`L iBddlmZddlmZmZddlmZGddeZy) )Real)Interval StrOptions)BaseSGDClassifierc4eZdZUdZiej Zeed<ejdejdeje hddge e ddd ge e dd d ge e ddd gd dd dddddddddddddddfd Z xZS) PerceptronaJLinear perceptron classifier. The implementation is a wrapper around :class:`~sklearn.linear_model.SGDClassifier` by fixing the `loss` and `learning_rate` parameters as:: SGDClassifier(loss="perceptron", learning_rate="constant") Other available parameters are described below and are forwarded to :class:`~sklearn.linear_model.SGDClassifier`. Read more in the :ref:`User Guide `. Parameters ---------- penalty : {'l2','l1','elasticnet'}, default=None The penalty (aka regularization term) to be used. alpha : float, default=0.0001 Constant that multiplies the regularization term if regularization is used. l1_ratio : float, default=0.15 The Elastic Net mixing parameter, with `0 <= l1_ratio <= 1`. `l1_ratio=0` corresponds to L2 penalty, `l1_ratio=1` to L1. Only used if `penalty='elasticnet'`. .. versionadded:: 0.24 fit_intercept : bool, default=True Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. max_iter : int, default=1000 The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the ``fit`` method, and not the :meth:`partial_fit` method. .. versionadded:: 0.19 tol : float or None, default=1e-3 The stopping criterion. If it is not None, the iterations will stop when (loss > previous_loss - tol). .. versionadded:: 0.19 shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. verbose : int, default=0 The verbosity level. eta0 : float, default=1 Constant by which the updates are multiplied. n_jobs : int, default=None The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary ` for more details. random_state : int, RandomState instance or None, default=0 Used to shuffle the training data, when ``shuffle`` is set to ``True``. Pass an int for reproducible output across multiple function calls. See :term:`Glossary `. early_stopping : bool, default=False Whether to use early stopping to terminate training when validation score is not improving. If set to True, it will automatically set aside a stratified fraction of training data as validation and terminate training when validation score is not improving by at least `tol` for `n_iter_no_change` consecutive epochs. .. versionadded:: 0.20 validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True. .. versionadded:: 0.20 n_iter_no_change : int, default=5 Number of iterations with no improvement to wait before early stopping. .. versionadded:: 0.20 class_weight : dict, {class_label: weight} or "balanced", default=None Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary `. Attributes ---------- classes_ : ndarray of shape (n_classes,) The unique classes labels. coef_ : ndarray of shape (1, n_features) if n_classes == 2 else (n_classes, n_features) Weights assigned to the features. intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int The actual number of iterations to reach the stopping criterion. For multiclass fits, it is the maximum over every binary fit. t_ : int Number of weight updates performed during training. Same as ``(n_iter_ * n_samples + 1)``. See Also -------- sklearn.linear_model.SGDClassifier : Linear classifiers (SVM, logistic regression, etc.) with SGD training. Notes ----- ``Perceptron`` is a classification algorithm which shares the same underlying implementation with ``SGDClassifier``. In fact, ``Perceptron()`` is equivalent to `SGDClassifier(loss="perceptron", eta0=1, learning_rate="constant", penalty=None)`. References ---------- https://en.wikipedia.org/wiki/Perceptron and references therein. Examples -------- >>> from sklearn.datasets import load_digits >>> from sklearn.linear_model import Perceptron >>> X, y = load_digits(return_X_y=True) >>> clf = Perceptron(tol=1e-3, random_state=0) >>> clf.fit(X, y) Perceptron() >>> clf.score(X, y) 0.939... _parameter_constraintslossaverage>l1l2 elasticnetNrleft)closedrboth)penaltyalphal1_ratioeta0g-C6?g333333?TigMbP?g?Fg?)rrr fit_interceptmax_itertolshuffleverbosern_jobs random_stateearly_stoppingvalidation_fractionn_iter_no_change class_weight warm_startcJt|d||||||||| d| | | |d||| y)N perceptronconstantg?)r rrrrrrrrr learning_raterr r!r"power_tr$r#r)super__init__)selfrrrrrrrrrrrr r!r"r#r$ __class__s f/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/sklearn/linear_model/_perceptron.pyr+zPerceptron.__init__sP( '%$) 3-!%'  )__name__ __module__ __qualname____doc__rr dict__annotations__popupdaterrrr+ __classcell__)r-s@r.r r saF$P&7&N&N#ODOv&y)!!"#=>EtQV<=!$1V<=dAtF;<    %( ( r/r N)numbersrutils._param_validationrr_stochastic_gradientrr r/r.r=s:3X "X r/