K irjdZddlZejdkred[ ddlZ[ddlmZddlmZdevr d Z e [ d Z e Z d d l m Z mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;mZ>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZYmZZZm[Z[m\Z\m]Z]m^Z^m_Z_m`Z`maZambZbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjd d lkmlZlmmZmmnZnmoZompZpmqZqmrZrmsZsmtZtmuZumvZvmwZwmxZxmyZymzZzm{Z{m|Z|m}Z}m~Z~d dlmZmZmZmZmZmZmZmZmZd dlmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m Z m Z m Z m Z mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4d dl5m6Z6m7Z7m8Z8m9Z9m:Z:m5Z5m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFd dlGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZYmZZZm[Z[m\Z\m]Z]m^Z^m_Z_m`Z`maZambZbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjmkZkmlZlmmZmmnZnmoZompZpmqZqmrZrmsZsmtZtmuZumvZvmwZwmxZxmyZymzZzm{Z{m|Z|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmÐZÐmĐZĐmŐZŐmƐZƐmǐZǐmȐZȐmɐZɐmʐZʐmːZːm̐Z̐m͐Z͐mΐZΐmϐZϐmАZАmѐZѐmҐZҐmӐZӐmԐZԐmՐZՐm֐Z֐mאZאmؐZؐmِZِmڐZڐmېZېmܐZܐmݐZݐmސZސmߐZߐmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZd dlmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m Z m Z m Z m Z mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.d dl/m0Z0m1Z1m2Z2m3Z3d dl4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?d dl@m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZYmZZZm[Z[m\Z\m]Z]m^Z^m_Z_d dl`maZambZbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjmkZkmlZlmmZmmnZnmoZompZpmqZqmrZrmsZsmtZtmuZumvZvmwZwmxZxmyZymzZzm{Z{d dl|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZd dlmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmÐZÐmĐZĐmŐZŐmƐZƐmǐZǐmȐZȐmɐZɐmʐZʐmːZːm̐Z̐m͐Z͐mΐZΐmϐZϐmАZАmѐZѐmҐZҐmӐZӐmԐZԐmՐZՐm֐Z֐mאZאmؐZؐmِZِmڐZڐmېZېmܐZܐmݐZݐmސZސmߐZߐmZmZmZmZmZmZmZmZmZmZmZmZmZmZd dlmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m Z m Z m Z d dl mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&d dl'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEd dlFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZYd dlZm[Z[d dl\m]Z]m^Z^m_Z_m`Z`maZambZbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjmkZkmlZlmmZmd dlnmoZod d lpmqZqmrZrmsZsmtZtmuZumvZvmwZwmxZxmyZymzZzm{Z{m|Z|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZed!d"Zed#d$Zd d%lmZmZmZmZmZd d&lmZmZmZeZjLgd'ZejQd(y#e$r edwxYw))a SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python. It depends on mpmath, and other external libraries may be optionally for things like plotting support. See the webpage for more information and documentation: https://sympy.org N) z2Python version 3.9 or above is required for SymPy.zSymPy now depends on mpmath as an external library. See https://docs.sympy.org/latest/install.html#mpmath for more information.) __version__) lazy_functiondevc@ddl}|jddtd~y)Nrdefaultz.*zsympy.*)module)warningsfilterwarningsDeprecationWarning)r s T/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/sympy/__init__.pyenable_warningsr"s! T5GPYZ chddl}|jdd}|dvr t|Std|z)Nr SYMPY_DEBUGFalse)Truerz&unrecognized value for SYMPY_DEBUG: %s)osgetenveval RuntimeError)r debug_strs r __sympy_debugr*s@  -1I%%IC$%& &r)^sympify SympifyErrorcacheitBasicAtompreorder_traversalSExpr AtomicExprUnevaluatedExprSymbolWildDummysymbolsvarNumberFloatRationalInteger NumberSymbol RealNumberigcdilcmseterrEInanoopizooAlgebraicNumbercomp mod_inversePowinteger_nthroot integer_logtrailingMulprodAddModRelEqNeLtLeGtGeEquality GreaterThanLessThan UnequalityStrictGreaterThanStrictLessThan vectorizeLambda WildFunction Derivativediff FunctionClassFunctionSubsexpand PoleError count_ops expand_mul expand_log expand_func expand_trigexpand_complexexpand_multinomialnfloatexpand_power_baseexpand_power_exparityPrecisionExhaustedNevalfTupleDict gcd_terms factor_terms factor_ncevaluateCatalan EulerGamma GoldenRatioTribonacciConstant bottom_upusepostorder_traversaldefault_sort_keyordered num_digits)to_cnfto_dnfto_nnfAndOrNotXorNandNorImplies EquivalentITEPOSformSOPformsimplify_logicbool_maptruefalse satisfiable) AppliedPredicate PredicateAssumptionsContextassumingQaskregister_handlerremove_handlerrefine)PolyPurePolypoly_from_exprparallel_poly_from_exprdegree total_degree degree_listLCLMLTpdivprempquopexquodivremquoexquo half_gcdexgcdexinvert subresultants resultant discriminant cofactorsgcd_listgcdlcm_listlcm terms_gcdtruncmoniccontent primitivecompose decomposesturmgff_listgffsqf_normsqf_partsqf_listsqf factor_listfactor intervals refine_root count_roots all_roots real_rootsnroots ground_rootsnth_power_roots_polycancelreducedgroebneris_zero_dimensional GroebnerBasispoly symmetrizehorner interpolaterational_interpolatevietetogetherBasePolynomialErrorExactQuotientFailedPolynomialDivisionFailedOperationNotSupportedHeuristicGCDFailedHomomorphismFailedIsomorphismFailedExtraneousFactorsEvaluationFailedRefinementFailedCoercionFailed NotInvertible NotReversible NotAlgebraic DomainErrorPolynomialErrorUnificationFailedGeneratorsErrorGeneratorsNeededComputationFailedUnivariatePolynomialErrorMultivariatePolynomialErrorPolificationFailed OptionError FlagErrorminpolyminimal_polynomialprimitive_elementfield_isomorphismto_number_fieldisolate round_two prime_decompprime_valuation galois_group itermonomialsMonomiallexgrlexgrevlexilexigrlexigrevlexCRootOfrootofRootOf ComplexRootOfRootSumrootsDomain FiniteField IntegerRing RationalField RealField ComplexFieldPythonFiniteFieldGMPYFiniteFieldPythonIntegerRingGMPYIntegerRingPythonRationalGMPYRationalFieldAlgebraicFieldPolynomialRing FractionFieldExpressionDomain FF_pythonFF_gmpy ZZ_pythonZZ_gmpy QQ_pythonQQ_gmpyGFFFZZQQZZ_IQQ_IRRCCEXEXRAWconstruct_domainswinnerton_dyer_polycyclotomic_polysymmetric_poly random_polyinterpolating_poly jacobi_polychebyshevt_polychebyshevu_poly hermite_polyhermite_prob_poly legendre_poly laguerre_polyapart apart_listassemble_partfrac_listOptionsringxringvringsringfieldxfieldvfieldsfield)OrderOlimitLimitgruntzseries approximantsresidue EmptySequenceSeqPer SeqFormulasequenceSeqAddSeqMulfourier_seriesfpsdifference_delta limit_seq) factorial factorial2rfffbinomialRisingFactorialFallingFactorial subfactorial carmichael fibonaccilucasmotzkin tribonacciharmonic bernoullibelleulercatalangenocchiandre partition divisor_sigmalegendre_symbol jacobi_symbolkronecker_symbolmobiusprimenu primeomegatotientreduced_totientprimepisqrtrootMinMaxId real_rootRemcbrtreimsignAbs conjugatearg polar_liftperiodic_argumentunbranched_argumentprincipal_branch transposeadjointpolarify unpolarifysincostanseccsccotsincasinacosatanasecacscacotatan2 exp_polarexplnlogLambertWsinhcoshtanhcothsechcschasinhacoshatanhacothasechacschfloorceilingfrac Piecewisepiecewise_foldpiecewise_exclusiveerferfcerfierf2erfinverfcinverf2invEiexpintE1liLiSiCiShiChifresnelsfresnelcgamma lowergamma uppergamma polygammaloggammadigammatrigamma multigamma dirichlet_etazetalerchphipolylog stieltjesEijk LeviCivitaKroneckerDeltaSingularityFunction DiracDelta Heaviside bspline_basisbspline_basis_setinterpolating_splinebesseljbesselybesselibesselkhankel1hankel2jnynjn_zeroshn1hn2airyaiairybi airyaiprime airybiprimemarcumqhypermeijergappellf1legendreassoc_legendrehermite hermite_prob chebyshevt chebyshevuchebyshevu_rootchebyshevt_rootlaguerreassoc_laguerre gegenbauerjacobijacobi_normalizedYnmYnm_cZnm elliptic_k elliptic_f elliptic_e elliptic_pibetamathieusmathieuc mathieusprime mathieucprime riemann_xibetaincbetainc_regularized)5 nextprime prevprimeprime primerange randprimeSievesieve primorial cycle_length composite compositepiisprimedivisorsproper_divisors factorint multiplicity perfect_power factor_cache pollard_pm1 pollard_rho primefactors divisor_countproper_divisor_count factorratmersenne_prime_exponent is_perfectis_mersenne_prime is_abundant is_deficient is_amicable is_carmichael abundance npartitionsis_primitive_rootis_quad_residuen_ordersqrt_modquadratic_residuesprimitive_root nthroot_modis_nthpow_residue sqrt_mod_iter discrete_logquadratic_congruencebinomial_coefficientsbinomial_coefficients_listmultinomial_coefficientscontinued_fraction_periodiccontinued_fraction_iteratorcontinued_fraction_reducecontinued_fraction_convergentscontinued_fractionegyptian_fraction)productProduct summationSum) fftifftnttinttfwhtifwhtmobius_transforminverse_mobius_transform convolutioncovering_productintersecting_product) simplify hypersimp hypersimilar logcombine separatevarsposify besselsimp kroneckersimpsignsimp nsimplifyFUfu sqrtdenestcseepathEPath hyperexpandcollectrcollectradsimp collect_constfractionnumerdenomtrigsimp exptrigsimppowsimp powdenestcombsimp gammasimpratsimpratsimpmodprime)SetIntervalUnionEmptySet FiniteSet ProductSet Intersection DisjointUnionimageset ComplementSymmetricDifferenceImageSetRange ComplexRegion ComplexesRealsContains ConditionSetOrdinal OmegaPowerord0PowerSetNaturals Naturals0 UniversalSetIntegers Rationals)*solvesolve_linear_systemsolve_linear_system_LUsolve_undetermined_coeffsnsolve solve_linearchecksol det_quick inv_quickcheck_assumptionsfailing_assumptions diophantinersolve rsolve_poly rsolve_ratio rsolve_hyper checkodesol classify_odedsolvehomogeneous_ordersolve_poly_system factor_systemsolve_triangulated pde_separatepde_separate_addpde_separate_mulpdsolve classify_pde checkpdesol ode_orderreduce_inequalitiesreduce_abs_inequalityreduce_abs_inequalitiessolve_poly_inequalitysolve_rational_inequalitiessolve_univariate_inequality decompogensolvesetlinsolvelinear_eq_to_matrix nonlinsolve substitution)F ShapeErrorNonSquareMatrixError GramSchmidt casoratiandiageyehessian jordan_cell list2numpy matrix2numpymatrix_multiply_elementwiseones randMatrix rot_axis1 rot_axis2 rot_axis3symarray wronskianzerosMutableDenseMatrixDeferredVector MatrixBaseMatrix MutableMatrixMutableSparseMatrixbandedImmutableDenseMatrixImmutableSparseMatrixImmutableMatrix SparseMatrix MatrixSliceBlockDiagMatrix BlockMatrixFunctionMatrixIdentityInverseMatAddMatMulMatPow MatrixExpr MatrixSymbolTrace Transpose ZeroMatrix OneMatrixblockcutblock_collapsematrix_symbolsAdjointhadamard_productHadamardProduct HadamardPower Determinantdetdiagonalize_vector DiagMatrixDiagonalMatrix DiagonalOftrace DotProductkronecker_productKroneckerProductPermutationMatrix MatrixPermute Permanentper rot_ccw_axis1 rot_ccw_axis2 rot_ccw_axis3 rot_givens)PointPoint2DPoint3DLineRaySegmentLine2D Segment2DRay2DLine3D Segment3DRay3DPlaneEllipseCirclePolygonRegularPolygonTriangleraddeg are_similarcentroid convex_hullidiff intersectionclosest_pointsfarthest_points GeometryErrorCurveParabola)flattengrouptakesubsets variationsnumbered_symbolscartescapture dict_mergeprefixes postfixessifttopological_sort unflattenhas_dups has_varietyreshape rotations filldedentlambdifythreaded xthreadedpublicmemoize_propertytimed) integrateIntegralline_integratemellin_transforminverse_mellin_transformMellinTransformInverseMellinTransformlaplace_transformlaplace_correspondencelaplace_initial_condsinverse_laplace_transformLaplaceTransformInverseLaplaceTransformfourier_transforminverse_fourier_transformFourierTransformInverseFourierTransformsine_transforminverse_sine_transform SineTransformInverseSineTransformcosine_transforminverse_cosine_transformCosineTransformInverseCosineTransformhankel_transforminverse_hankel_transformHankelTransformInverseHankelTransformsingularityintegrate) IndexedBaseIdxIndexedget_contraction_structure get_indicesshapeMutableDenseNDimArrayImmutableDenseNDimArrayMutableSparseNDimArrayImmutableSparseNDimArray NDimArray tensorproducttensorcontractiontensordiagonalderive_by_array permutedimsArrayDenseNDimArraySparseNDimArray) parse_expr)euler_equations singularities is_increasingis_strictly_increasing is_decreasingis_strictly_decreasing is_monotonicfinite_diff_weightsapply_finite_diffdifferentiate_finite periodicity not_empty_in AccumBounds is_convexstationary_pointsminimummaximum) Quaternion)) pager_printpretty pretty_printpprintpprint_use_unicodepprint_try_use_unicodelatex print_latexmultiline_latexmathml print_mathmlpython print_pythonpycodeccode print_ccode smtlib_code glsl_code print_glslcxxcodefcode print_fcodercode print_rcodejscode print_jscode julia_codemathematica_code octave_code rust_code print_gtkpreviewsrepr print_tree StrPrintersstrsstrrepr TableFormdotprint maple_codeprint_maple_codezsympy.testing.runtests_pytesttestzsympy.testing.runtestsdoctest)plottextplot plot_backends plot_implicitplot_parametric) init_session init_printinginteractive_traversal(rrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;r<r=r>r?r@rArBrCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[r\r]r^r_r`rarbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxryrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr r r r r rrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;r<r=r>r?r@rArBrCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[r\r]r^r_r`rarbrcrdrerfrgrhrirjrkrlrmrnrorqrprrrsrtrurvrwrxryrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr r r r r rrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;r<r=r>r?r@rArBrCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[r\r]r^r_r`rarbrcrdrerfrgrhrirjrkrlrmrnrprorqrrrsrtrurwrxryrzr{r|r}r~rrrrrvrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr r r r r rrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r4r5r2r3r6r7r8r9r:r;r<r=r>r?r@rArBrCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[r\r]r^r_r`rarbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxryrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr)algebras assumptionscalculusconcretediscreteexternal functionsgeometry interactivemultipledispatchntheoryparsingplottingpolysprintingrelease strategiestensor utilities(__doc__sys version_info ImportErrormpmath sympy.releasersympy.core.cacherrrrcorerrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;r<r=r>r?r@rArBrCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[r\r]r^r_r`rarbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxrylogicrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr r r r r rrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;r<r=r>r?r@rFrArBrCrDrErGrHrIrJrKrLrMrNrOrPrQrRrrSrTrUrVrWrXrYrZr[r\r]r^r_r`rarbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxryrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr r r r r rrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8rr9r:r;r<rr=r>r?r@rArBrCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[r\r]r^r_r`rarbrcrdrerfrgsetsrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxryrzr{r|r}r~rrrrsolversrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrmatricesrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr r r r r rrrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r) integralsr*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;r<r=r>r?r@rArBrCrDrErFrGrrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZrr[rr\r]r^r_r`rarbrcrdrerfrgrhrirjrkrlrrmrrnrorprqrrrsrtrurvrwrxryrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr_create_evalf_table__all__extendrrrs   f J KKS  %*K&o  D D D D D D D D D D D D D D D D D D D D D D D D""""""DDD K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K KD::::::::::ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ4OOOOOOOOOOOOOOOOOOOOOOOOOOOO 766""""""""""""""""" L L L L L L L L L L L L L L L L L L L L L L222222222222222222222222222222222222 (((((((((((((((( >>>>>>>>>>>>>> G G G G G G G G G G G G G G G G===========  8888888888 ! &&&&&&&&&&&&&&&&&&&&&&4f= 0) <TSSSKKKs HkS R SSSs t$$t2