք$|$$$l$ n((fnl$fAnDT$ DL$|$ BADT$ fDL$fք$l$$D$|$ ((@fք$x$x$|{(A((|$PA(t$ @|$Pt$ fք$$$A(((|$PA(DD$8t$ g@DD$8|$Pffք$t$ D$$t(((|$P(t$ @|$Pt$ fք$$$[(((|$|(l$t$?|$|l$ffք$t$$$ff.fAWIAVIAUATUSHH{H(Ht$PHt$xHL$hQH;WH$IIwMIOIHD$(H$`HD$HD$@H.HHDŽ$L7HHD$(D$PH3Dl$$Lt$8Dt$D\$TH$$$$H|$H& H$8o$(HDŽ$0~-"H$H)$ $8H $xf$HDfY$ Y$0$0$$$H|$`诇 H fo$`Cfo$pH$)$fo$H$)$)$$$$H$(o$fH$)$$$($$$H$(o$fH$)$$$(H\$X$Ld$`fL$H$L$0AfDC$ffD(LJl$L$Afo$D$HDŽ$X)$0$0$8*H$f(f(H$@Y$@XH$YYH$YYfo$X)$5*Xf(X$YfD($DYX\fA(YY$AYDXf(A\fD(DY$AXXf(\fA(YYXf(XYYYYXX$$H$$fo$H$@H)$0f$H{ H$(A9o$$l$H$H$)$fo$H$($H\$XLd$`)$fH$A)$A1)$)$ A)D9l$ \$H~HHDŽ$$H$$$$H|$Hn $l$xH f.-#A]AmLd$0Dt$HAL|$ ݋\$LSD|$<D}HDŽ$;A99ffҍ})$ AE9o$H$(uH$)$uD}ffHg*D$A*H$\$ $6\$ $}f(f(YYf*Y:Y$ fA*AYYY.$(E92f(L|$ Ld$0$ $fff(f(IG H\$PI$IL$It$I|$PIIO@IwID$ IHD$IG HD$IIOIwIH9HD$hH8BnH([]A\A]A^A_H$$$t$PH|$`i H ifo$`Cfo$pH$)$fo$H$)$)$$H$(o$$$H$)$$$(f$$H$()$$(fH$$[H\$X$Ld$`fL$H$L$0AfAT$fLLAl$Afo$D$$)$0$0$8HDŽ$X*H$H$@H$$@^H$f(Y\^f(Y\\fo$)$5D$^$fE(EXDYf(YEY\fA(YY$DXf(A\fD(DY$AXAXfD(f$HYD\fA(YXf(XYYYYXX$$H$$fo$H$@H)$0mu H$(D9o$$l$H$H$)$fo$H$($fo$H$(A9\$XBUHDŽ$ #t cHDŽ$(fҍ}rHAMff\$H|$(H$$H$D$0L$$ffo$$f(f()$*D )$HDŽ$*H$H$^$0Y\^$8Yfo$0)$\\f(^$@H$@H$uH$H|$@Lfo$H$p)$`uH|$ fo$`H$p$H$(A9$D9$$$)$f(H$$(f$tY$AMH$($$o$f(H$$(f)$$D)d9\))؍\L|$Lt$@AH\$(ALd$ H$A$fDfCgfHA*fLHDŽ$HDŽ$*CA95HD$D| Hl$H$0Dt$Hl$(ALt$8Ll$ ADLd$0EEfAUA|$fDAfD)*މD)A*^f.Qf(fAfW Q*^f.QHHLA$A $$0HDŽ$YHDŽ$ Y$($8\\ H$XD9l$o$Hfo$H$@H$)$0fH$X$HHl$Ll$ $PLd$0$X$H@d$hA9NAf$*ED$ff(Yf($X$Pf$|$@A*d$L$ffd$L$|$@f(ffA*ED$f**AYYYYYf*fWuY%eY$PYYYf(^$XTf$d$A*d$ED$fYY%$Xf($PSED$$Xf(f$*BED$ffWY$P@$Xf(ED$ffA*ED$A*AD$YfA*YfA*Yf*A|$Yf*Yf*Yf*Yf(^$X$P$X$HHyED$H$XfHn%$ T$@\$H\$HT$@f L$@L$@f ff.AWIAVAUATUSHH{H8Ht$XH$HT$`HL$xQH;H$IIwHD$(IOIHD$H@&HHDŽ$?HH $fn$H|$H~$HD$8D$Dd$HL$0\$TL$P H$$$d$H$$,$tF$Y$$YY$$$|$8t,HDŽ$?CD$@H$HDŽ$H$$DŽ$?$HDŽ$$$(H$H$$|$@H$$$$H$AH$L$H\$hD$L|$pfH$HD$$L$DÉD$ H$HD$$AfD(HPLd$ ƒD 8T$HDŽ$DŽ$*HD$H$D$ $$$HD$$D((D$DYXH$YYYYAXAXD$(A($XY$YX(XYX(AYAXD(XD\D\(AYAYEYAY$(AYAX$(\YXX$W ;\$@L$D$T$fI~fA~fք$d$ f~$fք$f~$5H\$hL|$pD$fL$A)$HDŽ$A1A)D9l$0HDŽ$?fn$$~$d$X[ d$fք$$.=f~$|$lfAmL|$ Dd$PA]Dt$TANf|$DkDŽ$A9HDŽ$fsAA9H$CH$$$Eukf(d$f*DŽ$?*T$L$ T$sL$ (d$(YYY$f*ÉYfA*AYYY_$A91$L|$ $@f((H\$`IG HD$(HHKHHsH{@HC H\$XIIOIG IwIIIOHD$(IwIH9HD$xH8GH8[]A\A]A^A_f.L$D$PA9<\$AWAACADŽ$AzAAt ASDŽ$fsfDH$DŽ$?$H$$HDŽ$H$$$H$H$$$HDŽ$?HDŽ$$H$$CAL$D$D$@H$fH$H\$hL$DHD$$L|$pD$ H$HD$$ACfD(HLd$ D T$HDŽ$DŽ$*HD$H$D$ $$$HD$$(D$^H$D$(Y\^(Y\\A(Y($^$YX(XYX(AYAXD(XD\D\(AYAYEYAY$(AYAX$(\YXX$Q 9\$@L$D$T$fI~fA~fք$d$ f~$fք$f~$=D$8EufffH|$HH$$$D()d$ *CD6T$*H$$HDŽ$?H$$^ˉ$$((Y\^$Y\\^$OH$OHL$0$$$$$$A9H$D9$$T$$d$ H$$$$$$H$Eu$$H$$$$D)'D9L$)L|$A)D$D$\H$d$ EMLd$HT$fBsfHA*fLHDŽ$*AA*W ^^$L$ $ YYD$$$$N L$D$fI~fA~fք$f~$fք$f~$D9t$8$L|$$$f(d$*E d$s(M$Y$f(ĉD$*\$@d$L$ fD$s*\$@(fL$ *fd$A*YރYYYYY]$f*WAYYYY^I$f(\$ *d$?\$ d$sYY$$s$yf(d$*Wd$sY$$,sff*ƍs*Yf*Yf*Yf*ȍCYfA*Yf*Yf*Y^>$(((o>s$fAWIAVAUATUHSHH{H8Ht$@Ht$hHL$XQH;QH$H}HuMHMHUHD$L$HD$ D>HHDŽ$?HH$fn$~$H|$ HT$T$0|$(H$D$,H\$8\$ LHDŽ$@DŽ$ %fLfք$$$f~$($^(HDŽ$@@Y$Y\((^$Y\$YY\^$s f$$$(fք$$$f~$$,$YYX(XYYYX(YXY%(Y\Y(Y\\Y t$$$$DH$D\$(HDŽ$?HDŽ$D$X$$$$H$$$H$$$$AH$Hl$HL$DMI݉fDEffHDŽ$((DŽ$*D-H*^$(.Y\^$Y\\(^$(CQ(LLX$Y^Y$^($ fLLH$DL$(fք$f~$$$H$$$$$$$$YH$HDŽ$D(YH$$$$X(XYYYX((YX$$YAYX(XAYXA(YX(\(XD\(YAYAYAY$(YX(\$YXX$F H$9fҋ$fք$H$fH~$f~f~$AHl$HH$H$f$AHDŽ$)$A1A)D9l$HD$x?|$(fnL$||$t~D$tI ffք$$.5if~$t$HA]AULd$PD|$0AHl$0\$,Lt$8J|$Et$DŽ$A9HDŽ$(ED$EăE9H$A|$H$$$uEt$ffD$(DŽ$?*A*d$ $kd$ $ED$(f(YYfA*Y`EY$f*ŃYYY$E92(Hl$0Lt$8$Ld$P$D(((HE H\$@IINIvI~HHUHM@HuIF H}HD$HE HD$HUHMHuH}H9HD$XH86H8[]A\A]A^A_fDH$$P@$Dd$(<$$H$$H$$HDŽ$?HDŽ$$D$$$$$XAH$Hl$HL$DMI݋\$,fLf(*ٍH*^$((Y\^$Y\\(^$ fLLH$DT$(fք$f~$$$H$$$$$$$$YH$HDŽ$DkYH$$$$X(XYYYX((YX$$YAYX(XAYXA(YX(\(XD\(YAYAYAY$(YX(\$YXX$I@ H$$9ffք$H$fH~$f~f~$9f.%,2DŽ$jt DŽ$(ED$CT-f$H\$ *|$(HDŽ$?$D$8HHDŽ$$$$b H$HH$fք$H$$f~$$H$fք$f~$=H=H\$f$$$$$$A9H$$$$H$$$$$$D9XH$E}$$H$$$$D)"D9H$Ld$EL$H,$Lt$C\?L|$ ݉ADAt$DEfDAfD)A*߉D)*^.Q4W(f*^.QLLA$L$($ HDŽ$YY$$$< L$D9ffք$L$D$f~$D$fք$f~$H,$Lt$$Ld$$$fd$HA9eIfD$(*5ED$f(=$Y($+fD$(|$,A*d$ $fd$ $A*|$,(ffED$f**YAYYYYf*WBY%>Y$YYY(^6$pED$ffA*ED$A*AD$YfA*YfA*Yf*A|$Yf*Yf*Yf*Y(^$fD$($$A*$$ED$fYY%D$($zED$$(pfD$(*5WED$fY9$@$(#DŽ$ED$(((AH$t$,\$0+\$0t$,f3L$, L$,fFff.AWIAVAUATIUSHH{HH$H$H$QH;H$pIt$IT$HD$xH$H$IL$L$H$I<$L$MfDjHLH 2l$@H.% D$t= $H- H$1Ht$0$P-x $@$X$`$h$$$h$h$h$h$h$hH$ - = %5$$fo$$$ fo$$(fo$$)$0)$@)$PH0$p\$#`f$H `fL$fI~$$fHnoH_f $fI~$($ fHn>d$,$f(fInf)$fInf)$f(f)$ $h$h$h$h$h$hH$< H0fE+!fo$DcH$fo$fo$)$fo$H$`)$fo$)$0)$ fo$)$@)$Pfo$$$$)$fo$$$f$)$ffo$ f)$)$)$)$ Afo$$$$$$)$$ffo$fo$ f)$f)$)$)$)$ AK$AH$0H$$H$HL,$-]I|$l$`f1 fLHCD-o$8o$HH)$o$X)$)$$$*f(f(AYAYf(f(YY\Xf.<D$D$fA(fA(fA(AYAY\|$ \$8AXf.f(;f(f(AYAYfD(D\XfD.:AXXD$D$fE(fE(fA(d$fA(EXAXAYEYD\AXfD.i9fA(f(AYAYf(\Xf.r8Xf(f(AYXT$AYl$hT$P\DXfA.7f(AXfE(AYDX|$(f(f(\l$ AYXD$8l$f.D$ w fo$,$d$)$pfo$f()$fo$ )$f($$YYYYf(\Xf.D$pD$xfA(fA(fE(AYAYD\AXfD.fA(f(f($ $(YYY\fA(YXf.D$XXD$fA(fA(fA(AYAXAX\fA(AYXf."$f(D$\$HAYf(YY\f(f(AYXf.!X\$X4$f(|$8AYf(AYAYAY\Xf.\$HfA(f(AYAYf(YAY\f(Xf.\$,$XXf(f(AYAYAYAY\f(Xf.fA(fE(fE(DD$`\\$PD\d$hD\D\fE(f(f(D\YfE(D\d$8AYYAYf(\Xf..\$ d$f(fD(AYAYD\XfD.H/fA(fA(fA(YAYY\fA(AYXf.Z.\$(XfE(XEXf(f(AYXD\fA(AYXfD. 1fA(fA(fA(YAYY\fA(AYXf.!0XXffA()$|$(AYf(YAY\f(f(AYXf.O/fA(fA(fA(YAYY\fA(AYXf..XX|$f(AYf)$t$ Yf(YAY\f(Xf.&fHLAH$)$fo$fo$)$0)$@)$Pp E9fEfo$fo$fo$ )$fo$)$fo$)$fo$)$)$)$ hI 5 )$f)$A)$A1)$$A)$)$$$)$)$ D9$al$0=THHDŽ$8$(|$h$0$8$8$8H$/ fE$d$0H f.d$`mg\$@fA.VPEl$L|$(Al$D$Lt$8EEM@f$A\$)$iE9f)$)$ 9\$tfo$EAfo$fo$ )$)$)$EtA\$f~-˽D$0*L$@fA()$f($$@f$$fEA*f(f(fD(f(EYYf(AYAXf.#f(f(fD(YYDY\f(YAXf.HRfl$ d$fHnD$_ffEd$*fD$ff(A*l$ )$Yf(AYDXfA.5fA(f(f(AYYAY\fA(YXf.!f(f(f(AYYY\f(AYXf.M!Qff(ŃfEf)$ 9\$tL|$(Lt$8$$$$$ $(!fA(fA(fA(fA(fA(fA(IG H$HD$xH;HK(`HSHsXI?IOPIWIwH @(HC H$IG HD$xI?IOIWIwH9XH$H8H[]A\A]A^A_fD$h$h$h$h$h$hH$/. H0fEI fo$Cfo$fo$H$fo$)$fo$)$fo$H$`)$ )$0)$@)$Pfo$$$$$$)$$fo$fo$ ff$)$fD$$)$$$$fA)$f)$f)$)$)$)$ AH$0H$H$L|$DIIL$1L HL$0LLsy LLLh 9fEfo$fo$fo$ )$fo$)$fo$)$fo$)$)$)$ ZH$L|$@fo$fo$fo$ Al$fEff)f(D*ȍD-*fA(DL$hfEDL$f(f(f( $AYAYfD(f(D\XfD.cf(fA(fE(t$fA(fA(\D\fA(|$hd$8l$(f(fA(DD$ DL$fEDL$DD$ f(f(fD(t$AYfD(l$(|$hAYf(\$H\Xd$Pd$8f.f(fD.fE(fE(D\D\JfA(fA(fDd$8\A\fA(D\$(|$d$ l$\$0fEt$@l$d$ fD(f(|$D\$(YDd$8DYYYfD(D\DXfE.WfD(X,$D\fA.fE(f(EYAYfE(f(D\AXfA.fA(fA(EXAXAX\D$PXL$HAXf.f(fD(fD(AYEYD\DXfE.F\$@DXEXt$0f(fD(AYAYEYD\f(f(AYXfA.ofA(\fA(Xf.$T$0XDXt$@f(f(YYYY\f(f(Xf./ $D$fD(fA(fE(AYEYEYD\f(AYDXfE.jf(fD(fD(AYEYD\DXfE.$$fD(f(\$ AYT$EYAYAYf(D\XfA.AXEXfA(AXf(XfD(f(AY\fA(AYXf.D$$fA(fD($YY\fA(YT$fA(YXT$f.~AXfA(fE(YAXfE(DYEYf(f)L$)$D\f(YDXfE.$$fA(AYf(AYAY\fA(AYXf.DXAXf(Yf(YfDfA(D)$Y\fA(YXf.$H$ffo$fo$)$p)$)$)$ A9=)$L$ fAfD$)$fL$)$)$D)$)$ D9tWfo$Al$fo$)$fo$ D)$)$f(t$)$)$)$ D)95&J)DlL$t$fDffAT-L$*)$f)$f*fWT$ zATmT$ fD$f* $f(Od$,$fEf(t$@fD(f(fl$0)$pf(Yf(YYY\f(Xf.B"f(f(fD(fA(fD(EYAYfA(D\AXfD.!fD(fA(\AXf.j H$LL$$$D$D$$_ +fo$fo$fo$ fo$fo$)$fo$ )$)$)$)$)$ 9T$tkfD%PED GAAMAAf)$AAAA~-c)$ fDE9d$fE(AufD$0L$@fA(A*C~=ˮfEffY:)$ )$Ifo$H$Dcfo$fo$)$fo$)$fo$)$ fo$H$`)$0)$@)$Pd$ fD$0L$@*fA(DL$Hf(d$affd$ A*f(fD(DL$HA*fE4$f*l$`-!Ff(f(YYAXAXf. d$f(AYfD(DYYD\f(AYXfA. ff(A*AYfD(EYYD\fA(AYXfD. $$f(fA(AYAYf(AYY\Xf. fA(f(fA(YYY\f(YXf.!Dfl$Ht$ ffEAt$ l$Hf)$f(f(Y*fWYf(AYAXXf.!t$f(AYf(YY\f(AYf(Xf. ff(A*AYf(YY\f(AYf(Xf.E <$f(f(AYAYf(YY\f(Xf.MffAL$fA*ff*AL$f*AT$A*AL$d$Hf**4$f|$f*\$ *f(AYf(f(AYYXf.f(f(f(AYYAY\f(YXf.f(f(f(AYYAY\f(YXf.ff(A*AYf(YY\f(AYf(Xf.|$ f(AYf(YY\f(AYf(Xf.t$f(f(AYAYf(YY\Xf.<$f(AYf(YY\f(AYXf.{f)$  ~%])$ fD$0L$@fA(*$$$$-Af(f(Yf(YY\f(YXf. Af fEf)$d $ [ $(IfD$0L$@fA(A*~-fEffY)$ )$fo$Cfo$fo$H$fo$)$fo$)$fo$H$`)$ )$0)$@)$PeL$$fA(fA(D$$$d$Hd$HfED$$$fA(f(D$D$D$$$l$HDD$8l$HfED$D$DD$8f(D$$$D$`fA(fA(fA(D$$$Dd$HD\$8Dd$HfED$D\$8fD(f($$L$$D|$8D|$8fEf(f(P\$HfA(f(fA(D$$$$D$D$7fED$$$$D$D$iL$$fA(fA(D$$D$$D$D$D$fED$$D$f($f(D$D$D$yfA(fA(fD|$8f("D|$8fED$L$ NfA(fA(f(t$,$t$,$fEf(fD(f(f(l$ d$D$l$ d$D$T$fA(l$Pt$`DD$H|$ jl$PfEt$`DD$H|$ fD(f(f(fA(f(DD$Pf(|$`l$Ht$ |$`fEDD$Pl$Ht$ fA(f(f(f(fEffA(A*fEf(f(T$ fA(f(f(fEf(3T$fA(f(mfEf(G$fA(f(Lf(`f(f(f(f(.$f(fA(fA(l$Pt$`DD$H|$ l$Pt$`DD$H|$ f(f(ffA(fA(l$PA*f(t$`DD$H|$ l$PfEt$`fD(|$ f(DD$H\$HfA(D$D$D$$$$D$D$D$Dt$8Dt$8fED$D$f(D$f($$$D$D$D$fA(fA(H6fA(D$fHnDT$H$$$D$D$D$DL$8!DL$8fEDT$HD$D$D$$$$D$kT$`f(ffA(|$8D|$(DT$DD$ t$|$8D|$(fEDT$DD$ f(t$D$0f(fA(fA(|$PDt$Hl$8DL$(d$D|$ DT$|$PDt$HfEl$8DL$(fD(f(d$D|$ DT$ T$`fA(D$D\$h|$PDt$Hl$8DL$(d$DD$ t$t$DD$ fEd$DL$(fD(fD(l$8Dt$H|$PD\$hD$fA(i4fA(f$Dt$hl$PDL$Hd$8DD$(t$Dd$ D\$t$D\$fEDd$ DD$(d$8DL$Hl$PDt$h$Lf(fA(fA(D$fA(D|$hD$$DT$8DL$(d$l$ Dt$8d$fED$D$D|$hfD(f($DT$8DL$(l$ Dt$cD$`$f(fDd$8D\$(D|$DT$ |$Dd$8D\$(fED|$DT$ fD(f(|$f(f(L$@D$0X|$fEDd$8d$ l$fD(fD(D\$(\$f(fA(fA(D$D$Dt$hd$8l$(DT$DL$ |$Dt$hD$d$8l$(fD(f(D$DT$DL$ |$fA(fA(fA($fA(l$h$DL$8t$(DD$Dd$ D\$5l$h$fE$DL$8t$(DD$Dd$ D\$d$f(fA(D$fA(d$Hl$8DL$(t$DD$ |$DD$ fEt$DL$(l$8d$H8fA(f(f(qf(fA(fA(f(4$f(L4$fEf(5fA(fA(f(|$`t$H|$`t$HfEfA(f(t$Ht$HfEf(f(f(f(fA(|$`fA(t$HDD$ l$$$|$`$$t$HDD$ f(f(l$L$ D$f(AfA(RH$HLfo$f)$)$@fo$)$0)$PiI E9fEfo$fo$fo$ )$fo$)$fo$)$fo$)$)$)$ H$fA(fA(fA(D$D$|$ht$Pl$HDL$8D\$(C|$hD$D$t$Pl$HDL$8D\$(fA(f(f(D$fA(D\$hD$t$Pl$HDL$8|$(迾D\$hD$t$Pl$HfD(fD(D$DL$8|$($fA(D$D$D$D$$DD$hd$Pt$Hl$8DL$(D\$D\$DL$(l$8f(f(t$Hd$PDD$h$D$D$D$D$f(fA(,fA(D$D$D$Dd$h|$Pt$Hl$8DL$(d$D$KD$d$DL$(l$8t$H|$PDd$hD$D$D$\$T$ fA(fA(D$D$$DD$hd$Pt$Hl$8DL$(DT$D<$藼d$PfED$D$DD$hfD($t$Hl$8DL$(DT$D<$D$`fA(f(f(Dd$PD\$H|$8DD$(d$DL$ t$,$|$8Dd$PfED\$HDD$(fD(fD(d$DL$ t$,$fA(f(fA(DD$8fA(d$(t$l$ DL$<$od$(<$fEt$DD$8fD(fD(l$ DL$ L$@$f(f(D|$(DT$DD$ d$d$fED|$(DT$DD$ f(f(q$fA(f(úf(f.L$hD$Pf(fA(D$D$D$D$D$l$HDD$8Wl$HfED$D$f(D$f(D$DD$8D$;f(fA(fA(D$fA(l$P$$D$D$DD$hd$HDt$8褹l$PD$fE$d$H$DD$hD$Dt$8D$D$`T$fA(D$$$D$D$DT$hDD$Pl$HDd$8l$HD$fE$fD($f(DT$hDD$PD$Dd$8D$fA(fA(f(|$PfA(t$HDD$8l$(`|$Pt$HDD$8l$(L$(f(fA(fA($D$DL$hDT$Pl$HDD$8DL$h$DT$Pf(f(D$l$HDD$8/fA(fA(fA(D$$$$D$DD$hl$PDT$HDL$8bDL$8DT$Hl$PDD$hf(D$$$$D$.fA(fA(=&$$$D$D$DT$hDD$Pl$HD|$8讶D|$8l$HDD$PfD(DT$hD$D$$$$Af(ffA(ȃfDT$(D\$ l$4$(4$LLl$D\$ $DT$(H$$$D$D$$$? +fo$fo$fo$ fo$fo$ )$fo$)$)$)$)$)$ 9T$taT$`fA(f(fA(l$Ht$8DL$(d$ DD$<$l$H<$t$8DL$(fD(fD(d$ DD$\$@T$0fA(f(DD$<$贴<$fEDD$f(f(fA(f(f(D)t$Pf(D\$HDL$8|$(ffD(t$PD\$HDL$8|$(*fA(f(fA($fDd$HD$D\$(t$t$fE$fD(Dd$Hf(D$D\$(fA(fA(fA(D$$D$D$$$DT$hDd$PD\$Ht$(ft$(D\$HfEf(Dd$PDT$hf($$D$D$$D$fA(fA(H/"fA(D$fHnD\$h$$$D$D$t$PDL$HDD$(茲t$PDD$(fEDL$HfD(D\$hD$D$$$$D$fA(fA(Dd$hD\$Pl$Hd$(t$l$HfEDd$hD\$Pd$(fD(f(t$ffA(f(A*谱fEf(T$fA(f(f(花fEf(3fA(f(f(jfEf(f(fA(f(l$Ht$ >l$Ht$ +DD$`fA(fA(fA(l$hd$Pt$HDd$(D\$l$hd$PfEt$HDd$(D\$fA(f(f(t$ 謰t$ fEf(f(P@AWIAVIAUATUSHH{HhH$H$8H$QH;H$I~IVLIvIH$H$H$H$L$PHD$xL$HDŽ$f2H bL7Lt$0H6-P $`5' DH$D$l1Hd$`$h% $p5 $$x$Ht$p$D$$$$$$$H$ 5 f% )$P$@$H)$`H$H0H$ HfD$$fHnfA(DD$ f(|$UfD$D$fEf(f(|$AYfDD$ EY)$fD(f(E\AXfD.6f(f(f(YAYY\f(AYXf.5fEffA(l$PD\\f(d$HDL$@t$8fA(D\$(DT$DD$ |$bDT$DL$@D\$(t$8fD(fD(fE(|$DD$ $E\AXd$Hl$P$fA.4f(fA(fA(AYAYAY\f(AYXf.4fffE$\fE$DYD\Yf(AXA\f.Z3f(f(fD(YYDY\f(YDXfD.2\fA(fA(A\f(f(%d H|$xLfo$ffo$)$pf)$P-2 )$`)$)$$$ fo$fo$0fo$ )$$0$)$$8$fD(fD()$DYf(f(YDYYD\DXfE.1D$ffD$AYfE(AYAXD\fD.0fA(f(f($P$XYYY\fA(YXf.0D$fA(DXD$fXAYfA(fA(AXAX\fAYXf.+D$@f(f(D$HAYAY\f(AYT$f(AYXT$f.)DXf(XAYDD$ fD(EY|$f(AYD\f(AYXfD.(f(fA(f(AYAYAY\fA(AYXf.S(DXXf(AYf(f(AYAYDD$fH~\f(AYXf.'HffHnfYf(f)$ fYf(\Xf.'D$fHnfH&\l$(\fHnd$蘩fd$l$(f(fY)$0fYf(\Xf.+L$ Hf\D$fHn\\\%Dfo$ fo$0f)$@)$)$)$$$$$$$H$E H$H0fo$Afo$ fo$0$)$fo$Pfo$@)$fo$`$P)$fo$$`)$H$p$X$p)$$x$h)$ffo$)$Pffo$fH$)$`)$p)$)$)$fo$$P$X$`$h$p)$P$xfՃ$fo$ffo$)$f)$)$`)$p)$$5*H$H$$H$HŻL$L$ Id$|$($1 fLHCfff(*Pf(|$8*Gf|$8Yf(D$fYfL$ )$f(\Xf.T(f(f(t$Hfff(\\fd$@|$8f(f(f|$8d$@Yf(t$H$$fYfD(D\XfA.'f.fA\fED\'\fA(f(\ff(4fL$ )$D$Wfff(f(fYf(X)$ YXf(\Xf.H fl$Pd$HfHn|$@t$8褤d$Hl$Pf|$@t$8 x)$0hYYX\f. t$ l$f(f(YYYY\f(Xf. $HfHnLLHf$)$@$V o$o$)$o$)$$$)$$$fD(fD(DYf(YDYD\f(YDXfE.D$ffD$AYfE(AYAXD\fD.fE(f(f($$DYYYD\fA(YXfD.fA(fDXD$AXD$AYfA(fA(AXAX\fAYXf. &D$f(f(D$AYAY\f(AYT$f(AYXT$f.$DXf(XAYDD$@fD(EY|$8f(AYD\f(AYXfD.f(fA(f(AYAYAY\fA(AYXf.XfD(f(AYDXf(EYAY|$ DD$D\f(AYXfD.fD(fo$d$fo$)$f(fo$)$)$t$($$Yf(f(YYY\Xf.O6D$ffD$AYfE(AYAXD\fD.*fA(f(f($$YYY\fA(YXf.)D$XfXD$AYfA(fA(AXfD(AX\fAYXf. ?$$f(f(\$PY|$HYYY\f(Xf.=|$\$(AXXf(fD(AYAYEYD\f(f(AYXfD.<\$PT$Hf(f(YAYAYY\f(Xf.;t$\$(DXXf(f(AYAYAYAY\f(Xf. ;fEfEfE5 E\fED\\$8\D\|$@fEfD(D\D\AYf(DYAYYD\XfA.9fffA(AYAY\AXf.8f(f(f(AYAYAY\f(AYXf.7\$ T$DXfXfYfD(DXYD\f(XXfA.6fA(fA(fA(YAYY\fA(AYXf.5XDX\$ T$f(YfDf(D)$@AYYAYfD(\DXfD.4f(f(f(AYAYAY\f(AYXf.+4XAXf(AYfA(AYffA(AY)$0\f(AYXf.3fLLLfo$05 )$ )$)$fo$@$)$- $$$$$$ fo$fo$fo$)$Pfo$ )$`fo$0)$pfo$@)$)$)$;$H$L$HL$p- )$f5 )$ȉ)$)$`1)$p$P)$X$$)$)$9$/l$0H HHDŽ$X$HH$P$X$X$XH$ $d$HH f.%l$`ff.DsCL|$@D$Ld$HALl$PEAHl$8Pf$k)$[E9 f)$)$A9l$lfo$DA)$Pfo$)$`fo$)$pEukff~-"r*D$0L$`)$f(d$蛗fd$fEA*ff(DYf(f(YYAXf./f(f(fD(YYDY\f(YAXf.%HOfl$d$ fHnDD$辘fd$ DD$A*ffl$f(f)$*YYDXfD.E%ff(fAYYY\fA(YXf.$ff(f(YYY\fYXf.$Haf(fAfHnf)$9l$lHl$8L|$@Ld$HLl$PQ @ff(f(f(f(f(HE H$IIw(IWI`HMHuXHUH}PH @(IG H$HE H$HMHuHUH}H9fH$H8fHh[]A\A]A^A_@fo$fo$fo$lfo$fo$ fo$$X)$fo$0$h)$fo$@$x)$H$pfo$P)$fo$`$pfo$)$$P)$f$`)$Pffo$$P)$pfD$X$p)$`$x$`$hH$fA)$Pfƃ|$pf)$`)$p)$)$)$vHl$H$L$ L|$ MA݋$f.1L DHL$HL LLL DAfo$fo$fo$)$Pfo$ )$`fo$0)$pfo$@)$)$)$9ZMHl$L|$ fDH|$xH$)$)$fHDŽ$*$色 t$0fo$fo$ )$fD(fo$0)$d$`)$$$f(YDYYYf(D\XfA.) $ffD$YfD(AYAXD\fA.ffEAYDYfD(fE(E\DXfE.ffEXD$D$AXAYAYfA(AX\fA(AXXf.ffEfD(YDYD\DXfE.\$0DXEXl$`fD(f(AYEYAYAYD\XfA.fA(XA\f."t$`\$0DXXf(f(AYYY\f(f(AYXf.!$fA(fE(D$AYfD(EYEYD\f(AYDXfE.'!ffEfD(YDYD\DXfE.g $$fD(f(\$ AYT$EYAYAYf(D\XfA.SAXEXfA(AXf(XfD(fY\fAYXf.PD$D$fA(fA(YY\fA(YT$fA(YXT$f.#AXf(fD(AYAXfE(EYEYf(f)L$)$D\f(YDXfE."fA(fA(fA(AYAYAY\fA(AYXf.!DXAXf(Yf(YfDf(D)$AY\f(AYXf.,!H$ffo$fo$)$P)$)$)$9%)$pL$ fAfE)$PfL$)$`)$D)$)$9 fo$C)$fo$D)$)$Pfo$)$`f(l$)$p)$)كt9lH|$pHl$8\fEL|$@L$Ll$Hω fDDDhfDsffA(DA)$fA()$fD$()*҉)AT$*A|D$(fET$D$ ffA(؍L$fA(A*:d$ l$f(f(f(d$`fl$0fWff()$f(YYYY\f(Xf."fD(f(ffEfD(YDYf(E\XfD.>"fD(f(AXA\f. !H$LL$($HD$ D$0D$8$@ D9l$lfEfo$fo$fo$)$Pfo$)$`fo$)$pfo$)$)$)$Hl$8L|$@Ll$H$$$$$$D %g AAAA7f)$AaA]A@A6~5g)$fDE9DL$(fAufD$0L$`fA*謉~-4dffYf)$)$]fD$0fL$`*DL$pd$f(l$OffDL$p*f(fD(d$t$ fA*$fA*f(f(AYX- YXf.d$fYfD(DYYD\f(fYXfA.fffA*YAYfD(EYYD\f(XfD.Rd$ ffYAYf(AYY\Xf.f(f(fA(AYYY\f(YXf.Z fl$pt$螉ffAt$f(f)$f(f(΃*fWaYYXl$pYXf.t$ffYYf(YY\Xf.lfffA*YYf(YY\Xf.|$ fYf(YY\fYXf.f(f苈f)$Kff*Kf*SfҍKff*f*|$fA*t$ f*Y*f(YY|$pfA*l$Xf.ff(f(YYY\fYXf.ff(fYYY\f(YXf.ffA*Yf(YY\f(fYXf.|$ffYYf(YY\Xf.t$ ffYYf(YY\Xf.k|$fYf(YY\fYXf.S{Hf(f螆f)$)$~5H_)$fD$0fL$`*DL$臄DL$- f(f(AYf(YY\f(AYXf. ff)$O $F $fD$0L$`fA*~-affYc)$)$f(f(fA(fA(苄fD(fD(H= ff(f(fHn_H f(f|$Pt$HfHnd$8L$@)|$Pt$Hl$@d$8f(f(fA(f(D$D$DD$PD\$Ht$@l$8d$ DL$軃DD$PD$fD(t$@f(D$D\$Hl$8d$ DL$H{ fA(fA(fDD$PfHnD\$Ht$@l$8Dl$ Dd$+DD$PD\$Ht$@fD(f(l$8Dl$ Dd$f(f(t$ l$܂t$ l$fD(fD(Kf(f(L$ D$訂f(f(OfA(fA(f($fA(Dl$PD$Dd$Ht$ l$VDl$P$D$Dd$Ht$ l$kf(f(fA(D$fA(t$ D$$D$Dl$PDd$Hl$́Dl$PD$Dd$HfD(f(D$$t$ D$l$f(ff(f(hf(f(_fA(fA(f(f(DfA(fA(f(|$PfA(DD$HD|$@Dd$8l$(t$|$PDD$HD|$@Dd$8l$(t$Bf(f(fA(D$fA(d$PD$DL$HD|$@Dd$8t$(l$肀d$PD$D$DL$HfD(f(D|$@Dd$8t$(l$ofA(fA(D$D$D$$d$PDL$HD|$@Dd$8l$(t$Dt$ Dl$Dl$Dt$ t$l$(f(f(Dd$8D|$@DL$Hd$P$D$D$D$LH fA(fA(fD$fHnd$P$DL$HD|$@Dd$8l$(t$D\$ DT$~DT$D\$ t$l$(Dd$8D|$@DL$Hd$P$D$FL$`D$0fA(fA(|$PDL$HDl$@t$8d$(D|$Dt$ DT$a~|$PDL$Ht$8Dl$@fD(f(d$(D|$Dt$ DT$qH' f$D$fHnDl$Pt$Hd$@D|$8DD$(l$D\$ Dd$}Dd$D\$ l$DD$(fD(fD(D|$8d$@t$HDl$PD$$vf\$ T$l$Hf(DD$@|$8>}l$HDD$@|$8f(f(f(ft$Hf(d$@|$8|t$Hd$@fD(|$8f(D$ffD$AYE(AYAXD\D.z=$A((($YYY\A(YX.<fXXD$D$AYA(A(AXD(AX\fAYX.:;$$((|$<Y\$0YYY\(X.9|$ \$8AXX(D(AYAYEYD\((AYXD.8\$<T$0((YAYAYY\(X.7t$ \$8DXX((AYAYAYAY\(X.6DL$@ffEfE\D\d$ fED\D\l$(D(E\fEY(D\EYYAY(D\XD.5ffA(AYAY\AX.4A(A(A(YYY\A(YX.3\$Dd$XfDXfYA(AXAY\(XX.w2A(A(E(YYDY\A(YAX.o1XDX\$D($|$EYD$(YAYD\((YXD.]0A(A(A(YYY\A(YX./AXXA(AY$A($(AYAY\A(YX.'/$LL5 $H$Hfo$$X)$@-T H$P$\$`$d$h$l~ H$8So$(H$ H$)$fo$H$8$(A9qD$Hfd$DDŽ$$fl$P5 $D$xHl$hH$$$D% $*-D H$54 $$$$B H$Hfo$H$H$fo$@H$ H$P)$H$)$QH$LHfo$H$)$pP|$pfo$pH$W$(H$89$$$$)$$ $$H$ Ή$8$($<9\$pt}$$$$H$8$ $$o$(H$ C)$$($8$<)ك9Ht$H\Ll$Lt$L$fDDDhfDsf(DA$f(ΉD$8)*҉)AT$ *fք$p$p$h$t$l~$hD$8fT$ fք$`((fA*fք$X$X$P$\$T~$P2l$Dt$Pfք$H$`Wm $H($L$$dW? Y$Y(YY\(X.)D((ffE(YDY(A\X.0)D((AXA\.<(Ht$hLL$D$$ D$$$y H$8o$(fo$pH$ )$$(H$D9l$TfH$8Ll$Lt$$8$<$0$4$($,6? s Afl$Dd$PDŽ$A*$$ $~$~$wDŽ$<fք$ $$8Y$0$Y$4Ll$`L$L$Vft$DDŽ$*T$<$t$P\$$~$$~$l$fT$g (3g YYY\(YX.aCf (D$ ?ffք$D$$A((Ds' AT\$l$DD$0AD$|$8D$(D(YDYYD\(XD$#fD\$0DT$8l$0d$8C?AG(|$ Jff҃AfDT$,D\$(DL$$DD$**`fք$$$$$~$\$ fDD$fք$|$ $$(DL$$Y(D\$(DT$,YY(\(YX. D.L$a D$A('d (\\(Y(D(YDY\(YAX. A(A(A(YYY\A(YX. A((XYXY(\X.| XXAD((E91)9T$` \$/((\T] X.4c E\$.E(ƅub (@H|$pELd$xH$Ht$XH|$@HD$@H$Ht$PfHnMH$D$XHD$HHD$HAEfInD$PIm AEH;D$hPH$H8H([]A\A]A^A_fD((UD\$l$D{AD$fED$((YYY\D(DXD$E(D(D((DDf|$ fD\$, A(A(Dd$(JDL$$DD$**fք$$$x$$|~$x苃|$ fDD$fք$pDL$$D($t$p(Dd$(Y(D\$,YY(|$ \(YX.D.L$3 L$A(` (\\(Y(D(YDY\(YAX.A(A(A(YYY\A(YX.A((XYXY(\X. AXXE9D((}D( _ XL$X$$~$\$fք$D$\_ $$$$~$|$L$ 訁|$L$ ffք$$$((Y(YY\(YX. _ (_ YYY\(YX. ^ ()D$ ffք$D$$A((DDfT$ *l$$DŽ$Dd$ |$$@~$@DD$腀t$T$ |$DD$fք$8D(d$ $<$8(l$$YYDYYD(fDX|$D\E. A(A(A(YYY\A(YX.N D(D(H|$`)9~Dr9iAD9]Hl$0fEC\6Ld$8Ll$`AE(A(D(D(A^DmfDfA(DT$,AA(DL$(|$$DD$ D)D)A**T$!fք$ $ $$$$~$~fET$AA(A(fք$D$fDW-U $W%U *Dl$d$ fք$$$$ $~$(~\$fE|$fք$d$ $A($((Dl$YDD$ DL$(YDT$,YYD(DX|$$\D.QA((A(YAYAY\(YX.((A(A(A(XAYXYAY\A(YX.AXX̃E9Hl$0Ld$8Ll$`D\p$$(D(A((E(AA(((D(D(T$ (}DT$,fD\$(fք$DL$$$$|$ DD$A(((l$ (DL$$Ad$'}l$ E9d$fք$DL$$fX$X$D((E0A(A(DL$$|$ DD$|DL$$|$ ffք$DD$$$((DT$,D\$(DL$$|$ DD$Z|DT$,fD\$(fք$DL$$$$|$ DD$\$T$D$D$((DL$,|$(DD$$d$ l${l$fd$ fք$DD$$$$|$(DL$,D$D$A(A(DL$$|$ DD$P{fEDL$$|$ fք$PDD$A($P$TT$ ({fED\$,Dd$(fք$hDL$$A($h$l|$ DD$((D\$,Dd$(DL$$|$ DD$zfED\$,Dd$(fք$XDL$$A($X$\|$ DD$\$T$DT$(DL$$|$ DD$zfEDT$(DL$$|$ DD$A(fք$Dl$d$ $D$1\$T$D\$8Dd$0((DL$,|$(DD$$d$ l$yfl$d$ fք$`DD$$$`D($d|$(DL$,Dd$0D\$8A(A((܉T$(|$$DD$ d$l$ Nw|$$T$ffք$(DD$ D$(D$,d$l$ A(A(?T (((vfS fք$($$vD$ ffք$D$$A((j(\$((vvffք$$$R\$T$Avl$$T$ ffք$0d$ D$0D$4|$DD$S (((ufR fք$($$uD$ ?ffք$D$$A((eDAWAVIAUATUHSH}HHH$H$QHEHD$HH.IFLt$xfHD$0MnHD$@IFIn HD$8IHD$HHD$PHCHD$XHCHD$`HC HD$hHCHD$pDHD$8A]HHD$\$A]L0HD$@\$ 8|$(YY(Y\(X. 2Q \(\$H$L~$HSsffք$@$D$@(W-J r P (2tfDŽ$?fք$8$8D$<(A(\$ l$DcD(DnP A(D(YDYYD\(XD$@D(E((D(AG((|$ Af$DT$,D\$(DD$$DL$*PsDL$fD.L$fք$|$ $$ DD$$D\$(DT$,( D$A(O (\\(Y(D(YDY\(YAX.h A(A(A(YYY\A(YX. (A(XYXY(\X. AXXE9(D(fDAA1A)E9 \$/((\TWH qX.N E„{\$ .E„d(ƅuQN (f.H|$XHt$PEH|$8Ll$`Ht$HD$Ht$pHt$@fHnHD$xMHl$hD$8HD$0fInD$@Hh @HD$0H;D$H7H$H8_HĘ[]A\A]A^A_D((]DX M XL$$|$x~$xo\$ fք$pD$\MM $p$t$l$h~$h|$L$[o|$L$ffք$`$`$d(((YYY\(YX. (D(ŅD$D{UA\$ l$D(D(DmL fE~(D(YYDYD(DX\$D\YE(\$E(fEnD(fA~čfDl$H*DY(YXd$A. E.A(A(K D(A(D\(\(AYYY\A(AYX.(((AYAYAY\(AYX.((A(YXXY(\X.XXŃ(D(D9(5DAOffl$(ȍT fۉL$)*(d$$*DD$ |$#nt$L$\$ |$fք$D(DD$ $(d$$$Yl$(DYYYD(fD\DXE. A(A(A(YYY\A(YX.b D(D(EfDD)E9E9#AOA9)A)fEA΍\f.A(((AYYAY\A(YX.:((A(A(A(XAYXYY\A(AYX.vAXXE9A(E(D(D(fAf UI A*A(D$*WB DL$,DD$(|$$T$ 8lBsfET$ fք$fA(A($*D$d$Dl$k\$|$ fEfք$Dl$$A($((d$YDD$(DL$,D$YYYD(DX|$$\A.C\$ T$DT$,DL$(DD$$|$ Dl$d$jfEDT$,DL$(|$ DD$$A(fք$Dl$d$$D$(W%A D$?D(D{(%7G (D((\@\4G (((jjfDŽ$fք$$D$(A(3(A(A(E(((D(D((A(A(ӉT$ D$D$|$,DL$(D|$$i|$,DL$(ffք$D|$$T$ $$D$D$T$\$ T$(D$((D$D$D$$D$D|$,Dl$$d$ hd$ T$(fDl$$fք$(D|$,$($,D$$D$D$D$D$o(((։T$(A(D|$,D$D$d$$l$ 7hT$(fd$$fք$l$ X$X$D|$,D$A9D$((D(wA((A(ՉT$ D$D$D$D$|$,DL$(D|$$g|$,DL$(ffք$ T$ $ $$D$D$D|$$D$D$_((DT$,D\$(DD$$|$ DL$fDT$,fD\$(fք$DD$$$$|$ DL$%\$ T$D$D$((DD$,|$(DL$$l$ d$`fd$fl$ fք$DL$$$$|$(DD$,D$D$?(A(A(AA(|$$d$ DT$DL$e|$$fE9fք$d$ D(X$X$DL$DT$((!(A((l$A(DT$$DL$ D\$WefEDT$$DL$ fք$D\$l$A($$T(((AA(DL$,d$(l$$DD$ |$dE9fd$(fք$l$$X$X$|$DD$ DL$,{A(A(DD$$|$ DL$odDD$$|$ ffք$DL$$$D$((ΉT$ D$D$D$D$|$,DL$(D|$$c|$,DL$(ffք$0T$ D$0$4D$D$D|$$D$D$j\$ T$L$ DD$|$_cl$(L$ ffք$d$$D$D$DD$|$(cffք$X$XD$\(A(A(A((݉L$((DD$$|$ l$d$bL$(fDD$$fք$|$ D$D$l$d$A(A(+\$ (((Ybffք$P$P$TDAWAVIAUIATIUSHI|$HhHt$XQI<$HsHKE1fD~%8 HSH%' D N fE(D8 D~7 >)H*H=f(f(Y\f.;QɅxfAWAYf(AYȅX}f(fH~κD-$ Y fLnfH~΍ ffDAA*J*^f.Yf(f(ăQ\YYAYXX9uf(1)9|?f/f(f(\fATXf.}f(Åuf(f(H{ IEIIUIM7IuHHSHKHHsI} HSHKHsH{ M9<$sI>{Hh[]A\A]A^A_@>f(uD-j# Y @fD(f(AffAC<WA**^f.IQf(ԃ\YYf(YAYXX9uf(ff(Xf.mQf(\f.QYH5 fHnAYAYD\f.}Lf*f.pQYōpf(Y9bJ9)ЃJ9BD fH~`Qҍ l$fD~/ f(D~/ fLnH fE(fHnH fLnHD$0HD$L$l$ZH L$fD~z/ l$D~{/ fLnH fE(fHnH fLnHD$ff.@AWAVAUIATIUHSHH}H8Ht$(QH}H{HKE1f~=. HSH% D ~5. f(@L:?HDf(fYf(\f.QEAYfD(Atsf(fD(AYfH~fD(D\ @fH~ƍAfEfA(YƒD*A^AYAYfLnXX9u@Df(D1)9|Cf/f(fD(D\fToAXf.oif(Eu f(DHs I$IIT$IL$I|$HHSHKHH{It$ HSHKH{Hs L9uI}H8[]A\A]A^A_Xf.Qf(\f.fQD YEyYF D%e wfWfD(AGERf(fD(fI~YfD(D\fDfMnȃfI~ Yfɍx*AYAYAYXX9ucA\f.Lpf*ɉfED)D*ɍJA^YY9s9p)ƒ[9ST6Ct?D)D)f.<fEfED*D*ЃfDWE^DYf(f*ʃA^DXYYAX9uf(fH~f(fHn\f(H$\$D|$ UH t$ f~-=+ ~5E+ f(fLnHE \$H$f(fHnH$\$D|$ yUH: t$ f~-* ~5* fLnH \$H$f(fHn*t$ H$L$\$UH t$ f~-* ~5* fLnH L$\$H$f(fHn<@AWAVIAUIATIUSHI|$HHHt$8QI<$HsHKE1fD%F* HSHDF* %0 E(D a1 D0 >)H*H-((Y\.QɅxAWAY(AYȅMu(D(D-0 YE(D( ffҍy*J*^.Y((ăQ\YYAYXX9u(1)9|6/((\ATwX.wq(u(fH{ IEIIUIM7IuHHSHKHHsI} HSHKHsH{ M9<$I>|HH[]A\A]A^A_DG(uD-G/ Y DD((AffAC<WA**^.Q(ԃ\YY(YAYXX9u((X.Q(\.AQY=. AYAYD\.Lf*.0QYōp(Y9lJ9f)ЃT9LD (WQҍfAW*A^.(YQYXY(X9((QD@fEf)AD*)*A^.m(‰t$,T$L$$|$(t$$Dl$ L$l$Q%, t$,DB& D, |$((D7& T$L$E(fD N- t$$Dl$ L$l$$D , (((t$(T$HD$t$,Dt$$|$ L$l$D,$TP|$ f%+ (t$,D,$D%j% Y(ċT$t$(\L$HD$DS% l$Dt$$E(D f, Y9D+ YAYXXpt$$L$H$t$(Dl$ |$L$l$O|$f% + (t$(L$D%$ Y(ċL$t$$\H$l$D$ Dl$ E(D + D* 9Y(YAYXXVT$H$L$l$NL$T$D $ %V* l$E(D# DN* H$fD + nt$(L$$|$$t$ T$L$l$bNl$L$fT$L$D%# D# Yt$ $Yыt$(|$$E(ԃ%) D * D) 9Y(XXQ;(H$l$Ml$H$D" %B) (E(fDB) D * D" (H$l$qMl$H$D" %( (E(fD( D ) D" H$L$l$ML$l$DA" %( H$E(fD( D [) D"" eff.fAWAVAUIATIUHSHH}H8Ht$(QH}H{HKE1f=! HSH5! %' (D' DL:?HD(WY(\.XQEAYD(Ato(D(AwYD(D(D\@D(ЍAfEA(YƒD*A^AYAYE(XX9uD(D1)9|</(D(D\TdAX.d^(Eu(DHs I$IIT$IL$I|$HHSHKHH{It$ HSHKH{Hs L9uI}H8[]A\A]A^A_X.Q(\.EQDV& YEy YI& D-<& WD(AGEB(D(D(YD(D\@E(̃D( Yfɍx*AYAYAYXX9uuDA\.Lpf*ɉfED)D*ɍJA^YY9|9p)ƒd9\T6Ct?D)D)<fEfED*D*ЃDWE^DY(f*ʃA^DXYYAX9u(D((A(i(HT$\$D|$ I\$t$-8 HT$((f%u$ 5) Dx$ HT$\$D|$H\$t$- DC$ HT$(5 %$ f[t$HT$L$\$`HL$t$- D# %# (5 \$HT$fcf.@ YXYXY f.D ZZZYXYXY̲ Zf.DHfW Af( HX^fDHt K f.DHt K f.DHt K f.DHt K f.DHt qK f.DHt QK f.DHt 1K f.DHt K f.DHt J f.DHt J f.DHt J f.DHt J f.DHt qJ f.DHt QJ f.DHt 1J f.DHt J f.DHt I f.DHt I f.DHt I f.DHt I f.DHt qI f.DHt QI f.DHt 1I f.DHt I f.DHt H f.DHt H f.DHt H f.DHt H f.DHt qH f.DHt QH f.DHt 1H f.DHt H f.DHt G f.DHt G f.DHt G f.DHt G f.DHt qG f.DHt QG f.DHt 1G f.DHt G f.DHt F f.DHt F f.DHt F f.DHt F f.DHt qF f.DHt QF f.DHt 1F f.DHt F f.DHt E f.DHt E f.DHt E f.DHt E f.DHt qE f.DHt QE f.DHt 1E f.DHt E f.DHt D f.DHt D f.DHt D f.DHt D f.DHt qD f.DHt QD f.DHt 1D f.DHt D f.DHt C f.DHt C f.DHt C f.DHt C f.DHt qC f.Dfۺf(f.E„tf.fz f.Hf(T$]>T$HYf.@ff/ZvfWW  f/ri% Hb  b fHY\k ff(f(f(HY\X@H9u\YZÐ%0 H f f(H^\% @f(f(f(HY\X@H9u\f. YwQ^f(ZHf(L$<L$H^fZDf(Z] fT%% f/r5O f(fH@  P HY\-- f(f(f(HY\X@H9u\YYf/vfW Z@- H f ݧ f(H^\- @f(f(f(HY\X@H9u\f. n YwQ^f(eHf(\$  $w; $\$ ^f(f/vfW ZHf.fHf/&f/& 5 D  f(.= f(- D ^f(fTfD.Y \f/saf(fA(\f.{\f. Ʀ  f.1ҾH=D 1> k Hf(f.f(\f.zuf(Hf(H,ffUH*fD(DfDTA\fVf(5@fW f/ 5 إ fD(1ҾH=C 1H> fHf(f(Y Х \$f(4\$HYf(fDf(HÐf.f(UHH HxUff/Gf.7 E„u&f.` D„uf.z@u>HG fHnH ]@1ҾH=fG 1k=  H ]Df(H|$Ht$$6D$$fW- L$^Htf(\^HH ~- % Y^\f(fTf.v=9fH*ʃY^\f(f(fTf.f(H9|HGf T$H*4T$HfWO $f(QY$H ]fDf(f.DHZHZf.ff(f(f.f(zuf.zuf.f(zf(ÐHf(t$,$5,$t$f(f(f(f(YYY\f(YXf.z f(Hf(f(f(a3f(f.AWAVSH`D$L$3ff.zu H`f[A^A_@ Ȣ f/pL$fT Y f/L$<H \$fɻT$fHn3fXf(fD(f(t$fX c L$Xt$ f(f fEfA(fH\ D*l$8fHnd$0AYDT$(AYf(X) 2d$0l$8f(\ f(DT$(f(fD(f(YDYf(Y\f(YDXfA.8l$fA(fd$ YH |$(AYAXXDD$X\$XT$fHnfI~fI~,2d$|$f(DD$fD(f(Yf(YYYf(|$(\Xf.8\ f(f(AYYf(Y\f(AYXf.f(f(t$@fInXl$8fInXDL$Pd$0t$l$ 0L$ D$(D$0YD$Xd$0f/D$(l$8DL$Pt$@l$~ # D$fWfWP3t$l$ f(f(f(YYYYf(\Xf. ff/l$t$f.E„\%  h f/~ v fۻ \$)L$@ : f(T$ L$X f(ff(*f(|$@\$fWfW|$f(Yf(Y^f(f(YYY\Xf.Yt$ l$Pl$YXf(T$8Xf(\$0t$ l$/L$D$(D$ .YD$X\$0f/D$(T$8l$P d$\$|$t$ f(f(YY\f(f(YYXff.E„f/fT|$@fV= f.YL$ f(t$@D$d$0L$l$(fW|$fW/f(t$@l$(d$0|$fWf(\[ \X\f(\D$ Lf.VD$L$d$ l$)/fWD$@\ l$d$ X\H`f([A^A_fA(f(t$ DL$,t$ DL$f(f( \$T$fA(f(DD$0DL$ t$,DD$0|$(DL$ t$f(f(sL$(f(f(t$8DT$0_,t$8DT$0\$(f(fD(f(L$f(D$l$0d$(,l$0d$(f(f(#L$\$f(T$+f(f(f(D$L$ +f(L$\$f(|$(T$+|$(f(f(fDH8D$ L$(f(d$ fW% D$)$$$L$L$T$f~=  f(\$f(f/fWv( \\f(f(f(H8f/fWw.f/vfTfV \H8\f(f(f(\ f(H8HffD$fZD$ZL$ -ZZ$L$~$HSff(ȻH f/v fW 0 f/ U~% 5 f(^ f(fTf(f.{f(¿L$T$T$[(~ -K f(T$L$fTf.T$L$(T$L$f(f(\,tX~ T$Ѓtۃޘ YD$\Y ј f(Yу@ Y\< YX8 Y\4 YX0 Y\, YYXufW H [DH,f5 fUH*f(fT\fVf(H,f5 fUH*f(fT\f(fVM ( @ Y\  YX  Y\  YX  Y\ YX Y\1ҾH=f5 1/ H f[ffH(f/ZvfW f/ %~} 5 f(^ f(fTf(f.f(¿L$T$T$%~+ - f(T$L$fTf.-T$L$o%T$L$f(f(\,tXו T$ƒ/ YT$N\ Yf(Yf(ȃ+Y S \ S YX O Y\ K YX G Y\ C YX W Y# \ufW ZH(f7fDH,f5ה fUH*f(fT\fVf(H,f5 fUH*f(fT\f(fV1ҾH=2 1;- fH(fY X \ X YX T Y\ P YX L Y\ H YYXf.DHW %(I HX^.(zf.E„tÐH(T$ N(T$ HYf.D fZf/w f/ v  \^'H\ T XZ(L$ f#L$ W ) D$(K#T$H\(fHl$ <$N#HHHfD$8d$8fl$f/   vHf(L$ %L$H^fDp f.Df Zf(fT 4 f/wN/   v (fHf(T$$T$fH^Z( \ (@AWffAVUSH(fD$fL$ZD$Y /ZfA~T- l$a5 % fA~f~f~H fZf(T$fHn = T$Z/F/ fT$Z\   Y$fnT$f(fZYfZf~H f(fHng Z.D fAnf/Z\ h Y'$fZ /D$T$fAn#D$fAn#\$T$(fnWR YY\$D$~D$H([]A^A_D\ 0 Џ Y#fnT$f(fZYfZf~@@ YD$ ." T$(fnf.PJff.ZfTC ZGAfnfZfT Z fD=  W 9 fA~f~f~DfrZY "fnfT$f(fZYZf~@\ Ѝ x Y7"fZW Zfffn ZYYZYfZYYZY f(TB .VX fnT' V@ f. ( f/w f/" v Ќ \^s!H\܌ f(Xf(L$=L$fW o $f(!$H\f(f.Df(fHf/w.~& fWf( ~ HfWf(L$L$H\f(ffHf/w2f.{T $ f/wnIfW Hh 1ҾH=j/ 1{$ # HfDu1ҾH=@/ 1Q$  H@+fW3 Hf.(fH/w0H W(-h0 HW(L$ =L$ H\(f.fH/w+.{N : /wiW H\@1ҾH=R. 1c#  HfDu1ҾH=(. 19#  H@SW\ HH(l$0b w` v|$0H(D%z H<$|$ >H|$ l$0<$(l$ HHf.Hl$w*H<$H<$H HDH<$H<$l$0H HÐff(f.zu H$ f/ f^,~,fX*f(^X^f(̃uf(fW L$$$L$H HXfHn^Y~=` ~-h f(f(50  tAffW*YXYY^XfD(fDTf(fTYfA/rf(d$$$d$f(T HY\Xf.(Zf.'f//  + H  f/C s % YX f(fTf. T$Y\f(Y Έ \ ʈ f(YYX YX YX Y XYX YX \^9T$X ,fZ(H(@H,f- fUH*f(fT\f(fV1ҾH=* 1 fDf.f/  f/H"  %Z Xf(fTf.\ T$f(YYX YX Y XYX \^T$Xf H,fDf H,f-' fUH*f(fT\f(fV,UfS1Hx/v W  s fZd$ /T% ~ ~- = )L$0f( . d$)l$@|$PL$(=f|$ fWD$0d$*t$L$(Yf(XYf(X\Yf(T$T$d$f(l$@^f(Xf(T$PfTfTYf/[D$ Y݅ Yم \fZZf. 9 f. 3 ]tY \ZHx[]f h ~-P =c f(L$f(~  )l$@)L$0 ˃ |$PDfd$(*\$L$Xf(Xf(\D$T$YT$XT$\$fW\$0l$ d$(Yf(f(|$@Yf(Y^D$PXfTfTYf/wL$X Y|$ H|$hHt$` 9  Y^YD$_ f([ ^XT$pT$%z  : r Y|$ Y\ $ XYX  YXH Y\ Y\8 Y\ YX( Y\ YX YX ܃ YL$hYYD$`\ff.Qf(YD$ ^D$Xf1ҾH=$ 1   s_1ҾH=$ 1  5 Q CD$ L$L$b@f(f(SHYf(YH d$\$L$XWfWM h\$SL$$f(Xf(A\$d$f(Y$H Y[Xf.(tz~} d (к5 fD(ЍHff**؃W^Yf*ƒ^XYYX(9u ff(t|~ O f(к~5 ff(ЍHff**؃fW^Yf*ƒ^XYYXf(9u~ fDAWfAVAUATIUHSHHf/HT$ L$(f/ ~ f.f(I f/D$f(f/-A  Y~ \ofHD~ f.HD$`Q|$f.Qf(- 1$fT ~ f/%} ~ ff.\Y$If(QX } Y^L$hfT% f/f(f(fY\Yf.$lQXY^L$pfT%4 f/f(f(fY\Yf.$ QXY^L$xfT% f/cf(f(fY\Yf.$QXY$^fT% f/Vf(f(fY\Yf.$QXY$^fT%5 f/f(f(fY\Yf.$0QXY$^fT% f/f(f(fY\Yf.$QXY$^fT% f/f(f(fY\Yf.$X ~ Y$^fT%* f/11Ҿ\$(H= T$L$ L$T$Y } \$(YLcL$Lt$`fDf(\$T$[CYC^ IT$\$Xf(f(YEuf(H|$XHt$PL$(T$ T$D$XL$(\$Pf(\A$\$Q %} T$f(fT \$f/^HD$ UH[]A\A]A^A_Y | f(T$L$ T$D$f(T$(T$(=y ^|$D$f(|$Hot$T$(f(l$D$Yf(Yf(\$@\Yd$8f(l$0^Xf( l$0HD$ ^l$X\{ L$HT$(\$@d$8XXf(ED$YYD$YY\XA,$fDf(H|$XHt$PT$ L$XHD$ d$PT$f(t$Yf(f(\&{ YY5jx Yf(Y\\f(YXA$f(YUY w \f D$fYY w \f.QHD$ w DYYCz w 11H=M @ w HD$ A$EFy \w zy hy Vf(\$8T$0d$(|$L$/ Hy L$|$d$(f(T$0\$8fHn>D$T$L$ T$L$[f(\$0T$(d$L$ H4y L$d$T$(f(\$0fHnqf(T$w T$ff(f(\$8T$0d$(t$L$= Hx L$t$d$(f(T$0\$8fHnf(T$ T$f(\$8T$0|$(d$L$ HJx \$8T$0|$(d$L$fHnf(\$8T$0d$(t$L$s Hw L$t$d$(f(T$0\$8fHn*f(\$8T$0d$(|$L$ Hw L$|$d$(f(T$0\$8fHnzf(\$8T$0d$(t$L$H@w L$t$d$(f(T$0\$8fHnf(\$8T$0d$(|$L$eHv L$|$d$(f(T$0\$8fHnff.f.&f/&u H u f/Bu r %s YXs f(fTf. t T$Y\f(Y t \ t f(YYX t YX t YX t Y t XYX t YX t \^8T$Xr H,f.r H,f-wr fUH*f(fT\f(fV1ҾH= 1 fHf `y f/wzf/Bt wpY Ty Dy Y\ Hy YYX @y Y\ w vH[HZf (w %Pw f(Yv YXX w YYX%(w X v YYYX%w X v YYX%w X v YYX%v X v YYX%v X v Y^YXXZf.H(f~% fD$l$fDD$Zf(AZfWfWl$ DD$<$l$ f~%K f(<$DD$/fWv:"o f\\ZZD$T$~D$H(/f(fWw+D/vfTfV= f\f(\\n fDS(fH ./F f $Z/f(-u T$Y\m f(f(YX%ju Y\Xbu f(Y\X-Vu f(Y\X%Ju f(Y\X>u f(Y\X-2u f(Y\X%&u f(Y\Xu Y\\u \%l Yl YfH~f(d$N $T$D$% /|d$f($\%l d$*H[M $ Vl d$f(fHf(f(f(HY\X@H9u\Y"l Y$@'1ҾH= 1 A H [%k HQH f s f(H^\%k @f(f(f(HY\X@H9u\f. vk Y Q^fH [ZfD1ҾH= 1  H [Df($$HK -k fj f(H^f(\-j Df(f(f(HY\X@H9u\Yj f.Yw\f(Q^ $f(.L$Y $H f(fHn[\YZf( $ $f(f(L$$hL$$f.ff(f/vfW i f/r\%i HJ  i HY\i f(f(f(HY\X@H9u\YD-i HI  qi f(H^\-ri f(f(f(HY\X@H9u\f. 6i Yw Q^f(Hf(L$HL$H^f(Dpi f(fT f.sf.z f/h v6D o f/w f/h v(HO\wh Hfh f(p  p YYYXp X p YYX h X p YYX 8h \^Xf.fh Zf(fT f.sf.z /1 v?fDT /w /, v2Hf(e\g HZ@ f(o YYXo YXHg Y o YX o YX o YX Hg \^XZff(f.E„tf.fz f.f @n Xf/w f/6n v$H\$M\$HYfDn %8n f(Ym YXXm YYX%n Xm YYYX%m Xm YYX%m Xm YYX%m Xm YYX%m Xm Y^YXXY.(zf.E„tÐe fZ m Xf/w f/l v$H\$ \$ HZYfl %m f(Y pl YXXl YYX%l Xl YYYX%l Xl YYX%l Xl YYX%l Xtl YYX%l Xl Y^YXXZYfZf./   f/H`d  %d Xf(fTf.\e T$f(YYXe YXe Ye XYXe \^f(T$Xc ,fHZ(@((fH,f-_c fUH*f(fT\f(fV&f(f(fT% 8c f/~=.c f(fHB  /c f(HY\-c fDf(f(f(HY\X@H9u\f/YY-b H@ f b f(H^\-b @f(f(f(HY\X@H9u\f. Nb YwQf/^f(rfW H(f(t$\$L$BL$t$\$^f/f(vfW H(D. zu  @H( fZ/b ka f^,~-fX*f(^f(X^˃uf(fW T$L$d$d$L$T$H(X^YZÐ` ~= ~- 5a f(f( tAffW*YXYY^XfD(fDTf(fTYfA/rf(\$d$d$\$f(a H(Y\XZDf.f ` f/f.~ f(fTf.` wY-D` f(f(fTf.v3H,f-_ fUH*f(fT\f(fV\f.z5u3 ` f(fDtf(fT> fV f(Ð,D_ t_ fDf(f.fZf.fv /.f(fT f._ w_ %z (T.v,,f-# U*(T\V(fZ\f. ^ z=u; (rfT : fV fZ(fD, t fD(f.fH/vW  $^ ZZ.h {nJ fZ/w)\ !_ Y ^ f(PHZ\ ] Y h^ f('ZW HufHDAUIATUSHLgH/I9t|HEHt'U~ 1@HEHR f(fTf(f.f(¿L$T$T$~p -Q f(T$L$fTf.T$L$T$L$f(f(\,tXQ T$Ѓtۃ{Q YT$\nQ Yf(Yf(ȃY Q \ Q YX Q Y\ Q YX Q Y\ Q YYXƒufWT H Z[f.H,f5OP fUH*f(fT\fVf(H,f5P fUH*f(fT\f(fV@Y P \ P YX P Y\ P YX P Y\ P YX O YO \1ҾH= 1C H f[ffHf(f/vfW NO f/%DO f(Y\%  ? YfZWP H> fZfZL$ZYYYYZYZYDfL$T .V  Tا V (ffH8./  fZ/%= H& f F f(H^\%k= ff(f(f(HY\X@H9u\f. &= YdQ^fH8ZC1ҾH= 1 1 H81ҾH= 1{  H8fD< f(T$YY\ < L$ T$L$$b< f(fT-& f/5L< HE U< fHY\5.< @f(f(f(HY\XXH9uf(\$(d$ L$T$l$d$ \$(l$T$\Y; L$YY\$ %D f(f(T$Y\%D YXD \D Y\\D f(Y\\%D f(Y\\D f(Y\\}D f(Y\\%qD f(Y\\eD f(Y\$\\SD Yf(\L$lL$X 6D \$f(T$f( $\Y: YL$ H8^XYZfDf(L$T$l$l$Hh =P: ffD(T$I: ^L$f(H\=: ff(f(f(HY\X`H9u\Y%9 f.AYw3Qf(^d$ f( $ $f(f(d$L$T$d$L$T$f(뢐Sf(f(H ~ 9 fTf.r fTf.sf(&\8 H [B f/~&9 ft$fH~f(\$$S$\$f(f/vD$X8 YH fHn[Ð$f(B $Y=? f/nf/n8 `f(@ @ Y5 8 t$YXf@ YXj@ YYXb@ XYX8 Y\^XD$f(T$ $ $%> f(D$T$f/Yf/ 9 f(> %> YY\> YYX> Y\> YX> Y\> YYX> YXXS7 fH~2f\\$f(L$$$=6 L$\|$D$@f.zu ! @H(/fZ3~-[  #7 f(fTf/I6 5 7 f(f( fet2f*YXYY^Xf(^fTf/rf(T$$$$$T$X6 YXZH(fDf.X6 $ w5 f(Df*ȃY^XЃuf(T$$$0$$T$^YZ/ > #5 f^,~%f\*f(^X^f(ʃuf(\$L$$$$$L$\$f(D~ \^f(YfAWH(ZDD~g 4 ~-b 525 fAWfD(f(f(fDtAffAW*YXYY^DXf(fTfA(fTYf/rf(D)D$DL$$$DL$f(<5 fD(D$AY\Xf.f(ff.zu04 H(f/B~-j  24 f(fTf/%X3 54 f(f( et2f*YXYY^Xf(^fTf/rf(\$$$\$ 3 YXXf(H(f.f.`3 3 w 2 f(Df*؃Y^Xȃuf(L$$8$L$f(^Yf(yf/2  ; %"2 ^,f(ȃ~0f\*f(f(^X^f(˃uf(d$L$$L$$d$\^~ f(YfWH(f(%1 ~ X ~-[ 5+2 fWfD(f( @t@ffW*YXYY^DXf(fTfA(fTYf/rf()L$DD$$$DD$B2 f(L$AY\X&fHHfX1 ffD$8d$8~ ZL$<Zf(fTf.r fTf.s6f(f(\a0 ZZT$0L$4~D$0HHf /fs0 |$ f(d$T$\$d$/%y \$T$f(vD$ X/ Yk@D$f(T$胾L$T$Y=fD4 /g/% Zf(7 7 Y5Z/ t$(YX7 YX7 YYX7 XYXL/ Y\^XD$ f(d$\$L$ -6 L$T$ \$f/d$Yf/ 0 f(5 -5 YY\5 YYX5 Y\5 YX5 Y\5 YYX5 YXXfD\D$(f(d$L$\$ռ=- \$L$d$\|$(D$ fDf(ff/f.{x- f/^7 f/rp/ ^,ÃDfX*f(^X^f(ăuf(X^f(fuD- 6 6 ^\^\6 ^X(- ^\^XH(f(L$蝻L$H, ~5 =x- YfHnfHnD~y fHnظD$ffAW*YXYY^Xf(fTf(fTYf/suf(l$L$L$l$f(}- Y\XYD$H(fDf((f/.C fZ/n /} - ^,~T+ ff.fX*f(^X^f(̃uX^ZfDkÐ  4 4 ^\ + ^\4 ^X(+ ^\^XZH(f(T$蝹T$~= ~- 5r+ YD$* f(f(ffW*YXYY^XfD(fDTf(fTYfA/suf(d$T$T$d$f(+ Y\XYD$H(Zf.DfHf/vfW  * m ) f.{O) f/w!\ + Yy* H8\Y\* fWW HfufHDSff(H f.ff/=c) f/f(%1 T$Y\f(f(YX1 Y\X0 f(Y\X%0 f(Y\X0 f(Y\X0 f(Y\X%0 f(Y\X0 f(Y\X0 Y\\0 \( Yw( YfH~f(\$T$D$C( f/\$\;( f(\$̶H \$ ' f(fHfDf(f(f(HY\X@H9u\Y' YfA1ҾH= 1U ' H [-x' f(T$fW& ^\-j' l$H f/ T$l$f(H f(f(f(HY\X@H9u\Y& ff.YQ^H [f(fD1ҾH=5 1s ' H [Df(T$AT$-& H l& f(fH^\-i& f(f(f(HY\X@H9u\Y*& ff.YwCQ^f(L$H YfHn[\f(L$ L$f(f(L$L$f(fDS(fH ./ f $Z/f(-H- \$Y\f% f(f(YX%*- Y\X"- f(Y\X-- f(Y\X% - f(Y\X, f(Y\X-, f(Y\X%, f(Y\X, Y\\, \%$ Y$ YfH~f(d$ $\$D$ /d$\%^$ f($$H! $$ $ f(fH f(f(f(HY\X@H9u\Y# Y?1ҾH=G 1腼  H [-# f($fWW ^\-# l$0H fE+ $l$f(f(H f(f(f(HY\X@H9u\Y*# f.YQ^fH [ZfD1ҾH=e 1裻 3 H [Df($r$H -" f" f(H^f(\-" Df(f(f(HY\X@H9u\YZ" f.YwEQ^f(L$H YfHn[\Zf( $Q $f(f( $5 $f(f.Sff(H f.f/_=! f/f(-) T$Y\f(f(YX%g) Y\X_) f(Y\X-S) f(Y\X%G) f(Y\X;) f(Y\X-/) f(Y\X%#) f(Y\X) Y\\) \% Y YfH~f(d$KT$D$ f/ed$\% f(d$0Ha f ] T$d$f(H @f(f(f(HY\X@H9u\Y* YD$uA1ҾH= 1赸 % H [- HY  ' f(H^\- f(f(f(HY\X@H9u\f.  YQ^H [f(f1ҾH= 1  H [Df(T$٭T$H$ 5, f% f(H^f(\5 f(f(f(HY\X@H9u\Y f.Yw\f(Q^L$f(EL$YL$H f(fHn[\Yf(L$裲L$f(f(L$T$L$T$뉐 f(fT f.@ff.,SH f/w fW f(H|$L$賬D$L$f(}' YXw' Y\s' YXo' YXk' HcHiVUUUH )׍ )Ѓu YA' L$蕬L$%?' f(f(Yf(^f(\Y\f(Y^f(\Y\f(ʃufW H f([@f(DY& kǺHH! ))ƒtt 9fYp& !Yh& f Zf(fT f.@f.-SH /w fW օ f(H|$L$ݪD$L$f(% YX% Y\% YX% YX% HcHiVUUUH )׍ )Ѓu Yk% L$轪L$f(Yf(^f(\O% Y\f(Y^f(\f(Y\ufW҄ H Z[fY$ kǺHH! ))ƒt t9Y$ )Y$ AWffAVZfZAUIATIUHSH/HL$ l$Y/ Lf.B f/D$f/-   \fH f.HD$`7Qf(|$f.Qf(- 1$fT  f/%z  ff.\Y$mf(QX C Y^L$hfT% f/ f(f(fY\Yf.$QXY^L$pfT%ʂ f/f(f(fY\Yf.$/QXY^L$xfT%w f/f(f(fY\Yf.$QXY$^fT%! f/}f(f(fY\Yf.$,QXY$^fT%ˁ f/6f(f(fY\Yf.$|QXY$^fT%u f/f(f(fY\Yf.$QXY$^fT% f/f(f(fY\Yf.$$X Y$^fT% f/11Ҿ\$(H= T$L$ L$T$Y N \$(YHcL$Lt$`@f(\$T$AYA^蒧HT$\$Xf(f(YӅuf(H|$XHt$Pd$0T$OT$d$0L$P\$Xf(\L$(\$- T$f(\$L$(fT f/>ffZZZ^ZHD$ A]A,$EH[]A\A]A^A_fDY  f(T$L$CT$D$f(.T$% ^d$D$Hf(d$@YD$T$|$f(D$8f(\Yl$0|$(茣藥DT$|$(\$Hd$@f(fE(fD(XT$EYf(L$8l$0A^\5 YXYD$YYXZE^f(XZAXfD(D\fZAZ@f(H|$XHt$PT$Gt$Xd$PT$|$f(f(f(Yf(\ YY= Yf(Y\YZXf(Y\ ZZY\Zf.D$%R fYY\f.QffZZZZ? f.YYw  1ҾH= 1蠫 0 ((((b  4 z hf(\$8d$0T$(|$L$衦H" L$|$T$(f(d$0\$8fHnD$T$L$WT$L$7f(\$0d$(T$L$%H L$T$d$(f(\$0fHnMf(T$T$ff(f(\$8d$0T$(L$t$该H0 t$L$T$(f(d$0\$8fHn{f(\$L$T$a\$L$fT$ZZZZT\$8|$0T$(d$L$H \$8|$0T$(d$L$fHnf(\$8d$0t$(T$L$轤H> L$T$t$(f(d$0\$8fHnf(\$8d$0|$(T$L$cH L$T$|$(f(d$0\$8fHn.f(\$8d$0t$(T$L$ H L$T$t$(f(d$0\$8fHn~f(\$8d$0|$(T$L$诣H0 L$T$|$(f(d$0\$8fHnf.ffH8./  fZ/f(fWx $藝$H - f f(H^f(\- f.f(f(f(HY\X@H9u\Yz f.YQ^fH8Z#1ҾH= 1 ~ H81ҾH= 1˦ [~ H8fD f(T$YY\% d$[T$d$$ f(fT-vw f/5 H  fHY\5~ @f(f(f(HY\XHH9uf(L$(\$ d$T$l$ϛ\$ L$(l$T$\Y  d$YY- f(f(Y $Y\- YX \ Y\\ f(Y\\- f(Y\\ f(Y\\ f(Y\\- f(Y\\ f(Y\\ Y\X \Y H8^XZf(d$T$l$蕚l$fD H f(T$ D^d$f(HD\ f(f(fA(HY\XXH9u\Yi f.Yw)Q^]f( $| $f(f(L$d$T$SL$d$T$f(f.fH8f(f.f/= f/f(fWrt $X$HD - f f(H^f(\-} f(f(f(HY\X@H9u\YB f.YQ^H8f(81ҾH=խ 1轢 - H81ҾH= 1蛢 C H8fDf( T$YY\l$/T$l$f$ f(fT Fs f/%l He u HY\%R f(f(f(HY\XXH9uf(T$(\$ t$l$L$觗t$\$ L$l$\Y T$(YY f(f(Y$Y\ YX% \% Y\\  f(Y\\ f(Y\\% f(Y\\  f(Y\\ f(Y\\% f(Y\\  Yf(\X| \Y H8^Xf(T$l$L$mL$fD H f(l$ D^T$f(HD\ f(f(fA(HY\X`H9u\Y%I f.Yw)Q^ef( $\ $f(f(T$\$l$3T$\$l$f(f.fH8f(f.f/ f/- H7   H^\f( ff(f(f(HY\X@H9u\f. F YtQ^H8f(`1ҾH=٩ 1Ş 5 H81ҾH= 1蛞 C H8fDf( T$YY\L$/T$H f$ L$f(fT5?o fHnf/-` HY i HY\f(f(f(HY\XXH9uf(T$(\$ d$L$t$藓\$ d$t$L$\Y T$(YY\$ % f(f(T$Y\% YX \ Y\\ f(Y\\% f(Y\\ f(Y\\ f(Y\\% f(Y\\} f(Y\$\\k Yf(\L$脒L$X N \$f(T$f( $\Y YL$ H8^XYf.f(T$L$t$t$Hh f=d fD(L$fHnH] U T$^H\f( ff(f(f(HY\XhH9u\Y- f.AYw3Qf(^l$ f( $ $f(tf(T$l$L$ɖT$l$L$f(뢐AVSHf.$L$T$z7f({ f.z5u3ffH*Y 6 YXL$XHĸ[A^D$$f.%s z9u7ffH*Y X  Y\L$Hĸ[A^XÐL$f$f.Ef.E„t,$f.-_ E„thH$Xr L$臒 _ f/$$f/%X v6^ f/v(D$- fTj f/$L$蠓ffXXf(f(l$ d$wl$ d$\\f(f(fһdf/= |$@f(f(f(f(fWj l$ fW j d$6<$\$f(d$l$ f(Yf(YYY\f(Xf.(fD(T$@f(f(DX\f(\fD(DXDXXYf(Yf(Y\f(YXf.afA(fA(|$8d$0t$(l$l$3 d$0t$(X|$8l$ f(d$\f(\f(踐l$ d$f(f(\\f(f(\$(\\T$ \$(T$ D$f(f(YD$T$ f/D$\$(.Hĸf(f([A^Hg11H= * H ffHn=D p $YYL$X XXf(f( D Yf(\$ Yd$(X fWg Ï\$ H D$f(fHnH XfHnf(莏d$(\$ f(YYXl$f(f( T$@f(f(f(f(d$ l$Fl$d$ fD(f(fD(f(f(DYf(AYAYYD\XfA. fD(\$@fE(fD(DXD\$f(D\\$fD(DXDXXAYf(f(AYAY\f(AYXf.fA(fA(d$ l$DL$X|$PDT$HDD$8t$0D\$(DD$8DL$Xt$0|$PD\$(DT$HAXAXf(f(\\fA(fA(蕍l$d$ f(f(\\f(f(\$8\\T$0\$(T$ t$(|$ D$f(f(͌YD$|$ f/D$t$(f(f(f$L$H|$苌H|$Ht`f$L$H*Y%4 d$ٍd$fYX.fH ffD  f/r$L$zf(f(\% DL$$Hf H= 8  f(OL$f(H|$茋H|$ff/,$i$fWc 豎ff(f(f(qY< \< f/f(:d L$H$$$)D$pf(d )$$xH|$pfH~fI~$L$x,$|$f(f(f(f(YYYY\f(Xf.fInfHn܊f(f(f(f(f(f(f(DL$HDD$8l$0d$(t$ |$DL$HDD$8l$0d$(t$ |$=$f(L$d$ l$ud$ l$f(f(f(fA(fA(DL$h|$`DD$Xt$PDl$HDd$8l$0d$(D\$ DT$DL$h|$`DD$Xt$PDl$HDd$8l$0d$(D\$ DT$gfA(f(f(d$0l$(DL$ D$蕈d$0l$(DL$ |$fD(f(L$$^>fHffD$ZffZD$ZL$ ZZ$L$~$Hf.AWf(AVSH` f/wKff/wA~5` y f(fTf.vSfTf.wf.f(&f1ҾH=\ 1k  H`[A^A_ff.vf(fTf.v P fD f(L$$H|$\% +|$\f(k$L$H D$8Yf(YfD(DXf(l$HXfA(DD$\fW _ Xf(Y-K T$@YfHnf(fI~Yf(fI~iHb T$@L$8$fHnGD $fDD$f($D^HfEfIn|$L*fIn\$0DL$(DD$ fA(DT$݆DT$T$@L$8D$fA(躆l$\$0d$DL$(f(YDD$ ~5z^ YfA(f(\ $fTXf(fA(DXXf(fW2^ ^fA(\\fA(fTY $f/DYsPH1ҾH=ϔ 1ތ  nf(^t*f|$HfA(X^f(1@ffZZf.AWAVSH`% d /wPf/wG~-_] % f(fTf.wY.f(fTf.vrc %1ҾH= 1 c H`[A^A_ffTf.w.zifPc f(f(\$$胄H|$\詁% +|$\f($\$f(Hy Yf(l$8Yf(XXt$Hf(|$X\fW\ f( T$@YYf(fI~f(fHnYf(fI~H T$@L$8$fHnۃD $f|$f($D^DHfEfInt$L*fIn\$0DL$(|$ fA(DT$vDT$T$@L$8D$fA(SDD$\$0d$f(DL$(AY|$ ~-[ YAXf(f(f(fWZ X^fA(f(\ $fTXf(\\f(fTY  $f/DYsKH1ҾH=j 1y  a y@2(gf.l$HfX^ZBD` .SH /of// ` ffZZ|$f(f($$1fW Y L$O$$L$f(fDX% T$L$f($$ T$$$f(5k L$X^fT]Y f/vfH Z[fxY 5_ ((T(.v$,fU*(T\(V.((T.v$,fU*(T\(V.z /1ҾH=d 1荇 _ H [S_ fx f($$f(\H[ $$f(D$H fHnXfHn[\^^Xf(YZ@1ҾH= 1݆ q^ K-P f/f(\$\ He YH HP`^fX Y\fHn^l$=k XYf(Y^X^fT OW f/XM L$^HXX3 YH9uDSf(H0f. D$(- f/l$(^ff/f/I L$(fW V f(1$L$~$~-V L$f()l$X d$ L$f($}d$ $f(=< L$X^fT\$f/~- f/sf(\$(\ H YH HP`^fHnX  Y\f^|$(5 f(XYf(Y^X^fT\$f/$X ^HXX | f(YH9uf.~-HU  f(f(fT)l$f(f.v3H,f-$ fUH*f(fT\f(fVf. l$(d$f(f(fTf.v3H,f= fUH*f(fT\f(fVl$(f.z f/1ҾH=3 1\ % H0f([f.W% H0[f(=8 \|$(f($f({$L$(\ % X H0[^^XYf(1ҾH=t 1蝂 % H[]A\A]A^A_Of.DAWAVIAUIATUHSHH~1HQH}Me~\HKHSE1H@ IAHsIIVINHHSHKIvHHSHKHsL9}I}H[]A\A]A^A_韞f.DAWAVIAUIATUHSHH~1HQH}Me~LHSHE1 IAHKIIVHHSINHHSHKL9}I}H[]A\A]A^A_f.DAWIAVAUIH~ATIUSH1HQH;Il$~4IEE1IIUIIEIWIEIUL93I<$H[]A\A]A^A_wAWAVIAUATIUHSHH~1HQI<$Mn~mHsHKE1HSHI AH{ HEHUHMHuHHSHKHHsH} HSHKHsH{ M9<$I>H[]A\A]A^A_鿜f.DAWAVIAUIATUHSHH~1HQH}Me~\HKHSE1H@ IAHsIIVINHHSHKIvHHSHKHsL9}I}H[]A\A]A^A_f.DAWAVIAUIATUHSHH~1HQH}MeHSHE1@@I T$D$ ~D$AHKIVf$$HSD$D$D$ HD$HIINHHSHHKL9}I}H[]A\A]A^A_8AWIAVAUIH~ATIUSH1HQH;Il$~kIEE1@IL$D$ ~D$IUf$$D$D$D$ HD$HIIWIEIEIUL93I<$H[]A\A]A^A_通AWAVIAUIATUHSHH~1HQH}MeHCHsE1HKH@@IL$D$  ~\$AH{ If$$INIvHD$D$HKHsD$ HD$HIFI~ HCHHKHsHCH{ L9}kI}H[]A\A]A^A_錙f.fAWAVIAUIATUHSHH~1HQH}MeHCHE1@@IL$D$ ~L$AHKIf$$HD$D$D$ HD$HIFINHCHHCHKL9}I}H[]A\A]A^A_鸘AWAVIAUIATUHSHH~1H(QH}MeHSHE1@@IRL$D$~D$\$T$~L$AHKIVfD$D$HSD$D$ D$HD$HIINHHSHHKL9}rI}H([]A\A]A^A_˗f.AWAVIAUATIUHSHH~1HQI<$MnHsHKE1HSH@I AH{ HUfD$D$HMHuHS$D$ HKHsD$H$HHEH} HHSHHKHsH{ M9<$I>H[]A\A]A^A_AWAVIAUIATUHSHH~1HQH}Me~iHKHE1HIAHSAo&$oIL$f($INfHHKIVHSL9}I}H[]A\A]A^A_2fAWIAVAUIH~ATIUSH1HQH;Il$~HIEE1HIIUI$IEL$f($IWIEIUL93I<$H[]A\A]A^A_飕AWAVIAUIATUHSHH~1HQH}Me~vHCH{E1HsH I`AHS IIvI~IFH JHsH{HCIV H HsH{HCHS L9}I}H[]A\A]A^A_DAWAVIAUIATUHSHH~1HQH}Me~iHCH E1IPAHSAo&$oIL$f($IFfH HCIVHSL9}I}H[]A\A]A^A_2fAWAVIAUIATUHSHH~1HQH}Me~nHSHE1HIZAHKAo.$oIL$f($$IVfHHS!INHKL9}I}H[]A\A]A^A_}f.AWAVIAUIATUHSHH~1HQH}Me~qH{HsE1HKH IAHC IINIvI~HHHKHsH{IF HHKHsH{HC L9}I}H[]A\A]A^A_麒f.AWAVIAUIATUHSHH~1HQH}Me~oHKHSE1H@HIH:AHsI$IVINL$f($HHSHKIvHHSHKHsL9}I}H[]A\A]A^A_f.fAWAVIAUIATUHSHH~1HQH}MeHKHSE1H@I H:T$D$ ~D$AHsIVf$$INHSHKD$D$D$ HD$HIIvHHSHHKHsL9}I}H[]A\A]A^A_fAWAVIAUIATUHSHH~1HQH}Me~KHSHE1H8IAHKIIVHHSINHHSHKL9}I}H[]A\A]A^A_逐AWAVIAUIATUHSHH~1HQH}Me~hHCH E1HIH9AHSAo$oIL$f($IFfH HCIVHSL9}I}H[]A\A]A^A_ӏAWAVIAUIATUHSHH~1HQH}Me~KHSHE1H8IAHKIIVHHSINHHSHKL9}I}H[]A\A]A^A_@AWAVIAUIATUHSHH~1HQH}Me~HCHE1@@IL$D$ ~D$H:AHKIf$$HD$D$D$ HD$HIFINHCHHCHKL9}I}H[]A\A]A^A_yfAWAVIAUATIUHSHH~1HQI<$Mn~eHK HSE1HsH{H@IAHEH}HuHUHM HH{HsHHSHK H{HsHSHK M9<$I>H[]A\A]A^A_ǍAWAVIAUATIUHSHH~1HQI<$Mn~~HK(HS E1HsH{LCHAIAHELEH}HuHU HM(HLCH{HsHHS HK(LCH{HsHS HK(M9<$I>H[]A\A]A^A_f.@AWAVIAUIATUHSHH~1HQH}Me~DHsH{E1H@IAII~IvHH{HsHH{HsL9}I}H[]A\A]A^A_gAWAVIAUATIUHSHH~1HQI<$Mn~mHs H{E1HKHSH@ IAHEHUHMH}Hu HHSHKHH{Hs HSHKH{Hs M9<$I>H[]A\A]A^A_鯋f.DAWAVIAUIATUHSHH~1HQH}Me~THsH{E1HSH IAIIVI~IvHHSH{HsHHSH{HsL9}I}H[]A\A]A^A_AWAVIAUATIUHSHH~1HQI<$MnHs(H{ E1LCHKHSH@AI AHEHUHMLEH} Hu(HHSHKLCHH{ Hs(HSHKLCH{ Hs(M9<$I>H[]A\A]A^A_6fDAWAVIAUATIUHSHH~1HQI<$MnHs0H{(E1LK LCHKHSHA!AI AHEHUHMLELM H}(Hu0HHSHKHLCLK HSH{(Hs0HKLCLK H{(Hs0M9<$I>H[]A\A]A^A_UDAWAVIAUATIUHSHH~1HQI<$Mn~eHK HSE1HsH{H@IAHEH}HuHUHM HH{HsHHSHK H{HsHSHK M9<$I>H[]A\A]A^A_駈AWAVIAUATIUHSHH~1HQI<$Mn~~HK(HS E1HsH{LCHAIAHELEH}HuHU HM(HLCH{HsHHS HK(LCH{HsHS HK(M9<$I>H[]A\A]A^A_އf.@AWAVIAUIATUHSHH~1HQH}Me~DHsH{E1H@IAII~IvHH{HsHH{HsL9}I}H[]A\A]A^A_GAWAVIAUATIUHSHH~1HQI<$Mn~mHs H{E1HKHSH@ IAHEHUHMH}Hu HHSHKHH{Hs HSHKH{Hs M9<$I>H[]A\A]A^A_鏆f.DAWAVIAUIATUHSHH~1HQH}Me~THsH{E1HSH IAIIVI~IvHHSH{HsHHSH{HsL9}I}H[]A\A]A^A_AWAVIAUATIUHSHH~1HQI<$MnHs(H{ E1LCHKHSH@AI AHEHUHMLEH} Hu(HHSHKLCHH{ Hs(HSHKLCH{ Hs(M9<$I>H[]A\A]A^A_fDAWAVIAUATIUHSHH~1HQI<$MnHs0H{(E1LK LCHKHSHA!AI AHEHUHMLELM H}(Hu0HHSHKHLCLK HSH{(Hs0HKLCLK H{(Hs0M9<$I>H[]A\A]A^A_5DAWAVIAUATIUHSHH~1HQI<$Mn~HK HSE1HsH{H@@IL$D$ ~D$AHUHsHEH}HM HHHUH{HHSHK H{HsHSHK M9<$I>H[]A\A]A^A_mf.AWAVIAUIATUHSHH~1HQH}Me~[HsH{E1H@@IL$D$ ~D$AII~IvHH{HsHH{HsL9}I}H[]A\A]A^A_AWAVIAUATIUHSHH~1HQI<$Mn~eHK HSE1HsH{H@IAHEH}HuHUHM HH{HsHHSHK H{HsHSHK M9<$I>H[]A\A]A^A_AWAVIAUIATUHSHH~1HQH}Me~DHsH{E1H@IAII~IvHH{HsHH{HsL9}I}H[]A\A]A^A_釁AWAVIAUATIUHSHH~1HQI<$Mn~jHK HSE1HsH{H@HIAHEH}HuHUHM HH{HsHHSHK H{HsHSHK M9<$I>H[]A\A]A^A_ҀfAWAVIAUIATUHSHH~1HQH}Me~IHsH{E1H@HIAII~IvHH{HsHH{HsL9}I}H[]A\A]A^A_BfAWAVIAUATIUHSHH~1HQI<$Mn~eHK HSE1HsH{H@IAHEH}HuHUHM HH{HsHHSHK H{HsHSHK M9<$I>H[]A\A]A^A_AWAVIAUIATUHSHH~1HQH}Me~DHsH{E1H@IAII~IvHH{HsHH{HsL9}I}H[]A\A]A^A_AWIAVAUIH~ATIUSH1HQH;Il$~5IEE1pI0IUIIE:IWIUZIEYL93I<$H[]A\A]A^A_~fDAWAVIAUIATUHSHH~1HQH}Me~oH{HsE1HKHIH1H:AHC IINIvI~HHHKHsH{IF HHKHsH{HC L9}I}H[]A\A]A^A_}f.fAWAVIAUATIUHSHH~1HQI<$MnHsHKE1HSH@H8IH2AH{ HUfD$D$HMHuHS$D$ HKHsD$H$HHEH} HHSHHKHsH{ M9<$I>H[]A\A]A^A_|fAWAVIAUIATUHSHH}HHt$QH}Me~HHSHE1DH8IAHKIIVHHSINHHSHKL9}I}^|H[]A\A]A^A_f.DAWAVIAUIATUHSHH}HHt$QH}Me~WHKHSE1HH2H8IAHsIIVINHHSHKIvHHSHKHsL9}I}{H[]A\A]A^A_AWAVIAUIATUHSHH}HHt$QH}Me~HHSHE1DH8IAHKIIVHHSINHHSHKL9}I}{H[]A\A]A^A_f.DAWAVIAUIATUHSHH}HHt$QH}Me~WHKHSE1HH2H8IAHsIIVINHHSHKIvHHSHKHsL9}I}ozH[]A\A]A^A_AWAVIAUIATUHSHH}H(Ht$QH}Me~lHKHE1DH IH:fHnAHCo$AoIL$f($INfHHKIFHCL9}I}yH([]A\A]A^A_f.AWAVIAUIATUHSHH}H(Ht$QH}Me~rHKHSE1HH8HF IH2fHnAHsI$IVINL$f($HHSHKIvHHSHKHsL9}I}xH([]A\A]A^A_DAWIAVIAUATUHSHH}H(HL$Ht$QH}Mf~YHSHE1I?fDH8IL fHnAHKIIWHfHSIOHHSHKL9uHD$H8DxH([]A\A]A^A_DAWIAVIAUATUHSHH}H(HL$Ht$QH}Mf~hHKHSE1I?HfH8IH2L fHnAHsIIWIOfHHSHKIwHHSHKHsL9uHD$H8wH([]A\A]A^A_fDAWIAVIAUATUHSHH}HhHL$Ht$QH}MfHKHE1Ll$ HH2LH IHD$XD$HHD$Pt$Xt$Xt$XAHCHT$PoL$@IOHKH HPIHIGHHKHCL9uHD$H8vHh[]A\A]A^A_f.AWIAVIAUATUHSHH}HhHL$Ht$QH}MfHsHSE1Ll$ H HH1LH HIHD$XD$HHD$Pt$Xt$Xt$XAHCHT$PoL$@IIwH H HsHPIWIGHSH HSHsHCL9utHD$H8uHh[]A\A]A^A_AWAVIAUIATUHSHH}H(HQH}Me~|HKHE1H:IHD$?fnL$D$~D$AHCIfD$INHfHKf~L$D$@IFHHKHCL9}I}tH([]A\A]A^A_f.AWAVIAUIATUHSHH}H(HQH}MeLCHKE1HAH1IHD$?H:fnL$D$~D$AHCIfD$INMFfHHKf~L$D$LC@IFHHKLCHCL9}I}sH([]A\A]A^A_DAWAVIAUIATUHSHH}HHQH}Me~wLCHsE1HKHAIH1H:AHC IINIvMFHHHKHsLCIF HHKHsLCHC L9}I}!sH[]A\A]A^A_fAWAVIAUIATUHSHH}H(Ht$QH}MeLCHsE1HKHfAIH1H:AHC IfD$D$ L$INIvMFH@HKHsLCIF HHKHsLCHC L9}I}GrH([]A\A]A^A_AWIAVIAUATUHSHH}HHL$Ht$QH}MfH{HsE1Ll$`HSH @LHD$0H H1HD$8IHD$HHHD$(HD$PHD$XL$ D$@t$8t$8t$8t$8t$xt$xt$xt$xAHC o$Io$IWo$Iwo$XIH@` H HSh0HsH{IG H HSHsH{HC L9u HD$H8pHĨ[]A\A]A^A_fDAWAVIAUIATUHSHH}HHHL$Ht$QH}MfLSH{E1Lt$ HSH AH1fIH?HfnLH fHnи?fHnAHC od$ ol$0IM IUI}hMUH HSH{H LSIE HSH{LSHC L9}rHD$H8oHH[]A\A]A^A_f.@AWIAVIAUATUHSHH{HXHL$Ht$QH;HmI~IvE1L$IVIf.LHD$0H% H1HD$8IL$ HHD$(H$D$pHD$@HD$HHD$PHD$XHD$`HD$xHDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$t$`t$`t$`t$`t$`t$`t$`t$`t$`$$$$$$$$$IF o$PIo$`IWIwIo$pXo$o$Io$` o$h0IVIvo$p@I~o$xPHĐ@`HpIG IIVIvI~IF L9+HD$H8YmHX[]A\A]A^A_AWIAVIAUATUHSHH}HHL$Ht$QH}MfxH{HsE1L$HSH fHPLHD$t?H1IL$pHHD$|HDŽ$HDŽ$$HDŽ$HDŽ$?HDŽ$HDŽ$$o$oT$po$D$Ho$$T$(\$8D$ $$l$AHC H$o$Io$IwHP@o$0IWo$xIHP@ H HSH0HsH{IG H HSHsH{HC L9uHD$H8~kH[]A\A]A^A_f.fUHSHHGHt&~ 1@HEH  fA(^Yf/rrHt fD(D~ DYHY@HXH9AYYf(fATf/vcfD Xf(DD$T$L$&DD$L$f(T$A\Y - \Y 9 H8XXf(fA(fDAWf(LcAVAUATUHSHD$8f)$`)$pf(T$h\$d$p$|$(L$ "l$D5z HDŽ$D$P9 H D^ 9 $\$ $T$($5 $f(H$PH1 $$fHDŽ$HDŽ$^D$Dt$H^fHn$f(fl$@)$@Q"\$hDt$HD$ L$XD,fA*\fD(\$0fDT6 fD.e / fD/V  D$(L$ DD$H#f( f(f!ADD$Hf(f(l$8f/$ HDŽ$D$ DD$xH$8H$0$$!~%a D$8$0$8fWT$`\$H$~%, \$HT$`f($fWDD$x$Yf(Yf(Yf(f(YY\f(YXf.7fD. +E1 YD$0d$`l$Hfd$`f.f(l$HD5a fD\$fD.|$8ff.\VDm D |$PfA(fT! fT5 fA/\$H  YYD$^f/( fD(fD DX= DX- YDXAYDX-ٍ Y\f(fT Xf/M*H= D J fHnH= fD(fHnf.fD((f(f(fA(fA(X( A^XDX-F DX^AYY\( Xf(fT YDXf/vfD^T$PDY% fA.6EQEYAXD,fEE*fE(EYE(DT$fED\$HAl$HfE(fE(fA(fE(d$`fDfE(fA(fD(fD(fA(fA(EXM A\T$8AXXD^ AX^YY\$ f(f(AYf(AYAY\f(AYXf.Y*\A\AA\D\% AYAYD- DXDXDXE9%ffA(fI~d$`Yl$HfI~fW" fA(fA(T$H$fY$$D$D$D$d$xl$Pt$`:t$`fED5Ɗ $l$PD^d$xD$D$DYD$fE(fE(DYDYD\$EXfE.v6L$HffE(AYAYEYD\$XfA.5f(fA(fE(YYDY\f(YDXfA.4fA(fE(fE(AYDYEYD\fA(YDXfE.4E8/AH ffA(fA(Af(fD(AfLnfD(ffYYD\AXfA.7fDDUfEf(f(f(AYAYAY\f(AYXf.f/fE{E19 Mc)B@LHD \$PD HcHHHHLd5HfA(fA(fT V |$`fTH t$HD\$@Dd$8DL$0DD$(d$ DT$Dt$pDl$hf/D$PDT$d$ DD$(DL$0Dd$8D\$@t$H|$`fA(fA(A_B@YfA(fA(Dl$hYDt$pl$PYY\Xf.].f(f(f(LHDDAYAYAY\f(AYXf..fA(fA(fA(AYfA(AYAYAY\Xf. .IF<F<LcIL9fA(fE(fA(YDYYD\fA(YXfD.$DXXfE(fA(fE(DXD$DXL$Yf(EYEYD\fA(YDXfE.P$fA(fAA$Af(f(f(fA(5@fD/D$[HDŽ$- f/l$PDt$HTD$L$D$l$0$f(f(L$`YY$f(f(T$xxl$0fT$x$Dt$HfI~$D$f.v f/l H% fHn$= X|$0$$f(DD$HD$|$xG~% fW)$- $f(DD$HD$$Y$^f fA/  + f($D\$D$AYXfT fD/DD fA(AYDYAXfDT fE/D AYDYAXfDT fE/D AYDYAXfDT fE/waD׏ AYDYAXfDTo fE/w9D AYDYAXfDTG fE/wAYY XfWf(fInD$D$XY$Y - $Y$DYYL$`AXXf(YYd$HD$`f($$f(Ȃ f(^f(YfY$ $^%E%Z t$P\$fD(fD(D$  f/t$t$ l$8f(f(YYY\f(Xf.*D= t$PHЁ l$HD$AYAYfLnfHnDYD$(fHnL$@fDYL$fD(t$`D|$D$fDd$fA(Y\$0f(D5= YT$(D^\XAXAXAXAXD^AYfD(DYD^\$@AYD^D^fA(YDYD\f(YDXfE.^^ &fA(fA(fA(YYY\fA(YXf.!DYt$XD$`XL$HD$`f(XXR L$HEYX=? fD/l$XD$HfD$`EAD$8L$ #|$Hl$`f(f(f(YYYY\f(Xf.*fE1EHD[]A\A]A^A_Dd$0f(Y$@D$8L$ DD$Hhf( f(fADD$Hf(f(dt$8f/$+AGfD- Xl$0f(AH~ E1l$xfLnf(\$xDD$DYY\$fD(˃iEAA@AfEff(fE(fA(AYfD(EYAYEYD\DXfE.fA(fA(fT 2 |$PfT$ t$`Dt$HDT$8DL$0DD$(D\$ d$Dl$pDd$hf/D$@d$D\$ DD$(DL$0DT$8Dt$Ht$`|$Pff(f(f(B@f(Dd$hDl$pEwAYd$@AYAYAY\Xf.f(f(f(LHDDAYAYAY\f(AYXf.fA(fA(fA(AYfA(AYAYAY\Xf."IAF<F<McE9tyf(f(f(AYAYAY\f(AYXf.|Xf(DXD$XDXL$fD(AAf(f(f(fA(E9uEgIcHDDif(f(f(AYAYAY\f(AYXf.%fEfDf(f(D$D$$T$x d$0Y%Z| fI~L$`f(d$Ht$0L$`fIn=O{ d$H^T$x$D$D$^$^YL$`f$D$ ^D$8l$xDt$`t$H fT t$HDt$`l$x$fD(XfEf(f(f(AYAYAY\f(AYXf.)fEE1f.AEAfD(fD(f(EYf(EYAfD(fD(EYEY@Hf(5y Xt$0AHy At$xfLnf(d$0f(\f(X^Ft ffInfIn$D$D$DD$xDL$Pt$`D|$H DD$xD-y DL$Pt$`D^fD|$HD$D$AY$fA(fE(AYEY\fAYDXfD.)ffA(fE(~%s YfWYDY\EXfD.H)fA(f(f(AYYAY\f(AYXf.(Xx XD$0fWDT$`\$ D\$H\T$8 w DT$`D\$Hf(Xf(AYAYf(f(AYAY\Xf.(%w Xd$0fA(AHw Ad$xfLnfA(f/t$l$ |$8f(f(YYY\f(Xf.$l$P|$`D$y t$HHw D$D$YYHD$PY$fHn$fYfD(fHn$f.fE(fA(\$0f( v D5{v Y\YD^AXAXAXAX^f($XAY^DYDY &v ^$AYfD(fD(DYEY^DYDYf(AYD\f(YDXfE.fA(fA(fA(YYY\fA(YXf.XD$HfE(XL$`D$Hf(YL$`fA(D\f(YfA(fA(AYAY\f(AY\f(AYXf.;X$DY$X$$T$P$f(AYXXt f/T$X-t XT$PD$ t XL$h$fT Yf/$ Hyt l$`AA$d$H$fLnfLnfY$\fY$Xf.$#|$D|$f(fA(YYYf(fA(Y\Xf."fYD$`\fYD$HXf. "AD$8L$ $t$PDt$`d$Hl$0d$Hl$0f(fD(fD(Dt$`DYf(f(t$P$YDYYD\DXfE. f(f(f(YYY\f(YXf./ f(f(fA(McfA(E1Af(%r Xd$0AHr Ad$xfLnf(ff."Qf(f(f.$"QYD$D\$x ~ $$^Yf(D\$x r XL$PD$`D$fA(Y%r f(^|$PD$DY8~ X=8~ D$xD^fA(t$P-~ \$xf(q $YYX$^X\$`^f(Y} Y^Xr fDfffed$pfW% )$)$f(ud$0$NÉD$`IAE1E1H$pHD$PAHD$PLD|$8fA.HANf(T$H),0L$@4\D$(l$0AEfD$8A6f/>T$HL$@f()$f(\\$ fYf(\$x\$xD$@f(L$H$$\T$(D$xf(L$xXL$@^D$t$HYf(Yt$HfT5 d$@fT% $f($f(f/$D$xb$$f('T$x^T$f/1Dl$8@IID9|$`bIA A߃6EkE:Ee|$fIcHf(LtA&AnYYY\fYXf.9fAAAUT$fHcHf(LtA6A~YYY\fYXf.fAAxfEAUDD$AE*DXL$hE1EYDYL$'d$pfW% fEDUd$0ffu)$)$D$0~$fE1E5m Xt$hD$|$D$$$YYt$ Lu AUfD$(\$YYD$(YYfD(fD(f(f(AID9f(f(f(Yf(YYY\Xf. AXAX\$xX|$Xt$T$Pf(f(d$@|$`t$Hl$8fl$8d$@fD(\D$(A6|$`f/D$0t$HT$P\$xs7Gl L$pYfD/fD(fD(f(f(f(f($$t$x|$PD$l$Hd$`\L$ H$8H$0D$@f(DL$@$8L$0fA(\D$(d$8,fIn^D$YYD$8fD(fI~fDT$ D$8fT D$$f(fA(l$Hf/$d$`|$PD$@$t$x$wvD$l$`$d$HfA(qDL$@D^L$d$HfD/l$`|$P$t$x$D$-fInAEfD$8AA9tDfD(fD(f(Ef(-fAfD$@EAfDA1ffDHHHD A9wAE)DD$d$HAA$l$`$H0j AYAYAYHD$@AY%f.l$Hl$pfW-, A|$xAL$8f(t$Pd$`DL$@DD$8l$0DD$8DŽ$DL$@l$H$d$`t$P|$xKD$d$(Y\f(Yf(Yd$(f(f(YAE9fA(fA(fA(YfA(YYY\Xf. XX|$xDXD$DXL$t$Pf(f(T$@DD$`DL$H\$8c\$8T$@f(\D$(DL$Hf/D$0DD$`t$P|$xs6g l$pYf/f(f(f(f(Df(f(D$D$T$P\$`$$d$x+\L$ H$0LD$Hf({l$H\l$($8$0f(d$8L$@L$@|$8^D$Yf(Y$fT= t$HfT5 f(|$@f(t$8DT$8f/$L$@\$`T$Pd$xD$D$$$D$PfA($$D$DD$xT$`d$@\$8l$P^l$\$8f/d$@T$`$DD$xD$$D$HD)f$HH)`AD$9$f(f(D$D)f(f(AAfD(fD(A{fut$pfW5 t$0f\$`)$)$D$0$ McE1D9YAE1EfAO1@HHHD 9wOffeAFAHH`hE9$Dt$A$t$@t$HAd$pfW% fud$00|$ffI~fD(fD($f(f(fD(fI~=f $|$Hf(Dt$t$H$AE1fErDkAEofEAfu!Hcc fHnPD9tHAZD XXT$(蛯Dt$8Dl$0DL$ |$@D$EXAXfA(f(DL$ |$EfHn%C \l$T$(^f(f(d$d$ffEY|$DL$ fD(~-h DYDYD\f(YDXfE.fWff(Yf(AYY\fAYXf.fA(fA(fA(YYY\fA(YXf.E~ZAFHHlf(f(f([YYY\f(YXf.PfHCH9u1HĨ[]A\A]A^A_$\$Df(fD(fA(fA(fEfA(f(fE(fA(fE(fE(f(f(|$HDD$@DL$8\$0T$(l$ t$|$HDD$@\$0T$(f(fD(DL$8l$ t$kT$ \$f(f(t$H|$@l$0d$(ft$H|$@l$0d$(f(if(f(|$Ht$(t$|$fCH9;l$Pd$0T$(_l$Pd$0T$(fA(fA(˃d$pl$hD|$`|$XDt$PDl$HDD$@DL$8Dd$0D\$(DT$ ||$XD9Dd$0d$pf(DL$8XDT$ D\$(D|$`Dt$PDl$HDD$@f(fA(AXl$hD\ @ ^%@ \AYDXfA(AYEYDXEXj$d$XL$0T$("d$X$L$0T$(f(fA(DT$`D\$Xt$Pl$Hd$@Dt$8Dl$0DD$(Dd$ Ht$PDd$ f(DD$(d$@XfA(DT$`l$HDt$8D\$XXDl$0fD(fA(AX^> \fA(YXYAYDXf(fDL$d$~- |$d$fD(fD(DL$'L$0t$(l$ |$L$0t$(l$ |$/f(fA(fA(+f(f(;ff(fA(DT$f(DD$DT$DD$f(d$L$ Bl$ d$D$8xf.AWAVIAUAATUSHT$`\$XL$D$,D$`f,fEdA*̍CA)*A-t$l$f$p= f(f($$Ef(f(f(DOD$~ YL$ Yf(f(XfWfWXL$$\$(T$0&f\$(T$0D$X^D$Xf. QD$Pf(t$H,$fHx< AfHn \$8T$@f(D$Hf(f T< \$8T$@l$HYf(Y\< f.0QXf(^d$f(T$H\$@l$8fl$8\$@f(T$HY\ ; ^f.QYD$PD$H|$0t$l$A$$|$|$(<$f(|$f(AoYYf(YY\f(Xf.\\XT$X\$ f(f(d$(t$0T$@\$8F|$f/|$Hf(pDd$ D\$fEfE%: AfEfEYE)fEɻEYA*fA(AE*^DXL$`D\ e: fA(Dt$0Dl$(fD(f(f(f(fA(fA(fE(XYDYA\EXfD.ufA(f(fA(YYY\f(YXf.XAX\59 D9mff.z.u,f.z&fH~fH~HEfH~fHnfH~HEfHnf(f(Ic5HfADAt$`|$AEf*YYt$ |$8t$@{AEIlHM$1H)D$L$ f(fd$f(f(YY\t$0Xl$(t$,$t$,$f(f(fTfTfUfUAD$AL$fVfVf(f(f(YYY\f(Yt$X,$Dt$,$ff(fTf(fTfUfUfVX\$@fVXT$8f.Ef.d$EÄt T$Xf(H7 f$$IfHn$$\%7 fAD$I9HĈ[]A\A]A^A_L$$t$@d$8\$0T$(dt$@d$8\$0T$(8f(f(fA(ʃDd$xD\$p|$hDD$PDt$Ht$@Dl$8DL$l$$$|$hD9DD$Pf(f($$t$@XAXl$DL$\56 Dl$8Dt$HD\$pDd$xNfA(fA(fl$x|$pDD$hDt$Pt$HDl$@DL$8d$Dd$D$5l$x|$pDD$hDt$PfD(t$HDl$@DL$8d$Dd$D$l$@T$8\$Cl$@T$8\$5l$hT$H\$@L$8l$hT$H\$@L$8T$0\$(T$0\$(D$Pf(fDAWf(IAVAUATUfH~SHcH8$f)$)$ f(lj|$tHT$x$T$\$ $Sff.zquo|$fAf.z u H4 I~.H|$xSfHHGHT fHH9uE1H8D[]A\A]A^A_@f/@ Z 4 f/R@ $$YY|$`d$hH$HD$HDŽ$D$`L$hE1fHnHfW=͝ D3 HHD$xDŽ$HD$@Dl$p$$$D\$8;fD$p4$fHt$@f/FHHl$@D$pCfA$*X|$$Yf(|$(AXf(L$fH~茞|$tH3 f(fHnL$|$(\fLnu \$f/$8$fW f/5> |$fA(^|$ L$($Y$Sd$ |$L$(fD(d$8DY$DŽ$Y$L$H$L$(LDd$Af(iD$ Y$L$(Dd$DND$H1 EYfLn^DY$D$jAH$Hl$@LD$DDfD$ $$)*X|$f(AXYf/fA(fA(fEfE(fA(AY\fA(AYXf.W Hf(HfA)Ef(fT- f(|$XfT Dl$Pf(Dd$HT$0\$($$H0 f/$\$(T$0$Dd$H|$XfLnDl$PM$$f(2H[0 $^d$ f/\$(T$0Dd$H|$XfLnDl$PH$p|$ff.~N HD$xDkHHL$xSfHHAHT HH9uf(f(YYYf(f(\Xf.D$$[$L$$<DHD$xfAR@t$8fYf(YY\fYXf.fEA9\$hT$`ff(Dl$0Dd$(Dd$(Dl$0f(H. AYfA(f(YfLnAY\fA(YXf.fD(fD(HHA9$Dl$p$fc. f$$X*$$ǿH. $$$f(f(fLnZ$HcÍUHHD$x99DP(IDt+DHD@Dd$fA(f(f(XfA(fD(YYYYDY\fA(YAXf.A\fA(DXDXXfA(fAAD$f(YYf(fD(AYf(AYEY\f(AYAXf.XDXɉD)A\I f(fAA$9$HcD$DD$HH\$x+fDffkHA\fXA9fA(f(D KXYYf(fD(AYf(YDY\f(AYAXf.{fA(|$t$DD$$$׼|$H+ t$DD$f($$fLn:f.fEfE(D + H+ D$fA(fE(DXfHn\$fA(fA(AY^f(YAY\fA(YXf.OY$$f(AXDX H+ YYYl$DXfD(DXf/rfA(fA(AYAYL$(|$菹$|$L$(fD(O5Dl$pAAD$Ld$xD$0D$L$@D$D$ Ao$(Hc*DHDfE()fD(A9f(fD(D$L$0XYYD$@f(AYf(f(YAY\f(YXf.<AXAX|$8fff(YYYY\f(Xf.A\f(HHfDD$(A4l$ \$T$$$襺$$f/$H0) T$\$l$ DD$(fLn$t$0|$@a\$fA(fA(D$D$D$D$$DL$Xd$P|$Hl$0Dt$(jd$PY$$l$0|$DL$XHU( YD$D$YfLn$Dt$(D$YD$AXDX .( DXfD(DXf/|$HofA(fA(fA(|$HfA(Dd$0Dl$(蝸H' |$HDd$0Dl$(f(f(fLnOfA(fA(f(]Hf' f(fLnD$8f|$HDl$0Dd$(%H.' |$HDl$0Dd$(fLnT$`f(f(f($L$zD$8fDD$(l$ d$\$$訷l$ $H& DD$(d$\$fLnf(f(fA(DT$(f(DL$ d$l$D$CHL& DT$(DL$ d$f(f(l$D$fLnUfA(fA(|$@t$8Dd$0DL$(l$ d$DT$D$ȶH% |$@t$8Dd$0DL$(l$ fLnd$DT$D$fA(f(|$@t$8Dd$0DD$(d$ DT$DL$,$C|$@HF% t$8Dd$0d$ DD$(fLnDT$DL$,$f.DAWfD(f(AVfE(AAUfI~ATAUHSHfW= fDW D$@f)$)$fA(|$(DD$ L$0T$\$8d$t$ѵf/$ DD$ |$(v>f(AFf' Y*Dl$AXX *$ Yf/l$fA(H\$T$f(DfInDD$(|$ DD$(|$ l$fInf(\$T$H$fA(豑AŅ%f$ Ex%+ d$ bD$0L$L$LL衵d$ f$$f(t$8Yf(YYf(\f(Yf(l$(Xf.L$ CD$fLLD,A*\YDD$D$AAA)AufDWs fDW j $]D$D]VfA(n. ^D$D$f(DT$pDL$h|$`DD$XD\$H\$xy\$xD\$HD$Pf(fA(\$Rt$8|$`\$T$Pf(f.DD$XD\$HDL$hDT$pEfD.Etf.DȄ f(f(D\$P|$H\$@DD$0DT$DL$%f/D$DL$DT$DD$0\$@|$HD\$PwfAfD(f(fD(t$ d$(f(f(YAYYAY\Xf.fA(fA(fA(AYfA(YAYY\Xf.XXfEHĸD[]A\A]A^A_\$8f/\$fA(Hf(fA(DDD$(|$ DD$(|$ Hu5AfL$L$|$8|$(tAKt$fA(Hd$f(fInDfA(DD$(|$ ~|$ DD$(`DD$Pf(D\$`\$XDT$HDL$|$pDD$hl$@t$f(fW5 DL$f(DT$Hd$PX\$XD\$`Xf/|$pDD$hD\$xd$Xf(fA(DT$PDL$H\$`螱\$0l$@XXXX轲D$L$DD$|$d$X\$`f(DL$HDT$PD\$xDT$8f(fD(L$ D$(fA(|$0DD$DT$DL$|$0DD$DT$DL$f(f(fA(fA(fA(d$f(l$诮d$l$f( f(fd$H臮d$HD$(L$ AVfI~ATIUHSHH87_D$ L$(f(f($t$\$蕮MD$E耮t$f\$T$f(f.Ef.Etf.DȄu;f(f(螮1f/$wfEA$H8[]A\A^fD$f(A|$ 3fInf(fKf~F d$fWfW\Xf/rRf(!d$(|$ \\\\@f(fpA$d$f(!@f(f.DAWf(1AVAUIATIUH͹SLHh- |$XH$L$^\$f(fTv Y' H|$(L$HH$LL$8H|$0HH$H|$ Hf/ӹ<LHLH,$rf(fT f/4$f(f( % f(|$Yf(YYT$`\$Hl$P2T$`\$Hf(Yf(f(YY$= ^f(XY\f.|$@|$^)DZ ff.D\ff(fA(\$x$T$pd$hDD$HL$gDD$HL$D$`fA(Dd$`DD$HD$ d$hfD(T$p\$x$fA/cDl$H fE/H$H$ f-q# D%x# Dw# fD(fD(f(fA(fA(AYAYY\fA(AYXf.u&$fD(f(EYAYf(YYfd$AMf(AYYAYD\f(AY#{XfA.%f% YAYX f(f(fD(YYDY\f(YAXf.#|$@f|$XEYYfA,$f($f( ff($f$f$fYfYf(ff(XfXf(XXЃ f($f( [ f($f$f$fYfYf(fXXff(XX܃ f($f(  f($f$f$fYfYf(fXXff(XX܃" f($f( f($f$f$fYfYf(fXXff(XX܃ f($f( t f($f$f$fYfYf(fXXff(XX܃h f($ f( ' f($0f$(f$0fYfYf(fXXff(XX܃ f($@f( ڀ f($Pf$Hf$PfYfYf(fXXff(XX܃ f($`f( f($pf$hf$pfYfYf(fXXff(XX܃Q f($f( @ f($f$f$fYfYf(fXXff(XX܃ f($f(  f($f$f$fYfYf(fXXff(XX܃ f($f(  f($f$f$fYfYf(fXXff(XX܃ :f($f( Y f($f$f$fYfYf(fXXff(XX܃ f($f(  f($f$f$fYfYf(fXXff(XX܃ f($ f( ~ f($0f$(f$0fYfYf(fXXff(XX܃#f($@f( r~ f($Pf$Hf$PfYfYf(fXXff(XXf.fW%x| f(V HEXE~| I@A8Hh[]A\A]A^A_f8 XD$|$pd$hDD$`L$HԣffDL$Hf/DD$`d$hf(|$pf/  .H fHnff/Yf(\T$ YT$Hf(A\Yf(YfI~f(YX\f. l$ffAYUfA(Yf(Y\fYXf.ffInDL$pD$Hd$hDD$`V|$HfDD$`d$hDL$pf(f/fIn f/rf.f/ H\ f($D$fHnDL$pT$h֡T$hH$H$D$`  Y艢\$`f$fInYY$_f($f(YYfAED$H裡DL$pT$L$xfA(DL$`D$pyXX謢|$@|$XYYfA$6DL$`T$f$fA(*T$HfInD$$$fH; $f(D$HX D$L$Xf(Yf(fA(YfHnfl$`t$h衠 |$f(f(f(D$YDT$xYfA(f(X YYY\fA(YX|$pf.of(XD$`H\$8fA(fXL$hH$$)$f(l$xffDl$pfD$@fWw ß|$f/<$H Dl$p$f($l$x$HH$f(f( HYYYY\f(Xf.XH$ffHfDp fHnfHnfD(L$pH= HHzf(f(f(fA(fA(؉YYY\f(YXf.VAYHf(HfA)  f(YfD/AtYDXDXnfA(fA(ˉ$DD$xd$p|$hDL$`DT$HD\$0XfD(fD(XXDd$(Dl$ 3Dl$ Dd$(|$hd$pf(f(D\$0DT$HDL$`DD$x$fȃt3H5l HHYYXXHD$8f|$f/|$PH$f(,$Yl$@f_ XYYVDff(xf(ZH$Hl$ H= fE(H$Dd$XAD$@E1LWD\$HDt$% L L  DT$XMwMIwAUKfDHL$f(I DfA(f(f(fD(YYDY\f(YDXfD.AT$IXI9u\$fA(D$f(AYIcf(AYAY\fA(AYfD(DXfA.pfA(f(fA(AYYY\f(AYXf.HL$ Lfd$HH)CHL$(LHfD(EYf(AYAYAYffA() AYfA(AYD\XfD.zRCfA(IIHL$0YYf)I9)IcfE(fD($fD(fE(DT$HfA(fA(fA(H$ID$HD$xD$$$$D$DT$poHt$0L C HD$xfD(CLD IfA(IzDT$pD$YL} D$$$Y$D$f)H$I9f$$Yd$PfD(у|$@$$AM ADu(d$`\$hE fD(AYf(DYAYYfD(D\DXfE.U]D$DX]0f(f(fD($AYDXe8YDY\f(AYAXf.dU]fE(DXD$DX$fD(f(f(YEYYD\f(AYXfA.EXAXA U]D$$fD(f(fD(YEYDYD\f(AYAXfA.EXXAU]D$$fD(f(fD(YEYEYD\f(YAXfD.`EXXAMD$U$]fE(DYf(fD(YDYD\fA(YAXfD.EXXAD$ U$(]fE(fD(DYf(YDYD\fA(YAXfD.EXXAyD$0U$8]fE(DYf(fD(YDYD\fA(YAXfD.EXXAD$@U$H]fE(DYf(fD(YDYD\fA(YAXfD.4EXXAD$PU$X]fE(DYf(fD(YDYD\fA(YAXfD.EXXA ;D$`U$h]fE(DYf(fD(YDYD\fA(YAXfD.&EXXA pxD$p$xfE(f(fD(YDYDYD\fA(YAXfD.h%EXXA te`hD$$fD(f(fD(YEYEYD\f(YAXfA.$EXXH$\$f/$DXX`D`v!fDT*l fT%"l DXfA/E1IH HMcfE(fE(B$fE(fD(6@D$U$]fA(fE(De D](Yf(YDY\f(YAXf.>"fE(U]E$DXDX$fD(f(fD(DYYDYA\fD(DYEXfA. AXEXA+D$U$]fE(DYf(fD(YDYD\fA(YAXfD.AXDXAD$ U$(]fE(DYf(fD(YDYD\fA(YAXfD./AXDXAUD$0U$8]fE(DYf(fD(YDYD\fA(YAXfD.AXDXAD$@U$H]fE(DYf(fD(YDYD\fA(YAXfD.wAXDXAD$PU$X]fE(DYf(fD(YDYD\fA(YAXfD.AXDXAD$`U$h]fE(DYf(fD(YDYD\fA(YAXfD.AXDXAD$pU$x]fE(DYf(fD(YDYD\fA(YAXfD.cAXDXA >D$U$]fE(DYf(fD(YDYD\fA(YAXfD.AXDXA pxD$$fE(f(fD(YDYDYD\fA(YAXfD.AXDXA tf`hD$$fD(f(fD(YEYEYD\f(YAXfA.HAXDXHD$8\$f/$X DXX DXfT%f fDTf AXf/AD$@AEuAIH H[HD$8\ $$Xf(H$f( hYYYY\f(Xf.<H$fH HHcE1fTe fTe f(At$PHL$8E1L9 f(H= XfHnY^YAuCAHD$8l fXH$f8fY)<$(@fEL1fA(ؐD fA/$DYYBAXDXw HHH9uYff/DYA@EfAfXAu;@LAAIHA"fEL1fA(@AD fA/$DYYBAXDXw HHH9uYfE1DYf/fAfXgSAD\$@E1YfDL$xfIn^D$H\$pd$hDD$`越ff/l$HDD$`d$h\$pf(DL$x fA(fA(DD$xd$p|$hDL$`DT$HD\$0ifD(fD(XXDd$(Dl$ DDl$ Dd$(|$hd$pf(f(D\$0DT$HDL$`DD$x@DL$xD$pfIn^D$Hd$hDD$`讉DD$`d$h\$pDL$xf(X YfҸf(f(f(H$I$D$$D$D$D$D$D$D$t$xl$pA$I9L l$pt$xfD(L1 XЋ$D$IzD$D$L $D$D$H$D$D$DD$fA($fA(fA(DL$xH$D$$$D$D$D$Dl$pH= H$$$f(D$fD($D$L LWDL$xDl$pL D$D$fA(f(f(܉$L$HD$pD$D$|$xDd$hDT$`t$HD\$0d$(DD$ |$xHD$pH= f(t$H$f(L$Dd$hD$DT$`D$D\$0d$(DD$ fA(f(f(H$fA(DD$xD$$$D$D$D$D$|$p6H= H$$$|$pL LWD$D$LA D$DD$xD$D$"f(f(ĉL$t$(l$ 褅t$(l$ L$GfA(Dd$xH$$$D$D$D$D$D$|$p,L |$pDd$xD$f(D$LQ D$IzD$L H$D$$$\$hT$`fA(H$$$D$D$D$DL$x|$pVH=? $$D$|$pfD(fD(H$DL$xL LWD$LP D$f(fA(͉L$fA(t$Hl$0|$(d$ 躃t$HL$l$0|$(fD(f(d$ fA(fA(f(܉L$ fA(DL$p|$ht$`l$HDd$0Dl$(MDL$pL$ f(|$ht$`f(l$HDd$0Dl$($f($f(D$fA($$D$|$xDl$p踂|$x$$Dl$pD$*fA(ff(d$pf(DD$hDL$``d$pDD$hDL$`6f(f(fDL$xd$pDD$h|$`DL$xd$pf(|$`f(DD$hf(f(|$`T$܁|$`\$HT$f(nfA(DL$xH$$$D$$D$D$D$|$p_H=H $$fD(DL$xD$f(H$|$pL LW$D$LQ D$D$6fA(DL$xH$$$D$$D$D$D$|$p~H=g $$fD(DL$xD$f(H$|$pL  LW$D$Lp D$D$fA(DL$xH$$$D$$D$D$D$|$pH= $$fD(DL$xD$f(H$|$pL 5 LW$D$L D$D$fA(DL$xH$$$D$$D$D$D$|$p~H= $$fD(DL$xD$f(H$|$pL T LW$D$L D$D$UfA(DL$xH$$$D$$D$D$D$|$p}H= $$fD(DL$xD$f(H$|$pL s LW$D$L D$D$ fA(DL$xH$$$D$$D$D$D$|$p|H= $$fD(DL$xD$f(H$|$pL LW$D$L D$D$fA(DL$xH$$$D$$D$D$D$|$p|H= $$fD(DL$xD$f(H$|$pL LW$D$L D$D$ufA(DL$xH$$$D$D$D$D$D$|$p7{H= $$H$|$pfD(f(D$LWD$L DL$xL2 D$D$D$'$f(f($zfA(DL$xD$H$$$D$$D$D$D$|$p)zH= $$fD(D$D$f(H$|$pL LW$D$L D$DL$xD$fA(DL$xD$H$$$D$$D$D$D$|$p8yH=! $$fD(D$D$f(H$|$pL LW$D$L) D$DL$xD$jfA(DL$xD$H$$$D$$D$D$D$|$pGxH=0 $$fD(D$D$f(H$|$pL LW$D$L8 D$DL$xD$fA(DL$xD$H$$$D$$D$D$D$|$pVwH=? $$fD(D$D$f(H$|$pL LW$D$LG D$DL$xD$fA(DL$xD$H$$$D$$D$D$D$|$pevH=N $$fD(D$D$f(H$|$pL LW$D$LV D$DL$xD$PfA(DL$xD$H$$$D$$D$D$D$|$ptuH=] $$fD(D$D$f(H$|$pL LW$D$Le D$DL$xD$fA(DL$xD$H$$$D$$D$D$D$|$ptH=l $$fD(D$D$f(H$|$pL  LW$D$Lt D$DL$xD$fA(DL$xD$H$$$D$$D$D$D$|$psH={ $$fD(D$D$f(H$|$pL ) LW$D$L D$DL$xD$f/D$`t$|$(d$@l$X"f(fD(ՍE$D$$\$`f(DD$YDL$ YDY\f(YAXf.1f(f(fD(HHYYDY\f(YAXf.1ffA(fA()$YfA(YY\fA(YXf.0Hf,)$,Hcl$IA95$X$D$T$HD$D$YD$Y\$Pf(fD(AYf(AYEY\f(AYAXf.,fD(fD($$X$\L X$$$$f(Y$$DY$DYD\f(YDXfE.fA(fA)$AD$$AD$$AfE(fE(D$Dl$@f(|$T$ \$f(fTfTf($$f(X9\$f/$T$ D$($\$ $T$f(:<$d$(^f/g\$ ff1T$fEDYY Dt$|ff/f/É$ՃbfEf<$1DYfYD$|$ $\$(\$0Hc$|$(l$H$ELc$$$YH$Y|$PHMIH$L$$$$f($$$$f(f(Y$Y$$f(Y\f(YXf. $Xl$HX$Xd$PX$D$$$D$fE(fD($$f($AYDYEYD\f(AYDXfE.z fA(t$XfA|$()$$D\$ AF$DT$AFf(|$d$p$$f(fATfATf($D$f(D$7d$pf/$$$$Et$XD}D\$ DT$$|$(D$fA(fA(fA(D$YYY\fA(YXf.Hf(HYf(fD(YDY\f(YAXf.ff(f()$AYf(AYAY\f(AYXf.f(Hf)$,$,Ic$AD9d$@iIf(f(D9l$@H$L$Hc$$f(fD(Y$DY$$f(Y\f(YAXf.|$fD($Xl$HXd$PXXf($$$$Y$f($YDY\f(YAXf.PfHH)$H$AD$AD9l$@$ $$$($$0$$Gff(f(@ff1)$f(f(f(fD(D$85Ӯ =ˮ Y$Y$fI~fH~D$8$f(ff(f(H$Xf(Ӊ$ D$PD$HD$@D$8D$0D$($$~2$ $$f(D$(D$0D$8D$@H$XD$HD$P$D$|AD$hDŽ$t$(f(|$PHH$D)$$\$ T$1|$PfD($$\$ T$H$XXfAWfAWH9NfA(fA(f(H$@$Pf($HD$8D$0D$(D$ D$D$0H$@$P$HD$8D$0D$(D$ D$D$L$ fA(fA(fA(H$@$P$HD$8D$0D$($ $D$'0H$@$P$HfD(D$8fD(D$0D$($ $D$f(f(l$pd$X\$(T$|$ t$/HHt$fH9l$@|$ )$T$$\$(d$XADl$p$AD0Vf(f(t$(|$d$ l$/t$(|$d$ l$Bf(f(fA(l$ fA(d$.l$ d$f(f(%f(f($d$pDL$XDD$(|$ t$u.d$p$DL$XDD$(|$ t$f(f(fA(l$XfA(d$(DL$ DD$.l$Xd$(DL$ DD$f(f(fA(fA($$$d$p\$XT$(D\$ DT$-d$p$\$XfD(fD($$T$(D\$ DT$f(f(f(|$Xf(t$(d$ l$.-|$Xt$(d$ l$f(f(f(f(f(lj$xf(Չ$pD$D$D$D$D$D$$8$,$xD$D$f(D$D$$pD$D$$8$wf(f(f(Չ$x$pD$D$D$D$D$D$$8$+$xD$D$f(D$D$$pD$D$$8$f(f(f(lj$xf(Չ$pD$D$D$D$D$D$$8$*$xD$D$f(D$D$$pD$D$$8$Nf(f(f(Չ$x$pD$D$D$D$D$D$$8$*$xD$D$f(D$D$$pD$D$$8$f(f(f(lj$xf(Չ$pD$D$D$D$D$D$$8$H)$xD$D$f(D$D$$pD$D$$8$@f(f(f(Չ$x$pD$D$D$D$D$D$$8$v($xD$D$f(D$D$$pD$D$$8$f(f(f(lj$xf(Չ$pD$D$D$D$D$D$$8$'$xD$D$f(D$D$$pD$D$$8$2f(f(f(Չ$x$pD$D$D$D$D$D$$8$&$xD$D$f(D$D$$pD$D$$8$f(f(f(lj$xf(Չ$pD$D$D$D$D$D$$8$%$xD$D$f(D$D$$pD$D$$8$$fA(f(f(|$ t$u%|$ t$f(f(f(HD$N%HD$f(f(hf(3%f(f(D$pfA(l$ t$ %l$ t$f(f(|$(t$l$ d$$|$(t$l$ d$fD(fD(f(f(fA(l$pd$hD\$XDT$@DL$(DD$t$ |$g$l$pd$hD\$XDT$@f(DL$(DD$t$ |$~\$XT$ fA($X$P$H$#$X$P$HfD(fD($$f(f#f(f(L$0ff(f(#f(f(f(f(T$$Z#T$$$T$(fd$$#d$$$$dT$(f(f(f$d$"d$$$$T$ f"D$fD(fDff(f(lj$pD$f(D$D$D$D$D$x$8$"$p$$8f(D$xf(D$D$D$D$D$wf(f(lj$x$pD$D$D$D$D$D$$8$S!$xD$D$f(D$f(D$$pD$D$$8$f(f(fA(|$ fA(t$ |$ t$f(f(f(H$`f(D$($ D$XD$PD$HD$@D$8D$0$$< H$`D$XD$Pf(D$Hf(D$($ D$@D$8D$0$$'f(f(f(H$`f(D$(D$ D$XD$PD$HD$@D$8D$0$$OH$`D$Xf(f(D$PD$HD$(D$ D$@D$8D$0$$f(f(f(H$`D$(D$ D$XD$PD$HD$@D$8D$0$$eH$`D$XD$Pf(D$HD$(D$ D$@D$8D$0$$鼹f(f(f(H$`f(D$(D$ D$XD$PD$HD$@D$8D$0$${H$`D$XD$Pf(D$HD$(D$ D$@D$8D$0$$醸T$(f$$DD$ $$f(f($f$$f(f(|$@t$( |$@t$(DL$ DD$f(f("f(f(|$ht$XDL$@DD$(l$ d$ |$ht$XDL$@DD$(l$ d$fDf(f(f(H$`D$(D$ D$XD$PD$HD$@D$8D$0$$ H$`D$XD$Pf(D$HD$(D$ D$@D$8D$0$$鰤f(f(f(H$`f(D$(D$ D$XD$PD$HD$@D$8D$0$$ H$`D$XD$Pf(D$HD$(D$ D$@D$8D$0$$zT$ffD(L$ נT$(f(f(f$d$ Sd$ $L$XT$(ff(l$Xd$ l$Xd$ L$H鉟f(f(\$HT$ \$HT$ L$P鵞f(f(f(H$`D$(D$ D$XD$PD$HD$@D$8D$0$$\H$`D$XD$Pf(D$HD$(D$ D$@D$8D$0$$郡f.AWf(f(fD(AVAUATUSH$9 T$`# \$xd$Hf($$`$h$$$$$$$$$$$|$X$T$8H$L$@$w $$pe $4 $xK $$9 $ $ $h$  $$Kt $HfHDŽ$^HDŽ$(HDŽ$8$`$$ $0$@$$PHDŽ$XHlt )$ fW% fDW% )$0)$@)$P)$`)$p)$)$)$)$)$)$)$)$S H$^Dd$pX s $f($s ^ff/$|$Pf|$@YXfYD$p|$hf(\l$P$f.*l$`fH$HH$@H$,H$*É$\$Y- f(ct ky $@$H$ Y$(Yƃ)f(fW- f($pf($xf(Y\f(Y\f.*HH`hf(f(YY\f(Yf(,$f(YXf.l$*ff/|$@.d$@d$pL$8E H$~= D$0AH$H$H$AH$H$`AH$H$@H$H$ H$H$D$H$)|$ D1)D)f|$`HcH$AAT$I*HIJ 0H$J0H$XJ40H$f(LPH$$D$x$N 0H$|$ N0 TXZ|$X8t$P\$pfBX4D$BX4f(m|$ffYf(Yf(YY\f(Xf.#HH`\h\f(t$ l$Hf(ffT)$f/|$DDf/$IH$$IB4 LH$/H$$B4@$$f(<$fI~f(% Eq $f(|$ YfIn\\{ XfTf/|$Hff// f/$ 4$fq Ed$f(YXYf(\f.%D$0At6ff.mf/mf.mf/mfDD$0D$L$$AD$H9D$8n AfDff/Zf/$Kf,$|$ 4p E(p YY\Xf.4!D$0A]ff.ezf/euf.ez f/e9fUD$0D$L$$+@B4`B4hB\4B\4+|$EuHy s H5s H@Yf(YY\f(YXf.g!fH$\$)$pH$T$p$xH$%CH$H$X$$p$$xG6r Hx D$f(D$YfHnf($Yf(Y\rr YXf.' Hf(HDYfE(f(YDYf(D\fA(YXfA.)!HfA(fA(HYf(AYY\f(AYXf. H $D|$X AX(f(fA(DYYYYfE(\DXfD.fA(f(f(YYAY\f(YXf.sfMcH$H$)$$$$@$H$$$RL$$$HYYY$f(f(ff(f()$Y$YY\f(YXf.f(f)$A ff/d$@rfW- $D$I$B40B48Hf(f(YHY$f(Y\f(YXf.4$fDk Ed$f(YXYf(\f.|$tAD$L$$p|$`D$0AAA|$D$8$D9Al$\$@g fT$PO$L$D$$9l$8D$8D$1fH$H$EXH$@*HXd$hH$PD$x$$f(L$L$d$0 KAYAZ|$Xd$ \$pfX$T$PX$f(id$ ffYf(Yf(Y\f(YXf.i#$\$\~5; |$Hf(ff()$fT)t$ f/ $$f/ AE\$8$Ht$<$Hd$)$H$YH$YHc$$H0$$H$`H8H$H$hLt$f$f(l$ $$f(fATfATf($D$0f(D$f/$$$$$AmMcD$DT$B$fA(fA(fA(D$$Y$D$0YY\fA(YXf.f(f(f(LHDDAYAYAY\f(AYXf. ffA(fA()$AYfA(AYAY\fA(AYXf.f(IIf)$B,0$`B,8A$hL9l$f(f(Y$pY$$xf(Y\f(YXf.$pX<$X$Xd$X$$$xD$`D$h$fD(EYf(fD($$AYEYD\f(AYDXfE.1fA($fADT$)$p$p$A$xD$AFAIf(f(L9D$Ey%b !j L$@fL$8$=d H$H$\f(fTfTfU<$Y$fVd$<$$Hd$$@)ЃufW- fW5 $ $(fW f(Yf(YY\f(YXf.?)HHh`$xf(fWb $pYf(Y\f(YfD(|$f(YX$fD.DŽ$PAD$$D$8HcA1,$IH$H$A~= ID$0J,D$)|$ It$fD)*$Xd$`OH$9-;$ $|$X$$$X\$pXT$Pf($$f$f$$$Yf(f(YY\fYXf.\f(d$ \fTf/d$Hf(f)$Jff/Cf(f$HfH)$fD(80Yff/l$@rfDW D$AFf(f($$AYH$pYHf(AY$x\Xf.f(ǃ|$Xf)$AD$$AD$$tQ$D$PH$PH$$L$@H$?D$0$$d$4$$$f(f(YYYY\f(Xf.fXX$$fW% $t$$$d$fW5 f _ AD$_ Yt$Y\Xf.#ff.$pf.$xAAIH$D9P$D$b@$$a$$$A$$f(v$fI~f(_ ^ $f(l$ |$HYfIn\\h XfTf/iff/e f/$V H$HfHDfHH9uD$8D$0D$0HĨ[]A\A]A^A_fD$8f(|$ $$f(fTfTf($0$f(f/$$$$$$0f(?$^T$x$$f/_$8ff/5 f/$& $$f] Et$f(YXYf(\f.D$0A ff.ef/ef.ef/eff/EAAf/EAA fAA;$ AGH$HH H$$@$$`$$$$$$D)$A($ADf/$o$$$u$$$U$$f($$f(o Z $$f(t$ Y\f(\d XfTf/t$Hff/q Cff(ω$HfH)$fD(80YDt$hfW5 t$hd$Pf(Dd$@L$p@,$t$D;$Dd$8E)$Hc$$H$HD0|$`fD8$$$$D$*$ED|$0Hc$ADt$XHH$$D$PH$PH$p$L$@H$`DL$HDD$8t$0l$ |$D\$D$8D$D$pD\$|$AD$xl$ t$0DD$8DL$HfD(f(f($`$hDYYYD\f(YXfD. fA(AXfW-Ҿ AXfW5ž fMfA(fA(fT DL$0fT DD$ t$l$<$D\$HDT$8Xf/D$`<$l$t$DD$ DL$0%fA(fA(ɍC$$HcDT$8YD\$HYd$`fA(Y\fA(YXf.f(f(fD(HHDYAYEY\f(YAXf.ffA(fA()$AYfA(YY\fA(AYXf.HfD0)$D8AHE9W$T$D$$XD$p$xYY$f(fD(AYf(YDY\f(AYAXf.$pfE(X$fE(X$\=}R $$x$DY$fA($YDYD\fA(YDXfE.fA(fA)$pE$`E$hAfE(fE(AC$$H$\$H$TH$(H$H$X$$$$ D$D$f(f(f(D$$AYAYAY\f(AYf(Xf.] f(fA(fA(D$$AYYAY\f(YXf.^ D$X|$f($X$f(fA(YYY\fA(Yf(Xf.< f(f(f(YYY\f(YXf.G fH$H$)$$2$@$H$$$Hc$$$HHYYY$f(f(ff(fD()$Y$DYY\f(YDXfA.{ f(fA)$$Hf(80YfDDd$8'D|$0fD9$kH$H$f(1H$HH$PD$x$$L$L$$r2XZ$f%V O $$\$\$D$0$f(t$ D$f(fATfTf($$f(f/$D$$$$$D$$f(d$x$^f/ffDŽ$)$f(f(fD(L$8y$D9A0D$0AD$L$$=ff/ۃf/Ѓ$$ffDŽ$D$Yfd$xfDŽ$Y\$@hL fT$PD$$E$A1DŽ$D$0T$ff(f(aHL f(f(fHnHN fHnf(fA(DL$0DD$ t$l$<$kt$<$DL$0DD$ f(l$K L$f(,'f(f($f(f($f(f(H2R f(D$$fHnD$D$$f(f(HQ f($fHny$f(if(f(fA($f(H$`L$$$$$$$$f(fD(fA(fA($D$$$D$$f(f(&D$f(fA(D$$gD$D$$fD(f(fA(f(fA(t$0l$ |$DL$D$ t$0l$ |$D$fD(fD(DL$f(f(DL$hDD$X|$HDd$8Dl$0D\$ DT$l$4$|$HDL$hfD(DD$XDd$8f(Dl$0D\$ DT$l$4$WH\K H f(f(fHn*ff($$$$f(f(/?H L$f(HG L$pf(ffHnD$h$f(f(fA(f(f( $D$$$W$$af(7$L$$H-G f(fHn$f(\fA(fA($$$$$$D$DT$DT$$$fD($fD($$$D$#f(f(f($f(t$$$!t$$$f(f($fA(fA(fA($fA(|$|$$f(f(9fA(fA($$D$D$D$DT$iDT$$$D$D$D$qf(f(fA($fA(DD$$D$DD$$$f(f(D$fA(f(fA(ˉ$fA(t$ l$|$t$ l$|$$.f(f(fA(D$$fA(RD$$f(f(YfA(f(fA($$ $$f(bD$fA($$$$f(f(f(f(f(f(f(H$H$f(fD(Zf(f(,$$ t$Ot$,$t$,$/t$,$D$$hC L$f(#ff(f(f(}f(fA(ɉ$fA(t$8l$0|$ D\$DT$t$8$l$0|$ f(D\$DT$f(f(ĉD$fA(t$Xl$H|$8D\$0DT$ DD$$$6t$XD$l$H|$8f(D\$0DT$ DD$$$kf.AWf(f(AAVAUAATIUSHL l$Xff/L$H ( T$\$ $$$$$$$$$$$$$$ t$(f(H$A t$fHnt$fT5 Y5.H f(D$HfTܪ f/At#fD$*X\@ f(\$(f~= t$Hf()|$`fWf(YfWXf(L$xfY\f.L$pfff/|$Hf(ԿAH$H$H$HH$P\$0$$L$L$ $$\$$\$$D$$T$ $D$`$Y^T$Aud$\d$H\T$(d$Au~: |$fWfW|$T$T$f/$f/T$X~ $fWf/#|$XfWf/A~% ,$HcAHMcfWL)d$`E1l$@f*Xd$A=> f(5 ffl$(^)$t$HYf(YYY\Xf. f(f(YY\f(YXf. X> |$8d$\$@$$\$@f(=  $l$0X~d$4$fD(l$0f(YfYf(f(\YfAY|$Xf.|$8m L$ff(Y)$fYf(f\Yf(Y$Xf.o $H= f(f(|$0ff)$fHn|$0f(f(fYf(YY\fYXf.B f(BYYf(f)$$\T$$$Au\T$(f/T$L$XfWL$`$f/.$XACf/T$T$q$H ^D$ $$T$f(f(\$\$f(f^d$ d$@Yf(\$8a\$8D$0f(L$T$0L$d$@XYYfT@ fT%8 f(T$f(d$0?f/$$w&T$L$0f($^\$ f/wmHD[]A\A]A^A_~(ELfHIDfHH9uA|$pfW|$`|$pCfAHw@H$H$f(ԿH$HH$P\$0$$L$L$5$\$$$T$FD$`XZ$v@D$P$pY< $XG \f/T$ $E ^D$ $$T$0K$L$$.Y < \$T$0\dAt#fD$*X\9 f(t$(|$Hf-8 f(w Yf(^)$fYYY\Xf. f(f(YY\f(YXf.MX8 l$@d$\$0T$b\$0T$f(J8 L$0t$8Xd$f|$0Yf(Yf(f(\YfYl$f(Xf.t$l$@t$8fD$fY)$f(Yf(f(\YfY\$0Xf.fH~D$0ff(f(fHnHe7 l$8f)$fHn l$8f(f(fYf(Y\f(YfYXf.Gf(AAEfHn\d$HD$pHHD$xYYf(f)$T$0\T$d$~p fWfWD$(f(|$HHT$T$XARf/$WA>E13T$0\$T$0A\$Xff/T$0&$A ^D$ D$$XL$T$0f(L$0L$0D$f(jT$f^T$ YfTn f(T$0f/D$D$nT$0ff(\$^\$ f/ExELfHIDfHH9uKD$PT$Y7 T$X@B \~ELfHID@HH9uD$PT$0>Y^7 T$0XA \$\f/v$o@ ^D$ D$$T$8$L$0$T$8f(L$0XL$Y6 \5fA(f(ft$@l$8|$0$$t$@l$8D$|$0$$f(Df(f(f|$@f(t$8l$0m|$@t$8l$0$Nff(f(@L$Hf(ff(d$<$d$<$f(f(f(f(|$8d$0\$$|$8d$0\$$f(f|$`t$@l$8d$0|$`t$@l$8d$0D$L$f(f(fl$`f(|$@t$8Ll$`|$@t$8D$0fH~f(f(l$8d$0\$T$l$8d$0\$T$qH1 f(fd$fHnd$D$xL$pdf(f(ff(f(L$Hf(ff(d$l$qd$l$f(f(AW1AVAUATUSHt$x5?1 |$tH$^$HH$HH1 D$Pf$$l$hH$L$AH$HH$hL$(d$$P$`)$)$$@$p< f(f(^fHnH1 H$HP0 fHn$^$$|$(\$Pf50 f$Y^Y$$Yf(t$Yf(\Xf.f(f(YY\f(YXf.{X/ \$ T$}\$ T$f(e/ L$ t$0X+4$fYf(YYf(fY\f(t$0|$Xf.|$ $fYf(YY\fYf(Xf.|$td$0fd$0l$ l$ \$(f(T$P$XX>$$Y\d$f(fTS f/D$hvNff/qH$$H$fHHHTHH9uL- $N$\HcfL$*HL$X$H$I$@fT$P$*\$(\f(|$=m- ^Y<$\$YX$f.f(f(YY\f(YXf.L$ nX- L$ T$0\$fH~\$T$0f(, L$d$8X蚿t$fl$Yd$8f(YYf(\ff(Y|$HXf.\$0t$fYf(YYf(\fY|$@Xf.t$8H, ff(f(fHnŽ<$ffEYDYfD(DYYD\DXfE.Dt$,fA(fA(Dl$`设\$ fHnH+ ff)$fHnBHl$ ~Е f(ff(HYfHR+ )$YLt$XfEDl$`fLnظfE(ӉfD(D\XfA(fD(fD(jff(f(f(YDKYY\f(YXf.HcAlXCf(f(f(YDSYY\f(YXf.IcAlXf(f(f(Yˍ{YY\f(YXf.McClXf(f(f(YDKYY\f(YXf.ZHcAlXf(f(f(Yˍ{YY\f(YXf.2McClXf(f(f(YDK YY\f(YXf.HcAlX [f(f(f(Y΍{ YY\f(YXf.McClX xf(f(f(YDK YY\f(YXf.HcAlX f(f(f(Yˍ{ YY\f(YXf.HMcClX f(f(f(YDK YY\f(YXf.HcAXTf(  f(f(f(Y΍{YY\f(YXf.McCXTf(f(f(f(YYY\f(YXf.HcAlXfDT$fE(DEYf(AYAYD\fA(AYfD(DXfE.Q f(fA(fA(AYYY\f(AYXf. DY$\$Hf(HfA)fA/vfT fT Xf/HHfE(fE(fE.A{A fA(fA(f(f(DKHcAXDYˉYf(Y\f(YXf. HcAXlf(f(f(Y̍{YY\f(YXf.vMcClXf(`DffHl$ X$Lt$XX$X$X$FX$X$+X$X$X$X$X$X$X$ X$(X$0X$8X$@X$H X$PX$X trX$`X$h t[X$pX$x tDX$X$ t-X$X$tX$X$@D1 |$tD 1 DY$DY$\$8T$@fl$XXT$PX\$(d$ D$DL$D$藵|$fD$f(DL$d$ Yl$X\t$HY\L$0XL$(XfD(f(fTq f/D$hHDDf/D$xA_t$8fA(fA(fA(YYY\fA(YXf.fA(L$ HcH$8H$0|$t$0=$8$04$t$0T$f(葱T$@|$L$ YYY$f(f(Yf(YY\f(YXf.AHf(HIfH)`YYfA&9$xD$A}H! \$(fɻT$PfHn蠳AGfH$H$D$D$D`L$HĀAED$*H$HLd$$XYY\$f(AYf(f(YAY\f(YXf.f(fA(fA(DAXX)\=! Yf(AYf(fA$Af(f(fT l$HfT d$@DD$8DL$0t$(|$ T$\$`fHnt$(DL$0f/DD$8|$ d$@l$HAYIcA\$@EYT$HĀD`YYfE(DYfD(fD(f(YA9jIs9$QH$HHHlf(f($$f(DD$HDL$@HXt$8|$0d$Yl$Y\$fD(fD(DYf(YDYD\f(YD\$(DXf(DT$ DT$ D\$(f(DL$@t$8fA(DD$Hl$Ad$|$0\= f(fTfTfAUfAUfVfVfA(AXXfA(fD(f(YYfM9$H[]A\A]A^A_fA(fA(t$8l$0d$ DT$DD$D $蛯t$8XD$8fT f/D$hOHD $DD$A_DT$d$ l$0|$8ff/Ӄf/EAAiffHl$ X$X$Lt$XX$X$t$@DT$8\t$HD\T$0f(f(d$fT6 fT . ,$f(\$ L$04,$d$f/$D$\$ L$0l$$$f(贮T$$$^T$f/l$ft$8ff/H$H$fL$$DAl$x|$tھd$h\$$D$PL$(CxcA)É$f*X$\ f/$H$mfDf(wt$8H$@fD(fE(f(fD(\d$7ff(f(lj$f(|$`D$D$D$D$D$D$$$(|$`$A$f(D$D$D$D$D$D$`L$fA(fA(fA($$D$D$D$$$Dl$`gDl$`$$fD(D$fD(D$D$$$fA(fA(f($f($D$D$D$D$D$DD$`譪DD$`$$D$D$D$D$D$xf(f(f(lj$$D$D$D$(D$ D$D$D$D$$|$`$D$(D$ |$`f(f(D$D$$D$D$D$D$$Ef(fA(DD$8D\$0DT$(|$ t$DL$7DD$8D\$0DT$(|$ t$DL$T$f(f(fl$Xd$l$Xd$D$@L$8T$fl$8d$诨l$8d$D$HL$0ff(D c *X$YY & A\f(AXf/l$$LDfA(fA(Ad$\$|$@D|$(DD$ 葲AA1A)E)<E3fDD$ D A*X$D|$(|$@A\t$0f/fD/(l$$LDd$\$fA(DfA(ȾDL$H|$@D|$(DD$ 9DD$ D|$(|$@DL$HkAA)jAFfD$d$8*D$HDXl$PfD/w f/@D$8fA(fT P HDŽ$A\,f)$@)$P)$fA(fTlP X ƒIf/* *fE\$8Dt$D*l$d$fA(fA(H$H$@L$D$`DL$pDT$@EX|$hD\$XfA(DT$8D|$(DD$ kDL$pD$`|$hD\$XDT$8D|$(DD$ $D$HD$X$@D\$xfA(DD$pf(D|$hD$D$|$`Dt$(t$ vd$Dt$( + D$Xf(^S |$`D|$h^DD$pD\$xYt D$D$T$8$$f/fA(fA(L$8^^t$Xl$`l$ YAYf($P\$Xf$XfD(fD(DYf(YDYYD\DXfE.>fA(Y\D$ YXf.>D$xH fA(ffA(׉$fHn$D$D$D$$$$D$DD$pD|$hD$&uD$xD|$hDD$p$D$ L$(D$$$$D$D$D$$ D$$L$AD$fA(DD$@DT$`D\$@D\$X$D$ fA(fE(fE(YDYEYD\f(YDXfE.pfA(fA(fT $L $fTL D\$xD$D$$DD$pd$h|$`Dl$XD$D$sf/D$8Dl$X|$`d$hDD$pD\$x$D$D$$[f(fA(fA(IcYAL$D$D$YY\$8\f(YXf.DY\$fD(f(YfD(fE(DYEYE^D\f(AYDXfE.fA(fA(fA(YAYY\fA(AYXf. Ã9\$@AXT$ YY\$(f(f(Yf(YY\f(YXf.-DXAXE\fE(AfD(fA(fD(f(rfDfD/sYf(Xf/[t$$Ll$DfA(fA(d$\$0>y t6AHhD[]A\A]A^A_AE1DuA\$$LDfA(fA(yt$l$fA(fA(d$$H$L$\$8LDDDL$H|$@D|$(DD$ pDD$ D|$(|$@DL$H$ADžD$El$0f/"l$d$DH$ \$$fA(HfA(ȺDL$0D|$(DD$ /DD$ D|$(DL$0*DL$ _l$$HDd$\$fA(fA(ȾD|$DD$KDD$D|$DL$ $fA(LD\$fA(DL$D|$D$赟AD$D|$DL$ fA(H$H$DL$(D|$ DD$xoDD$$D|$ DL$(4$$t$f$0t$@D$8DL$8fA(f(DD$0D|$(|$ DT$ n d$DT$|$ ^D|$(DD$0DL$8t$@f/fA(^fD(l$AYDYf($ \$$(f(fD(Yf(YDYY\DXfA.vfA(f(YYD\XfD.E$A|$f(fA(f(YAYY\fA(AYXf.W XAXfA(fA(fA(YYY\fA(YXf. f(t$@DL$8DT$0|$(T$ L$lDL$8L$fW D T$ D^t$@|$(f(DT$0YfA(fA(YY\f(YXf. f(fA(fA(YYY\f(YXf.s ,$d$f(fD(YYDYYfD(D\DXfE. l$fA(Yf(AYAY\fA(YXf.Y fA$A^XAFI\$fA(D\$HfA(Il f(f(f(f(f(YAYY\f(AYXf.f(fA(f(DY{YY\fA(YXf.fHCH9q@t$l$fA(fA(d$$H$L$\$8LDDDL$H|$@D|$(DD$ DL$H|$@D|$(DD$ fE\$8Dt$D*l$d$fA(fA(H$H$@L$D$`DL$pDT$@EX|$hD\$XfA(DT$8D|$(DD$ DD$ D$`D|$(DT$8D\$X|$hDL$pQE~!AFfHIDfA$IL9uEf.D\$XD$D$$L$DT$`D$D\$@\$`f(IcYHf(IDYY\f(YXf.0 fAxL$HlHcI\D$Dt$PHD|$`D$fE(MtDl$X$HfA($H)T$ YY\$(f(Yf(f(YY\f(YXf.DXAXfE(fA(fD(fE(YDYDYD\fA(AYDXfE.fA(E\fAAfA(fA(fT ? $fT? DL$xD|$pl$hDl$`Dt$Xd$PDD$H|$@D$D$fgf/D$8|$@DD$Hd$PDt$XDl$`l$hD|$p$DL$xf(f(f(HcY΍ED$D$AYAY\$8\f(YXf.?DYl$f(fD(YfE(DYE^fE(DYD\fA(YDXfE.ifA(fA(fA(YAYY\fA(AYXf.R IL9t)$AXffD(fA(fD(f($$D$D$lD$if/D$8rrfA(f(^t$Xl$`l$ YAYTfA(^f/rTf(fD(AYDYf(PfDL$4$l$ fA(DL$`DL$XfA(fD(DL$f(f(fA(D$fA(l$xDl$pDt$hd$`t$XD|$P|$@Dd$Hcl$xD$Dl$pDt$hfD(fD(d$`t$XD|$PDD$H|$@f(f($DL$xDD$pD|$hDl$`Dt$XDd$Pd$Hl$@GcDL$x$DD$pD|$hf(Dl$`Dt$XDd$Pd$Hl$@f(f($D$D$D$D\$xDD$pDd$hd$`l$XbD\$x$f(d$`D$f(D$DD$pD$Dd$hl$X)f(f(f(HfA(DT$(|$ t$D\$l$$$b$$l$fD\$t$CH9|$ DT$( Kf(fA(t$D$at$D$f(f($T$f(fA(fA(DT$(|$ t$DL$D$oaDT$(|$ t$DL$D$I$T$t$(DT$ |$'at$(DT$ |$fD(fD(f(fA(f(DT$(f(|$ t$`DT$(|$ t$LfA(f(f(t$ DL$`DT$0|$(t$ DL$f(f(f(f(fA(t$0fA(DL$(DT$ |$M`t$0DL$(DT$ |$f(f(fA(fA(t$Pf(DL$HDD$@D|$8d$0Dd$(|$ DT$_t$PDL$Hd$0DD$@f(D|$8Dd$(|$ DT$f(f(f(ʼnD$HfA(DL$pDl$hDt$`D\$XDT$Pt$@]_DL$pD$HDl$hDt$`D\$XDT$Pt$@Lf(fA(ՉD$PDL$xD|$pDt$hD\$`DT$Xt$HDl$@^DL$xD$PD|$pDt$hfD(fD(D\$`DT$Xt$HDl$@D$ T$Xf(fA(Ή$D$hD$D$D$D$D$D$|$xDd$pt$(2^$|$xD$D$hf(f(D$t$(D$D$D$Dd$pD$T$Xf(މT$xD$hD$D$D$D$D$$$D$|$pt$(Z]T$xD$hD$|$pfD(fD(D$t$(D$D$D$$$D$T$f(fA(f(DL$@DD$8D|$0D\$(l$ t$\DL$@DD$8D|$0l$ fD(f(D\$(t$T$f(DL$PDD$HD|$@d$8Dd$0DT$(|$ t$/\DL$PDD$Hd$8D|$@f(fD(Dd$0DT$(|$ t$T$`f(f(f(ʼn$H$D$D$D$D$D$$Dd$xt$pd$hl$@r[$D$D$t$pD$H$D$Dd$xD$d$h$l$@f(fA(fA(ˉD$PfA(DL$xDD$pD|$hDt$`Dd$Xt$HDl$@ZDL$xD$PDD$pD|$hf(f(Dt$`Dd$Xt$HDl$@!f(fA(fA(ωL$hfA(t$`D$D$D$DD$xDd$pD\$X(ZDD$xL$hDd$pf(f(D$D$t$`D$D\$XWf(fA(ӉL$hD$D$D$D|$xDt$pt$`D\$XYD|$xL$hD$Dt$pfD(fD(D$t$`D$D\$Xf(f(f(ʼnL$`fA(DD$xD$D$D|$pDt$ht$XXDD$xD|$pD$Dt$hD$L$`t$Xf(f(fA(D$fA(d$x$D$D$t$pDT$h|$XDd$`hXd$xD$t$pfD(fD($D$DT$hD$Dl$`|$XfAVGAUIATUSH@vAEE1H@D[]A\A]A^@~fT$f/wAHD$L$X- f/CfDT$d$*\$AXf/ 1H|$8Ht$0d$f/fA(\$DT$f.fɍ@GA,AEAA)D)*\Y+ VXDDL$0DD$8~-/ DT$D\$d$Ѓ)ЃMf(f(ffWfWfYYX\f.ff/-u l$(H =P DH5: fA(DD$% , fHnDL$#DL$DD$A)ÅCHH\YP H) YA fHnfA(f(fA(YAYY\f(AYXf.|Yt$(Yff(EAYfAYAY\fAYXf.HH9EfD(fD(U]DD$ DL$f(f(fT - \$fT- T$U=~ T$\$DL$f/DD$ H fHnfAEE1H@[D]A\A]A^D= fWfWfDW|$(fDWfDWtAEE1OAEE1<\$(ffA(fA(TfA(fA(l$DD$DL$Sl$DD$DL$H ff(f(DT$ d$DD$DL$S~-, DT$ d$DD$DL$fAWIAVAUATAUSHʉHfW8, L$  j T$j $$f)$@)$P)$`)$p)$)$)$)$)$ L$ fW + |$L$8D$0t$(l$$$T$AŅy&ADEHD[]A\A]A^A_@t$(Nl$\$H$@T$D$0f(L$86/AŅu$@% |$P$H|$HEx%d d$( D$ L$H$LHt$X Sd$(fE$$Ht$Xf(AYf(Yf(f(\AYf(Y|$@Xf.L$(!D,d$fD$LDt$ A*\YwRDDt$ $$AAA)AufW-) fW=) D$PDŽ$fD$H)$A$AG$ f(^T$$ \$D$0H$H$L$8H$Dt$`|$Xl$ ơl$ D$|$XDt$`AD$L$@d$($$f(f(YYYY\Xf.Af(f(f(AYAYAY\f(AYXf.XXfAAGfD(fD(f($PfDW-C( fDW%:( $AG$PD$X)$$F\$D$0H$H$$L$8H$D$t$xDd$pDl$hDT$`|$Xl$ 5l$ $DT$`t$xAD$fD($Dl$h|$XDd$pD$D$D$@d$($$f(fD(YDYYD\f(YXfA.vfA(fA(fA(AYAYAY\fA(AYXf. AXXD$$D$f|$xl$XAG\$8 fT$0+Nc |$T$D$`$f(H D$L$h^X$f(H$0^$$pY|$p$(YfA($D$f(T$ $`$$ MH $D$l$Xf/|$x$$D$}D$HfD(fD(DL$PDYT$pAYDYEYL$HDD$PAYEYD\DXfE.8 fA(fD(AYEYD\EXfE. HMg Dt$HAfD(fDfA(fA(fT $ D$fTt$ d$xD$$D$$#Lf/D$pd$x$D$$D$D$\$t$XAVB DT$Pf(d$pd$HAYAYf(AYAY\Xf. LfD(f(HfD(`hDYYDYD\f(YDXfE.Gf(fE(f(YfE(DYYDYD\DXfE.IB4B4Lct$\$HAID9r\$ l$f(f(AYAYAYAYf(f(X\f.AXAXT$\$HfD(f(f(DYYYYD\XfD.fA(fD(fE(f)$A$$AD$$t$3L$@D$($$fD(YDYYD\D$(fD(YDXfE.ffA(f(f(AYAYAY\fA(AYXf.;DXAXT$ t$XXT$ht$DT$PXt$`fW=8! fDW/! fDE$t$T$ AfE(fE(fD(fD(fDfEL$H$Dt$@\$D$0H$H$$L$8H$D$D$$D$$d$xt$XDT$PDT$PD$AŃ$D$t$Xd$x$D$$D$D$tYD$D$DL$HDD$PDfE(fD(D$D$_D$AF$DŽ$HHfD(f(h`YDYYYfD(D\DXfE.fA(fA(fA(YfA(YYY\Xf.fA(fE(D$D$f.f/D$prX\$fH~D$HAHD$DL$PHV fD(fD(f(YDYHD$pDYEY\HD$D$HfE(fD(DL$PfHnA-fA(f(fA(D$fA(|$xD$D$D$$$$D$D$Dt$XDL$PD|$xD$$Dt$X$DL$PD$D$D$$D$D$L$(D$@D$D$$D$$$D$DL$xt$XDT$PCDL$xD$D$t$XfD(fD($DT$PD$$$D$L$HD$f(f(D$D$$D\$xl$Xd$P:CD\$xD$l$Xd$PfD(f(D$$\$ T$fA(fA(D$D$$D\$xDl$XDd$PBD\$xD$Dl$Xf(f(D$$Dd$Pf(f(f(ԉT$fA(DD$xDL$X|$PD\$H;BDD$xT$|$PfD(fD(DL$XD\$Hf(f(ĉT$P$D$t$xDT$Xl$Hd$At$xT$Pl$HfD(fD($D$DT$Xd$=L$HD$fA(fA(ԉT$P$D$t$xDT$XRAt$xDT$XT$Pf(f($D${fA(f(fA(D$f(DL$x|$Xl$PDt$H@DL$xD$|$Xl$PfD(fD(Dt$HL$HD$PfA(f(D$D$$D$$$Dt$xd$XS@Dt$xD$D$d$XfD(fD($D$$$fA(fA(fA(D$fA(t$xDD$pd$hDT$`|$Xl$ ?t$xD$DD$pd$hDT$`|$Xl$ L$(t$xD$D$D$Dd$pDl$hDT$`|$Xl$ 0?t$xD$D$Dd$pfD(f(D$Dl$hDT$`|$Xl$ f(f(fA(Dt$pfA(t$hd$`l$X|$ >Dt$pt$hd$`l$X|$ L$(D$@Dt$pDL$hDD$`|$Xl$ Q>Dt$pDL$hDD$`|$Xf(f(l$ _f(fA(Ht$`d$XDt$ >d$XHt$`Dt$ D$@L$(fA(fA(D$D$$D\$xDt$XDL$P=D\$xD$Dt$Xf(f(D$$DL$Pc$DL$x$D$\$XT$P,=DL$x$\$XfD(fD(D$D$T$Pf.AWFAVAUATUSHH$fL$)$)$v%ff(H[]A\A]A^A_D1Aw$<%m fEE*fD(f/Df/ f/ L$D$$Dd$@>,$t$f(D$Xf(DL$fD(Dd$L$`DYf(YYYfD(D\DXfE.]fEfD/4$j DYDYrl$fA.zu fD/4$ =V fA(fT I f/L$HB 5 HD$t$05 fE/ fD/t$- l$w-ժ l$~ fDWfDWHf l$0L$Ʃ fA(fA(LfHnH Dd$PAX|$H^. fHnt$@T$8DD$(DT$ jT$8fEDT$ DD$(t$@|$HDd$P&fA(fA(D@q%X f/d$0f(fA(A^AYf/ 4$|$f(f(YYYf(\Xf. <$t$f(f(YYYYf(f(\X\$8f.fI~ AYfE(D s DL$PEXAXDd$E\EXfI~E\DY A\DYfA(DT$@fA(DD$H7Dd$DY%6 D5 H fD(D- DL$PHD$DT$@fHnfHnHD$(fLnDD$HEXE\fED$Dd$fA(Dd$ g@Dt$`Dl$XDX5 DT$HDX- DD$P|$hT$p$l$xifD(f(f(f(T$8f(f(f(fInA^A^YYY\f(YXf. \$(D$8|$ XA^X\$(fIn|$ A^f(Yf(f(AYY\f(AYXf.fInd$EXEXA^l$xXT$pfA(|$h$d$d$Dt$`XDl$XDD$PDT$Hd$DYfA(D|$@5D|$@fD(D$0AYfA/ED$A1l$$$t$|$f(f(YYYYf(\Xf. ̲ %̲ D$(YYY\$ YXXf(\$RL$D$$7,$t$f(Dt$f(f(YYYY\f(Xf.P Y_ D4$fVi T3D4$f(fA(YYL$fDDH fA\Yϱ DY%α AX}@t$fA.H -J fE(=ݰ 5Ͱ HD$l$0DHɣ fl$HD$HD$(l$ f.fA(|$0DD$(DT$ Dd$+8L$YE fE5H Dd$DT$ DD$(|$0Xf/fA(fA({ffDV fYT$L$L$|$HLLt$@DD$8DT$(Dd$ f(5t$@fE$$Dd$ f(fD($$f(DT$(DD$8Y|$HYDY\f(YAXf.l$f(AYf(YYf(f(AY\f(d$ Xf.\$(l$0fA(LHr fA(D DD$8fHnH E\D^ V fA(DL$@fHnDT$0虸l$$fE$DT$0f(f(DD$8DL$@Yf(AYYAY\Xf.f(t$D$f)$f(fA($AYYAY\f(AYXf.>fA(fA(fA(|$8AXt$0DL$@YYf(d2|$8LLDL$@t$0D\ XD$XAY|$8t$02|$8$$t$0f(Yf(f(YY\f(YXf.XT$ X\$( YYApl$`t$Xf(f(YYYY\f(Xf.t$^^fD/4$pDt$Hy - =Y 5I HD$l$0*fD/L$0 d$l$YY<$\$f(f(YYYf(\Xf.!|$ \$(f(f(YYYY\f(Xf.H  О YYYYXXucf(f(fDt$,$f(f(YYYY\f(Xf.Hd$^^@$L$l$d$ 1,$t$f(d$f(f(YYYY\f(l$Xf.Y l$fV $$s,$$l$f(YYf(-Ȟ l$0l$@f(fA(f(D\$xD|$pDt$hDl$`DD$XDT$Pt$Hl$@.D\$xD|$pDt$hDl$`f(f(DD$XDT$Pt$Hl$@f(d$xDd$pD\$hD|$`Dt$XDl$PDD$HDT$@-d$xDd$pD\$hD|$`f(f(Dt$XDl$PDD$HDT$@L$$f(DL$Dd$&-DL$Dd$fD(fD(df($L$,l$d$15< H fE(=Ȩ t$05 HD$$f(f(DL$ Dd$f(l$,DL$ Dd$l$f(\$L$f(f(P,f(\$$f(DL$ Dd$l$,DL$ Dd$l$D$8fI~T$(\$ f(l$d$+l$d$f(f($f(l$d$f(+l$d$f(T$fA(fA(d$PDD$HDT$@DL$8l$0X+d$PDD$HDT$@DL$8f(f(l$0^T$fA(f(DD$@DT$8DL$0+DD$@fEDT$8DL$0f(f(T$fA(|$ht$PDD$HDT$@Dd$8*|$ht$PDD$HDT$@D$ Dd$8L$(f(f(j*|$Ht$@fEDD$8DT$(Dd$ f($L$+*Dt$L$`D$X*kf(f(f(f()f(f(L$$)fAWAVIAUIATIUSHH(L|$Hl$$HLL$pt$KD$|$L$L1D$jL$AANsD$$LHL$bT$AEAMD$$L$LD$D$A$AL$"D$vH([]A\A]A^A_HC 4tLH= sGH([]A\A]A^A_@HC 4^LH=t ?GJf.HyC 4LH=D Gf.HIC 4rHH= F^f.LH= FHH=ё FLH= |FLH= \FgAVf(fAUIATIUHSHH`f(x f/)D$ )D$@)D$0~ )D$PH Lt$Hf(f(1LT$D$L$T$fD$@L$H,D$f/D$@EH I$f(f(LD$jD$D$PL$XD$vD$PH`[]A\A]A^HaA 4tHT$PH=. DH9A 4BHT$@H= T$DT$ff(f(LHt$T$P_T$T$fD$0L$8D$w/H@ 4t!HT$0H=x T$=DT$fD$0A$fLt$f(f(˿Ht$LT$[kt$T$fD$ L$(umD$w/H@ 4t!HT$ H= T$CT$fD$ AE|fDfDffDAWAVIAUIATIUSHH(L|$Hl$$HLD$L$ijt$KD$t$L$L1D$L$AANkD$$LHL$@]T$AEAMD$$L$LD$CD$A$AL$D$vH([]A\A]A^A_HA> 4tLH= AH([]A\A]A^A_@H> 4^LH= AJfH= 4LH= Af.H= 4zHH= OAff.LH=h ,AHH=H A#LH=( @ LH= @oAVIAUIATIUHHH Q f/wf/  8 8 HL$0HHT$ Ht$L$L$L$(L$8f$T$T$ T$0$ED$A$D$ AED$0AHH]A\A]A^f.HH]A\A]A^IAWfIAVAUATIUHSHH8fD$Ll$,Lt$(fZT$Lf(LZD$T$$ft$(ZZAAOD$,$L$L1D$(BL$(ZZEM\D$,D$LLL$YT$(ZZKD$,$L$LD$(D$(ZZA$AL$vD$,vH8[]A\A]A^A_H: t11H=o '  A$AD$H8[]A\A]A^A_HQ: ,:11H= & _K C DH : Duf("P  O T$YXY\ O YXO YX O YXO Y\ O YXO YX O YXO Y\ O YXO YXO YXO ^f(Y $T$D$f(! i? T$YD$^\YeA X$HH^J YX%bJ YX-I YX"J YX%FJ YX-I YXJ YX%*J YX-I YXI YX%J YX-I YXI YX%I YX-I YYX%I Y$Yf(f(YXI l$ Yd$XI YXI YXI YXI YL$\=I f(Nd$L$X%I X I 9 l$ \$(T$^XX$^ff.YY\$0Yl$8XYcE wcQ^fHHZ@1ҾH=4 1= HH1ҾH=4 1 HHf($$f(DfHHf(f/9 f/^G - H H|$857H %G Ht$0T$f(\$(YYXXG YX-G YX%^G YXG YX-G YX%BG YXnG YX-G YX%&G YXRG YX-vG YX% G YX6G YX-ZG YX%F YYX-FG Y$Yf(f(Y\5]G X-G d$ Yl$XG YXG YXG YXG Yf(L$l$fX-F L$X F >7 d$ \$(T$^XX$ B f.^YY\$8Yd$0\YQ^HHf(Y TE 4E XYX,E YX 8E Y\E YX (E YXDE YX E YX E YX E YX E YX E ^f(\ E \E HHYYY~ fWf(K~ HHfWf( $L $f(f.@fHHf/Z /&%N6 D \$H|$8=D D Ht$0^ BD f(d$(YYXX\D YYYX D YXD Xf(B  A T$YXY\ A YXA YX A YXA Y\ A YXA YX A YXA Y\ A YXA YXA YXA ^f(Y $T$D$f( I1 T$YD$^\YE3 X$HH^@ %D@ H|$8=o@ -? Ht$0T$f(\$(YYXX? YX%@ YX-? YX? YX%? YX-z? YX? YX%? YX-^? YX? YX%? YX-B? YXn? YX%? YX-&? YYX%~? Y$Yf(f(Y\=? Xe? l$ Yd$XU? YXQ? YXM? YXI? Yf(L$d$L$X%2? X 2? z/ l$ \$(T$^XX$^ff.YY\$0Yl$8XY; wcQ^HHf(1ҾH=R* 1/ HH1ҾH=(* 1c/ HHf($ $f(DAVf(fAUIIATUSH D~ r D. D$f(fAT$,$fAT\,NE1f/f(fW= YAf(d$1f(XH . D<> fD(D0 fLnf(AXf(fD(DYYYDYAXDXf.E9@ǃ@JfA(^f.z f/1fA(\^fAT=UfD/fE(fE(fETfD/-y= fD(>fD(f(f(fA(fA/9fD.H- fHn$\, fHnA>-- DD$f(XX f(f(\, YA\AYf/\f(A^wυt#f/rfATfDTfA/v X|, f(AH []A\A]A^fD=UfA(fATf/ k< w!fD(f(f(fA(:f.H , fHnH . fLnAYAYf(fA(AYfD(f(AYDH$fHn\+ $A 8 f(fATf/AUAf(XfD(11Ҿ|$H=& Dl$AAuDl$H}+ |$D~ . 4$ffD.fLnH$fA(fHnC + H$H* ^fDAV1SH(-* D%- L$Y * =: DY$D~ D~ fH~fI~f(=* f(fD(f(D-`- fD(DYfA(\^f(f(XfE/XXfE(fAWfD(DYXE\fE(DYXE^fD(DYDYf(AYXfA(A\fE(DYA^AYfD(DYAXfD(D^fETfE/RfE/fH~fI~fE(FD$$ M* fDY%) t$DX%1, f(DYYA\^f.w]Q<$H|$Ht$f(qfInfHnYD$YL$\Y$H([A^f.fE/bf(T$1T$$@AUATUSHL$D$L$D~ f(f(\T$f(^8 fATf/ ^L$f(T( fYf(\f.f/f.jf(Qd$f(Xl$ ^謼f(\L$Y J) f(L$YH' L$l$ D$(D~ fHnf(f(l$HH- ^f(d$ fAT|$@]d$D$0f(Yf(t$:d$(HL$hHT$`D$8Ht$XH|$PYf(]H&' fl$H|$HT$pD4 fHnHD$pfHn1^f(f(YfD(fD(L LYX4 ^D$x3 Y\p7 YXl7 ^$_7 YX[7 Y\W7 YXS7 ^f(YY$:7 Y\67 YX27 Y\.7 YX*7 ^Y$7 YX7 Y\7 YX 7 Y\ 7 YX7 ^f($6 Y\6 YX6 Y\6 t$D% D~P fE(YX6 Y\6 YX6 ^Y|$@$6 YX6 Y\6 YX6 Y\6 YX6 Y\6 YX6 ^$DHk{f(Ө YRXfD( Af(tf*Y 1 l$ f(f(YYY AXϨ Y6 YYRYXfD(pf(˃ Y 6 f(YYJYAXϨuf*Y5 YYRYXfD(tHfE5 D*AYYYRYDX5 AYYYRYDXYA1f(f(fW= ^D$0AXYf(fATfD/vXD$fD(ѾD$-& f/wHH^d$ID$(Y% A^f. Qf. QD$DYL$PD$DL$ |$Y|$XL$YL$8f(DL$ D^f(^AXYD$Hĸ[]A\A]f Hĸf([]A\A] X΅ D3 fEl$ D*DYf(DYZYDX 3 AYYYJYAX˃ts-3 AYYYjYX 3 YYJYX̓t7-3 YYjYX v3 AYYYJYXYf(fATfD/fD(fD(DXɅ f.D:DZfA(XƨfEf(D*DY 2 jYDXYXf(AtfA(Y- YAYD|$ f(fA(AYAXӃD^2 DzEYDYEYAXfD(ۨtfE(DY2 DPADYYDYjDX 2 AYYYXfA(uf(Y 2 YYDYfA(AXӃ^D1 DzADYEYDX 1 YYY 1 YYJXAXD1 EYDYYEYfA(XfA(McAfD(E)BYlE)McF\pEAAYAYXt fED*GY!  V! Dm! ^^D^X- X! ^DX%w ^DX ^D^X X A^D^X ^^X AXD E^AX^f(^fD.fD(EQfD.fD(D DXDYQf(5 AYAXY= ^AX\p YX% AY^fA(X5 Y^X-* AYDY< HhYY^^XXA^\fDD _ f*XAXfD 7 fEfE(fA(fA(fA(fA(f(DL$XT$PD\$H|$@L$8\$0Dd$(l$ d$DD$DT$$DL$XT$PD\$H|$@L$8\$0Dd$(l$ d$DD$DT$if(Dl$PDL$Ht$@T$8L$0\$(Dd$ l$d$|$萠Dl$PDL$Ht$@T$8fD(L$0\$(Dd$ l$d$|$Sff(ljH0 d *Y5 D$(fD($$D\ A^DD$ f(t$$$f + YC *f(d$\<$f(f(^\$譜<$D  f( t$AY\$d$Yl$(DD$ f(A\YAYXf(Xy YY^f(q YYY H0[XYXXYXf.Dff(f(l Yf.f/sJ f/   Y\  Y\  YX Y\ YX Y\ Yf.f.- Ef/t:f.-2 Eքt f/t` p Y\T Y\P YX@ f.f.Ef/t~f.-  Eքtg f/=5 Y\ Y\ YX YX @5 f..(f.-p f.Ef/tvf.- f.Eքt f/r f/kc Y\ YX YX fD,f(,,f(¾fD f/^V Y\ Y\ YX Ð= f.f.Ef/tf.- f.Eքt f/re f/ YX YX YX fD 8 Y\ 4 Y\  YXYXf.  f.-< f.Ef/tf.- f.EքtG_ f/r f/_ YX[ YXW YXS f.   YX  Y\  YX | YXp Y\l Yf(X,f(¾ffD  YX  Y\  Y\YX%  YX% Y\% YX%| YX,f(¾fDf.  B<f/+f.E„t f/f.- f.E„x f/f YX Y\ YX P YX| YX@ YX   Y\L YX YX   Y\ YX Y\ YX ,f(¾f.  HBd f/{f.- f.E„t f/f.-E f.E„=F f/+ YX Y\ YX W YXS YXO YX B Y\> YX" YX ,f(¾c Y\ YX  Y\ YX % f/4fD(DYfD/fD(DYfA/f.  1f.Ef.EЄ Y\ YX Y\ YX  YX YX Y^ ^ XYXV YX Y Y\U YXQ Y\M YXI Y ,f(¾ff(¿q,f(¾? YX; YX7 Y\3 YX/ V YXR Y\N YXJ YXF ,f(f.-p @f.DƄt1t-` YX\ YXX YXT f. Ef.-@f.Et>@t9$ Y\  YX Y\ YX f.-A@f.AEt2@t- YX YX YX f. 3 AAEȄt=t9 Y\ YX Y\ YX Ät1t- YX Y\ YX f.  AAE@t=t9 YX YX Y\~ YXz @t1t-p YXl Y\h YXd f. E΄t=t9H Y\D YX@ Y\< YX8 Ä' Y\# YX Y\ YX fD,f(f*f.zZuXf/ pv9 \,҃~$ff*Y9uf(-f(fT%lf f/,̅Qf(ݸf.ff(*ȃ\Y9uff(*\H. H@YHHX@H9uYf/f(^@Yff/.Hf(YL$$K$L$Yf(  HY^f(f(f(Ff(-fATf(fUSH0fT 6e f(L$YT D,O Al$A*Yt$軉L$Y - D$L$ f(^D$蒉\$YD$fYA*5 f*YT$\|$(\f(\$9T$D$D$ ^T$L$Y \$Y\f(\d$( ^Df $)Dd$*\^\) D,fA*YT$蔈T$D$D$ ^yT$L$Y d$Yf(\f(\d$(A9PH0D[]A\@ATffAU*S*H0 %}fT=c |$Y4$YfH~f(\$d$(ЇfHnYC fH~T$ ^$f(T$複d$(T$f(fHn\$YY $\f/fHnfT$  Y D,AA*^4$Yf(T$Al$T$D$f(\$Y$fYg*$\R \\$Y\$ņ$D$D$ ^諆$L$Y \$Y\f(\d$fD^܉fd$D) A*\^\ ,f*Y$$D$D$ ^$L$Y jd$Yf(\f(\d$D9UH0E []A\ÐXd$}AVAAAUf(N ATUSGD-fEAfA(fA(9f(fW%y` fA(ЉYfDf*XXY\Xf(^9uAE@!AAA!A@AAA!A@fX-D *XYAAA!Xf(fD(DYAXAX\fD(9~-_ <ZfEAD-fA(fA(9fA(AAfA(\X~-3_ fD(fDWDYfA(^A9?D[Df*X\\Y\XfA(^D9ufEAD*AA!EXDXEYAXX% Y\fD(9.fA(AyAfA(\XfWYfD(D^A9dD[DDf*ƃX\\Y\AXfD(D^D9u fE5KAD- fA(SED5%DYf(\XDYD^D\fE% A~-] D*AYA!EXDXEYEXEXD\fD(׉fA(fDWDYff*ƃXXY\XfA(^9A@XE8\fE(D~%\ AXEYnD- sAXfD(fDW\ f(\fA(f(ă\fA(^\f(^\9fE(fA(DYfDf*XXY\XfA(^9uA@XEb\fE(AXfA(DXf(D\^\fATfD/fE.wf(fD(D9kfA(f(DAAAfA(\\fE(DYfE(D^A9XDDf*X\\Y\AXfE(D^9uEt>D5fE(DY\XDYfA(^\ EXfE(A\.fA(\XfDfD([DX\DYD^AXfDfA("[f(]A\A]A^EtPDYfA(\XYf(^A\fE(Et%XfD(HEXfE(f-# Af(*AYfD(DXDXEYA \~-Y AXfD(EXD\AfA(\\Au7fA(\\f(% X\Y^XAuP\Df(XD\Y^AXvAuJ\fA(UfE(fE(fA(! fA(fA(HAWff(AV*AUAATAUSHX %fD(DYfD/r?f$A*$ff.f/HX[]A\A]A^A_Éf*f/wf(f(D$\f(A\\Yf/^]f(Xɉ^fL$D,A^*^f(l$@D$DD$fA(DD$DD$\$L$$tfEAFAm DD$LE|$EunD*ˍKAf(EXfA(f(\f(\DDYDD$DXD$@YfD(L$HDD$4EYDL$8DD$\DXfA(D^fA(Dt$DDDt$- D$(DD$AYDt$ fA(f(l$MDD$4L$Hl$T$(ffD(DD$H Dt$ DL$8fE(fLnfDW%U HD~U fA(EYfHnHfLnA^f(f(ǃ\\^f(\AAf(f(9f(f*ȃXXY\XfA(^9|AAf(\AXfE(D^fDf*ʃX\\Y\AXfE(D^9uAXf(YXDXf(D\^\fATfD/fD.f(fA(D9fE(f(f$*$f.E„t'At+f(Df(HXD[]A\A]A^A_OAf/  f(Ⱦf(AuZf(f(9bf(޺fA(\f.H f(fHn9~Bf(f(9f(޺DAuIf(\A\=f(޺fA(fE(AXD\AY^AXAOf(fDnL$$AD;D$L$f(f(޺f(f(\-$^fYl$,ڍk*^f(d$7$DDD$f(f(Ѕl$$t$f(f(f(f(f(DY\d$DYT$\$$$\f(\YXf(\^f(\$T$9$$f(f(zff,(fH5yX -Q W=Q /((T.v*D X f*(AT\(UV.zG/uBu`/{Q vf(W/wf)ZHZ1ҾH=f1W H/v/w!/>fZAZ1ҾH=#16W HffH/wo-P (,(59W T.wq.zC/u>/P vD(W/wfZHZ1ҾH=|1~V Hff5xV U*(T\(Vb/vW O Hf.@,f(fH5-O fW=xO f/f(f(fTf.v5H,fDeH*f(fAT\f(fUfVf.z:f/u4uRf/~O v@f(fWf/wf(Hb1ҾH=J1}uHf/vf/sf/7f(ǿH1ҾH=1}+HfDff/st-nN 5f(f(fTf.w|,f.zCf/u=f/~N vff(fWf/wf()rH1Ҿ1H=J|H@H,f5fUH*f(fT\f(fVLf/vfW M f.Sf(H0f.D$(-kf/l$(^ff/f/L$(fW M f(1$L$t$~-M L$f()l$Xd$ L$f($Ktd$ $f(=L$X^fT\$f/~-f/sf(\$(\HYH oHP`^fHnX ~Y\f^|$(5 f(XYf(Y^X^fT\$f/$X ^HXX f(YH9uf.~-K 0f(f(fT)l$f(f.v3H,f-fUH*f(fT\f(fVf. l$(d$f(f(fTf.v3H,f=9fUH*f(fT\f(fVl$(f.z f/1ҾH=1y%tH0f([f.W%H0[f(=\|$(f($f(r$L$(\ }%uXiH0[^^XYf(1ҾH=1 y%}YX:YX6YX2YX.YX*Y$f((iL$-f(HWYfHnX$XYXYXYXYXYXYXYXYXYY\f(Hf( $^\f( $ff(f.wIQf(YHf(fDf.zt1ҾH=1KlHf($f(g$DH(4Zff(\f/f/@`L$YXVYXRYXNYXJYXFYXBYX>YX:YX6YD$f(3gL$=f(HbYfHnX\$XYXYXYXYXYXYXYXYXH(YY\fZfDf(f(^\f(\f/f/L$d$YXYXYXYXYXYXYXYXYXYD$f(ed$f=f(HYL$fHnX\$XYXYX{YXwYXsYXoYXkYXgYXcYY\f.Qf(YH(Zf.zu@ H(1ҾH=z1h@ H(fDf.z t1ҾH=B1L$hL$fSWfDf(L$^d$\f(gd$fL$f(f.w+Qf(Yf(\$c\$D$f(L$c\$L$ff.H(ff(\f/f/<DL$YX:YX6YX2YX.YX*YX&YX"YXYXYD$f(cL$=f(HFYfHnX\$XYXYXYXYXYXYXYXYXYY\f(H(fDf(f(^\f(\f/f/L$d$YXYXYXYXYXYXYXYXYXYD$f(ad$f=f(HYL$fHnX\$XYXgYXcYX_YX[YXWYXSYXOYXKYY\f.Qf(YH(f(f.z]1ҾH=v1dH(f(fDf.zt1ҾH=B1L$dL$fSofDf(L$^d$\f(gd$fL$f(f.w+Qf(Yf(\$_\$D$f(L$_\$L$ff.fHf/f(f/vTf(fT 4 f. ^$$ff(f.Q^f(H@f/wnf.1ҾH=1Yc1ҾH=13cHfDf(H f($YX YX YX YX YX YX YX YX YX YL$T^$L$f(X YXYXYXYXYXYXYXYXYXYf(X1HY\@f(] Ys\!$f($] $f(fDfHf/f(f/vTf(fT p2 f. ^$D$ff(f.Q^f(H@f/wnf.1ҾH=v1`Y1ҾH=P1`kHfDf(H f($YX YX YX YX YX YX YX YX YX YL$[$L$f(eX YXYYXUYXQYXMYXIYXEYXAYX=YX9Yf(XHY\@f(/[ Y\!$f(Z $f(fD(fH// 6 fZvcf(fT / f. wA$^$f(ff.Qf(^fZH/ 6 wW.1ҾH=1k^5 뽐1ҾH=1K^5 HfD Hf($YX ;YX 7YX 3YX /YX +YX 'YX #YX YX YL$|Y$L$f(X EYXYXYXYXYXYXYXYXYXYX]HY\fZf(X 7Y\Z2f( $HX $f.@Hf(ff(\f/f/vTf(fT - f. 8^$\$ff(f.Qf(^H@f/0wnf.1ҾH=1\q1ҾH=h1[HfDf(H f($YX YX YX YX YX YX YX YX YX YL$V$L$X YXuYXqYXmYXiYXeYXaYX]YXYYXUYXHYf(\f(GV Y\!$f(U $f(f.@H DZff(\f/f/v\f(fT+ f.fw9^$f($ff(f.Q^fZH@f/w^f.1ҾH=1yY 1 1ҾH=1SY0 HfD Pf($YX CYX ?YX ;YX 7YX 3YX /YX +YX 'YX #YL$T$L$f(X MYXYXYXYXYXYXYXYXYXYfXaHY\Zf(S 7Y\Z%$f(HS $f(f.f(fD(YYf/Wvf(fW( fA/AWAVSH2f/fD//fA(Y `D f( $\A^f.t$D$$$fA(f(d$ l$D$ D\$HD~' DL$@X\$`f(X^D$(XA^f(f(|$0\\fI~fATfATf(qO|$0D~' f(f(\\$ f(fI~fATAO|$0D*D~I' L$(DYf(DL$@D\$HfATfD/fEl$1d$ D$$\$`fE(5ؿefD.f(QfD.fD(EQfD.8f(QDYf(ƒAYYDYXfA(DYAXXXXXYYYYY^f(XXA^DXf(fATfD/vf(fATfD/- f*fInfInD$^fD.^^^f(XYf(Yf(\~%% fWf(-Yf(^*D\f(^AXfD(DYD^UAYAXY^5G\DYQt$(D^D$fD.=f(\D$ \t$^^^^f(fD(AYXDYY5fWA^fA(YfD(DYYDY\52A\YYfD(EYYD^f(^~Y^5^f(YE\DXfA(\DYAXAYDYYYAYAY^--\AY^%,\XYT$^^>QDYL$Hİ[A^A_EY^D\fA(A\f/ L$`D\$ `N D OD\$ f( $L$^DL$(f(A^^fA(l$\$0HD,$\$0L$DL$(D^f(\d$fA(^f.l$ E„f.E„D\$ff.D^DX$@l$fD(EQHİfA(A^[A^A_fA(f(YY^^ _AY^\\AYAXf. x~%H" f(fWMQD$fA(H$)d$H$L$ D$uJUD$$L$ fA/f(d$$fD/ EY5 AY\ AYAYXAY\AYXAY\AYEYXDYe$fD(AXt$ f(DX)d$0YL$(YD$l$$A^Kl$$L$(f(f(d$0^fD(D^DXD\DYD^D^fA(DAXfWDYD^D\\$ DXD$Hİ[A^A_AYf.KDX\$fD(ff(D$AY1@@f(\$fD(t$ fA(fE$fE(f(L$xD$D$\$pl$hDt$PDl$`Dd$HDD$@d$0JHD$L$x\$pf(D$l$hfHnDt$PDl$`D~W Dd$HDD$@d$0rf(\$xD$D$$d$pDt$hDl$PDd$`DD$HT$@l$0TIHŷD$D$\$xfD($d$pfHnDt$hDl$PD~ Dd$`DD$HT$@l$0f(d$xD$D$$$Dt$pDl$hDd$PDD$`D|$HT$@\$0HHD$D$d$xf($Dt$pfHn$Dl$hD~ Dd$PDD$`D|$HT$@\$0D$ D$GD$fD(f(DL$pDl$h)d$P\$`L$HDt$@D\$0GHDL$pf(d$P\$`f(Dl$hL$HfHnDt$@D\$0)d$L$ D$WGf(d$L$ D$D$f(DL$(Dt$ D\$$GDL$($Dt$ D\$f(@f.zrf/ f(f(v~%P f(fTf.wf(fTf.wff.z*u(f(fW f(AVf(f(ATUSHh=^^f(fTf. D$fTT$\$QBf.\$T$zu=X|$|$YD$f\f/=Xf(\$T$\|$@ |$@fT$\$D$Xf.l$@f/-f/- f(f(YfW YX-Yf(^%X X%Y\-Y\ Y\%YX-YX YY\-yYYYXYXf(^ X ^YYXYXYYX؃ufW D$YD$XHh[]A\A^XDH,f=fUH*f(fT\fVf(fWh fD_f( Df(cf(T$ \$>l$@f\$T$ ~% D$f.IQf(f(fTf/v"Y ^f(fTf/ff.QfTE1HHD$f/fHn65lt$Hft$PX5rY^XA^t$D,f(ff(Y\Y Zf.QfI~Xf(L$0Y/\$ T$(BL$0T$(~% \$ Y^XD$D$fTf/ ffInf(L$\$8^l$0T$(Yt$Pf(L$ X>\$8DD$H|$L$ Xf~%? T$(A*Yl$0AYX)\f(fTf/ f(l$0T$(\$ T<D$=\$ 5Kf(T$(l$0f(\ 3^D$HfTf.v;H,f=H*f(fT\5fUfVf(D,=6|$HD$@T$(l$X^D$l$ =T$(f(fA*YD$HXf*Y^Y\$ X\$fDf(f(f(f(T$ \$<\$D$f(@@d$D$f(+@L$T$ f(d$Yf(Yf(X\$X\$\$\Hl$8T$0\$(L$ ?l$8T$0\$(L$ fI~f(l$ \$Q?~% l$ \$f( D$@T$ \$?~% T$ \$|$f(f.f.HZZHZfDf(fD(YYf/v~ f(fWfA/AVSHhf/fD/5f(\f.f(f(f(t$0D m~= XDD$(T$ l$X\$A^f(f($$\\fI~fTfTf(D;$$\$~=Q f(fD(d$D\fA(D<$fT ;Yd$~= HD<$\$l$T$ fLnDD$(t$0fD(f(fTfD/D1fEefD.fD(EQfD.f(QfD.fD(EQfA(fA(ÃYAYAYEYXf(XXXXAYAYAYf(XXA^f(fTfD/O f*D^fD.fIn^D^^fA(XDYf(YfW fA(DY\f(^)\fA(^hXf(YAY^OXAY^ F\DYCQHhfA(^[A^f.f/  $+fA(DD$;5DD$Yf(t$^fA(l$K6t$l$Y $f(f(\^f.E„f.E„mff.f(fD(QHhfA(^[A^ÐfWAYAYf(^ ^YY^^XXAYAXf. ~% f(fWQ$fA(H|$XHt$PL$/8\$XT$P-˥f(\$YqXT$Y$^Q:\$T$~%m L$DV^^Xn\fWDYD^AX^$Hh[A^f.MDfD(FfA(f(fEf(Dl$@t$8DD$0Dd$(l$ \$D\$D|$$+9t$8$HY~= f(Dl$@DD$0fLnHkDd$(l$ \$D\$D|$fLnf(Dl$Ht$@DD$8Dd$0T$(\$ d$D\$D|$,$8t$@,$H~= fD(Dl$HDD$8fLnHDd$0T$(\$ d$D\$fLnD|$;f(Dl$8t$0DD$(Dd$ l$T$D|$$7t$0$H~=O fD(Dl$8DD$(fLnHDd$ l$T$D|$fLnzf(D$m7D$f(L$DD$L7L$DD$$f(4$'74$f(fD(2@f.f/ f(f(v~%p f(f( fTfTf.v:f.v f.rf.֢vf.fH~fH~HCfHn@f.wff.<ATfUSHP-\f.zFuDf/ 1ҾH=D1:!HP[]A\H=f(f(^f(fTf.v5H,ffUDtH*f(fAT\fVf( }D$@fTT$\$l$1f.$l$\$T$zu5Xt$@t$@|$@ff.f/HD$Hf1f/v fW f/-nff.f(Qf(T$t$\$l$ /~%] \$f(f(רt$fTT$f/v2fD(=4l$ DYA^fD(fDTfA/.ff.QfTE1Hf/ʢfHn%=|$0@|$8X=Y^¡XA^D,f(ff(Y\Y-f.QXY^fTf/-4f(f(\$(^t$ T$L$f(|$8Yf(l$/\$(DL$0l$L$Xf~% T$A*Yt$ AYX\f(fTf/-f(t$ T$\$-D$V/\$5؞f(L$~%F f(T$\-^D$0fTf.t$ v=H,fDH*f(fAT\=qfUfVf(D,Off(Df(-HP[]A\,5t$0f(T$u.fT$A*f(D$0YXf*Yf(^ʃufW 3 D$HYD$@Xuf(f(f(f(T$\$l$\$l$D$HYD$@T$\f(T$l$-t$@fl$T$f(f.{f(f(L$H\0uD$f(_T$\$D$Ht$(T$ L$\$l$0t$(T$ L$~% \$l$f(\$t$L$b0~% \$t$L$f(f(T$\$l$$0T$\$l$f(ff.HZZHZfDHf.f(ff/f(fT4 f/<f(ڴYXYXYXYXYXYXYXYXYY X^Hff(gf(H\f~X fWf(~C HfWf.1ҾH=13Ú냐Hf.ff(f(5fW fTfUfVf(f/WfW Yf/v=1ҾH=51 $2 $fҙfTH@L$$P($L$ff(f/f(YXXYYXX˳YYXXYYXXYYX{XYXYf/^v\f(f.f/Hf(H\fDYHXHXYYX<XtYYX,XdYYXXTYYX XDYYXX4YYXX$YYXܱX1ҾH=1k0f.@;f.HZ#HZf.Hf. %"Yf(fT f/w<L$L$f/ Yv-\f(H@f.>ff/f/f(.FYYXXYYX*X YYXXYYX X YYX JH^YXÐf(f(\ HYXffW f(_f(Y\fD1ҾH=51{.#fD1ҾH=1S.fDfHZf.Y œ%:f(fTf/wPL$L$f/ /Yv\ZH@fHZf.Vff/f/f(6NYYXX"YYX2XYYX"XYYXXYYX  RH^YXZDf(f(\ HYXZfDfW f(Wf(Y\Zf.1ҾH=31k, fD1ҾH=܎1C, efDfHZf.f/f(fTf/f( YYXXYYX XsYYX XcYYX sXsYYX k^ZHfDf(Gf(kH\ZfD/f(fT3~ f(f//fWY%YXXYYX%XYYX%XyYYX%XYYX%^fW @f(f.K~ Sf(g\fWf.1ҾH=1* f.@Hf.f(ff/f(fTf/f(j YYXXVYYX fXFYYX VX6YYX FXFYYX >^HDf(f(CH\f.f/f(fT ~ f(f/fWY%YXXpYYX%X`YYX%pXPYYX%`X`YYX%X^fWf( f(Hf(~ 'f(;\fWfD1ҾH=1'fDf.Hd ,Yf/f(wNfW Yَ-)Xf/w f/ vMf(H8#fWX\$荠Y#\$HY\D Еf(YhYXX YYXЕX YYYXX YYXX |YYXX lYYXX HY^YXXHZ蓟HZf.fHZY Ĕ/f(wKfW &YF-Xf/w f/ vRf(!HZfWL$Y!L$HY\Zf 8`f(YГYXX YYX8X YYYX$X YYXX YYXX ԓYYXX HY^YXXZKYSfZ7Y?Zf.f(f(fWff(HfffD$fZD$ fWLZL$qZZ$L$~$H@fGHfffD$fZD$ZL$ ZZ$L$~$Hf.ff(ff(f.z>uf/5lof-HAUd$d$d$0d$Ht$@f\$8T$@l$(A*d$ XXL$f(YYl$(d$ fH~fH~f(f(\l$\d$At t$H|$0XXt$H|$0AHT$HD$A\\$Xnfl$nd$YYT$`\$hl$pf(f(d$f(f(YYYY\f(Xl$f. f(f($t$H\$0f(f(f(YYYYf(\Xf. \$0T$Hf(f(f(@ff(l$`|$Xf(fWf/f/ =lE1fI~LmlfHD$(A\$;oD$ D$0\$Pf\$A*YT$PAY Y߹f(\T$ \d$YYT$YY|$0X|$0|$(X|$(Au n\$T$-e%]%vL$H\$YD$Yf(Yf(-wYT$YY8-fD(L$P\$D$YAYf(-YYT$YY-fD(L$x\$D$YAYf(-wYYT$YYr-BJw$fD($D$YAYf(-E\$YYT$YY -ܷ,ufD(Ƿ$\$D$YAYf(-QYYT$YY-vnfD(\$$D$Y tAYf(-;|YYT$YYf(<- fD(\$$D$Y AYf(-uYYT$YYf(-fD(\$$D$Y x}AYf(-YYT$YYf(h-80fD(\$$D$Y AYf(-͇YYT$YYf(-εƵfD(\$$D$Y AYf(-shYYT$YYf(-d,$fD(FD$AYY f(YY\$f(T$YYf(&D$D$D$f(D$D$XD$ D$D$AXAXAXAXAXX$X$D$D$\$X$%g$DX$f(EXEXDXfXT$HXT$PXT$xX$X$X$X$X$XXXt$`f(f(YXYYYYY\Xf.fA(f(d$|$l$h|$pd$f(fD(f(YYDYYf(X|$D\fD.wD$@L$8t$ DD$d$|$|$0l$(f(d$DD$f(f(t$ YYYY\X|$f.XAXf(f(f(fInfIn\\ff/|$`vf/sp|$Xf/vf/|$`rG=lE1fI~5dE1fI~f/|$`v=kE1fI~dE1fI~kE1fI~L$D$l$8|$00l$8|$0f(f(L$XD$`d$d$D$@L$8a\$8f(f(d$f(d$D$L$sL$8D$@f(\$Xf(f(\$pT$hf(f(d$l$hd$l$f(D$0L$(Bt$ DD$d$|$f(D$hf(L$p d$|$fD(f(ZL$XD$`f(f(l$ DD$d$|$l$ DD$d$|$f(f(fATUHH( Ld$D$T$ L $T$B $LHD$H(]A\@ATffUHSHHP fD$Ld$@H|$  Z\$LZL$T$ D$(D$8D$Hf(T$0T$@\$L$\$H|$0LL$f(%fZD$ EfZD$(EfZD$0fZD$8CHP[]A\ÐSf(f(A\^ƹ1H0D5aH\$hHDD$`H^AfED$fA(fA/fD/='h~fA(D`%c|$f(AYfD.QYDT$@DL$Pd$H)\$0t$ l$MDT$@1Hm`DL$PH5l$AYt$ D`Hf(\$0d$HfLnfA(D$@fHڸ3fYXfTf(fTYf/w-HHHt9}BYfAYf(fTfA/w4Xf(fTYf/wD^HH9t fD([D$DL$ |$Yt$YYt$Y$Y5kiDL$ |$YfD.Q^D$@H0[X~f(D_fTfD/fD(fA(%afDWfDHH=t0AYfH*f(^XfTf(fTYf/v=e|$Y_fD.-f($QY=^=afE<$!f(eAXf/f/ee-ef(Y=eYXXee|$YYX-eXOeYYYX-keX;ef(YYX-WeX'eYYX-GeXeYYX-?eX/eY^YXX\%`~ f(D5]fTfD/fD(fA(Ѹ~=%_fDWHH=t0AYfH*f(^XfTf(fTYf/v-cl$Y6]fD.f(Q$f(fWYDT$HDL$0)\$ t$L$@5icL$@f(\$ DL$0t$DT$Ht$f(rcAXf/f/cc]c-cf(Y=bYXX=c|$YYX-WcX'cYYYX-CcXcYYX-3cXcYYX-#cXbYYX-cX cY^YXX\~=%]pDT$HDL$0)\$ t$L$@5 bL$@f(\$ DL$0f(t$DT$Ht$DT$PDL$H)|$0d$ )\$t$@DT$PDL$Hf(|$0d$ f(\$t$@f(<$<$f(DT$HDL$0d$ )\$t$@j$t$@f(\$d$ f(YDL$0DT$HDT$XDL$Pd$H)\$0t$ T$l$@DT$XDL$Pd$Hf(\$0t$ T$l$@AVf(f(f(SHh Y$~8fTf.vH,ff(fUH*fVf.zufYf/f(f(f(fTf.f.zufhYf/f(f(f(fTf.f.zuff/D $f(fA(fA(fTf.4$f.zuff/Vf/%XT$0l$ f(H5H=d$ d$l$ D$HT$0d$(D$X\XD$f/- Xf(H53H=T$8d$0l$ 5 YD$l$ d$0T$8fH~D$D$X\WfI~f/Wf(H5H=;l$@d$8T$ d$T$ l$@^D$X\DWD$d$0d$84$f/5%WH5Pf(H=T$Pl$Hd$@N d$0l$Ht$8T$P~^D$X\VD$d$0d$@f(f(fTfTf/fHn\D$(f(5\ uVDD$DYf(YfTfD/v f/t$PfIn^D$T$Hd$@rYD$0t$P~޿T$Hd$@D$0l$(\l$ t$@\Uf(Yf(T$YfTf/v f/ D$d$ ^D$YD$0T$(\T$8 $\ U~Jt$@d$ D$f(YfTD$Yf/v f/D$^D$YD$Hh[A^H,ffUH*fVf. H,ffUH*fVf. I,ffAUH*fV4$f.$DD$(\D$ f(l$@\ T5|$f(t$HYYfTf/|$(v f/XD$^D$YD$0|$(l$@~t$HD$fHn\D$ f(\ Tf(YfTf/v f/>t$(fIn^D$YD$~t$(D$$$D$ \D$8f(\ Sf(YfTT$Yf/v f/D$^D$YD$Hh[A^@ SH5y H= T$Xd$H\l$PD$8q-SD$@Yf(vYD$@~YT$XYD$0l$Pd$HD$0R\$XD$D$@xRH5 H=J l$Hd$@\T$8D$ T$8SD$0Yf(YD$0T$8YTl$HYD$d$@D$0R\XD$D$QH5) H= T$@d$8\l$0fH~"l$0%lRD$ Yf(!YD$ \$Yl$0T$@d$8^wQ\XD$fI~\$D-(QH5 H= d$\f(l$(d$D$f(d$Y-Qf(zYD$%PY-T$0l$^Pd$d$\Xl$ D$^l$f(L$ L$ Y$YD$0 $T$(\T$8\ ]Pt$@Yt$~D$f(YfTf/^T$f( $ $YYD$L$^D$_L$YYD$0t$H~l$@|$(D$Dt$0^D$L$( L$(Y*YD$t$0~6D$ $^D$ $YYD$t$X^D$T$Pd$HL$@L$@YYD$0d$HT$P~t$XD$0f.SH HG8o(g0HXHfGH*XHfH*YOw XXf(YYYY^^f(fD(YDYf(Y\f(YAXf.zpfH_8f(G(H f([f.HƒfGHH H*XXH@HHfHH H*X(f(f(H|$d$l$VH|$d$l$\SHH'.~f(f(d$(^|$ l$Yf(t$$`f($`fWζt$|$ $`$f(f(f(t$8Y|$0\$$h$hfWs\$d$(f($hXX $f(X$p$p\[$x$x$p\f(\fW$$\$$\$$$\$f(D$D$\fW $A\l$$ D$ l$D\D$($(\$0$ $(\f(AX$8D$8D$0$ A\Xf(AXX$@$@\$H$H$@\f(XXf(f($P$P\$X$X$P\f(d$ ^\$(YL$$f($fW6L$|$0D$$f(f(YDD$$$fWγDD$$d$ \$(XX$fA(f(X$$A\$$\$\fWU$$\$$\$$$\f(\$D$D$$$$A\\AX$$l$fWL$t$8\$$$\$D$$$A\Xf(XX$$\$$$\XX$$\$$f($X^D$@D$@\D$Hd$HD$@\f(X\$P\$P\\$X\$X\T$`T$P\$X\T$hl$h\$`T$P\XXf(XD$pD$p\D$xT$xD$pHĀ[\f.f(Tf/%GF~5~=ŰDHf(f(ff(Ӄet^fWfY*fD(YXDXXf(f(^A^YYXf(fTf(fTAYf/vfHYYYÐAVSH%F&F~=D%Hf(^YYAMf(f(XfTf(fTAYf/~5*D yFfWXfA(^^YYXfD(fDTf(fTAYfA/fWY%~QYFHf(^YYXfD(fDTf(fTAYfA/DOfWYGfA(^A^YYXfD(fDTf(fTAYfA/?DV[fWNAYfE(D^^EYAYXfD(fDTfD(fDTEYfE/fWY`fD(D^^EYAYXfD(fDTfD(fDTEYfE/fWYPY%mQ^YYXfD(fDTf(fTAYfA/K`fWY%C^A^YYXfD(fDTf(fTAYfA/x`fWD LAY^A^YYXfD(fDTf(fTAYfA/OfWAY^A^YYXfD(fDTf(fTAYfA/wk[`fWD PAY^A^YYXf(fTfTAYf/w%MfWAY^^YYXDwCf()t$X\$(DYL$ ,$DT$ ,$DT$L$ XHT$@fA(\$(DYf(t$=NBY6DfA(fD(D kCDb^XL$@f*fD(f(DXAXfA(AYYfA(YYAYfD(XD\AYAYfD(\f(^$HHuf( AT$HYd$XDY^YfW^X^X-dCYfWXd$h^fW^YfWXT$x^YfW^X$YfW^X$YfW^X$YfW^X$YfW^X$YfW^XY$XT$PYfWfH~f(\$`^DXT$pYfW^AXYfW^X$YfW^X$YfW^X$YfW^X$YfW^X$YfW^?XA^Y$XfI~ff.wLQ$H|$8Ht$0f(fInfHnYD$0YL$8\Y$XD$H[A^l$ l$ $fHf/vfWڨf.A{;f.A{ H@u1ҾH=C:1Q?H@u1ҾH=:1y>Hf.ffH/vWZSfZZf. @{=f. @{ HfDu1ҾH=91H@u1ҾH={91mHf.ff(Qf/%==~=5?f(f(f(ӃetQYf*YfD(XDXXf(f(^A^YYXf(^fTf/vK?YYYf(fSH =D=~5% ?fA(^YY =f(f(X^fTf/ =o=Xf(^A^YYXf(^fTf/AYDHYN?fA(^YYXf(^fTf/D FY>fA(^^YYXf(^fTf/PDzRY=EfA(^^YYXf(^fTf/ WY^A^YYXf(^fTf/AYD:HYHD^EYAYXf(^fTf/WYa;^A^YYXf(^fTf/w_WAYD C^A^YYXf(^fTf/w"}GAY^A^YYXf(\$XL$l$Ll$f;L$fW `YXԉ\$Y~<%Y^Xf(^L$ Y^XY^f( XY^X%|Y^X%pY^X dY^X XY^X%LY^X%@Y^XfY0XfH~CYf.w2QD$f(*fHn^d$YD$H [Xl$l$D$ffHf/vfW%f.;{;f.;{ H@u1ҾH=]41a9H@u1ҾH=5418Hf.ffH/vWZfZZf. :{=f. :{ HfDu1ҾH=31H@u1ҾH=31}Hf.fHf(X5$L$f(\7t%7L$f(f(\7\f(YX$`L$H7f(f(fT-cfHnf/lfHnυHH^f(YHf(XH4f/H HYXfUYYXH YXHYXH YXHYXH YXHYXYXYXYXBH\HJHFHXH4H HYXYXH YXHYXH YXHYXH YXHYXYXYXYX BH^^f(fDpHf.Df.5f(zu6f/_fsJ %6f(f(fTf.f.z&u$,ÃHHB@-H5f/H(=f(f/lJfW f/ff(fX(5T$L$f(\$MT$\$L$X^f/7wH4T$fHnT$ 4f(X\f(^H(H,f5g4fUH*f(fT\f(fVf.fD Ѓf(\XYXYX ܃Y\YX ̃YXYX YXYX Y\Y^3\$\$w3f(s%^YXX_YYX%XOYYX%X?YYX%oX/YYX%_XYYX%OXYYX%?XYYX%7X'Y\2YY^ f.2\$\$=D$Yf(\ !Y\ XYY\ XYY\ XYY\ XYY\ XYY\ тXyYYX \iYYX \YYXUYYX\^,XD$fZf.z.ϡzufDSfH@/wf(9ZH@[f/(v~&Y\"Y\Y\Y\Y\Y\Y\ Y\Y\1Zl~H=0f( D50fWYf(|$ f(fTf.v3H,f50fUH*f(fT\f(fVt$ f.zugfD 2f($bY1U$Y(H55/H=r\D$0f(t$(f.5q/$~DD$8 5P/f/t$(dL$(f(f(1fWfDkX-/d$T$L$f(,$dd$,$f(=1L$XT$^fTf/vYd$8 .Yd$0}\\X.^f($d$/$f(fT Jf.r4YD$\F.Z8D%.jDL$ X 0f(yf(D$YY\-ZfD1ҾH=1$%N.$58f/f(\$(\-H)YH ~-HP`^fX -Y\fHn^|$(D.0f(XYf(Y^X^fT fD/XX -^HXX,f(YH9u*Df.f(f.b-zuN-Dff/wf(Df/}vv}Y\}Y\}Y\}Y\}Y\}Y\}Y\}Y\.{Y\-ÐSf(H@~=/, 5g,fWYf(|$ f(fTf.v3H,f5+fUH*f(fT\f(fVt$ f.zu+H@[ 0.f($ Y-$Y|H55A+H=\D$0f(t$(f.5+$~D$8(5*f/t$(lL$(f(f(1fWfDsX-*T$d$L$f(,$ d$,$f(=m-L$XT$^fTYf/vYd$8 }*Yd$0y\\X_*^{f($d$苻*$f(fT f.r<YD$\)[f%"*bDL$ X ,f(f(D$YY\)f.1ҾH="1$F%)$53f/{f(\$(\0)HYH )HP`^fHnX -)Y\f^|$(D+f(XYf(Y^X^fTfD/PX (^HXX (f(YH9u"DfZf.z.zuטfDSfH@/w"f(iX1(ZH@[f/PyJyY\FyY\ByY\>yY\:yY\6yY\2yY\.yY\vY\(X'Z`D~%`f(D ' [='fWDYfA(DL$ fA(fTf.v5I,ffAU=)'H*f(AfT\f(fV|$ f.zu (@ )f($zY(m$Y@xH5=&H=\D$0f(|$(f.=&$~%\D$8=h&f/|$(TL$(f(1fWf(fD[X-/&d$\$L$f(,$|d$,$f(5(L$X\$^fTɏf/vYd$8 %Yd$0t\\X%^'wf($d$+&$f(fT bf.r,YD$Z0D%%rDL$ X (f(虶f(D$YYZfD1ҾH=1$ν%v%$ =Y /fW%fWd$HfI~f/y kf/7H,Hl$8f/-]t$ALl$xt$t$\$@@\$HfInf(f蘩f(f(X\$XT$\$T$ӪL$fH~D$轪l$@f(fHn^f/HII9"MfI*f/d$ef(d$0趭YD$HHt$pLCd$0T$xfInt$pf(T$(t$ 7T$(f(YY\$ f(f(fDl$8f/-2|$Ll$x|$|$HkfH*L$f/\$Hf(fInH.XD$XL$D$L$H9wHfH*l$Xf(f/|$f(U\$HffInѧf(f(T$8D$XffIn\l$(t$ [t$ l$(Xf(Yf(f(YY\f(YXf.XD$Xd$fInD$D$8d$ D$0D$XL$(« XL$8fW ܀YYD$HL$ D$`H-%AH-l$@GDBDl$f(AuHrXfHnXD$ XL$`XD$0XL$(蔪|$l$XX|$l$诧L$fI~D$虧fInT$@^D$hf/"MMNfI*XD$8fInըD$HL$PIfI*XD$8fInI袨XD$HXD$0XL$PXL$(D$0D$XL$(C|$ X\|$ I9I1MfI*X fYrb\fLLfHH H*XH=1ܭ@D$L$aLAfHL H*XLfHH*XLLfHH H*X%f(d$(HYD$HHt$pL袦d$(Lt$pfInl$xf(l$ 蝥fInYYD$ XL$XD$L$D$H9HHHfHH H*X}\H,H?DHH1HfH*X $eY`\fu X ?XD$ XL$`XD$0XL$(j襤L$XfInD$XXL$8X "^f(^f(f(iYD$^D$hf/`1f/H=1謫5D$L$D$hHf.;YD$HH|$xHt$pƤt$pD$XfInt$ t$xt$(辣t$(f(YYl$ lDHHfHH H*XD$Xf(HHfHH H*XL|$|$|$fl$Xf(f(f(蝢f(S@fH(f/~\$T$HT$fHn {T$f/wf/v%\eYȥYD$H(D\Y觥YD$H(@%8fWzT$d$]f.D~%zf(f(PfTf.s&f/f(wff.zufTDzfVzf(SH f/f/s5f(f(f(fTf.af.w,ظf(\ЃDf/vXf(\f(\$'\$f~%yYf.f*YH [% xf/f(rfD\Yf/sf/%.awJf.^Xf/v2f/vf.B YXY^tD%(-f/weD^Xf/Nf/vfDf/X`B`T$f(^Y\0`Y\,`YX(`YX$`YXD$f(T$f/`D$f(Y Gf(\ ~f(f(^t$f(YY_YD$TD1ҾH=^ 1襦M'H,ffUH*fVDtff.\ R_YX N_YX J_YX F_YX B_YX >_Yf( 6_YX 2_Y\ ._YX *_YX &_Y\ "_YX _Yf(XYX^(ff/H^fTD$  (^\$f(^Y\^Y\^YX^YX ^YXD$f(\$f/]D$ 1 f(Y\ dT$f(^YY]YD$L$Y ^f*YD\ f(^D$ f(\ f(ۜT$^zf.fAVfI~AUAATUHSDeH L$fH*D$f(L$$fI*,L$$YL$YD$X$$f(YD9sE%t]L\D$- ^D$f(fTf.w|H,D9AG9rH f([]A\A]A^AffInL$I*^YD$XD$Y$`$L$YX9wH,f5 fUH*f(fT\fVf(H,D9AG9dH@f.HZӒHZf.HZHZf.f.fEf(f(fA.z,u*fA.zuD-8 AXD^fA(SHPfD/p- ~=r1D~rf(D)D$0)|$ d$@t$l$H$z$Y茗$l$HD$f(T$X,$T$,$1d$@t$fE\$fD(D$0fE(Xf(|$ D XY^f(fAWY D=tsfA(fɃXfEfD(*fD(DXD*XXAYDYAXYfA(^Yf(A\^fTf/ ZwtfEWHPfA([f~=q-f(f(fTf(f.-tw2f.z]u[D~AqfAW,‰)QfDH,ffUH*f(fT\f(fVf.{D~p1 f.DfEfA.Zz5u3A.D-fAXD^AZfDSfZH0D/qD~hp1fD)D$ Zf($$\$l$$$Y $$5CD$f(Xp$$fE\$Hl$fE(XT$fD(D$ fHn~=o1D XY^f(fAWYf.=tsfA(fɃXfEfD(*fD(DXD*XXAYDYAXYfA(^Yf(A\^fTf/ XwtfEWfH0AZ[fDA(-Ho=u((T.w:.hbD~nfAW,ĉ)I,f=,uU*(T\(V.{f~ xnf($fTf.SHH 8Wf/f f/5f/ %"ff(f(fD\f(XYf/s5"f/w&?X^f(Xf/f.zu1ҾH=H1艜H [f(fWlmT$f(\$\$~ Ym-D$T$f(f(fTf.Of.z u,ĺf(\ăDf/9vX%f(X\$R\$Yf.z{f(U\\D$f(f/Uf(f(\=T$f/|$YD$T$f/ \XCQf( 1Yf( Q^Y\ QYX  ^XWH,f-fUH*f(fT\f(fVf.z~fDf/vfWtkf.\nTXYT$\`TY\\TY\XTY\TTf(f(\LTYY\DTL$Y\:TY\6TY\2TYfH~f(蘕L$\ TT$f(f(YfHn\T^X fDST$ YD$f(f( SY\^Y\ SYX SY\ SYCOX SXf(^XfD5Hf(ff/j%ff(f(DPH f([|f.ff.HZZZZǙHZf.@x~=`if(f5f(2f.\f(XYf(fTf.r f.f/rf(Xf.zu5Z=D~h(^Xf(fATf.r f.wf/rf(Xf.zuf.7UH0f/%Mvf(fThf/f(Xf/xf/&Hl$,f($$HT$t$$$HD$f(L$\f(t$T$fH $$Yf.fHnf/wmf.f~gf(fTf. sD,f(f(fTfD.\f.z,Ǩt fWegDf.f/wff.~Ngf(fTf. h=f(f(fTf.\f.z:,ƨtfWfH0f(]~ff(fD(D VfTfD(fD.fA.OID@Pf(fTfD/-f/;f.z f/tfDf(DP5D~D~0ff(fD(D fTf(fD.v'H,ffUH*DfDTDXfDVfA.y gOfTf/cf(H,ffDUH*DfDTDXfEVfA.f(T$L$$$ތL$$$H\f(T$fD(f(fD(DD\ bYfHnD\AYfA(Y\f(AYYYY^f(X^f(YA\AYAYAYY MNYYXXY^XY,fT%jdfWf(sfT5OdfWf(ff(fD(fD(fTfD.v2H,ffD(fDUH*DfDTAXfAVfD(fA.oifTfD/UYxcYhH0]f(H,ffUH*f(fT\f(fVH,ffUH*f(fT\f(fVDYYRf.fHXf.Df(f(zZuXf/Lwf(Սf(fW%bf(HX~%bfWf(蛈~%bHXfWf(fD5f/f(f(<$\$T$Pj\$<$fD(fD(f(T$DYf(ff.EYfA(AYYfD(EQfA(\%Pf(DfD(f/&LEYA^AYY5Y KDXfE(D AYEYAX\-DXfA(\ AY^KY^~AYXAX\ KYDYA^\Xr.f(x^\ `KfTPaf/=f/=v0@JXYf/&KYf/HYf/f(-DC^Xff(*X^YfD/Xweuf(d$\$T$ |$4|$$f( T$ H|$LD$f(T$d$\$XXT$f(\$^D$Ɋ\$d$f(T$Y\\\X $^\YDf(T$|$$T$$f(|$f(Yf/BYf/Bvf/fWG_$f(^\"$f(X<f( 0HX^\^f(fD(EYfD/fD(H'D\=d$ T$(fHnDt$0fA(D<$Y\$茆\$H|$LD$f(\$ T$(D$f(7L$D~%X^l$\$fAWd$ Y YHXf/f(\$fAWl$f(|$׈D$$HDt$0\$AYfLnD\5fD(Hf(l$DYD|$fA(fLnf(YfD(fD(DYDY5AYDYEYAYY fA(A^fD(DY\fA(A\DGDYDX DYDXfA(YY\ A\X%IAY^^fA(AYYAXD EYAYA^fE(\FAYfD(f(\%YA\DX%XEYAYD~%q\D^YfAWfD(D\^-AXAXAXfD(DYAXfE(DY$\-%DYAYXf(XYA\DEDYA\YEAX\YfA(YXf(X\ E^ XY^X@f/8E%r f/f/vFf/Er< \f(7$-$$Y$$Y(f/D$ f/f/ $=f(fW%Z\\$ f(d$<$艅Y$d$f(d$\f(l$a\$ SD$5l$=\\fD(DYf(Y\f(XYYAXXAXX^<$Y|$d$\\˄$=f(fW%Y\f(d$<$蚄Y$d$f(d$\f(L$rL$4$X D$^XQ@f(\$d$|$(T$T$H|$L$f(T$ <$d$\$X\$X<$f(^}\$T$ f(f(f(X5/\$^L$t$^XYt~L$X $\$\^f(}T$ f(^D$Xf(L$^Y#~L$X $\$\\$^f(+}H\$f(T$ f(f(fLn^l$D$DX^T$\$A^f(X YX Y}d$\$f($$X\^||$(T$$f(Y $^f(Y~$f(4f(l$\$ d$\$ Gd$X%9D$\f(T$ ^XāL$Y $l$\\f(L$蜁L$X T$ 5D$^Xf(i<$Y|$l$f(f(\f(\v3$fD(D$fDW=JVfD(\$D\VfA(D<$D\$D\$D%f(\$|$AYD<$fD(f(f(EYfD(f(D\YDYfD(fD(DYfE(Yf(EYEYEYfA(A^D%EYEYA\D-iAY\X%YYX ?Y\X%|  YA^\ DYfA(AYY E^Xf(\?AYYA^fE(EYA\fD(D\D\ AXDDXAYEYfDWTD^A^EYfA(AXXf(YX%<>YX=d\f(XYAYfD(DYY5AXA\D =\DYY=AX\  X\=^ YDYDXfA(XAYA^Xf(T$8|$0t$(l$ Dl$Dd$L$$~T$8$|$0t$(fD(l$ Dl$Dd$L$ fHH~DSfD(f(fD(&6D\fDTAYfA(fTf/vpf(d$L$}d$L$H|$<Yf(f(\T$OT$ \f/f(HHwfD=7f(5fX\fD(D^%fA.UEQDifE/>fE(HD6HD^EYHfA(DXH4fE/H AHEYDXfAUAYEYDXH EYDXHEYDXH EYDXHEYDXH EYDXHEYDXEYDXEYDXEYDXBH;HJHFHXH4H HAYXAYXH AYXHAYXH AYXHAYXH AYXHAYXAYXAYXAYXBD^:f/E^Dd$v f/Bf(\\f(X^f(fTf/fD(׸fDW]PD \fHH=OAYfH*f(^XfTfD(fDTEYfD/vD4fD(̸HDXsfA/(fD/ga5f(YYXXAYYX5aX1YYYX5MXYYX5=X YYX5-XYYXYX^YXX\Y !9Y^Xf(sYD$HHf1ҾH=o1}fHHffA(L$(d$ |$l$Nyl$|$d$ L$(f(hDfA(L$(d$ l$,sL$(l$d$ D$^f(f(uYD$YD$HHfA(L$(d$ l$Dl$DT$XxHf~ML$(d$ fD(fHnH3l$Dl$DT$fHn8f.AVf(f(fATUSHhHfW%[MD$8fHnظf=tJff(*^Yf(Xf(^XfTMf(fT MYf/rf(l$@wt$8-YfI~f(fTLf/`ff.|$8-H-YfW=|L|$0|$l$ f.l$Yl$0fE1*HbfHnfHnf(l$fW &Lt$(fDAX%&T$AL$f($$xsT$$$f(=L$X^fTKf/vl$ YT$^T$(XfTKl$ fT-KYf/w * fInHl$\\T$ Tff(\ df(fTHK $f/AXD$8Hl$\HfIn\ f(fTKf.f.f(fW Jzf=fTfUfVD$8H $5f(fIn\oYD$@ $Hh[]A\A^\f(f(fInHl$\f( 5=YYYX !X)YYX XYYX\^XfW eHHD$ D$HfInHl$\XD$ \--f/Rf(\$(f\*YH H^fHnX +Y\^t$(=f(XYf(Y^X^fT Gf/"X-^HXX-YH9u-f/Mf(\$(f\eYHZH^fHnX fY\^t$(= f(XYf(Y^X^fT Ff/X-^HXX-YH9uff/v>DHH|$ HDf/vLfDHZH|$ HZf.HH|$ Hf.HZH|$ HZDUff(H@f/~ED$8f/f(f(fTfTf/vfH~f(fHnfH~f(fHn5/f(Yf/v f/mf(5!-)$XfD(fDTfD/wf/w f/ Hl$=D$(fTf(f(fTf.vH,ff(fUH*fVf.D$H,&V(f(Yf(fD(fTf.7Y7(f(\,ff/vT$(f(ڃۃf/vfW =ڨEf.DfA.f(fD(f(AXDYfTD$HfTY5CfA/Y pDD$f(f(dDD$DXD$(D$fA(F\YD$HX[]fff/Rf.z u f/D1CH,ffAUH*fV@f.6Q&f.YD$8f(QY\$Hf/D$@v0f/v&D$(Kf(f*Y&fDt$8f/vf/%f/4fD(D$(DXfA/w=f/cD fD/Of/AfD/6fDXD$8AX_f(\f(fTf.v,H,ffUH*f(fAT\f(fVXHt$81L$H|$Hf(\$HvL$D$D$HYD$f*YD$(f/f(^^f/ T$@`f(f*YfD1ҾH=:1kinfDf/f/Xf/f/vfW5:f(fD(f(fTf.v0H,ffUH*fD(DfETA\fVfD(f(f(fTf.v,H,ffUH*f(fAT\fVf(f(f/l$A\Xt$8f(Ht$8H|$(L$躠L$l$~%F9fD(fD.D$80fTd$Hf/$l#YXh#YX%d#f/d$@l$DD$DD$l$f(T$(f*f/A^Yf(I|HX[]ff(HXf(f*[]Yf.kf(f*Y6fD1ҾH=1 g#XD$(HWYhD$( f(f*Y5f(Ht$8H|$(l$ DD$T$L$HD$8ޞt$8l$ L$Hf(f.T$DD$~%H7fHn%fA.J\$H;D$8Dl$DD$f(4DY%x DYAY1ҾH=1ef*YKfDHYY5tXKD$8Ht$8f(H|$@L$t$@趝~%N6l$fD(D$@L$D$8@{DD$f(y\$f*^Yf(\$#\$f*^Yf(l$ DD$L$T$`H~%5l$ DD$fHnHL$T$fHnl$ DD$L$T$_H~%+5l$ DD$L$T$fHn~S,f(fH0*f.a~%45Qf(f(fTf(f.w+f.z^u\1ҾH=`1c6H0[H,f5fUH*f(fT\f(fVf.{f(H|$(Ht$ L$Y#T$\T$|$ t$(L$f(<$t$$T$L$Yf(fW3$Y$~%3\f(^D$fTf.%jT$f/ f/xH0f([ffdff.f/f(T$ $訁 $D$f(贖 $52l$T$f(D~2=f(f(f(fATf.rf(f(ÃYX^\9|YD1ҾH=51cafDh1ҾH= k1afD1ҾH=j1$`$Yf(Lff($肕$Y.@Uf(fD(f(Hp~-1fTfDTfA/vfL~f(fD(f(fHnf(f(fTfTf/t$HD$vfH~D$Hf(t$fHnfA/r f/5t$f(DD$@|$8\$0T$(L$ d$m~-0|$f(d$L$ fTT$(\$0f.DD$@|$8rff.f/yHl$lf(|$@HL$8DD$XT$Pd$ \$(\$(HD$f(\$0t$d$ H\f(d$(t$t$T$PHXf(T$t$ qt$ \f(Td$(T$\$0L$8f.|$@~-/ff/f.DD$XwfD.D$wufD(fD(fD(DfDTfE.vf/D$$v f/f(\A\AX^f(fTfD/fD(fD(˸DfDW@HH=MAYfH*f(^DXfTfA(fTAYf/vfD(ոHGjfXf( зf/ff/ƷX %fD(DYVYXX YYX%X AYYYX%X yYYX%X iYYX%X YYYX%X qDYD^DYDXDXD\DYf(\$Ylt$l$^AX >D $\$t$l$DYfD.f(HH1ҾH=1GfHHf\$(t$ l$|$T$mCT$|$l$t$ fD(\$(%DfA(\$(t$l$ |$>=t$|$l$ D$f(^f(l$f(?YD$D $l$t$\$(DYfA(\$(t$ l$|$Dl$D$DBH~%\$(t$ fD(fLnHl$|$Dl$D$fLnDf.fH(f/w(f/f(wf.z@u>f/v%f(f1ҾH=1FíH(fDf.{R~% f(f(fTfTf.vT$L$f(l^f/Vf(L$T$ifT$L$f.f(Df(5yfA(fA( Dt#AXf(^YXf(Yf/rY^fA(\D$YDtmf(L$l$T$]=L$l$T$f(fffZZf.fH(/w)/(w!.zDuB/w* H(1ҾH=:1[AH(fD.{K~Kf(fD(5fTfDTf.v+fD.w(t@fD.f(/\fT^v$/vf/D// (v /f(f(d$,$1,$d$ff.=lf(ݸDBf(f(t#Xf(^YXf(AYf/rY^Z|ff.wlf(QF^f/f(f(fEZJ>ff(f(f(\Zf(L$T$t$d$,$:L$,$T$t$f(d$Pf.@f.HZZHZfDAVUSH`f.L$8ff(f/Ff/d$%ȥ$$wT$f/1ҾH=d1\$v>\$$$L$f(\$H-4_\f(fI~ \$~%?HE,$5&f(f(fTf(Yf/|$0HFfUt$D$8f(\f(fTf/D$ f(\$ T$9\$ T$H|$\YT$(\$f(f(\L$ L$ \$T$(\`f/f(\$ T$13~%IT$\$ fD(ffD.f.z2ff/f/f.f/A5\D$fD-fX\-fD(D^fA.6EQL$0<$f/^HH]YHL$8XH4H YHYXHtXYXH YYXHYXH YXHYXH YXHYXH X H4H YYXXH4YYXX H YYXBXH4YX H YXH4YX H YXYX YX YX A^D^`f/DD$v f/f(=U\\ YX A^f(fTf/sfD(fD ԤfDW  HH=t1AYfH*f(^XfTf(fTAYf/vYf(T$(Y\$ ^XJ0DD$~%[ T$(\$ DY D1ҾH=1\$(T$ DD$:\D$5DD$~% T$ \$(,$Yf(\^A^\f(fTf.w-YY,$\^\ЃH`f([]A^@$5Xf/wf/\$HT$@L$(l$ 4l$ L$(T$@\$Hf(\fff.B5|$0f(fTf.Zf.!f(THYH1ҾH=O1$8$H`[]f(A^@$fDf(\$HT$@l$(-.T$@l$(D$ f(^f(\$Hf(\$(0YD$ DD$\$(T$@~%DYf(ff.d$f.$$!f5`fInfD=0f(DSY5ǥYDXX=DYDX0YX=YDYDXYX=DYDXYX=ԥDYDXYX=¥DYDXYX=إYA^YXXfD5jf\D$8H`[]f(A^f.fInf(f/=\fT^vkf/ve-f/vWf(f(t$@DD$(T$ \$;\D$\$T$ DD$(t$@~%f/f/$t$@f(f(DD$(T$ \$v f/0[fT$ DD$(f.t$@\$~%D$f(D \fA(fA( t)AXfD(D^AYXfD(EYfD/rY^\D$(3fod$f/%l $H`f([]\A^ff.f(Q$^f/^rfD Df($\QfA(\$@T$(l$ t$/\$@T$(~%3l$ fD(t$f(T$Ht$@L$(DD$ \$e/T$Ht$@L$(DD$ f(\$f.USHhf.L$"ff(f/f/|$<|$f/$1ҾH=>1d$D3d$l$ $f(d$H-T\f(d$~-HE<$f(f(fTf(Yf/t$0HFfUT$(D$8f(\f(fTf/D$(vf(d$\$Y.d$\$H|$\Y\$ d$f(f(\L$L$d$\$ \3f/f(d$\$(\$d$fD(ffD.f(f(DD$ \$d$dd$,$\$\D$f(DD$ \YfW^A^\~-f(fTf.EwYY$\^\؃Hhf([]fD=X<$fD xfX\ XfD(D^jfA.EQt$0$f/E^iHH#Rf(YHT$8XH4H YHYXHtXYXH YYXHYXH YXHYXH YXHYXH XH4H YYXXH4YYXXH YYXBXH4YXH YXH4YXH YXYXYXYXA^D^f/DD$v f/f(=\\X^f(fTf/fD(fD8fDW 'DHH=t1AYfH*f(^XfTf(fTAYf/vYf(\$ Yd$^X$DD$\$ d$DYDf(,HO$5 Xf/wf/d$H\$@T$ L$*L$T$ \$@d$Hf(\.1ҾH=1$-$Hh[]f(fD-,$ofD=pf(DY5YDXX=NDYDXpYX=<YDYDXZYX=&DYDXHYX=DYDX6YX=DYDX,YX=YA^YXXfDf(d$H\$@L$ "\$@L$ D$f(^f(d$Hf(d$ 2%YD$DD$d$ \$@DY| Hh[]f(Df(ff.zu l$f.,${,l$f/- $Hhf([]\*uffA(d$@\$ L$|$R'd$@\$ ~-L$fD(|$AVUSH`f.L$8ff(f/Ff/d$%$$wT$f/1ҾH=$1\$6+\$$$L$f(\$H-K\f(fI~͘\$~%HE,$5f(f(fTf(Yf/|$0HFfUt$D$8f(\f(fTf/D$ f(\$ T$F&\$ T$H|$\YT$(\$f(f(\L$ ΌL$ \$T$(\ f/f(\$ T$~% T$\$ fD(ffD.f.z2ff/f/f.f/A5aA\D$fD-fX\-fD(D^šfA.6EQL$0<$f/^HH{JYHL$8XH4H YHYXHtXYXH YYXHYXH YXHYXH YXHYXH X H4H YYXXH4YYXX H YYXBXH4YX H YXH4YX H YXYX YX YX A^D^ f/DD$v f/f(=\\ X ^f(fTf/sfD(fD fDW HH=t1AYfH*f(^XfTf(fTAYf/vYf(T$(Ye\$ ^X DD$~%T$(\$ DY D1ҾH=1\$(T$ DD$&p\D$5zDD$~%T$ \$(,$Yf(\^A^\f(fTf.w-YY,$\^\ЃH`f([]A^@$5ÔXf/wf/\$HT$@L$(l$ !l$ L$(T$@\$Hf(\fff.B5r|$0f(fTf.Zf.!f(HhFH1ҾH=1$F%$H`[]f(A^@H$fDf(\$HT$@l$(T$@l$(D$ f(^f(\$Hf(\$(ZYD$ DD$\$(T$@~%DYf(ff.d$f.$$ߋ!f5 fInfD=f(DY5YDXX=ΒDYDXYX=YDYDXڒYX=DYDXȒYX=DYDXYX=DYDXYX=YA^YXXfD5*f\D$H`[]f(A^f.fInf(f/E\fT^vkf/ve-Yf/vWf(f(t$@DD$(T$ \$(\D$\$T$ DD$(t$@~%f/f/$t$@f(f(DD$(T$ \$v f/0fT$ DD$(f.t$@\$~%BD$f(D fA(fA( t)AXfD(D^AYXfD(EYfD/rY^\D$(3fod$f/%Bl $H`f([]\A^ff.f(Q^f/^rfD Df($\QfA(\$@T$(l$ t$w\$@T$(~%l$ fD(t$f(T$Ht$@L$(DD$ \$%T$Ht$@L$(DD$ f(\$f.AVffUZZSHpf.D$l$f/w/w/31ҾH=1d$ d$L$f(5d$H-@\f(fI~蜍d$HE~-f(Ɔf(fTf/5Yt$8HF\$fUD$@f(\f(fTf/D$f(d$(T$ d$(T$ H|$lYT$0d$ f(f(\L$(蒁L$(d$ T$0\f/*f(T$(d$ d$ T$(f~-fD(fD. f.z;f/f/t$(t$.LFf/5\\$*5fX\5pfD(D^ fA.EQL$8f/ &D }HH7?D^AYHL$@XH4H AYHAYXHtXAYXH AYAYXHAYXH AYXHAYXH AYXHAYXH X H4H AYAYXXH4AYAYXX H AYAYXBXH4AYX H AYXH4AYX H AYXAYX AYX AYX A^D^/D$DL$ vf/f(=\\ X ^f(fTf/fD(fD(øD)fDW fDHH=t3AYfH*f(^DXfTfA(fTAYf/vDYf(\$HYT$0d$(^AXDL$ ~-\$HT$0DYd$(D1ҾH=:~1T$0d$(DL$ H\\$5DL$ ~-3d$(T$0Yf(\'^A^\f(fTf.w  (YY \^\ӃPfZHp[]A^f.=0Xf/wf/&T$Xd$P\$HL$0t$(%t$(L$0\$Hd$PfD(T$XD\Wf.N5ց|$8f(fTf.ff.\\$fhfD(ĸH:f1ҾH=_|1T$T$fHp[]ZA^fDf(\$PT$Hd$Xt$0GT$Ht$0D$(f(^f(d$Xf(d$0YD$(DL$ d$0T$H\$P~- DYK..l5fInfDDWf(D zY=DYDXDX3DYDX UDYDXYDYDX =DYDXDYDX )DYDXDYDX DYDX߆DYDX DYDXDYE^DYDXDXD\\$5|8Hp[]A^f.f(|$/=\fT^vvo/vif/v[f(f(t$HDL$0T$(d$ f(\\$d$ T$(DL$0t$H~-|$/=#f/}v f/jf(f(t$P\$HDL$0T$(d$ ^\$Hd$ T$(DL$0f.t$P~-H=}f(D\fHnfHn t,X=S}fD(D^AYXfD(EYfD/rY^\\$f:l$f/- |f(\Zf.f(Q!^f/BfInmfcDf(f(t$HDL$0T$(d$ R|\ fA(T$Pd$H\$0t$(|$ T$Pd$H~-\$0fD(t$(|$ f(T$Xt$P\$HL$0DL$(d$ #T$Xt$P\$HL$0f(DL$(d$ Df.fH(f/w0f/f(w&f.zHuFf/Z{w-{H(1ҾH=v1{H(fDf.{J~%{f(f(fTfTf.v,f.wf(h{t@f.f(f/r\fT^vf/v-{f/@f/=nzf/v f/f(L$\$fH>z\$f.L$fHnf(f(D|f( t#Xf(^YXf(AYf/rY^yf.wdf(Q^f/f(H("Tf(H`yfHn\f(#f(L$d$\$ L$d$\$f(nUSHhf.L$"ff(f/f/|$<x|$f/$1ҾH=~t1d$d$l$ $f(d$H-B2\f( d$~-RHE<$9f(f(fTf(Yf/t$0HFfUT$(D$8f(\f(fTf/D$(vf(d$\$ d$\$H|$\Y\$ d$f(f(\L$!sL$d$\$ \sf/f(d$\$D\$d$fD(ffD.f(f(DD$ \$d$d$,$\$\D$f(DD$ \YfW^A^\~-f(fTf.wwvYY$\^\؃Hhf([]fD=v<$fD fX\ vfD(D^fA.EQt$0$f/E^HHc0f(YHT$8XH4H YHYXHtXYXH YYXHYXH YXHYXH YXHYXH XH4H YYXXH4YYXXH YYXBXH4YXH YXH4YXH YXYXYXYXA^D^f/DD$v f/f(=t\\Xt^f(fTf/fD(fDxwfDW gDHH=t1AYfH*f(^XfTf(fTAYf/vYf(\$ YEd$^XDD$\$ d$DYDf(lH-$5K{Xf/wf/A{d$H\$@T$ L$FL$T$ \$@d$Hf(\.1ҾH=n1$6 $Hh[]f(fD-8s,$ofD=zf(DzY5GzYDXX=zDYDXzYX=|zYDYDXzYX=fzDYDXzYX=TzDYDXvzYX=BzDYDXlzYX=XzYA^YXXfDf(d$H\$@L$ \$@L$ D$f(^f(d$Hf(d$ rYD$DD$d$ \$@DY|`rHh[]f(Df(ff.zu rl$f.,${,l$f/- $Hhf([]\juffA(d$@\$ L$|$d$@\$ ~-L$fD(|$UffSZZHxf.D$4\$\(f/w/w//21ҾH=ql1d$w d$T$f( pd$H-2*\wd$HE~B=2f(>pf(fTf/5.pYt$85pHFfUD$@|$(fD(D\fA(fTf/D$(df(d$T$d$T$H|$lYT$ d$f(f(\L$kL$d$T$ \Yf/?f(T$d$*d$T$fEfD(fE.f(f(DL$ T$d$d$T$\D$~f(\ nDL$ Y^fWA^\ nf(fTf.-gow -nYY-n\^\ЃfZHx[]Ð5fEX\5nfD(D^ xfE.9EQ|$8f/=;n--nHHW(^YHL$@XH4H YHYXHtXYXH YYXHYXH YXHYXH YXHYXH X H4H YYXXH4YYXX H YYXBXH4YX H YXH4YX H YXYX YX YX A^D^/D$4DL$vf/f(=l\\ X l^f(fTf/fD(fE(¸D bofDWQHH=t3AYfH*f(^DXfTfA(fTAYf/vDYf(DT$HY)T$ d$^AXDL$DT$HT$ d$DYk-@sXf/wf/6sHT$Xd$PDT$HL$ t$4t$L$ DT$Hd$PfD(T$XD\-fDf(ĹH% 1ҾH=f1T$T$fHx[]ZfA(DT$PT$Hd$Xt$ T$Ht$ D$f(^f(d$Xf(d$ YD$DL$d$ T$HDT$PDY<.@Dqf(D rY-~qDYDXDXqDYDX qDYDXqYDYDX qDYDXqDYDX qDYDXqDYDX qDYDXoqDYDX qDYDXqDYE^DYDXDXDHx[].{2T$f/ּ Hif(\;Zf.fA(T$Pd$HDT$ t$DD$KT$Pd$HDT$ ~fD(t$DD$pfATfD(USHfD.f(L$)$)$+f.fD(ffA/f((fA/ED$fA(DD$DL$ uDL$DD$f/fAXf/ u1fl$f/f.э@Gf/D$|5gfD(fA(HD$@t$HHh=|tL$fA(5_tL%tfHnMtfA(DL$DD$=~DD$DL$d$ff/)$~DL$0$DD$ f(l$fTfTd$ ?t5fd$l$f/DD$ DL$0rfHgYfHnY|$@\$Hf(f(YYYY\f(Xf.YYf)$D$|tQf.D$|L$LH=aDL$DD$DL$DD$uofA(fA(ffTf.v5I,ffAUeH*f(AfT\f(fVfD._fD/T$$HĠ[]A\fDfDWfA/ f.D$|L$fDA,ffA(~fA/fA(fWfWfD(*\Y{evfWH|$hHt$`)\$PDL$0DD$ DT$L$|$ht$`L$DT$DD$ DL$0|$@f(\$Pt$H)Ńf(|$HfWfWt$@|$HbDD$fA(fA(L$HL$|LDD$DL$DL$DD$MD$|~mf$DD$@$fDW)\$0D^ 5dfA(fA(DL$ fW|$t$fTfAUfV Rc =cDL$ f(\$0DD$@f.ob)\$ f/\8dYcDD$0DL$ ]DL$ DD$0f(fA(DD$0\$ Pl$t$\$ f(DD$0Yf(f(YfYY\d$Xf/$$voY%bDD$T$f(d$T$L$$Y|$$f(L$$DD$YbL$T$AYHYcL$T$YX$YX$$$D$|ZD'D$|hHq 4V&HY 4iLH=\DL$DD$DL$DD$9fD\YaDD$@DL$0If(\$ DL$0DD$@fW@ffD$|sfDP\$@T$Hf(f(DL$ DD$t$DL$ DD$t$HfZfL$fZL$ZT$ )ZZ$L$~$Hf.f-`f(f(fTf.v3H,f-}_fUH*f(fT\f(fVf.fzf/tf/_wHHf(ATfD(USHĀfD.f(V)D$`)D$pRf.fD(CffD(ѻfA/f(BfA/OfA(fA(DD$DT$DL$ [lDL$DT$DD$f/fAXf/ )l1ff/f.э@GfA/D$\>5&^fA(fE(HD$0t$8HV_=jLd$`fA(5jL%_kfHnjfA(DL$DT$DD$tDD$DT$DL$ ffD/m)t$hd$`DL$(~=DT$ f(DD$fTfTt$d$ j-]d$t$f/DD$DT$ DL$(rS]H,^YfHnY|$0\$8f(f(YYYY\f(Xf.7YYf)D$`D$\uYD$\Ld$`LH=UH*TfY0Uf(f(f(f(f(f(f(H/SfHH@f.z-u+f.z%u#f(f(H^@f(f(H,$d$HCffH*f(fD(,$Yd$f(f(YAY\f(YXf.f(f(l$(d$ d$ l$(H{D$ $f(f(T$$D$0L$8f(f(|$0ff\)<$$L$H@[ffA(f(l$$$=l$$$Lf.SHPfD$H\$Ld$H.(zVHHd$@\$D~D$@d$ \$f\$d$ .z-u+%7Ht(d$T$~D$HP[ȼ(T. Ow T.Cv].zHuF.%Y%1ҾH=<1#%fwf%hfffd$H*ZZX\$Zd$fZ\$fZ(fl$ t$fD$8D$8D$0D$<D$4~D$0El$ t$fD$(L$,D$(((Y(YY\(YX.((fD$ d$ T$$]fNQH*d%DQfYZ f.SH`fD$Xd$Xl$\HHfH.z$u".zu(H zd$@Hl$D~D$@d$,$+HCffH*fD$8|$<t$8,$d$(D(YDY(Y\(YAX.((l$ d$d$l$ H{fD$(t$(|$,d$ l$$~D$ 4$|$rfD$\$D$\$\D$\$D$~D$H`[Dd$Pl$T~D$PH`[((l$$$l$$$fD$0D$0L$4f.D(-((T.v,,f-FU*(T\(V.z/tf/w+HfZZfHZ(fD(f.fSH Y +OD$fH~fT 0 $<T$fD$f/vfW @Nf(f.'N Mf/wk\COYNvf(Rf/$L$vefHn$fHnL$$YT$YH f([D\MYHN f(fW ?DxMY$f.ML$zfud|$f~f.fTf(ff.fTzgfV ~H f([@ff(D$fffYfYfY)$$L$H [f(DT$fTfVoff.fSff(f(H@f/KXf/vH@f(f([˾~-f(fTf/wf(f(T$\5K$f(fH~I$=~-FT$ DD$@L$`fD(fW)l$0~--CfA(f(T$H\$ AYfTf/\$P|$ f(f(fTf/\$@f(=AA$|$fA()$AXDD$pX\$P$$^D$(XDYf(DY?DT$`|$hst$H ?XL$f(D$($Yt$@Y$DD$pX|$h$\$PfE(DT$`fD(D|$ f($YfD(Y>EYDYYXf(^f(fDHH= fHfEH*fEHYL*HL*E\XAXA^fD(E\A^fE(DXYE^fE(E^fD(D\EYfD(EYEYAXfDTAXf(fTAYfA/<X^L$f.*$= <>AEt AHtUH Ht H=HEHt H=HHĸ1Ҿ1[H=69]A\A]A^A_ fA(=f(~AYfED ?XDD$~-ԦfD(L$(f(fE()T$0XDL$ f(f(\5?^fD(t$@fDWfE(fD(fD(f(EYDX&HHfE(H=fD(fX%v<H*fD(\YXf(f(^fA(fEL*DYD\AYfD(D\ (<EYDXA\fD(fDWE^^EYfD(EYEXfD(EYEXfDTfE(fDTEYfE/$DD$L$(f(S<fX^f.QD$\$hf(\$0)l$pfWDT$Pf(Dt$`DD$HL$(YD$DT$PDD$H%.;L$(Dt$`AXDYt$@f(l$p\$hf(A^XAXY^E f(fH*AXXY^Xf(A9s;AZt$==BD SYY5_:YX^YY^CfD/vf/ t>Dt$fD-DD 3;fE(fA(Luzf.f(fA(^f(YDY\fTfD/sqHH=effD(H*D^AXX^fA(XXff.{ff.fA(ff^DYAXf(^EtgT$Ht>Afd$ A*AXG'Y:d$ T$YXEHt#Hĸ[]A\A]A^A_HtU@fD$`fA()$$L$pt$hd$P&DD$@=9d$PL$ f(f($AY$f(DT$`t$hfT\$@f/L$p^|$ f/8t$\t$(A^YY$f(^1ҾH=31DD$ T$^ 7DD$ T$@f(T$p)$$$t$hDT$PDD$`d$@ d$@f($$T$p^t$h$DT$PDD$`D$@f()l$P\$`d$HDD$@t$(|$L$mL$f|$t$(d$Hf(Y @DD$@f(l$Pf.\$`NQ^f.6f(fD(T$0D\$ \f(^=DfEf(ЃD*A\fEE*^A^Ae-fAWAYXfD(fDTf(fTAYfD/wYf(f(yFDD$1Ҿ1L$(H=1Dt$PDD$hDT$`L$H\$()l$f(l$\$(L$HDT$`Dt$PDD$h1ҾH=)11)l$P\$`L$Ht$@d$(DD$DD$d$(t$@L$H\$`f(l$PAfL$A*T$ AX"fL$f.T$ f.51ҾH=G01L$ T$L$ T$1ҾH=101\$@L$0D\$(d$D$ DD$DD$D$ d$D\$(L$0\$@4[1ҾH=/1T$(DD$d$ \$e\$d$ DD$T$()l$p\$hL$PDT$`Dt$HDD$(f(l$p\$hL$PDT$`D$Dt$HDD$(D$Hf()l$P\$`d$@DD$(t$|$7f(l$P\$`T$Hd$@f(DD$(t$|$Of.Uf(f(SHX~-p52fTf(f.wZf.кfE„t f/f/wsf.f.f/f(HX[]@H,ffUH*f(1fT\f(fVnf.f/|1f(Yf(fTf.:Xf.lf/bf(fTfTf/Ff/f(fW=3<$vfH~нf(H$^f(YX5!1f.D1QD^fA(AY0T$ \$A^t$DD$X0^f(pT$ f :t$DD$Y\$XfA(^f.QD$f(DD$(Y\$ T$t$ YD$DD$(fT$t$\$ f(XD$0AY^f.QD$($T$ DD$Y\$詾H5/fT$ \$$D 2H }fHnfHnf(~-DD$@f(ÍxYX9YÍxXA9YÍxXA 9YÍxXA09YÍx XA@9YÍx XAP9YÍxXA`9YÍxXAp9YÍxX9~rYÍxX9~_YÍxX9~LYÍxX9~9YÍxX9~&YÍxX9~YXt(YÃ~YÃ~YÃ~ Yà uY@tAY^XfD(@t fDWܗfTAXfD/HY 9Kf(jf.H|$H1f(|$HfHX*[]Yf/~TfWfW#H,ffUDJ-H*f(fAT\fVf(fD1ҾH=`)1Q-@x-xfTYf/AYf/Y|$L$f(|$L$|$f($Y.YD$(YYX)J,HX[]1ҾH=(1 ,HX[]1ҾH=i(1T$ L$|$T$ L$|$'11ҾT$8H=#(l$0D$ L$|$H.T$8l$0D$ L$|$fLnf(T$(L$ t$t$DR+D^f(fA(DD$AY\$荿T$(L$ DD$\$f(T$0DD$ \$t$MT$0DD$ \$t$D$(T$(DD$ \$t$ T$(DD$ \$t$D$f.HZZHZfD.(HHxSf.zuHucHfD(T>.˚. {HlH1ҾH=1CHfD(Huf)H*Y)ZdL^.w@QD$fZH*XؙZfZD$HYH<$L$ L$ H<$D$f.@f.f(H(HxQff.zu(Hu`H(f(fTf.\)vzf. B){H(H(1ҾH=|1c )H(fDf(H(uf(H*踹Y(kP*^f.w/QD$fH*X3(fYD$H(H|$L$GL$H|$D$@S(HHfH.z#u!fHuhH[fH{(T$.T$HHD$ (fT$L$ H*Y^\(H[f.zMf.zuH([(T6.×v-.{hf.u(f^.w.QD$ (fZZYD$RT$ fT$ D$Sf(HHfHf.z!ufHufe0H[H{f($$HHD$f(f$L$H*Y^\f(H[ff.zDff.ztfDf(fT f. L&v"f.2&{%fDuf( '^f.w$Q $&f(Y$kf(T$蛹T$$f.@AWAVAUATIUHSH(H_H;_trFCFCHFHCHFHFHCHF HFLgHC HF(HF HC(ID$0HF(HGH(L[]A\A]A^A_fHL7HHL)HHHH9%HHEHHHD$0HD$Ht$fHA$AT$PAT$PIT$HPIT$AD$HPIT$ HP IT$(AD$ IHP(L9MAA$AWAT$AWAT$IWIT$IWIGIT$IW IGIT$ IW(IG IT$(IOIG(HHtYA~HE11Iw IOJDD$^|$ \$DYX2d$8YT$f(Y\^YD^\^A\DnAY\AYEPEAPArD9f(f(AOf(f*ȃ\XY^\f(9|9BMcHIJ Df(f*\XY^\f(H9}H[]A\A]A^A_D9|eHQ)I9pf( ߆1fHA HH9utH5HIH4EwHIhDH,ËED)HcӉf.f(þ\$\$AċEHAfD1@HIHH9uKH=ef%f(L$fHnL$d$ \$Ld$ \$D$PDU\SHhfW fW%T$@L$HfHD$ f(\$(D$Pfl$@f/-!*t$X%Nf(f(d$\觨l$@d$t$Xf(f(\X^^XYD$0l$(t$ YYT$8XXf(l$(t$ ,L$ $D$(Yf/$cdZl$8d$0t$P|$Hf(f(YYYYf(\XT$0f.|$8l$@ff/%/f(f(fTf.v3H,f5H*f(fT\f(fUfVl$@f.TN1ҾH=h1葮@f(fW tf(1 $d$@ $-qf(l$Xd$T$L$f($$警T$$$f(5L$X^fTf/~-af/sf(\$Xfl$YHt\HP`^X Y\^|$Xf(XYf(Y^X^fT j~f/k\$^HXXXYH9uCD$(L$ Hh[]\$HT$Pf(f(D$0L$8AWAVfI~USfH~H8D$L$;ffHnfInf/$f(f(Xd$l$ l$d$f/Off/HD$HD$ =f/<$vLfHnffInfHnX5(D$ L$fInf(fH~i$fHn\gfInM= f/<$f/fHnfIn:XD$ XL$H8[]A^A_fD Pf(fTt|f/ f(f(d$,$d$,$D$L$f(f(n5T$\$YYݣd$,$D$ fW-{L$\f(fI~fH~?$vD {fHnfHn&fTf.v+H,ffUH*fTXfVf.ff.1ҾH= 1(H8[]f(A^A_ÐH8f([f(]A^A_9ff(\ $z%Wf(f(fTf.!fHnff/7f(fHnfInX\$X$f(fI~8$f(f(,~\f.ffInfl$*fIn$$\D$l$$$\\9uD$ L$H8[]XXA^A_HdfHnfIndfHnXD$ XL$H8[]A^A_fDH,ffHnffUf/H*fVf(fHnfIn=q\|$\$f(t$(_7$f(f(, 1@fD$ffIn*XT$(,$d$,$d$XX9u@AVffUSHPfD$H|$HT$LZZf(f(d$ l$|$T$(f/\$l$d$ D$f(f(XHd$ l$诟 l$d$ f/f/t$*f|$(|$0=2f/|$vpJf(f(fl$d$蝟d$X% l$D$0L$(f(f(d$l$d$l$D$f(f(\Jbd$l$ў l$d$f/ t$f/Kf(f(>5XD$0XL$(ZZD$@L$D~D$@HP[]A^ f(fTvf/ft$(t$0D vf(T$(f(5 fTf.v+H,f5 fUH*fTXfVf.f.1ҾH=1 |( Df(f(3ZZfDf(\L$u5F f(f(fTf.ff/5 f(f(l$Xt$ XT$f(fI~3T$f(f(,~kl$fDffInf(d$*ft$l$\D$ לt$9d$l$\\uD$0L$(XXH,fff/fUH*fV = f(f(l$\|$ \T$f(d$82T$f(f(,pl$1ېfD$ f(f*XT$8t$d$l$t$9d$l$XXuf(f(d$l$臻d$l$D$ L$f(f(52\$T$ YYad$l$D$0 fW-_sL$(\f(l$D$l$d$D$7fH^^f(f(fHnOXD$0XL$(f.@fHf/vfWr  } f.{Of/w!\ Y HH\Yl /fWgrHfufHDAWf(AVAUATUSHhf.f(r)D$P)D$@f.f(ff(f/f.Ef.E„tXf/D$<L|$8f.L$8,&T$`D$XfZZD$pL$t~D$pHĐ[]A\A]A^xS/fT5WLf/5/g LS/Vf/5'9H1ҾH=ӄ1zR(b@t$8*/fHnf(l$0Yd$(t$t$@YD$4YY|$D$ f(FtHBd$(f(fTxKl$0fHnf.ff/t$8f(f(f(XXYYf(\Xf.f(l$Xd$`T$h\$0l\$0D$(f(T$hYfH~f(ofHnfYf(YL$(f(\$nrsl$Xd$`f(f( f(f(fD(YYDY\f(YAXf.XXD$HL$P\$0T$(軓\$0T$(f(D$XD$XD$XD$ XXXf( tL$` ,f/L$HD$Xd$81L-Xd$d$%fI~ffIn*pCf*D$ f(T$0tYD$PLHqT$0|$x$L$Hf(|$\$(p\$(ff(AD\$YYD$ YT$pXD$XL$D$L$H<D$@LHY+ q $\L$Hd$x$d$\$ oT$$$\$ t$YfW5EHYD$fW3HfW+Hf(\f(of(Lf.(s.NzuN[D/D$8XfZ-f(fTGf(f.ft$8d4f1H$d$Ld$xL-d$%o$$%fI~DffIn*nCf*D$f(T$0qYD$@LHeoT$0l$x$L$8f(l$ \$(Un\$(ff(AD\$YYD$YT$ vnXD$XL$D$L$H<~lFD$@LHfWY)n $\L$8d$x$d$\$ m\$ d$~Ft$YYD$fWf(fWfW$\mZZ?D$8L$@ZZ!f/21ҾH=_~1t 0f(t$`|$Xf(f(YYYY\f(Xf.T$X\$`f(=lf(@ f(f(YYYY\f(Xf.f(l$XT$hd$`\$(I\$(D$0f(T$h%D$(Yf(iL$04$fYYD$(fW jD\f(=lXmd$`l$Xf(L$82f(&Yf(YYY\Xf.XXd$8f/%E+f(Y;+\;+Y\7+Y\3+Y\/+Y\++Y\'+Y\#+Y\(Y\XZfWZCŹfZ$fd$0l$(>jd$0l$(f(f(fA(fA(|$ t$d$l$i|$ t$fD(d$l$f(f(f(f(d$fA(l$id$l$D$XL$`!Hzff(f(t$0fHn|$(pit$0|$(f(f(?f(f(f(|$0f(t$(6i|$0t$(f(f($fd$0l$(id$0l$(f(f(f.AVfAUATUSHĀf.D$@L$Hjd$@f/%L$HHl$xLd$p%fW vAf(\l$@d$L$Xf(l$Pk5Yt$@D$hL$`f(5nYt$Hf(l$8f(t$0Lj|$@LHD$(D$HY(\|$L$ fH~AiT$pl$xfHnT$l$7hT$DD$(f(DL$ d$0Yl$8|$`Y\$t$hXXfD(f(EYf(AYAYD\f(AYXfA. f(f(AYYf(f(\AYf(Y\$`Xf.L$h D$`5fT?f.D$hfT?f.h f/L$PD$HfT?f/ud$Pff/d #f/Rf/f,D1ҾH=x1;n%f(t$h|$`f(f(YYYY\f(Xf.\$hT$`f(f(e8f/L$HfT >f/f(ff/<"f/f/ +1ҾH=6w1_mf(2fD|$@!fHnf(l$8Yd$0|$|$HYD$ 'YYt$ D$(f(覅fHd$0f(fT=l$8fHnf.ff/f(f(f(XXf(YY\Xf.f(d$`l$@T$h\$8\$8D$0f(]T$hY'fH~f(bfHnf`Yf(YL$0f(\D$del$@d$`f(f( bf(f(fD(YYDY\f(YAXf.XXD$PL$X\$8T$0 T$0\$8f(D$XD$ XD$XD$(XXXf(ofL$h f/L$PD$`s-w1HD$L-HD$fI~@ffIn*^cCf*D$(f(T$8~fYD$XLH dT$8|$p\$xL$Pf(|$ \$0c\$0ff(AD\D$YYD$(YT$ cXD$XL$D$L$H>D$HLHYZucL$\L$Pd$p\$x5d$ \$(dbT$ l$\$(d$YfW%:YD$fW:fW:f(\f(ebf(f(f.l$B~8D$HLHfWYaL$\L$@d$p\$xd$ \$(_\$(d$ ~L8l$YYD$fWf(fWfWT$\_H[]A\A]A^D$PL$XKf(f(qD$@L$H- f(f(f(YYYY\Xf.f(d$`T$hl$@\$0\$0D$8f(T$h-VD$0Yf(;\L$8t$fYYD$0fW !7\f(^`d$`l$@ff(f(YfYYY\Xf.,Ht$8f|$0fHnf(f(]t$8|$0f(f(f/-v}Y\Y\Y\Y\Y\Y\Y\Y\*Y\~XfW5T\$fd$8l$0\d$8l$0f(f( t$8f(f(|$0\$fd$8l$0\d$8l$0f(f(fA(fA(|$(t$ d$l$G\|$(t$ fD(d$l$f(f(f(f(d$fA(l$[d$l$D$`L$hfATf(SHHf.f()5)D$0zif.zcff(f/wiLd$0f(f(LD$,Lf($wG$D$,v.tUD$0L$8HH[A\DfW(4눐Hv4tLH=$z$ul$0d$8f(\$l$d$\$$f(9 $l$d$f(Yf(YYY\XT$0D$8.TfDATf(SHHf.f(3)D$0zif.zcff(f/wiLd$0f(f(LD$,Lf($F$D$,v.tUD$0L$8HH[A\DfW2눐Hu4tLH=b$x$ul$0d$8f(\$l$d$}\$$f(ɶ $l$d$f(Yf(YYY\XT$0D$8.TfDATf(f(SHH pf.L$0 pL$8zef.z_ff(f/wfLd$0f(LD$,L$f(D$D$,v/tVD$0L$8HH[A\fDfW81닐Hs4tLH=$.w$ufW0l$0d$8f(l$d$\$\$$f(A $l$d$f(Yf(YYY\XT$0D$8%Lf.@ATfSHXf(%0fL$(fZL$,f.)d$@Z\$(PfZf.>f/wxLd$@LD$<Lf($B$D$<vMttL$@D$HZZL$ D$$~D$ HX[A\ffW/vfDHq4tLH=*$vu$ul$@d$Hf(T$l$d$ET$$f(葳$l$d$f(Yf(YYY\X'h5(LfDATfSHX%umfL$(fZL$,f.d$@%[mZ\$(d$HYfZf.Gf/wyLd$@LD$<Lf($/A$D$<vNtuL$@D$HZZL$ D$$~D$ HX[A\fW-ufDH!p4tLH=s$s$ufW-l$@d$Hf(l$d$T$}T$$f(ɱ$l$d$f(Yf(YYY\X3(LfDATfSHXf(%M-fL$(fZL$,f.)d$@Z\$(PfZf.>f/wxLd$@LD$<Lf($~?$D$<vMttL$@D$HZZL$ D$$~D$ HX[A\ffW,vfDHqn4tLH=$r$ul$@d$Hf(T$l$d$ոT$$f(!$l$d$f(Yf(YYY\X'1(LfDATf(SHHf.f(+)D$0f.ff(f.Ef.Etf.DȄ?f/ûwtLd$0f(f(LD$,Lf($=$uQD$,wHl4uf.D„u,ff.zbu`fHuOH0f([DfH0f([f1ҾH=M1CH0[f(fHfH*f/f(H|$(Ht$ L$=L$D$(^f(\\$ ^f(HPH)~-q%!Y^\f(fTf.vD f.fH*ƒY^\f(f(fTf.f(H9|f(L$>L$f(^fDf^f.w*QD$Xf(_T$YQL$T$=L$T$D$f.AVfAUATUSHf/D$XL$p f.z?u=t$Xf/ f.  -  D$XfɹfW\ ,*f.EtK~GX -2 L$pl$Al$Y! fT$p=D$XYXtYf/$E $$ ~= A)|$`X\$XL$$$<T$XLX2Y$fI~fH~f(&f(fHn\ f/wf/ =Y$\?6H$D$fInGd$Y%t$pYfA*AYf(fD(Yt$Xf(XffD(f(D$T$x)fD%f.AA#N}f|$8|$xA*l$Pf(DD$0DT$@t$HX$0$0\$8$8\$@$0$8\$HD$HD$@$0HDŽ$P$P$Xf$X\$`$P$X\f(A\$hf(D$h$`D$PAXAXfEE\XDX$p$p\$x$x$pd$\DXf(AXDL$($$\$f($$Yt$L$ $f($fW6DL$(D\L$fd$L$ $t$YDT$@DYDT$DXfA(Xf(X$ $ \$($($ \f(f)$f(AY$fA($fW 6fLHDT$t$H$Yt$AYXXf(X$$\$$$\f)$2Vl$PDD$0f(fD(f($$f(X$$\$f($\$$$\fA(X$D$D$$$$A\A\AX$f($\$$$\$D$$$E\Xf(DXX$$\$$$\f(AXX$$f(\$`\f(fATf(f(|$8$$_\f(fD($fTf(Yf/wff.|fT|$`f$Y=if.X$"f/ff.E„f.E„u f/t$Xf(t$`fTf($YT$8f/_f(T$`D$XL$pfTXbfTf/\$1f/f/İf(|$`pfTYf/Vf/$4LY$fH~fInsf(fHn\ufTD$`1f/jH=A18fIn-YP,f(f*f.zRuP-u|L$pD$Xl$fW P l$YHf([]A\A]A^D-ПfDX-wYf-wp ff/s1f/=ED,Et|$Xf/|$p7H1$H$W~=pxA)|$``ffT|$`f$Y=Mf.X$z f/3$T$|$l$,l$Y$l$,|$T$l$Y$fDf(ȸ;fHDŽ$ fD-f(|$`L$XT$pfTX HƝ$fTf(H$f/T$8f\$p^#f.kQۅ5f|$@1|$pf(fD(t$ f Pf.'D$Xf(σl$0\$(AXXT$ DD$|$i\$(DD$f(|$DX\Yf(d$`l$0f(fWY8f(A^fED*A^fTXf(fTYf(T$ _f(D$Yf/wff.|$@f(L$`D$$Yd$8fTfTYf(XYXf/f.f(T$`fTf(XD+ff/T$X$HH$1f/f/ F$/LY$fH~fIn/f(fHn\DL$pH[]A\A]A^g|$Xf/|$p$L$/|$XZH$f(f(\$\Y\XfI~f(T$茕f(fInA'\(L$T$Yf(L$L$\$Y|$X4CL$T$pf(D~DfD(D >DXf(D)T$`YD\$ffDfD.rg9t^ff**A\Y^Yf(XfATf(_f(fATf(f(AYf/w ff.zufTT$`L$p\$(d$ T$l$D$XfWl$d$ f.\$(XD$YD$f(T$`$fTX$f($f(rYf/ACH=3:11-58f1|$0f(fD(t$!=f.'D$XL$pl$(\$ AXXT$DD$X\$ DD$f(l$(DXYf(|$`$T$f(A^fED*A^XfTf(_fTf(f(YD$Yf/wff.|$0`D$X]dl$d$ f(T$`\$(XD$YD$$fTX$f($f(Yf/3Af$L$+|$X^H$f(f(\$\Y`XfI~f(T$萑f(fIn\$L$T$YD$f(߽L$E\$Y~=f(f)|$`fTf(=ɬ|$L$pD$X\$(d$ l$f(|$)|$f({Sf(H HfHf.z!u_HtfH [H{f( $^ $HHD$f(Cf $T$H*H [Y^\f(ff.f.Ef.3Euff.D„tH [Ðhf/sBf(H|$Ht$ $& $D$^\D$^fW @8^f.w?Q$]Y$fWfDfW f(L$$(L$$f.f(f(~H8HxMeff.w f.%#vaf.zuf(f(H8@H8f(1ҾH=51,fH8ff.E„t%f.E„tHuf(xff(f(t$(H*Xd$ l$l$d$ D$f(f(L$f?$z%|$DD$f(f(l$t$(AYf(YAY\f(YXf.zf.z u f(f(f(f(fA(t$"t$l$f(f.HfZfL$fZL$ZT$ ZZ$L$~$Hf.fHXfD$Hd$Hl$L.z,HxPdf.w .%v^.z!u((d$ l$$~D$ HXf%(1ҾH=31)%{fD.E„t&.E„tHu%@({@ffft$H*ZZX!d$l$ Ztl$ d$ffEZDZ((,f|$DD$"$fD$@D$@D$8D$DD$<~D$8"|$DD$fD$0DL$0L$4(A((l$ Yt$AYY\A(AYX.z.z u (h(_A(A((t$B#t$l$ fD$(d$(D$,fSH`fD$Xd$Xl$\HHfH.z$u".zu(H d$@Hl$D~D$@d$,$kHCffH*fD$8|$<t$8,$d$(Y(D(YDY\(YAX.((l$ d$f"d$l$ H{fD$(t$(|$,d$ l$$~D$ 4$|$fD$\$D$\$\D$\$D$~D$H`[Dd$Pl$T~D$P\ fD$HD$L\$HWW((l$$$d!l$$$fD$0D$0L$4f,fH*.z/t f/w]fffZZf(f(d$$1$d$Z.zHf(f(苸HZf1ҾH=K1%kHf.@.(SHH Hx_.<E„u9.>D„u(f.zWuUfHuH ([fH ([1ҾH=/13%H [(fHfH*/(H|$Ht$L$L$D$^(\\$^(H_H%Y^\(T.pv>!DfH*ƒY^\((T.9(H9|f(L$bL$(^PfZ^ff.w1QD$X(pfZYT$ZeL$T$8L$T$D$@S(H HfH.z#u!HtfH [fH{(L$L$HHD$(sfL$T$H*H [Y^\(f..E.Eu.]D„tH [D</sC(H|$Ht$L$L$D$^\D$^WDfZ^ff.wAQD$ZYD$ZWVW I(L$vL$D$AWf(f(AVSHPHfHfI~f.fI~z/u-f.z'u%ff(H5Ӓ(fDf(f(H,$d$HCf,$H*f(f(d$fYf(f(YY\fYXf.kf(f(l$H$$$$l$f(f(f.znHf.%fwwf.wif.E„f.E„E1HfI~fInfIn\\HP[A^A_@f.zJuHE1MпD$@L$Hf(t$@fW5L)4$$L$HP[A^A_pfI~fI~yfff(f(t$8H*X |$0d$(,$,$d$(D$ ҈f(f(L$f[,$DL$ DT$f(fD(t$8AYAYf(fA(\AYf(AYfI~Xf.|$0ff.zLuJE1f1ҾH=(1L$E1$=t$fI~<$PfI~FfDM8ff(f(l$$$l$$$if(fA(fA(t$ fA(|$ht$ |$,$fI~'f.AUfATSHpf(fL$8fZL$HDŽ$HnL$ )$f/H$D)$$L,f(f(Mt>1H$DH$H\$$\$XXI9ul$ |$f(f(YYYYf(\Xf.wf(fD.z u fA/rfATmfD(l$XE\D\$PDT$@D|$0fA(DL$ |$D$Dl$'Dl$~%Hf(-nD$fA(|$DL$ \D|$0DT$@D\$PfTf/l$XfD/v[fA(l$0\D\$ DT$|$|$D$l$0D\$ f(fH~DT$fA(fLnHfA(fA([fA(f(]A\A]A^A_,#f/fA/f/fE(l$XE\DT$P|$@D|$0fA(DL$ DD$D$$D\$`D$$~%f(-lDD$fA(DL$ D|$0\|$@DT$PfTf/l$XdD\$`HfA(f([fA(]fA(A\A]A^A_s\L,I? fA(A\f/fA(A\f/fA(fA(fA(_ff(PtfA/r f/fE/fA/fA(fD(f(D~%D\$xI?fAWfEWfAWD$f(fA(MD$l$pd$hDt$`DT$0DD$ DL$<$/DL$DD$ <$DT$0fH~L$fA(fE(fA(D\fA(|$D$fA(DL$@>fHnDD$ D~%YDt$`d$hYD$fEWDD$0fA(fA(l$PD$Xf(7/|$D$D$D$fH~L$f(fA(|$ fA(fA(Dl$藡fHnf1YD\$xHJiYD$fA(l$`l$pD$hfHnf(|$ fD$fD(DD$0Dl$fD(f(fI~fI~DL$@A\fD(fD($XhDX-hD$DX hD$xfA(A\XhDl$pD$$@HffIn$H*fInH$$fEfA(L*XXXf(YYAYYY^^fA(YYf(AY\f(AYXf. l$hfI~fI~\$`f(fD(YYDYf(f(YD\XfD. D$p\$xfInfInXXX$DYfA(f(YYYYfA(A^A^YYf(AY\f(AYXf." \$Xd$PfI~fI~f(f(YYYY\f(Xf.p XAXD\$@Dd$0DXDXD|$fL~Dt$ D|$L$$fHnY)gf/$wHH D|$Dd$0fLnD\$@1ҾH=1H-fHl$L$fHn0fA/fD/vfA/vfD/v fE(fA(fA(f(f(l$@\efA(DT$P|$ D|$_|$ HefD|$DT$P$H$f(f(H$H ffA׾ $f()$fHnH|$0D$HDŽ$HDŽ$ f(,$|$0D$ D$fWL$f(f(l$@fWf(D*DD$ \$f(f(fA(fA(YYY\f(YXf.fA(f(af(~%8)$$XfA(fA(E1DD$0fA(fA(|$ D$DL$xDT$l$@D$$2D$$l$@fW-D$PD$fA(Dd$pf(l$@G)|$ DD$0DT$ $fH~f(fA(f(AXfA(f(A\L$讛fHnfDd$pYDD$0DX%ZcH?L$X BcfI~I|$ fH~fI~D$Dl$@DD$Dd$pL$hl$X,$$Y4$l$`fLfD$xfLnH*fMnIL$p$ffA(I*XXXf(AYAYYYYfA(^^fA(YYY\fA(YXf.Z\$XfH~fI~l$`fD(f(AYEYAYAYD\XfD.D$hfMnfLnfA(fA(XY$XX$f(AYAYYY^^fA(YYY\fA(YXf.|$PfI~fH~fA(YfA(Yf(AYAY\f(Xf.yAXXfInDl$0DD$ XfI~,$L|$@X,$l$RL$D$fIn<Yaf/D$wHI DD$ Dl$0f1ҾH=:1x- al$@l$D$@L$fA(D$fA(f(A\fAfEl$fW ")\$0D)T$ %H+`ff(\$0l$$fD(T$ f(H$H`H$HL$f(ξ fHn)$HDŽ$HDŽ$D)$$|$$$f(f(Yf(f(YY\f(YXf.f(f(D}f(HD_f(fA(fAEXf(D$$fHn\>_YD\$@E^l$0D$$|$ H$HDŽ$A\$fA(YoHp_fH$$H'f(ƾ $fHnf(l$0f(4$D\$@%z^D$D^|$ L$fA(YfWYf(\fWf(#DD$t$f(f(f(fA(fA(fA(|$0d$ Dl$DD$L$H\$@|$0fd$ Dl$DD$f(fMnfLn?fA(fA(f(l$0DT$ Dl$DD$H$Ld$@8l$0fDT$ Dl$fLnfMnDD$L$`D$XfA(fA(Dl$0DD$ |$d$Dl$0fDD$ |$d$fD(f(L$hD$`f(f(D\$@Dd$0Dt$ d$D$D|$hD\$@Dd$0Dt$ fD(f(d$D$D|$f(fA(fA(Dt$@d$0DD$ D|$D$Dd$L$L$d$0Dt$@fInDD$ f(fInD|$D$Dd$D$PfA(fA(f(Dl$0DD$ l$DT$xDl$0DD$ l$DT$3L$ D$Gf(oL$XD$Pf(f(D\$@Dd$0l$ DL$D4$D|$D\$@Dd$0l$ DL$D4$D|$"fA(fA(l$@DL$0Dt$ D|$D$Dd$L$L$l$@DL$0fInDt$ D|$fInD$Dd$`fHfZZf\$fZZ\$Zd$ !ZZ$L$~$H@AWAVATE1SHhL$$H|$\Y+|$\f(<$L$f(HYYf(l$@Yf(f(XX|$Hf(t$X50Z\fW LYf(D$8fHnYYf(fI~f(fI~:H3YT$8L$@$fHnD$ft$f($D^f.ID$fEfIn\$0L*fInIDD$(t$ l$fA(DL$DL$T$8L$@D$fA(|$\$0d$f(DD$(Yt$ YXf(f(f(fW#X^fA(f(\ $fTXf(\\f(fT Y QY$f/DYsIE1D$Htf(Xt$HHhL[A\A^A_^f.AWAVAUAATUSHL$0L$D$SH$vD hW+$fA(d$f(Yf(|$d$($ f($ fWd$(f$ f(D$f(f(|$ Y$($(fW|$ \$0f($(\$(XXt$f(X$0$0\|$f($8$8D$0\f(DT$8Yt$@$f($fW\$(f$f(D$f(f(d$ Y$$fWd$ f($XX|$f(X$$\$$D$DT$8HU\fA(DD$0fE(fA(DT$PEXf|$()$fHnD$$fWDd$`t$@H+U$D$fD(f(fHnDX\$ D$$fWD\$H\$ T$f(fWt$XXL$f(X$$\cW$$$\7 DD$0fW f(fW%fH~fA(DD$ f(d$AY$f($fW|$(d$DD$ f($Y|$8|$D-XTf(DD$(f(fHnAYXXX$$\$$$$\f($f(AY$xfA($xfWHVf$xf(D$H$HS$d$ fWfHnd$ $XX\$f(X\$0$$\$$t$DD$($fA(fA(f(d$ Y$`$`fW\$0DD$(f(d$ $`f(\|$DT$Pf(DT$0f(|$8AYYf(XXX$hf($hfA(\fA($p$p\$$ht$Xt$@f(t$8S H|Qf(L$(f(XfHn$@$@fW\$(H9Q$@D$f(f(fHnXd$ $H$HfWd$ $HDd$`DT$0XXD$f(HPX$Pf($PfHn\$X$X$PD$$fW$\fA($D\$Ht$8H5PD$$D$f($fWfHn\$ \$ ff(f($XXt$f(X$HO$T$X\$$$$\fHn|$`t$h$$"HOfT$f(fH~fH~fHnf(EL$$fHnH$D$fHnH1fL$f(l$)$)$It$X$|$`D$(l$ $$l$8fYL$@$l$Hl$Pl$0$t$hl$HCfL$X$$H*f(Yd$`$0f($0fWd$`$$0$YX$Xf(X$8$8\$$@D$@$8A\Ml$d$`$f(L$xf(Y$f($fWd$`f$$Yf(d$YXXf(X$ $ \$$($($ \|$D$d$8DT$ L$8f(f(D$ fA(AYd$hDT$pDD$`$$fWDD$`DL$x\$0|$$fA(AYAYXf(XX$$\$$$\fA(l$ DT$pfI~fI~f(fA(DT$AY$f($fW)Dd$hLH\$ DT$$Yd$8AYXXf(X$$\fIn$$$\fInfInfIn$ff($fW)$6DD$($fA(L$0YD$$f(fA($$fW0DD$(DT$@f(\$D$0$|$PAYt$HAYXXf(X$$\$$$\l$(D$@fA(\fW=q$$A\$f($\$$$\$ fA(D$ D$$\$($(A\$0fW5ʲ$0$DD$`f($\|$Ht$P$8$($0\fA(A\$@f($@$8D$(AXAXfE(D\XDX$H$H\$P$P$H\f(AXX$X$X\$`$`D$X\fA(f(fD(f(f(|$Ht$PfD(f(f(fA(f(\fWdfA(f($$A\$$\$$$\$f(D$$$\fW ڰ$$\$$\$$$\fA(A\$D$D$$XXf(X$$\$f($$A\\AXXf(X$$\$$$\f(A\fDW%$H$H\$P$PD\D$X$H$P\f(A\fDW Z$`D$`D$XD$H$h$hA\\AXfE($p$pD\D$x$h$p\$D$$x$hA\XXDXD$D$E\D$$D$DD$`\fA(XfA(X$$A\$$$l$Pf\fA/d$Hf(vfW%fW TEHME$$YDT$x$D$DD$pd$h$hfHn$hfWL$`L$`fd$hY%DDD$pY$hDT$xD$fA/$$$XXf(Xf($p$p\$x$x$pvfDWɬfDWfA/wIfD/w \fA/s7HHfA(HDŽ$f)$$HfA(H$f)$$fA($H$H$GE$HE$H$H[]A\A]A^A_f.Df.HBf/w\ff/wR~%«-rBf(fTf.wf.zff/u`A;fDfTAf.v#fD1ҾH=N1SAHfDAfTf.vf(f/8As6f/vHvHu1ҾH=A@HuY Af(f(XX @^Sf.@ffZZf.H/w]f/wT~-d5Af(fTf.w.zi/ud?f.fTf.v#fD1ҾH=1HfDpfTf.v(֐/MsG/Xv^f(f( Hu>1ҾH=}f.f(f(nHtZeY @f(/f(XX O?^fAWfAVIAUIATUSHf.HT$`HL$hLD$PLL$X$,$~ mGf(fTf/[SF5L^4$A >f/p?H$L$Yĕ%>fT$HL$@Yۃ f(X|$f(\|$fX|$f\|$ @ftKl$HA*=>f(YfTf(f.vH,ffUH*fVXLHt$8@d$0AY>L$(YY>\f(L$(t$8Y5J|$f(d$0fW%XX\D$@YY^$f(^4$$YYXYXL$|$|$L$XYXD$ |$D$ A9L$@<$^=qDf(|$(L$0D$8D$(fWfL$0D$@$YFf. Qf(^>^$f.$ QD$0-LHXl$($f(D$(LH\\$$L$Hd$pQl$HD$`t$ L$Hd$pf(|$@Yf(fW-$YHL$hD$Y|$0\$xD$Yf(\$Yf(l$8YY$\t$l$`Y|$f(Yf(AYAY^<Y$f(fD(L$@Xf(Y\f(f(\AH`B^;YffLnHf(fLnXf(AEAffLHl$8A*GD R=t$0DD$(|$ YT$DYDY ';,f*XY;D\fA(xT$D$D$|$ DD$(t$0l$8d$\$f( <AfW%X\D$@Y$YGd$Y\f(Y^DY\$DYAYEXAXXf(AYXA9T$xH$$f(AYf(YDYYT$p\$DXl$HYDYf(YYf(H$YYDHD$PD^9XL$`\YYA\H$^}9XHD$X8Hĸ[]A\A]A^A_fD%P; p8=+9YfD(f(Y-f(Y=tWYfEfۉ*D*XA^\Y^YDXfD(fDTfA(fTYfA/vEf(fD(ĸ @=tWYfEfۉ*D*XA^XY^YDXfD(fDTfA(fTYfA/v$Y7EEL$ t$d$f(\$L$ X7AYH5D%59EYefD(H=7d$fHnt$\$~̠fHnD\f@=fEfEDYD*D*EXE^fE(D\fE(EYE^fD(E^DYAXfD(E^fE(AXDYEXfDTfE(fDTDYfE/bHD$`f(L$ t$D d$\$d$X6AYEL$ fD(HlH 6t$\$fD(~fHnfHnD\7AYD\f(D=YfEfED*D*EXA^fE(DXfE(EYA^fD(E^fD(YE^EXEXfD(EYEXfDTfE(fDTDYfE/d$HD$hYD YfD(f( D=t_YfED*A^fE(EXDXDXEYA^A^YDXfD(fDTfE(fDTDYfE/vHD$PfD(f(D=tiYfEfED*D*EXA^fE(DXD\A^A^YDXfD(fDTfE(fDTDYfE/vD5HD$XL$(t$ DYDA^$d$\$D\f(D\$(HD$PX;4D\$H YHD$XfHnH 4Do3t$ d$\$L$(fHn~ D\55YHb4fLnDX =Yf*^fD(DXXDX^fA(AY^f(A^fD(YDXf*AXD^f(EXAYDXfTfE(fDTDYfD/bH$fD(L$t$DAE^$D\f($DT$HD$XX2DT$H YHD$PL$fHnH 2t$$~fHnD\3YD\f( =ffE*Y݉D*fD(\DXA^fD(^f*XD^f(A^AXA^YXf(YDXfTfE(fDTDYfD/cH$DYH0H t3HHD$hHH H 7HH$H Q3IIHH$HL$0L$0fL$HL$HD$0fDff/v0DHHHD$8HL$HHT$Ht$PHD$8PLL$8LD$0D$@Xf.2Z{=f.2{ HHfDu1ҾH=,1Y0HH@u1ҾH=,1/HH@ff/v0DHHHD$8HL$HHT$Ht$PHD$8PLL$8LD$0D$ Xf.1Z{=f.1{ HHfDu1ҾH=+1/HH@u1ҾH=+11/HH@AVfE1AUIATIUHSHH@f/vfWAHD$8HL$HHT$Ht$PHD$8PLL$8LD$00f(D$AEf(D$ A$f(D$0f(D$@XZEAEf.0f.0A$f.0f.0f.0'f.0{}Ef.p0f.j0{8Et ffWǗf(A$EH@[]A\A]A^fDu11H=r*YH .HE@u11H=J*1H-HEf./b\11H=*Hj-HEAf11H=)Hv-I$f.f/11H=)H,HfDo11H=v)]H-IEA$f..OI11H=<)#H,I$211H=)Hf,IEDff/v~,DHXHD$HHL$(HT$ Ht$H|$PHD$HPLL$HLD$@uL$Pf. ?.D$XXZ{=f. 5.{ HXfDu1ҾH=m(1D$KD$HXtf.fff/v+DHXHD$HHL$(HT$ Ht$H|$PHD$HPLL$HLD$@L$0f. -D$8XZ{=f. -{ HXfDu1ҾH='1D$D$HXtf.fSf1H@f/v fWgHD$8HL$HHT$Ht$PHD$8PLL$8LD$0D$0Xf.,Z{Kf.,{tfW H@[u1ҾH='1*u1ҾH=&11*fHHf/vfWHD$8HL$HHT$Ht$PHD$8PLL$8LD$0MD$Xf.,Z{;f.,{ HH@u1ҾH=[&11)HH@u1ҾH=3&1 y)HHf.fSf1HPf/v fWגHD$HHL$(HT$ Ht$H|$PHD$HPLL$HLD$@L$@f. M+D$HXZ{Kf. C+{tfWuHP[u1ҾH=%1D$KD$tf.ffHXf/vfWHD$HHL$(HT$ Ht$H|$PHD$HPLL$HLD$@D$ f.*L$(XZ{Cf.*{ f(HXu1ҾH=$1L$L$HXf(@tf.fAWAVIAUIATIULSHHGG Hc;HCHH9.HҶHc;HCHH9H诶;{HC Hc蝶HC( IHPL<$HD$fHD$ @LpH5tHD$He%HD$ HRL|$(HD$0κfHD$8 @LhHtHD$@H%HD$HHFUL|$PHD$X臺fHD$` @L`HsHD$hH$HD$pHYL|$xH$=fIH$I@HhHsLH$Hv$H$C9EtH H5"H8JC8EtH H5"H8+HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(H$H9gHĨ[]A\A]A^A_(HHHH{(HtH{ HtH{HtH{HtHHf.DAUATIUHSHHXGGHc;HCHH9HHc;HCHH9vH̳;{HC Hc躳HC( IH0PL,$HD$2fHD$ @L`HrqHD$H"HD$ HZMLl$(HD$0fHD$8II@HhHqLHD$@H0"HD$HC9EtHБ H5y H8C8EtH H5 H8HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(wHD$PH9jHX[]A\A]HHHH{(Ht׵H{ HtɵH{Ht軵H{Ht譵HնHAWAVIAUIATIULSHHGG ձHc;HCHH9.H貱Hc;HCHH9H菱;{HC Hc}HC( IHs]L<$HD$fHD$ @LpHUpHD$H& HD$ HMbL|$(HD$0讵fHD$8 @LhH.pHD$@HHD$HH&gL|$PHD$XgfHD$` @L`HpHD$hHHD$pHiL|$xH$fIH$I@HhHoLH$H.H$C9EtH H5H8*C8EtHڎ H5H8 HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(蠴H$H9gHĨ[]A\A]A^A_HHHH{(HtH{ HtH{HtڲH{Ht̲HHf.DAUATIUHSHHXGGHc;HCHH9HϮHc;HCHH9vH謮;{HC Hc蚮HC( IHHL,$HD$fHD$ @L`H2lHD$HbHD$ HJLl$(HD$0˲fHD$8II@HhHlLHD$@HHD$HC9EtH H5YH8C8EtH H5rH8±HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(WHD$PH9jHX[]A\A]HHHH{(Ht跰H{ Ht詰H{Ht蛰H{Ht荰H赱HAUATIUHSHHXGG¬Hc;HCHH9H蟬Hc;HCHH9vH|;{HC HcjHC( IH JL,$HD$fHD$ @L`HkHD$HHD$ HJGLl$(HD$0蛰fHD$8II@HhHkLHD$@HHD$HC9EtH H5)H8豯C8EtHa H5BH8蒯HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{('HD$PH9jHX[]A\A]HHHH{(Ht臮H{ HtyH{HtkH{Ht]H腯HAUATIUHSHHXGG蒪Hc;HCHH9HoHc;HCHH9vHL;{HC Hc:HC( IHFL,$HD$貮fHD$ @L`HhHD$HHD$ H:CLl$(HD$0kfHD$8II@HhHChLHD$@HHD$HC9EtHP H5H8聭C8EtH1 H5H8bHHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(HD$PH9jHX[]A\A]iHHZHH{(HtWH{ HtIH{Ht;H{Ht-HUHAUATIUHSHHXGGbHc;HCHH9H?Hc;HCHH9vH;{HC Hc HC( IHPAL,$HD$肬fHD$ @L`HbfHD$HHD$ HCLl$(HD$0;fHD$8II@HhHSfLHD$@HiHD$HC9EtH H5H8QC8EtH H5H82HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(ǫHD$PH9jHX[]A\A]9HH*HH{(Ht'H{ HtH{Ht H{HtH%HAVAUIATIUHSHHĀGG-Hc;HCHH9H Hc;HCHH9H;{HC HcեHC( IHKBL4$HD$MfHD$ @LhHcHD$HHD$ Hu?Lt$(HD$0fHD$8 @L`H&cHD$@HVHD$HH`Lt$PHD$X迩fHD$`II@HhHeLHD$hHHD$pC9EtH H5MH8ըC8EtH H5fH8趨HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(KHD$xH9jH[]A\A]A^軾HH謾HH{(Ht詧H{ Ht蛧H{Ht荧H{HtH觨HfAWAVIAUIATIULSHHGG 襣Hc;HCHH9.H肣Hc;HCHH9H_;{HC HcMHC( IH?L<$HD$ŧfHD$ @LpHaHD$HHD$ HL|$xH$fIH$I@HhHR]LH$H8H$C9EtH} H5 H8 C8EtH} H5 H8HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(耣H$H9gHĨ[]A\A]A^A_HHٸHH{(Ht֡H{ HtȡH{Ht躡H{Ht謡HԢHf.DAUATIUHSHHXGGҝHc;HCHH9H话Hc;HCHH9vH茝;{HC HczHC( IH`>L,$HD$fHD$ @L`Hr^HD$H HD$ HBLl$(HD$0諡fHD$8II@HhHC^LHD$@H HD$HC9EtH{ H59 H8C8EtHq{ H5R H8袠HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(7HD$PH9jHX[]A\A]詶HH蚶HH{(Ht藟H{ Ht艟H{Ht{H{HtmH蕠HAUATIUHSHHXGG袛Hc;HCHH9HHc;HCHH9vH\;{HC HcJHC( IHHL,$HD$ŸfHD$ @L`Hb[HD$H HD$ HMLl$(HD$0{fHD$8II@HhHZLHD$@Hy HD$HC9EtH`y H5 H8葞C8EtHAy H5"H8rHHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(HD$PH9jHX[]A\A]yHHjHH{(HtgH{ HtYH{HtKH{Ht=HeHAWAVIAUIATIULSHHGG eHc;HCHH9.HBHc;HCHH9H;{HC Hc HC( IHS2L<$HD$腝fHD$ @LpHeWHD$HHD$ H4L|$(HD$0>fHD$8 @LhH^WHD$@HwHD$HHf9L|$PHD$XfHD$` @L`HwYHD$hHHD$pH=L|$xH$譜fIH$I@HhHBYLH$HH$C9EtHv H52H8躛C8EtHjv H5KH8蛛HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(0H$H9gHĨ[]A\A]A^A_蘱HH艱HH{(Ht膚H{ HtxH{HtjH{Ht\H脛Hf.DAWAVIAUIATIULSHHGG uHc;HCHH9.HRHc;HCHH9H/;{HC HcHC( IH1L<$HD$蕚fHD$ @LpHTHD$HHD$ H/L|$(HD$0NfHD$8 @LhH.THD$@HHD$HH;L|$PHD$XfHD$` @L`HWHD$hHHD$pH6L|$xH$轙fIH$I@HhHVLH$HH$C9EtHs H5BH8ʘC8EtHzs H5[H8諘HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(@H$H9gHĨ[]A\A]A^A_訮HH虮HH{(Ht薗H{ Ht舗H{HtzH{HtlH蔘Hf.DAUATIUHSHHXGG蒓Hc;HCHH9HoHc;HCHH9vHL;{HC Hc:HC( IH@AL,$HD$貗fHD$ @L`HTHD$HHD$ HFLl$(HD$0kfHD$8II@HhHTLHD$@H,HD$HC9EtHPq H5H8聖C8EtH1q H5H8bHHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(HD$PH9jHX[]A\A]iHHZHH{(HtWH{ HtIH{Ht;H{Ht-HUHAUATIUHSHHXGGbHc;HCHH9H?Hc;HCHH9vH;{HC Hc HC( IH`IL,$HD$肕fHD$ @L`HSHD$HKHD$ HKLl$(HD$0;fHD$8II@HhHRLHD$@HHD$HC9EtH o H5H8QC8EtHo H5H82HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(ǔHD$PH9jHX[]A\A]9HH*HH{(Ht'H{ HtH{Ht H{HtH%HAUATIUHSHHXGG2Hc;HCHH9HHc;HCHH9vH;{HC HcڎHC( IH@>L,$HD$RfHD$ @L`HQHD$HHD$ HCLl$(HD$0 fHD$8II@HhHPLHD$@HHD$HC9EtHl H5H8!C8EtHl H5H8HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(藒HD$PH9jHX[]A\A] HHHH{(HtH{ HtH{HtېH{Ht͐HHAUATIUHSHHXGGHc;HCHH9HߌHc;HCHH9vH輌;{HC Hc誌HC( IHfHD$8 @LhHHHD$@HHD$HH0L|$PHD$XfHD$` @L`HHHD$hHHD$pH_0L|$xH$證fIH$I@HhHHLH$H4H$C9EtHc H52H8躈C8EtHjc H5KH8蛈HHUHCH(L)HuHIHHUHCHHUHC HHcSHH{(0H$H9gHĨ[]A\A]A^A_蘞HH艞HH{(Ht膇H{ HtxH{HtjH{Ht\H脈Hf.DATf(f(USH5-XXXYf(YYX-X$@YXYYXXD$6HYYf/X:Yl$XY\$fD(=/f(D rD^d$PDYL$8YT$0DYEYDL$HAYDT$@|$(.|T$0D$ f(蹁L$8DJt$^5f(d$f(f(^%D%IAYDL$HD-IfD(AYDT$@H|EYfHnf(\IYd$PYXf(l$^-Yf(f(AYf(fA(\xIAYXT$0YmIDXYXfA(AYEYXYDXfA(AYEYDY\$(DX-Y,$AYXfA(XYAXAXYXf(YXD$ HĐ[]A\YfDf(T$8d$0|$@L$ EL$ D$(a H%L$ DL$(d$0T$8fHnDf(|$@YAYYfA(AY\f(YA\Yf(Xf(X?l$T$ $A\DD$9 $H}DD$T$fHn\f(A\f(YXf( $H5H=f(f(詥l$HĐ^[]A\f(YHD$0ADNT$@fHnd$8DL$(Al$L$ 6 DL$(Ic=lT$@HYfA(fWsYDT$0fE(HT`AD$Df(H-L$ Yd$8EYAYAYD`AD$fA(HA\Y$AYD`f(HcXAY\YD$^D`HDD$XT$PfHnd$H|$@DT$8DL$0l$(\$ Dd$ $ DT$8AD$De|$@H $DYHDd$DL$0l$(AY\$ d$HAYT$PDD$XD\YEYAXAYXA\Yl$^-l`uXD$`Yl$xXD$hYXD$pYXYX$YX$HKDD$HT$@fHnd$8D\$0|$(DT$ DL$\$ $ \$ $DT$ DL$fD(D%|$(-D\$0EYDD$HT$@Yd$8AXAY\AYf(AYAYf(f(\sAYX"DAYDYfA(YAX\YD$^PAUf(ATUSHxfW-HVL$ Ld$lf(T$D$}%@\$YD$Xf(^f(}D,D$D)øH詀fLA*f(D$0AfA*YT$l$/L$T$LYT$XT$ \f(L$L$\fN}D$(9 fHeHD$*fHnl$0f(5D$lYf*f(fT Uf(f. f(\5l$Hf(L$@\$8t$ rT$\$8HL$@Yl$HfHn\X9>f(fHnY^]9Y\YXe^XDYL$=\D$lXL$ f(fT Tf.5<f/=f/Df(ffA/ f\f(XYfA/sDfD/w$@X^f(XfD/ff.zu1ҾH=1\$8l$8 l$\$8\\$f(\D$(wXD$9H\$fHnD$D$(wYD$Hx[]A\A]ff/ (<f(\$Hf(\5f/ l$@L$8t$G}YD$L$8f/ l$@Hv\$H\Xd7f(fHnY^57Y\yYX=^f(X@ODf(ffD\f(XYfA/sDfD/w0@X^f(HfLnXfD/qff.zu1ҾH=1\$@l$8L$NH_L$l$8\$@fHnf(LfWQ\$Hl$@f(L$8T$T$=PDiD$PHf(L$8l$@f(fT\$HfHnfD.v+H,ffUH*f(fT\f(fVf.z ,ƺf(\ƃDf/D$l\$@T$8l$T$8f\$@Yf.l$zf\$8l$z 8l$\$8\\L$P@fWOLl$HL$@f(\$8T$,T$=ODD$PHf(\$8L$@f(fTl$HfHnfD.v+H,ffUH*f(fT\f(fVf.z ,ƺf(\ƃDf/9D$lo\$HT$@l$8L$JT$@fL$l$8\$HYf.z )fD\$@l$8L$QyL$YL$f(q7XL$ l$8%\\D$PHd\$@\f(fT>Nf.fHnD$l fff/vD$lfW5MfA.A\6l$XL$P\$HXYT$8\6Y\6Y\6Y\6f(f(\6YY\6|$@Y\6Y\6Y\6YD$f(x|$@\=6T$8DD$D\y6H*Y\$HL$Pl$XfHnA^Xff/vD$lfW=LfA.A\\$Pl$HX5YL$8\5Y\5Y\5Y\5f(f(\5YY\5t$@Y\~5Y\z5Y\v5f(f(YT$vt$@\5Y5L$8T$\M5l$HY\$P^X 0{vL$8Hf(l$@\$HYT$f(fHnY\X0^4Y\4YX4Y\4YX4^f(Xfu\$8H.YD$l$Hf(fHnL$@fHnY\X/^J4Y\F4YXB4Y\>4YX:4^XmDXf(X@Xf(Xof(\$@l$8L$uf(fDof(\$8l$tl$\$8f(\\$f(\D$(nXD$H\$fHnD$@Df(fD/Cf(f(fDf(Sfd$f(f(f(AVYf(fD(SfD(fD(f(fD(HhDAL$YYYDYEYEYAYD$xYD$`YD$ Y$Y$Y$f(YDYD$0f(AYD|$@fD(DYD$Hf(AYD|$PfD(DYD$Xf(AYD|$hfD(DYD$pf(D$AYfD($DYf(D$AYfD($DYf(D$AYfD($DYf(AXD$D$AYfH~f(YfD(DYD$(f(D$AYfD($DYf(D$AYfD($DYf(D$AYY fI~f(ff.+QD$XfE( QD=$0D^% f(XXY$@Y|$@$85D$PYt$AXDYD$HY=4$ $$(Y%3fA($^L$D$Y$D$f($DT$8mDL$\$l$Hf(fA(fE(DT$8DD$@\fHnD5q3D$^f(fE(|$HY$fLn$0EY\tDYE^fE(AYfE(EXEYDt$0YDYY$^D\c)YAYA\D%DYEXD\%D$(EYD5DYDXf(XE\D\5!AYD5{2D\Y\XT$(t$(YB2YAXfE(D^T$XAYDYt$PAYfE(E\EYD%@YDY^A\AXD-1fE(D%DYE\D\5_$ $8D=|DYEYAXfE(D%DYE\D%4DYE\D%y1DX5DY$DYA\fE(D%V1DYE\D%K1DYE\D%@1DYEXDd$0DX5.1EYDY|$EYD%1EYDYAXD5DYE\D%0DYfE(D%0EXD50DYEXD\-D50EYfD(EYDX$A\D-0DYE\D-*0DYEXD$EYEXfE(DYl$DYt$hE^A\AYDd$pDY%Z0Y^L$(\YfD(A\AYD\T$XY&0D5Dl$PDY-%0D5d0DYDYYfA(\D/DYY/YAXD\YDX+DXYEYA\D/DYA\D/DYfE(D/DX/YDX|/D\%KY$@DYDYfE(D^/DYDXE\DN/DYEXD-C/DYEXD-H/EYD$HE\D\#/EYE\D /EYfA(D/DYA\D /DYfA(D.XDYAXD.DYA\D.DYA\X.D)D$0AYDY\$Y.EYAYAXD%.DYfD(DX.YD\.YAXD%.DYAXD%.DYA\\u.D%t.DYo.EXfE(EYfE(fD(fA(fD(DYYA\D=.EYDYA\D -.DYfE(D jDXDYE\fE(D\EXDYl$E\fA(D$DY-fA(fE(D^AYY^L$(fD(EXfD($Y -fL~DDYfD(L$pY -fE(D$D\%DYk-fA(AYD$D\R-YA\XD H-DYYE\D 9-AXDYEXDX%DT$hDY-)-D -Dl$PD-YDYDY-N-EYEYfE(D ,A\DYD%,DYE\D%,DYAXDt$XDY5,AX\,D ,DYAYE\D ,X,DYYEXD ,DYE\D ,DYE\D ,DX%n,EYEYfE(D$PD\h,A\D%b,YDYDXT,YE\D%b,EYD\8,YE\DN,DYDXT$HDX5,Y,EXD',DYAYE\D,XDYE\fE(D%, s,D+D$0D$XDYD5<,DYAYAYDYt$EXDl$@DY-+DYt$EXD\%+D+EYEYfE(D+A\D%+EYEYEXD%+DYE\Dz+DYEXfD(EXDe+DYE\DZ+DYE\DO+DYEXDT+DX%;+EYDYfA(D\ ?+A\D%A+AYDYD\ "+YDX !+YE\fE(D\ +YDX +YDXD\*EYD5*fA(fE(X*EYYYAXD*EYDYA\D%*EYDYA\D-*DYDXE\fA(A\fLnX$Y*AXYT$Dt$8X$Yb*D^uYAYD53DYAYD\fA(D5N*DYD$fE(D^\$(D$D$fD($D\Y)DY=)AYD)DY\YE\D5)DY\X )EXYD\)AYD$DY=)X)EYYA\D)\)DYYXD$pY)A\\l)Ds)D%r)D|$hD5r)DYDYDYY)DY=f)YE\D%4)DYX K)AYEXD%x)EY\7)E\D5)YDYX$)E\D5>)DX(YEYEYD|$XE\D5)A\D(DYDYEXD5(A\DY\(YE\D5(DYX(X (DYE\YT$PD5(DYAYEXD5(DYXE\D\%(D5(EYDY(AYA\D%m(EYE\D5r(DYAXD%g(DYA\DXX(D5W(L$HD|$xD-(YDYY H(EYAXD%(A\D5(DYA\X (D5D(DYY (AYX'AYX'AY\'AYX'Y\'YfD(f(fA(D5 (A\D\$`EYEYX'YE\D-'EYX'YE\D-'EY\T$@Yv'\ f'EXD-'YDYE\D5'DYXfA(fE(E\D-`'DYEXD-U'DYEXfE(Dd$0E\D5A'DYfA(D->'EYA\X$'DYfA(fE(A\D%'DYl$D5'DYl$EYDYEXD5&EYE\D5&EYE\D5&EYEXD5&DYE\D5&DYfE(fE(D%&E\D&DYAYDYEXD5&DYEXD5&DYE\D\%&D5&AYEYD%&\fA(A\fE(EYDYA\D-\&AYDYXN&DYYAXD=?&DYA\XAXD$DY-!&A\D$fA(Dl$8A\D&D^$DYAXYD$D$Y%XAYAYD^d$(D$DXfL~D5DYE\DXD$D$DY%%D$D\-3DY n%DY5U%YfA(D-%AYD%M%DYDYfA(\f( F%A\YD%$%DXDYAX\eD$DY%%AYD$DY%%D\f( $fA(Y\ $YX %AYA\XzY$AXD$DYfE(D$DYE\D$DYEXD$DYE\D$DYfE(fE(D$EXD-$DYAXDb$EYAY\f( `$A\D-Z$YDYfD( L$DXYE\f( :$AXDY\$hDd$pYDY%*$X &$\$AYAYDd$XDY%$fD( #XAYD\ #YfD( #EXYD\ #YfD( #EXYDX #YD\ #D\-#YEYD#EYA\D-#fA(D#EYA\D#EYDXD\ |#Yf(L$xAXDh#DYDYAXDX#DYA\DM#DYA\XC#DR#EYDYE\DB#DXEYfE(D2#EXEYE\D"#DYfE(D#EXDYfE(D#EXDYE\D"D|$`#DYAYfE(D"EXDt$PDY5"DYEXDX-"D"EYEYD-"EYE\D5"DYEXDt$HDY5"E\D"EYEXD~"EYE\Ds"DYEXDh"DYEXD]"DYE\DR"DYE\DG"DYEXfE(DX-7"D%F"EYEYDt$ E\fA(D"EYE\D%"DYE\AXD"EYA\D"EYDX!YDX!YD\!YD\fA(D!DYDX!YfD(EXD\%!DY$D!$Y!D-!EYEYDXfA(D=!Y!EYAXD!EYA\D-h!DYA\AXA\D=c!EYfD(E\D=S!DYfA(D=P!AXD:!DYDYAXD2!DYA\D=?!EYA\D!DYAXX !DiDY\$0AYD$DX AYfD(E\fE(D- D\DYEXD= EYfE(D= EXEYE\D= EYfE(D= EXDYEXD= DYE\D= DYfA(fE(D\$fE(D=m DYfE(D=b EXDYEXfE(D\-M YD$D%V fD(9 EYD-C AYD% E\Dt$ f(D$`EYAYDYDYAXD5 \f(fA(AYAYDY\XfA(YYX AY\fA(YXXfA(D=DYA\D$DY-A\fA(\D=DXDYDX-$DY\$Y]A\D\$8YfD($Y 'D^fHnEYDGDY$DYA\$fHnY \YA\XAYD-DYX$E\D-DYfE(EXD\%YD$DY-fD(EYYA\f(Y\YXY\XYAYD-DYX$YfE(D-fDYE\D-[DYEXD-PDYE\D-EDYEXfD(FDX--AYEYD-RDY\)A\YXY\YX$YA\\D-EYYfE(D-XEYE\D-DYEXD-DYE\D-DYEXD-DYE\D-DYE\D-D$Dt$xDY=EXAYfE(D=EYDl$pEYDY-A\DfA(D=x\TEYDYAYXAY\9YX9YA\D|$`\%YXX AYD-'EYXE\D-EYEXD- EYE\D-DYEXD-DYE\D-DYfA(A\D-DYfE(D-DXDYAYfE(Dl$hDY-EXD\%fE(D-EYEYA\DEYA\AXD-EYA\D-~Dd$XDY%DEYEYAXD-UDYA\D-JDYA\D-GDYf(.YXNAYAXD-DYA\\Dl$ AYD%,EYX AYXAYA\D?X AYA\D%DYXYX YA\D%DYXYX$DYA\Dd$PDY%\ AYD%EYXfA(D-E\EYD%EYE\D%vEYEXE\D-nEYEXD-cEYE\D-XDd$HDY%xDYE\D-=DYEXD-2DYEXD-'DYE\D-DYE\D\D-(DYEYD$DY%A\fE(D%DYEXD%EYE\D-EYE\D-EYEXDEYE\D-DYEXD%EYEXE\D-DYE\D-DYfE(DDYEXD%}DYEXE\Dl$ D\nfE(D\$@DYaEYD$DY%YA\D$DY9fA(A\fD(Y2fD(f( )A\AYXDAYEYX AYA\XAYXAY\YfD(f( A\D$DYYXYXY\Y\ YT$0X Y$YXfA(DX~EYfE(AY\f( oA\AYD=lEYXSAYXA\D=LEYfA(D=AXEYAXD=2DYA\D='DYfE(fD(E\fA(D= DYfA(D=X YT$DYAXD=DYA\\ YT$D=DY$DDY AYYf($X YYD\fA(D%AYAYD\D$ \$ AYD$DXdDYYEXD-UEYAYE\D5EEYEYE\EXE\D\fInY=*DXt$(D^f(AX\d$8\X-Yl$ \L$\^YAYX$d$CDL$\$ D$D$(D^AY:@YD$YD$Hh[A^$($ D$D$D$$$l$8d$`EH$($ l$8D$d$fLnD$D$$$if.f.AWff(AVAUATUSHf/wef/f(w[f/wU~E f(f(fTfTf.vgf.wfTf.yv4#fD1ҾH=Q1H{HĘ[]A\A]A^A_ff.wfTf.wf/f/f.f.j(f/f/̹f/ʹf/F Pf/f/¿s&f/sf/׃HĘf(f([]A\A]A^A_Ǻh1ҾH=O1Gf/rxh f/rjf/r\f/s|~f/b_f/Kȶf/׃3f/Nf/rxHf/vjf/cf/,f/׃@HĘf([]A\A]A^A_6=f/=f/sqf/f/ݵryf/HĘf(f([]A\A]A^A_HĘf(f([]A\A]A^A_uHĘf(f(1[]A\A]A^A_鍡f/s7f/N-d$\$f/$f(A;$Y<\<\$d$,#5_f(=Sd$ Y\$XT$^t$f(<$=d$ t$f(T$\$f(XY^Xf/Jf/r&!f/rf/%#rf/f(d$0Y\$T$`:T$D$f(T$(%@\$=D$Yf($:\$=D$ Yf(:<$Y|$L$ f(~Y ~X5X\ n^X9d$05[\$f/YT$(Yt$Xrf/rX5f/%f(fW=q|$ph f($1d$8L=`L5bT$L-^L$T: ܪH$;$$Xf(fW=\$ f(|$l;T$\$ f(Yf(\$(T$|$͠L$Yf;L$D$$;T$ $f(|$YT$@f(Xt$ B;\$(D$f(\$Wt$ |$Yf(f(\ $;fD$ l$0l$(Ef.=f/\VYƩ=YD$\D$ 7L$pD$XD$P1:|$XHYD$fHn|$P:9=f/wf/\YF =YD$ 3YL$8X<5DHLAXtY5Y5OYD$PYD$HXD$(t$XD$(f(P:L$$HZD$4H$DD$P|$ht$H*9t$XHLl$|$@t$`YYf(|$9DD$PD$$DY$Y$T$XAX\D$ 6|$h$$-7T$XD$PY\l$8t$`YT$Yl$xf(\X7YD$PYD$HXD$0D$0HA<L$|$H<$AX<f(|$P8YD$@H̦fHnD$D$&7f.fd^f(|\]Y-:fW(\cY :fW8<$fW=L$xf(L$4T$0YL$D$$T$E7$D$ 4L$(T$^YL$Y$XYHĘf(f([]A\A]A^A_f(\$T$$$4\ $$f(^ ȭX LG5$$T$,\$f(T$\$\t$$$^f(Y6$$ ̧t$YXf(6T$\$$$f(&V3Yv \4d$\$,$+f(d$\$$3$\$Xd$,f.HZZZkHZfATf(f(USH-ݣXXXYf(YX|$YD$f(YXXYXqYYX)XYf(Yf/X|$Y\$ T$PfD(f(D Cd$HD^YL$0DYDYEYDL$@AYDT$8T$(,L$0Dl$ d$^-zf(fD(f(^%mDL$@EYfD(D%D-AYDT$8HgEYT$PfHnfA(\Yd$HYXf(AY\Yf(fA(AYXt$^5۫Y_DXYXfA(AYEYXYDXfA(AYAXEYDX5աYt$T$AXAYXD$(AYYXYXYX6T$HĠ[]XA\Df(T$@d$8t$HL$(-L$(D$0I脽H L$(|$0d$8T$@fHnt$HYYYf(Y\Y\YXH|$lf(T$\$\$D$f(25T$\T$HĠ[]A\XfDHD$8ADNT$HfHnd$@|$0Al$L$(菼|$0Ic5ƠT$HHYf(fW DD$8fD(HTpAD$D of(HL$(d$@YDYYEYDpAD$fA(HA\YD$YDpf(HcAXY\YD$^6DpHT$Xd$PfHnt$HDD$@|$8DL$0\$(DT$L$x-بAD$DD$@DT$|$8HYt$HDL$0L$AY\$(d$PEYT$XD\RYDYAXYDXD\DYL$D^ >DLpuZ\$pYX\$xYX$YX$YX$lYX$ZHT$Hd$@fHnl$8t$0DD$(|$\$L$9DD$(D 9\$|$fD(EYt$0l$8T$HYd$@L$AXY\AYYDYYA\XYf(fA(YXAY\Y\$ ^զAUf(ATUSHxfW-L$ Ld$lf(T$D$8.%\$YD$Xf(^f(.D,D$D)øH)1fLA*f(D$0AfA*YT$l$诗L$T$LYT$XT$ \f(L$聗L$\f-D$(9 fHHD$*fHnl$0f(5cD$lYf*f(fTf(f. f(\5l$Hf(L$@\$8t$ /T$\$8H)L$@Yl$HfHn\X>f(fHnY^Y\!YX^XDYL$=b\D$lXL$ f(fTf.5jf/=f/Df(ffA/ f\f(XYfA/sD`fD/w$@X^f(XfD/ff.zu1ҾH=1\$8l$2 (l$\$8\\$f(\D$({(XD$9H\$fHnD$0.XD$(Hx[]A\A]f/ f(\$Hf(\5lf/ l$@L$8t$-YD$L$8f/ {l$@H\$H\Xf(fHnY^Y\YXš^f(X@WD.f(ffD\f(XYfA/sDfD/w0@X^f(HmfLnXfD/yff.zu1ҾH=1\$@l$8L$0FHL$l$8\$@fHnf(LfW\$Hl$@f(L$8T$T$=zDD$PHtf(L$8l$@f(fT\$HfHnfD.v+H,ffUH*f(fT\f(fVf.z ,ƺf(\ƃDf/D$l\$@T$8l$0T$8f\$@Yf.l$zf.\$8l$?+ ol$\$8\\L$P@fW@Ll$HL$@f(\$8T$謑T$=DD$PHf(\$8L$@f(fTl$HfHnfD.v+H,ffUH*f(fT\f(fVf.z ,ƺf(\ƃDf/D$lo\$HT$@l$8L$ʃT$@fL$l$8\$HYf.z !fD\$@l$8L$)L$YL$f(XL$ l$8%\\D$PH\$@\f(fTf.fHnD$l fff/vD$lfW5vfA.A\nl$XL$P\$HXYT$8\NY\JY\FY\Bf(f(\:YY\2|$@Y\(Y\$Y\ YD$f((|$@\=T$8DD$D\HY\$HL$Pl$XfHnA^Xff/vD$lfW=FfA.A\\$Pl$HX.YL$8\$Y\ Y\Y\f(f(\YY\t$@Y\Y\Y\f(f(YT$W't$@\5L$8T$\l$HY\$P^X &L$8H>f(l$@\$HYT$f(fHnY\X^[Y\WYXSY\OYXK^f(Xfk&\$8HYD$l$Hf(fHnL$@fHnY\X~^Y\YXY\YX^XmDXf(X8Xf(Xof(\$@l$8L$%f(fDof(\$8l$e%l$\$8f(\\$f(\D$(WXD$Hz\$fHnD$@Df(fD/Cf(f(fD[f(Sfd$f(@f(f(f(AVYf(fD(SfD(fD(f(fD(fD(fEDYHhDL$YEYDl$(YD|$@YDYEYEYAY$YD$`YD$hYD$0Y$Y$f(AYfD(fD(DYL$Hf(AYDl$PfD(DYL$Xf(AYDl$pfD(DYL$xf(D$AYfD($DYf(D$AYfD($DYf(D$AY$DYf(AXL$D$AYfH~f(YfD(fD(DYL$ f(D$AYfD($DYf(D$AY$DYf(D$AYYfI~fD.f( -QD$XfE(D%ˍD=BD^f($@=XDXf($8Yt$@$0%_DYD$PAXYd$D$H$ YY5$$(AY=oD$$Y$L$fA(^L$$DT$8DL$\$l$DT$8f(fA(fE(HzDD$@\fD(fE(D$fHnfLn|$H$0Y$^D\DYE^D5EYf(^EYfE(DYYE\fE(EXEYDt$(DYY$A\D%rDYAYEXD\%RD$(EYDXVYfD(f(E\XD\5AYD5D\Y\XdT$ t$ YYAXfE(D^T$XAYDYt$PDYDY^fA(AXfE(E\EYA\D5DYE\D=SD\5ڊDYEYAXD5$ D-Dd$($8DYD=ʊDYEYDY|$E\D-DYEYE\D-DX5BDY$DYA\fE(D-DYE\D-DYE\D-DYEXDX5D-DYEYD%{DYAXD5XDYE\D%mEXD5WDYEXD\-|D$EYfD(EYA\D$EXD-DYE\D-DYEXDl$xDY-EXDY|$fE(A\D=EYDY|$pE^AYD%cDYY^L$ E\EY\$D\$XD5DYE\DYD%yD|$PYDYDY=pDYf(\GE\D5aDYAYEXDX%AXEYA\D%DYfE(D%DYE\D% DYfE(D%EXDDYDY$@EXD\-D%DYEYDXYfD(YD\YEXD5EYD$HDXYD\D\%AYEYE\D%DYA\D%tDYfE(D%qDX\DYYDXE\D%PDYE\DXED%T$(6D5=AYAYDYDYd$AYfD( YEYD$AXfD(EXYE\D5DYfD(EXD-YDXE\fD(D\EYDAXfE(EYf(fA(fD(EYDYA\D%EYDYA\D5DYDXE\fD(E\EXDYt$D-DYE\E\fA(D$DY%5fE(fE(DE^DYfE(D$D\=DYfE(EYfE(AYY^L$ f($Y X$fH~fD( E\YfD( ۭYD\L$xY DX3D-D DT$pD%DYDYAYEYDYlEXDX=D-AXDYfE(D MDYEYDT$PDYE\D -A\D|$XDY=0DYfE(D EXfE(D%RDYDYEXD D\E\D%+DYDYEYfE(D EXE\D%D-DYAXD\$HDYDYDYE\D%EXD-DYEYE\D rDYE\D%DYE\DX=TD$PEXEYD%DX5nEYEYA\fE(E\AXD-gD%fD$XD5DDYDYEYEXE\D%0DYfE(E\D% DYfE(D%-EXD-EYDYEXD%EXDl$@DY-D\=EYEYE\D%DYA\fE(D%EXD5DYDYEXD%DYE\D5E\D%DYfE(fE(D|$(EXfD(EYDYt$EXDYt$D%EYEYD=A\fE(D%cEYE\D%XEYE\D%MDYEXD%BDYE\D%7DYE\D%,DYEXD%!DYEXfD(D\EYfE(EXD EYDYfA(fE(EYfA(D%AXfE(EYDYA\D5EYDYA\D-DYAXA\D$DY5A\fLnDXEXD|$8DY\$E^D5DYAXDYOYDY^D$ $$YNE\D$D$DY%fA(fE(D$D\%DY5fE(D$EYD%DY5DYA\DDYA\XYX YD\ YDX D\%YEYfD( A\D%YDYD\ YDXE\D\D$xD%YpD-wD5~DYDYDYf(AYDE\DYD-BDYXYAYEXE\A\D5$DCDYDYE\Dt$pDY5 DX%AXDDYEYA\D%DYA\Dd$XA\DDYAXXDEYDY\$PAYX AYfD( AYD\ YDX YD\ YD\ YDX YD\ D\-AYEYDyEYA\D\ rAYAXDgDYA\D\$D-D5DYDYDX 2YDX )YD\ YD\L$HY DXAYDEYXYAXDEYA\DEYAXDDYA\DDYfE(fD(E\fD(YAXDDYAXDDYA\D\$@DY\AYDEYXT$`DYE\E\DEYEXDvEYE\DkDYE\D`DYEXDUDYEXDJDYfE(fE(D-:E\DYE\DX*D-)D=8Dt$(EYEYDYl$DYl$EYDDYA\D5DYSEXD5EYE\D=EYE\D=DYEXE\D=DYE\fE(fE(DDYEXD5DYEXDDYE\D\5DEYEYD5uDYA\fD(EYfA(fE(A\D%YEYDYA\D-IEYDYAXfE(DYYAXD=.DYA\D=+DYXfA(D$XA\Dd$8A\D$DYAXYT$E^D*DYXE\DX=ېAYAYD^l$ X$D$D$D$DY-DY5D$fH~D\)xD%YEYD$EYDY-7E\EXD=4DYfE(D=)DYE\D=DYEXD$DY= D\PEYD=DYE\fE(D=DYE\D=DYEXD=DYE\D$DY=DXfEYfE(fD(EXfA(D=DYfE(D=DYE\D=DYEXD={DYE\D=pDYfE(D5}DYEXD$DXHEYEYA\D@EYE\D5EMD|$xDYd$p$DYEXYDDY=&DYE\EXDXD\AYEYfD(AXD$AYEYD\YfD(EXYD\YfD(EXD5YDYDXYD\D\=AYEYD\A\AYfD(EXD{YDYD\mYEXDl$XDY-tDXOYD\FYD\UDX4AYEYD\=DXAYfD(.EXAYD\YfD(T$`DEXYEYfD(EXYD\YfD(EXD|$PDY=YDXDX5AYEYD=DYE\D5DYEXD|$HDY=D\AYDXAYD\}YDXtYDXkYD\bYD\YYDXD$hDX5IEYD=KDYE\D5@DYE\D55DYE\D52EYEXE\D5"EYfE(EXDDYEXDDYE\DDYfE(fE(E\D5DYfE(EXDDd$0D5DYDYEXD\=DY$DEYEXD=DYYEXD=DYE\D5EYE\D= ~DY|$(EXD5kEYE\D5`EYE\D5UDYEXD5JDYEXD5?DYE\D54DYE\D5)DYEXD5&DXEYEYD\EXfE(YAYD\AYfE(D5DYEXfD(YEXD5EYD\YEXDXYD\YD\fE(D5DYEXDXD\5$D$ YT$Dd$h$$$D$(D$$DYfA(Dl$`$A\fD(fA(fD( AYDEYDYAXD%EYDYfHnA\D-EYDYfA(A\D5AYXfA(fE(YDY Y|$8XA\XfA(YXD$ A\A\DXDXJDY\$A\fD($Y-`^DYDY$A\$fHn$D c$Y$$DY$Y5$D$DYVfE(D$D\փDY fA(D AYDY\fA(D DYA\X D DYY$Y5fE(D XDYE\D qDYfE(D vEXfD($D\-JDYEYfE(D JA\DYE\D :DYEXD /DYE\D 4DXDYEYfE(D AXDYE\D DYEXD D$DYD$DYDY-E\D fA(D$DYDYJfE(D EXfE(D$DX5EYEYD5fE(D A\DYE\D vDYEXD kDYE\D `DYEXD UDYE\D\JD$ EYAYX:AYfD(0AYD\&YDXYD\YDX YD\YD\AXfE(D$(DYAYA\A\D5EYAXD5DYA\D5DYAXD5GD$D%DYEYAYA\D5DYA\D5DYAXDt$xDY5zXjAYX qAYD\ gAYDX ]AYD\ SYDX JYD\ AYfD(fA(A\Dt$`fD( "YfD( EXYfD(L$pY EXD\-fD( EYDl$XAYA\D%EYA\D%EYXAYA\D%DYXYA\D%DYA\D%DYfD( YAXXA\\ DY-DD$0D%EYEYAYDl$hX_AYAXA\D%_EYfE(D%dDXGDYAYD\8AYAXfE(D%@DYDXYD\YAXfE(DY-.AXD%DYA\Dd$PDY%\AYD%DYXfA(E\D-EYD5EYE\D-EYEXDl$HDY-E\D5EYEXD5EYE\D5DYE\D5DYEXD5DYEXD5tDYE\D5iDYE\D\%^D$DY5[EYD-UDYf(A\fE(D5AEYEXD->EYE\D5#DY&AYE\EXD\AYfD(EXAYDXYD\YfD(fA(A\fD(fD(YfD(EXDl$hYDXYD\fA(Dd$@\DY%DY$YA\D$DY%A\Dd$0DY%tA\D%~EYfD(\AYAXDQDYDXOAYE\AXD?EYAXD4EYA\D)DYA\fD(YAXD8YD$(Dd$0DYDY%AXDDYA\DDYA\XD$DYY˺YD$X$YAXA\D%EYA\D%DYfD(AYAXD}EYDXsAYD\iAYAXD^EYAXA\D%VDYA\D%[DYfD(9YAXD/DYAXD\$DY)Y$A\\ AYD$X DYYA\DDd$0\$(DY EYAYA\D%EYAYAXD-EYAYAXD5EYAYA\D=EYEYA\DXE\D\|$8AXXf(\\X*YD$\f(fInYO^f(Y$^L$ YX$\$( af(D$\L$Y$^YD$ Hh[A^XX$($ D$D$D$$$l$8d$HT`$($ l$8f(D$d$fLnD$D$$$EAWAVAUATUSHD$YgL$(T$ $D$ `\$YD$f(cT$YD$f(Fn_X\$5`_f(D$L$Y ^X<_YX\ ^XT$(YY$l$f/-aXr\$ f/B\$(f/^f(fW5t$p 6f(1L=L5ZL- &_L$H$AL$fW C$XL$l$ YD$l$0UL$YfL$D$$w\$  $YX\$0\$f(D$D$TT$0\$f(Yf(f(\ $xHD$8HD$0D$@#f.]-m]|$f/|$X\^Y^YD$\D$@L$pD$`D$Pl$`Yl$Pff/l$HC]HD$hH\HD$`H ]D$XfHnk5\f/wf/^\\Yw]:YD$`YD$ ^]YL$(Xo\HLAXTY2]Yz\YD$PYD$HXD$0T$PD$0f({L$$H$4H$\$hd$Xt$HWT$PHLt$l$ T$`YYf(l$d$XY$$$D$Y$L$PX\D$@J\$hY$%g[L$PD$X\d$(YL$T$`Yf(d$x\XNYD$XYD$HXD$8D$8HY4$AX4A<L$f(|$Ht$PMYD$ fHZfHnD$D$f/)D$Ff.Z{D-Z|$f/|$X'\ZYF[ fWA@ufYD$\D$@L$pD$XD$Pt$XYt$Pt$t$XHZHD$hHKZHD$`\YYZ{YD$h<Ul$fl$XsD<$fW=L$xf(L$^T$8Y[L$D$$T$|$0Y|$f(YL$f(X^ZXD$@HĘ[]A\A]A^A_XY8 Yf($\^f(bL$($Y [Xf(f(ff.f.|f(fH8f/wbf/f(wXf/wR~ r-"Yf(f(fTfTf.vTf.wfTXf.v1XH81ҾH=L1XH8fDf.wfTf.w Ȫf/f/f.f.bhf/mf/ bf/ bf/H f/f/¿s&SZf/sPWf/׃f(f(H84@W1ҾH=41f/rxf/rjBf/r\Laf/ʪf/nVf/W_f/׃?@`f/f/f/wcf/rq8Vf/^f/jf/׃f.H|$,f(LQfW Uf/s~Uf/skf/VVf/^rkѻf/f(f(H8nH|$,f($P$\f((1f(f(IH8Ff/s_f/vd$\$f/$f(H$YW\W\$d$,1f(f($XYd$\$^l$d$$f(l$\$f(YX^Xmf/sAf/gTr&f/rf/%rf/5f(f(H8f(f(H8f(\$T$$$\T$$f(^ B\X `$$T$,\$BYb] \zhd$\$,$f(d$\$$$\$Xd$,[f.HZZZ;HZfAWfAVAUATUHSHH.HT$hHL$pLD$XLL$`D$rd$ pfȼZTl$H/=RU% eRY(d$|D(%Y-PZ(YZ=tZfEZfY*D*XA^\Y^YZDXD(DTA(TYA/vDE(D(Ǹ f=tZfEZfY*D*XA^XY^YZDXD(DTA(TYA/vt$HY5hQDL$(\$ |$f(t$fEXfEDZEDZ#DY%H t$|$AYfE\$ L$(-E(fHnD\D$|EZ=fEZfEYEZD*D*EXA^fE(D\fE(EYA^fD(E^YZEXfD(E^EXD(EZEYEXDTE(DTDYE/WHD$hf(ZL$0\$(D |$|$ t$jfEXE|$ DZH 3DT$|fD(t$\$(AYL$0fHn-nD\fZEYD\EZ@=ZffEEZYD**EX^fE(DXfA(AY^f(A^fD(YZE^AXfEAXDZ(AYDXTE(DTDYD/Y|$HHD$pYDY|$ZD(( D=tbfEZYD*fE(A^EXDXDXEYA^A^YZDXD(DTE(DTDYE/vDD$HD$XDYiDE(A( D=tlfEZfEYD*D*EXA^fE(DXD\A^A^YZDXD(DTE(DTDYE/vZfD(f(HD$`DY%NL$8DDMD^L$EZ\$0DD$(|$ E\t$Dd$HD$XD | Dd$H fDXfDLt$ZHD$`DD$(fHn\$0L$8DYfA(fE|$ DZ -DY%A\D DXEZ=ZYfEۍEZD*fED*A^fA(AXDXEXXA^fD(DYA^fD(E^fD(YZD^(EXEXEZAYDXTE(DTDYD/MH$fD(L$ \$D ^D$ZD\f(DD$DT$HD$`fXԱDT$H ƘVZ0HD$XDD$Y\$L$ fHn- D\fZYD\D$|(EZf.=ffEEZ*DYĉZD*f(\XE^D^f*XfD(f(A^D^Xf(^DYEZXA(ZYDXTA(TY/UH$DH[]A\A]A^A_fD/%A %ߺ(^\$$(%*Y(d$|\Xd$fXl$d$ f\d$( kI%EwL$AL$L$Pf |VbA*5IYfTf(f.vH,ftbfUH*fVXLL\$@KY wd$8T$0YY_\ZT$0\$@l$d$8DEf(Z$W%X\D$PYUYYf^^D$HZY$YXYXL$l$l$ L$XYXD$(l$ D$(E9T$H^mOZ(AT$0T$0D$@(W%ڱ(fT$0L$PD$8D$HY>f.Qf(^(^D$Hf.Zd$0qf(QZL$H$LH$$X$$SH$fL$\Z$|$H$f(d$P d$Pf$fl$|$HfZZd$8\$(HD$hfEHL$pZ$Y((DZ$YW-jD$$$YY|$ E(D$d$P\Y(l$Y(YAY\(AYYd$0Yd$@X\$|^Ѷ(Yd$h\(U((Y$L$@\^Yf(X(fLLd$8* Hl$0|$(t$ YY ^RY,f*XY \Zt$ D$|$(l$0D$d$8\$T$fZҍX TG*YQW\$X\D$@Y\f*YD$YfZ^(ZDYT$DYAYAXAXX(AYXD9$H$$(Y(YYT$hY$\L$PXd$HYY(YY(H$YY8^=HD$XX\YY\H$^vXHD$`0@H$?IAAH$ArL$PT$H4L$PT$Hf(qL$PT$0L$PT$0fff/vfDH(HD$HL$ HHT$Ht$PHD$ PLL$$LD$ WD$(fXZZf. D{=f. D{ H(fDu1ҾH=>1H(@u1ҾH=>1MH(f.ff/v'fDH(HD$HL$ HHT$Ht$PHD$ PLL$$LD$ D$fXZZf. C{=f. C{ H(fDu1ҾH=#>1H(@u1ҾH==1}H(f.fAVfE1AUIATIUHSHH /v WAHD$HL$ HHT$Ht$PHD$ PLL$$LD$ D$AED$AED$A$D$AD$D$ D$$CD$(ED$,XZEfAZEf.Bf.BfAZ$f.Bf.BfZf.pB;f.jBfZEf.KBf.EB{SEt?C WWC A$AD$EEH []A\A]A^fu1ҾH=/<1Ef11H=<fZEf.AKE1ҾH=;1E.11H=;A$fZf.5A1ҾH=r;1\\11H=N;5AEfAZ$f.@?91ҾH=;1A$%D1ҾH=:1AEf/vGfDH8HD$,HL$HT$Ht$H|$PHD$0PLL$4LD$0fD$<ZL$8f. @XZ{If. @{H8f.u1ҾH=E:1D$ #D$ H8tf.ff/vfDH8HD$,HL$HT$Ht$H|$PHD$0PLL$4LD$0fD$,ZL$(f. U?XZ{If. Q?{H8f.u1ҾH=91D$ cD$ H8tf.fSf1H /v WiHD$HL$ HHT$Ht$PHD$ PLL$$LD$ 'D$ fXZZf. >{Ef. >{tWH [fu1ҾH=81Uu1ҾH=81fH(/vWHD$HL$ HHT$Ht$PHD$ PLL$$LD$ _D$fXZZf. ={=f. ={ H(fDu1ҾH=81H(@u1ҾH=71UH(@Sf1H0/v W٤HD$,HL$HT$Ht$H|$PHD$0PLL$4LD$0fD$4ZL$0f. =XZ{If. ={tWtH0[fDu1ҾH=?71D$ D$ tf.ffH8/vWHD$,HL$HT$Ht$H|$PHD$0PLL$4LD$0fL$$ZD$ f.M<XZ{If.I<{(H8u1ҾH=61L$ [L$ H8(Dt@AW(AVUHSHHX.LfDZ/E(D^=A(^DY EXA((^Y-X((^Y%X(D(D^YXZYAYA(^XD(D^Y(XAYXA(^YXff.UQ(DD$ L$\$T$<$+T$\$L$<$YfDD$ YZ^!/U'OD^(YӨAW^D(ӨEXA(D(Y-EWD^X(A(DY%AW^AX(Y%AW^X(D(YjEWD^XAYA(AW^X@7(D(Y9EWXA(^Y%XYZ^ff.Q$AWL$(T$T$L$Y $YZ^HX[]A^A_fh6A(%/9-_8w D3tVfZ*Y\Yf*^fYYZDX(A^TZf/v"CEZYYDY/EZDM%5L$Yf(fI~7$fIn(-5Y,$f(XfYXXZfInfA~X=6H5%7-7L$\f(fD(Zd$H3YfEɉ)\$0D*l$@|$,L$ T$fA(DL$\d$HYf*^f(A^YYZt$DXfInEZD$T$(\$0DL$fD(D$f(t$|$,EXEZl$@L$ ZA^D EXAXA\YZX^TZf/@ZfAnfZYYY\ZHX[]A^A_2HX[]A^A_f(DD$|$ $U|$DD$ $f(|$L$o|$DL$$6f.ffUH/w ]mDW\E]AWff(AVUHSHHXf.vF3~2f/fD(_D^fA(^DY(DXfA(f(^Y5Xf(f(^Y-XfD(D^Y%Xf(fAYfA(^XfD(D^Yؘf(ԘX%;Yf.AYXfA(^YX]Qf(T$d$\$ $; $\$d$T$Y`>Yf/^]y1D~ ^f(YfAW^fD(DXfA(f(Y5ėfAW^Xf(f(Y-fAW^Xf(Y%fAW^Xf(ffD(YfEWD^XN1YAYfE(fEWD^XZAYfE(fEWfA(^XY>XR0^f.GQ$fDWT$fA(L$輾T$L$Y $Y^HX[]A^A_@%2~f(51f(f3tJYf*\Yf*^Yf(YXf(^fTf/v~<YYYE5<f/T$-/L$Yf(fI~$fIn%.Y$$f(/XYXȕXȕfI~fInIXa/T$D/%R1L$fD(f(~SD\5f0@d$H3Yf)\$0*t$@DD$(L$ T$f(|$\d$HYf*^f(^YYl$DXfInD $m|$T$fD(D $l$Xf(DD$(f(\$0t$@L$ ^=C.AXAX\YDXA^fTf/:YYfInDYA\HX[]A^A_H/HHHX[]A^A_f(T$ $B]T$ $f(>L$L$D~ $fUHf/w ]@fW`H-HE]f.@AWf(AVAUATUHSHHx.z uHx[]A\A]A^A_/ {Z%+D-=(( DetcfZ*YRy\Yf*^fYYZX(TZ(TZAYf/v8d$Z)|$ YL$0T$D\$Pf(YYd$XZu5?+Yf(fI~赿D$fIn西5+Yt$f(sXfY\fInZfA~`L$0T$fD/(|$ d$T$8ZDXf)|$@D\+ZEZ@ef҉f|$8*YwDD$ d$f(T$\*Yf^f(^YYZfInl$0XZL$}T$d$fL$fD(fDX =Xf(l$0DD$ Z(|$@fZ^XA\YZDXTZATZYL$Pf/EZDYD$XfAnfZDXDYOEZDHx[]A\A]A^A_fD  )YZ^ff.6QE1ffE1 0ZD|$d=ےt$XLt$l%(D*Ll$hL$Z50+D%ffEDl$A*E(f(YYZDZ@fEfEEZD*EYD*fA(EXYDYD\DYf(\\(EZYYfD(fA(A\AYfE(D\A^DYE^EZEXA(TZA(TZAYf/w DDt$A(@fEZD*AYfE(EXDYDXDYfA(DX\EYYfD(fA(A\fED*YfA(A\DYEZA^YA^ZDXD(DTEZA(TZAYfA/w ED\EZf(D 3LLT$PADl$@EYD\$8)|$ d$0l$D^EYD5w&DYDX5)DY5EZDL$A\ZDD$lDl$@DL$\$hAA(H,t$XE(l$d$0EYfLn(|$ H(YD\$8T$PDYEYA(AXA\YYfHnA%=D$8L$D=e\$ D^T$D-D%DqD(WYD(WXDXXYYDXWAYAYYYDXWAYAYYYDXWAYAYYYDXWAYAYYYDXWAYAYYYDXWYYYYDXWYYYYDXWAYAYYYAXfEDZ%$AYD$f(fAYZXWXZYt$AYAYZXWAYZYAYAYZXWAYZY<$AYAYZXWAYZY>-AYAYZXWAYZYH/AYAYZXWAYZY:#AYAYZXWYZYY-AYAYZXWY (fZYA+AYAYZXWAYZY%9AYAYZX5"(YYZXZL$0f(d$L$0d$f(fDt$8|$ZD$dYT$\$ A(YY^^^Z\XXfAnZEfZY^Z\ZHx[]A\A]A^A_DfA~D$d1T$T$f.fUH/w ] DWE]AWff(AVAUATUHSHHxf.z&u$H#HHHx[]A\A]A^A_@4f/ ~%֊-"f(f(etVY Pnf*\Yf*^Yf(YXf(fTf(fTYf/v-l$()d$YT$ \$YYD$Pu5T Yf(fI~Ŵ$fIn趴5& Y4$f( XY \fInL$Xy= T$ \$l$(f(d$XfD(\=  \$0l$8)d$@Defۉd$0|$(*Y lT$ f(\$\Yf*^f(^YYL$DXfInD$詳\$T$ fD(D$DX Xf(L$|$(f(l$@t$8^AXA\YXfTfTYf/Y|$PX|$XY= ;Hx[]A\A]A^A_fD0DYD^fA.#EQDT$8L$@fI~~%- E15 Lt$hD #Ll$`fEf(fD(ںE*fE(DYEYYffE(*fD(DYfE(D\E\EYEYE\fD(XDYAY\YA^fE(E\AY^DXfD(fDTfA(fTYfA/w ef(fD(YffE(*fD(DYfE(DXD\EYEYE\fD(XDYAYXYA^fE(E\AY^DXfD(fDTfA(fTYfA/w efA(f(LL\l$(AY=)D\$0DY `)d$DX T$ DY $^A\DYDd$LD$`A|$hD\$0Dd$fD(fD($HEYt$8T$ EYfHnH^f(d$AYl$(DYE\AXDYYfHnHfLn>Av%DL$0~-%D=|$(D5%^\$D-"'D%1Dp%D#f(fWYf(fWXXXYYXfWAYAYYYXfWYYYYXfWAYAYYYXfWAYAYYYXfWAYAYYYXfWAYAYYYXfWAYAYYYXfWAYAYYYX Y$YXf(f(fWXAYYYXfWDYf(YDYT$ YDYDYAXfDWAYAYYYXfWDYEYDYDYAXfDWEYEYDYDYAXfDWEYEYDYDYAXfDWEYEYDYDYAXfDWEYEYDYDYfAWAXDYDYI/DYAYXf(Xd$`d$fIn4$|$(DL$0f(Y\$DYYd$@Yf(T$ D^^^A\X"XE^\#Hx[]A\A]A^A_fD|$@fM~2fA($i$fD$8DfUHf/w ]@fW{HTHE]f.@AVf(AUIATIUHSHH0.z,u*H0[]A\A]A^D (T/IE1ZfH$A*fHn苨$fHH 4H5 YffHn-/fHnfHnZD(D(Z)ttfEEZD*DYfA(\AYfE(DXA^fEYA^D\YA^YDZEXE(DTA(TYA/v\fEҸYYDZE()ttfEEZD*DYfA(\AYfE(DXA^fEYA^DXYA^YDZEXE(DTA(TYA/vDY ADYچA(EXA\DY džED EAtBWkEW[AW FfZfA$AEf(.#QYff^\ZY |f. Q f5~DD^Z<$=(^((YWD(l$$(DYWYDY(YWYDXD$XEXDX(%{DYWYYYEXD]DYWDX%HYYYEXD 2DYWAXDYDYYEXD DYWAXDYDYYEXD؄DYWDX%ÄYYYEXDDYWDX%YYYEXD DYWAXDlYDYYEXD UDYWAXD?YDYYEXD(DYWDX%YYYEXDDYWDXYEXD DYWYEXD ̃DYWYEXDDYWL$ EXDT$ %\$YT$YAXDjDYYAXDWDYDX(FYYd$AXD$(虣\$L$ -D(D$ YT$T$ Y $AYXY 1\(A $;d$\$57{(fT$ =vYZXl$$Y(H|$,DL$X\$Ht$(ZfZ$Y%Y !ZAE(Y^YY\(YYWYXYWYX ӁYWYXāYWYXYWYX YX(WYY XTYWYL$ DX>YW(-<YDX#YWYAXYWYX- YWYXYX((WYYX\$L$ $\$l$((t$,\XY((YYYY\%XYY\eH0[]A\A]A^$蛣$$$f.AVf~IAUIATIUHHya xWEAU nxWWUAEA$AWWA$AH]A\A]A^DH]A\A]A^PAVff(AUIATIUHSHH`f.z2u0HHHHH`[]A\A]A^~w%tf(fTf/E1fH T$A*fHnӞT$H H z H5C YH=fHn~wfHnfHnfHnfD(fD()tff*Yf(\AYfD(DXA^Y^\Y^YDXfD(fA(fTfA(fTYf/vD DYDYfE( )tff*Yf(\AYfD(DXA^Y^XY^YDXfD(fA(fTfA(fTYf/vDYasADY\sfA(EXA\DYLsEDEAt7fWuEfWuAfWuA$AEf.f(6QYr^ Yf.*Q=@ ~5uDrDrf(f(^^rf(fW\$HfD(f(YDYYDYf(DXYfWYD$8XEXDXf(8rDYfWYYYEXl$DrDYfWDXrYYYEXD qDYfWAXDqYDYYEXD qDYfWAXDqYDYYEXDqDYfWDXqYYYEXDsqDYfWDX]qYYYEXD KqDYfWAXD4qYDYYEXD !qDYfWAXD qYDYYEXDpDYfWDXpYYYEXDpDYfWDXpYYYEXD pDYfWAXYEXD pDYfWYEXD|pDYfWL$@EXDT$DHpd$ DYT$(YAXD-pDYDXf(pYf(fWY\$0AXD$f(ݖd$ L$@5ofD(D$YT$(T$YL$AYXY \f(A $|\$0d$ H|$XXYD$T$Ht$PYH{~5SqY%[onXd$fHn nl$HDL$8Yf(YAefHn^nYY\f(YYfWYXYfWYf( nX=nYfWYXnYfWYXxnYfWYX pnYXf(fWYY dnXmYfWYL$DXmf(YfWYDXmYfWYAXYfWYX=mYfWYf(XmYXf(f(fWYYmX\$L$\$d$PD$Xf(\T$Xf(f(Y YYYY\-*XYY\mH`[]A\A]A^T$葙T$fT$wT$f.fAVfPIAUIATIUHHta~ nfWEAU~ nfWfWUAEA$AfWfWA$AH]A\A]A^H]A\A]A^pUf(HSHH(.8u/DtuE(D^A(^DY uEXA((^Y5uX(^Y-uX((^Y%uX((^Y}uX(D(D^Y iuX iuAYE(D^XKuAYE(D^XAYD^XfDY&uAXfEDZEiAYf.Q$(DD$DT$T$T$ fE(DD$DT$f(^$ZYYEEs/^2sEXD%l^(Y=tAW^D(EtEXD(Y=tEWD^DXA(A(DY5tAW^AX(Y5sAW^X((Y-sAW^X(Y%sAW^X(D(YsEWD^XAYA(AW^Xf(D(Y sEWXA(^Y lsX8hA^ f.QAW\$( $r\$ $ZYYr\H([]@D(fDq%DY D%A(A(kAZ D3t\fZ*YĉfD(XD\AY^f*^YZX(^TZfD/vYqfEDZ/uxL$DD$AYT$D$ݔDD$D$fXffE%A((D(͸L$T$jEZDZEZA\D%EZf.3fEfA(ZYD*fEZD*fE(D\DXAYfD(A^fED*JA^fED*E^fEAYZDZE\EYAXfD(E^ZAXZYDX((AXD(D\D^DTEZfE/YH([]f.VH([]DD$T$DT$ޒDD$T$DT$$>f($貒 $D%`hf(ATfIUHH/wH]A\fD hWE hWEA$H]A\Uff(HSHH(f.Bjf/  efD(D^fE(D^DYLDXfA(^DYLEXfE(f(^Y5LDXfA(f(^Y- eXf(f(^Y%eXfD(D^YeXef(AYfE(D^XdAYfE(D^XAYD^XDYdAXEYf.0QD$f(L$\$6L$\$ff(f(f(^D$YYEEF f/]lD~%e^fD(YZKfEWD^fD(dDXfE(DY @KfEWD^EXfE(fA(DY&KfAW^EXfE(f(Y5cfAW^DXfA(f(Y-xcfAW^Xf(f(Y%ccfAW^Xf(fD(YMcfEWD^Xf(XAYfE(fEWD^X'cAYfE(fEWfA(^XY cX^ f.QD$fAWL$f(wL$YL$Y\H([] xf(5DY~-KdD%bfD(f(3tTYf*҉fD(XD\AY^f*^YDXf(A^fTfD/vDYf/DEf(L$Yd$\$TL$Xffd$fD(5RfD(fD(Ǹ~-ScD\fD(f(D%\\$@3Yf҉*fD(XD\AYfE^f*эJD*^f(A^fED*YA\YDXf(A^fD(fA(DXf(AYDXAXf(A\^fTfD/DYH([]DHHH([]L$\$褌L$\$D$\$肌 \$D~%aD$I@ATfIUHHf/wH]A\ D~ afWE~ aHCfWEI$H]A\f.@Uf(HSHHx.zuHx[]Dh(Y/(D((ĸZ5D (Pa-hfD=tbfZ*YXfD(XD\AY^f*^YZDXD(DTA(TYA/vfDEZY\$$$0fEH tX]DZeffED ffHnDZH C-hDYf\$$$fHnAZ@`EZf=Yf*fD(DXfE(D\DXAYfED*A^A^fD(D^f(YZZA^EXEZEZAXYZDXTE(DTDYD/WAYD\EZEXD^%[EZD#Hx[]f5e0_-fHXxR qT fHD$X^D$`HxVY(WX Ce^YW^X tfYW^X ufYW^X-bfYW^X-OfYW^X fD(fHnf(f=YfEۉD*fA(AXfD(\DXYf*A^^f(A^YDXf(A^AXYDXfTfE(fDTDYfD/mAYfA(\X^H[]Dx~5Z=? x?^H-XH$Yf(fW^XYfW^X Q?YfW^X I?YfW^X=A?YfW^X=WYfW^X WYfW5XXf(f(E]^f(>ffY^Y-Y aWXXfXf(]fYXfXf( ]fYXfXf(]f$fYXfX^ff.f(Qf(H|$(Ht$ T$\$L$$$輀D$ $$t$(L$\$f(T$Yf(YYYX\YY\UH[]T$t$\$ $NT$t$\$ $f(8f.@ATfIUHHf/wH]A\-D~ pWfWE~ ZWHfWEI$H]A\f.@AVf(AUATAUHSHH@.($^=HW(YT/l$Y^%ZDD YD]D(( f3tmfEEZD*EYfE(EYfE(DXD\EYE^EXD\E^E^DYEZAXE(D^DTE/vY޸Y^.]D(3tffEZD*AYfE(EYfA(DX\YA^EXDXA^A^YZDX(A^TD/vZEZT$(Sf(A\\fT$0A*L%YYfL$ZfInT$Z+l$ |fL$l$ Z\$YT$(ZC+fInLl$)*YG$X$AƉ$AA,AD$LL$L$YF $t Hc։$pHHLYH$I AVHcH$M\ƒ$xH$|H$$AIH$$H$H$H|$f$fZ$$*f(Xf(Y${ $pf(f(fn1fo%@fpfHL$)$H$ffn$)d$0fo%@)|$ f(=@fp)$f(%@)$)$$f(%@)$)$f(%@fo|$0fo$fD(P@fo$fofo5@f$fD($frf k@fD(@)|$0f(=?fffE([ZD[fDXfX$ffr\$@[DZT$@ZT$PZT$PfDXfDX[fAYfXfDXfD(?DL$`t$pfEXfDX$fEYfEYfE(DZfDYfA^D(Zt$pEYD$fE^fD(fDXfEYfYfZfDYfEZAfD(AAZfXfDXfAYf\D$ fAYfXfA^fD(AZfDYfAXDZD$`fEXfAYfZf\t$ fXf^Z$fYfXfZfpDf(f($fXfXfXfYfAYfAYf^f(fXfYf^fYfZfYfZHH9;$xr$|4?fEf Vt$ ff҉֋T$D4$D D$*JD$D*$*ҍWHc*HL$H4Zf(f(XAXZf(XAXYYfAZ^f(\\YYAYZAfZXAYYZA\\^AYXZDf*$f(\Y^AYZW9L$ ffffEQыT$ $D*J*ዌ$ $*HL$*ҍWZf(XZf(f(AXXAXYfYZAY^f(\\ZYYAYZAD1fAZXYA\\^AYXZD5f*$f(\Y^AYZD19|$ T$fffEffA(D*J*ዌ$**HL$Zf(XXZf(AXXYYfZAY^f(\\ZYYAYZAD1fAZXYA\\^AYXf*ZD5f(\Y^AYZD1$t1H$Ll$ HӍwHl$0LL$IL|$D$M LAAYDD.f QLSDYADL9uMIH$Ll$ Hl$0L$D$H$A$pA$H$(ATX\؅~[$tA(ՍOH@AT(A(ATXDH(X\_]((H9u$$ H$((1ALAHH9u싴$9$tN$JHcH4AdAJA9|$Ad5A\7D9Ad5A\7L $-:LT$ %^5:2D$L$fDADA9|+HfA9|ALH/vAL(ALtAT/vAT((\XY^ATATZf/~x11($H9t>A.zu ZXZHA ^D\\D/vŃH9u9!ATA95ALA(YADAT(Bf.HcHI/vIT AL/vAD(Eu?HcATA9|WHe?HcATA9}H$LT$ LL$H$$yDŽ$>L $LT$ 僼$pSfnfD(HL$1fpfE$)$fn$ffp)|$0f(=6)$fo%5)$)d$ f(%*6)$$f(%.6)$f(%.6fo|$ fo$fo-5fD(5fof "6fo$f=5f(55fD($frff)|$ f(=5[ZD[fDXfX$ffr$ [fE(ZfX$0Z$0fDXfXfAYfD($fDX[DZ$ $PD$@fEXfDX 5fDYfEYfE(DZfDYfA^D(Z$PEYD$`fE^fD(fDXfAYfAYfZfEYfEZAfD(AAZfXfDXfAYfD(f\D$0fAYfXf(AZfA^fAYfXZ$@fXfYfZf\l$0fXf^Z$`fAYfXfZfpDf(f($fXfXfXfYfAYfAYf^f(fXfYf^fAYfZfAYfZHH;$;$x$|<$wT$ffE<6ff DD*JD tD$*ዌ$D$*HcH4*HL$Zf(f(XAXZf(XAXYYfZAY^f(\\ZYYAYZAfAZXYA\\^AYXZDf*f(\Y^AYZ $Q9WffEыT$ff҉L$ *JD*$L$ *HL$*ҋ$Zf(XZf(f(AXXAXYfYAZ^f(\\YYAYZAD1fZXAYYZA\\^AYXZD5f*D$ f(\Y^AYZD19~T$ffEfffA(D*J*ዌ$**HL$Zf(XXZf(AXXYYfZAY^f(\\ZYYAYZAD1fAZXYA\\^AYXf*ZD5f(\Y^AYZD1|LL$H$Hc$E1H$LLL$LT$L$TLL$LT$L$MtLLT$L$fTLT$L$MtLLT$L$GTLT$L$MtLL$-TL$HtHL$TL$MtLTMtLSH$HHS*$$<$ A#M9AfDL$$L$$UL9L$$DYLSL$D%C*fEAD!Tf.fAUfATUSH(/O0D$w/vH(([]A\A]f.%)=P0((T(../((T.v,,f5/U*(T\(V./(/\/%1ID,X%/Y%@0/%0D,H,T$ NT$ HHDHL$I(D=HsOt}\$/H([](A\A]f.,fUD.*(AT\(VD\%80H,H?LD$L $HtHLD$L $>LD$L $MtLL $>L $MtLL $>L $ML>$DŽ$L $L\$LT$ $Gfn$fnLT$ 1D$fpfo5^)|$pfpf(-)$fE$)l$f(-f)|$@f(=h)<$f(=)|$`foffoD$pfo fD(<$frf5fD(fD( ffDfpfpfr)\$Pfo$)d$ fDXfpffDXfDXfpfXfAYfD(|$fDXfEYfA^fD(fDXfAYAf(afXfX $fYf(\$fXfAYfEYf^f(fXfDYfAYALfA(fAXfYL$ f\L$@fDYD$ fXfA^fAYfAXfD(D$PLf(fXfAYfAYf\L$@fXfA^fAYfXLfpf(fXfYf(|$`fXfXfYfDYf^fAYAf(fXfYfA^f(fAYADH H;$LT$ 9$H$qT$t(ftd$ *T$|$t$$y$T$|$t$Yd$ \f(\fZC^fYZYXZ^ff.f(QZEAL$D(HHHHYHH9uDBD9YHcHT Y PA9|+Hc҃HT Y A9|HHDY/#!D( HHHHWBH9uDAHc HWPA97@ZA/5"u(D((&(DHYXA(уD(fZ҉ՍB*H fD(DYDYf(A\fEEZAY^\TZD(DTD/tfD(fT D\D(D(D(D^DYEZDS'D(DYEXHE(9D(fEZ*fD(DYDYf(A\fEEZAY^A\Z9uD(KYYXA(^AXYYXZ^ff.QfAL$HڸZDYD9AOD^ AY D9|Y H9|HcA9A9LYLHA9}KYYX((A^AXYY'pXZ^f.QZAT$9NMNȃofo%HfDo )Yfo=*HH((A^6foHfAfYvH9ufpf~Ѝ~9tOA^HcHDYF9~/HcHDYA9~HHDYAD9I)¹A9LD)vBA9|=Hc(H|1H Y HH9uу9HcHT Y PA9Hc҃HT Y A9HHDYAT$D^?C@5p(\fZC^ nYZYXZ^ff.mQf(ZEAL$@D(HHH HYJH9uDBD9HcHT Y PA9|+Hc҃HT Y A9|HHDY/#CuD( 3HHHHWBH9uOY*^ >C?K/#f5of(1Gf(d$l$D $d$l$f(D $$$$$ (d$ L$$8$fZYkZf(\$XňY5Uf((\|$f$d$ L$\$Z-|$(d$ L$$$fZYZf(\$XY5f((\|$[f$d$ L$\$Z-|$d$T$D$d$T$D$f(d$l$D$`D$l$d$f(D W 1u$$ $$ /#Uf($$$$Yй(A^Y)AW(IAVAUAATIUf~SH8MD1DD9ÃfD\$Zf(l$5{\$l$f(1/f.(5QYZYXf(\YYf(XZfZA*YoiXD,AH5\$L$HHHxHHHHǀH1H)HHt$(D\$L$(ZDfnAY%AAAED$d$EHT$(AIiD9l$)AT^YRJT J/HD9uqfHT$ *YD$L$JHT$ L$YAXA1f.fHT$ *YD$L$ffHT$ *L$YD$ft-fHT$ *ƉL$A$AuYL-f*YD$f(fAZU*ZXYYfAZ $XZA$D9l$+A$TYAMT />IAD9*BAOf*D$L$YqL$AYMYA$\A$l@fA*DfD$A*YL$zL$AYMYAX $A $.(5QYZYXf(\YYf(XZ4AA$H8[]A\A]A^A_A$H|$(wH81[]A\A]A^A_É9E6(L$ l$\$l$\$ZYf(Xl$Yf((\d$fL$ l$d$\$Z(L$ l$\$ll$\$ZYf(Xl$Yf((\d$$fL$ l$d$\$ZAA$fAUfATUHSHH/D$D$ %=s(((T..//,WH|$(\ڃEA(EAAHt$  fA*YD$EfA*YD$ H[]A\A]1ҾH=v1`EH[]A\A],f=,U*(T\(VLfDHH(ʿ(*t1H=@11E Z@AUfATUHSHH/D$D$ ( (((=T../,/RWHt$ EH|$(AA\EA(2fA*YD$EfA*YD$ /f1ҾH=1EH[]A\A],f=\U*(T\(VEH[]A\A]HH(ʿ(Jx1H=>@11E 5FWiHt$ EH|$(^AE\AA(fA*YD$EfA*YD$ @AVf(Hf(AU1ATAUHzSHHH)H0~ HHǂfTHf/E#Wf(fWA0A AL$faH*H5_HHtY^AfA*Y^Tv^ff/f.f(DQDYYX{f(A\Y5f(YXfA*Y5}^XD,AMcJLHD+M > f/#Eff.f(DQDYYXf(A\Y5f(YX4=f(fW WEH^ _KHH0[]A\A]A^f.V=tH0[]A\A]A^A%HfD(fD(E5nfD(*f(@fE(HYDXAfD(fEA*AX\f(Yf(\xAY^A\fD(fDTfD(fDTfE/sf\3*d$(l$ T$DD$|$T$H\l$ 3YfHnd$(|$f(DD$\fD(fD(\^YK'f(YDXHf(A9f(f*X\YfD(f(A\Y^\A9ufD(f(HHHH9uH[HH0[]A\A]A^f(qHHHH9uH[HAHfD(fD(D5Z=]fD(.fD(ȃ@HDYfE(EXfD(f*fD(DYDYf(A\DfDTAY^A\fD(fDTfE/vfD(f(3fD(D^\DDYf(AYD[^\ GK fD(HDYEX9|OfD(f(f*\fD(DYDYf(A\Y^A\9uHf(9}kSYf(XYYXXfA(^AXYYDXA^f.f(0 QɃ!AY^DL9HY9}D1=[fD(f(Kf(X\YY^^\^YKYf(XYXDXA^f.f(aQE%ADf(HfHHfHfYHH9uDAtHHDYf/#EAOAKf( HHHfHfW@H9uȃ{HHfW`AAAL$fJZH*H5WHHtY^ yf/#Df( aHHHfHfWBH9uDAPY [dH WHKY?dHVHCfD(fWd$ *l$T$DD$T$HVl$DD$YfHnd$ \\^YSYDXA^f.f(QEADf(HfHHfHfYHH9uDA@HHDYf/#ADf( ۿHHHfHfWBH9uDA>KYYXf(A^AXYYDXA^f.f(QYAL$HڸD9AOA^ Y D9|Y H9|HcA9|A9LYLHA9}f/#EAOAY5BfD(fD(=`WfD(,fD(DHfE(DYEXfD(fHJ*fD(DYDYf(A\D fDTAY^A\fD(fDTfE/yfD(LfD(3D\߸fD(D^DYD[(f(YDXHfA(95fD(f*fD(DYDYf(A\AY^\9ufD(H~S^`CH=VfD(\^YSYAX^f.QEADf(HfHHfHfYBH9uDA`HHDYf/#qADf( üHHHfHfWBH9uSYYXf(A^AXYYAX^f.f(Q҃dEAOԉf(HcH|f1HffYHH9uу9 HHDYAL$9NэzNHfo-fDofDo YHHf(f(A^ffvf>foH fAfAfYfYv~H9uЉfpf~DF9tOA^IcHDYF9}/HcHDYF9}HHDYFA9)A9ĉʹLD1f/#XYzSHP^ ]KHC*f/# od$d$ fef(d$d$f(d$}d$f(d$t$DL$Vd$t$f(DL$fDYʾf( A^Y f(d$L$DL$d$L$DL$f( d$DL$|$|$DL$d$f(d$ l$T$|T$5&YYX f(f(\|$CHN~ ĸd$ l$f(|$T$fHnf(d$ l$T$T$5YYX kf(f(\|$HSN~ ;d$ l$f(|$T$fHnDAWf(IAVAUAATIUfH~SH81D1DD9Ãf(DT$!_T$f(Mf/ff.f(-QYYXjf(\Yf(YXfA*YjMXD,A~H5T$L$HHHxHHHHǀH1H)HHt$(DT$L$f(DfHnIY%AAAED$d$EHT$(AIi@D9l$,AfTYecJfT f/HD9uqfHT$ *YD$L$HT$ L$YAXA{1@fHT$ *YD$L$ffHT$ *L$YD$ft-fHT$ *ƉL$I$AuAL-f*YD$2f(f*XAYEYAX$A$@9l$.A$fTĴY bAMfT f/5IAD9!WAOf*D$L$YL$AYMYA$\A$ifA*DfD$A*YL$BL$AYMYAX $A $f.f(-QYYX߲f(\Y߲f(YX[6JAA$H8[]A\A]A^A_I$H|$(H81[]A\A]A^A_É9Evf(L$T$T$@Y(YX$f(f(\d$]L$d$T$f(f(L$T$-T$Y߱YXCef(f(\d$L$d$T$f(IAA$f.fAUfATUHSHHf/H$HD$% =Hf(f(f(fTf.f.f/f/,fWHf(/H\ڃEAf(EAAHt$fA*Y$EfA*YD$H[]A\A]fD1ҾH=1GEH[]A\A]H,f=FfUH*f(fT\f(fV{GfDHHf(ʿf(t,G1H=@11E WPfAUfATUHSHHf/H$HD$f( %f(f(=FfTf.f.f/,f/`fWHt$HEf(.FAA\EAf('fA*Y$EfA*YD$-1ҾH=*1EE"H[]A\A]H,f=EfUH*f(fT\f(fVHEHH[]A\A]fDHHf(ʿf(n8E1H=l@11E cX,$=z L=LIHt.HxHHHǀH1H)HLHHt.HxHHHǀH1H)HLzIHt.HxHHHǀH1H)HL7HD$@Ht.HxHHǀHH)H1HLHD$xHt.HxHHǀHH)H1HLH$Ht.HxHHǀHH)H1HLeH$Ht.HxHHǀHH)H1HLIHD HxH1HHLHǀHH)HHD$8H HxH1HǀHH)HHЁHHM M H|$@ H|$x H$ H$ D<$L$LD$HDDd$1fW%cDf(ЉD$9D$(D$(|$H$D$0f. QT$(Yf(L$0LHꋄ$L$L$YDxf(DL$Llj$ $ $LMD$LL$8HL$xHT$@f(D$yHt$X$H :DLt$`A$Ll$hIHD$ Ll$@d$$CYDC\f*D$BDY$\$PlBYDCYDXD$PYD$AXAIv0f(fTf(YP\L$fT f/A.Il$L9|$ D$f$B 8*Ƀ)BLBTCYLCYTCYD\YAXAJ$d$d$H$$H2$=09Lt$`IAHT$ <$+CYDC|f*D$PBDY$|$XBYDCYDXD$XYD$PAXAIv0f(fT>f(YO\L$fT $f/A&Id$L9|$ D$f$B 8*ɃtN-XBLBTCYLCYTCYD\YAXANfDCYDBYDCYDAXACYDBYDCYDAXAwA^$ALd$H$MLt$`H$HI&{HD$f*BYDHD$8B4L$hD$PBDY$t$X5HD$8BYDT$0CdBYDL$hXD$XYCDY$T$`d$XCYT$`CYDL$PXD$XYD$(\YAXAIv0f(fTf(Y_M\D$fTf/A/Il$L9d$ D$f$B *Ƀ1HD$8BTf(BDC\BYTBYDCY\\CTYD$0CYT\YT$(HD$\BYLYAXA fHD$8T$(CYTf(D$0BYDBYDCYTLd$$\$Hf.Qf(H$YE1A^$H|$8MtLH$HtHH$HtHHD$xHtHHD$@HtHMtLwHtHjMtL]HD[]A\A]A^A_f$f.f( QYYXf(\Y D$HYXHD$XLl$hA^$A$Lt$`Ld$PMH$L|$xL$HI|$-@HD$PC4f*BYDL$pD$XBDY$t$`HD$@BYDCYDT$0XD$`B$L$pYCDY$T$hd$`BC HD$@T$hYD$XBYLXL$`YL$(\YAXEAEIv0f(fTnf(YI\L$fT Tf/A]I\$L;d$ D$f$B *ɃBLBTCYLHD$@CYTC\BY\\CTYL$0BYT\YT$(HD$P\BYDYAXEAE DHD$@L$0T$(BYLCYTCYLBYTLd$PL$$|$Hf.Qf(A^ $YH$E1$A1HD$XAH$H$H$Ӄ$f(A^$H$H$H$f(|$A^$|$f(HD$H $ $[LHD$8HttHD$8HxHHǀHH)HLHz0HD$XAH$H$H$:0HD$XAH$H$H$D$H\$H qYYYXUf(f(\T$T$f(>D$HtH$f(D$HTt$H YYXjKf(f(\T$T$f(D$HT$(YD$H$$Vf.UHSHH5\.H$HD$f/wH H=1ҾH=1qEH([]A\A]A^A_,fU*D(DDTA\VD(Qf\rH,H?fH/ H=nUHSHH/%q((p/f/ww/wrD q5j((TD.v.,fDp*(AT\(UV.z/u((TD.w;.z/ta1ҾH=1軘KpEH[],fUD p*(AT\(V,IHٺ,((uH H=a13oEsf.AWAVAUATUHSHH(%oD$/(|o/f/r/ii(D(D qoT(D.yA.7A/-((TD.v$,fU*(T\(V./(\/NpD,XnYso/0pD,H,\$ l$l$\$ HItkDHL$I(D\$ l$\%LA葎At3l$IHD\$ T$D((u>H f.1ҾH=`1;mEH([]A\A]A^A_,fU*D(DDTA\VD(Yf.\oH,H?fAWf(AVAUATUSHH$)$f*ƉT$Yt$|$X,1If/ÉD$xHDh|$0HMcL$ I9L=jN$LĽL$ DL$0HHMVLT$ M1LHDL$@L$0/LL脌L$0DL$@HLT$ IIL1DL$PJL$@LT$0LD$ LL6LD$ LT$0HL$@DL$PHJ1DL$@LD$0L$ 蚊L$ LD$0DL$@HHM $fD$|*D$YɉЃ)Yȉ$$EG ft$xC A*Vf(Xf(Y$D$|Qf(fAnDfoifpffD(-i)\$ foiHfDo5hfD( h)$fn1)\$0f(hfp)$$)$f(h)l$Pf(-if)\$f(hD)D$`fEo)l$@fAofD(l$`fo$frfhfo$fot$0fDD$ ffDfEXfDX<$DffpfpfrDfEYfD(|$fD(fEXfpfpfDXfD(fEXfEYfE^fD(fDXfEYfDYDlfD(l$`fDXfX $fAYfD(l$fDXfEYfA^fD(fDXfEYfYLfA(fAXfEYfAYf\L$PfXfA^fYfAXA f(fXfYfYf(t$@f\L$PfXfXfXfAYfDYfA^fYfXALf(fpfXfYf(fXfYf^fA^fY,fYTH H9&DBD9\DTffCfEf5"*r%D$D$D*ƍ4D*ҍP*HcH4f(XXfD(f(DXY8XAY^f(\\DYYAYDf(XAYAYA\\A^AYXfA*Af(\Y^AY׍PA9EDTffCfEfD*DZA*DD*A*f(XXfD(DXYf(XAY^f(\\DYYAYD5fA(AXYAYA\\A^AYXfA*AD0f(\Y^AYD7A9aDffAffE*DRA*DDA*D*fD(XfA(DXAXXAYY^f(\\DYYAYD5f(XYYA\\A^AYXf*AD0f(\Y^AYD7 fAnDfD(c$fpf(%cfDo5Tc)$fnfHfpD)D$`1fEofD( Uc)$$)d$@f)\$Pfoc)\$ foc)\$0f(4c)$f(8c)\$f(;cfAofD(,$fEcfo$fot$0frfDD$ fo$fDfEXffpfDX|$`DffpfrDfD(fpfpfEYfD(|$fEXfD(fDXfEXfEYfE^fD(fDXfEYfDYDlfD(,$fDXfXL$`fAYfD(l$fDXfEYfA^fD(fDXfEYfYLfA(fAXfEYfAYf\L$PfXfA^fYfAXA f(fXfYfYf(t$@f\L$PfXfXfXfAYfDYfA^fYfXALf(fpfXfYf(fXfYf^fA^fY,fYTH H9&DBA9PffyDfEfHcC4  -*D^D$D$E*D6D*A*f(XXfD(f(DXY%XAY^f(\\DYYAYDf(XAYAYA\\A^AYXfA*Af(\Y^AY׍PA9DffEC4ff*D^E*D6D*HcA*f(XXfD(DXYf(XAY^f(\\DYYAYDf(XAYAYA\\A^AYXfA*Af(\Y^AYA9ffHcA4ff*DVA*D6DA**fD(XDXXXAYYf(XYY^f*A\\AYLf(\\DYYA^AYXAf(\Y^AYfDJD#It$"=NT#~-kY~%sYAD XffD(^f(D$$f(f(AIH{A0YL5ArA\fD(fDTYXfW^7f(fTfA/fA/Av9|`T$x)ƒaELAIMf HfAYJL9uEAAE9tHcHT Y Yf(f(Y!f~1HHw}|$|E1H=2HHLLDL$0L$ xL$ DL$0HIMVM6LLDL$@L$ HD$0xL$ LD$0HDL$@HAHM$DEASG4D9Kff(1f(f(ffOf(fD(ff(1f(LLDL$@HD$0L$ wHHt`ML$ LD$0DL$@MyLLDL$@L$ HD$0wwL$ LD$0MHDL$@HCAAHyAL$AyL$MX舐AWf()AAVAUIATD$UASHA)H(2D%Z5Ot$fTfUfVf*AYX,Ѝj/P5t$ffA(ĉT$A*L$8wf(fW=OGT$G4?G'DHCL&D-DZfEf(E1~%fO5fLnff(D$DfW=)OD)Ef(9}f*ЃY9uA<9~Df*ЃAXY9uB˃JY9T$fEfEE*MQfD(E*LDXfA(@H9 f(fEfE(E<D*fEE*fE(EXE\EXEXAYD\AYfE(EXAYAYfE(D\EYfED*EYEYA^fD(YXfA(fD(\fDTDYfTfD/3~PD$f*؃Y9~Y׃^CTM9t+M0fD(ƒD$Y^|$A|H([]A\A]A^A_Ã~f(MQvf.fAWAVA@AUAATUSHH-QHL$PHLD$@D$8L$T$sIHHxH1HHHHǀ8HH)@H@=sL$HH HxHHHǀ8HHDH)@HHDD$qAŃD$LHD|$8-!f(Y\l$E^fۺH5f.\$XHt$HE„;D)fA$*XD$,(D$0D$lD$D$0AAYD$~gKDhI)\$ X\@fC4D$T$A*t$rYD$T$XA ~^-XfTD$ f/w IM9ufd$8fTd$ *T$`f(d$f(\$=rYD$HT$`d$f.%HD$P\$YzcuaE)AY$AD$HD$@X\d$Xf/d$8HE1xsLpsHĈD[]A\A]A^A_ 3f(T$x\$`Xd$L$~q\$`d$f(fL$A*^D$Y\f(\$`BqL$H|$lY wA\$T$xYL$pAD$D$0AXYD$DhIXyffC$D$\$0A*T$Y\ Cd$pYD$A \$0T$X~^-PfTD$ f/w IM9uD$HYD$`Y\$pd$Xf/d$8HD$@YXcu{HD$@fWHEf|$XfD$A*Y oD$HHqAt7AtEHD$@HHD$PfWHHD$@H5GH0AY$HD$@~%G)d$ H@AhnIH|IxLLAHIIǀ8H)@HLp:A'IHpLpLq@UHSHHf/%Lf(f(f/ff/f/~5Ff(f(D kfTfD.v5H,fDH*f(fAT\f(fUfVf.z%f/uf(f(fTfD.wH_ H=k1ҾH=|1rKEH([]A\A]A^A_H,ffUH*fD(DfDTA\fVfD(5\H,H?DH H={nUHSHHf/%f(f(Vf/ff/f/~5Bf(f(D ;fTfD.v5H,fDH*f(fAT\f(fUfVf.z%f/uf(f(fTfD.wH7 f.1ҾH=w1{n#EH([]A\A]A^A_H,ffUH*fD(DfDTA\fVfD(=\H,H?f.AWAVMAUAATUHSHH5pCT$8L$D$0L$4keH5LCHIHxHE1HHǀHLH)HeIH HxHDHH)HǀLH)HAA9D$?D$,D$0EdB#Pf5{D|$ T$0YT$4fD^=$Zf/i (H$DL$\H$LD$Pd$Ht$@T$XbT$X$$LD$P$DL$\(W=t$@^d$H^X^AA(˃<$\^AOfZ=-A=ZY^\Z(AWTZf/( 4$IW [fffEZH*DZX\AY^\(Z(BTZf/(Љ9},$$Oȃ0 f(fo@fDo@ff(-@HHfoEZE,Dl$ fpfXEZLfXfAfAYDZT$ fAYf^f^fD\ALL$ZL$f\fAZfZAHH9uȃp9fHcfҋ<$*IfZZJXY^\ZA F9fHcfɃ*AZ XY^\ZA9fHcf*AZXY^\ZA D$Xa|$4fDE*D$8DY(Yf(^f*Y Z\|$ AD$=B(fD -{:P fZ* \Yf*A\Yf*\^f*A\^DZYDXA9}E(A(DT\DYTD/wHA(A9jD$ DL$\LD$P\$p|$x)l$`d$HDD$t$@T$X`DD$fAT$Xd$HEZA^LD$PDL$\(l$`|$x\$pZt$t$@D$t$?fD?D)Dh?D KHHcHMfAfZA*D \YfA*A\Yf*\^f*A\^ZDDYAtAYDDYAX(A\TA9}D(DTE(DYD/HA9(A‰E(uE(ÉH)(tw^IHt7HxHHHǀHLH)HL`AHĘD[]A\A]A^A_ft$ }$oD$Xf*Y9uwT(D(A^DL$xLD$`t$@\$pd$\t$PT$H|$XX_t$@;4$D$|D$AY|$XT$Ht$Pd$\LD$`DL$x\$pA' AfLD$H|$\ZD$4DL$P\$`d$@t$X$]T$8fELD$H|$\ED*D^fAZD^\$ DYEZD$t$?fD)$D<-/6ƒDL$PD%`<HcD >t$XHd$@\$`I4AfZA*D \YfA*A\YfA*\^f*A\^ZDYDYDDYAX(\TA9}(TD(DYD/wf(fTf(^T$H$YT$0YAXXMH$,$,9LE1LQLQ+H$A ՅHf( =,f(-1HDA AHH9uȃgH5HI4H5I4Jt$f(~ D-fLnfHnD%D~ Dff*f(\$$AY,*f.fA/9v2A\,ԃfA(Ѹf*Y9ufAWAYY^YXfTf(fTAYf/wMYl$8HH[]f(@fD(fDTfE/cA,dVfE(fffA(*Ѓ\DY9uffA(*\H H$fHnYHHX@H9uYfE/fA(^AYfD/+t$0l$(Y\$ T$|$d$IT$fEd$H|$Yt~ fLnHD~\$ l$(fLnHt$0YfLnHyfLn^6f(fE(fE(fA(f.@ATUSH@L$ fZD$YYCDL$fEff(ZT$ E.zWuUY=X ZD/s#|$ A.H@A([]A\,f*.ztf(DL$(Y \$H[AT$D\$T$fXf(fZZY^Z|$t$DC\$-ED$AW((\ qTf~QAfT$D Zf=ή5 ZZ\$Y%@fEҸD-DZT$Y(ZfZ*AYXAXfD(D\AYYf*YYZ^ZX(^T/wuYf/wH ([fDL$AWd$(fnD$fZɰH|$=Y|$D$Ht$(<D$d$Yd$L$Y(fZY^%Yd$H [\(f.H(fZD$L$YY;\$L$-?D$(\$TL$R?L$fE%DT$5Ь-DZ\$=D EZDYf(A\f(\\YY(YZ^fZD(XD^DTE/DZYE\fE(D\D\AYAYD(DXDYEZA^ZXD(D^DTE/DZYE\fE(D\D\AYAYDDYDYEZA^ZXD(D^DTE/MDZYE\fE(D\D\AYAYDDYDYEZA^ZXD(D^DTE/DZYE\fE(D\D\AYAYDDYDYEZA^ZXD(D^DTE/wDZYE\fE(D\D\AYAYDTDYDYEZA^ZXD(D^DTE/ DZYE\fE(D\D\AYAYDIDYDYEZA^ZXD(D^DTE/DZYE\fE(D\D\AYAYD6DYDYEZA^ZXD(D^DTE/6DZYE\fE(D\D\AYAYDwDYDYEZA^ZXD(D^DTE/DZYE\fE(D\D\AYAYDDYDYEZA^ZXD(D^DTE/`DlZYE\fE(D\D\AYAYDDYDYEZA^ZXD(D^DTE/DZYE\fE(D\D\AYAYD*DYDYEZA^ZXD(D^DTE/DZYE\fE(D\D\AYAYDDYDYEZA^ZXD(D^DTE/DZYE\fE(D\D\AYAYDTDYDYEZA^ZXD(D^DTE/DZYE\fE(D\D\AYAYDDYDYEZA^ZXD(D^ATD/wM-ZYA\f(\\YYYYZ^fZXDYf/wA(H(fD(DT$WL$(L$D$fWL$ZƨL$5D$Y(8DT$\$(fAYZDDYT$H(D^DXA(fDAWZfD(AVIAUIATUHSHHfDTfDV)l$fDXZ)t$ (D$PT5)D)L$@EZE,Yt$`fA()T$0D$l$XA*DYAE1\t$pA)d$Ti3D$fE\$Pd$T(l$E/(t$ (T$0D(L$@A.f(ZY;SAD(AT$fDf(Z*YXZZA\Y(f\ZAHH9uHSLH)H TAJT$XEY£AO1Hf(fZfYlZLt Zf\ZfYfZf\fZADHH9uȃffZYZL\ZADPA9~YHcffɃZYZL\ZADA9~(HffZYZL\ZADMcIBD#ACD%EHĘ[]A\A]A^A_D f)t$ZD$`),$f/A(d$T(X\$PrpE\$Pd$T(,$(t$( ~$()t$ X)l$\$Pd$T(<$(l$(t$ @sE\$Pd$T(,$(t$(+ $()t$ X)l$/DD//EL$p)t$`D)$X)T$p)l$@d$0DT$ E\ \$P(W-  $,(ÉD$\$P $X YD$T(HcT$|$TfE\$PDT$ (Hd$0(l$@<(t$`(T$pDD($DyHD(fZ*\ZAXY(YZX(ZHyE~ fD)L$@ZD$`)T$0f/)t$ (()l$D$d$T\$Po\$Pd$TfED$(l$D((t$ (T$0D(L$@D#AT$dA(=D{ f(fZ*ƒ\ZAXY(YZX(ZA9|Hcƒu D(fZ*\ZAXY(YZX(Z HyD^AL$AKA(HHHfHYHH9uȃtLHcHAYPA9FHc҃HAYA9|HHDY D E/T%lhHSLH)H jA`\$XEfo-R Y:AOD(1fo=H EHf(fffoDTf[AXYZfYDZDfA\DZfDYEZfZfA(fA\fZADHH9uȃfɉf*ZYXYLZ\ZADPA9zfHcf*ZYXYLZ\ZADD99fHcf*ZYXYdZ\ZADD 0f)T$@ZD$`)t$0f/D)L$`(()l$ DT$d$T\$P:d$T\$P$(\ (\$Pd$TfED$$DT$((l$ (t$0(T$@D(L$`D#{AfEAT$D˛WDZ(fYAXD(fZf*A\A\^ZYAOD(1fDo3f(-[EHfD(fEfDoEZlAZAtE[EXfAYED fAAZfXADZfDXfAYEZfEYf\ZfAYfZfA\fZAHH9uȃfff* AZ AZlYXZXY\ZA PA9fHcf*fAZAZlYXZXY\ZAA9~BfHcf*AZYfAZ\XZXY\ZAMcICD,CD/EHĨ[]A\A]A^A_fD/]O/D$pD)L$P(D)T$p(D)D$@)|$0)t$ l$d$ T$LWd$  T$D$`X(1D(T$pD(L$PD(D$@(|$0(t$ l$\$`d$ T$A$AD$A AUDD(fDY*XD\(A(^AHH9uf(f.9/D$pD)L$P(D)T$pD)D$@)|$0)t$ l$\$`#(d$ T$/D(T$pD(L$PD(D$@(|$0(t$ l$\$`d$ T$ZY(A$YA\$AL$ f./D$pD)T$P((D)L$@D)D$0)|$ )t$l$`d$ T$lE(t$T$d$ l$`((|$ D(D$0D(L$@D(T$P6(\ D$`(D)T$pD)L$PD)D$@)|$0)t$ l$T$d$ (\$`l$(t$ (|$0D(D$@D(L$PD(T$pA$AL$D9D<@fZ*\ZA\Y(YZX(fZA HA9}DfE(ZD*YƒDXZEZEXAY\(Z(A9|d$  T$D$`X(T$(t$ d$ \$`l$(|$0D(D$@D(L$PD(T$p@E(t$T$d$ l$`((|$ D(D$0D(L$@D(T$P](\ 2D$`(D)T$pD)L$PD)D$@)|$0)t$ l$."f(T$(t$ d$ \$`l$(|$0D(D$@D(L$PD(T$pH kAaT$hEYNAO1Hf(fAZfYELAZLET AZfXAZfYfZfXfZAHH9uȃTffAZYAZLXZAPA9HcffAZ YAZDXZAD9HfAZYfAZDXZA((D)T$PD)L$@D)D$0)|$ )t$l$`d$ T$gD(T$PD(L$@AUdD(D$0(|$ D(AD$(t$l$`fD%d$ DT$fD(f(Z*AYăXZZAXYA(\ZA9|Hcƒu f(f(EZ*YXZZAXAYD(\fZA HyD^AMAOA(LHLHYHH9uȃWHcIAYPA9,Hc҃IAYA9HIDY(D(fl$hY-J1fff*AZ AZTYXZXY\ZA HA9}L$hY 1ffAZYAZTXZAHA95(1(4@AUIATIUSH.,D$L$ 1)ÃHcH< D$T$ HHt*H4LLH((OHH[]A\A]HL H=-1#3A$AEH[]A\A]@ATfD(USHPY#DT$ $AYEDT$fEf(fE.z^u\ $Y wX GfD/s$,$fA.HPfA([]A\,f*f.ztfD $Y 3DT$T$HAL$1T$D~5Y^֓D$HX$fAWY^!L$D$f(lDl$-]fED~?DT$fA( f(f(D~5 XYffEfD*fA(\$Y(,*f.fA/sv4\,҃(f(ݸ@f*Y9uY%%fAWfA(YAYXA^f(YYX^fATf/vfA.AEĄu#D$HHP[]YA\fD(fETfD/cA,dVfD(ffA(*؃\DY9uffA(*\H HDfHnYHHX@H9uYfD/f(^AYfD/LDT$@t$8Y|$0d$(Dl$ \$DD$T$\$T$fEH DD$YD~fHnHD~5Dl$ d$(|$0t$8fHnDT$@Y^Df(fD(fD(f(f(L$Y] L$D$f(k $Y D$DL$DYD^L$HPfA([]A\f.Sf(H0L$Yd$Yl$D~5߅d$$f(~=fAWf(fH~\fTf(HDiD l$DYfHnfHn DY$d$fHnظD~4~=<@AYf*fD(DXYDXYfE(D\AYAY^Xf(^fTf/wuDYff/wH0fA([@fAWf(DT$f(l$ $fHn袇l$H|$(5gD$Ht$ Yf(D$(DT$L$ YYD$AYfD(D^DY$H0[D\fA(ÐAWf(f(f(AVfIAUATIUHSHHHfT5fV5VfT=T$X|$ D,f(t$A*DAE1\A)Yd$Ylt$fT$f/d$ff/f/DSDf(fD/v AX,f(‰D$4d$(t$ DD$8L$T$pL$DD$8T$D$A\f(IHcT$4|$f(T$t$ Hfd$(DxO ߂A9nHff(ff(*YXXYf(\,HyEfHSLH)f/HAEfD(HYCAOLfo-\fDo cf(5fEHf(Hfffof@H H fpfDPfAXfAXfAfDYfXfXfYf@fYfD\fXfYDRf\ZH9ufW* YXXYD\A ׍PA9~\fHcʃ* YXXYD\A D9}(fHc*YXXYd\AMcIBD+ECD/A$HH[]A\A]A^A_f/f/D$ f(f(t$ d$T$hCd$DTT$D$fA(Xf(t$ l$d$T$f(f AAUf(fY*X\f(f(^HH9ujfff.f(f/D$ l$ .f(f(t$d$T$Ol$ t$d$T$Y-f(Yk[0f/D$ f(t$d$f(T$JUET$d$t$f(D~f(D$f(t$ A\T$d$f(l$t$ f(ŸfD9 ~ff*\\Yf(YXHA9}Dff(*YXXYf(\f(A9|][d$D}T$D$fA(Xf(.T$d$l$t$ ET$d$t$f(D}f(D$f(t$ A\Ef(f(T$d$t$l$ fDHAYTEAO1f(HffDf ftfYfXA HH9u߉ȃYXTAf(f(t$d$T$it$AUd=d$T$fD(C |ff(ff(*YǃXXYf(\A9|Hcƒu &f(ff(*YXXYf(\,HyfA(AM^Ef(HfHHfHfYHH9uȃ&HHY fY{1D]{Df*YXAXYL\AHA9RYX1fDYXDAHA9f( 1Xf(A@AUIATIUSHf.,$L$1)ÃHcHH| $T$HHt,H4LLHf(f(/HH[]A\A] Hw H=1zA$AEH[]A\A]@H(f(YL$d$Yd$~=L$$f(d$fTL$f(% -yL$5yd$f(D $Dƀ\~=jD{DYf(Yf(\\AYY^f(f(X^fTfD/{AYfD(D\fE(D\D\AYAYfD(DXDYA^XfD(D^fDTfE/DAYfE(D\fE(D\D\AYAYD%0yDYDYA^XfD(D^fDTfE/VD5zxAYYfE(D\YfE(D\D\AYAY^Xf(^fTfD/D=AYfA(\fD(\D\AYYxYY^Xf(^fTfD/D-AYDYfA(\DYfD(\D\AYYA^Xf(^fTfD/ID%AYfA(\fD(\D\AYY(YY^Xf(^fTfD/DyAYDYD\fA(\DYYfA(\YA^Xf(^fTfD/ZAY\fD(\D\AYYڀYY^Xf(^fTfD/>AYDY\fD(\D\DYAYYA^Xf(^fTfD/َAY\fD(\D\AYYAYY^Xf(^fTfD/jAYDY\fD(\D\DYAYYA^Xf(^fTfD/C@AY\fD(\D\AYY@YY^Xf(^fTfD/iAYDY\fD(\D\DYAYYA^Xf(^fTfD/AY\fD(\D\AYY/YY^Xf(^fTfD/wGtDYDv\DYf(\DYDYf(\AYA^XDYff/wfA(H(@~DL$L$fWf(L$~$fWL$f(vL$5rtD$Yf(DL$PtY$DY^\$H(DXfA(fAWf(f(fAVAUIATIUHSHHHfT=YT$|$ f(fT=fV=ZXYD,f(|$A*DAE1\t$(A)d$|$fT$d$f/f.0*f(f(Yf(fEA-`rAVf*X\Yf(f(Y\AMLHH9uHULH)HAYrEAO1f(HffLftfYf\A HH9uމȃtYT\TAMcIBD5AECD4HH[]A\A]A^A_@Xf/D$ f(d$T$f(sX#ET$d$f(j-qD$f(Xf(T$d$\$f(bKET$d$f(-pD$f(Xf(T$d$\$f( f/pf/f/D$ f(|$d$f(T$衷T$d$f|$fD( -pAVdf(DE fDf(f*ƒ\XYf(YXf(A9|Hcƒu f(f*\XYf(YXf(\HyfA(AN^Ef(HfHHfDfHfYHH9uȃtHHDYEf/fT%HELH)HA EfD(LY vAOfo5 fEfDo Hf(Lffof@H H fpfhfAXfAXfAfYfYf@fYf\fXfYjf\ZH9uf*LYXYD\A ԍPA9cfHcʃ*LYXYD\A D9.fHc*YTXYd\AfDL$(XE-umd$8|$0\l$(T$f(fW-L$,f(‰D$ 覴l$(L$T$D$Xl$f({HcT$ f\$f(T$l$Hf|$0d$8D9H f(f*\XYf(YXf(DHykDf/D$ f(|$(d$f(T$轳d$-?lT$D$ f(d$\f(l$膳T$fl$d$DD$ f(|$(fA(fEAfD(AVfDW f(AYf(f*AXfD(\\^\Hf(H9ulEYk1f.LY\LA HA9'd$-)kT$D$ f(d$\f(l$|$(fDD$ d$l$f(T$Y r1f.f\*YXYL\AHA9w|$d$fT$fD(Qf(fW;d$0|$(,f(L$T$D$ 袱-*jL$T$D$Xl$f(uHcT$ f\$f(T$l$Hf|$(d$0Df(=1f()AUIATIUSHf.,$L$1)ÃHcHHL$T$HHt,H4LLHf(f(HH[]A\A]Hf H=N 1iA$AEH[]A\A]@AVffEAT*AUHSHXo=H$)$o= )$o= )$o= )$[8S0f(f(Yf(AYY\f(AYXf.y f{()C0C s0fD(EYfD(fD(EYE\DXfE.'fA(fA(AYAYf(\Xf.XXS f(AYf(ff()K0Yf(YA\Xf.+f)C MD$$$D$fA(f(fE(D$AY,$fA(fA(D$AYD$D$AYD\fA(XAYAXfA.\f.zfD(f(EYAYfE(D\DXfE.fA(fD(fA(AYf(EYXA\f.f(f(AYAYf(\Xf.$f(AXAXA\DXf.AXX,$H E1AXEXffA)$)$rfo$Afo$H$$D$)$fo$)$$)$fo$l$)$$d$[8S0f(Yf(f(AYAY\f(YXf.fk()C0C DC0f(AYf(fD(AYD\XfD. f(fA(fA(AYAYY\fA(AYXf.5 DXXS f(Yf(AYfDf(YD)C0X\f. f)C $$$,$$M$$D$D$f(fD(fD(AYfE(fE(EYEYD\fA(DXAYEXfE.D\fE. \$fA(fA(AYAYfD(AYEYfD(D\DXfE.fE(fA(fE(EYAYfA(AXD\\$fA.K\$f(AYf(AYY\fA(AYXf.\$DXDXf(AYfE(AY\D$fD(EXfA.S XDXH E1DX$DXfAfE)$D)$f$d$($l$ f(f(t$T$\$ST$fE\$fD(fD(fD(D$\\f(D$fA(t$l$ d$(DYYDYYD\DXfE. fA(fD(f(AYfE(EYAYEYD\DXfE.fA(fD(f(YfE(DYYDYD\DXfE.$$fA(Yf(YAY\f(Yf(Xf.HAXf(EXHDŽ$AXAXfE(HDŽ$(fA(fE(EXHDŽ$8D$AX$EXEXD$H$A$$HDŽ$H$ $T$$0$$@S0[8f(f(fD(YYDY\f(YDXfA.DK(s fA)C0{0fA(f(AY\f(AYAXf.4$f(AYf(YY\f(AYXf.AS f(f(XAYf(AXYAYf){0\f(YXf.f)C M $0$$D$(|$f($8D$ AYf(AY|$ fE($@EYfE(|$($H|$0f(\XfA(AYEXf.D\5Hl^IfE.fA(fE(fA(AYfE(EYAYEYD\DXfE.\f(fD(d$hf(AYf(fA(D$EYfIn$Dt$xDd$pDT$`\f(D\$XDXt$P|$HfI~DL$8fInDL$8|$fD(fInAf(fTfDTfAUfUfD(fV\$fAVDYf(f(fD(YDYD\f(YDD$@DXf(DL$8DD$@DL$8fEf(Dt$xD$fA(DT$`t$PA|$HD\$Xd$hDd$p$fDTf(fDTfUfA(fUYfAVfDVDXfA(fA(YEXY\fA(YXf. XD$XL$ H E1DXD$(DXT$0ffE)$0D)$@f.fo$efo$ efo$0e fo$@e0HX[]A\A^fA(f($$$$fEf(af(f(fA(Dl$8Dt$0Dd$(l$ d$Ul$ fEDl$8Dt$0Dd$(d$ $fA(Dl$Pl$HDt$@d$8DD$0|$(DL$ Dd$l$HfEDl$Pd$8|$(f(f(Dt$@DD$0DL$ Dd$4HZfA(fA(f(Dl$PfHnl$HDt$@Dd$8d$0DD$(|$ DL$Kl$HDl$PfEDt$@Dd$8d$0DD$(|$ DL$lf(f(Dl$8Dt$0Dd$(l$ d$l$ fEDl$8Dt$0d$fD(Dd$($fA(f(f(DT$8Dd$0DL$(Dt$ Dl$D\$DD$<$aDT$8Dd$0fEDL$(Dt$ f(Dl$D\$DD$<$'fA(f(f(l$8f(DT$0Dd$(Dt$ D\$DD$|$l$8DT$0fEDd$(Dt$ fD(fD(D\$DD$|$ffA(f(fA(t$8fA(l$0d$(Dd$ D\$DD$|$Pt$8l$0fEd$(Dd$ fD(fD(D\$DD$|$fA(f(t$8l$0d$(Dl$ DL$DD$|$t$8l$0fEd$(Dl$ fD(fD(DL$DD$|$fA(f(f(Dt$<$u<$fEDt$fA(fA(fA(|$8t$0l$(DD$ d$D4$&|$8t$0fEf(l$(f(DD$ d$D4$[HVfA(f(Dt$8|$0fHnt$(DD$ d$,$|$0Dt$8fEt$(d$fD(DD$ ,$fA(f(<$Dt$b<$fEDt$f(9fA(f(f($$1$$fEfA(fA(fA(d$ fA(DL$|$t$,$d$ ,$fEf(|$t$f(DL$HUf(fA(d$ DL$fHnt$l$<$d$ <$fEt$l$fD(fD(DL$oD$ffA(fA(t$Hl$@d$8Dt$0|$(DT$ D\$ |$(D\$fEDT$ Dt$0fD(d$8l$@t$H+fA(fA(fA(HTt$hfHnl$`d$XDt$P|$HDl$@Dd$8D\$0DD$(DL$ mt$hl$`fEd$XDt$PfD(|$HDl$@Dd$8D\$0DD$(DL$ fA(fA(f(d$0fA(DD$(t$ DL$Dd$D\$t$ fED\$Dd$d$0f(DL$DD$(fA(HSfA(d$@t$8fHnl$0DD$(Dl$ DL$Dd$D\$VD\$Dd$fEl$0t$8f(fD(DL$Dl$ DD$(d$@MfA(fA(d$PDl$Hl$@DD$8Dt$0|$(DT$ DL$Dd$D\$d$PDl$HfEl$@|$(f(f(DD$8Dt$0DT$ DL$Dd$D\$5HpRfA(f(fA(d$PfHnDl$Hl$@DD$8Dt$0DL$(Dd$ D\$|$DT$d$PDl$HfEl$@DD$8Dt$0DL$(Dd$ D\$|$DT$^fA(fA(f(d$0f(|$(DT$ DL$Dd$D\$yd$0|$(fEDT$ DL$fD(fD(Dd$D\$fA(fA(fA(H7Qd$0fHn|$(DT$ DL$Dd$D\$D\$Dd$fEDL$|$(f(f(DT$ d$0D$fA(fA(fA(t$Hl$@d$8Dt$0|$(DD$ DL$tt$Hl$@fEd$8Dt$0fD(fD(|$(DD$ DL$fA(fA(fDl$hfInl$`Dt$XDd$Pd$Ht$@|$8|$8t$@fEd$HDd$PfD(fD(Dt$Xl$`Dl$h_fA(fA(f(l$hf(Dd$`d$XDT$PDD$HDl$@Dt$8gDt$8Dl$@fEDD$HDT$Pd$XDd$`l$hH7OfA(Dl$xl$pfHnDt$hIDd$`d$XDL$PDD$HD\$@DT$8DT$8D\$@fEDD$HDL$Pf(f(d$XDd$`Dt$hl$pDl$x0HNfA(fA(ft$HfHnl$@d$8Dt$0|$(DD$ DL$=|$(DL$fEDD$ Dt$0fD(fD(d$8l$@t$HfHNfA(t$Xl$PfHnd$HDt$@|$8DT$0Dl$(Dd$ D\$D\$Dd$ fEDl$(DT$0fD(fD(|$8Dt$@d$Hl$Pt$XT$fA(fA(t$hl$`d$XDt$P|$HDl$@Dd$8D\$0DD$(DL$ t$hl$`fEd$XDt$Pf(|$HDl$@Dd$8D\$0DD$(DL$ fA(fA(fA(l$hfA(Dd$`d$Xt$P|$HDl$@Dt$8ol$hfEDd$`d$Xt$PfD(fD(|$HDl$@Dt$8f.@AWffI~ǸAV*fI~fEAUfI~ATfI~UHSHo=.o56H$p)$p)$[S((Y(AYY\(AYX.1 {CkD((D(EYAYE\XD.A((AYAY(\X.XXS(Y(CAY(YkA\X.yKCHw$p$t$D$xD((D($AY|$E(A($|EYD$D$EYD\(DXAYDXE.\D.(A(AYAYD(D\XD.A(E(E(AYA(EYD\AXD.A((AYAY(\X.XA(DX\DXA.)XEXH1DXD$AXADA)$fDfo$pDt$I H$fo$Dt$A)$fAnI )$fAn[S((Y(AYY\(AYX.! DCCcE((D(EYAYE\AXD.a (((AYAYY\A(AYX. XXS(Y(CAY(AYcA\X." KC$D$$D$$d$$D$D$d$Mf(E(A(AYE(E(EYEY\A(DXAYEXA.D\E.A\$A(E(AYEYD(EYAYD\DXE.}E(D(D(EYA(EYE\AXD.\$(AY(AYY\A(AYX. \$DXDX(YE(AYA\D(EXA. DXDXHE1DXT$DXL$EEED)$SDL$XL$\~D$XD|$,l$(DT$$Dt$ DL$L$L$DL$fEfD$Pt$P\$TE\\Dt$ DT$$l$(D|$,E(((YDYYD\A(YXD.T$ (D((AYEYAYD\(AYXD.a(D(D(YEYEYD\(YDXE.d$l$((YYYY\(X.LD|$EXAXH EXEXDŽ$$LAXA(AXH XDŽ$DXD$E(H$DŽ$D($DŽ$D$ADD$DL$L$D$C(A(A(KYYY\(YX.{DCk(A(AY\A(AYX.A((D(YAYEY\(AYAX.Xk(A(YXY[SA(Y\(YX.SKCMD$D$$$A(E($$AY|$ $D$t$((|$$(AYD\A(AYX((AYAX\.*D. \$T$(D(YYEYAYD(D\DXE._(((AYAYX\.l$DT$(A(YYY\A(YX.T$\$DXDX((YYYY(\(X. Xl$(DXHE1DXL$$DXD$ AEA)$Affo$fo$}uH[]A\A]A^A_(A(HD$d$HD$d$fEfք$h$h$l(A((d$ (Dt$,Dl$(D|$$d$ fEDt$,Dl$(D|$$fք$$$@A(A(d$8D|$4l$0|$,t$(Dl$$Dt$ &d$8fED|$4fք$l$0$$|$,t$(Dl$$Dt$ n(A(A(Dt$8d$4Dl$0D|$,l$(t$$|$ d$4Dt$8fEfք$Dl$0$$D|$,l$(t$$|$ A((Dt$,Dl$(D|$$d$ d$ fEDt$,Dl$(D|$$fք$$$D$L$(|$4Dl$0DL$,DD$(Dd$$\$ t$|$4Dl$0fEfք$DL$,$$DD$(Dd$$\$ t$(A((|$,Dl$(Dd$$\$ t$|$,fEDl$(fք$Dd$$D$D$\$ t$(A(A(l$,D|$(Dd$$\$ t$l$,fED|$(fք$Dd$$D$$\$ t$)(A(Dt$0DT$,l$(D|$$\$ t$"l$(Dt$0fEfք$DT$,$D$D|$$\$ t$d$o(A(A(t$|$t$|$fEfք$$$(A(A(|$,DL$(DD$$l$ d$t$L|$,fEDL$(fք$DD$$$$ l$ d$t$A(A(t$,|$(DL$$l$ d$DD$t$,fE|$(fք$DL$$D$$l$ d$DD$(A(t$|$bt$|$fEfք$$$(A((HD$d$HD$d$fEfք$P$P$T=A(A(A(HD$d$$DL$ |$t$l$d$$HD$fEfք$XDL$ $X$\|$t$l$%(A(HD$d$$DL$ t$l$|$1d$$HD$fEfք$`DL$ D$`$dt$l$|$A(d$0t$,DD$(Dt$$|$ Dd$DT$l$d$0t$,fEfք$HDD$(D$HD$LDt$$|$ Dd$DT$l$HA(fA(Dt$Dd$@Dl$HNfEHDR|$d$D$DRovHL$L$YHN(Zt$j(AY|$HL$DD$r fD(YDYXf(XAYAYXL$YAYAXXfA(AXYYXf(AYXAYXXOAXAXAXX/Gf.AWAVAUATUSH$H|$$f$$$$l$t$d$X)D$`?~ HD$hL$X f(o|$XHT$hfD$hffHT$P)|$@L$XAL|$ Lt$@Ll$p@fCT$fLA*fLDHD$x*AT$AHDŽ$*fW SL^^L$p $Y$L$YYD$$$oD$XHT$h)D$@foD$ HT$PHT$0D$XHT$h97DoD$XHT$hHD$HPHĨ[]A\A]A^A_HDfVD^f vHD$GD$l$DND(D$L$YHG AYHD$GDD$D$\$XY(XAYAYAYXL$YDYXAYXA(AXXAYX(AYAYXXXAXXt$D$(XD$~D$fnL$DAWAVAUATUSHfD$ d$ l$$f~L$(t$(|$ $$l$t$d$Ll$Pt$T/D$TA?\$T|$T$Td$LHD$@?|$P|$T$H|$T\$TL|$LALl$@Ld$`fCD6fLA*fLDHD$d*AFA*W ^^L$` $YL$lL$YYD$L$pD$tL|$@\$HfI~f~fD$Lf~L$T9l$ [HĈfInfn[]A\A]A^A_Ë\$TL|$LDff(f(f/\fTw"XXf(f)l$L$D$\\f(f)t$L$D$f.@fofH~fH /fH~fnT\w&fnXXf~f~H H fHnDfn\\f~f~H H fHnf.DoL$HD$wHGt~^HG0G Ð~HHG0G f.\$fd$HGL$Hf(f/f(\fT-/fwf7XfXOf\f\Wf.fD$D$\$f~L$fT$/((\T-Jw0XXXd$\$~D$L$fnL$D(\\\l$D$~D$L$fnL$f.oT$o\$fw0od$(G8_g GHGXtCG8 G@OHGPOXG`@G8뻐oT$HD$fwHG,HGGtFG G O$G(O,G0GfoL$HD$wHGt~ΌHG0G Ð~HG0G f.oT$o\$fw0od$(G8_g GHGXtCcG8^ ^G@YOHGPOXG`@PG8K뻐oT$HD$fwHG,HGGtFjGa G O$G(O,G0,G#fAW(fAVZAAUATMUSHH:D$(\)D$p(`)$(a)$(b)$:nf/ /D$HuEf(\$%}\$A9/ EE f%E (t$t$t$ fDEW(EA(ffZfEA*Zf(XX^Y\DZE9A9DD)HcD DE}Au E%A{fHd$H*t$@fHnDL$8l$0\$(۰DfUAl$0d$HDL$8\$(Yft$@*\^fAZYfZD$XZ|$xrY,9V@HD$p(\5HD$0E1H$A(D$?^HD$8t$@fHD$0f(fA*d$(BZ<(\$ |$ݯYD$fAWZL$\$ fAHD$8Xf*Zf(|$fBZ<(|$I胯YD$Ad$(\$ ZXZKfC^D$.>QD$HHD$hD$@H|$ld$ H\$H|$`HD$Xx\$Ed$ D$hT$l((t$HYYYY\$\XYYDH,AH$f(fD$?\džHD$8E1H$HD$@AZX|$P(^d$fHD$8f(fA*d$0BZ<(l$(T$ |$\$YD$fAWZL$ffA\$HD$@BZ<(|$IXf*Zf(t$踭YD$Ad$0\$T$ Zl$(XZ3Ht$XD$Pd$(H|$`l$ T$\$Ǫ\$Ad$(|$hL$l((T$Hl$ YYYY\$\((XYY(T$D)H4A U!AOJD(D9%>(N fD(fZZ*\X^Yf\(Z9|9 IcHHH ffZ*Z\X^Y\(fZ4H9}A@ffHt$HAZf(fZL$ Xd$Pl$@\$8XfDL$0*|$(ZfHnt$ 荫|$(fUl$@DL$0Yf\$8d$PZD$^XZt$t$HEDD$ EXA9D)pD)A(HHHfDH^@H9uB19tTD)HcH A^H94D)HcH A^9D)HHA^E^f(d$@Yt$8DD$0\$ DL$(膭DD$0Et$8XDL$(ffA^d$@fEDNA(EZ\$ D^L$ZYZ\fEZZD$AYZA^ZYfZl$DYA\E^\΁YZA\YZEAASJD9((ѸAOf(fZZ*\XYf^\(Z9|9SMcHIK ffZ*Z\XY^\(fZ H9}Hĸ[]A\A]A^A_fD9HIL‰H))H( &f)H1HfA HH9uʃA9tKMHcAP9,D)HcA9|D)HAE-?"fDHAED)HcA <f(þ\$U\$A%fD|1@HAHH9uLfE%E(A(DD$DD$D2d$ \$ad$ \$D$Hf.AWIAVLcAUDMATIHULSHH1HD$ L$ fbZf/EIT$LH)HdAZAN( 1fHAALHH9uȃtMHcAADPA9|+Hc҃AADD9HAADAD$?H[]A\A]A^A_DCA5H~WA$/BL@H)H @fo:(fo%7HHfo<Tf[^Y\AHH9uՉЃx9tzfHc*T^Y\AH9|OfHc*T^Y\A9|$fHc*T^Y\AELH)WAEH )@ fo6(fo%3HHtfoTf[Y^\ATHH9uӉЃp97Hcf*YDT^\ATH9Hcf*YDT^\AT9Hcf*YD^L\ALH[]A\A]A^A_@EWAuDfT*YD^\ATHH9uCJ1fDAADHH9uJfT*^Y\AHH9uAWAVAUATUSH$$HL$HL$L$DŽ$D$TL$u л)Ë4$fۉZ\$Tf(\$!|$T\$D$/ f($.eQly%lyfYZYX,f(\Y LyYf(XZfZ* $Y X,$=L=F~LQIHt.HxHHHǀH1H)HLHHt.HxHHHǀH1H)HL˟IHt.HxHHHǀH1H)HL舟HD$8Ht.HxHHǀHH)H1HLCHD$pHt.HxHHǀHH)H1HLHD$xHt.HxHHǀHH)H1HL蹞H$Ht.HxHHǀHH)H1HLqIH HxH1HHLHǀHH)H'HD$0H HxH1HǀHH)HHЁHHM M H|$8 H|$p H|$x H$ D<$D$TLfDZL$,Dd$1W%vD(ЉD$ΞD$,D$轞\$T$D$P.QT$,Y(L$PLD$xLHꋄ$L$Y(DxDL$Llj$ $ $LMD$LL$0HL$pHT$8(D$Ht$H$G $DLt$XALl$`ILl$8\$ HD$ $@ffCZLYBDCYDL$f*Z$l$@f(fBZDYfCZLYfXD$@YD$AZXZAIv+(T,u(Y}\L$T u/A>I|$L9|$ D$f$B 8*ɃSBTff(BDCZLCYDCYTY\ZYfAZXZA3$l$l$H$$N $=N Lt$XIAHT$ <$KffCZLYBDCYDL$@f*Z$l$Hf(fBZDYfCZLYfXD$HYD$@AZXZAIv+(Tts(Ye{\L$T \s/ A.Il$L9|$ D$f$B 8*ɃtgQBTff(BDCZLCYDCYTY\ZYfAZXZA7f(fCZDYfBZLYfCZL@軙f(fCZDYfBZLYfCZLA^$ALd$H$MLt$XH$IpfDCHD$ffBZLYHD$0BDBYL$@f*Z$t$HL$`HD$0fL$`f(fBZDYfBZTYfXD$HZT$PYCDCYDT$XZ$|$H脘fT$XCZ YfCZDYfXL$HZD$,YD$@\fAZYXZAIv+(Tp(Yx\D$Tp/A7It$L9d$ D$f$B *Ƀo貗HD$0BTf(BDBLBYTYCDCYD\CTYL$PCYT\YD$,\HD$fZBZDYYfAZXZAfDHD$0L$PT$,BYLf(CYTBYLCYT\Ld$$\$T.Q(H$YE1A^$H|$0EMtL8H$HtH#HD$xHtHHD$pHtHHD$8HtHMtLHtHӗMtLƗHD[]A\A]A^A_f$.Qwm%mfYZYX_mf(\Y _mYf(XZ&HD$HLl$`A^$A$Lt$XLd$@MH$L|$pL$I\$m;HD$@ffBZLYBDCYL$Hf*Z$t$XL$hHD$8fL$hf(fBZDYfCZTYfXD$XZT$PYCDBYT$`Z$d$X肔fHD$8T$`CZ YfBZDYfXL$XZD$,YD$H\fAZMYXZAEIv+(Tl(Yt\L$T l/AeId$L;d$ D$f$B *Ƀm訓BLHD$8CYLBTf(CYT(CL\BYLCTBYTYD$P\YL$,\HD$@fZBZLYYfAZMXZAE HD$8T$,CYTf(D$PBYDCYDBYT\Ld$@L$$\$T.5Q(A^ $YH$E1$|qHD$HAH$H$H$&Ӄ$(A^$H$/$H$(|$A^$|$(D$T $. $LǐHD$0HttHD$0HxHHǀHH)HLHipHD$HAH$H$H$)pHD$HAH$H$H$TD$T\$H\$ZY^hf(XZh\$ Y Thf(D$T\T$f\$ T$ZD$TߓH$(D$T\$躓\$ZYgf(XT\$ Y gf(D$T\T$uf\$ T$Z`D$TQT$,YD$T$7$f.UHSHH5nD$/D$ w4( /v A Y(ED9kHxLP(LHDHEf+pE*x]GDffxYh؃lZYf*YEZZHfZ^XYZD`pf҉P%C']HHulH`HpHtQ(fHpfx*]ZlXf(\\ ϴYEmEYEx]lZXZ(\^T/v OHH;`U9HE}E5F]M\$HE(ZYZ^X(YYEXHHEZXfZMYXZHxLPLHDHEfHEftLA~FH}uAMAMIL?FL7FH}.FLVGfDAWMAVAAUAATA USLH8H5O!HL$D$ L$T$KCH:L$HDDD$ HAuqfD$, ZD$f/LL$pIHT$L$DDD$ E1AHBEH8D[]A\A]A^A_LD$MHL$D$ DDytAYE1DAHHIHD$4DDPL$L$$D$lZYtD$,xAKIHDLEf.UfHSHH/D$D$ /~/wyD !(((-/TD..zM/uH((TD.v.,fUD9!*(AT\(V.z/ti1ҾH=R1kI EH[],fD *(AT\(UVKDHL$H(IU,(,(LD$ ZYuHs H=)R1HZ EZ@AWfAVAUATUHSHH(/D$D$D$//}%((D T((D.v.,fUD *(AT\(V. /((TD.<./(\/ D,XuY / D,'H,\$ l$>l$\$ HItyDHL$I(D\$ l$LA3?AtAHL$HIDS\$Dl$T$,(LD$((#ZYu:H fD1ҾH=)P1FcEH([]A\A]A^A_,f=4U*(T\(V\H,H?UfHSHH/D$D$ /~/wyD (((-_TD..zM/uH((TD.v.,fUDi*(AT\(V.z/ti1ҾH=N1E+EH[],fD*(AT\(UVKDH,HHD$((IP,(LL$8ZYuH H=AN1DEWAWfAVAUATUHSHH(/D$D$D$//}%((DNT((D.v.,fUD *(AT\(V. /((TD.<./(\/ D,XYE/D,'H,\$ l$:l$\$ HIt|DHL$I(D\$ l$.LAc;AtDHHIHD$ DDP\$l$T$,(LL$$(PZYu7H 1ҾH=DL1CEH([]A\A]A^A_,f=dU*(T\(V\H,H?AUf(IATAUHSHH8~~%>fTf/f(H|$(Ht$ L$;L$D$(l$ ^f(\^UE~03f(\^cAX^\uH8[]A\A]fHcL,J*H9s J)H9L1H7L1H7HHE~HHEH8[]A\A]f(d$t$L$t$A9d$~9CAE…3H=-ƨffHnHf(f*XXY^\f(Hyf(fTfTf/^rf(HfHHfDfHfY@H9utHHY00nHHMH)Hi`ҿf(HOfo%ffo=f(-HHDfoH fH fpfXfXfXfYfXf^f\fPfYfPYf^f\QH9up9fHc*TXY^\TH9jfHc*TXY^\T97fHc*XY^L\LH8[]A\A]Ðf(Dd$t$L$]AUL$t$d$~9zH=0fI-2fHnf(f*XXY^\f(9Ճ7h^f(n1fHHDHI9udH Hff(1mfT*XY^\TH9}f.@AWMAVAUIATUS@HH-t$(HT$0LL$8D$L$ 4HD$Ht.HxHHǀ8HH)H1@HH4HD$Ht.HxHHǀHH)H1HH`4IH HxHHHǀH1H)HH|$ H|$ D$(,T$)AAAEAAD9Ed@D$@B4#@PB%4DL]fD(EFAIfA(f*ƒY9uA}YAfۍMf(պ 1f(D~ D ff(<f*Ǎ< \Yf*\Yf*\^f*\^ADYXA9}!f(\f(fATAYfATf/wHA9qt$ f.D$YD$ B<&LHL$H$LD$X\$x|$pT$`$d$Hl$hl$ fd$H*D$0f(d$PYf(^f*Y \f(l$H2|$pD$0If(d$PLD$X^T$`l$h\$xD$0D$@HcӉ+t$(f(DfHЉ=gD~ HD1HD$(M fDfED*ٍ D\AYfED*D\AYfEE*D\A^fED*D\A^YAYDAYXAE9}*fD(D\fA(fD(fETfATEYfD/wjHIA9|Wf(ȉAfA(@uf(AH+f(wDL]%DL EfA(Y eLD$Xt$P\$xd$pl$hAD$ T$`t$@0fE\$xHL$(D*L$0LD$X= t$PD~@ t$@DT$`D^l$hd$pf(HL$D^L$HEYfED*ߍ|D\AYfED*D\AYfEE*D\A^fED*D\A^YAY\YXA9}.fD(D\fA(fD(fETfATEYfD/HHA9xf(ÉAf(@uf(܉H*f(wt$ ff.D$YD$ B<&LHL$H$LD$X\$p|$h$d$Hl$`$l$ fd$H*D$0f(d$PYf(^f*Y \f(l$H.D$0LD$XI|$hf(d$PAl$`\$p^D$0bf( ؝LD$PYt$@\$(AD$ .fE\$(t$@D*L$0LD$PD^D^L$HEYYt$HD$8YAXLE1/H|$/H|$t H|$/HĨD[]A\A]A^A_zHL$D$Lߋt$(LD$PDL$@DT$0D$ \$hd$`|$XDD$HֵD$ DT$0DL$@DD$HLD$P|$Xd$`\$h~HL$-@fDHA9|(f(X\f(\f(fTYfTf/vϋt$(ff(*Y f*ƒXY9~al$Kf(Xf(f*ƒYY9u)f(f.f*ƒY9~f!LD$X*L$(DL$HDT$@D$0$$l$xt$p\$h|$`DD$P,f*D$ D$+DL$Hl$xf(f$t$pA)ًD$0DT$@A*LD$X$D9DD$P|$`\$hXXD$ YYYY^tGYIHD$8^AY]AYL,H|$A!YHD$8^AY]AYAHDL$`DT$XD$PDD$hfHL$D$Lߋt$(LD$ \$Hd$@|$0ALD$ |$0d$@\$HD$PDT$XDL$`DD$hVf(f(f(|H|$tFA f(LA+H|$uH|$AAf.fAWAVAUATUHSHH8T$nHD$(f/\$ff/f/~%=f(f(fTf(f.v+H,ffUH*f(fT\f(fVf.Rf/Hf(f(fTf.jf.(f/f(\f/>D,XY D,f/LH,R'IHD$DIDHL$(HLA'AL$(H5@L$'IHt^L$HDDD$L$DIID$LDLA)Au6H f1ҾH=81[/EH8[]A\A]A^A_H,ffUH*f(fT\f(fVf\H,H?DL )[HL)H8*AWfI~AVAUATUHSHH$$f/ff/f/~-f(f(DfTf(fD.f.zVf/uPf(f(fTfD.v+H,ffUH*f(fT\f(fVf.z f/tvfD1ҾH=z71-EH[]A\A]A^A_H,ffUH*f(fT\f(fV<@D,H5\$D,%IHt_\$HDDfInf(utD $DIILfInDLAB'A.1Ҿ L$'HL'H?(f.DAWf(AVAUATUSH$)D$Hf*YԓT$hHL$LD$PL$t$`$X,D<D$xHAWHcH9L5L,LL#LLH#LLLl$XI#H|$XLI#H|$XLH$#ML$HIjML\$\MM|$HfDT$`fH$*L$hAf(*AYHH$0HYD$p$fX$*AG$E f(fnۉ1fpfD(f)$fE$fDo-8f( )$HfD(%kffEo)$f(f(=.f)$fo)|$0)\$ f(fD(fAofo#f($frf(d$0fD\$ ffD(fpfDXf$fXfpf(fD(f(fAXfAXfYfXfYfXfD(fXfD(fXfDXfDXfA(fAX)d$fA(fAX)$$fA(fXfAYfD(|$fEYfDYfYT$fAYfA^fD($dfA(fXfDYf($$fAYfDYfY$fEYfD^DtfD(fE\fA(fAXfD(fE\fXfAYfA^fD($fA\fA\fXf(fAXfAXA$fA(fYfAXfXfAYfAYf^f(fAXfAXfYfAYfA^A|f^fXAdA\H H9DH9GC fsfD$)D\$pAID$*fE(5яD$*AAHH4DXf(XfA(\YXAYfD(XD\AYfA(XfD(EYDYYA^Lf(A\A\X\AYA^XA f(XXYAY^AL9ffɉ)fE(**AADXf(XfA(\YXAYfD(XD\AYfA(XfD(EYDYYA^D5f(A\A\X\AYA^XAD4f(XXYAY^AD59ff)**DXf(XfA(\YXAYf(X\AYf(XfD(DYYYA^D5f(A\A\X\AY^XAD4f(XXYAY^AD5IcLcAwA,JH$HD$XIDH$x J SDT$0C4HL$CLT$H~%VLD$ ID|$XAǐ)ȅ< DLf()H)HLf.ADYD^A H\H9uDfW^ADHL9uLD$ DT$01D|$XHL$Pf(fAYA Y HH9uH$(9 9 HcA DAYDA^\ALH9|ԅ A;$fEHL\$XE*LL$0fHnLD$ DT$$fA(D$$zD$LL$0$LD$ fA(HD$PD f(˃|$xHT$PXAY$DT$Y$L\$X$YD$pf(X\\$YCY ^BȍCH~AYDDHA9}ꋄ$DЉ ff(*Y @f*XY9~EAfHnYfAZD$YX]ZYfZEXZuE9DLXLPDUD]DDm@<8LHDf*XY,fN*AX,9fD?LcLUf)=L%} f(f*\D,(McCAY\XD9}D((DT\DYTD/wH9}(9H}Kf=D4q (fD(*\,LcBYBX9}((TA\AYT/w H9uAXAXME1HhXX^^0H`L=MtL0MtL#HEHtHHEHtHHeD[A\A]A^A_]Mu AfAH} mmDDA(A(3A(fA(]UumDMfEDMmuUE(][f(f}(((A(A(DfrMAAHLLLH}H}Hf.AWfA~AVAUATUHSHH(í\$/d$ s~f/wu/wp%X=Э((T(..zF/uA((T.v$,fU*(T\(V.z /tmD1ҾH=?1EH([]A\A]A^A_,fU*(T\(VTH5ɪ D,D,IHt}L$HDDfAngtRHLIHD$$IfAnDPL$DfZYt|$}*L/fL1Ҿ T$IILfAnDDL$ ALAHLHAWAVAUATUHSHH(T$D$/\$f//)=((T(.v$,fU*(T\(V.S/J((T.p.//&(\/|D,XY/^D,SH,1IH]D$DIDHL$aLAA*|$H5m |$ uIHL$ HDDD$ HLIHD$$IDDPL$D$bdZY|$L(f1ҾH=1+EH([]A\A]A^A_,fU*(T\(Vg\H,H?LHG6 nT$ IILL$D$DDALAFHLHf.AWf(AVf(AUIATAUSHH8~'fT؅HcL4J1H9s J2H9L1HT$\$!L1L\$T$~ 7f.f(f(Y\fTEqff.lQAT$f(f*X\YY9ufIcAL$A*,f(XXYY|Hc9} Wf(fA f**X\\Yf(YY\f*ڃ^H9}f(\D\YCY\^AE]IMHsHH)HEAfAnf(HAfHfo-fDpIf(fDofIfofD`fD8H fpfDofDhfYfDpfEfYfEpEH fEYEfAfEYfAYfAYfA\fA\f^f^BZI9rP9fLcf*D*BY\PYBY\^CD9qfLcfۃ*D*BY\YBY\^CD9|4fHc*DYfY*YT\^ADt (5HCH9IEH9$f(NfҸHHffYfADfYADHH9uىt%HcHHIYAYMAMH8[]A\A]A^A_d~5=61--4ffD(fD(9Dff/ *f(XYYAEwhIH9tƒEtAt|Auf3f/*XYfD(DXAYY\YwIAE뙐tfAWAEtfAWAEl@A}]DtfW1@HIDHI9u!UfEf*A*Y\YY\^ADHH9uYADYADH9}H8[]A\A]A^A_f H2f.uf(Et$f(Af(L$(T$ l$d$\$QL$(l$f(f\$d$A*AT$ E9X\YYuGAWf(f(AVAUAATAUHSHHH~fn1fTf.4$zux3Ex{fHCH9" A AL$f(1fH LHH9uȃt HD4$f.zuHH[]A\A]A^A_4$f/951AAt$fD(f(f(Y\t$8ff(AYf. Qf(f(DT$0\X|$(L$ d$^t$fTd$L$ fA*Y80|$(AfD(H/Dl$t$DT$0D^fHnYDYfD(f(D\Dt$^AXYfD(tAUfA(fA(D G0D/ f(fEfE(D*fA(E\\f(AYAY^AYYf(YY\9uf/$EEAt`l$AT$fA(Аf*f(fD(XD\\DYf(YYA\f(^,HH9uHD$t$sf/$Rt$8Y\\\$Y[\^]EcHHUH)HAAD$3DfAnf(HfDpf(foGHfo=KffHfofDhfEofD`fpH fH fYfDfYfEpEEfAYfDhfAYfEYfDhfEYfA\fA\f^f^JBH9rDPA9ffHcf*D*YLPYY\^DD9'fHcfɃ*D*YLYY\^DA9fHcf*D*YLYY\^DHH[]A\A]A^A_5,AfD(At$AD$5,C ?AUD ,fA(Ըf(fA(fffD(*ȃ*DfD(D\D\AYEYYf(D^DYDYD\9ufA*t$EwD{AAl$EL$AD+D *,AUD\$fEDǸE*EYfA(fA(AX\\DYYfD(DYAYE\fD(A\fE(fA(A^DXt$^f(fD( fDf(fD8fE*fE(ރE*f(D\\D\AYEY^EYDYf(YYA\9uBIM9 f/$)t$8Y\\\$Y[\^]EufA(fA(Ahԓf/$D+MfA(fA(<$f/=AGt%(RfA*t$EE9EffA*AIf(D)5+*ffA(fCT5A*AfD(DXAXDX\DYYf(DYD\f*XD^A9fA(AtkL$Ic fDfD(fAT*f(XAXX\YYf*AYX\^fA(,HyEAL$f(f(HffHH@fHfYf^@H9uȃtHHY^f/$E1$$L$D$菹BYH(fHnBIE9}$$@D(ffD(5v(fA*t$EqA]DcAwAT$Df*DYf(X\\YAYA\fE(^HfD(H9uf/$ ft$8YCY\\^E1fDDHA9}AL$fDfATf**YLYY\^DHH9uHH[]A\A]A^A_fDf(d$ l$T$YL$T$l$d$ \,DH:&fHnV\$EY#f(\D$YCL$8\\^Ef/$wKY#f(\D$YD$8\\^M1WfA(fyf(d$ DT$L$H{%~cd$ DT$f(L$fHnfE|${t$s\$f.UHAWAAVAUATSHL5cUHMLLPLHEMUOLHE>LHE-LILHI H}H}IƉMM M HHEHMUPMLMMED:ZYA)fEfHME*DHUAfEAAAE*A)DX .DEDXM`A*fA(DMAXmXD,ED$ELLDDMm%\#fD/fHEDExf(~=e:HǹIf.ff(*X,HAYXA9}"f(f(fT\YfTf/ufH*fD/sLf(~=fɹHD9 fDf(ff(*X,HATYXA9}f(f(fT\AYfTf/w#fH*HHfD/sf(Dm=*"`fA(D\XYfE(D^A{MLA)fEۉEfE(DfH*ƒX,A1HEDYAYDEXDXA9ufA(ĉLhpDMD]DU葲HB!DML@DUD]L8phfHnL0LXAH DUD]MAD(fHnm AIE9fA*XE,yىD)}qB7Df(ĉDf*ȃY9uYXUE}f(ܸfDf*Y9|U}f(\mf(Ծf()fYfɍ*΃\Yf*AЃYf*^YXf(9}}~f*\YY]]YUfH*fHnph蔰AY$}pmH`hfHnf(H YXXEfHnEf(Y\^f*Yf(XYpY^Ejf(f(ĉ\)f(ܐYfҍ*Ѝ 2f*Yf*э XYf*XY^YX؃uHghAIfHnmhHf(EYEfHnHAYL$fHnYXpYX]]E9&DL@L8DUD]D(m L0Df*XY,fN*AX,9D?LcLUf)~%=?4L‰ f(f*\D,f(McCAY\XD9}"fD(f(fDT\DYfTfD/wH9}f(9!H}Kf~=]D34q f(ffD(*\,LcBYBX9} f(f(fTA\AYfTf/w H9uAXAXME1HPXX^^0HHLޮMtLѮMtLĮHEHtH賮HEHtH袮HeD[A\A]A^A_]Mu AALXuDff(f(f(fA(]UumDMCfEDMHmufE(U]fHnCff(fxf(f(f(df(f(Df]MAAHLQLILAH}8H}/HWAWfI~AVAUATUHSHH($f/d$ff/f/~%=f(f(fTf(f.f.zRf/uLf(f(fTf.v+H,ffUH*f(fT\f(fVf.z f/ts1ҾH=1EH([]A\A]A^A_H,ffUH*f(fT\f(fV@H51@D,D,5IHtu $HDfInDtKHLIHD$$IfInDPL$D}OZYt|$}#LW(fLH1Ҿ $IILfInDDL$ALAHLHfAWAVAUATUHSHH8T$HD$(f/\$ff/f/~U=f(f(fTf(f.v+H,ffUH*f(fT\f(fVf.bf/Xf(f(fTf.zf.8f/.f(\f/nD,XY;hD,f/\H,肦IHfD$DIDHL$(xZLA-A3|$(H5@|$ƦIH L$HDDD$+HLIHD$,IDDPL$ D$MZY|$$Lը)1ҾH=&1{#EH8[]A\A]A^A_H,ffUH*f(fT\f(fVV\H,H?DL@H fT$IILL$D$DDALA>HLۧHHff.wIf(Qf(f(\~ffXfGf^fYfX)$$L$HH<$謨H<$f(f.@USHHh@7fD$fL$foD$WGfD$fXT~H|$@)D$@5H|$ D$0D$\L$8D$ D$D$(Ht$0H|$PfD$PfL$Xf(T$PS Hh[]H|$PHt$)D$P~}f\D$P)D$P$L$f($fWJ}C @t$fC Hh[]f.USHHh@7fD$fL$foD$WGfD$fX4}H|$@)D$@H|$ D$0D$\L$8D$ D$D$(Ht$0H|$PfD$PfL$Xf(T$PS Hh[]H|$PHt$)D$Pz~|f\D$P)D$P$L$f($fW*|C @t$fC Hh[]f.AWAVAUATUSH8H$|$DRD )|$po~fA(fE(fA()$$$DYYYD\fA(YXfD.|$pDD$xft$XDcH8f(D\$PfA(f(fD(DkYfA(fHnDL$HYDT$@DD$(|$ Dd$8D\f(Dl$0AXDt$l$讇Dt$l$fD(Dd$8Dl$0fA(fA(fE(fTfTf(fUfAUfVfVfA(DYf(fA(YfA(YD\fA(YDt$XfA(l$Dt$fl$f(DL$HDT$@fA(t$X|$ DD$(D\$PfTfDTf(fUfA(fUAYfVfA(XfA(fDVAYEXY\fA(YXf.jDXo]0Dc(XXo} X)$fA($$fM~D[ L$YfD(fI~)|$pEYfE(DYD\fA(YDXfE.|$pDk0f(l$hDD$xHDL$`f(fD(Ds8Dd$XfA(fA(fHnD\$PYDT$HYDD$0|$(Dl$@Dt$8D\f(AXD|$ t$D$p$h$`D$0fD($Xf(f(fA(D$pfA(d$0$h$`$XD>d$0D$p$hfI~fD($`$XVf(f(fA(D$fA(d$0D$xD$p$h$`$X=d$0D$D$xfI~D$pL$$h$`$Xof(f(D$D$D$xD$pD$h$`$Xl$0d$=l$0D$D$d$D$@fH~D$xD$pD$h$`$Xif(f(D)$)$D)$D)$D)$D)$D)$D)$D)$)$C|$LH$D$$DL$($$|$$t$$t$$$t$l$ $$$$$D$$ffք$l$ $f~$$$|$t$ t$$H$U$H$$H$H$$A$$$$<@AFffHA($$*C6P*^$((Y\^$Y\\^$o$$LH\$ |$fք$f~$$fք$(($f~$$HDŽ$YDŽ$YX(XYYX(YYYXY(Y$(YXYX$((YXX$:DXf(f(AYf(DXYY\f(AYXf.n DF(fD(f(fD(f(DYAYDYAYD\DXfE.fA(fD(f(AYEYAYD\fA(AYXfD.9fA(fD(f(YEYYD\fA(AYXfD.fA(fA(fInt$pfDL$h|$`Dl$0Dl$0|$`fInD$PffA(L$@f(t$pDL$hfInD$0fH~ff(fA(Ql$Pd$0LDD$@f(fHnf(fAfXD$A$f(ffXD$ AD$f(ffX$AD$ H0[A\A^f(fA(f(Ht$PfA(D)\$pD)$D)$DL$hDT$`D|$@t$0DD$ |$Ht$Pt$0fDo$fDo\$pf(fDo$DL$hDT$`D|$@DD$ |$sfA(f(f(|$`fA(Dl$PDd$@Dt$0;|$`Dl$PDd$@Dt$0fD(f(fA(f(fA(d$pfA(D\$hDd$`Dt$PDD$@l$0d$pD\$hDd$`l$0fD(f(Dt$PDD$@QfA(f(DL$pDT$hd$`D\$PDD$@l$0fDL$pDT$hd$`fD(fD(D\$PDD$@l$0fA(f(f(Ht$hf(DL$`DT$Pd$@D\$0Ht$hDL$`DT$Pd$@f(f(D\$0\$@T$0fA(fA(H$D$D$$D$t$pD|$h|$`l$PiH$D$D$t$p$D|$hD$|$`l$Pf(f(fA(H$fA(t$p$D$D$D$D|$h|$`l$PH$$t$pfD(fD(D$D$D|$hD$|$`l$PfA(fA(H$$D$t$pD|$h|$`l$PDD$@Dd$0t$pfEH$fD(D|$h$f(D$|$`l$PDD$@Dd$0}fA(Sf(fA(H$d$pDT$h|$`l$PD|$@t$0wd$pfEH$DT$h|$`fD(fD(l$PD|$@t$0f(f(Ht$ht$`D|$P|$@l$0 Ht$ht$`D|$P|$@fD(f(l$0fA(f(Ht$PD)$D)$D)\$pDL$hDT$`)d$@)l$0t$ D|$Ht$Pf(d$@fDo$fDo\$pfDo$DL$hDT$`f(l$0t$ D|$f(fA(Ht$`D)$D)$D)$DL$pDT$h)l$Pt$@D|$0DD$ |$Ht$`fDo$fDo$DL$pf(fDo$DT$hf(l$Pt$@D|$0DD$ |$T$0\$@H$D$D$$D$D$D$t$pD|$h|$`l$P l$P|$`D|$ht$pfD(f(D$D$D$$D$H$D$*fA(fA(PfA(H$$fI~D$D$D$t$pD|$h|$`l$PDt$@Dl$0?Dl$0Dt$@l$P|$`D|$ht$pD$D$D$H$$@AUIATIHh6~f(f(t$<$<$t$f(ffD()D$0ff(f(fD(XXDYf(DYA\AXf. aOfl$(d$ t$|$DL$D$d$ l$(fQDL$)D$@f(f(D$Y|$t$YA\AXf.f(f(f(YYY\f(YXf. QNRHt$0LLfAL$)D$PA$HhLA\A]Nf(f(t$(|$ DL$DD$$$L$t$(|$ DL$DD$f(f(l$$$f(f(f(f(f(f(+ff(f(t$<$t$<$fDAWfAVAUATUSHH@7o$PW8o$`W@o$pOG_(WPW`fX L$AH$LH$L-)$ffXfX)$)$H|$ Ht$Pf$PfXҼo$`o$p)t$`)|$p)D$Pfot$ fo|$0)$fot$@)$$)$$](U f(Yf(f(YY\f(YXf.f)E MsAmhAE`$DM $f(fD(DYfD(YDYD\f(YAXfA.AT$ A\$(f(Yf(fD(AYEY\f(YAXf.AXXf(f)E IAEpEMx$$fD(fD(DYf(AYDYD\f(AYAXfD.AT$A\$f(fD(YfD(EYDYD\f(AYAXfA.`AXXf)m IHII0,@$PA$X)$)$H$L$PA)$L%U ](f(f(f(YYY\f(YXf.f)E MED$hAl$`$DM f(fA(fD($YYDY\fA(YAXf.uAU A](fD(f(fD(YDYDYD\f(YAXfD.CEXXfA(f)E IEL$xAd$p$$f(fA(fD(YYDY\fA(YAXf.AUA]fD(f(fD(YDYDYD\f(YAXfD. EXXfDD)E IHII0-~вH|$Pf\$H$)$ff(f\$f\$)$)$3f(+f(\$Pf(T$`f(L$pfWfWfW[@SPK`Et'fS@fKPf{`fWfWfWS@KPC`H[]A\A]A^A_fo$fo${@fo$s`{Pf(f(t$<$_t$<$f(If(f(t$<$3t$<$f(fA(f(|$t$d$D $|$t$d$D $Hf(d$DL$t$<$d$t$DL$<$fD(fA(d$DL$t$<$wd$t$f(DL$<$f(fA(l$d$t$<$1<$t$fD(d$l$f(Z|$t$d$D $|$t$d$D $fD(f(zfA(f(l$DD$|$4$l$|$DD$4$l$DD$|$4$i4$|$DD$l$fD(f(fA(l$d$t$<$"l$d$t$<$fD(AWfAVAUATUSHH@7o$PW8o$`W@o$pOG_(WPW`fX L$AH$LH$L-)$ffXfX)$)$mH|$ Ht$Pf$PfXBo$`o$p)t$`)|$p)D$P,fot$ fo|$0)$fot$@)$$)$$](U f(Yf(f(YY\f(YXf.f)E MsAmhAE`$DM $f(fD(DYfD(YDYD\f(YAXfA.AT$ A\$(f(Yf(fD(AYEY\f(YAXf.AXXf(f)E IAEpEMx$$fD(fD(DYf(AYDYD\f(AYAXfD.AT$A\$f(fD(YfD(EYDYD\f(AYAXfA.`AXXf)m IHII0,@$PA$X)$)$H$L$PA)$L%>U ](f(f(f(YYY\f(YXf.f)E MED$hAl$`$DM f(fA(fD($YYDY\fA(YAXf.uAU A](fD(f(fD(YDYDYD\f(YAXfD.CEXXfA(f)E IEL$xAd$p$$f(fA(fD(YYDY\fA(YAXf.AUA]fD(f(fD(YDYDYD\f(YAXfD. EXXfDD)E IHII0-~@H|$Pf\$H$)$ff(f\$f\$)$)$f(f(\$Pf(T$`f(L$pfWfWfW[@SPK`Et'fS@fKPf{`fWfWfWS@KPC`H[]A\A]A^A_fo$fo${@fo$s`{Pf(f(t$<$t$<$f(If(f(t$<$t$<$f(fA(f(|$t$d$D $i|$t$d$D $Hf(d$DL$t$<$+d$t$DL$<$fD(fA(d$DL$t$<$d$t$f(DL$<$f(fA(l$d$t$<$<$t$fD(d$l$f(Z|$t$d$D $_|$t$d$D $fD(f(zfA(f(l$DD$|$4$l$|$DD$4$l$DD$|$4$4$|$DD$l$fD(f(fA(l$d$t$<$l$d$t$<$fD(fEfUSfH1f(H)ƍFHHD*ȍF*fA(D $fD $f(ff(Y)$fYfD(D\XfD.6f(fA(|$ fff\\fA(t$DD$`d$f(f(D $YfD $d$f(fDD$`t$)$f|$ YYfD(D\XfD.YfD.fA\fED\A\fA(fA(\ff(H$H$f)$os8$)$osHfD(f()$osX)$$$$DYf(YYD\f(YXfD.D$ffD$AYfE(AYAXD\fD.fE(f(f($0$8DYYYD\fA(YXfD.fE(fXD$EXD$fA(AYAXfA(AX\fAYXf.< D$ f(f(D$(AYAY\f(AY$f(AYX$f. DXf(XAYD|$fD(EY|$`f(AYD\f(AYXfD.|f(fA(f(AYAYAY\fA(AYXf.DXfD(f(AYfD(XEYEYD<$D\f(AYDXfE.osk)$os f()$3$$fD(f(YDYYD\f(YXfD. ffEfD(YDYD\DXfE. S [(fE(fA(fA(YDYYD\fA(YXfD. XffD$D$EXAYd$AYfA(AX\fA(AXXf.N [SfD(f(\$ YT$0DYYYD\f(XfD. EXXD$f(AYfD(EYfDf(AY\f(AYDXfA.L \$0T$ f(fD(AYAYEYAYf(D\XfD. AXDXf(YfDf(Y\f(YXf.ff~%ml$fD(fA\f\fD(fE\fD(\$`f(fDYf(YYYfD(D\DXfE.rfffE(AYAYD\AXfD.fA(fE(fEDYf(f(AYYD\fA(AYXfD.$$DXffYEXYf(X\f(XXf. fE(fEf(AYfA(fE(YDY\f(AYAXf. AXAXf(YfD(DYf)$0$fD(DYYD\DXfE.f(fA(f(AYAYAY\fA(AYXf.LDXAXfA(YfA(YfDfA(D)$ Y\fA(YXf.ifo$ f @E<}fo$0M0} E8M@EHMPEXHH[]f(f(t$,$ct$,$fD(f(fA(M3fA(f|$0DL$ l$t$`Dd$D$ |$0DL$ l$t$`fD(f(Dd$D$fA(f(Dd$PD\$@|$0DL$ l$t$`d$D$Dd$PD\$@fD(|$0f(DL$ l$t$`d$D$f(f(fA(Dt$pfA(Dl$hd$PDD$@Dd$0D\$ t$,$d$PDt$pDl$hDD$@fD(f(Dd$0D\$ t$,$fA(fA(f(|$PfA(D|$@Dd$0D\$ l$4$|$PD|$@Dd$0D\$ l$4$f(f(fA(|$fA(@|$fD(fD(\$`T$f(f(|$PD)|$@DL$0D)d$ DD$d$`t$|$PfD(|$@DL$0fD(d$ fD(fD(DD$d$`t$ fA(0fA(f|$pt$hd$PD\$@Dt$0D)|$ D)d$DD$`DL$T|$pt$hd$PD\$@fD(f(Dt$0fD(|$ fD(d$DD$`DL$fA(f(fA($t$pd$hD\$PDt$@DL$0D)d$ DD$l$`Dl$t$p$d$hD\$PfD(Dt$@DL$0fD(d$ DD$l$`Dl$6$f(f(f(Dt$PDd$@l$0Dl$ DL$DD$`d$4$l$0Dt$PDd$@Dl$ fD(fD(DL$DD$`d$4$|fA(fA(f(t$0fA(d$ D\$DT$`DL$D$蘿t$0d$ D\$DT$`DL$D$IfA(fA(f(f(U{f(f(|$PDL$@DD$0l$ t$#|$PDL$@DD$0l$ fD(f(t$-f(f(f|$pd$hDT$PDL$@DD$0l$ t$课|$pd$hDT$PDL$@fD(fD(DD$0l$ t$fA(fA($$DT$pDL$ht$Pl$@DD$0D|$ Dt$#DT$p$$DL$hfD(t$Pl$@DD$0D|$ Dt$ef(f|$ f(t$DD$`d$D $訽|$ t$fD(d$D $f(DD$`Jff(f(DT$`f(l$D $SDT$`l$D $fD(f(fA(e,fA(f|$pD|$hd$PDD$@Dd$0D\$ l$t$`DT$D $ּD $DT$t$`l$D\$ Dd$0DD$@d$PD|$h|$p"fA(fA(D$D$|$pD|$hd$PDD$@Dd$0D\$ l$t$`Dt$D,$,D,$Dt$t$`l$f(f(D\$ Dd$0DD$@d$PD|$h|$pD$D$fA(*fA(f$D$D$D$DL$pt$hl$PDD$@Dl$0Dd$ `Dd$ Dl$0l$PDD$@f(t$hDL$pD$D$D$$\$0T$ f($D$D$D$D$D$DL$pt$hl$PDD$@螺DD$@l$PfD(t$hDL$pf(D$D$D$D$D$$kf(f(fA($fA(D)\$pD$D$DL$hDD$Pl$@t$fD(\$p$DL$hf(fD(D$D$DD$Pl$@t$\$0T$ fA(fA($D$$D)\$pDL$ht$Pl$@DD$DfD(\$p$D$DL$hfD($t$Pl$@DD$f(f(f(D)l$Pf(|$@D)\$0DL$ DD$ȸfD(l$P|$@fD(\$0DL$ DD$f(f(L$ff(DD$ d$DL$`4$m4$|$DL$`d$DD$ {$|'f(f$d$pD\$hDT$Pl$@Dl$0DL$ D)d$DD$`|$|$DD$`fD(d$DL$ Dl$0l$@DT$PD\$h$d$pfA(fA($$d$pD\$hDT$Pl$@Dl$0DL$ DD$Dd$`Dt$CDt$Dd$`DD$l$@f(f(DL$ Dl$0DT$PD\$h$d$p$<AVfATIUSHHo:WHjfք$$)$FD$D$DFD\N $GH$D\H$0A(A(D$AYYA(D$fo$Y)$ \A(AYX. $,A(D($ $($$(YYDY\A(YAX. $0E($4$($,A((YYDY\(YAX.%fEA $X$ )$ AXAX$$H$0) $fA~f~$ \$$\D((DYY(YD\(YXD.aA(A(E(AYAYD\AXD.$0E((A($4DYYYD\(YXD.(D$ XEXD$A(A(A(AYAXAX\A(AYX.D$($,E((\$YDD$DYYD\A(YXD.EX(D(AYD(XEYEYD\(AYDXE.\$T$((YAYAYY\(X.DXA((AYA(DXYY\(AYX.fN(D(Y(YDY\(YDXD.H(D(D(AYEYEYD\(AYDXE.(D(D(YEYEYD\(YDXE.U(A(fDL$@DD$D\$Dd$D\$Dd$ffք$A(A(ߴDL$@DD$ffD$xA(A(貴L$xL$fD$pD$|$X$A$fAnXD$pAD$fnXD$tAD$HH[]A\A^((Ht$ D\$@DT$l$d$Ht$ fED\$@fք$DT$D$$l$d$0A(A((Ht$ (DD$@DL$t$D|$vHt$ DD$@fք$DL$$$t$D|$~\$T$A((Ht$XDD$`DL$Pt$LD|$0d$HD\$ DT$@l$Ht$XDD$`fք$DL$P$$t$LD|$0d$HD\$ DT$@l$((A(Ht$XA(t$`D|$P|$LDd$0D\$HDT$ l$@d$>Ht$Xt$`fք$D|$PD$D$|$LDd$0D\$HDT$ l$@d$A((Ht$Pt$LDL$0d$HD\$ DT$@l$|$Dd$螱Ht$PfEt$Lfք$DL$0D$$d$HD\$ DT$@l$|$Dd$4A(A(A(Ht$0t$HDL$ d$@l$D\$DT$Ht$0fEt$Hfք$DL$ D$$d$@l$D\$DT$Y\$A(Ht$hDt$dDl$Xt$`DL$P|$LDd$0d$HD\$ DT$@l$Rl$Ht$hfք$DT$@D$$D\$ d$HDd$0|$LDL$Pt$`Dl$XDt$dA(H4$)|$ t$@l$D\$DT$辯fo|$ t$@fք$l$$$H4$D\$DT$k(A(A(t$HD|$ |$@DT$L$d$Dt$HD|$ fք$|$@D$D$DT$L$d$A(A(A(Ht$Xt$`DL$P|$LDd$0d$HD\$ DT$@l$Dt$Dl$蜮l$Dl$fք$Dt$$$DT$@D\$ d$HDd$0|$LDL$Pt$`Ht$X|(DD$HDL$ t$@D|$L$d$DD$HDL$ fք$t$@$D$D|$L$d$A((A(|$D\$@Dd$DT$蔭D\$@Dd$fք$|$D$D$DT$DA(Ht$@)|$0t$Hl$ D\$D$L$DD$fo|$0t$Hfք$l$ $$Ht$@D\$D$L$DD$iA(A(A(Ht$@)|$0t$Hl$ D\$D$L$DD$茬fo|$0t$Hfք$l$ $$Ht$@D\$D$L$DD$f.AUIATIHx.Nl$HL$L~D$Hl$ $fD$@d$@fl$D(((d$PY(Xl$TYX\X.dfl$d$|$ t$诫d$l$fD$0D$0(|$ t$D$XD$4YD$\(YX\.4$|$((YYYY\(X. Ht$PLLfD$D$D$`D$D$dA~$HxLA\A]|(((|$t$l$ d$j|$t$fD$8l$ T$8\$<d$(( $D$%fD$ T$ \$$!((ffD$(D$(L$,AWfAVAUATUSHH@7o$@H$PWHG0HGGO XͅH$L$A$H$LH$L-)$fXX$$$$@XuH|$`H$PH$H$)$HD$pfo|$`D$D$H$)$U](((AYAYAY\(AYX.umMNAE4Ae0$$((D(YYDY\(YAX.AT$A\$((D(YYDY\(YAX.XXemI$A}<$AE8(Y(D(YDY\(YAX.*AT$A\$ ((D(YYDY\(YAX.XX}EIHIIWH$AAD$@)$H$D$DL$@L%<U](((AYAYAY\A(YX.umM^Ad$4AD$0$$((D(YYDY\(YAX.AU((D(A]YYDY\(YAX.XXemIAt$f(f(f(l$0.l$0ff(T$ L$fl$0D$l$0&T$f(l$HEt$@t$ f(f(D$0f(L$8Yf(Yl$Hf(fYY\L$f(t$@XfH~f(fHnL$|$D$f.f(l$Ht$@mt$@fl$Hf(f(f(Yf(YY\f(YXf.zkEuf(DD)D9fH~Ef(fHn]T$ f(fA(f(l$t$~l$t$)f(f(f(~l$Ht$@ff(f(gT$ L$8fl$HD$0t$@;~l$Ht$@f(f(fA(DT$HDL$@t$8l$0DD$D$}DT$HfDL$@t$8l$0f(DD$|$f(܃E1}t$ f(f(D$f(L$Yf(Yf(fYY\L$f(XfH~fHnf.t$zLD$fHnpff(f(f(YYf(\Xf.z/f(AD9u$T$ L$fD$|f(f(f(|f(HwHwHHHFHHx'fH*Hx7fH*[0HZfHfHH H*XHyHfHH H*X0HZf.AVAUATUSH H|$Ht$zl$d$)]x!]f((/\TUcXY؅C5\A (A(C$ffɍP*AD$A*^.QAD$((YYYYXXD9u(ىD(AA1A)D9H A([]A\A]A^fDt5\A (A(Dff؍J*D*^.((AD$YQYYYXXD9u(@f\CD$f*.QY͍EYD(A9El$D9=D)D9Gt-A(=%SgQB(fAW*A^.]YQAEAYXAYXD(D9(AA(EeAVfEDAfE)D*D)A*A^.[t$l$DL$ \$DD$}t$fl$DL$ \$=1RDD$ DZ(A(D(l$t$ \$d$|d$fD9t$ \$AD$Yl$Y((YYXX2t$Al$L$ \$DD$/|l$f\$L$ DD$D9AEYt$=9QYAYXXD(Xl$t$ \$d${d$fD9t$ \$AD$Yl$Y((YYXXJ(l$\$[{l$\$f( AWAVAUATUSHHH$<H$8L$uDX$8$<t$x$Xf((/\T-PXYCWA @(A(C$ffɍP*AD$A*^.(QYYYX(AD$YXD9u(A9hf^ ^*(Y(Y((\Y(Yt$X.(l$  \$(Ń1Y(YYY\(XD$fD.l$D$($($,~$(l$ufl$fք$ $ $$((YY(\X.((Ѓ9n\$(T$,~D$(HH[]A\A]A^A_f.UA(A(DffDƍ6J**^.5(QYYYX(AD$YXD9u(AAD9 f \\*(Y(Y\(Y(t$(YX.(t$^(t$E1Y(YYY\XD$@.t$L$($$~$t$ l$sfl$t$ fք$$$((YY(\X._((AE9`CD$f*.QD}E9f[D[*Yt$A((YY(\$ YAYY\(X.\$(Y(YY\(YX.$$~$l$t$rl$ft$fք$$$((YD(D(DYDYYA\AX.- (El$(D9((YYA\AX.(Et$(E)AD9{Gl6L%Z(AE~AUfDAfE)*D)A*^.$QBf(AW .J*^.QY|$\$ DYY(AYY(A(XYXA$Y(Y\(X.DT$((YYA(Y\A(YX.T$@D$D~D$@t$|$p|$ft$fD$8L$<l$8((Y(YY\(YX.((AFA(D9jD\((x5OE1((-PD$L$ fl$T$)rl$fք$0$0$4(((ql$fք$$$D$L$ft$ T$l$ql$t$ fք$$$((((nql$t$ ffք$$$iT$ l$\$WrT$ f\$l$YY(YXT$ l$\$rT$ f\$l$YY(YX(((t$|$pt$|$ffD$0\$0T$4(A((t$|$Xpt$|$fD$HT$HD$LT$ (A(t$|$pt$|$ffD$Pl$PL$T(l$t$L$ql$t$fL$(l$t$T$pl$t$fT$((fl$t$kol$t$ffք$$$(l$E1*ol$ffք$$$(Y(|$Yt$ YY\L$(l$XfA~fAn.|$L$fAn$$~$l$Vlfl$fք$$$((YY(\X.zP((AE9ic(T$ \$l$AoT$ \$fl$(E(((l$ml$ffք$$$xD$L$ fl$T$ml$fք$$$T$ (A(El$$t$ Mml$ffD$xt$||$x(Y(|$Yt$Yt$ Y\(L$(l$$X((L$|$L$.(L$hD$l~D$hl$$t$ xjt$ fl$$fD$`|$`L$d(((YYY\(YX.z|Eu((DD)D9(E((GT$((l$t$ ll$t$fք$$$(((kl$$t$ ffD$XT$XD$\OD$L$fl$$T$t$ kl$$t$ fD$pL$pD$t(((DL$$DD$ t$l$L$|$.kDL$$fDD$ fք$t$$$l$L$|$U(܃E1jl$ffք$$$(Y(|$Yt$ YY\L$(Xf~fn.|$zL$fn$$~$hffք$$$((YY(\X.zS((AD9{2D$L$ fT$ifք$$$ P(((ifք$$$f.f(NHbZ\RYYYYXfXXXg_WDAWfAVAUATIUSH$OL$H$O L$O0f(H$$H$t$0PgLHHl$$D$0H$xH$L$$l$@$$$l$ $t$h$l$p$t$`f$l$xf$)$f(fd$8)$)$)$$MfLHf(+D~>L)$)$)$ fHL~%C)$H$@)$~>fLH$)$)$PfHL~n=HD$)$P)$@~C)$)$ff)$$f.f(Q$XHl$LLH^f($fHL~B)$H$H$ H$)$ HHH$~WBH$)$)$f(B)$f(5Z<H<$Lf($0f($ fWfW)$)$y&f($fWfW$)$)$o$xffo$fo$H)$$)$@o$f/f(fT ;)$P)$$wHpH|$LLH$fInLLD\$@|$0fo$Ht$fo$ffD\$ )|$PD)\$@)$)$nD$0fo$H$fo$)$)$`f($)$pD)$)$D)$)$ fo$Cfo$fo$$@$P$X)$$H)$fo$pfo$)$ffo$`f)$P)$)$@)$`)$p$@$H$P$Xfo$`ffo$pf)$`)$@)$P)$pH$`\$ L$L$L$L$I@ӍSffffff*ڍJ*^Yf.$\^$Y$fX\\^$f)$  f(Q$ XH<$LH^$(LHfEfo$fEfESfo$f)$0)$ Lfo$ fo$0)$)$qHt$fHfo$)$ fo$)$0)$)$)$ )$0Lfo$ fo$0DX$ DX$8DX$(X$0)$ )$0$ $8X$0DX$(AXAXfo$`fo$pf()$@fAf)$P)$`)$p9\$ L$\$ L$fo$`fD$hfo$p)$D$`)$fD$x)$)$f)$@)$P)$`)$p9$ ݅tUE1$xLA$x$x$x$8$8$8$8*cH@A9uf(\$Pf(l$@L$(L$P|$8Ht$LL$D$0)$PfW5$$$T$ )$`$$$$fffHDŽ$XT$ )$HDŽ$`1HDŽ$h)D*$Pf.3 f(QL$8H|$LL$ff(X)L$ ^$f(LLfo$fo$Afo$fo$)$PA))$P)$@)$`H4$Lfo$`fo$P)$)$f(|$PHT$Lfo$f(t$@fo$f(L$ )$D$0H$)$`)$p)$)$$Dl$`$x$$Dp$fo$\$ fo$d$l$0|$8)$ )$0A9l$@ALA$PHD$X$@D$Hfo$`ffo$p) $H$fHT$)$@)$P)$`)$pRP)D$HD$HT$RP$X$X$X$X_$DH@At 9$1DADIl$@A)AD9$yAH$`lADHL$`DA@EEffDAfDA)A*׉)A*^f..Qf(ݍ4f(fAfW 1*^f.Q$LL$ Ht$fEfEfEHDŽ$Yffo$HDŽ$HDŽ$Afo$)$)$$L$Y$L$0YYD$8$$_Ht$`fo$fo$DX$DX$DX$)$X$)$ L$X$$DX$AXfo$`fo$pAXf()$@f)$P) $H$HT$fA)$`)$pRP)D$HD$HT$RP$X$X$X$X]H@D9$HĨL[]A\A]A^A_Ðfo$fo$$H$X$@)$$Pfo$`)$fo$pfffo$fo$)$@$@)$P$H$P$X)$f)$f)$@)$P)$`)$p1L$L$Љ$IH$HD$ H$`L$IfDAT$fHLHDŽ$(HDŽ$0HDŽ$8HDŽ$HDŽ$HDŽ$*P$ f*$ ff$)$f.f(QH<$HLI$X^f($LHfEfEfEffo$fo$)$ )$0 Hfo$ fo$0)$)$ Ht$fHfo$)$ fo$)$0)$)$)$ )$0N Lfo$ fo$0DX$ DX$8DX$(X$0)$ )$0 $ $8X$0DX$(AXAXfo$`fo$pf()$@fAf)$P)$`)$pL;d$ L$$L$fD$hfo$`fo$p)$D$`)$fD$x)$)$f)$@)$P)$`)$p9$.$1Dh$xL߃$x$x$x$8$8$8$8CXH@D9u?pU$.]U$JUf($9f(T$ )UT$ $P4$T$@UT$@4$f $T $g^(fV YNY\YYXXXXf~Hf~H H f~Hf~fHnH H fHnf.@AWfI~AVAUIATfI~UfH~SHhf$L4$fDt$ l$ I GH$(ʼnt$hH$fL$l$@pND|$tI $D$@($$L|$xL$$L$$H $$H$0D$HD$I t$D|$H$$L|$)$0D$D$\/HfH~f~D$0fH~d$0H H /f~$H$H?n>H$0H$Hd$P)$H$HD$5.LH)$L$fL$(<$)$0)$褳 .HL)$ A.LH$$|$X$t$`$|$l= .t$p)$)$0"f$0($0d$PHDŽ$0.)$ (Q-Ht$H$0XL$$^($4Ht$5c-HH׳?:͓>)$fL$(<$)$0)$c;-H$LH$)$-HHD$P+HL)$fL$($W+)$$$$$$ L$l|$pt$lD$Xl$X|$`\$`$$)$D$0T$0$f/)$0(T%$ H|$(HDŽ$? t$l\$`l$XT$0)$fL$d$xHL$tD$ H|$)$fAn($$()$0豰t$HD$@)|$ ($)$0$)$l$D$kfH~fH~H H Ifnfn(|$ {$$)$$fo$)$ $)$)$$$$$fo$)$)$]ALl$0L$ ELt$AAEffHDŽ$Affff*CD-H*^$0Y.\^$4Y$8fX\\^$< (Q$XHL)^$LH)$fL$(4$)$0~yfL)$@AEfo$fք$)$f֌$D9Ll$0fo$f)$)$)$9\$h=݅t$E1$$$(),$~L$L$$f.LfInĉA~$f $~$kA9~ $u(l$ t$H$0W5"D$@)$Ht$H|$P$4l$DfA~$$!$0$0f)$fL$($HDŽ$1)$DfDŽ$DHDŽ$*$.0(Q$Lt$$X$H|$P$L$(L')l$0^$(>LH$Dfo$fH~fH~H H )$fnfn)$L($(\$ LD$@t$DD$H|$P)$)$$HL$0fH~fH~f~D$ H H HL$`$D$hT$DDpHD$8f~L$@HD$0A97AHL$XfHnAA)D|$PA$LD$$fL$HD$fo$)$)$fo~$~D$XiD$PDA؃t9\$h~L$HqDA)ADArD9|$hglAHD$`Ld$DHD$HEAEFfffD)A*׉D)A*^.{Q(4WA(f*^.Q$LL$ Ht$HDŽ$ADŽ$Y$ L$DY$$L$@YY$$($,LL$0Lfo$fofofք$~D$Hf֌$fIn)$|g9l$hHhL[]A\A]A^A_Dfnfn$$(t$ fo$$)$ $)$$$)$$$)$)$gE1\$XL$ LLt$Ll$0IKffffffHDŽ$*ٍH*^$0Y.\^$4Y$8fX\\^$<6(Q$XHLp"H^$fLH)$fL$(4$)$0E@fL)$@輮fo$fք$)$f֌$I9Ll$0\$Xfo$f)$)$)$9l$hD$h$E1$$$()4$~L$L4$fLfInƉA~$f $~$dA9~ $uH|$(HDŽ$T$0l$X)$\$`t$lfL$fDWWWWL$$EL$E($0t$T$PDT$Pt$fj(D$(D($0($$D$$$OfHf(o:or0oZ HH)|$PoRHR@D$P)$\)T$`)\$p)$D$PFf(d$PH$)$f(HGf)$fYH$fYH$fY$Y$$Y$fH|$PfXffXfXfX$)d$@)T$0)L$ )\$Y$X)$)$D$$\$vADd$XD\$`DT$hDL$pDD$xDY$DY$$DYD-+Yf(d$@f(T$0Yf(L$ f(\$DYDYYYD$PEYEYEYEYAYEYAYAYAYXfXl$AXf(fAXAX`h@@f(fAXAXP@ f(fXXH(@0X8HAWfAVAUIATUSHt$P1Ƌ$A|$hH$A)AA A0A@APA`ApA9DwE1fDAHމAAAuxAupAuhAu`AuXAuPAuH$$$$$$$$$HĐE9yH[]A\A]A^A_IE1EAHމAAAuxAupAuhAu`AuXAuPAuH$$$$$$$$$)HĐE9yo$@H$LL$pH|$xo$PL$PLLL$ o$p)$`o$`L$0)$p$$`)$$f(H$H$$H|$)$$$T$<D$pLT$L$L$`L$xfW ^$0fWMLLL\$$@f(LT$$8$$fffHDŽ$hLT$HDŽ$pL\$1HDŽ$xLL$ )HDŽ$DHDŽ$*HDŽ$HDŽ$HDŽ$HDŽ$@f.)$0$`f(Qf(LLLT$(X`$0YL$LL$ LLD$^L\$Y$8l^f($@VAo>LT$(L\$A}AovLLAuAo~ fo$A} Ao^0fo$)$`fo$A]0IV@fo$)$pIU@H$)$H$)$pH$LLfo$`Afo$pfo$H$pE))$0fo$)$@)$P)$`oLL$ H|$H$po$@fo$0Lfo$@fo$P)$0fo$`$0IAeHH$o$PAmXf(o$`A]ho$pAux)$@)$P)$`H$pT$9D$pLD$H$T$L$xL$fWfW L$f($9D$h$$$$t$@$$|$ $d$$l$$\$o$t$8o$|$Ho$d$(o$l$0o$)$o$D$`)$)$)$)$)$ Dt$XD9Dd$lEAHEEA}HDAu(Am8DA]AUAM AE0Ae@EoMHffAIEoUXffEo]hEoexAMhAExIE@AEMAEUAE] AuxEe0AupA]HAUXAuhAu`AuXAuPAuH$`$`$`$`$`$`$`$`$`s$DHĐAt 9\$hT$`AHDDd$lD)eD9t$hZDt$PL$H\$PLEEIffffڃDAxAD)A*։D)*^f.bQf(f(ffW *^f.XQ$0L$@LLHDŽ$8LHDŽ$@YHDŽ$HHDŽ$PHDŽ$XHDŽ$`$xL$ HDŽ$hHDŽ$pY$L$Y$L$Y$L$Y$L$8Y$L$HY$L$(YYD$0$$PAo}HAoeXAomhIAouxA}fo$fo$IU@AeH$fo$Am fo$AehAmxIA]XAAu0AA}HAuxAupAuhAu`AuXAuPAuH$`$`$`$`$`$`$`$`$`H$jHĐ9\$hY|$lT$XT$`5|$lT$`fT$X|L$X5L$Xf(LT$ L\$LL$5LT$ L\$$`LL$f.DfD(R0HGrjHb Z(J8T$A\Vzt$\$f7fL$f(D$ffl$f(l$YR@d$f(d$fXfYD$|$fYfYfYL$fXfXfXfXG0og W@f.AVfAUIATUSHHf(/~ H$H L$0)$)$L$HLL)$)$)$HDŽ$ H$fLH~5D)$)$)$)$HDŽ$gfHH~ )L$)L$ )$)L$0HD$@p~ L~=fH$HDŽ$)$)$)$)$)$)$HDŽ$ )$)$Tfff$)$f.f(HDŽ$Qf(LHLXT$Y^Y$z^f($dfLH~- )$H$)$)$)$HDŽ$yef~ H)$H$H$@)$)$f( H$P)$@)$HDŽ$H|$PHD~%$$0fD(Bf($f($f($fAWf($ $fAWfAWH$fAWfAW)$PH$)$@)$`)$p)d$P)\$`)T$p)$nA}tj$f(T$`f(L$pf(\$PfAWfAWfAWfAW)T$`fDW$$H$)\$PH$)L$pD)$fo<$fot$HD$@;fo|$ sfot$0HC@{ s0Ao}PAom`IAoup)$$Ao)$ff/f(fT H$)$H)$$wHLLHH$Jfot$PLfo|$`fol$pH$H)$fo$H$)$)$)$bH$fo$fo$fo${Hfo$HkXsh{xH[]A\A]A^/$Af.@AW1AVAAUATUSHH($`t$AVfAUIATUSHHaH$L$Pm)$0L$ HL)$ LDŽ$@H$DŽ$7ifLH%')$)$DŽ$PfHH)L$)$D$ YfL-H$)$)$0DŽ$DŽ$@)$)$ Of$ HDŽ$DŽ$.(CQ(LHLX]$Y^Y$C^($*fLH=HT$`)$H׳?:͓>)$DŽ$Nf H$)D$pPH$H$)L$`DŽ$DŽ$EH|$0H$D$($AWAW$AW$$$$($AWAW$AW$fo$$$$AW()d$0$$AW$AWfo$$$)l$@D$PVA}t<L$P((T$@AW$$WWD$0)T$@D$P)D$0fo4$D$ fo|$3fC {Aoe(Aom8AEH)$$$/(T )$$ HLLDŽ$$?D$Pfo|$0LHfo\$@$)$)$uL$fo$fo$CDc$k4Hİ[]A\A]A^ÐHLLDŽ$${$ f.DAWfAVAUATIUSH$GL$H$0G G0(ĉt$H$HG@H$d$$ H$$L$,$$<H$l$$$8$t$ $@$ l$`$D$d$@$PD$t$lD$$LT$PD$($$H$$Tt$d$\$0$0$(|$h$XW-+$P$$P$$)$@$D$)$0\$8$$D\$4D$L$ l$<$$H$L|$(H$H$@HHt$HD$Hl$$fAn\$0t$ d$@HH$T$PLL$ (\$8D\$4d$fAnl$<D$$P狄$P)t$p)$@$)d$P)$0)$)$$D$$s fo$Cfo$fo$fo$H$$@)$$HD$L)$$P)$$D$TA$XH$ $\$)$Do$d$`Do$t։$`D)$@D)$P$d$t$D $@$D$H$D$L$P$T$X$\A$`$`Do$dDo$t$dD)$@D)$P$t$ 5f- H$\$@L$|$ L$L$L$It$ l$$T$0DӍCfLHHDŽ$HDŽ$HDŽ$$HDŽ$,HDŽ$4*HDŽ$<PHDŽ$DHDŽ$L$f*$0Ol$ $0HDŽ$DŽ$.(gQ(T$ HL$XLYD$$^Y$T$0^($$LLfo$fo$$0)$)$ 2E$0Lfo$fo$ $)$)$DHT$HL$ffo$DŽ$tfo$$T$P)$0)$@$d[y$So$do$t$`$0)$@fo$)$Pfo$ $$d$t9\$@L$\$@$)$$D$`)$L$l$l$d$$HDŽ$$)$D$h$)$f)$@)$P)$`)$p9\$~ ݅tsE1HPLAo$$o$fo$0fo$@D$H$P|$(t$8D$ $$l$HPA9u(\$p(l$PL$X$0T$8HT$HL)$D$Ht$($D\$4)$$$$4l$<$W*$T$fA~$g$0$0fHDŽ$fHDŽ$1HDŽ$)HDŽ$Dt$ HDŽ$*DŽ$$.{ (Q($L$XHT$HH|$(LYk^Y$^($y$H|$HLfo$fo$fo$$`fo$$)$@)$P)$)$$@$H$Lfo$fo$$)$)$@$(d$PLfo$(|$pD$At$8l$4$A)fo$$dD$T$HPD9t$HL[]A\A]A^A_f.o$d$o$t@ffo$fo$fo$fo$H$D$L)$$T$\)$$H)$$@$DH$ $PA$X)$$$`Do$dDo$t$`D)$@$@D$DD)$P$HD$L$PA$T$$XAD$\)$@$`$A)$Pĉ$`$d$t$]o$d$o$t)$D$`\$d$$$)$L$l$$HDŽ$$$)$D$h)$f)$@)$P)$`)$p9l$D$1Dh2HPL߃o$$o$fo$0fo$@D$H$P|$(t$8D$ $$l$HPD9u%n1f=.5fL$HD$@H$L$$IHL$\$ L$d$ |$$t$0؍SfLHHDŽ$HDŽ$HDŽ$$HDŽ$,HDŽ$4HDŽ$<*PHDŽ$DHDŽ$L$f*$0@t$ $0HDŽ$DŽ$.(Q(T$ HLXLH$YD$$^Y$T$0^($$LLfo$fo$$0)$)$ 6$0Lfo$fo$ $)$)$L6HT$HL$ffo$DŽ$tfo$$T$P$d)$0)$@j$o$do$t$`$0)$@fo$)$Pfo$ $$d$tH9\$@L$$$0G$0($vT$PT$`T$`T$Pl$ L$PL$PUSHcHH=nH,H[]fSHcH=EH[DAW AVIAUIATIUSHcH HCH=;H,t`MHLDMtA}u\HLL$LHL1AkHtfDNH []A\A]A^A_@ILLLL$MLHHuLL1s뉐H=tIHt)t7HHx HIt<^SfHH5GHHIxHIuLH=xHttL=LsfDHH5H"Hff.fHHL$8LD$@LL$Ht7)D$P)L$`)T$p)$)$)$)$)$H$HL$D$HD$HD$ D$ 0HD$HfDUHSH1èuu2uHu^H[]fD1H H*t1HHt1HHtHHH1[]HHL$8LD$@LL$Ht7)D$P)L$`)T$p)$)$)$)$)$H$HL$D$HD$HD$ D$ 0HD$^HfDKf.HH1HHMf.UHH]HHtandgcotdgsindgcosdgiihyp2f1psifloating point underflowfloating point overflowfloating point invalid valuechdtrinumpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointer_UFUNC_API_UFUNC_API not found_UFUNC_API is NULL pointer_cospi_lambertw_scaled_exp1_sinpiairyebesselpolybetalnbinomcbrtcosm1ellipjellipeellipeincellipkellipkincellipkm1expiexprelexpm1exp2erfcxerfivoigt_profilewofzdawsnlog_ndtrfresnelgammalngammasgnhankel1hankel1ehankel2hankel2eit2i0k0it2j0y0itairyiti0k0itj0y0i0i0ei1i1e_iv_ratio_iv_ratio_cj0j1jvekelvinkvkvelog1p_log1pmxxlogyxlog1pylog_expitlog_wright_bessellogit(N, N, N)(),(),(),()->(3)assoc_legendre_p(),(),(),()->(2)(),(),(),()->(1)mathieu_cemmathieu_modcem1mathieu_modcem2mathieu_modsem1mathieu_modsem2mathieu_semmodfresnelmmodfresnelpmodstruveobl_ang1obl_ang1_cvobl_cvobl_rad1obl_rad1_cvobl_rad2obl_rad2_cvpbdvpbvvpbwapro_ang1pro_ang1_cvpro_cvpro_rad1pro_rad1_cvpro_rad2pro_rad2_cvradianrgamma_riemann_zeta_spherical_jn_spherical_jn_d_spherical_yn_spherical_yn_d_spherical_in_spherical_in_d_spherical_kn_spherical_kn_dsph_legendre_psph_harm(),(),(),()->(3,3)sph_harm_y(),(),(),()->(2,2)(),(),(),()->(1,1)yvezetacn should not be negative_special_ufuncs_set_action_log1mexpexp10it2struve0ellpjk0ek1ek1iteration failed to converge: %g + %gjfloating point division by zero_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule was compiled against NumPy C-API version 0x%x (NumPy 1.23) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimenumpy._core.multiarray failed to import_multiarray_umath failed to import_UFUNC_API is not PyCapsule objectnumpy._core.umath failed to import{(O, i): N, (O, i): N, (O, i): N, (O, i): N, (O, i): N,(O, i): N}`scipy.special.sph_harm` is deprecated as of SciPy 1.15.0 and will be removed in SciPy 1.17.0. Please use `scipy.special.sph_harm_y` instead.m should not be greater than nfloating point number truncated to an integer??hHhgg=gff2fee'eduddcjccb_bbaTa``I`__>_^^3^]](]\v\\[k[[Z`ZZYUYXXJXWW?WVV4VUU)UTwTTSlSSRaRRQVQPPKPOO@ONN5NMM*MLxLLKmKKJbJ JIWIHHLHGGAGFFhN+Qw 0ÑV|%3A?=;ƇMԆ[iw$J݁p)O~y~~}}|0|{F{z\zyryxxxw)wv?vuUutwttsƻP>z>0?>Mt>GnF%K>שy ?(?Y0:C?<2Į!]?qFs?oB'?2E~?Bڝ??\2?%k}?9WA?mq?nin]p?{?!a??h?}Ӽ:'Q0srC$?A,V^C1e0s\5s} 9_~<53Ծ1@]pB >BH+C-Ifhs0>D7>J>fDY<>!>}f>]>Y>p>3V)`>P>Ev@>ZN 0>`4 >*x>-g?^r){?ɢW?[s?@⌒?3]u`M?&Y%?? gZQ~?'?'ΘH?S7C?P:?w~ ?*xnK?Ɲr?$h?zr?xG?b:?8ٯ%? ?%w?߄?8կ?8կ?߄?%w? ?8ٯ%?b:?xG?zr?$h?Ɲr?*xnK?w~ ?P:?S7C?'ΘH?'? gZQ~??&Y%?3]u`M?@⌒?[s?ɢW?^r){?-g?Ձ(u!HIᅴ>}!kg>M p7}m+Y>w@_D{fJ'/W翁ð)sTʵ俫+hMr7='Rh$Џܿy78-ٿxxտt#ѿ| ˿@qtÿLڷ]M(>؟]M(>؟?Lڷ?@qt?| ?t#?xx?y78-?Џ?'Rh$?7=?+hMr?Tʵ?ð)s?W?'/?D{fJ?>w@_?}m+Y? p7?g>M?k?>}!?HI?(u!?Ձ?W͇G?MH?O?+`?(ݼ?,i?ʁw0? }?NŒ&?oZ?"yOm?FT? ؎:?T ?_f/>o*m>:>ᄎ> *ɇe>榫ޔ8>>Mz(=o"f=~g=L >,=@N2P<`K{<9:Fe<(x%<;FbXH;M1t*;?,q#:dt:иrx:9  1@9 Eebo84F\FТ \<>|U} F>/z|2\Mfn> +n (4 нY6F\Gɺ=Ju>=}vYW=뛘C<6O ={Py¼|qMt:W^qqlZke?# oO9P=@4*?=@4ZJ>֫ >b |503>G> =nL0zI>{7:IX=NVNKC=EVP׽f1=TA=`̉ Xe=Q]z;UD,'\==x;dp?ȴڎ&eHI?F >3>%SC ?X9Tab>69f)>"*>l t$]oCsCN`SU:>8F)X|8t'p=rl=qxνYW"4U=`0n\9?s;_V_g`=a;9*u<{c=4;GE?Y_F.?ʷ>[1?]zq*N b=> 'o׾19 >@i2†MLu>'$;@]F=~F;SMhׇ=.(C4L<冠F?M=IkӎM:ύ^={ >LthI?z#3*Xi??nL>^|[<;=?]tqL }><3vƎj[QA=kJ0^>IxNv->^yp3PRaΧ=*ǽ<x3e=<炽wEa=R!I;](g,qŊ699H`G`s+2?'B * v$? >6̳?()>/e8þ Y‡\NPA> ;gˆ[ Z"0i>5ZA4;=bX:*+>Wpg- ڛ`b 1?Il>7[IE ` k ?L/8)w?$t*h]O]>7O5}Dl>K tP="SPwymwi> L3J}X8=p>qPw T'3=X;m˼ezqJU=!*U<{HNY=6?g4u ?ΘP85^n2?hsxB0>d&Ky}F> ->BYƱR*>c}`y4%.v\>ňNOM0>V-2Y_FbNҭ=vA:ӽwbJ}<$Rjy=4 ]bjs=D1bEp9K?aDg<0kgbmp%?ݧo ̓7F?y3>!J8Ps>0tK<pR>!;YH=9p>KPNj *Ud::ra ?703pc>ؑǾ'{P8>q9=ePӤ=w> 1 [y"eD[`0>OҺD"ܚT>k r ?ֽ?LjL=r1'EhU?lu]_Qi7+R?a並>2@E3,*裂= rX¾3qM>XMR C?U~H@Tr>cʝeH>{0HR<)}ձj/:>9F%7aZ<#{ s=YY??iD$M%?@^[$`Ara?L֏P6aZȚq"z:7?*t]q2ad?)ԇp8">jiMB >-b׾'#>T1VԲ>R · I|e>YNL*=W |/cbU>A8Q>57Ь >.J ޅ7k='ڥVp@Ji:z?^oPp͇Q¾Ma?0eX{#` dK?nMT>Y[>0gV{(?]"] UIAvty>̮-徺Ce>=!ll=NfJ >C>U0NU_%)XU>uH. +>Ҏ.;ICS|\xo>;A:U ?CI<05t?oY|>TF`L1\?-(`ű.Fv:R=T',(?OC!bwVA?L'+Q=]g40rv>VMg Ok7|M>>ZX2s>31<\I;].=> Pё?틎<>熔?G{>4HX\?'.v+Qph^? ɸ1$X۠1B?M>a"~?͠ VWsy>bWTӾ N(>+=Eݑ^Sh>YgUiTYĒo"A>\?4Td?F^I|^C?䢔x2׾S8?e:(l{2v?W?`>,]:\e5U? 0_O>H'齡E/?7ΠH>Ś}Zr=1&UU־=I>+CڶjnBލ,>=8'~mb>xP_h[ċ+?GB)oItz+?<÷Dc8/?лo>x{ ?,Ci{w$Ӕ$\PCZ?j=SM :?.8j1=k0DE|?bědE;@uSޫ>=moƾNt$>ɢUYKQ?,~8A&ž.co?~3 S?>ȩU%=iv;jzզW>H.k+.?g!9Ds ?Ce(?Fpſ鵱C?>B_'M>kxT?M:~x6߽QX?kp9+QюwJ7?NfEl=0m2Bc?] ?7GbT ={vP>?wս?|Fv uoD~@ٺ1W2 1X)tW?aj޺ ?@&T}пfXI?YNnf@٘?4y=m{3z?,=Ő|YjMQ?J7C-:=$Y?\|C B>y>*@B%%-غŃW3|w"@aJ$"n1M @oh#A//_@ Jf{gbz??uѿ4z3?Ķ >_+@?JTk)|x=֐"[?y,(R41O7?*'n2̽>?M1"`u[VGB@훵-&JQq@@-iOd?)c4W4@FMf$5VɖN@a 7fM?5\'s>VL&ܿvE?ϱJwA1?e)՗,M(rFw?I </~^rS?ߥ9`1xR@ LA,c`@t ?@ȋَ^X|ߞFb@heTgߛ[AbD@!kC>z!11@_ Ha>ʕ"w@JwA~=<`C5=c.?1QT!MܿgG?w-PyŎZ1ջ(v?|g=uV>o2d|ha?Kcj@Ru97*@ʹ}dEن@?#6"~gDuݬbt@X>`K~uQk*Hv~e@t=-ef"?y}TRD#BP@zrވ?Nb>Fk̶V=eP=*=C6r<};4ض\0;>3{:uB(!j9Ƞ9$8>Ij8^207l/W5?6VAS@5>@454ɮ;:3'q1Fp|0X.Z/4rEE.lƣ,i+=۾ !*5(„j@AM09@ڂ܅Fk@۶mc}:Q?Hn}@_fFX@cq=HÒ@m;[Ť?*@I3AkATp@]USŻ@$~K@Ҁ9 Z4AF#LA=wEgEZ3A˟=~X@"v4dja8@v1IA/1IESSXiA#e@E#RiA } [@:B]Z^t៤7Faďf|n>ƥRR/>qMX)?fFig#?,@ឌϥqX<&rͨA. TTioY>Tpt?A>B BY?O-iN@?¿rqGk~X X¿@9SsMԿ:(,a(5 F[t/!T ~z7o??98c?Hxi?d?_cJ6?Z> @Hn-@*S@Ҁ9}@v1@RmUamրVX>na>+A>Rx?I墌k? b?4!\T}b3<r넱^<"P '&&KF5=bLa$ӛ/=jz0 K5dMv;p>"c쑾$>'doҾY(X?>ZY&+|t(?RBuZ?I ^qa?!N-Ί>?-4pKw?Wӿ*5N?UUUUUU?llfJ?88C#+K?}<ٰj_AAz?SˆB8?:gG,2D*@%%cN4"@Jᦉ %AWBm3dҶAoFE%@y7TBz{ uoBSŮR9B.? * ?,|l @yD@:5/?@@R2B@96SC@wz*E@r4dF@OOfq]@Ob^@+NT_@ݭC#`@~{`@kbba@YSȐa@n b@1Ib@5ca c@c@ͦ3 d@\>d@nz e@s9Je@FGGʪ f@yyuf@IJC g@Y&g@oFh@·h@aQL i@ai@ F~x*j@&Pj@7k@!+k@VFl@ l@tVm@pZNm@k9ihn@HQOUn@a,~|o@b4nʼnp@+e Ip@cp@)Vp@*q@6Gaq@q@>m#FJq@FK.5r@b)C|r@Wrr@V] s@rRs@GIqs@ >6qs@jB*t@ A=rt@fIw|t@d'-u@X+{ Mu@# u@ZGDu@;#(v@b%rv@?ʿ?98c?ٿ?Hxirq?̄?d@x5?i&!@ffff?_cJ6<cVʷ(U@r^VlzDE@;:y?Z>j@BM09@؂܅Fk@۶mc}:Q?Hn}@_fFX@cq=HÒ@m;[Ť?*@I3AkASp@\USŻ@$~K@Ҁ9 Z4AF#LA=wEgEZ3A˟=~X@#v4dja8@v1IA11IESSXiA#e@E"RiA } [@P-X/gA=kbx&Az'E40E~AchFxBVwjA7Ww)\AA~ VtWN:@$XHA^@u.UgBKQv I8#B3'V=B >sE8>.?)+Z9?'.T5?U$2?h0?1o"-?ywg)?-'?[$?M eG"?tN:!??s??0W?@0?ߞeS?Fd?9߼? q?I.LJc?2j?7auXa@Lz@6kqKR3A&jzJCTW'HA:\b)"dq@^Lxoܱ(>'K > ^=>3P> MS|>{>`N>c3>fRU&>_[>N2&>t+>#p>->>]4>I>DY>~[>FXbt>?> nLB?f[=?$DQ2?&6}#?Gv,?{srh{> w=e[$|U 鴹 ӡj/W ȷ5ޓ\>O >/!&>7>@>I ]>.>^p>2I!H?[oL?=G(c53 '6 '(7W/)_6=HG3b_z1M-.9о(=R$wN9 )q>i_ ;\I^=}讶X?⾨GR>o8>QN'kh>nu>!r>PUe>Ҧ>j ~?2c]\cAmM ^7H-V/?IvO?B?V?7RX?-eW?WU?V;%A{R??YcM?\%F?9L??/} Q 4?ͤTM%?H?Ki 7z+^!G(!ۃ.'.61@6=|253}%~3 eL ho3+3 ꡗ2 t1[p'1|j(z?Μ? 4?I3g?%d(.0a*}wvywn=wЀ/@^lc|z ]qtf Pl.m`MH*t2?,6"+R?nT\?t˻a? -d?yzge?2Ze?(e?~[IPe?p.d?lb?Ka?Vz? `?R]?\U)Z?"9HW?߼xV4r%B6Nfj2eH%?F7`*0?_l[n1?| ˮ(1?w M0?3Ҁ.?,嵙[,?VO*?j(?R޾&?L7W%? H{b#?_?ڃj"?B!?DD5 ?eVӃ?Qgp? o 4?MJ?>Zo?#@l!Ƈcgb˔g`b"bpX4Ip2 _dbv ӌ~.J !RC/ p{QdJ U3_es`an_u{2"~nqkm쾬_W*,a| 49Pհ67$ w$U>}!?De%?ϻO&?Q$?@!?\ W?Nu?Hv ?cƫ?7f6?R?$K#N>y%uwB>S]F>i>IE">U-U>[+ZCƾ˛Ծ?{7ܾu{#dF=t㾩ACdɭ yCR羧SJc()龚l 8?bԉ*?3"^1F/D&O`4N֭4ؚMH2;V-8/~A&VDJt "@ B\iDLNnC^>ɑ`yC>vN?^A?X ?mIb ?Wn:)?tZ?jC=? =?l8w?lCd-?|_ ?Xn; ?90 ?e ?L%?`ٶFL_-qG?$T?#pZ?S>^?5ښc_?(9_? %]?:d[?>iY? V?bh"S?JP?Ւ&L?lvG?ZgB?'Q j@BM09@؂܅Fk@۶mc}:Q?Hn}@_fFX@cq=HÒ@m;[Ť?*@I3AkASp@\USŻ@$~K@Ҁ9 Z4AF#LA=wEgEZ3A˟=~X@#v4dja8@v1IA11IESSXiA#e@E"RiA } [@P-X/gA=kbx&Az'E40E~AchFxBVwjA7Ww)\AA~ VtWN:@$XHA^@u.UgBKQv I8#B3'V=B >sE8>.WFҲtrl <??98c?Hxi?d?_cJ6?Z> @Hn-@*S@Ҁ9}@v1@P-@$XHAW;Aairye:airy:kve:kv:y1jvmathieu_bmathieu_aellpeellpkellikerferfcitstruve0itmodstruve0GammalgamigamlbetaJvyvgammainccgammaincgammaincinvgammainccinvive:ive(kv):iv:iv(kv):loggammaikv_temmeiv(iv_asymptotic)ikv_temme(CF1_ik)ikv_temme(temme_ik_series)ikv_temme(CF2_ik)ivikv_asymptotic_uniformvector::_M_realloc_insertdigammayv:yv(jv):hankel1e:hankel1:hankel2e:hankel2:jve:jve(yve):yve:jv:jv(yv):kerpkerklvnakeipkeiberpberbeipbeiall functions must have the same number of argumentsall functions must be void if any function ismemory allocation errorprol_ang1                              ?ox?-jCp^? #Q?@񚥿1>H(?`R}?I,SNO6,ڌ ?G<_P>lmf~D:>F{5>KLKv=EϠ =r} :BnHa=>017QxD\8<ؗҜ<UUUUUU?llfJ?88C$+K?<ٰj_AAz?SˆB8?5gGN@U>?4!\TT` @?@@@@< *IO~>ټ>G]lV?QUUUUU?=)Z>H}V>߿*??HUUUUU?333333??<h@?oxT@yPDs@yPDsqy O @D?yP>-u?4Yt}'@Izky@Jy@QEU@w^@ e7?@@Tȥ?[a34@v{@<\%m@ /6@-q=m0_?-DT!?-DT!?uo=]?]҂?jGq?#BN?eV?avt>lHE?|\pctx?zrd??En1??u<7~u<7`@P@@0@p@& .>?A?r%K*@{xD\W@@4:@s*_"@9˚?+Z?:r?;v?ҢR>R>޻%5?7d?4 : ? ?i~?x !A:?CP/w?`v2?NWi=O>u>@k+"@3@5ܧ~!/@y+N@?d"?kp?a?$E>z}x=ԉ=5>]}?~=_???3 /?@G1x?Y].?$>`(x-@1$%mB@ =w?@cQk%@z!?P$?5Z:Hv?c|Y?}MejZ>.$Z>[_5v\d?I~!JV? n ?n ? K#?PlTl?*$$*>?1z>lP> #@$G5@,%P1@@'Iqj?{Jx?+Ks? ?N> F^E_>~dȝ48>Q@X7%-?g(@ S@<@e@[4c@OLOOQ@M*\ ,@1Mb)?,34-@QM U@0-*f@ad@_ӑQ@ 1,@>LM?+gܭ}-@$T@əee@d+c@FA~Q@@j+@Ոҗc?~2\&@Q@2c@3 &c@/6+Q@y5N!+@mBP ҿ:  @Qg5п#rph?)υg2?x'*?X@ 95%@p @ڦ?ͺ-Vo?Ɇ3?{7? Qp?_ q?oʸ^O~>ʌ>llV?UUUUUU?;f?;f?ʕb ??SFP@ɹs=@Q3lyN@GuL@7>5 .@4!R T@Vek@]Qs@fH> k@ - 4@DfD0N@ឌϥqX^>>s=cu.T?JUk?=!?f!?K͉ ?~, ?_6.>9d?t ?-DT! $@@cb?n?=e;7%l`x:.,i>&?A}|?tCrc? {u?6g?DT@^@8@@o8%S rQw|BVB+F!@o!x>@_i>AC9@g66A4.4AID BF.r~BHB.{~AA\Cb4C9@'k;0J?]4? hN!?V z@@i~!@%6@7΀JN?TT?r?bG@!!@:Be9@J88BGt2:;? ,ύ3@mZ/MW@ 5f@-9zbb@UI@%wH@;s*@1/@ݡX3@T (/@n@Q63E?R x<`^r!`^r!?m0_?'InO @Y@@dg?@Hp^@񚥿`R}?=VO6,G P>)"D:><@ĬȎ?\?ffffff-@<@Mb? ףp= ?' ?Bп5@@@.@2@UUUUUU?NU/A@'K!ƄoZ__@'K!Ƅ@55@oZ__S?>@(@!3|@98c?ӜG@?ʿ?@@Q63E?-DT!??LXz C;fA\BzU@@>Jz?Ȁ?3Ey?$m0_lV}?A@0@@7t@2kAL(x?A+{lB- KC?esCėB+*C9)pvwC,A+]-@2r`H@elL,H?H?֖?j:r@/] @/@i=DB?HYݟ?P?QK@eݹ @ٴbG@@pk'?֏mƵ@gϚR@ Gyv@Pno6@ꫂ@ TL vj@wP`0R@o_ˁ@iz@р(@= =@b@!3|@M49@Yju@ŶbA!eX-bBT B7j@BM@09@؂܅@Fk@۶mc}:@Q?Hn}@_fF@X@c@q=HÒ@m;[@Ť?98c?¿rqGk~X X¿@9SsMԿ:(,a(5 Hxi?d?_cJ6?Z> @dg?A@y@Py@@O@@`~@@x@@P@@AM@=@kym?{lj??Kap?%TӢ?++MJA?x/?QTE?5@CV4?d?V`V?͎T?n%`??=$|o?BC?wm]"(ȉ?_B??>īQ7?*TU?m%kW4?"߄#; 8? Hs9?:MIQ?bkϏ3?1?80@ v*9GqNo?yj?rh|/@=zhq>tR#>pȫSU?=zhqܾA@ᰟ4x>ZDph?Rh?i4?ڊe9@=hTH*D/X?j1Q?ʡ8@>Y[g2A?B@fF~byy??HLg?)]2?/$6B@^=e_hdF.?cW `?yS A@I@[Pܗ\O?'Ak`i?| g?hH@3sYX ? [u?ec]H@fA>&4a?U&?7̒@jMZ[@nh5V+b?Q?QKL@a>%ŽP?7{5?z&@tF_@ 5b`?|tް?~8gDS@D%H>@E9?*bmV?/r@`TR'Fa@Aҗ1?-T'?LX@&@Kϕ @->Ky?)N?\(a@Ahz$k?/(? ^@Ed\l>N_g?9v?mV}he@]应>C~&s$?-nb?s.Ue?Pn/d@ؗҜ²龼M?''Ux?s?){?{מ?{"#??/??9B.?ư.?KNt3* Zbty@,@F@V@6@J@:@HzG?]tE]deM6ds?[e?O"_:?DgE>rqqqq|?llf?4V'?\@aa?j??<قnQ:B]75#@NV@5p@rt>UuWG?j/(9G?+]5cÉQ>²`G?fa?:Lf V>DiMNH?dgm??<㮸f\^=pS=竢CT>0^e>ssaH?`zT$t?J<`Mj`= j=K9U>^ >UTDUI?J I8{?xR22,<(=>R`=XA=k_V>5n7k>*(I?Vf0{π?*@vw U<Ga=yC˛=^W>W>lJ? e?Tc(<"b=eJ =HSK?zX>9s>J?|j?1@k=<߸6c=;~jE=3U-yY>a>LqpK?Fӊ?3@T H<ΔMd= =x=*G؃Z>`_y>z/L?ʙqO?hRY>0> tsguM?1’?HI% <ۥ`h=&û== U]>*4>: N?9罞?;@/tg" j>N?hj=?̢bnR)>q޿O?mx??@.7 h<2%m=$o=1`>>;>!P?}/|{C>BAȪP?m? T<qNp=D_TI=@yb>B Q>.UP?d$?B@EK_<.|(Bq=hN1o=qIc>TG |>[|OQ?]?C@;3^i>0⸻Q? w#v?D@6tG˰8b`>4H+R?_V?E@ s.b4<{-x{t=2~=-zh@e>qb>qʞR?D _?h<3u=@Hf&T=V:f>Fy#p>kS?uE?G@%fw_<^ Bv=Dtz3=|h><> \S?q?H@*,vX>T?DJ<[?I@W"ZB =y=Q=!VJj>Y>QT?|?J@z*=o^{=r,$=;?k> 22> "U?:=?K@:j%=r.m}=g>=cCl>g=>KU?UE?L@.%@ M==~=d=di=-Ek,n> c>`EV?qEn?M@k=E*Q= V=2Мo>n@>b[@V?|C2?N@P؀=EO=Xд=7ΐp>Vw5qi>.}W? n0?R87=\`d^=^N@)4[=REj^q>,ik4>*EPf&X?1?@P@+Ͱ=Zb}=7==ػ6r>2o >_i\X?pC?P@fIA = ,=_s=g=jX}xs>GkQ>wg:Y?A#1 ?@Q@Hms =i=t=9Uq t>M J:>1۩BZ?۲?Q@0ݭ =7ɏ]M=j>G" u>>pP %[?K?@R@\=~d=-y [>%v> zp>;:a[?-?R@$tIH= C=_Y>08w>*%>Cs3\? nm?@S@Ycr=H =:h>G!4fx>iJ>>>I}]?zqHV?S@ڤ=Hgʚ= 7/&>"|y>6ox(>1+b^?+E?@T@&=?&0o=E>޾z>d>\aEP_?)(S]|>7d*>_[#E$`?G:?@U@z1q=Ylj=T2T>1^U}>C\>44`?U;)A?U@=q3ђ=XW/ >th>`(Q>>k},a?!qO?@V@w[=|F =,ΘF >VSg>z> a?`p-f?V@F=S\6=FI' >{f1'h>!L>bLb?s ?@W@l!x=i=$>'V>/L>칊b?F,?W@ƽW}=hI"=ln3>]R>G.Iݧ>Ӎpc?d?@X@P\v( =]Ia=-9)>Lvi]> q>_a.d??ÛԐ?X@[>!=϶ =DU/>>x>"l>aVd?JKT5?D*""=k=E>E4ͣ>Bu>iԕe?:?Y@1C2#=&8:W=^yk>d <>hN>, 'Uf?Yx?@Z@-]P$==P6L>MB1>'>vg?DD?Z@|^}%=ʘ=>k,>SF>Z0'g?v:}?@[@~&n&=*=)bBO>t >[1>Ԅh?Ⱥq?[@*=w(=L%Qm>'u">kS-3ii?Pr?@\@)x\)=z*]="%uP>0 I>T#>jj?V^?\@HVV0*=,G=#>=s>W\D1=?s(k?C7?@]@A-A,=Q7g=6ͼ\>!&!t>M?OjJl?9?]@Õ/-=TZ<=34NC >艄p>3L?[1m??@^@~Ch/=ѫ= &=!>#k|>?On?írǶ?^@)܊0=iKγ.=;ј>\a@?ҕ"p?L(?@_@o'9nj1=D!Ƭ= ]#>c+ŕ>0!f?T:p?;?_@_mR2=6r=z8$> >5Y?҃V> %?`- r?y,@#?``@rU?4=+ =1Q '>ɮ>d?l8Mr?Q|I?`@gf$TC5=?=g(>Yhle8>1E ?! ts?.>>?`@P6=U4]={) )>[kYʜ>b+ ?\t?{? a@ t+g7=t=px-a+>''t>$aF ?yVw6u?xv(?`a@S8=[Q8=4鞈?,>z>H؍qp ?;Lv?n1?a@h[$&9=k e={nfP.>#, >F?z;w?]?a@y)y:=QjO=3;?0>.V> 6 eQ?hYX x?t? b@Ҫ<=6*=YXT11>NW>n_'/?' 2y?hJg?`b@Gɇ$Xb==$C=EE x12>qb->j[?2z?O^%4?b@w>=OP=5h?3> 'sX>` p?akBm]\{?Q-:X ?b@2@=4$=/m[4>Pn>ģ?Ƴ̕|?qS? c@V3@=|=j Au5>A(>pod2?*,-}?3?`c@o/'@eA=Ӈ#=cs$6>J:F>Y?Zz<?H?c@[Si+}B=", =|" 8># >R(/?BCU?"q?c@|R+B=!=aH6h9>򂒝H>C"?XΪ?>C9? d@lZ*C=X?zL=H:>R:7ot>T$$8??jC?`d@=8;XD=̷߫=JޒU<>$T~>+?8gK?>nf?d@eE==G=t<4=>٧ɺ>b00?>?D#B?d@ԾE=*=N?>A|̝>Wg?K])?Wy? e@<F=k L+4=Qb@>P>8mA ?a>Z?cj?`e@#~G=3K=(A>$2ų>6U'!?J%?Z ?e@3ŽMH=P==B> N>f"?l??e@Tm7I= _=C>>TM#?2ڈ?:? f@\U?I=gzA=.'2D>S0V>m6mT.$?q?\a?`f@5 J=LSNW}=#.E>}>M%?`?(Fa >@T~&?y??f@wLqL=`t=G>uO>xH'?[170?tڧ? g@ZGM=Y0!7= 2I>=5]s >do)? hc?.'V?`g@ÿN=+M=US}J>/ܦ>Co|x*?yЩ?X]Is?g@N=+x=MK>2؜,>2^h+?{n?+?g@dO=A\=v^t>M>鯂>㢬6-?.i?@w"0? h@'KP=y˵=[%wCN>>\oGr%/?^bd[?QH8^?`h@LP=$ζ=0EP>y|>c{p0?Jg[? ?h@gr/,Q=[Ɠ=1Jf3{P>}>NZ1?sj?D?h@yրQ=P S=~=( VQ>ƣ>ӉQ2?!@i?Qϣ0uI?ׇA@@33333:ffffffp{Gzt?{Gzt+?ykt?mBP ?p@Z3}+:=킙=AK >mo]}>XtA>(Wg?@9g?[ߺ>=JďB=lۄ>jjs>\ d> 5١g??d%B=hd=)i`>nw'g>}<>A\:`Uh?]1?\IE=K=T }2>= aM'>4kl>sh?30?`bcI=ĆfUİ=^J>"a>A|N>nYWli? N@?JID<#O=k=4$>2u'> o"C> j?huCנ?]<2R=*v?=xN >5>. jK>1فj?.Rb!?݊h j߶>d>Bj>IЅGk?4? HAxW<\=ҥ]8|q=mdʇ2#>],>#q>ܲ k?§?/>=lI'b=L=ie^%>[߼>SZ>Al?tg%~?0 =\F%g=Ј=,V)>t -Wm>ꊌywm?SsN? {=ݣucn=Yܒ=q%->j|O>g >?;In?ZZC?|zH=Ts=6Ү= 0>NKO>>}%5(o?zoٴ?WXhk#=(Vz=͍"[=o3>QD>v>Xh p?Ӷ?ߖPWX_/= Tp9=t\UZ=p}7>1H>@q?AGip?rܸ?Z6/a;=5b=2,=(<>e[:>l5?֍q?f?7Y!D=d|J=S5i=5=? A>4uy*>hWl(?LUQq?GV"?=D|h9X=K=z=w6F>R->_2W?wpFr?<a?jz]=8b=tp`=ق)M>4>H$?V}r?Q\S??At)=@s'=)`=ꌍ> N^S>2. >e?cOos?I^ s?AyG@8=JrlM]r=@ >v/%gˀ[>qm`j>/ ޖ ?#) t?_ Q? f'5=O&Hl,,=e6 >Sp==b>>߰?mu?e9r?5qt37=dd_̽NEG=9ne>0b>Kw.?c=`f>`>"+?"~prw?ro?\;%F=6nn$A=C9OHB=>}~t`>n>«!H?kTsx?L]=?)(C=@XeHĄ=Ղy=yJ)>?>s>RG7܋?C%yz?0~F?Vw3=[} = y=#6e0>6Tc\>.y>^؈S?YV|?;~G?5H=%d9=q=1z\ڎD1>q>RZ>µ ?JV~?c+?G% g7=98~֏=&FP=ն#->%|>?-4,>Ac!?aA?q ?J>{u?=H~u=!׏=gq2$>";& >$.>TMrR"?iXf? ? A==+!]L=_ =Po>̖s<>(TRbQ>1"?ݮ+?6gq6?TVVB'5=l@>)vEJo=v}]:>h8g>j&~Og>C ?»X?I0h?"QdR%=l.& =cFw >d>LIl>>"ׂ?y_?3Ϊ? Yn= Q=X9[c(>'~>:i>$*ϔb?`{?n)?%=7/Ä=-,ǽ=ϣa@->Xs[v>>6 ?TI?/H Y?O+(3"=o=c|=ԗK.>x{i>$f>OH>0gu?kֽ?\$=|0x=Y=CD,>DM>O]>eZ> ?M/I8&??"=Bl= Pe=5)>U]R>H=8>)T vt?z-hT?̗?J='(~eV=w5=UnZ$>펚Ng>8>QH?{DGʼԅ?rF?=h.1=wȶ=h'>>ob>hq>B>i4?!( ?_zm F?2' = ݔV=ztW=%>8*!Qu>I͹.'>;zׂ"?Px?=?<ܵ<.Zwc`=J_=9>=L5Fw>m(+>~%?mi*u?b?;--7c=S]u_==ai.x>6s>F(?}&q I?vL7?GPc=opq3@=( t=f^>Ìx>zqJF>?3g+?xR?4ƙw?a=q=K*7>qbIw> >;,?ӊp{?7Ty?γxI_=iD$h=]'M>q+u>=">Qmo7-?;[H&x?)R{U?gY=~ݠ=Q`؎ >ls> gn>DC.?j)A]t?]?jxT= wiŠ=to >*Fgq>lIb> .?t Up?MS?aaO=|BRUb=鲃>Sm>G@/lW>D .).?vB`i? \2?E|F=a=Q'>Lζ`ei>T> &-?8Fa?[]?fQi%==9=5g >r}Yd>DD83>$-?#RT?9{z?i40=X]=5{} >}_>%ʳ9>rap,?^!W :??"=z=0> a X>q:>ݱ*?/pR=WP>Kȿ>3JH)??z)T?ϐ%y?{$b4=Н=4a>YQX;E> p>Hu''?=\F6`?C_?tB ="0o5\= OJ=b5>.$B>tʆM'&?x^ue? p9?bI$={?^M=Ri(= />1*:^u>~$? |f>[wW"?ȸ2p?B)?d6'=CS=jO5=b6>%M">gD!?(]r?&?نvb'=r̽=z+Ѷ=6Y;@>|=ɲ>Q\?pa lt?3HZ9?.K&=h&<=x5zY= C>.!>6%H?Iv?lS+?Xz߹$=1eË=8k==KF>pkJ>DQ?ϟSw?GSt?P1"=Ĺl=~e=NH>s>|?֦ty?e$?pj =Oq=ѹaә=WNpI>/x߻>igZ?XD*Fz?0 ?C%=.=f=!fnJ>Y'.=>KPC?o{?`sN?3=g\Uy= _)@ Xp=bJ> >>T ?٣|?0?u K=:t=K^=`cjYkJ>Q>O ?h1q}?V?h1yZ=}MSo=Gxo<=Dr}I>tnH>:G*?A~?i)?;Da=KNh=\$:=*0I>'JzX=S?A,t?O\Ȁ?PC3t =Փa=A=JğGH>؆L#>EVt>?6%U?h=`$X=E.=3;>G>#>r >?@p?B8.<=]\ N=r٬>= e-F>*ήw>l >Pk\"?6?gL<ia9>=s;{=AD>-gL0 ǫ>O{5>%M:?o?`<fHK6w<>e-u>kI?z 0?H:<ˏ+?F(8?&=4B>}SFئ>śLр>L'M?j?7w<Ԯ:nwٜ=ɵ&'MA>Xߛ>">MI?cQF?o@C=4w=R@>W7>>l>0wO>? Ӵ?3g;G=^50 d=w7=>뤶#ד>>sX+?|?v%2J=*}=d;>k>AAͩ>X ??"g,L=sPq>qF?a; ,`?`YM=&DV =иLʜ7>8 $>Q*`>+_Ǣ?Y)?a2M=>`1=725>.O>L> 1S?$?]M=v8B=^R3>0Yg{> C >ݚ^~?4?:㴼M= =;2>\xަ>S>Y~?ٍ?(f$L=͞w\=gt0>?, K>+gXs>$<~?P>z^>}?a'E?@EJ=)&Dz=Е{Z+>K>JwOY> 2hsg}?(-?PI=)kaR=XP)>܈JD~>X>bc|?kXslZ?ތKH=&w=+:K&>4x>1>J|??z?P%F=ĺ=1Mȍ$> `ks>E9K>&P |?;?Q &E=m玄w=y">Hm>vL>p̙%{??pnLD=*\=)+  >/Ed>.3>D {? 3f8X>{Bc>\ Jz?w::Q?0>XpA=#f{&=ï>\YOE>]Y ~>R{-z?W?c j~@=s=7o>,Ɍ!>%>Cسy?;h;ư?4>=Q=s_>S~ K>d$x>G-M9y?E.? zg<=:x>RX=NF>"W>(0 %\>!sD`>nl1>FQ< Gx?Pwd\5d>[>w?>֗? >?A?ykt?Y@Fׇ@kﴑ[?s{B@|J?]ɭ1?f^?|=@@cAhW!?|a2U0?ۊe?&@333333@?Mb@?f^?UUUUUU?-C6?' @:0yE>;f9B.?-C6>?@7y!C??333333?UUUUUU?A?+?0.++@пCQBU_SOxx%>4HBgɶT>I0 `{2"]>Rv o>3xs꺂5&?r ! @!<#pb@rqe@Vx?>qˤ[{@)n>R1xh!su> >V"Y?Eh &#@FDŽC.NϘ"AE!jMx?Y[X?B9"@WR'@#}?x`? @?\0q@0yyu} @}<ٰj_SˆBAAz?#+K?88CJ?llfdg?wE?mBj@Hz>@vIh%<=E@m0_?P ^˄?ox? ?@_"@`D@Hl@n(N@s`-@Lv;@jx+AH տKR/@u/io@@apM@r3@o]s@zƴõ@K@u.=@X)@67Q& aB! FwMBͶ&B\C;3Aƃ]AA^nA wG""A$`u@Wk޺VBaX(BgKvA4Asf"qAwK!Aj&S@`DwQ:i@çh@oV`A7W AI:.LBDy^B˦BBZ@2C'CIF{5 vC@DMbqCj†{<^Ac"A7F z"B"Q[BU9uBvBMUF1C?22CTu`iC/+tCD^f8OC{Gzƚ>A%?y?F]?*a ?ʬi?. V7?z ?Q63EtE X1@Cdg?Gase@r-YrI?|'k.?O&e?Řql?YUUUU?C4a@' @& .S!9$?S?W?#c?1}ܩ?97?zHs%)A?JP@r?[1?g?yW?‡B?Q:cCa>U >>q#??M;?cv߿t?Mt+n?Òekt?"mS?Of@FFg<AHP?ag>[54@剐s=AQ۔1A E:A u@W׉{ @Lt ACqb1AL/URCA^Tg *AJjK>A%m]LWaf3'PJ?C逵C?^ J?lf?KUUUUU??@0BH@?ffffff?333333?G@R@}@w@P@{@@@@ư>ffffff@{Gz?i@E.AGaSe@9B.@?@ @St$? ףp= ?)@ _šd~QJ _Bٿ@_MbP?r@wm0_???Vcb?)γ٢@õem_,С%A$FAz`A{4$Br2q@ڜB@и/SAQA"dBW$ςRBBs;aBb, jtb>B$E?YjV?7N?jh=uIt>Qǀ>2*>?qL?t0`? @#ё?^0[?}{嘇?p6?w5r>NHg`>I =YW5H=䩏-ZYR3H>a3=kl0=R#]< 6;Aa; c$?tg:?2T7?;HyjF?w%>`Mbz> =ˉf s=d=(tq|>AA:A&FA[@@A @@!A&@P@"@@@@A@@#A&A@r@@b@@Ь%AO`A (qAnIAۍPAA@@q@F[A@{AlA` kAjJAY1At@@p9AjAУAyAkA 5$A@A`-VA,AU@@xUA=yAAAӊAInAЬNA:@8DAhAWAHJA IAAAAd!A$@@@`@@tA@@@p4@:@@0vA@8I"AF*(At A@@jA`+%AϱXA=3jA@KZA&AAм@MDA`fA]AvAzAwA2t%AKA@ @` A AAA|ZAAlsAbA@MAqA`ǣA4A~ B'TAPuAA jAŅAro`A@9Ah2AUB TGB!GB1CB,{ЪA[AA@@z@|@PA@ @@@׎AYAS5AI>A*Ad@*@`GAtZAA@fqAphAzA7MA8i)A@`GlA@3'A)bA~AhAaAPJB|{oB`:!)B5eB,mPBP.2BGBA[Aq@px@Z@`An@@@h@A@@AA@@PAl8A|{`AQiA[ZAx.A@پAcAqAI-AOA`A0MAAA QA`yAƢA"FNAwAP QA4=A@5A%A0AkAA?A:wCAbUAP#ApAD%ALЯAAQ5B˪YcB*-xB#?OvBHVBXWW:BpD Bd"A`#At@A@zA"{ufBG&B$BX\B=N}BlB#zBV3B0B@AA03BB*0/qB(€B8PCqiiCPI- C@(MB@Uob1B]B@HB"ˠ)B@D(B@`@B]VBKdBХ@CO\_C>$|aCXͬC&Y3kk]ICc΁8ChC2FB_B,A@Dc}BE5B;`B`ե6%C{*5\C.ϐqElCp:FMCqoW^C&.iDC!.2C C"a/B+B "xqBx@rRBp_uB4Bp,s Hh0Cؠ)DdYCdC*M+uCv⬽ yCɞrCqWC@ZL&FCRb"CVYB7fB϶IBPmBB4Bі8^CXM 1CۿSUCϊ qCbCbWC: RIC5߳)Cxt C8GBgB!iBwr`Bx^Q@B CP42>C:K2]CwmxC oCPXCవSC@e@9B.@vH7B?oa2@$ ?s@_QPC?b@2Xf@x?`!?`! @`!@`!?`!?Q?ڇR??@B?Gbff6@= WY @~jL@($?1.?SbQ?6R? ?Fd0_?.j?|2@"@'Ǹ?B?LXz?!3|2@88?O懅?E>D!@Y?@=:B@b{sh@20@KiZk@&'@Z/n'Ao);f]_A\o9A4͜A Bf0VJB FrB_"@_D@Hl@m(N@1s`-@Lv;@Wx+A+HBGAIb/(BY7=!B ??E@8$ @@ ?' ?' ?@迠KH9h@^?@@<? @c]@@1 ?mBP ?<~?<~ֿ;f@ L@@fffff`@̬V@@T㥛 ?_vOn?0.;+:RFߑ?}Ô%IT|=N~h}Ô%I&y3[?jﴑ[?0l-E?333333@Ww'&l7`0_?|@둤 `!qh?'&D\4-DT! @?G}g)@\AL(@+D@@\AL,@DKn?P\v?Pg?V$́]?1?)+Z9?'.T5?U$2?h0?1o"-?ywg)?-'?[$?M eG"?tN:!??s??0W?@0?ߞeS?Fd?9߼? q?I.LJc?2j?Q63E?' ?UUUUUU?aa?eM6d?0303п?^^^^^^O|K@-r%~F0@ D#*m5ATqz@HAc( ;f;f??;f?;f?mBwE?wۆaR3?V :q?1-L?nG3_ 2mI?Yqٱ;$cV?1H_]8?}gcj?:p¿ ?IaʿH*2Q?ײ[դٿSbQ?m0_?m0_?-DT!@?QK@?ͿŤ?dja8?u¿?h @??%?;@u<7u<7%@E&B"pD۹GaK?LVNFP@`D@n(N@Lv;@(UbAJVAِ OBY7=!B?@@??@@@@u<7~u<7~0.++0.++=t^@=h-&?S =,5-?Iҽ> ,A@@?jﴑ[?mBP ?LXz?3Ey?I@@@@?@3D??/DA@ADK @D L A1D?D@%@AHC>HB @@@5?}& B>I@?@@f?@f@e@A!?A^?@A@@AA'7=Ƶ>>׳???,d?" @@FBFCD[{F>䰾>5<$4(B0APA`ApAA`B @)BL?C"?>@B yve(v, z, out=None) Exponentially scaled Bessel function of the second kind of real order. Returns the exponentially scaled Bessel function of the second kind of real order `v` at complex `z`:: yve(v, z) = yv(v, z) * exp(-abs(z.imag)) Parameters ---------- v : array_like Order (float). z : array_like Argument (float or complex). out : ndarray, optional Optional output array for the function results Returns ------- Y : scalar or ndarray Value of the exponentially scaled Bessel function. See Also -------- yv: Unscaled Bessel function of the second kind of real order. Notes ----- For positive `v` values, the computation is carried out using the AMOS [1]_ `zbesy` routine, which exploits the connection to the Hankel Bessel functions :math:`H_v^{(1)}` and :math:`H_v^{(2)}`, .. math:: Y_v(z) = \frac{1}{2\imath} (H_v^{(1)} - H_v^{(2)}). For negative `v` values the formula, .. math:: Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v) is used, where :math:`J_v(z)` is the Bessel function of the first kind, computed using the AMOS routine `zbesj`. Note that the second term is exactly zero for integer `v`; to improve accuracy the second term is explicitly omitted for `v` values such that `v = floor(v)`. Exponentially scaled Bessel functions are useful for large `z`: for these, the unscaled Bessel functions can easily under-or overflow. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ Examples -------- Compare the output of `yv` and `yve` for large complex arguments for `z` by computing their values for order ``v=1`` at ``z=1000j``. We see that `yv` returns nan but `yve` returns a finite number: >>> import numpy as np >>> from scipy.special import yv, yve >>> v = 1 >>> z = 1000j >>> yv(v, z), yve(v, z) ((nan+nanj), (-0.012610930256928629+7.721967686709076e-19j)) For real arguments for `z`, `yve` returns the same as `yv` up to floating point errors. >>> v, z = 1, 1000 >>> yv(v, z), yve(v, z) (-0.02478433129235178, -0.02478433129235179) The function can be evaluated for several orders at the same time by providing a list or NumPy array for `v`: >>> yve([1, 2, 3], 1j) array([-0.20791042+0.14096627j, 0.38053618-0.04993878j, 0.00815531-1.66311097j]) In the same way, the function can be evaluated at several points in one call by providing a list or NumPy array for `z`: >>> yve(1, np.array([1j, 2j, 3j])) array([-0.20791042+0.14096627j, -0.21526929+0.01205044j, -0.19682671+0.00127278j]) It is also possible to evaluate several orders at several points at the same time by providing arrays for `v` and `z` with broadcasting compatible shapes. Compute `yve` for two different orders `v` and three points `z` resulting in a 2x3 array. >>> v = np.array([[1], [2]]) >>> z = np.array([3j, 4j, 5j]) >>> v.shape, z.shape ((2, 1), (3,)) >>> yve(v, z) array([[-1.96826713e-01+1.27277544e-03j, -1.78750840e-01+1.45558819e-04j, -1.63972267e-01+1.73494110e-05j], [1.94960056e-03-1.11782545e-01j, 2.02902325e-04-1.17626501e-01j, 2.27727687e-05-1.17951906e-01j]]) yv(v, z, out=None) Bessel function of the second kind of real order and complex argument. Parameters ---------- v : array_like Order (float). z : array_like Argument (float or complex). out : ndarray, optional Optional output array for the function results Returns ------- Y : scalar or ndarray Value of the Bessel function of the second kind, :math:`Y_v(x)`. See Also -------- yve : :math:`Y_v` with leading exponential behavior stripped off. y0: faster implementation of this function for order 0 y1: faster implementation of this function for order 1 Notes ----- For positive `v` values, the computation is carried out using the AMOS [1]_ `zbesy` routine, which exploits the connection to the Hankel Bessel functions :math:`H_v^{(1)}` and :math:`H_v^{(2)}`, .. math:: Y_v(z) = \frac{1}{2\imath} (H_v^{(1)} - H_v^{(2)}). For negative `v` values the formula, .. math:: Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v) is used, where :math:`J_v(z)` is the Bessel function of the first kind, computed using the AMOS routine `zbesj`. Note that the second term is exactly zero for integer `v`; to improve accuracy the second term is explicitly omitted for `v` values such that `v = floor(v)`. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ Examples -------- Evaluate the function of order 0 at one point. >>> from scipy.special import yv >>> yv(0, 1.) 0.088256964215677 Evaluate the function at one point for different orders. >>> yv(0, 1.), yv(1, 1.), yv(1.5, 1.) (0.088256964215677, -0.7812128213002889, -1.102495575160179) The evaluation for different orders can be carried out in one call by providing a list or NumPy array as argument for the `v` parameter: >>> yv([0, 1, 1.5], 1.) array([ 0.08825696, -0.78121282, -1.10249558]) Evaluate the function at several points for order 0 by providing an array for `z`. >>> import numpy as np >>> points = np.array([0.5, 3., 8.]) >>> yv(0, points) array([-0.44451873, 0.37685001, 0.22352149]) If `z` is an array, the order parameter `v` must be broadcastable to the correct shape if different orders shall be computed in one call. To calculate the orders 0 and 1 for an 1D array: >>> orders = np.array([[0], [1]]) >>> orders.shape (2, 1) >>> yv(orders, points) array([[-0.44451873, 0.37685001, 0.22352149], [-1.47147239, 0.32467442, -0.15806046]]) Plot the functions of order 0 to 3 from 0 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> for i in range(4): ... ax.plot(x, yv(i, x), label=f'$Y_{i!r}$') >>> ax.set_ylim(-3, 1) >>> ax.legend() >>> plt.show() y1(x, out=None) Bessel function of the second kind of order 1. Parameters ---------- x : array_like Argument (float). out : ndarray, optional Optional output array for the function results Returns ------- Y : scalar or ndarray Value of the Bessel function of the second kind of order 1 at `x`. See Also -------- j1: Bessel function of the first kind of order 1 yn: Bessel function of the second kind yv: Bessel function of the second kind Notes ----- The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 25 term Chebyshev expansion is used, and computing :math:`J_1` (the Bessel function of the first kind) is required. In the second, the asymptotic trigonometric representation is employed using two rational functions of degree 5/5. This function is a wrapper for the Cephes [1]_ routine `y1`. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- Calculate the function at one point: >>> from scipy.special import y1 >>> y1(1.) -0.7812128213002888 Calculate at several points: >>> import numpy as np >>> y1(np.array([0.5, 2., 3.])) array([-1.47147239, -0.10703243, 0.32467442]) Plot the function from 0 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> y = y1(x) >>> ax.plot(x, y) >>> plt.show() y0(x, out=None) Bessel function of the second kind of order 0. Parameters ---------- x : array_like Argument (float). out : ndarray, optional Optional output array for the function results Returns ------- Y : scalar or ndarray Value of the Bessel function of the second kind of order 0 at `x`. See Also -------- j0: Bessel function of the first kind of order 0 yv: Bessel function of the first kind Notes ----- The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval a rational approximation :math:`R(x)` is employed to compute, .. math:: Y_0(x) = R(x) + \frac{2 \log(x) J_0(x)}{\pi}, where :math:`J_0` is the Bessel function of the first kind of order 0. In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and 7/7. This function is a wrapper for the Cephes [1]_ routine `y0`. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- Calculate the function at one point: >>> from scipy.special import y0 >>> y0(1.) 0.08825696421567697 Calculate at several points: >>> import numpy as np >>> y0(np.array([0.5, 2., 3.])) array([-0.44451873, 0.51037567, 0.37685001]) Plot the function from 0 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> y = y0(x) >>> ax.plot(x, y) >>> plt.show() wright_bessel(a, b, x, out=None) Wright's generalized Bessel function. Wright's generalized Bessel function is an entire function and defined as .. math:: \Phi(a, b; x) = \sum_{k=0}^\infty \frac{x^k}{k! \Gamma(a k + b)} See Also [1]. Parameters ---------- a : array_like of float a >= 0 b : array_like of float b >= 0 x : array_like of float x >= 0 out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Value of the Wright's generalized Bessel function Notes ----- Due to the complexity of the function with its three parameters, only non-negative arguments are implemented. .. versionadded:: 1.7.0 References ---------- .. [1] Digital Library of Mathematical Functions, 10.46. https://dlmf.nist.gov/10.46.E1 Examples -------- >>> from scipy.special import wright_bessel >>> a, b, x = 1.5, 1.1, 2.5 >>> wright_bessel(a, b-1, x) 4.5314465939443025 Now, let us verify the relation .. math:: \Phi(a, b-1; x) = a x \Phi(a, b+a; x) + (b-1) \Phi(a, b; x) >>> a * x * wright_bessel(a, b+a, x) + (b-1) * wright_bessel(a, b, x) 4.5314465939443025 wofz(z, out=None) Faddeeva function Returns the value of the Faddeeva function for complex argument:: exp(-z**2) * erfc(-i*z) Parameters ---------- z : array_like complex argument out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Value of the Faddeeva function See Also -------- dawsn, erf, erfc, erfcx, erfi References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva Examples -------- >>> import numpy as np >>> from scipy import special >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3) >>> z = special.wofz(x) >>> plt.plot(x, z.real, label='wofz(x).real') >>> plt.plot(x, z.imag, label='wofz(x).imag') >>> plt.xlabel('$x$') >>> plt.legend(framealpha=1, shadow=True) >>> plt.grid(alpha=0.25) >>> plt.show() voigt_profile(x, sigma, gamma, out=None) Voigt profile. The Voigt profile is a convolution of a 1-D Normal distribution with standard deviation ``sigma`` and a 1-D Cauchy distribution with half-width at half-maximum ``gamma``. If ``sigma = 0``, PDF of Cauchy distribution is returned. Conversely, if ``gamma = 0``, PDF of Normal distribution is returned. If ``sigma = gamma = 0``, the return value is ``Inf`` for ``x = 0``, and ``0`` for all other ``x``. Parameters ---------- x : array_like Real argument sigma : array_like The standard deviation of the Normal distribution part gamma : array_like The half-width at half-maximum of the Cauchy distribution part out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray The Voigt profile at the given arguments See Also -------- wofz : Faddeeva function Notes ----- It can be expressed in terms of Faddeeva function .. math:: V(x; \sigma, \gamma) = \frac{Re[w(z)]}{\sigma\sqrt{2\pi}}, .. math:: z = \frac{x + i\gamma}{\sqrt{2}\sigma} where :math:`w(z)` is the Faddeeva function. References ---------- .. [1] https://en.wikipedia.org/wiki/Voigt_profile Examples -------- Calculate the function at point 2 for ``sigma=1`` and ``gamma=1``. >>> from scipy.special import voigt_profile >>> import numpy as np >>> import matplotlib.pyplot as plt >>> voigt_profile(2, 1., 1.) 0.09071519942627544 Calculate the function at several points by providing a NumPy array for `x`. >>> values = np.array([-2., 0., 5]) >>> voigt_profile(values, 1., 1.) array([0.0907152 , 0.20870928, 0.01388492]) Plot the function for different parameter sets. >>> fig, ax = plt.subplots(figsize=(8, 8)) >>> x = np.linspace(-10, 10, 500) >>> parameters_list = [(1.5, 0., "solid"), (1.3, 0.5, "dashed"), ... (0., 1.8, "dotted"), (1., 1., "dashdot")] >>> for params in parameters_list: ... sigma, gamma, linestyle = params ... voigt = voigt_profile(x, sigma, gamma) ... ax.plot(x, voigt, label=rf"$\sigma={sigma},\, \gamma={gamma}$", ... ls=linestyle) >>> ax.legend() >>> plt.show() Verify visually that the Voigt profile indeed arises as the convolution of a normal and a Cauchy distribution. >>> from scipy.signal import convolve >>> x, dx = np.linspace(-10, 10, 500, retstep=True) >>> def gaussian(x, sigma): ... return np.exp(-0.5 * x**2/sigma**2)/(sigma * np.sqrt(2*np.pi)) >>> def cauchy(x, gamma): ... return gamma/(np.pi * (np.square(x)+gamma**2)) >>> sigma = 2 >>> gamma = 1 >>> gauss_profile = gaussian(x, sigma) >>> cauchy_profile = cauchy(x, gamma) >>> convolved = dx * convolve(cauchy_profile, gauss_profile, mode="same") >>> voigt = voigt_profile(x, sigma, gamma) >>> fig, ax = plt.subplots(figsize=(8, 8)) >>> ax.plot(x, gauss_profile, label="Gauss: $G$", c='b') >>> ax.plot(x, cauchy_profile, label="Cauchy: $C$", c='y', ls="dashed") >>> xx = 0.5*(x[1:] + x[:-1]) # midpoints >>> ax.plot(xx, convolved[1:], label="Convolution: $G * C$", ls='dashdot', ... c='k') >>> ax.plot(x, voigt, label="Voigt", ls='dotted', c='r') >>> ax.legend() >>> plt.show() modstruve(v, x, out=None) Modified Struve function. Return the value of the modified Struve function of order `v` at `x`. The modified Struve function is defined as, .. math:: L_v(x) = -\imath \exp(-\pi\imath v/2) H_v(\imath x), where :math:`H_v` is the Struve function. Parameters ---------- v : array_like Order of the modified Struve function (float). x : array_like Argument of the Struve function (float; must be positive unless `v` is an integer). out : ndarray, optional Optional output array for the function results Returns ------- L : scalar or ndarray Value of the modified Struve function of order `v` at `x`. See Also -------- struve Notes ----- Three methods discussed in [1]_ are used to evaluate the function: - power series - expansion in Bessel functions (if :math:`|x| < |v| + 20`) - asymptotic large-x expansion (if :math:`x \geq 0.7v + 12`) Rounding errors are estimated based on the largest terms in the sums, and the result associated with the smallest error is returned. References ---------- .. [1] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/11 Examples -------- Calculate the modified Struve function of order 1 at 2. >>> import numpy as np >>> from scipy.special import modstruve >>> import matplotlib.pyplot as plt >>> modstruve(1, 2.) 1.102759787367716 Calculate the modified Struve function at 2 for orders 1, 2 and 3 by providing a list for the order parameter `v`. >>> modstruve([1, 2, 3], 2.) array([1.10275979, 0.41026079, 0.11247294]) Calculate the modified Struve function of order 1 for several points by providing an array for `x`. >>> points = np.array([2., 5., 8.]) >>> modstruve(1, points) array([ 1.10275979, 23.72821578, 399.24709139]) Compute the modified Struve function for several orders at several points by providing arrays for `v` and `z`. The arrays have to be broadcastable to the correct shapes. >>> orders = np.array([[1], [2], [3]]) >>> points.shape, orders.shape ((3,), (3, 1)) >>> modstruve(orders, points) array([[1.10275979e+00, 2.37282158e+01, 3.99247091e+02], [4.10260789e-01, 1.65535979e+01, 3.25973609e+02], [1.12472937e-01, 9.42430454e+00, 2.33544042e+02]]) Plot the modified Struve functions of order 0 to 3 from -5 to 5. >>> fig, ax = plt.subplots() >>> x = np.linspace(-5., 5., 1000) >>> for i in range(4): ... ax.plot(x, modstruve(i, x), label=f'$L_{i!r}$') >>> ax.legend(ncol=2) >>> ax.set_xlim(-5, 5) >>> ax.set_title(r"Modified Struve functions $L_{\nu}$") >>> plt.show() struve(v, x, out=None) Struve function. Return the value of the Struve function of order `v` at `x`. The Struve function is defined as, .. math:: H_v(x) = (z/2)^{v + 1} \sum_{n=0}^\infty \frac{(-1)^n (z/2)^{2n}}{\Gamma(n + \frac{3}{2}) \Gamma(n + v + \frac{3}{2})}, where :math:`\Gamma` is the gamma function. Parameters ---------- v : array_like Order of the Struve function (float). x : array_like Argument of the Struve function (float; must be positive unless `v` is an integer). out : ndarray, optional Optional output array for the function results Returns ------- H : scalar or ndarray Value of the Struve function of order `v` at `x`. See Also -------- modstruve: Modified Struve function Notes ----- Three methods discussed in [1]_ are used to evaluate the Struve function: - power series - expansion in Bessel functions (if :math:`|z| < |v| + 20`) - asymptotic large-z expansion (if :math:`z \geq 0.7v + 12`) Rounding errors are estimated based on the largest terms in the sums, and the result associated with the smallest error is returned. References ---------- .. [1] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/11 Examples -------- Calculate the Struve function of order 1 at 2. >>> import numpy as np >>> from scipy.special import struve >>> import matplotlib.pyplot as plt >>> struve(1, 2.) 0.6467637282835622 Calculate the Struve function at 2 for orders 1, 2 and 3 by providing a list for the order parameter `v`. >>> struve([1, 2, 3], 2.) array([0.64676373, 0.28031806, 0.08363767]) Calculate the Struve function of order 1 for several points by providing an array for `x`. >>> points = np.array([2., 5., 8.]) >>> struve(1, points) array([0.64676373, 0.80781195, 0.48811605]) Compute the Struve function for several orders at several points by providing arrays for `v` and `z`. The arrays have to be broadcastable to the correct shapes. >>> orders = np.array([[1], [2], [3]]) >>> points.shape, orders.shape ((3,), (3, 1)) >>> struve(orders, points) array([[0.64676373, 0.80781195, 0.48811605], [0.28031806, 1.56937455, 1.51769363], [0.08363767, 1.50872065, 2.98697513]]) Plot the Struve functions of order 0 to 3 from -10 to 10. >>> fig, ax = plt.subplots() >>> x = np.linspace(-10., 10., 1000) >>> for i in range(4): ... ax.plot(x, struve(i, x), label=f'$H_{i!r}$') >>> ax.legend(ncol=2) >>> ax.set_xlim(-10, 10) >>> ax.set_title(r"Struve functions $H_{\nu}$") >>> plt.show() tandg(x, out=None) Tangent of angle `x` given in degrees. Parameters ---------- x : array_like Angle, given in degrees. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Tangent at the input. See Also -------- sindg, cosdg, cotdg Examples -------- >>> import numpy as np >>> import scipy.special as sc It is more accurate than using tangent directly. >>> x = 180 * np.arange(3) >>> sc.tandg(x) array([0., 0., 0.]) >>> np.tan(x * np.pi / 180) array([ 0.0000000e+00, -1.2246468e-16, -2.4492936e-16]) sph_harm(m, n, theta, phi, out=None) Compute spherical harmonics. The spherical harmonics are defined as .. math:: Y^m_n(\theta,\phi) = \sqrt{\frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!}} e^{i m \theta} P^m_n(\cos(\phi)) where :math:`P_n^m` are the associated Legendre functions; see `lpmv`. .. deprecated:: 1.15.0 This function is deprecated and will be removed in SciPy 1.17.0. Please use `scipy.special.sph_harm_y` instead. Parameters ---------- m : array_like Order of the harmonic (int); must have ``|m| <= n``. n : array_like Degree of the harmonic (int); must have ``n >= 0``. This is often denoted by ``l`` (lower case L) in descriptions of spherical harmonics. theta : array_like Azimuthal (longitudinal) coordinate; must be in ``[0, 2*pi]``. phi : array_like Polar (colatitudinal) coordinate; must be in ``[0, pi]``. out : ndarray, optional Optional output array for the function values Returns ------- y_mn : complex scalar or ndarray The harmonic :math:`Y^m_n` sampled at ``theta`` and ``phi``. Notes ----- There are different conventions for the meanings of the input arguments ``theta`` and ``phi``. In SciPy ``theta`` is the azimuthal angle and ``phi`` is the polar angle. It is common to see the opposite convention, that is, ``theta`` as the polar angle and ``phi`` as the azimuthal angle. Note that SciPy's spherical harmonics include the Condon-Shortley phase [2]_ because it is part of `lpmv`. With SciPy's conventions, the first several spherical harmonics are .. math:: Y_0^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{1}{\pi}} \\ Y_1^{-1}(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{2\pi}} e^{-i\theta} \sin(\phi) \\ Y_1^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos(\phi) \\ Y_1^1(\theta, \phi) &= -\frac{1}{2} \sqrt{\frac{3}{2\pi}} e^{i\theta} \sin(\phi). References ---------- .. [1] Digital Library of Mathematical Functions, 14.30. https://dlmf.nist.gov/14.30 .. [2] https://en.wikipedia.org/wiki/Spherical_harmonics#Condon.E2.80.93Shortley_phase Internal function, use `spherical_kn` instead. Internal function, use `spherical_in` instead. Internal function, use `spherical_yn` instead. Internal function, use `spherical_jn` instead. _scaled_exp1(x, out=None): Compute the scaled exponential integral. This is a private function, subject to change or removal with no deprecation. This function computes F(x), where F is the factor remaining in E_1(x) when exp(-x)/x is factored out. That is,:: E_1(x) = exp(-x)/x * F(x) or F(x) = x * exp(x) * E_1(x) The function is defined for real x >= 0. For x < 0, nan is returned. F has the properties: * F(0) = 0 * F(x) is increasing on [0, inf). * The limit as x goes to infinity of F(x) is 1. Parameters ---------- x: array_like The input values. Must be real. The implementation is limited to double precision floating point, so other types will be cast to to double precision. out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Values of the scaled exponential integral. See Also -------- exp1 : exponential integral E_1 Examples -------- >>> from scipy.special import _scaled_exp1 >>> _scaled_exp1([0, 0.1, 1, 10, 100]) Internal function, use `zeta` instead. rgamma(z, out=None) Reciprocal of the gamma function. Defined as :math:`1 / \Gamma(z)`, where :math:`\Gamma` is the gamma function. For more on the gamma function see `gamma`. Parameters ---------- z : array_like Real or complex valued input out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Function results See Also -------- gamma, gammaln, loggamma Notes ----- The gamma function has no zeros and has simple poles at nonpositive integers, so `rgamma` is an entire function with zeros at the nonpositive integers. See the discussion in [dlmf]_ for more details. References ---------- .. [dlmf] Nist, Digital Library of Mathematical functions, https://dlmf.nist.gov/5.2#i Examples -------- >>> import scipy.special as sc It is the reciprocal of the gamma function. >>> sc.rgamma([1, 2, 3, 4]) array([1. , 1. , 0.5 , 0.16666667]) >>> 1 / sc.gamma([1, 2, 3, 4]) array([1. , 1. , 0.5 , 0.16666667]) It is zero at nonpositive integers. >>> sc.rgamma([0, -1, -2, -3]) array([0., 0., 0., 0.]) It rapidly underflows to zero along the positive real axis. >>> sc.rgamma([10, 100, 179]) array([2.75573192e-006, 1.07151029e-156, 0.00000000e+000]) radian(d, m, s, out=None) Convert from degrees to radians. Returns the angle given in (d)egrees, (m)inutes, and (s)econds in radians. Parameters ---------- d : array_like Degrees, can be real-valued. m : array_like Minutes, can be real-valued. s : array_like Seconds, can be real-valued. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Values of the inputs in radians. Examples -------- >>> import scipy.special as sc There are many ways to specify an angle. >>> sc.radian(90, 0, 0) 1.5707963267948966 >>> sc.radian(0, 60 * 90, 0) 1.5707963267948966 >>> sc.radian(0, 0, 60**2 * 90) 1.5707963267948966 The inputs can be real-valued. >>> sc.radian(1.5, 0, 0) 0.02617993877991494 >>> sc.radian(1, 30, 0) 0.02617993877991494 psi(z, out=None) The digamma function. The logarithmic derivative of the gamma function evaluated at ``z``. Parameters ---------- z : array_like Real or complex argument. out : ndarray, optional Array for the computed values of ``psi``. Returns ------- digamma : scalar or ndarray Computed values of ``psi``. Notes ----- For large values not close to the negative real axis, ``psi`` is computed using the asymptotic series (5.11.2) from [1]_. For small arguments not close to the negative real axis, the recurrence relation (5.5.2) from [1]_ is used until the argument is large enough to use the asymptotic series. For values close to the negative real axis, the reflection formula (5.5.4) from [1]_ is used first. Note that ``psi`` has a family of zeros on the negative real axis which occur between the poles at nonpositive integers. Around the zeros the reflection formula suffers from cancellation and the implementation loses precision. The sole positive zero and the first negative zero, however, are handled separately by precomputing series expansions using [2]_, so the function should maintain full accuracy around the origin. References ---------- .. [1] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5 .. [2] Fredrik Johansson and others. "mpmath: a Python library for arbitrary-precision floating-point arithmetic" (Version 0.19) http://mpmath.org/ Examples -------- >>> from scipy.special import psi >>> z = 3 + 4j >>> psi(z) (1.55035981733341+1.0105022091860445j) Verify psi(z) = psi(z + 1) - 1/z: >>> psi(z + 1) - 1/z (1.55035981733341+1.0105022091860445j) pro_rad2_cv(m, n, c, cv, x, out=None) Prolate spheroidal radial function pro_rad2 for precomputed characteristic value Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``x > 1.0``. Requires pre-computed characteristic value. Parameters ---------- m : array_like Nonnegative mode parameter m n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter cv : array_like Characteristic value x : array_like Real parameter (``x > 1.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x pro_rad2(m, n, c, x, out=None) Prolate spheroidal radial function of the second kind and its derivative Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``x > 1.0``. Parameters ---------- m : array_like Nonnegative mode parameter m n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter x : array_like Real parameter (``x > 1.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x pro_rad1_cv(m, n, c, cv, x, out=None) Prolate spheroidal radial function pro_rad1 for precomputed characteristic value Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``x > 1.0``. Requires pre-computed characteristic value. Parameters ---------- m : array_like Nonnegative mode parameter m n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter cv : array_like Characteristic value x : array_like Real parameter (``x > 1.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x pro_rad1(m, n, c, x, out=None) Prolate spheroidal radial function of the first kind and its derivative Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``x > 1.0``. Parameters ---------- m : array_like Nonnegative mode parameter m n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter x : array_like Real parameter (``x > 1.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x pro_cv(m, n, c, out=None) Characteristic value of prolate spheroidal function Computes the characteristic value of prolate spheroidal wave functions of order `m`, `n` (n>=m) and spheroidal parameter `c`. Parameters ---------- m : array_like Nonnegative mode parameter m n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter out : ndarray, optional Optional output array for the function results Returns ------- cv : scalar or ndarray Characteristic value pro_ang1_cv(m, n, c, cv, x, out=None) Prolate spheroidal angular function pro_ang1 for precomputed characteristic value Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires pre-computed characteristic value. Parameters ---------- m : array_like Nonnegative mode parameter m n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter cv : array_like Characteristic value x : array_like Real parameter (``|x| < 1.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x pro_ang1(m, n, c, x, out=None) Prolate spheroidal angular function of the first kind and its derivative Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Parameters ---------- m : array_like Nonnegative mode parameter m n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter x : array_like Real parameter (``|x| < 1.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x pbwa(a, x, out=None) Parabolic cylinder function W. The function is a particular solution to the differential equation .. math:: y'' + \left(\frac{1}{4}x^2 - a\right)y = 0, for a full definition see section 12.14 in [1]_. Parameters ---------- a : array_like Real parameter x : array_like Real argument out : ndarray, optional Optional output array for the function results Returns ------- w : scalar or ndarray Value of the function wp : scalar or ndarray Value of the derivative in x Notes ----- The function is a wrapper for a Fortran routine by Zhang and Jin [2]_. The implementation is accurate only for ``|a|, |x| < 5`` and returns NaN outside that range. References ---------- .. [1] Digital Library of Mathematical Functions, 14.30. https://dlmf.nist.gov/14.30 .. [2] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html pbvv(v, x, out=None) Parabolic cylinder function V Returns the parabolic cylinder function Vv(x) in v and the derivative, Vv'(x) in vp. Parameters ---------- v : array_like Real parameter x : array_like Real argument out : ndarray, optional Optional output array for the function results Returns ------- v : scalar or ndarray Value of the function vp : scalar or ndarray Value of the derivative vs x pbdv(v, x, out=None) Parabolic cylinder function D Returns (d, dp) the parabolic cylinder function Dv(x) in d and the derivative, Dv'(x) in dp. Parameters ---------- v : array_like Real parameter x : array_like Real argument out : ndarray, optional Optional output array for the function results Returns ------- d : scalar or ndarray Value of the function dp : scalar or ndarray Value of the derivative vs x obl_rad2_cv(m, n, c, cv, x, out=None) Oblate spheroidal radial function obl_rad2 for precomputed characteristic value Computes the oblate spheroidal radial function of the second kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``x >= 0.0``. Requires pre-computed characteristic value. Parameters ---------- m : array_like Mode parameter m (nonnegative) n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter cv : array_like Characteristic value x : array_like Parameter x (``x >= 0.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x See Also -------- obl_rad2 obl_rad2(m, n, c, x, out=None) Oblate spheroidal radial function of the second kind and its derivative. Computes the oblate spheroidal radial function of the second kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``x >= 0.0``. Parameters ---------- m : array_like Mode parameter m (nonnegative) n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter x : array_like Parameter x (``x >= 0.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x See Also -------- obl_rad2_cv obl_rad1_cv(m, n, c, cv, x, out=None) Oblate spheroidal radial function obl_rad1 for precomputed characteristic value Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``x >= 0.0``. Requires pre-computed characteristic value. Parameters ---------- m : array_like Mode parameter m (nonnegative) n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter cv : array_like Characteristic value x : array_like Parameter x (``x >= 0.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x See Also -------- obl_rad1 obl_rad1(m, n, c, x, out=None) Oblate spheroidal radial function of the first kind and its derivative Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``x >= 0.0``. Parameters ---------- m : array_like Mode parameter m (nonnegative) n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter x : array_like Parameter x (``x >= 0.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x See Also -------- obl_rad1_cv obl_cv(m, n, c, out=None) Characteristic value of oblate spheroidal function Computes the characteristic value of oblate spheroidal wave functions of order `m`, `n` (n>=m) and spheroidal parameter `c`. Parameters ---------- m : array_like Mode parameter m (nonnegative) n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter out : ndarray, optional Optional output array for the function results Returns ------- cv : scalar or ndarray Characteristic value obl_ang1_cv(m, n, c, cv, x, out=None) Oblate spheroidal angular function obl_ang1 for precomputed characteristic value Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires pre-computed characteristic value. Parameters ---------- m : array_like Mode parameter m (nonnegative) n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter cv : array_like Characteristic value x : array_like Parameter x (``|x| < 1.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x See Also -------- obl_ang1 ndtr(x, out=None) Cumulative distribution of the standard normal distribution. Returns the area under the standard Gaussian probability density function, integrated from minus infinity to `x` .. math:: \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp(-t^2/2) dt Parameters ---------- x : array_like, real or complex Argument out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray The value of the normal CDF evaluated at `x` See Also -------- log_ndtr : Logarithm of ndtr ndtri : Inverse of ndtr, standard normal percentile function erf : Error function erfc : 1 - erf scipy.stats.norm : Normal distribution Examples -------- Evaluate `ndtr` at one point. >>> import numpy as np >>> from scipy.special import ndtr >>> ndtr(0.5) 0.6914624612740131 Evaluate the function at several points by providing a NumPy array or list for `x`. >>> ndtr([0, 0.5, 2]) array([0.5 , 0.69146246, 0.97724987]) Plot the function. >>> import matplotlib.pyplot as plt >>> x = np.linspace(-5, 5, 100) >>> fig, ax = plt.subplots() >>> ax.plot(x, ndtr(x)) >>> ax.set_title(r"Standard normal cumulative distribution function $\Phi$") >>> plt.show() obl_ang1(m, n, c, x, out=None) Oblate spheroidal angular function of the first kind and its derivative Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to `x`) for mode parameters m>=0 and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Parameters ---------- m : array_like Mode parameter m (nonnegative) n : array_like Mode parameter n (>= m) c : array_like Spheroidal parameter x : array_like Parameter x (``|x| < 1.0``) out : ndarray, optional Optional output array for the function results Returns ------- s : scalar or ndarray Value of the function sp : scalar or ndarray Value of the derivative vs x See Also -------- obl_ang1_cv modfresnelp(x, out=None) Modified Fresnel positive integrals Parameters ---------- x : array_like Function argument out : tuple of ndarray, optional Optional output arrays for the function results Returns ------- fp : scalar or ndarray Integral ``F_+(x)``: ``integral(exp(1j*t*t), t=x..inf)`` kp : scalar or ndarray Integral ``K_+(x)``: ``1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp`` See Also -------- modfresnelm modfresnelm(x, out=None) Modified Fresnel negative integrals Parameters ---------- x : array_like Function argument out : tuple of ndarray, optional Optional output arrays for the function results Returns ------- fm : scalar or ndarray Integral ``F_-(x)``: ``integral(exp(-1j*t*t), t=x..inf)`` km : scalar or ndarray Integral ``K_-(x)``: ``1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp`` See Also -------- modfresnelp mathieu_sem(m, q, x, out=None) Odd Mathieu function and its derivative Returns the odd Mathieu function, se_m(x, q), of order `m` and parameter `q` evaluated at `x` (given in degrees). Also returns the derivative with respect to `x` of se_m(x, q). Parameters ---------- m : array_like Order of the function q : array_like Parameter of the function x : array_like Argument of the function, *given in degrees, not radians*. out : tuple of ndarray, optional Optional output arrays for the function results Returns ------- y : scalar or ndarray Value of the function yp : scalar or ndarray Value of the derivative vs x See Also -------- mathieu_a, mathieu_b, mathieu_cem Notes ----- Odd Mathieu functions are the solutions to Mathieu's differential equation .. math:: \frac{d^2y}{dx^2} + (b_m - 2q \cos(2x))y = 0 for which the characteristic number :math:`b_m` (calculated with `mathieu_b`) results in an odd, periodic solution :math:`y(x)` with period 180 degrees (for even :math:`m`) or 360 degrees (for odd :math:`m`). References ---------- .. [1] 'Mathieu function'. *Wikipedia*. https://en.wikipedia.org/wiki/Mathieu_function Examples -------- Plot odd Mathieu functions of orders ``2`` and ``4``. >>> import numpy as np >>> from scipy import special >>> import matplotlib.pyplot as plt >>> m = np.asarray([2, 4]) >>> q = 50 >>> x = np.linspace(-180, 180, 300)[:, np.newaxis] >>> y, _ = special.mathieu_sem(m, q, x) >>> plt.plot(x, y) >>> plt.xlabel('x (degrees)') >>> plt.ylabel('y') >>> plt.legend(('m = 2', 'm = 4')) Because the orders ``2`` and ``4`` are even, the period of each function is 180 degrees. mathieu_modsem2(m, q, x, out=None) Odd modified Mathieu function of the second kind and its derivative Evaluates the odd modified Mathieu function of the second kind, Ms2m(x, q), and its derivative at `x` (given in degrees) for order `m` and parameter q. Parameters ---------- m : array_like Order of the function q : array_like Parameter of the function x : array_like Argument of the function, *given in degrees, not radians* out : tuple of ndarray, optional Optional output arrays for the function results Returns ------- y : scalar or ndarray Value of the function yp : scalar or ndarray Value of the derivative vs x See Also -------- mathieu_modcem2 mathieu_modsem1(m, q, x, out=None) Odd modified Mathieu function of the first kind and its derivative Evaluates the odd modified Mathieu function of the first kind, Ms1m(x, q), and its derivative at `x` (given in degrees) for order `m` and parameter `q`. Parameters ---------- m : array_like Order of the function q : array_like Parameter of the function x : array_like Argument of the function, *given in degrees, not radians* out : tuple of ndarray, optional Optional output arrays for the function results Returns ------- y : scalar or ndarray Value of the function yp : scalar or ndarray Value of the derivative vs x See Also -------- mathieu_modcem1 mathieu_modcem2(m, q, x, out=None) Even modified Mathieu function of the second kind and its derivative Evaluates the even modified Mathieu function of the second kind, Mc2m(x, q), and its derivative at `x` (given in degrees) for order `m` and parameter `q`. Parameters ---------- m : array_like Order of the function q : array_like Parameter of the function x : array_like Argument of the function, *given in degrees, not radians* out : tuple of ndarray, optional Optional output arrays for the function results Returns ------- y : scalar or ndarray Value of the function yp : scalar or ndarray Value of the derivative vs x See Also -------- mathieu_modsem2 mathieu_modcem1(m, q, x, out=None) Even modified Mathieu function of the first kind and its derivative Evaluates the even modified Mathieu function of the first kind, ``Mc1m(x, q)``, and its derivative at `x` for order `m` and parameter `q`. Parameters ---------- m : array_like Order of the function q : array_like Parameter of the function x : array_like Argument of the function, *given in degrees, not radians* out : tuple of ndarray, optional Optional output arrays for the function results Returns ------- y : scalar or ndarray Value of the function yp : scalar or ndarray Value of the derivative vs x See Also -------- mathieu_modsem1 mathieu_cem(m, q, x, out=None) Even Mathieu function and its derivative Returns the even Mathieu function, ``ce_m(x, q)``, of order `m` and parameter `q` evaluated at `x` (given in degrees). Also returns the derivative with respect to `x` of ce_m(x, q) Parameters ---------- m : array_like Order of the function q : array_like Parameter of the function x : array_like Argument of the function, *given in degrees, not radians* out : tuple of ndarray, optional Optional output arrays for the function results Returns ------- y : scalar or ndarray Value of the function yp : scalar or ndarray Value of the derivative vs x See Also -------- mathieu_a, mathieu_b, mathieu_sem Notes ----- The even Mathieu functions are the solutions to Mathieu's differential equation .. math:: \frac{d^2y}{dx^2} + (a_m - 2q \cos(2x))y = 0 for which the characteristic number :math:`a_m` (calculated with `mathieu_a`) results in an odd, periodic solution :math:`y(x)` with period 180 degrees (for even :math:`m`) or 360 degrees (for odd :math:`m`). References ---------- .. [1] 'Mathieu function'. *Wikipedia*. https://en.wikipedia.org/wiki/Mathieu_function Examples -------- Plot even Mathieu functions of orders ``2`` and ``4``. >>> import numpy as np >>> from scipy import special >>> import matplotlib.pyplot as plt >>> m = np.asarray([2, 4]) >>> q = 50 >>> x = np.linspace(-180, 180, 300)[:, np.newaxis] >>> y, _ = special.mathieu_cem(m, q, x) >>> plt.plot(x, y) >>> plt.xlabel('x (degrees)') >>> plt.ylabel('y') >>> plt.legend(('m = 2', 'm = 4')) Because the orders ``2`` and ``4`` are even, the period of each function is 180 degrees. mathieu_b(m, q, out=None) Characteristic value of odd Mathieu functions Parameters ---------- m : array_like Order of the function q : array_like Parameter of the function out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Characteristic value for the odd solution, ``se_m(z, q)``, of Mathieu's equation. See Also -------- mathieu_a, mathieu_cem, mathieu_sem mathieu_a(m, q, out=None) Characteristic value of even Mathieu functions Parameters ---------- m : array_like Order of the function q : array_like Parameter of the function out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Characteristic value for the even solution, ``ce_m(z, q)``, of Mathieu's equation. See Also -------- mathieu_b, mathieu_cem, mathieu_sem log_wright_bessel(a, b, x, out=None) Natural logarithm of Wright's generalized Bessel function, see `wright_bessel`. This function comes in handy in particular for large values of x. Parameters ---------- a : array_like of float a >= 0 b : array_like of float b >= 0 x : array_like of float x >= 0 out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Value of the logarithm of Wright's generalized Bessel function Notes ----- Due to the complexity of the function with its three parameters, only non-negative arguments are implemented. .. versionadded:: 1.14.0 Examples -------- >>> from scipy.special import log_wright_bessel >>> a, b, x = 1.5, 1.1, 2.5 >>> log_wright_bessel(a, b, x) 1.1947654935299217 log_ndtr(x, out=None) Logarithm of Gaussian cumulative distribution function. Returns the log of the area under the standard Gaussian probability density function, integrated from minus infinity to `x`:: log(1/sqrt(2*pi) * integral(exp(-t**2 / 2), t=-inf..x)) Parameters ---------- x : array_like, real or complex Argument out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray The value of the log of the normal CDF evaluated at `x` See Also -------- erf erfc scipy.stats.norm ndtr Examples -------- >>> import numpy as np >>> from scipy.special import log_ndtr, ndtr The benefit of ``log_ndtr(x)`` over the naive implementation ``np.log(ndtr(x))`` is most evident with moderate to large positive values of ``x``: >>> x = np.array([6, 7, 9, 12, 15, 25]) >>> log_ndtr(x) array([-9.86587646e-010, -1.27981254e-012, -1.12858841e-019, -1.77648211e-033, -3.67096620e-051, -3.05669671e-138]) The results of the naive calculation for the moderate ``x`` values have only 5 or 6 correct significant digits. For values of ``x`` greater than approximately 8.3, the naive expression returns 0: >>> np.log(ndtr(x)) array([-9.86587701e-10, -1.27986510e-12, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]) log_expit(x, out=None) Logarithm of the logistic sigmoid function. The SciPy implementation of the logistic sigmoid function is `scipy.special.expit`, so this function is called ``log_expit``. The function is mathematically equivalent to ``log(expit(x))``, but is formulated to avoid loss of precision for inputs with large (positive or negative) magnitude. Parameters ---------- x : array_like The values to apply ``log_expit`` to element-wise. out : ndarray, optional Optional output array for the function results Returns ------- out : scalar or ndarray The computed values, an ndarray of the same shape as ``x``. See Also -------- expit Notes ----- As a ufunc, ``log_expit`` takes a number of optional keyword arguments. For more information see `ufuncs `_ .. versionadded:: 1.8.0 Examples -------- >>> import numpy as np >>> from scipy.special import log_expit, expit >>> log_expit([-3.0, 0.25, 2.5, 5.0]) array([-3.04858735, -0.57593942, -0.07888973, -0.00671535]) Large negative values: >>> log_expit([-100, -500, -1000]) array([ -100., -500., -1000.]) Note that ``expit(-1000)`` returns 0, so the naive implementation ``log(expit(-1000))`` return ``-inf``. Large positive values: >>> log_expit([29, 120, 400]) array([-2.54366565e-013, -7.66764807e-053, -1.91516960e-174]) Compare that to the naive implementation: >>> np.log(expit([29, 120, 400])) array([-2.54463117e-13, 0.00000000e+00, 0.00000000e+00]) The first value is accurate to only 3 digits, and the larger inputs lose all precision and return 0. logit(x, out=None) Logit ufunc for ndarrays. The logit function is defined as logit(p) = log(p/(1-p)). Note that logit(0) = -inf, logit(1) = inf, and logit(p) for p<0 or p>1 yields nan. Parameters ---------- x : ndarray The ndarray to apply logit to element-wise. out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray An ndarray of the same shape as x. Its entries are logit of the corresponding entry of x. See Also -------- expit Notes ----- As a ufunc logit takes a number of optional keyword arguments. For more information see `ufuncs `_ .. versionadded:: 0.10.0 Examples -------- >>> import numpy as np >>> from scipy.special import logit, expit >>> logit([0, 0.25, 0.5, 0.75, 1]) array([ -inf, -1.09861229, 0. , 1.09861229, inf]) `expit` is the inverse of `logit`: >>> expit(logit([0.1, 0.75, 0.999])) array([ 0.1 , 0.75 , 0.999]) Plot logit(x) for x in [0, 1]: >>> import matplotlib.pyplot as plt >>> x = np.linspace(0, 1, 501) >>> y = logit(x) >>> plt.plot(x, y) >>> plt.grid() >>> plt.ylim(-6, 6) >>> plt.xlabel('x') >>> plt.title('logit(x)') >>> plt.show() loggamma(z, out=None) Principal branch of the logarithm of the gamma function. Defined to be :math:`\log(\Gamma(x))` for :math:`x > 0` and extended to the complex plane by analytic continuation. The function has a single branch cut on the negative real axis. .. versionadded:: 0.18.0 Parameters ---------- z : array_like Values in the complex plane at which to compute ``loggamma`` out : ndarray, optional Output array for computed values of ``loggamma`` Returns ------- loggamma : scalar or ndarray Values of ``loggamma`` at z. See Also -------- gammaln : logarithm of the absolute value of the gamma function gammasgn : sign of the gamma function Notes ----- It is not generally true that :math:`\log\Gamma(z) = \log(\Gamma(z))`, though the real parts of the functions do agree. The benefit of not defining `loggamma` as :math:`\log(\Gamma(z))` is that the latter function has a complicated branch cut structure whereas `loggamma` is analytic except for on the negative real axis. The identities .. math:: \exp(\log\Gamma(z)) &= \Gamma(z) \\ \log\Gamma(z + 1) &= \log(z) + \log\Gamma(z) make `loggamma` useful for working in complex logspace. On the real line `loggamma` is related to `gammaln` via ``exp(loggamma(x + 0j)) = gammasgn(x)*exp(gammaln(x))``, up to rounding error. The implementation here is based on [hare1997]_. References ---------- .. [hare1997] D.E.G. Hare, *Computing the Principal Branch of log-Gamma*, Journal of Algorithms, Volume 25, Issue 2, November 1997, pages 221-236. lambertw(z, k=0, tol=1e-8) Lambert W function. The Lambert W function `W(z)` is defined as the inverse function of ``w * exp(w)``. In other words, the value of ``W(z)`` is such that ``z = W(z) * exp(W(z))`` for any complex number ``z``. The Lambert W function is a multivalued function with infinitely many branches. Each branch gives a separate solution of the equation ``z = w exp(w)``. Here, the branches are indexed by the integer `k`. Parameters ---------- z : array_like Input argument. k : int, optional Branch index. tol : float, optional Evaluation tolerance. Returns ------- w : array `w` will have the same shape as `z`. See Also -------- wrightomega : the Wright Omega function Notes ----- All branches are supported by `lambertw`: * ``lambertw(z)`` gives the principal solution (branch 0) * ``lambertw(z, k)`` gives the solution on branch `k` The Lambert W function has two partially real branches: the principal branch (`k = 0`) is real for real ``z > -1/e``, and the ``k = -1`` branch is real for ``-1/e < z < 0``. All branches except ``k = 0`` have a logarithmic singularity at ``z = 0``. **Possible issues** The evaluation can become inaccurate very close to the branch point at ``-1/e``. In some corner cases, `lambertw` might currently fail to converge, or can end up on the wrong branch. **Algorithm** Halley's iteration is used to invert ``w * exp(w)``, using a first-order asymptotic approximation (O(log(w)) or `O(w)`) as the initial estimate. The definition, implementation and choice of branches is based on [2]_. References ---------- .. [1] https://en.wikipedia.org/wiki/Lambert_W_function .. [2] Corless et al, "On the Lambert W function", Adv. Comp. Math. 5 (1996) 329-359. https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf Examples -------- The Lambert W function is the inverse of ``w exp(w)``: >>> import numpy as np >>> from scipy.special import lambertw >>> w = lambertw(1) >>> w (0.56714329040978384+0j) >>> w * np.exp(w) (1.0+0j) Any branch gives a valid inverse: >>> w = lambertw(1, k=3) >>> w (-2.8535817554090377+17.113535539412148j) >>> w*np.exp(w) (1.0000000000000002+1.609823385706477e-15j) **Applications to equation-solving** The Lambert W function may be used to solve various kinds of equations. We give two examples here. First, the function can be used to solve implicit equations of the form :math:`x = a + b e^{c x}` for :math:`x`. We assume :math:`c` is not zero. After a little algebra, the equation may be written :math:`z e^z = -b c e^{a c}` where :math:`z = c (a - x)`. :math:`z` may then be expressed using the Lambert W function :math:`z = W(-b c e^{a c})` giving :math:`x = a - W(-b c e^{a c})/c` For example, >>> a = 3 >>> b = 2 >>> c = -0.5 The solution to :math:`x = a + b e^{c x}` is: >>> x = a - lambertw(-b*c*np.exp(a*c))/c >>> x (3.3707498368978794+0j) Verify that it solves the equation: >>> a + b*np.exp(c*x) (3.37074983689788+0j) The Lambert W function may also be used find the value of the infinite power tower :math:`z^{z^{z^{\ldots}}}`: >>> def tower(z, n): ... if n == 0: ... return z ... return z ** tower(z, n-1) ... >>> tower(0.5, 100) 0.641185744504986 >>> -lambertw(-np.log(0.5)) / np.log(0.5) (0.64118574450498589+0j) kve(v, z, out=None) Exponentially scaled modified Bessel function of the second kind. Returns the exponentially scaled, modified Bessel function of the second kind (sometimes called the third kind) for real order `v` at complex `z`:: kve(v, z) = kv(v, z) * exp(z) Parameters ---------- v : array_like of float Order of Bessel functions z : array_like of complex Argument at which to evaluate the Bessel functions out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray The exponentially scaled modified Bessel function of the second kind. See Also -------- kv : This function without exponential scaling. k0e : Faster version of this function for order 0. k1e : Faster version of this function for order 1. Notes ----- Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the algorithm used, see [2]_ and the references therein. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ .. [2] Donald E. Amos, "Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order", ACM TOMS Vol. 12 Issue 3, Sept. 1986, p. 265 Examples -------- In the following example `kv` returns 0 whereas `kve` still returns a useful finite number. >>> import numpy as np >>> from scipy.special import kv, kve >>> import matplotlib.pyplot as plt >>> kv(3, 1000.), kve(3, 1000.) (0.0, 0.03980696128440973) Evaluate the function at one point for different orders by providing a list or NumPy array as argument for the `v` parameter: >>> kve([0, 1, 1.5], 1.) array([1.14446308, 1.63615349, 2.50662827]) Evaluate the function at several points for order 0 by providing an array for `z`. >>> points = np.array([1., 3., 10.]) >>> kve(0, points) array([1.14446308, 0.6977616 , 0.39163193]) Evaluate the function at several points for different orders by providing arrays for both `v` for `z`. Both arrays have to be broadcastable to the correct shape. To calculate the orders 0, 1 and 2 for a 1D array of points: >>> kve([[0], [1], [2]], points) array([[1.14446308, 0.6977616 , 0.39163193], [1.63615349, 0.80656348, 0.41076657], [4.41677005, 1.23547058, 0.47378525]]) Plot the functions of order 0 to 3 from 0 to 5. >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 5., 1000) >>> for i in range(4): ... ax.plot(x, kve(i, x), label=fr'$K_{i!r}(z)\cdot e^z$') >>> ax.legend() >>> ax.set_xlabel(r"$z$") >>> ax.set_ylim(0, 4) >>> ax.set_xlim(0, 5) >>> plt.show() kv(v, z, out=None) Modified Bessel function of the second kind of real order `v` Returns the modified Bessel function of the second kind for real order `v` at complex `z`. These are also sometimes called functions of the third kind, Basset functions, or Macdonald functions. They are defined as those solutions of the modified Bessel equation for which, .. math:: K_v(x) \sim \sqrt{\pi/(2x)} \exp(-x) as :math:`x \to \infty` [3]_. Parameters ---------- v : array_like of float Order of Bessel functions z : array_like of complex Argument at which to evaluate the Bessel functions out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray The results. Note that input must be of complex type to get complex output, e.g. ``kv(3, -2+0j)`` instead of ``kv(3, -2)``. See Also -------- kve : This function with leading exponential behavior stripped off. kvp : Derivative of this function Notes ----- Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the algorithm used, see [2]_ and the references therein. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ .. [2] Donald E. Amos, "Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order", ACM TOMS Vol. 12 Issue 3, Sept. 1986, p. 265 .. [3] NIST Digital Library of Mathematical Functions, Eq. 10.25.E3. https://dlmf.nist.gov/10.25.E3 Examples -------- Plot the function of several orders for real input: >>> import numpy as np >>> from scipy.special import kv >>> import matplotlib.pyplot as plt >>> x = np.linspace(0, 5, 1000) >>> for N in np.linspace(0, 6, 5): ... plt.plot(x, kv(N, x), label='$K_{{{}}}(x)$'.format(N)) >>> plt.ylim(0, 10) >>> plt.legend() >>> plt.title(r'Modified Bessel function of the second kind $K_\nu(x)$') >>> plt.show() Calculate for a single value at multiple orders: >>> kv([4, 4.5, 5], 1+2j) array([ 0.1992+2.3892j, 2.3493+3.6j , 7.2827+3.8104j]) k1e(x, out=None) Exponentially scaled modified Bessel function K of order 1 Defined as:: k1e(x) = exp(x) * k1(x) Parameters ---------- x : array_like Argument (float) out : ndarray, optional Optional output array for the function values Returns ------- K : scalar or ndarray Value of the exponentially scaled modified Bessel function K of order 1 at `x`. See Also -------- kv: Modified Bessel function of the second kind of any order k1: Modified Bessel function of the second kind of order 1 Notes ----- The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval. This function is a wrapper for the Cephes [1]_ routine `k1e`. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- In the following example `k1` returns 0 whereas `k1e` still returns a useful floating point number. >>> from scipy.special import k1, k1e >>> k1(1000.), k1e(1000.) (0., 0.03964813081296021) Calculate the function at several points by providing a NumPy array or list for `x`: >>> import numpy as np >>> k1e(np.array([0.5, 2., 3.])) array([2.73100971, 1.03347685, 0.80656348]) Plot the function from 0 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> y = k1e(x) >>> ax.plot(x, y) >>> plt.show() k1(x, out=None) Modified Bessel function of the second kind of order 1, :math:`K_1(x)`. Parameters ---------- x : array_like Argument (float) out : ndarray, optional Optional output array for the function values Returns ------- K : scalar or ndarray Value of the modified Bessel function K of order 1 at `x`. See Also -------- kv: Modified Bessel function of the second kind of any order k1e: Exponentially scaled modified Bessel function K of order 1 Notes ----- The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval. This function is a wrapper for the Cephes [1]_ routine `k1`. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- Calculate the function at one point: >>> from scipy.special import k1 >>> k1(1.) 0.6019072301972346 Calculate the function at several points: >>> import numpy as np >>> k1(np.array([0.5, 2., 3.])) array([1.65644112, 0.13986588, 0.04015643]) Plot the function from 0 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> y = k1(x) >>> ax.plot(x, y) >>> plt.show() k0e(x, out=None) Exponentially scaled modified Bessel function K of order 0 Defined as:: k0e(x) = exp(x) * k0(x). Parameters ---------- x : array_like Argument (float) out : ndarray, optional Optional output array for the function values Returns ------- K : scalar or ndarray Value of the exponentially scaled modified Bessel function K of order 0 at `x`. See Also -------- kv: Modified Bessel function of the second kind of any order k0: Modified Bessel function of the second kind Notes ----- The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval. This function is a wrapper for the Cephes [1]_ routine `k0e`. `k0e` is useful for large arguments: for these, `k0` easily underflows. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- In the following example `k0` returns 0 whereas `k0e` still returns a useful finite number: >>> from scipy.special import k0, k0e >>> k0(1000.), k0e(1000) (0., 0.03962832160075422) Calculate the function at several points by providing a NumPy array or list for `x`: >>> import numpy as np >>> k0e(np.array([0.5, 2., 3.])) array([1.52410939, 0.84156822, 0.6977616 ]) Plot the function from 0 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> y = k0e(x) >>> ax.plot(x, y) >>> plt.show() k0(x, out=None) Modified Bessel function of the second kind of order 0, :math:`K_0`. This function is also sometimes referred to as the modified Bessel function of the third kind of order 0. Parameters ---------- x : array_like Argument (float). out : ndarray, optional Optional output array for the function values Returns ------- K : scalar or ndarray Value of the modified Bessel function :math:`K_0` at `x`. See Also -------- kv: Modified Bessel function of the second kind of any order k0e: Exponentially scaled modified Bessel function of the second kind Notes ----- The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval. This function is a wrapper for the Cephes [1]_ routine `k0`. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- Calculate the function at one point: >>> from scipy.special import k0 >>> k0(1.) 0.42102443824070823 Calculate the function at several points: >>> import numpy as np >>> k0(np.array([0.5, 2., 3.])) array([0.92441907, 0.11389387, 0.0347395 ]) Plot the function from 0 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> y = k0(x) >>> ax.plot(x, y) >>> plt.show() kerp(x, out=None) Derivative of the Kelvin function ker. Parameters ---------- x : array_like Real argument. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Values of the derivative of ker. See Also -------- ker References ---------- .. [dlmf] NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/10#PT5 ker(x, out=None) Kelvin function ker. Defined as .. math:: \mathrm{ker}(x) = \Re[K_0(x e^{\pi i / 4})] Where :math:`K_0` is the modified Bessel function of the second kind (see `kv`). See [dlmf]_ for more details. Parameters ---------- x : array_like Real argument. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Values of the Kelvin function. See Also -------- kei : the corresponding imaginary part kerp : the derivative of ker kv : modified Bessel function of the second kind References ---------- .. [dlmf] NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/10.61 Examples -------- It can be expressed using the modified Bessel function of the second kind. >>> import numpy as np >>> import scipy.special as sc >>> x = np.array([1.0, 2.0, 3.0, 4.0]) >>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).real array([ 0.28670621, -0.04166451, -0.06702923, -0.03617885]) >>> sc.ker(x) array([ 0.28670621, -0.04166451, -0.06702923, -0.03617885]) kelvin(x, out=None) Kelvin functions as complex numbers Parameters ---------- x : array_like Argument out : tuple of ndarray, optional Optional output arrays for the function values Returns ------- Be, Ke, Bep, Kep : 4-tuple of scalar or ndarray The tuple (Be, Ke, Bep, Kep) contains complex numbers representing the real and imaginary Kelvin functions and their derivatives evaluated at `x`. For example, kelvin(x)[0].real = ber x and kelvin(x)[0].imag = bei x with similar relationships for ker and kei. keip(x, out=None) Derivative of the Kelvin function kei. Parameters ---------- x : array_like Real argument. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray The values of the derivative of kei. See Also -------- kei References ---------- .. [dlmf] NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/10#PT5 kei(x, out=None) Kelvin function kei. Defined as .. math:: \mathrm{kei}(x) = \Im[K_0(x e^{\pi i / 4})] where :math:`K_0` is the modified Bessel function of the second kind (see `kv`). See [dlmf]_ for more details. Parameters ---------- x : array_like Real argument. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Values of the Kelvin function. See Also -------- ker : the corresponding real part keip : the derivative of kei kv : modified Bessel function of the second kind References ---------- .. [dlmf] NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/10.61 Examples -------- It can be expressed using the modified Bessel function of the second kind. >>> import numpy as np >>> import scipy.special as sc >>> x = np.array([1.0, 2.0, 3.0, 4.0]) >>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).imag array([-0.49499464, -0.20240007, -0.05112188, 0.0021984 ]) >>> sc.kei(x) array([-0.49499464, -0.20240007, -0.05112188, 0.0021984 ]) jve(v, z, out=None) Exponentially scaled Bessel function of the first kind of order `v`. Defined as:: jve(v, z) = jv(v, z) * exp(-abs(z.imag)) Parameters ---------- v : array_like Order (float). z : array_like Argument (float or complex). out : ndarray, optional Optional output array for the function values Returns ------- J : scalar or ndarray Value of the exponentially scaled Bessel function. See Also -------- jv: Unscaled Bessel function of the first kind Notes ----- For positive `v` values, the computation is carried out using the AMOS [1]_ `zbesj` routine, which exploits the connection to the modified Bessel function :math:`I_v`, .. math:: J_v(z) = \exp(v\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0) J_v(z) = \exp(-v\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0) For negative `v` values the formula, .. math:: J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v) is used, where :math:`Y_v(z)` is the Bessel function of the second kind, computed using the AMOS routine `zbesy`. Note that the second term is exactly zero for integer `v`; to improve accuracy the second term is explicitly omitted for `v` values such that `v = floor(v)`. Exponentially scaled Bessel functions are useful for large arguments `z`: for these, the unscaled Bessel functions can easily under-or overflow. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ Examples -------- Compare the output of `jv` and `jve` for large complex arguments for `z` by computing their values for order ``v=1`` at ``z=1000j``. We see that `jv` overflows but `jve` returns a finite number: >>> import numpy as np >>> from scipy.special import jv, jve >>> v = 1 >>> z = 1000j >>> jv(v, z), jve(v, z) ((inf+infj), (7.721967686709077e-19+0.012610930256928629j)) For real arguments for `z`, `jve` returns the same as `jv`. >>> v, z = 1, 1000 >>> jv(v, z), jve(v, z) (0.004728311907089523, 0.004728311907089523) The function can be evaluated for several orders at the same time by providing a list or NumPy array for `v`: >>> jve([1, 3, 5], 1j) array([1.27304208e-17+2.07910415e-01j, -4.99352086e-19-8.15530777e-03j, 6.11480940e-21+9.98657141e-05j]) In the same way, the function can be evaluated at several points in one call by providing a list or NumPy array for `z`: >>> jve(1, np.array([1j, 2j, 3j])) array([1.27308412e-17+0.20791042j, 1.31814423e-17+0.21526929j, 1.20521602e-17+0.19682671j]) It is also possible to evaluate several orders at several points at the same time by providing arrays for `v` and `z` with compatible shapes for broadcasting. Compute `jve` for two different orders `v` and three points `z` resulting in a 2x3 array. >>> v = np.array([[1], [3]]) >>> z = np.array([1j, 2j, 3j]) >>> v.shape, z.shape ((2, 1), (3,)) >>> jve(v, z) array([[1.27304208e-17+0.20791042j, 1.31810070e-17+0.21526929j, 1.20517622e-17+0.19682671j], [-4.99352086e-19-0.00815531j, -1.76289571e-18-0.02879122j, -2.92578784e-18-0.04778332j]]) jv(v, z, out=None) Bessel function of the first kind of real order and complex argument. Parameters ---------- v : array_like Order (float). z : array_like Argument (float or complex). out : ndarray, optional Optional output array for the function values Returns ------- J : scalar or ndarray Value of the Bessel function, :math:`J_v(z)`. See Also -------- jve : :math:`J_v` with leading exponential behavior stripped off. spherical_jn : spherical Bessel functions. j0 : faster version of this function for order 0. j1 : faster version of this function for order 1. Notes ----- For positive `v` values, the computation is carried out using the AMOS [1]_ `zbesj` routine, which exploits the connection to the modified Bessel function :math:`I_v`, .. math:: J_v(z) = \exp(v\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0) J_v(z) = \exp(-v\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0) For negative `v` values the formula, .. math:: J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v) is used, where :math:`Y_v(z)` is the Bessel function of the second kind, computed using the AMOS routine `zbesy`. Note that the second term is exactly zero for integer `v`; to improve accuracy the second term is explicitly omitted for `v` values such that `v = floor(v)`. Not to be confused with the spherical Bessel functions (see `spherical_jn`). References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ Examples -------- Evaluate the function of order 0 at one point. >>> from scipy.special import jv >>> jv(0, 1.) 0.7651976865579666 Evaluate the function at one point for different orders. >>> jv(0, 1.), jv(1, 1.), jv(1.5, 1.) (0.7651976865579666, 0.44005058574493355, 0.24029783912342725) The evaluation for different orders can be carried out in one call by providing a list or NumPy array as argument for the `v` parameter: >>> jv([0, 1, 1.5], 1.) array([0.76519769, 0.44005059, 0.24029784]) Evaluate the function at several points for order 0 by providing an array for `z`. >>> import numpy as np >>> points = np.array([-2., 0., 3.]) >>> jv(0, points) array([ 0.22389078, 1. , -0.26005195]) If `z` is an array, the order parameter `v` must be broadcastable to the correct shape if different orders shall be computed in one call. To calculate the orders 0 and 1 for an 1D array: >>> orders = np.array([[0], [1]]) >>> orders.shape (2, 1) >>> jv(orders, points) array([[ 0.22389078, 1. , -0.26005195], [-0.57672481, 0. , 0.33905896]]) Plot the functions of order 0 to 3 from -10 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(-10., 10., 1000) >>> for i in range(4): ... ax.plot(x, jv(i, x), label=f'$J_{i!r}$') >>> ax.legend() >>> plt.show() j1(x, out=None) Bessel function of the first kind of order 1. Parameters ---------- x : array_like Argument (float). out : ndarray, optional Optional output array for the function values Returns ------- J : scalar or ndarray Value of the Bessel function of the first kind of order 1 at `x`. See Also -------- jv: Bessel function of the first kind spherical_jn: spherical Bessel functions. Notes ----- The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 24 term Chebyshev expansion is used. In the second, the asymptotic trigonometric representation is employed using two rational functions of degree 5/5. This function is a wrapper for the Cephes [1]_ routine `j1`. It should not be confused with the spherical Bessel functions (see `spherical_jn`). References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- Calculate the function at one point: >>> from scipy.special import j1 >>> j1(1.) 0.44005058574493355 Calculate the function at several points: >>> import numpy as np >>> j1(np.array([-2., 0., 4.])) array([-0.57672481, 0. , -0.06604333]) Plot the function from -20 to 20. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(-20., 20., 1000) >>> y = j1(x) >>> ax.plot(x, y) >>> plt.show() j0(x, out=None) Bessel function of the first kind of order 0. Parameters ---------- x : array_like Argument (float). out : ndarray, optional Optional output array for the function values Returns ------- J : scalar or ndarray Value of the Bessel function of the first kind of order 0 at `x`. See Also -------- jv : Bessel function of real order and complex argument. spherical_jn : spherical Bessel functions. Notes ----- The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval the following rational approximation is used: .. math:: J_0(x) \approx (w - r_1^2)(w - r_2^2) \frac{P_3(w)}{Q_8(w)}, where :math:`w = x^2` and :math:`r_1`, :math:`r_2` are the zeros of :math:`J_0`, and :math:`P_3` and :math:`Q_8` are polynomials of degrees 3 and 8, respectively. In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and 7/7. This function is a wrapper for the Cephes [1]_ routine `j0`. It should not be confused with the spherical Bessel functions (see `spherical_jn`). References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- Calculate the function at one point: >>> from scipy.special import j0 >>> j0(1.) 0.7651976865579665 Calculate the function at several points: >>> import numpy as np >>> j0(np.array([-2., 0., 4.])) array([ 0.22389078, 1. , -0.39714981]) Plot the function from -20 to 20. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(-20., 20., 1000) >>> y = j0(x) >>> ax.plot(x, y) >>> plt.show() ive(v, z, out=None) Exponentially scaled modified Bessel function of the first kind. Defined as:: ive(v, z) = iv(v, z) * exp(-abs(z.real)) For imaginary numbers without a real part, returns the unscaled Bessel function of the first kind `iv`. Parameters ---------- v : array_like of float Order. z : array_like of float or complex Argument. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the exponentially scaled modified Bessel function. See Also -------- iv: Modified Bessel function of the first kind i0e: Faster implementation of this function for order 0 i1e: Faster implementation of this function for order 1 Notes ----- For positive `v`, the AMOS [1]_ `zbesi` routine is called. It uses a power series for small `z`, the asymptotic expansion for large `abs(z)`, the Miller algorithm normalized by the Wronskian and a Neumann series for intermediate magnitudes, and the uniform asymptotic expansions for :math:`I_v(z)` and :math:`J_v(z)` for large orders. Backward recurrence is used to generate sequences or reduce orders when necessary. The calculations above are done in the right half plane and continued into the left half plane by the formula, .. math:: I_v(z \exp(\pm\imath\pi)) = \exp(\pm\pi v) I_v(z) (valid when the real part of `z` is positive). For negative `v`, the formula .. math:: I_{-v}(z) = I_v(z) + \frac{2}{\pi} \sin(\pi v) K_v(z) is used, where :math:`K_v(z)` is the modified Bessel function of the second kind, evaluated using the AMOS routine `zbesk`. `ive` is useful for large arguments `z`: for these, `iv` easily overflows, while `ive` does not due to the exponential scaling. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ Examples -------- In the following example `iv` returns infinity whereas `ive` still returns a finite number. >>> from scipy.special import iv, ive >>> import numpy as np >>> import matplotlib.pyplot as plt >>> iv(3, 1000.), ive(3, 1000.) (inf, 0.01256056218254712) Evaluate the function at one point for different orders by providing a list or NumPy array as argument for the `v` parameter: >>> ive([0, 1, 1.5], 1.) array([0.46575961, 0.20791042, 0.10798193]) Evaluate the function at several points for order 0 by providing an array for `z`. >>> points = np.array([-2., 0., 3.]) >>> ive(0, points) array([0.30850832, 1. , 0.24300035]) Evaluate the function at several points for different orders by providing arrays for both `v` for `z`. Both arrays have to be broadcastable to the correct shape. To calculate the orders 0, 1 and 2 for a 1D array of points: >>> ive([[0], [1], [2]], points) array([[ 0.30850832, 1. , 0.24300035], [-0.21526929, 0. , 0.19682671], [ 0.09323903, 0. , 0.11178255]]) Plot the functions of order 0 to 3 from -5 to 5. >>> fig, ax = plt.subplots() >>> x = np.linspace(-5., 5., 1000) >>> for i in range(4): ... ax.plot(x, ive(i, x), label=fr'$I_{i!r}(z)\cdot e^{{-|z|}}$') >>> ax.legend() >>> ax.set_xlabel(r"$z$") >>> plt.show() _iv_ratio_c(v, x, out=None) Internal function. Return `1 - iv(v, x) / iv(v-1, x)` for `v >= 0.5` and `x >= 0`, where `iv` is the modified Bessel function of the first kind. Notes ----- See `_iv_ratio` for details about the parameters, return value, and algorithm. The accuracy is tested numerically with 600,000 trials. The peak relative error is `9.0e-16`; the RMSE is `1.5e-16`. _iv_ratio(v, x, out=None) Internal function. Return `iv(v, x) / iv(v-1, x)` for `v >= 0.5` and `x >= 0`, where `iv` is the modified Bessel function of the first kind. Parameters ---------- v : array_like of float Order. Must be `>= 0.5`. May be `+inf` if `x` is finite. x : array_like of float Argument. Must be `>= 0`. May be `+inf` if `v` is finite. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Ratio between modified Bessel function of the first kind of adjacent orders. The returned value is between `0` and `1`, inclusive. If either `v` or `x` is `nan`, `nan` is returned. Otherwise, the special values are: - If `v < 0.5` or `x < 0`, set "domain" error and return `nan`. - If `v >= 0.5` and `x == 0`, return `x`. - If `v >= 0.5` and `x == +inf`, return `1.0`. - If `v == +inf` and `0 < x < +inf`, return `0.0`. - If `v == +inf` and `x == +inf`, set "domain" error and return `nan`. See Also -------- iv : modified Bessel function of the first kind Notes ----- The function is computed using the _Perron continued fraction_ of [1]_. The continued fraction is evaluated using the "series method" of [2]_. Kahan summation is used to evaluate the series. The accuracy is tested numerically with 600,000 trials. The peak relative error is `3.4e-16`; the RMSE is `0.9e-16`. Reference --------- .. [1] Gautschi, W. and Slavik, J. (1978). "On the computation of modified Bessel function ratios." Mathematics of Computation, 32(143):865-875. .. [2] Gautschi, W. (1967). “Computational Aspects of Three-Term Recurrence Relations.” SIAM Review, 9(1):24-82. iv(v, z, out=None) Modified Bessel function of the first kind of real order. Parameters ---------- v : array_like Order. If `z` is of real type and negative, `v` must be integer valued. z : array_like of float or complex Argument. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the modified Bessel function. See Also -------- ive : This function with leading exponential behavior stripped off. i0 : Faster version of this function for order 0. i1 : Faster version of this function for order 1. Notes ----- For real `z` and :math:`v \in [-50, 50]`, the evaluation is carried out using Temme's method [1]_. For larger orders, uniform asymptotic expansions are applied. For complex `z` and positive `v`, the AMOS [2]_ `zbesi` routine is called. It uses a power series for small `z`, the asymptotic expansion for large `abs(z)`, the Miller algorithm normalized by the Wronskian and a Neumann series for intermediate magnitudes, and the uniform asymptotic expansions for :math:`I_v(z)` and :math:`J_v(z)` for large orders. Backward recurrence is used to generate sequences or reduce orders when necessary. The calculations above are done in the right half plane and continued into the left half plane by the formula, .. math:: I_v(z \exp(\pm\imath\pi)) = \exp(\pm\pi v) I_v(z) (valid when the real part of `z` is positive). For negative `v`, the formula .. math:: I_{-v}(z) = I_v(z) + \frac{2}{\pi} \sin(\pi v) K_v(z) is used, where :math:`K_v(z)` is the modified Bessel function of the second kind, evaluated using the AMOS routine `zbesk`. References ---------- .. [1] Temme, Journal of Computational Physics, vol 21, 343 (1976) .. [2] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ Examples -------- Evaluate the function of order 0 at one point. >>> from scipy.special import iv >>> iv(0, 1.) 1.2660658777520084 Evaluate the function at one point for different orders. >>> iv(0, 1.), iv(1, 1.), iv(1.5, 1.) (1.2660658777520084, 0.565159103992485, 0.2935253263474798) The evaluation for different orders can be carried out in one call by providing a list or NumPy array as argument for the `v` parameter: >>> iv([0, 1, 1.5], 1.) array([1.26606588, 0.5651591 , 0.29352533]) Evaluate the function at several points for order 0 by providing an array for `z`. >>> import numpy as np >>> points = np.array([-2., 0., 3.]) >>> iv(0, points) array([2.2795853 , 1. , 4.88079259]) If `z` is an array, the order parameter `v` must be broadcastable to the correct shape if different orders shall be computed in one call. To calculate the orders 0 and 1 for an 1D array: >>> orders = np.array([[0], [1]]) >>> orders.shape (2, 1) >>> iv(orders, points) array([[ 2.2795853 , 1. , 4.88079259], [-1.59063685, 0. , 3.95337022]]) Plot the functions of order 0 to 3 from -5 to 5. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(-5., 5., 1000) >>> for i in range(4): ... ax.plot(x, iv(i, x), label=f'$I_{i!r}$') >>> ax.legend() >>> plt.show() i1e(x, out=None) Exponentially scaled modified Bessel function of order 1. Defined as:: i1e(x) = exp(-abs(x)) * i1(x) Parameters ---------- x : array_like Argument (float) out : ndarray, optional Optional output array for the function values Returns ------- I : scalar or ndarray Value of the exponentially scaled modified Bessel function of order 1 at `x`. See Also -------- iv: Modified Bessel function of the first kind i1: Modified Bessel function of order 1 Notes ----- The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval. The polynomial expansions used are the same as those in `i1`, but they are not multiplied by the dominant exponential factor. This function is a wrapper for the Cephes [1]_ routine `i1e`. `i1e` is useful for large arguments `x`: for these, `i1` quickly overflows. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- In the following example `i1` returns infinity whereas `i1e` still returns a finite number. >>> from scipy.special import i1, i1e >>> i1(1000.), i1e(1000.) (inf, 0.01261093025692863) Calculate the function at several points by providing a NumPy array or list for `x`: >>> import numpy as np >>> i1e(np.array([-2., 0., 6.])) array([-0.21526929, 0. , 0.15205146]) Plot the function between -10 and 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(-10., 10., 1000) >>> y = i1e(x) >>> ax.plot(x, y) >>> plt.show() i1(x, out=None) Modified Bessel function of order 1. Defined as, .. math:: I_1(x) = \frac{1}{2}x \sum_{k=0}^\infty \frac{(x^2/4)^k}{k! (k + 1)!} = -\imath J_1(\imath x), where :math:`J_1` is the Bessel function of the first kind of order 1. Parameters ---------- x : array_like Argument (float) out : ndarray, optional Optional output array for the function values Returns ------- I : scalar or ndarray Value of the modified Bessel function of order 1 at `x`. See Also -------- iv: Modified Bessel function of the first kind i1e: Exponentially scaled modified Bessel function of order 1 Notes ----- The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval. This function is a wrapper for the Cephes [1]_ routine `i1`. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- Calculate the function at one point: >>> from scipy.special import i1 >>> i1(1.) 0.5651591039924851 Calculate the function at several points: >>> import numpy as np >>> i1(np.array([-2., 0., 6.])) array([-1.59063685, 0. , 61.34193678]) Plot the function between -10 and 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(-10., 10., 1000) >>> y = i1(x) >>> ax.plot(x, y) >>> plt.show() i0e(x, out=None) Exponentially scaled modified Bessel function of order 0. Defined as:: i0e(x) = exp(-abs(x)) * i0(x). Parameters ---------- x : array_like Argument (float) out : ndarray, optional Optional output array for the function values Returns ------- I : scalar or ndarray Value of the exponentially scaled modified Bessel function of order 0 at `x`. See Also -------- iv: Modified Bessel function of the first kind i0: Modified Bessel function of order 0 Notes ----- The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval. The polynomial expansions used are the same as those in `i0`, but they are not multiplied by the dominant exponential factor. This function is a wrapper for the Cephes [1]_ routine `i0e`. `i0e` is useful for large arguments `x`: for these, `i0` quickly overflows. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- In the following example `i0` returns infinity whereas `i0e` still returns a finite number. >>> from scipy.special import i0, i0e >>> i0(1000.), i0e(1000.) (inf, 0.012617240455891257) Calculate the function at several points by providing a NumPy array or list for `x`: >>> import numpy as np >>> i0e(np.array([-2., 0., 3.])) array([0.30850832, 1. , 0.24300035]) Plot the function from -10 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(-10., 10., 1000) >>> y = i0e(x) >>> ax.plot(x, y) >>> plt.show() i0(x, out=None) Modified Bessel function of order 0. Defined as, .. math:: I_0(x) = \sum_{k=0}^\infty \frac{(x^2/4)^k}{(k!)^2} = J_0(\imath x), where :math:`J_0` is the Bessel function of the first kind of order 0. Parameters ---------- x : array_like Argument (float) out : ndarray, optional Optional output array for the function values Returns ------- I : scalar or ndarray Value of the modified Bessel function of order 0 at `x`. See Also -------- iv: Modified Bessel function of any order i0e: Exponentially scaled modified Bessel function of order 0 Notes ----- The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval. This function is a wrapper for the Cephes [1]_ routine `i0`. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- Calculate the function at one point: >>> from scipy.special import i0 >>> i0(1.) 1.2660658777520082 Calculate at several points: >>> import numpy as np >>> i0(np.array([-2., 0., 3.5])) array([2.2795853 , 1. , 7.37820343]) Plot the function from -10 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(-10., 10., 1000) >>> y = i0(x) >>> ax.plot(x, y) >>> plt.show() itstruve0(x, out=None) Integral of the Struve function of order 0. .. math:: I = \int_0^x H_0(t)\,dt Parameters ---------- x : array_like Upper limit of integration (float). out : ndarray, optional Optional output array for the function values Returns ------- I : scalar or ndarray The integral of :math:`H_0` from 0 to `x`. See Also -------- struve: Function which is integrated by this function Notes ----- Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html Examples -------- Evaluate the function at one point. >>> import numpy as np >>> from scipy.special import itstruve0 >>> itstruve0(1.) 0.30109042670805547 Evaluate the function at several points by supplying an array for `x`. >>> points = np.array([1., 2., 3.5]) >>> itstruve0(points) array([0.30109043, 1.01870116, 1.96804581]) Plot the function from -20 to 20. >>> import matplotlib.pyplot as plt >>> x = np.linspace(-20., 20., 1000) >>> istruve0_values = itstruve0(x) >>> fig, ax = plt.subplots() >>> ax.plot(x, istruve0_values) >>> ax.set_xlabel(r'$x$') >>> ax.set_ylabel(r'$\int_0^{x}H_0(t)\,dt$') >>> plt.show() itmodstruve0(x, out=None) Integral of the modified Struve function of order 0. .. math:: I = \int_0^x L_0(t)\,dt Parameters ---------- x : array_like Upper limit of integration (float). out : ndarray, optional Optional output array for the function values Returns ------- I : scalar or ndarray The integral of :math:`L_0` from 0 to `x`. See Also -------- modstruve: Modified Struve function which is integrated by this function Notes ----- Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html Examples -------- Evaluate the function at one point. >>> import numpy as np >>> from scipy.special import itmodstruve0 >>> itmodstruve0(1.) 0.3364726286440384 Evaluate the function at several points by supplying an array for `x`. >>> points = np.array([1., 2., 3.5]) >>> itmodstruve0(points) array([0.33647263, 1.588285 , 7.60382578]) Plot the function from -10 to 10. >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10., 10., 1000) >>> itmodstruve0_values = itmodstruve0(x) >>> fig, ax = plt.subplots() >>> ax.plot(x, itmodstruve0_values) >>> ax.set_xlabel(r'$x$') >>> ax.set_ylabel(r'$\int_0^xL_0(t)\,dt$') >>> plt.show() itj0y0(x, out=None) Integrals of Bessel functions of the first kind of order 0. Computes the integrals .. math:: \int_0^x J_0(t) dt \\ \int_0^x Y_0(t) dt. For more on :math:`J_0` and :math:`Y_0` see `j0` and `y0`. Parameters ---------- x : array_like Values at which to evaluate the integrals. out : tuple of ndarrays, optional Optional output arrays for the function results. Returns ------- ij0 : scalar or ndarray The integral of `j0` iy0 : scalar or ndarray The integral of `y0` References ---------- .. [1] S. Zhang and J.M. Jin, "Computation of Special Functions", Wiley 1996 Examples -------- Evaluate the functions at one point. >>> from scipy.special import itj0y0 >>> int_j, int_y = itj0y0(1.) >>> int_j, int_y (0.9197304100897596, -0.637069376607422) Evaluate the functions at several points. >>> import numpy as np >>> points = np.array([0., 1.5, 3.]) >>> int_j, int_y = itj0y0(points) >>> int_j, int_y (array([0. , 1.24144951, 1.38756725]), array([ 0. , -0.51175903, 0.19765826])) Plot the functions from 0 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> int_j, int_y = itj0y0(x) >>> ax.plot(x, int_j, label=r"$\int_0^x J_0(t)\,dt$") >>> ax.plot(x, int_y, label=r"$\int_0^x Y_0(t)\,dt$") >>> ax.legend() >>> plt.show() iti0k0(x, out=None) Integrals of modified Bessel functions of order 0. Computes the integrals .. math:: \int_0^x I_0(t) dt \\ \int_0^x K_0(t) dt. For more on :math:`I_0` and :math:`K_0` see `i0` and `k0`. Parameters ---------- x : array_like Values at which to evaluate the integrals. out : tuple of ndarrays, optional Optional output arrays for the function results. Returns ------- ii0 : scalar or ndarray The integral for `i0` ik0 : scalar or ndarray The integral for `k0` References ---------- .. [1] S. Zhang and J.M. Jin, "Computation of Special Functions", Wiley 1996 Examples -------- Evaluate the functions at one point. >>> from scipy.special import iti0k0 >>> int_i, int_k = iti0k0(1.) >>> int_i, int_k (1.0865210970235892, 1.2425098486237771) Evaluate the functions at several points. >>> import numpy as np >>> points = np.array([0., 1.5, 3.]) >>> int_i, int_k = iti0k0(points) >>> int_i, int_k (array([0. , 1.80606937, 6.16096149]), array([0. , 1.39458246, 1.53994809])) Plot the functions from 0 to 5. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 5., 1000) >>> int_i, int_k = iti0k0(x) >>> ax.plot(x, int_i, label=r"$\int_0^x I_0(t)\,dt$") >>> ax.plot(x, int_k, label=r"$\int_0^x K_0(t)\,dt$") >>> ax.legend() >>> plt.show() itairy(x, out=None) Integrals of Airy functions Calculates the integrals of Airy functions from 0 to `x`. Parameters ---------- x : array_like Upper limit of integration (float). out : tuple of ndarray, optional Optional output arrays for the function values Returns ------- Apt : scalar or ndarray Integral of Ai(t) from 0 to x. Bpt : scalar or ndarray Integral of Bi(t) from 0 to x. Ant : scalar or ndarray Integral of Ai(-t) from 0 to x. Bnt : scalar or ndarray Integral of Bi(-t) from 0 to x. Notes ----- Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html Examples -------- Compute the functions at ``x=1.``. >>> import numpy as np >>> from scipy.special import itairy >>> import matplotlib.pyplot as plt >>> apt, bpt, ant, bnt = itairy(1.) >>> apt, bpt, ant, bnt (0.23631734191710949, 0.8727691167380077, 0.46567398346706845, 0.3730050096342943) Compute the functions at several points by providing a NumPy array for `x`. >>> x = np.array([1., 1.5, 2.5, 5]) >>> apt, bpt, ant, bnt = itairy(x) >>> apt, bpt, ant, bnt (array([0.23631734, 0.28678675, 0.324638 , 0.33328759]), array([ 0.87276912, 1.62470809, 5.20906691, 321.47831857]), array([0.46567398, 0.72232876, 0.93187776, 0.7178822 ]), array([ 0.37300501, 0.35038814, -0.02812939, 0.15873094])) Plot the functions from -10 to 10. >>> x = np.linspace(-10, 10, 500) >>> apt, bpt, ant, bnt = itairy(x) >>> fig, ax = plt.subplots(figsize=(6, 5)) >>> ax.plot(x, apt, label=r"$\int_0^x\, Ai(t)\, dt$") >>> ax.plot(x, bpt, ls="dashed", label=r"$\int_0^x\, Bi(t)\, dt$") >>> ax.plot(x, ant, ls="dashdot", label=r"$\int_0^x\, Ai(-t)\, dt$") >>> ax.plot(x, bnt, ls="dotted", label=r"$\int_0^x\, Bi(-t)\, dt$") >>> ax.set_ylim(-2, 1.5) >>> ax.legend(loc="lower right") >>> plt.show() it2struve0(x, out=None) Integral related to the Struve function of order 0. Returns the integral, .. math:: \int_x^\infty \frac{H_0(t)}{t}\,dt where :math:`H_0` is the Struve function of order 0. Parameters ---------- x : array_like Lower limit of integration. out : ndarray, optional Optional output array for the function values Returns ------- I : scalar or ndarray The value of the integral. See Also -------- struve Notes ----- Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html Examples -------- Evaluate the function at one point. >>> import numpy as np >>> from scipy.special import it2struve0 >>> it2struve0(1.) 0.9571973506383524 Evaluate the function at several points by supplying an array for `x`. >>> points = np.array([1., 2., 3.5]) >>> it2struve0(points) array([0.95719735, 0.46909296, 0.10366042]) Plot the function from -10 to 10. >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10., 10., 1000) >>> it2struve0_values = it2struve0(x) >>> fig, ax = plt.subplots() >>> ax.plot(x, it2struve0_values) >>> ax.set_xlabel(r'$x$') >>> ax.set_ylabel(r'$\int_x^{\infty}\frac{H_0(t)}{t}\,dt$') >>> plt.show() it2j0y0(x, out=None) Integrals related to Bessel functions of the first kind of order 0. Computes the integrals .. math:: \int_0^x \frac{1 - J_0(t)}{t} dt \\ \int_x^\infty \frac{Y_0(t)}{t} dt. For more on :math:`J_0` and :math:`Y_0` see `j0` and `y0`. Parameters ---------- x : array_like Values at which to evaluate the integrals. out : tuple of ndarrays, optional Optional output arrays for the function results. Returns ------- ij0 : scalar or ndarray The integral for `j0` iy0 : scalar or ndarray The integral for `y0` References ---------- .. [1] S. Zhang and J.M. Jin, "Computation of Special Functions", Wiley 1996 Examples -------- Evaluate the functions at one point. >>> from scipy.special import it2j0y0 >>> int_j, int_y = it2j0y0(1.) >>> int_j, int_y (0.12116524699506871, 0.39527290169929336) Evaluate the functions at several points. >>> import numpy as np >>> points = np.array([0.5, 1.5, 3.]) >>> int_j, int_y = it2j0y0(points) >>> int_j, int_y (array([0.03100699, 0.26227724, 0.85614669]), array([ 0.26968854, 0.29769696, -0.02987272])) Plot the functions from 0 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> int_j, int_y = it2j0y0(x) >>> ax.plot(x, int_j, label=r"$\int_0^x \frac{1-J_0(t)}{t}\,dt$") >>> ax.plot(x, int_y, label=r"$\int_x^{\infty} \frac{Y_0(t)}{t}\,dt$") >>> ax.legend() >>> ax.set_ylim(-2.5, 2.5) >>> plt.show() it2i0k0(x, out=None) Integrals related to modified Bessel functions of order 0. Computes the integrals .. math:: \int_0^x \frac{I_0(t) - 1}{t} dt \\ \int_x^\infty \frac{K_0(t)}{t} dt. Parameters ---------- x : array_like Values at which to evaluate the integrals. out : tuple of ndarrays, optional Optional output arrays for the function results. Returns ------- ii0 : scalar or ndarray The integral for `i0` ik0 : scalar or ndarray The integral for `k0` References ---------- .. [1] S. Zhang and J.M. Jin, "Computation of Special Functions", Wiley 1996 Examples -------- Evaluate the functions at one point. >>> from scipy.special import it2i0k0 >>> int_i, int_k = it2i0k0(1.) >>> int_i, int_k (0.12897944249456852, 0.2085182909001295) Evaluate the functions at several points. >>> import numpy as np >>> points = np.array([0.5, 1.5, 3.]) >>> int_i, int_k = it2i0k0(points) >>> int_i, int_k (array([0.03149527, 0.30187149, 1.50012461]), array([0.66575102, 0.0823715 , 0.00823631])) Plot the functions from 0 to 5. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 5., 1000) >>> int_i, int_k = it2i0k0(x) >>> ax.plot(x, int_i, label=r"$\int_0^x \frac{I_0(t)-1}{t}\,dt$") >>> ax.plot(x, int_k, label=r"$\int_x^{\infty} \frac{K_0(t)}{t}\,dt$") >>> ax.legend() >>> ax.set_ylim(0, 10) >>> plt.show() hyp2f1(a, b, c, z, out=None) Gauss hypergeometric function 2F1(a, b; c; z) Parameters ---------- a, b, c : array_like Arguments, should be real-valued. z : array_like Argument, real or complex. out : ndarray, optional Optional output array for the function values Returns ------- hyp2f1 : scalar or ndarray The values of the gaussian hypergeometric function. See Also -------- hyp0f1 : confluent hypergeometric limit function. hyp1f1 : Kummer's (confluent hypergeometric) function. Notes ----- This function is defined for :math:`|z| < 1` as .. math:: \mathrm{hyp2f1}(a, b, c, z) = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n}\frac{z^n}{n!}, and defined on the rest of the complex z-plane by analytic continuation [1]_. Here :math:`(\cdot)_n` is the Pochhammer symbol; see `poch`. When :math:`n` is an integer the result is a polynomial of degree :math:`n`. The implementation for complex values of ``z`` is described in [2]_, except for ``z`` in the region defined by .. math:: 0.9 <= \left|z\right| < 1.1, \left|1 - z\right| >= 0.9, \mathrm{real}(z) >= 0 in which the implementation follows [4]_. References ---------- .. [1] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/15.2 .. [2] S. Zhang and J.M. Jin, "Computation of Special Functions", Wiley 1996 .. [3] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ .. [4] J.L. Lopez and N.M. Temme, "New series expansions of the Gauss hypergeometric function", Adv Comput Math 39, 349-365 (2013). https://doi.org/10.1007/s10444-012-9283-y Examples -------- >>> import numpy as np >>> import scipy.special as sc It has poles when `c` is a negative integer. >>> sc.hyp2f1(1, 1, -2, 1) inf It is a polynomial when `a` or `b` is a negative integer. >>> a, b, c = -1, 1, 1.5 >>> z = np.linspace(0, 1, 5) >>> sc.hyp2f1(a, b, c, z) array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333]) >>> 1 + a * b * z / c array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333]) It is symmetric in `a` and `b`. >>> a = np.linspace(0, 1, 5) >>> b = np.linspace(0, 1, 5) >>> sc.hyp2f1(a, b, 1, 0.5) array([1. , 1.03997334, 1.1803406 , 1.47074441, 2. ]) >>> sc.hyp2f1(b, a, 1, 0.5) array([1. , 1.03997334, 1.1803406 , 1.47074441, 2. ]) It contains many other functions as special cases. >>> z = 0.5 >>> sc.hyp2f1(1, 1, 2, z) 1.3862943611198901 >>> -np.log(1 - z) / z 1.3862943611198906 >>> sc.hyp2f1(0.5, 1, 1.5, z**2) 1.098612288668109 >>> np.log((1 + z) / (1 - z)) / (2 * z) 1.0986122886681098 >>> sc.hyp2f1(0.5, 1, 1.5, -z**2) 0.9272952180016117 >>> np.arctan(z) / z 0.9272952180016122 hankel2e(v, z, out=None) Exponentially scaled Hankel function of the second kind Defined as:: hankel2e(v, z) = hankel2(v, z) * exp(1j * z) Parameters ---------- v : array_like Order (float). z : array_like Argument (float or complex). out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the exponentially scaled Hankel function of the second kind. Notes ----- A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the computation using the relation, .. math:: H^{(2)}_v(z) = -\frac{2}{\imath\pi} \exp(\frac{\imath \pi v}{2}) K_v(z exp(\frac{\imath\pi}{2})) where :math:`K_v` is the modified Bessel function of the second kind. For negative orders, the relation .. math:: H^{(2)}_{-v}(z) = H^{(2)}_v(z) \exp(-\imath\pi v) is used. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ hankel2(v, z, out=None) Hankel function of the second kind Parameters ---------- v : array_like Order (float). z : array_like Argument (float or complex). out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the Hankel function of the second kind. See Also -------- hankel2e : this function with leading exponential behavior stripped off. Notes ----- A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the computation using the relation, .. math:: H^{(2)}_v(z) = -\frac{2}{\imath\pi} \exp(\imath \pi v/2) K_v(z \exp(\imath\pi/2)) where :math:`K_v` is the modified Bessel function of the second kind. For negative orders, the relation .. math:: H^{(2)}_{-v}(z) = H^{(2)}_v(z) \exp(-\imath\pi v) is used. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ hankel1e(v, z, out=None) Exponentially scaled Hankel function of the first kind Defined as:: hankel1e(v, z) = hankel1(v, z) * exp(-1j * z) Parameters ---------- v : array_like Order (float). z : array_like Argument (float or complex). out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the exponentially scaled Hankel function. Notes ----- A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the computation using the relation, .. math:: H^{(1)}_v(z) = \frac{2}{\imath\pi} \exp(-\imath \pi v/2) K_v(z \exp(-\imath\pi/2)) where :math:`K_v` is the modified Bessel function of the second kind. For negative orders, the relation .. math:: H^{(1)}_{-v}(z) = H^{(1)}_v(z) \exp(\imath\pi v) is used. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ hankel1(v, z, out=None) Hankel function of the first kind Parameters ---------- v : array_like Order (float). z : array_like Argument (float or complex). out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the Hankel function of the first kind. See Also -------- hankel1e : ndarray This function with leading exponential behavior stripped off. Notes ----- A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the computation using the relation, .. math:: H^{(1)}_v(z) = \frac{2}{\imath\pi} \exp(-\imath \pi v/2) K_v(z \exp(-\imath\pi/2)) where :math:`K_v` is the modified Bessel function of the second kind. For negative orders, the relation .. math:: H^{(1)}_{-v}(z) = H^{(1)}_v(z) \exp(\imath\pi v) is used. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ gammasgn(x, out=None) Sign of the gamma function. It is defined as .. math:: \text{gammasgn}(x) = \begin{cases} +1 & \Gamma(x) > 0 \\ -1 & \Gamma(x) < 0 \end{cases} where :math:`\Gamma` is the gamma function; see `gamma`. This definition is complete since the gamma function is never zero; see the discussion after [dlmf]_. Parameters ---------- x : array_like Real argument out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Sign of the gamma function See Also -------- gamma : the gamma function gammaln : log of the absolute value of the gamma function loggamma : analytic continuation of the log of the gamma function Notes ----- The gamma function can be computed as ``gammasgn(x) * np.exp(gammaln(x))``. References ---------- .. [dlmf] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5.2#E1 Examples -------- >>> import numpy as np >>> import scipy.special as sc It is 1 for ``x > 0``. >>> sc.gammasgn([1, 2, 3, 4]) array([1., 1., 1., 1.]) It alternates between -1 and 1 for negative integers. >>> sc.gammasgn([-0.5, -1.5, -2.5, -3.5]) array([-1., 1., -1., 1.]) It can be used to compute the gamma function. >>> x = [1.5, 0.5, -0.5, -1.5] >>> sc.gammasgn(x) * np.exp(sc.gammaln(x)) array([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ]) >>> sc.gamma(x) array([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ]) gammaln(x, out=None) Logarithm of the absolute value of the gamma function. Defined as .. math:: \ln(\lvert\Gamma(x)\rvert) where :math:`\Gamma` is the gamma function. For more details on the gamma function, see [dlmf]_. Parameters ---------- x : array_like Real argument out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Values of the log of the absolute value of gamma See Also -------- gammasgn : sign of the gamma function loggamma : principal branch of the logarithm of the gamma function Notes ----- It is the same function as the Python standard library function :func:`math.lgamma`. When used in conjunction with `gammasgn`, this function is useful for working in logspace on the real axis without having to deal with complex numbers via the relation ``exp(gammaln(x)) = gammasgn(x) * gamma(x)``. For complex-valued log-gamma, use `loggamma` instead of `gammaln`. References ---------- .. [dlmf] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5 Examples -------- >>> import numpy as np >>> import scipy.special as sc It has two positive zeros. >>> sc.gammaln([1, 2]) array([0., 0.]) It has poles at nonpositive integers. >>> sc.gammaln([0, -1, -2, -3, -4]) array([inf, inf, inf, inf, inf]) It asymptotically approaches ``x * log(x)`` (Stirling's formula). >>> x = np.array([1e10, 1e20, 1e40, 1e80]) >>> sc.gammaln(x) array([2.20258509e+11, 4.50517019e+21, 9.11034037e+41, 1.83206807e+82]) >>> x * np.log(x) array([2.30258509e+11, 4.60517019e+21, 9.21034037e+41, 1.84206807e+82]) gammaincinv(a, y, out=None) Inverse to the regularized lower incomplete gamma function. Given an input :math:`y` between 0 and 1, returns :math:`x` such that :math:`y = P(a, x)`. Here :math:`P` is the regularized lower incomplete gamma function; see `gammainc`. This is well-defined because the lower incomplete gamma function is monotonic as can be seen from its definition in [dlmf]_. Parameters ---------- a : array_like Positive parameter y : array_like Parameter between 0 and 1, inclusive out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the inverse of the lower incomplete gamma function See Also -------- gammainc : regularized lower incomplete gamma function gammaincc : regularized upper incomplete gamma function gammainccinv : inverse of the regularized upper incomplete gamma function References ---------- .. [dlmf] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/8.2#E4 Examples -------- >>> import scipy.special as sc It starts at 0 and monotonically increases to infinity. >>> sc.gammaincinv(0.5, [0, 0.1 ,0.5, 1]) array([0. , 0.00789539, 0.22746821, inf]) It inverts the lower incomplete gamma function. >>> a, x = 0.5, [0, 0.1, 0.5, 1] >>> sc.gammainc(a, sc.gammaincinv(a, x)) array([0. , 0.1, 0.5, 1. ]) >>> a, x = 0.5, [0, 10, 25] >>> sc.gammaincinv(a, sc.gammainc(a, x)) array([ 0. , 10. , 25.00001465]) gammainccinv(a, y, out=None) Inverse of the regularized upper incomplete gamma function. Given an input :math:`y` between 0 and 1, returns :math:`x` such that :math:`y = Q(a, x)`. Here :math:`Q` is the regularized upper incomplete gamma function; see `gammaincc`. This is well-defined because the upper incomplete gamma function is monotonic as can be seen from its definition in [dlmf]_. Parameters ---------- a : array_like Positive parameter y : array_like Argument between 0 and 1, inclusive out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the inverse of the upper incomplete gamma function See Also -------- gammaincc : regularized upper incomplete gamma function gammainc : regularized lower incomplete gamma function gammaincinv : inverse of the regularized lower incomplete gamma function References ---------- .. [dlmf] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/8.2#E4 Examples -------- >>> import scipy.special as sc It starts at infinity and monotonically decreases to 0. >>> sc.gammainccinv(0.5, [0, 0.1, 0.5, 1]) array([ inf, 1.35277173, 0.22746821, 0. ]) It inverts the upper incomplete gamma function. >>> a, x = 0.5, [0, 0.1, 0.5, 1] >>> sc.gammaincc(a, sc.gammainccinv(a, x)) array([0. , 0.1, 0.5, 1. ]) >>> a, x = 0.5, [0, 10, 50] >>> sc.gammainccinv(a, sc.gammaincc(a, x)) array([ 0., 10., 50.]) gammaincc(a, x, out=None) Regularized upper incomplete gamma function. It is defined as .. math:: Q(a, x) = \frac{1}{\Gamma(a)} \int_x^\infty t^{a - 1}e^{-t} dt for :math:`a > 0` and :math:`x \geq 0`. See [dlmf]_ for details. Parameters ---------- a : array_like Positive parameter x : array_like Nonnegative argument out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the upper incomplete gamma function See Also -------- gammainc : regularized lower incomplete gamma function gammaincinv : inverse of the regularized lower incomplete gamma function gammainccinv : inverse of the regularized upper incomplete gamma function Notes ----- The function satisfies the relation ``gammainc(a, x) + gammaincc(a, x) = 1`` where `gammainc` is the regularized lower incomplete gamma function. The implementation largely follows that of [boost]_. References ---------- .. [dlmf] NIST Digital Library of Mathematical functions https://dlmf.nist.gov/8.2#E4 .. [boost] Maddock et. al., "Incomplete Gamma Functions", https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html Examples -------- >>> import scipy.special as sc It is the survival function of the gamma distribution, so it starts at 1 and monotonically decreases to 0. >>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000]) array([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45, 0.00000000e+00]) It is equal to one minus the lower incomplete gamma function. >>> a, x = 0.5, 0.4 >>> sc.gammaincc(a, x) 0.37109336952269756 >>> 1 - sc.gammainc(a, x) 0.37109336952269756 gammainc(a, x, out=None) Regularized lower incomplete gamma function. It is defined as .. math:: P(a, x) = \frac{1}{\Gamma(a)} \int_0^x t^{a - 1}e^{-t} dt for :math:`a > 0` and :math:`x \geq 0`. See [dlmf]_ for details. Parameters ---------- a : array_like Positive parameter x : array_like Nonnegative argument out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the lower incomplete gamma function See Also -------- gammaincc : regularized upper incomplete gamma function gammaincinv : inverse of the regularized lower incomplete gamma function gammainccinv : inverse of the regularized upper incomplete gamma function Notes ----- The function satisfies the relation ``gammainc(a, x) + gammaincc(a, x) = 1`` where `gammaincc` is the regularized upper incomplete gamma function. The implementation largely follows that of [boost]_. References ---------- .. [dlmf] NIST Digital Library of Mathematical functions https://dlmf.nist.gov/8.2#E4 .. [boost] Maddock et. al., "Incomplete Gamma Functions", https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html Examples -------- >>> import scipy.special as sc It is the CDF of the gamma distribution, so it starts at 0 and monotonically increases to 1. >>> sc.gammainc(0.5, [0, 1, 10, 100]) array([0. , 0.84270079, 0.99999226, 1. ]) It is equal to one minus the upper incomplete gamma function. >>> a, x = 0.5, 0.4 >>> sc.gammainc(a, x) 0.6289066304773024 >>> 1 - sc.gammaincc(a, x) 0.6289066304773024 gamma(z, out=None) gamma function. The gamma function is defined as .. math:: \Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt for :math:`\Re(z) > 0` and is extended to the rest of the complex plane by analytic continuation. See [dlmf]_ for more details. Parameters ---------- z : array_like Real or complex valued argument out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Values of the gamma function Notes ----- The gamma function is often referred to as the generalized factorial since :math:`\Gamma(n + 1) = n!` for natural numbers :math:`n`. More generally it satisfies the recurrence relation :math:`\Gamma(z + 1) = z \cdot \Gamma(z)` for complex :math:`z`, which, combined with the fact that :math:`\Gamma(1) = 1`, implies the above identity for :math:`z = n`. The gamma function has poles at non-negative integers and the sign of infinity as z approaches each pole depends upon the direction in which the pole is approached. For this reason, the consistent thing is for gamma(z) to return NaN at negative integers, and to return -inf when x = -0.0 and +inf when x = 0.0, using the signbit of zero to signify the direction in which the origin is being approached. This is for instance what is recommended for the gamma function in annex F entry 9.5.4 of the Iso C 99 standard [isoc99]_. Prior to SciPy version 1.15, ``scipy.special.gamma(z)`` returned ``+inf`` at each pole. This was fixed in version 1.15, but with the following consequence. Expressions where gamma appears in the denominator such as ``gamma(u) * gamma(v) / (gamma(w) * gamma(x))`` no longer evaluate to 0 if the numerator is well defined but there is a pole in the denominator. Instead such expressions evaluate to NaN. We recommend instead using the function `rgamma` for the reciprocal gamma function in such cases. The above expression could for instance be written as ``gamma(u) * gamma(v) * (rgamma(w) * rgamma(x))`` References ---------- .. [dlmf] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5.2#E1 .. [isoc99] https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf Examples -------- >>> import numpy as np >>> from scipy.special import gamma, factorial >>> gamma([0, 0.5, 1, 5]) array([ inf, 1.77245385, 1. , 24. ]) >>> z = 2.5 + 1j >>> gamma(z) (0.77476210455108352+0.70763120437959293j) >>> gamma(z+1), z*gamma(z) # Recurrence property ((1.2292740569981171+2.5438401155000685j), (1.2292740569981158+2.5438401155000658j)) >>> gamma(0.5)**2 # gamma(0.5) = sqrt(pi) 3.1415926535897927 Plot gamma(x) for real x >>> x = np.linspace(-3.5, 5.5, 2251) >>> y = gamma(x) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)') >>> k = np.arange(1, 7) >>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6, ... label='(x-1)!, x = 1, 2, ...') >>> plt.xlim(-3.5, 5.5) >>> plt.ylim(-10, 25) >>> plt.grid() >>> plt.xlabel('x') >>> plt.legend(loc='lower right') >>> plt.show() fresnel(z, out=None) Fresnel integrals. The Fresnel integrals are defined as .. math:: S(z) &= \int_0^z \sin(\pi t^2 /2) dt \\ C(z) &= \int_0^z \cos(\pi t^2 /2) dt. See [dlmf]_ for details. Parameters ---------- z : array_like Real or complex valued argument out : 2-tuple of ndarrays, optional Optional output arrays for the function results Returns ------- S, C : 2-tuple of scalar or ndarray Values of the Fresnel integrals See Also -------- fresnel_zeros : zeros of the Fresnel integrals References ---------- .. [dlmf] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/7.2#iii Examples -------- >>> import numpy as np >>> import scipy.special as sc As z goes to infinity along the real axis, S and C converge to 0.5. >>> S, C = sc.fresnel([0.1, 1, 10, 100, np.inf]) >>> S array([0.00052359, 0.43825915, 0.46816998, 0.4968169 , 0.5 ]) >>> C array([0.09999753, 0.7798934 , 0.49989869, 0.4999999 , 0.5 ]) They are related to the error function `erf`. >>> z = np.array([1, 2, 3, 4]) >>> zeta = 0.5 * np.sqrt(np.pi) * (1 - 1j) * z >>> S, C = sc.fresnel(z) >>> C + 1j*S array([0.7798934 +0.43825915j, 0.48825341+0.34341568j, 0.60572079+0.496313j , 0.49842603+0.42051575j]) >>> 0.5 * (1 + 1j) * sc.erf(zeta) array([0.7798934 +0.43825915j, 0.48825341+0.34341568j, 0.60572079+0.496313j , 0.49842603+0.42051575j]) dawsn(x, out=None) Dawson's integral. Computes:: exp(-x**2) * integral(exp(t**2), t=0..x). Parameters ---------- x : array_like Function parameter. out : ndarray, optional Optional output array for the function values Returns ------- y : scalar or ndarray Value of the integral. See Also -------- wofz, erf, erfc, erfcx, erfi References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva Examples -------- >>> import numpy as np >>> from scipy import special >>> import matplotlib.pyplot as plt >>> x = np.linspace(-15, 15, num=1000) >>> plt.plot(x, special.dawsn(x)) >>> plt.xlabel('$x$') >>> plt.ylabel('$dawsn(x)$') >>> plt.show() exprel(x, out=None) Relative error exponential, ``(exp(x) - 1)/x``. When `x` is near zero, ``exp(x)`` is near 1, so the numerical calculation of ``exp(x) - 1`` can suffer from catastrophic loss of precision. ``exprel(x)`` is implemented to avoid the loss of precision that occurs when `x` is near zero. Parameters ---------- x : ndarray Input array. `x` must contain real numbers. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray ``(exp(x) - 1)/x``, computed element-wise. See Also -------- expm1 Notes ----- .. versionadded:: 0.17.0 Examples -------- >>> import numpy as np >>> from scipy.special import exprel >>> exprel(0.01) 1.0050167084168056 >>> exprel([-0.25, -0.1, 0, 0.1, 0.25]) array([ 0.88479687, 0.95162582, 1. , 1.05170918, 1.13610167]) Compare ``exprel(5e-9)`` to the naive calculation. The exact value is ``1.00000000250000000416...``. >>> exprel(5e-9) 1.0000000025 >>> (np.exp(5e-9) - 1)/5e-9 0.99999999392252903 expit(x, out=None) Expit (a.k.a. logistic sigmoid) ufunc for ndarrays. The expit function, also known as the logistic sigmoid function, is defined as ``expit(x) = 1/(1+exp(-x))``. It is the inverse of the logit function. Parameters ---------- x : ndarray The ndarray to apply expit to element-wise. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray An ndarray of the same shape as x. Its entries are `expit` of the corresponding entry of x. See Also -------- logit Notes ----- As a ufunc expit takes a number of optional keyword arguments. For more information see `ufuncs `_ .. versionadded:: 0.10.0 Examples -------- >>> import numpy as np >>> from scipy.special import expit, logit >>> expit([-np.inf, -1.5, 0, 1.5, np.inf]) array([ 0. , 0.18242552, 0.5 , 0.81757448, 1. ]) `logit` is the inverse of `expit`: >>> logit(expit([-2.5, 0, 3.1, 5.0])) array([-2.5, 0. , 3.1, 5. ]) Plot expit(x) for x in [-6, 6]: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-6, 6, 121) >>> y = expit(x) >>> plt.plot(x, y) >>> plt.grid() >>> plt.xlim(-6, 6) >>> plt.xlabel('x') >>> plt.title('expit(x)') >>> plt.show() erfcx(x, out=None) Scaled complementary error function, ``exp(x**2) * erfc(x)``. Parameters ---------- x : array_like Real or complex valued argument out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Values of the scaled complementary error function See Also -------- erf, erfc, erfi, dawsn, wofz Notes ----- .. versionadded:: 0.12.0 References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva Examples -------- >>> import numpy as np >>> from scipy import special >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3) >>> plt.plot(x, special.erfcx(x)) >>> plt.xlabel('$x$') >>> plt.ylabel('$erfcx(x)$') >>> plt.show() erfi(z, out=None) Imaginary error function, ``-i erf(i z)``. Parameters ---------- z : array_like Real or complex valued argument out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Values of the imaginary error function See Also -------- erf, erfc, erfcx, dawsn, wofz Notes ----- .. versionadded:: 0.12.0 References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva Examples -------- >>> import numpy as np >>> from scipy import special >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3) >>> plt.plot(x, special.erfi(x)) >>> plt.xlabel('$x$') >>> plt.ylabel('$erfi(x)$') >>> plt.show() erfc(x, out=None) Complementary error function, ``1 - erf(x)``. Parameters ---------- x : array_like Real or complex valued argument out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Values of the complementary error function See Also -------- erf, erfi, erfcx, dawsn, wofz References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva Examples -------- >>> import numpy as np >>> from scipy import special >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3) >>> plt.plot(x, special.erfc(x)) >>> plt.xlabel('$x$') >>> plt.ylabel('$erfc(x)$') >>> plt.show() erf(z, out=None) Returns the error function of complex argument. It is defined as ``2/sqrt(pi)*integral(exp(-t**2), t=0..z)``. Parameters ---------- x : ndarray Input array. out : ndarray, optional Optional output array for the function values Returns ------- res : scalar or ndarray The values of the error function at the given points `x`. See Also -------- erfc, erfinv, erfcinv, wofz, erfcx, erfi Notes ----- The cumulative of the unit normal distribution is given by ``Phi(z) = 1/2[1 + erf(z/sqrt(2))]``. References ---------- .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. http://www.math.sfu.ca/~cbm/aands/page_297.htm .. [3] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva Examples -------- >>> import numpy as np >>> from scipy import special >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3) >>> plt.plot(x, special.erf(x)) >>> plt.xlabel('$x$') >>> plt.ylabel('$erf(x)$') >>> plt.show() expi(x, out=None) Exponential integral Ei. For real :math:`x`, the exponential integral is defined as [1]_ .. math:: Ei(x) = \int_{-\infty}^x \frac{e^t}{t} dt. For :math:`x > 0` the integral is understood as a Cauchy principal value. It is extended to the complex plane by analytic continuation of the function on the interval :math:`(0, \infty)`. The complex variant has a branch cut on the negative real axis. Parameters ---------- x : array_like Real or complex valued argument out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Values of the exponential integral See Also -------- exp1 : Exponential integral :math:`E_1` expn : Generalized exponential integral :math:`E_n` Notes ----- The exponential integrals :math:`E_1` and :math:`Ei` satisfy the relation .. math:: E_1(x) = -Ei(-x) for :math:`x > 0`. References ---------- .. [1] Digital Library of Mathematical Functions, 6.2.5 https://dlmf.nist.gov/6.2#E5 Examples -------- >>> import numpy as np >>> import scipy.special as sc It is related to `exp1`. >>> x = np.array([1, 2, 3, 4]) >>> -sc.expi(-x) array([0.21938393, 0.04890051, 0.01304838, 0.00377935]) >>> sc.exp1(x) array([0.21938393, 0.04890051, 0.01304838, 0.00377935]) The complex variant has a branch cut on the negative real axis. >>> sc.expi(-1 + 1e-12j) (-0.21938393439552062+3.1415926535894254j) >>> sc.expi(-1 - 1e-12j) (-0.21938393439552062-3.1415926535894254j) As the complex variant approaches the branch cut, the real parts approach the value of the real variant. >>> sc.expi(-1) -0.21938393439552062 The SciPy implementation returns the real variant for complex values on the branch cut. >>> sc.expi(complex(-1, 0.0)) (-0.21938393439552062-0j) >>> sc.expi(complex(-1, -0.0)) (-0.21938393439552062-0j) exp1(z, out=None) Exponential integral E1. For complex :math:`z \ne 0` the exponential integral can be defined as [1]_ .. math:: E_1(z) = \int_z^\infty \frac{e^{-t}}{t} dt, where the path of the integral does not cross the negative real axis or pass through the origin. Parameters ---------- z: array_like Real or complex argument. out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Values of the exponential integral E1 See Also -------- expi : exponential integral :math:`Ei` expn : generalization of :math:`E_1` Notes ----- For :math:`x > 0` it is related to the exponential integral :math:`Ei` (see `expi`) via the relation .. math:: E_1(x) = -Ei(-x). References ---------- .. [1] Digital Library of Mathematical Functions, 6.2.1 https://dlmf.nist.gov/6.2#E1 Examples -------- >>> import numpy as np >>> import scipy.special as sc It has a pole at 0. >>> sc.exp1(0) inf It has a branch cut on the negative real axis. >>> sc.exp1(-1) nan >>> sc.exp1(complex(-1, 0)) (-1.8951178163559368-3.141592653589793j) >>> sc.exp1(complex(-1, -0.0)) (-1.8951178163559368+3.141592653589793j) It approaches 0 along the positive real axis. >>> sc.exp1([1, 10, 100, 1000]) array([2.19383934e-01, 4.15696893e-06, 3.68359776e-46, 0.00000000e+00]) It is related to `expi`. >>> x = np.array([1, 2, 3, 4]) >>> sc.exp1(x) array([0.21938393, 0.04890051, 0.01304838, 0.00377935]) >>> -sc.expi(-x) array([0.21938393, 0.04890051, 0.01304838, 0.00377935]) exp10(x, out=None) Compute ``10**x`` element-wise. Parameters ---------- x : array_like `x` must contain real numbers. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray ``10**x``, computed element-wise. Examples -------- >>> import numpy as np >>> from scipy.special import exp10 >>> exp10(3) 1000.0 >>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]]) >>> exp10(x) array([[ 0.1 , 0.31622777, 1. ], [ 3.16227766, 10. , 31.6227766 ]]) exp2(x, out=None) Compute ``2**x`` element-wise. Parameters ---------- x : array_like `x` must contain real numbers. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray ``2**x``, computed element-wise. Examples -------- >>> import numpy as np >>> from scipy.special import exp2 >>> exp2(3) 8.0 >>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]]) >>> exp2(x) array([[ 0.5 , 0.70710678, 1. ], [ 1.41421356, 2. , 2.82842712]]) expm1(x, out=None) Compute ``exp(x) - 1``. When `x` is near zero, ``exp(x)`` is near 1, so the numerical calculation of ``exp(x) - 1`` can suffer from catastrophic loss of precision. ``expm1(x)`` is implemented to avoid the loss of precision that occurs when `x` is near zero. Parameters ---------- x : array_like `x` must contain real numbers. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray ``exp(x) - 1`` computed element-wise. Examples -------- >>> import numpy as np >>> from scipy.special import expm1 >>> expm1(1.0) 1.7182818284590451 >>> expm1([-0.2, -0.1, 0, 0.1, 0.2]) array([-0.18126925, -0.09516258, 0. , 0.10517092, 0.22140276]) The exact value of ``exp(7.5e-13) - 1`` is:: 7.5000000000028125000000007031250000001318...*10**-13. Here is what ``expm1(7.5e-13)`` gives: >>> expm1(7.5e-13) 7.5000000000028135e-13 Compare that to ``exp(7.5e-13) - 1``, where the subtraction results in a "catastrophic" loss of precision: >>> np.exp(7.5e-13) - 1 7.5006667543675576e-13 log1p(x, out=None) Calculates log(1 + x) for use when `x` is near zero. Parameters ---------- x : array_like Real or complex valued input. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Values of ``log(1 + x)``. See Also -------- expm1, cosm1 Examples -------- >>> import numpy as np >>> import scipy.special as sc It is more accurate than using ``log(1 + x)`` directly for ``x`` near 0. Note that in the below example ``1 + 1e-17 == 1`` to double precision. >>> sc.log1p(1e-17) 1e-17 >>> np.log(1 + 1e-17) 0.0 Internal function, do not use. xlog1py(x, y, out=None) Compute ``x*log1p(y)`` so that the result is 0 if ``x = 0``. Parameters ---------- x : array_like Multiplier y : array_like Argument out : ndarray, optional Optional output array for the function results Returns ------- z : scalar or ndarray Computed x*log1p(y) Notes ----- .. versionadded:: 0.13.0 Examples -------- This example shows how the function can be used to calculate the log of the probability mass function for a geometric discrete random variable. The probability mass function of the geometric distribution is defined as follows: .. math:: f(k) = (1-p)^{k-1} p where :math:`p` is the probability of a single success and :math:`1-p` is the probability of a single failure and :math:`k` is the number of trials to get the first success. >>> import numpy as np >>> from scipy.special import xlog1py >>> p = 0.5 >>> k = 100 >>> _pmf = np.power(1 - p, k - 1) * p >>> _pmf 7.888609052210118e-31 If we take k as a relatively large number the value of the probability mass function can become very low. In such cases taking the log of the pmf would be more suitable as the log function can change the values to a scale that is more appropriate to work with. >>> _log_pmf = xlog1py(k - 1, -p) + np.log(p) >>> _log_pmf -69.31471805599453 We can confirm that we get a value close to the original pmf value by taking the exponential of the log pmf. >>> _orig_pmf = np.exp(_log_pmf) >>> np.isclose(_pmf, _orig_pmf) True xlogy(x, y, out=None) Compute ``x*log(y)`` so that the result is 0 if ``x = 0``. Parameters ---------- x : array_like Multiplier y : array_like Argument out : ndarray, optional Optional output array for the function results Returns ------- z : scalar or ndarray Computed x*log(y) Notes ----- The log function used in the computation is the natural log. .. versionadded:: 0.13.0 Examples -------- We can use this function to calculate the binary logistic loss also known as the binary cross entropy. This loss function is used for binary classification problems and is defined as: .. math:: L = 1/n * \\sum_{i=0}^n -(y_i*log(y\\_pred_i) + (1-y_i)*log(1-y\\_pred_i)) We can define the parameters `x` and `y` as y and y_pred respectively. y is the array of the actual labels which over here can be either 0 or 1. y_pred is the array of the predicted probabilities with respect to the positive class (1). >>> import numpy as np >>> from scipy.special import xlogy >>> y = np.array([0, 1, 0, 1, 1, 0]) >>> y_pred = np.array([0.3, 0.8, 0.4, 0.7, 0.9, 0.2]) >>> n = len(y) >>> loss = -(xlogy(y, y_pred) + xlogy(1 - y, 1 - y_pred)).sum() >>> loss /= n >>> loss 0.29597052165495025 A lower loss is usually better as it indicates that the predictions are similar to the actual labels. In this example since our predicted probabilities are close to the actual labels, we get an overall loss that is reasonably low and appropriate. ellipkinc(phi, m, out=None) Incomplete elliptic integral of the first kind This function is defined as .. math:: K(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{-1/2} dt This function is also called :math:`F(\phi, m)`. Parameters ---------- phi : array_like amplitude of the elliptic integral m : array_like parameter of the elliptic integral out : ndarray, optional Optional output array for the function values Returns ------- K : scalar or ndarray Value of the elliptic integral See Also -------- ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1 ellipk : Complete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind ellipeinc : Incomplete elliptic integral of the second kind elliprf : Completely-symmetric elliptic integral of the first kind. Notes ----- Wrapper for the Cephes [1]_ routine `ellik`. The computation is carried out using the arithmetic-geometric mean algorithm. The parameterization in terms of :math:`m` follows that of section 17.2 in [2]_. Other parameterizations in terms of the complementary parameter :math:`1 - m`, modular angle :math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also used, so be careful that you choose the correct parameter. The Legendre K incomplete integral (or F integral) is related to Carlson's symmetric R_F function [3]_. Setting :math:`c = \csc^2\phi`, .. math:: F(\phi, m) = R_F(c-1, c-k^2, c) . References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ .. [2] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. .. [3] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i ellipk(m, out=None) Complete elliptic integral of the first kind. This function is defined as .. math:: K(m) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{-1/2} dt Parameters ---------- m : array_like The parameter of the elliptic integral. out : ndarray, optional Optional output array for the function values Returns ------- K : scalar or ndarray Value of the elliptic integral. See Also -------- ellipkm1 : Complete elliptic integral of the first kind around m = 1 ellipkinc : Incomplete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind ellipeinc : Incomplete elliptic integral of the second kind elliprf : Completely-symmetric elliptic integral of the first kind. Notes ----- For more precision around point m = 1, use `ellipkm1`, which this function calls. The parameterization in terms of :math:`m` follows that of section 17.2 in [1]_. Other parameterizations in terms of the complementary parameter :math:`1 - m`, modular angle :math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also used, so be careful that you choose the correct parameter. The Legendre K integral is related to Carlson's symmetric R_F function by [2]_: .. math:: K(m) = R_F(0, 1-k^2, 1) . References ---------- .. [1] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i ellipkm1(p, out=None) Complete elliptic integral of the first kind around `m` = 1 This function is defined as .. math:: K(p) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt where `m = 1 - p`. Parameters ---------- p : array_like Defines the parameter of the elliptic integral as `m = 1 - p`. out : ndarray, optional Optional output array for the function values Returns ------- K : scalar or ndarray Value of the elliptic integral. See Also -------- ellipk : Complete elliptic integral of the first kind ellipkinc : Incomplete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind ellipeinc : Incomplete elliptic integral of the second kind elliprf : Completely-symmetric elliptic integral of the first kind. Notes ----- Wrapper for the Cephes [1]_ routine `ellpk`. For ``p <= 1``, computation uses the approximation, .. math:: K(p) \\approx P(p) - \\log(p) Q(p), where :math:`P` and :math:`Q` are tenth-order polynomials. The argument `p` is used internally rather than `m` so that the logarithmic singularity at ``m = 1`` will be shifted to the origin; this preserves maximum accuracy. For ``p > 1``, the identity .. math:: K(p) = K(1/p)/\\sqrt(p) is used. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ ellipj(u, m, out=None) Jacobian elliptic functions Calculates the Jacobian elliptic functions of parameter `m` between 0 and 1, and real argument `u`. Parameters ---------- u : array_like Argument. m : array_like Parameter. out : tuple of ndarray, optional Optional output arrays for the function values Returns ------- sn, cn, dn, ph : 4-tuple of scalar or ndarray The returned functions:: sn(u|m), cn(u|m), dn(u|m) The value `ph` is such that if ``u = ellipkinc(ph, m)``, then ``sn(u|m) = sin(ph)`` and ``cn(u|m) = cos(ph)``. See Also -------- ellipk : Complete elliptic integral of the first kind ellipkinc : Incomplete elliptic integral of the first kind Notes ----- Wrapper for the Cephes [1]_ routine ``ellpj``. These functions are periodic, with quarter-period on the real axis equal to the complete elliptic integral ``ellipk(m)``. Relation to incomplete elliptic integral: If ``u = ellipkinc(phi,m)``, then ``sn(u|m) = sin(phi)``, and ``cn(u|m) = cos(phi)``. The ``phi`` is called the amplitude of `u`. Computation is by means of the arithmetic-geometric mean algorithm, except when `m` is within 1e-9 of 0 or 1. In the latter case with `m` close to 1, the approximation applies only for ``phi < pi/2``. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ ellipeinc(phi, m, out=None) Incomplete elliptic integral of the second kind This function is defined as .. math:: E(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{1/2} dt Parameters ---------- phi : array_like amplitude of the elliptic integral. m : array_like parameter of the elliptic integral. out : ndarray, optional Optional output array for the function values Returns ------- E : scalar or ndarray Value of the elliptic integral. See Also -------- ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1 ellipk : Complete elliptic integral of the first kind ellipkinc : Incomplete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind elliprd : Symmetric elliptic integral of the second kind. elliprf : Completely-symmetric elliptic integral of the first kind. elliprg : Completely-symmetric elliptic integral of the second kind. Notes ----- Wrapper for the Cephes [1]_ routine `ellie`. Computation uses arithmetic-geometric means algorithm. The parameterization in terms of :math:`m` follows that of section 17.2 in [2]_. Other parameterizations in terms of the complementary parameter :math:`1 - m`, modular angle :math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also used, so be careful that you choose the correct parameter. The Legendre E incomplete integral can be related to combinations of Carlson's symmetric integrals R_D, R_F, and R_G in multiple ways [3]_. For example, with :math:`c = \csc^2\phi`, .. math:: E(\phi, m) = R_F(c-1, c-k^2, c) - \frac{1}{3} k^2 R_D(c-1, c-k^2, c) . References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ .. [2] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. .. [3] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i ellipe(m, out=None) Complete elliptic integral of the second kind This function is defined as .. math:: E(m) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{1/2} dt Parameters ---------- m : array_like Defines the parameter of the elliptic integral. out : ndarray, optional Optional output array for the function values Returns ------- E : scalar or ndarray Value of the elliptic integral. See Also -------- ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1 ellipk : Complete elliptic integral of the first kind ellipkinc : Incomplete elliptic integral of the first kind ellipeinc : Incomplete elliptic integral of the second kind elliprd : Symmetric elliptic integral of the second kind. elliprg : Completely-symmetric elliptic integral of the second kind. Notes ----- Wrapper for the Cephes [1]_ routine `ellpe`. For ``m > 0`` the computation uses the approximation, .. math:: E(m) \approx P(1-m) - (1-m) \log(1-m) Q(1-m), where :math:`P` and :math:`Q` are tenth-order polynomials. For ``m < 0``, the relation .. math:: E(m) = E(m/(m - 1)) \sqrt(1-m) is used. The parameterization in terms of :math:`m` follows that of section 17.2 in [2]_. Other parameterizations in terms of the complementary parameter :math:`1 - m`, modular angle :math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also used, so be careful that you choose the correct parameter. The Legendre E integral is related to Carlson's symmetric R_D or R_G functions in multiple ways [3]_. For example, .. math:: E(m) = 2 R_G(0, 1-k^2, 1) . References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ .. [2] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. .. [3] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i Examples -------- This function is used in finding the circumference of an ellipse with semi-major axis `a` and semi-minor axis `b`. >>> import numpy as np >>> from scipy import special >>> a = 3.5 >>> b = 2.1 >>> e_sq = 1.0 - b**2/a**2 # eccentricity squared Then the circumference is found using the following: >>> C = 4*a*special.ellipe(e_sq) # circumference formula >>> C 17.868899204378693 When `a` and `b` are the same (meaning eccentricity is 0), this reduces to the circumference of a circle. >>> 4*a*special.ellipe(0.0) # formula for ellipse with a = b 21.991148575128552 >>> 2*np.pi*a # formula for circle of radius a 21.991148575128552 cotdg(x, out=None) Cotangent of the angle `x` given in degrees. Parameters ---------- x : array_like Angle, given in degrees. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Cotangent at the input. See Also -------- sindg, cosdg, tandg Examples -------- >>> import numpy as np >>> import scipy.special as sc It is more accurate than using cotangent directly. >>> x = 90 + 180 * np.arange(3) >>> sc.cotdg(x) array([0., 0., 0.]) >>> 1 / np.tan(x * np.pi / 180) array([6.1232340e-17, 1.8369702e-16, 3.0616170e-16]) binom(x, y, out=None) Binomial coefficient considered as a function of two real variables. For real arguments, the binomial coefficient is defined as .. math:: \binom{x}{y} = \frac{\Gamma(x + 1)}{\Gamma(y + 1)\Gamma(x - y + 1)} = \frac{1}{(x + 1)\mathrm{B}(x - y + 1, y + 1)} Where :math:`\Gamma` is the Gamma function (`gamma`) and :math:`\mathrm{B}` is the Beta function (`beta`) [1]_. Parameters ---------- x, y: array_like Real arguments to :math:`\binom{x}{y}`. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray Value of binomial coefficient. See Also -------- comb : The number of combinations of N things taken k at a time. Notes ----- The Gamma function has poles at non-positive integers and tends to either positive or negative infinity depending on the direction on the real line from which a pole is approached. When considered as a function of two real variables, :math:`\binom{x}{y}` is thus undefined when `x` is a negative integer. `binom` returns ``nan`` when ``x`` is a negative integer. This is the case even when ``x`` is a negative integer and ``y`` an integer, contrary to the usual convention for defining :math:`\binom{n}{k}` when it is considered as a function of two integer variables. References ---------- .. [1] https://en.wikipedia.org/wiki/Binomial_coefficient Examples -------- The following examples illustrate the ways in which `binom` differs from the function `comb`. >>> from scipy.special import binom, comb When ``exact=False`` and ``x`` and ``y`` are both positive, `comb` calls `binom` internally. >>> x, y = 3, 2 >>> (binom(x, y), comb(x, y), comb(x, y, exact=True)) (3.0, 3.0, 3) For larger values, `comb` with ``exact=True`` no longer agrees with `binom`. >>> x, y = 43, 23 >>> (binom(x, y), comb(x, y), comb(x, y, exact=True)) (960566918219.9999, 960566918219.9999, 960566918220) `binom` returns ``nan`` when ``x`` is a negative integer, but is otherwise defined for negative arguments. `comb` returns 0 whenever one of ``x`` or ``y`` is negative or ``x`` is less than ``y``. >>> x, y = -3, 2 >>> (binom(x, y), comb(x, y)) (nan, 0.0) >>> x, y = -3.1, 2.2 >>> (binom(x, y), comb(x, y)) (18.714147876804432, 0.0) >>> x, y = 2.2, 3.1 >>> (binom(x, y), comb(x, y)) (0.037399983365134115, 0.0) berp(x, out=None) Derivative of the Kelvin function ber. Parameters ---------- x : array_like Real argument. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray The values of the derivative of ber. See Also -------- ber References ---------- .. [dlmf] NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/10#PT5 ber(x, out=None) Kelvin function ber. Defined as .. math:: \mathrm{ber}(x) = \Re[J_0(x e^{3 \pi i / 4})] where :math:`J_0` is the Bessel function of the first kind of order zero (see `jv`). See [dlmf]_ for more details. Parameters ---------- x : array_like Real argument. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Values of the Kelvin function. See Also -------- bei : the corresponding real part berp : the derivative of bei jv : Bessel function of the first kind References ---------- .. [dlmf] NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/10.61 Examples -------- It can be expressed using Bessel functions. >>> import numpy as np >>> import scipy.special as sc >>> x = np.array([1.0, 2.0, 3.0, 4.0]) >>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).real array([ 0.98438178, 0.75173418, -0.22138025, -2.56341656]) >>> sc.ber(x) array([ 0.98438178, 0.75173418, -0.22138025, -2.56341656]) beip(x, out=None) Derivative of the Kelvin function bei. Parameters ---------- x : array_like Real argument. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray The values of the derivative of bei. See Also -------- bei References ---------- .. [dlmf] NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/10#PT5 bei(x, out=None) Kelvin function bei. Defined as .. math:: \mathrm{bei}(x) = \Im[J_0(x e^{3 \pi i / 4})] where :math:`J_0` is the Bessel function of the first kind of order zero (see `jv`). See [dlmf]_ for more details. Parameters ---------- x : array_like Real argument. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Values of the Kelvin function. See Also -------- ber : the corresponding real part beip : the derivative of bei jv : Bessel function of the first kind References ---------- .. [dlmf] NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/10.61 Examples -------- It can be expressed using Bessel functions. >>> import numpy as np >>> import scipy.special as sc >>> x = np.array([1.0, 2.0, 3.0, 4.0]) >>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).imag array([0.24956604, 0.97229163, 1.93758679, 2.29269032]) >>> sc.bei(x) array([0.24956604, 0.97229163, 1.93758679, 2.29269032]) airye(z, out=None) Exponentially scaled Airy functions and their derivatives. Scaling:: eAi = Ai * exp(2.0/3.0*z*sqrt(z)) eAip = Aip * exp(2.0/3.0*z*sqrt(z)) eBi = Bi * exp(-abs(2.0/3.0*(z*sqrt(z)).real)) eBip = Bip * exp(-abs(2.0/3.0*(z*sqrt(z)).real)) Parameters ---------- z : array_like Real or complex argument. out : tuple of ndarray, optional Optional output arrays for the function values Returns ------- eAi, eAip, eBi, eBip : 4-tuple of scalar or ndarray Exponentially scaled Airy functions eAi and eBi, and their derivatives eAip and eBip See Also -------- airy Notes ----- Wrapper for the AMOS [1]_ routines `zairy` and `zbiry`. References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ Examples -------- We can compute exponentially scaled Airy functions and their derivatives: >>> import numpy as np >>> from scipy.special import airye >>> import matplotlib.pyplot as plt >>> z = np.linspace(0, 50, 500) >>> eAi, eAip, eBi, eBip = airye(z) >>> f, ax = plt.subplots(2, 1, sharex=True) >>> for ind, data in enumerate([[eAi, eAip, ["eAi", "eAip"]], ... [eBi, eBip, ["eBi", "eBip"]]]): ... ax[ind].plot(z, data[0], "-r", z, data[1], "-b") ... ax[ind].legend(data[2]) ... ax[ind].grid(True) >>> plt.show() We can compute these using usual non-scaled Airy functions by: >>> from scipy.special import airy >>> Ai, Aip, Bi, Bip = airy(z) >>> np.allclose(eAi, Ai * np.exp(2.0 / 3.0 * z * np.sqrt(z))) True >>> np.allclose(eAip, Aip * np.exp(2.0 / 3.0 * z * np.sqrt(z))) True >>> np.allclose(eBi, Bi * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z))))) True >>> np.allclose(eBip, Bip * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z))))) True Comparing non-scaled and exponentially scaled ones, the usual non-scaled function quickly underflows for large values, whereas the exponentially scaled function does not. >>> airy(200) (0.0, 0.0, nan, nan) >>> airye(200) (0.07501041684381093, -1.0609012305109042, 0.15003188417418148, 2.1215836725571093) airy(z, out=None) Airy functions and their derivatives. Parameters ---------- z : array_like Real or complex argument. out : tuple of ndarray, optional Optional output arrays for the function values Returns ------- Ai, Aip, Bi, Bip : 4-tuple of scalar or ndarray Airy functions Ai and Bi, and their derivatives Aip and Bip. See Also -------- airye : exponentially scaled Airy functions. Notes ----- The Airy functions Ai and Bi are two independent solutions of .. math:: y''(x) = x y(x). For real `z` in [-10, 10], the computation is carried out by calling the Cephes [1]_ `airy` routine, which uses power series summation for small `z` and rational minimax approximations for large `z`. Outside this range, the AMOS [2]_ `zairy` and `zbiry` routines are employed. They are computed using power series for :math:`|z| < 1` and the following relations to modified Bessel functions for larger `z` (where :math:`t \equiv 2 z^{3/2}/3`): .. math:: Ai(z) = \frac{1}{\pi \sqrt{3}} K_{1/3}(t) Ai'(z) = -\frac{z}{\pi \sqrt{3}} K_{2/3}(t) Bi(z) = \sqrt{\frac{z}{3}} \left(I_{-1/3}(t) + I_{1/3}(t) \right) Bi'(z) = \frac{z}{\sqrt{3}} \left(I_{-2/3}(t) + I_{2/3}(t)\right) References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ .. [2] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ Examples -------- Compute the Airy functions on the interval [-15, 5]. >>> import numpy as np >>> from scipy import special >>> x = np.linspace(-15, 5, 201) >>> ai, aip, bi, bip = special.airy(x) Plot Ai(x) and Bi(x). >>> import matplotlib.pyplot as plt >>> plt.plot(x, ai, 'r', label='Ai(x)') >>> plt.plot(x, bi, 'b--', label='Bi(x)') >>> plt.ylim(-0.5, 1.0) >>> plt.grid() >>> plt.legend(loc='upper left') >>> plt.show() zetac(x, out=None) Riemann zeta function minus 1. This function is defined as .. math:: \\zeta(x) = \\sum_{k=2}^{\\infty} 1 / k^x, where ``x > 1``. For ``x < 1`` the analytic continuation is computed. For more information on the Riemann zeta function, see [dlmf]_. Parameters ---------- x : array_like of float Values at which to compute zeta(x) - 1 (must be real). out : ndarray, optional Optional output array for the function results Returns ------- scalar or ndarray Values of zeta(x) - 1. See Also -------- zeta References ---------- .. [dlmf] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/25 Examples -------- >>> import numpy as np >>> from scipy.special import zetac, zeta Some special values: >>> zetac(2), np.pi**2/6 - 1 (0.64493406684822641, 0.6449340668482264) >>> zetac(-1), -1.0/12 - 1 (-1.0833333333333333, -1.0833333333333333) Compare ``zetac(x)`` to ``zeta(x) - 1`` for large `x`: >>> zetac(60), zeta(60) - 1 (8.673617380119933e-19, 0.0) _zeta(x, q) Internal function, Hurwitz zeta. sindg(x, out=None) Sine of the angle `x` given in degrees. Parameters ---------- x : array_like Angle, given in degrees. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Sine at the input. See Also -------- cosdg, tandg, cotdg Examples -------- >>> import numpy as np >>> import scipy.special as sc It is more accurate than using sine directly. >>> x = 180 * np.arange(3) >>> sc.sindg(x) array([ 0., -0., 0.]) >>> np.sin(x * np.pi / 180) array([ 0.0000000e+00, 1.2246468e-16, -2.4492936e-16]) cosm1(x, out=None) cos(x) - 1 for use when `x` is near zero. Parameters ---------- x : array_like Real valued argument. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Values of ``cos(x) - 1``. See Also -------- expm1, log1p Examples -------- >>> import numpy as np >>> import scipy.special as sc It is more accurate than computing ``cos(x) - 1`` directly for ``x`` around 0. >>> x = 1e-30 >>> np.cos(x) - 1 0.0 >>> sc.cosm1(x) -5.0000000000000005e-61 cosdg(x, out=None) Cosine of the angle `x` given in degrees. Parameters ---------- x : array_like Angle, given in degrees. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Cosine of the input. See Also -------- sindg, tandg, cotdg Examples -------- >>> import numpy as np >>> import scipy.special as sc It is more accurate than using cosine directly. >>> x = 90 + 180 * np.arange(3) >>> sc.cosdg(x) array([-0., 0., -0.]) >>> np.cos(x * np.pi / 180) array([ 6.1232340e-17, -1.8369702e-16, 3.0616170e-16]) cbrt(x, out=None) Element-wise cube root of `x`. Parameters ---------- x : array_like `x` must contain real numbers. out : ndarray, optional Optional output array for the function values Returns ------- scalar or ndarray The cube root of each value in `x`. Examples -------- >>> from scipy.special import cbrt >>> cbrt(8) 2.0 >>> cbrt([-8, -3, 0.125, 1.331]) array([-2. , -1.44224957, 0.5 , 1.1 ]) betaln(a, b, out=None) Natural logarithm of absolute value of beta function. Computes ``ln(abs(beta(a, b)))``. Parameters ---------- a, b : array_like Positive, real-valued parameters out : ndarray, optional Optional output array for function values Returns ------- scalar or ndarray Value of the betaln function See Also -------- gamma : the gamma function betainc : the regularized incomplete beta function beta : the beta function Examples -------- >>> import numpy as np >>> from scipy.special import betaln, beta Verify that, for moderate values of ``a`` and ``b``, ``betaln(a, b)`` is the same as ``log(beta(a, b))``: >>> betaln(3, 4) -4.0943445622221 >>> np.log(beta(3, 4)) -4.0943445622221 In the following ``beta(a, b)`` underflows to 0, so we can't compute the logarithm of the actual value. >>> a = 400 >>> b = 900 >>> beta(a, b) 0.0 We can compute the logarithm of ``beta(a, b)`` by using `betaln`: >>> betaln(a, b) -804.3069951764146 beta(a, b, out=None) Beta function. This function is defined in [1]_ as .. math:: B(a, b) = \int_0^1 t^{a-1}(1-t)^{b-1}dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}, where :math:`\Gamma` is the gamma function. Parameters ---------- a, b : array_like Real-valued arguments out : ndarray, optional Optional output array for the function result Returns ------- scalar or ndarray Value of the beta function See Also -------- gamma : the gamma function betainc : the regularized incomplete beta function betaln : the natural logarithm of the absolute value of the beta function References ---------- .. [1] NIST Digital Library of Mathematical Functions, Eq. 5.12.1. https://dlmf.nist.gov/5.12 Examples -------- >>> import scipy.special as sc The beta function relates to the gamma function by the definition given above: >>> sc.beta(2, 3) 0.08333333333333333 >>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3) 0.08333333333333333 As this relationship demonstrates, the beta function is symmetric: >>> sc.beta(1.7, 2.4) 0.16567527689031739 >>> sc.beta(2.4, 1.7) 0.16567527689031739 This function satisfies :math:`B(1, b) = 1/b`: >>> sc.beta(1, 4) 0.25 besselpoly(a, lmb, nu, out=None) Weighted integral of the Bessel function of the first kind. Computes .. math:: \int_0^1 x^\lambda J_\nu(2 a x) \, dx where :math:`J_\nu` is a Bessel function and :math:`\lambda=lmb`, :math:`\nu=nu`. Parameters ---------- a : array_like Scale factor inside the Bessel function. lmb : array_like Power of `x` nu : array_like Order of the Bessel function. out : ndarray, optional Optional output array for the function results. Returns ------- scalar or ndarray Value of the integral. References ---------- .. [1] Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ Examples -------- Evaluate the function for one parameter set. >>> from scipy.special import besselpoly >>> besselpoly(1, 1, 1) 0.24449718372863877 Evaluate the function for different scale factors. >>> import numpy as np >>> factors = np.array([0., 3., 6.]) >>> besselpoly(factors, 1, 1) array([ 0. , -0.00549029, 0.00140174]) Plot the function for varying powers, orders and scales. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> powers = np.linspace(0, 10, 100) >>> orders = [1, 2, 3] >>> scales = [1, 2] >>> all_combinations = [(order, scale) for order in orders ... for scale in scales] >>> for order, scale in all_combinations: ... ax.plot(powers, besselpoly(scale, powers, order), ... label=rf"$\nu={order}, a={scale}$") >>> ax.legend() >>> ax.set_xlabel(r"$\lambda$") >>> ax.set_ylabel(r"$\int_0^1 x^{\lambda} J_{\nu}(2ax)\,dx$") >>> plt.show() ?scipy.special/%s: (%s) %sscipy.special/%s: %sscipy.specialSpecialFunctionWarningSpecialFunctionErrorno errorsingularitytoo slow convergenceloss of precisionno result obtaineddomain errorinvalid input argumentother errormemory allocation failedstd::bad_array_new_lengthSt20bad_array_new_length;D-3e3f33P3THH|DKTKptKKKKKL4LTLtL$L8LLL`LtM4MTMtMMMM M N( 4N< TN`(N*N,*OD*T*$T*U*U*U +V8+W+Dc,Tc,dc(,tc<,cP,cd,cx,c,c,c,c,c,d,d-$d-dH1ThT8hh8h|8diOvdOV4 ]`t`D`ԍleİee4etff4ffgTghhi4ijt jT jjD8kDTkpkkklDld mT#8m'p*`q8qG|tTUtueufvTfvi,vk@vm\vpxvrvuvuvuvw$wĔwLy4@$dThd|dܤ$(Dȥ dDD#T/8HDj0h4X4P*(<0ltdDHԼT$TX4`t0DXP 4d Tx t  4!T!t,!@!T!h!|!!4!T!t!!!""0"4D"TX"tl""""""4"T"t # #4#H#\#p#4#T#t#####$4$$T8$tL$`$t$$$$4$T$t$%%(%<%P%4d%Tx%t%%%%T%&8&tt&&D&&'4('T' x' '4 ' ' ' 'D ( $(x(D((d((t()L)T|))t))**4 +L+*+*8-t,X--p---.-/-0-4.5,.6D.7\.8t.$:.t;.<.>.?.@ /DAP/$B/C/E0G<0IT0DKl0L0TO0P1DR$1Up1V1X1]1a2deD2hp2j2m2p2r2t 3Du03yt3|33d$44L44ԓ44T,5Dt555T6P66D66d6,7l77@8848@9t9$9:D`:::8;4;4;<X<<<0=x==D>P>>>4(?p?t?D@H@@T@ AhAAdA@BBtB4C`CCCT8DDD4EXEtE$E0F4FFGt\GGGT4H|HH IDTI4I4JXJJJ0KKKtLTLM `M MtPM`,NDi|NyN$OĂOLP(P\ QDmQQTRR$SLSSTST DT TTTtUUT@VV#4W'Wd)W*Wt, X,$X/HXd0xX1X7X<@Y?pYCYDYFYGZ$I$ZJLZTLtZOZdSZ$WZZ$[$^P[a[e[h[Dl\o8\s|\u\$<]]$]Ē]$]]D^$D^x^^Ķ _H_l____Ծ`T$`T8`T`p```t0adXaaaadb@bTpbbc@c$TcDlcc d4d4Ldttd4dDdddD dT e Dee f$4fDLfffhg|gdgtggg$h$8hPhhhthhhh$Li4`ixii4ii$i, j8{>P{?h{G{G{I{tK$|MH|Ox|DP|4R|$W}W,}$XD}Xd}Y}Z}\}lL~$t~4t~Tt~u v@4xxy|hԆďp4ȂTPhtTĦ$(ijP|Ą $Lx$ЅD(TD$$Dd\tṪ4 D  84Tx܉TX ĊT#&pDDDFD\]d_ȌTnoHoxrȍTst tPuTvw܎y0$|tȏD tPԇؐT$Dx4̑dTt@Ԟȓ4 dPl$$$t8Ld>ElKKȘK\0\`]`a Db8chcdȚDekXkxrܛDr$}|T}<@4tԞԠPԫ̟4HT|dt$4TdD`xdd4Ԧ:8t<>اPHTV4XZL_4pdq<rtstt4ē$ԫLtxġĬ4d`Dt,XdD4ԯD(TTDtDİD`t,#|$ȲT+585tRijop(Tqlqs̴tu,v@xyyy̵Tzz{|d|0|D}XDd`Ģз$@4DDt0|TL$<@ t",T-x57D9H;t=ܿ?8GU 4aXTcDfm|y4t lԗdLĦԬt԰4@$0X$TltDTdd-$..02@xNQY$b<x $Lt|d\T(DĝIJ@dD@4$t$t44D4d4T6,6H7|8$848T8zRx $H`FJ w?;*3$"D -X jHPA G  ` a M ,0>4DP8 D  E g I a A @`>BOH A(A0FP  0A(A BBBG (>0,BCD@ ABK `>4<BBA A(GC (A ABBJ M (E ABBI  (A ABBG ,4? *_H@ H g I a G 1 W Ld?)_BFE B(A0A8G 8A0A(B BBBC ?.?|1Gp h ?5QCQ@#A@<6z @C9 {08@,EBIA FP DAB0l@FBLE HPL  DABB <@$I]DKK C(A0s (E BBBA d@DQBJF E(D0A8DV 8A0A(B BBBA  8D0A(B BBBE $HAW'O E a A L pAXHo E a C }(ApY*P E a A c E aAtZa4A\[pAH@ EK R AM K A\ B^NHY G a0B^rD J B LB(_`B`kDPM G |BhdD ] A B e@D {B4eD@ A B*B+D  K Bh,F }@CeBEA Gm  AABH G  IABA $XCDitKб ḴDD KBDmK<\D WKc| bKܲvD fDLDYBAD J  AABH 0  AABD DHL\wBBB A(D0J 0A(A BBBK $L\BAG@NAB,LBID Gp AABL LMdE$M$8M,Aa4 AE `MD  I |MDp) N (MAID`= AAC <M@BFA A(G (E ABBA N*AD@ EE @(NAIGp4 EAE D EAF {EA<lNbAT@ AD b AE D IE JE8N BMDV ABD  ABE NNAJ PI.p.N! D ,zPLRx |  4zkXDwBIA G  AABK L  EABL <wh BFA C(D (A ABBJ ,x().NNZ- ABA LxWi VJB B(A0A8G 8A0A(B BBBJ 8I0A(B BBB\% 8E0A(B BBBE [ 8I0A(B BBBE M 8I0A(B BBBE L 8K0A(B BBBE K 8I0A(B BBBE `y4cty0cDUDy8cBIA G  AAFF   AABK <yi BFA C(Dz (A ABBH ,zv0NNi/ ABI LDz'BBB B(A0A8G 8A0A(B BBBA Dzp`@` H a G Y@ E C E  E L E zȲzIJDUL{̲WBFB B(A0D8J 8A0A(B BBBG ,X{\0X8F@Z8A0\ G c E c,{|\0X8F@Z8A0\ G c E cL{BIE D(D0GPjXF`gXAP 0A(A BBBC (|\@ZHFPhHA@P K g I (4|p\@ZHFPhHA@P K g I ,`|AJ0i8F@Z8A0g AC ,|H0d8F@Z8A0\ G c E c,|4AJ@kHFPhHA@[ AG (|H@fHFPhHA@S H g I `}HtBEA D(G (A ABBC  (A ABBH V (A ABBA }d-EI J T`}tBJA D(G (A ABBE  (A ABBD [ (A ABBA ~ 2EJ I Y|$~@ BIB B(A0D8GW 8A0A(B BBBD  8A0A(B BBBG @ 8A0A(B BBBF ~-EI J T|~[ BJB B(A0D8G] 8A0A(B BBBE  8A0A(B BBBG ' 8A0A(B BBBG D2EJ I YXd BIE D(D0G`c 0A(A BBBF  0A(A BBBA HtBIE D(G0X (A BBBF D(A BBBX BJE D(D0Gh 0A(A BBBH c 0A(A BBBA Hh\BIE D(G0] (A BBBA D(A BBBD9AKG@& AAE s AAK V AAA 0]BHG I ABK qABD0ALG@9 AAA  AAF X AAA 0xLbBHG J ABJ vABDAKGW AAD 4 AAJ  AAA 0 ]BHG I ABK qABD(, ALJ] AAJ  AAF # AAA 0pbBHG J ABJ vABp BIB D(D0Gp 0A(A BBBE 4 0A(A BBBD  0A(A BBBF l ,hp@d BJB D(D0G 0A(A BBBE  0A(A BBBJ t 0A(A BBBD $ ȃ|$L܃x$tBFF B(A0A8If 8D0A(B BBBA L,<BFA A(DP^ (D ABBK , (A AEBK L|X>BFA A(DP^ (D ABBK , (A AEBK L̄@BFB B(A0A8In 8D0A(B BBBA LhVBFA A(DPa (E ABBG L (A AFBJ Ll8XBFA A(DPa (E ABBG L (A AFBJ LZH BIB B(D0D8G 8A0A(B BBBA ( cADG0_ AAC L8cBNB B(D0D8G ` 8A0A(B BBBA (llADG@i AAI L@mBBB B(A0C8F- 8F0A(B BBBB HpBGG A(D0j (E JBBF O(A BBBLPpBGK F(A0 (E JBBF E(A BBBL$s=BBB B(A0C8FX 8A0A(B BBBD TtqBGG A(D0G@ 0A(A BBBF D0O(A BBB@HqKBGK F(A0I@ 0A(A BBBJ lxyBJB D(G0T` 0A(A BBBA o 0A(A BBBA   0A(A BBBA `>BHB E(D0E8Fp 8A0A(B BBBA V 8C0A(B BBBA L`dBFA D(G@ (A ABBI j (A ABBH LLBFA D(G@ (A ABBH I (A ABBI lBMD D(G0T`[ 0A(A BBBK o 0A(A BBBA  0A(A BBBA `p4BIB E(D0F8Fpl 8A0A(B BBBA V 8C0A(B BBBA LԊBFA D(G@ (A ABBG j (A ABBH L$0dBFA D(G@ (A ABBH S (A ABBG dtP`BEE H(D0D8OP 8A0A(B BBBK  8A0A(B BBBI L܋H#BBB B(A0A8GY 8D0A(B BBBA 4,(+ADG0 AAE w8I@\8A04d 0ADG0 AAE t8]@P8A04+AHG0y AAE 8I@\8A04Ԍ0AHG0y AAE |8]@P8A0L {BBB B(A0A8J 8D0A(B BBBF H\8CBIF E(A0A8GP 8A0A(B BBBA PT| [ x 0aB a4 a bG 0 f go  ph5w h h i#@ 2 j ja  v 0v @v. Pvb `v pv v v5 vj v v v  v> vs w  wq @ `x)$ @ ? X @|     `H  p# @p; V `m ]y  X `X F  F - D `lhi kh `kh jh l(  `cG  av  x1  x1  0y  {! ~AC! Ѐ t! ~! pv! a! `b" ЈE" ^Hx"  " _" P # 2# [# # #  #X)"$`)]$ F$0)$@)%% Fh% `%)%`#h% & _}' -e( _C) pOlB;* _)+ PK!, _- @, - _. 0Bz / _0 Ve&1 _2 *y3 _g4 0O5 _-6 7 _7 N8 _9 K: _; 5< _= <rm> _K? oQC@ _1A @/e)B _C 6 C _D K; E _F `}',G _H 1{I _iJ ! PK `-L M _M SN _O йP _Q @(Q )'R *\R *KR FR gR @iR fS `d1S @^HXS ^$S [S)S#@SS `]S ]S ]S )T 'T ^3TRTkTwT0T@+STT ¯FU z ^U U WGV  0V xH'V  3W P EW үW 0 "W `7X <WX zX p3Y  ^Y `rY Y $Y { %Z *AZ&MZ б "aZ 7Z 2 Z ~Z($Z D[ [ \ `\  \ /] ` ^ `t 4^ J^&Q^ P1_ GO_ 2_ p +_h&_ o B_ @ _  ` p ``()``'4` Z DY` ` a pa la 0a Xa (b  0bb b Q b h% c&c G-c%Cc ac @btc *@c p'd -d `d d Cd `ae e e j[f н[of yf _ g N=g X ag Ѝg  +g [h ~ -yh h ah ` I h p i Ri($i '0i Gi i j |j%j qj "k Q DHk$[k ~k k Z2k {k @ l _l |l lH&l (l `m :|m Ѝm P &n CPn n `!n `^ o Qo Ao " mo o ~ o q #-p _p 0|p p =p `]p q p hq q yq `Ryr #r P 0\r qr$r ` r s 0/os s ͯs  s(t p6t cgt Ct$t 1t u P 0[u u Zu pENu }uP(u v &v%*v @v Xw w w ) x Bx px % x 0 [ x%x'x 9y8&Dy Hy 2y Ky z P^ U,z z az `E{ 0P{ v{ @){'{ 06v{ Pce | `@&|  5| ! 0^| $ | }.} S} p.G}} )} ~ 0~ z~ DK~ ~ 2~ `  G p m X%  <  0? Џ P G 0 7  A 0с . p&O Kg c     3  @ 0A 's |Q V s$P$ 0 Y  d pl} 0  9߆ EI a (Ç p  l 9%D&K 0  Ї { 0 -8'; @&eV j   p># ) B ` m ` @ hu - +*^   i `p ċ)H O  2 w 6  h0 0{OL @xh pJ   # ύp%܍ 0   o ώ`%ߎ `Q0% P  @ " ?2  X F  4 p gK #l \R 0 `. Bݐ P W&d(&m `, O'\ = / c 0גH% u  5 x *'x%7 ` 0Eœ P_= eh ] aJ” ȯ) VB S  s  % Е$  *@1 D!U  ܯ y 9 `? wa `  p) D @Ck̗ `R $ 0L 0 z H Ls m   0 "X', x K _ י ] Z 0@(  \%l   P5 ƛ [֛% V# Ha r ?  @G > 5 JÝ ~ i `EN u{ Z @ Gğ $  E`&L P { ɠ P ޠ EH P  M ɡ  j  {j r+@(5 x& 7͢ "  0D P `c 6$C p$ . D  PPsT s  0 @ ˥%ߥ , ,ܦ G'R p D P )1$9 p Ъ_ Б Ψ o = P=  ۩ j)/ P -ͪ pb o_  @ P ѫ@&ګ 0+ : p8 &# pl 0bh \ ; P M p9 m @( +٭ % & .  ':  4 '   -> p| @ p ! PN{;P&C p p^ ̱ % b%'. 0w ݲ I &    T N \? ů   ) z MH pҵ c   Ŷ ޶ - @ `Oӷ -  r @ 0 pb̸ Й   @# & 2 &$ 0 % L  pU P*(`$κ p   OS 0 @#  Мr pr .  e `   p4 @<|7 0/ 0 0  u   t߾  p%H(B @ 0 տ  N c , p\&  z  tK - v  8$ `   ' `"  P?r K `'- @ e $ u  x' Y  p 4 X   0 `   Z  Џ% P's< U @3X$ ) K9 ` , +? 6T Iux 0  0 b P% pZ g ׯ s  k d - D (o 8% _ a% &} ! n  j @ 2'<%D 0 Bd  } )   \ s T @ 9 ) dT n p1 ` 0M  O  0b   * 'F  z  `   0k0$A p  ` T4 p T ;3( q 0 -\ P& Dw * P ]H  ] H~  :H ,k  #  Q U0+ PT @ 0  #   : ^ ;_H(x Ђ  ] r vh' p(% 6N pb   T  (( W L     <9 e P$ G @ 0h `  , 0 >   v   . 7 0d p{ p=; %g + = p t 4@% t& PW (  @@ 0v  j 5 v x t% $ y `     S v 0 p     @ sZg O   6  p  ? @ &7 p  I0' Y2 p DA  c 0, s< T Y @O ~ ^ 06 8 *&  PH 0 \ ` jC 0 & \   %  Q - 0D 0%df  `  Ќ 0 k : !   ߯(P%5)d  ` D8(L 0,'8 &vX p|$ P&X& % o  b  9 Z B k ,  ; AO[ #p$  pw  P? B [ ss x(% 0 X&c / % 0  2$ 0-=`$ +H P @ ^%' `j>P#V&g P 0&'p('  s  '_ $  6 `+V &   5 i  g, T0(] ~ r !  Pe86 @S s  &% z pW V z(%  `R Q  P)  P` F't p' " p <7 Z c 0  Kh(( 0 J `&n N o   p9 P 0$' P_ '( F  B ( ]&h Ч y @    l%z' @& @( A$  G [:  H e  6 `  `  / v, @1` pj w P 0 Љ }: !M % ` K   p p&x  p4 *   [e  p7  p, )    K    0   V  0 kf  P+    Ќ 0  6  1 P!& $= [/^ u 0  0K +  px2-  0v j')  P 0 0I 0 p   P+ 1 `' H  c [  0  7 0K Xb `J o'} @r  $ 0) t\ PO L| P & + !U kQr ж& "  e - @> " y @ b @ `N P+0 cx f - {X(  #  C1 , d `@ 0   . @I%V  |%   p' 0  0I 'x$"  P C$%4 0(uC P p W 0m >"  A    ! P'! 0 fA! T! " _$# =4# #@'# H# s_# 0_7# 0 # |,$)[$ ` $ r$ PM% e l% e% P %  $% 0& @f& p5& P & ' . \3' @C' ' -^' pSu' 0' ,' P-\ ' PF5( P( )P') 03) Q 'e) ) ))* 2* cF*('V* z* < * @& * m2*'* N1+&9+ $i+ "F, w,0, /- `k- R- - J- N. _. . x . " .'/ p_/ *b/ / / X %0 0d 6W0  DFZ@$|0 P0 0 91 Pe1 e1 0i 1 e2 p hC2 2 2  3 e3 3 ,L3 b4 0hzU4 3h4(q4 u 4 4 0> 5 Z5 ^A5 ~6 A6 6h$ 7 0/7p87 `x W7 4'7 @7 p 7 J=7 (H#8 68  68 ^ W1cH$09 9 0W: P ; L; @G};  B; U; ; p< j< 5 ==.=DY=n=======U@>> ">5>H>[>o>>>>>>> u?B$?2?L?`?t???? ?? @@3@B@T@f@z@ @D@"@@@A'A9AHA>ZAmAAAAAAAAB[AB%B