# mypy: allow-untyped-defs import contextlib import dataclasses import functools import math import sys from collections import namedtuple from collections.abc import Sequence from typing import Any, Callable, Optional from unittest.mock import patch import sympy import torch from torch._prims_common import is_integer_dtype from torch.utils._ordered_set import OrderedSet from torch.utils._sympy.printers import CppPrinter as _CppPrinter from torch.utils._sympy.symbol import symbol_is_type, SymT from torch.utils._sympy.value_ranges import ValueRanges from .. import ir from ..dependencies import Dep from ..loop_body import LoopBody from ..scheduler import BaseSchedulerNode, SchedulerBuffer from ..shape_propagation import BlockShapeType from ..utils import IndentedBuffer, sympy_index_symbol_with_prefix, sympy_subs from ..virtualized import ops, OpsValue, V from .common import CSEVariable, Kernel, KernelArgs, OptimizationContext DTYPE_TO_CPP = { torch.float32: "float", torch.float64: "double", torch.float16: "at::Half", torch.int64: "int64_t", torch.int32: "int32_t", torch.int16: "int16_t", torch.int8: "int8_t", torch.uint64: "uint64_t", torch.uint32: "uint32_t", torch.uint16: "uint16_t", torch.uint8: "uint8_t", torch.bool: "bool", torch.bfloat16: "at::BFloat16", torch.complex32: "at::complex", torch.complex64: "at::complex", torch.complex128: "at::complex", torch.float8_e4m3fn: "at::Float8_e4m3fn", torch.float8_e5m2: "at::Float8_e5m2", torch.float8_e4m3fnuz: "at::Float8_e4m3fnuz", torch.float8_e5m2fnuz: "at::Float8_e5m2fnuz", } DTYPE_TO_ATEN = { torch.float32: "at::kFloat", torch.float64: "at::kDouble", torch.float16: "at::kHalf", torch.int64: "at::kLong", torch.int32: "at::kInt", torch.int16: "at::kShort", torch.int8: "at::kChar", torch.uint64: "at::kUInt64", torch.uint32: "at::kUInt32", torch.uint16: "at::kUInt16", torch.uint8: "at::kByte", torch.uint32: "at::kUInt32", torch.uint64: "at::kUInt64", torch.bool: "at::kBool", torch.bfloat16: "at::kBFloat16", torch.complex32: "at::kComplexHalf", torch.complex64: "at::kComplexFloat", torch.complex128: "at::kComplexDouble", torch.float8_e4m3fn: "at::kFloat8_e4m3fn", torch.float8_e5m2: "at::kFloat8_e5m2", torch.float8_e4m3fnuz: "at::kFloat8_e4m3fnuz", torch.float8_e5m2fnuz: "at::kFloat8_e5m2fnuz", } DEVICE_TO_ATEN = { "meta": "at::kMeta", "cpu": "at::kCPU", "cuda": "at::kCUDA", "xpu": "at::kXPU", "mps": "at::kMPS", } LAYOUT_TO_ATEN = { torch.strided: "at::kStrided", torch._mkldnn: "at::kMkldnn", # type: ignore[attr-defined] } # matches c10/core/DeviceType.h DEVICE_TO_INT = {"cpu": 0, "cuda": 1} _IS_WINDOWS = sys.platform == "win32" INDEX_TYPE = "int64_t" GemmBlocking = namedtuple("GemmBlocking", ["block_m", "block_n", "block_k"]) def get_promote_dtype(args): return ( functools.reduce( torch.promote_types, # type: ignore[arg-type] [n.dtype for n in args if isinstance(n, CppCSEVariable)], ) if all(n.dtype is not None for n in args if isinstance(n, CppCSEVariable)) else None # not enough info to calculate the promote dtype ) def promote_args(new_args): def promote_arg(arg, promote_type): if ( isinstance(arg, CppCSEVariable) and arg.dtype and promote_type and arg.dtype != promote_type ): arg = ops.to_dtype(arg, promote_type) arg = arg.value if isinstance(arg, OpsValue) else arg arg.dtype = promote_type return arg promote_type = get_promote_dtype(new_args) promote_fn = functools.partial( promote_arg, promote_type=promote_type, ) if ( all( new_arg.dtype is not None for new_arg in new_args if isinstance(new_arg, CppCSEVariable) ) and promote_type ): new_args = list(map(promote_fn, new_args)) return new_args class CppCSEVariable(CSEVariable): def __init__( self, name, bounds: ValueRanges[Any], dtype: Optional[torch.dtype] = None, shape: BlockShapeType = None, ) -> None: super().__init__(name, bounds, dtype, shape=shape) self.is_vec = False self.dependent_itervars = OrderedSet[sympy.Symbol]() def __repr__(self) -> str: return ( f"CppCSEVariable(name: {self.name}, bounds: {self.bounds}, is_vec: {self.is_vec}, dtype: {self.dtype}, " f"dependent_itervars: {self.dependent_itervars})" ) def update_on_args(self, name, args, kwargs): if name == "load": # args[2] is index self._set_dependent_itervars(args[2]) else: # propagate relevant itervars and is_vec from args self.dependent_itervars.update( *[ arg.dependent_itervars for arg in args if isinstance(arg, CppCSEVariable) ] ) if name == "index_expr": self._set_dependent_itervars(args[0]) if any(arg.is_vec for arg in args if isinstance(arg, CppCSEVariable)): self.is_vec = True def _set_dependent_itervars(self, index: sympy.Expr): """ Set the relevant itervars for this variable based on the `index` expression. This includes the itervars directly used in the `index` as well as relevant itervars of other cse variables used in the `index`. """ for s in index.free_symbols: if s in V.kernel.itervars: self.dependent_itervars.add(s) # type: ignore[arg-type] elif s.name in V.kernel.cse.varname_map: # type: ignore[attr-defined] self.dependent_itervars.update( V.kernel.cse.varname_map[s.name].dependent_itervars # type: ignore[attr-defined] ) def depends_on(self, itervar: sympy.Symbol): return itervar in self.dependent_itervars class CppPrinter(_CppPrinter): def doprint(self, expr, *, simplify: bool = True, p=True): # TODO: why are people passing strings to the printer here :think: if simplify and isinstance(expr, sympy.Expr) and hasattr(V.graph, "sizevars"): expr = V.graph.sizevars.simplify(expr) return super().doprint(expr) def parenthesize(self, item: sympy.Expr, level: int, strict: bool = False) -> str: if isinstance(item, sympy.Mod): # use parenthesis to enforce precedence. # in sympy 1.13.3, -2*Mod(x,y) becomes -2*x%y, which is wrong. return f"({self._print(item)})" else: return super().parenthesize(item, level, strict) # A function to print, useful for printing sympy symbols. cexpr = CppPrinter().doprint def cexpr_index(index): return f"static_cast<{INDEX_TYPE}>({cexpr(index)})" def value_to_cpp(value, cpp_type): if value == float("-inf"): return f"-std::numeric_limits<{cpp_type}>::infinity()" elif value == float("inf"): return f"std::numeric_limits<{cpp_type}>::infinity()" elif isinstance(value, bool): return f"static_cast<{cpp_type}>({str(value).lower()})" elif math.isnan(value): return f"std::numeric_limits<{cpp_type}>::quiet_NaN()" else: return f"static_cast<{cpp_type}>({repr(value)})" def rewrite_index_for_function( localize_buffer_handler: "LocalizeBufferHandler", index: sympy.Expr, global_buf_name: str, ): # Local buffer at the inner dimensions snode = V.graph.scheduler.name_to_buf[global_buf_name].defining_op assert snode is not None local_buf = localize_buffer_handler.global_to_local[global_buf_name] scheduler_nodes = snode.get_nodes() _, (group, reduction_group) = max( scheduler_nodes, key=lambda x: int(x.is_reduction()) ).group call_ranges = tuple(group) + tuple(reduction_group) indices_to_keep = [ f"x{len(call_ranges) - (idx + 1)}" for idx in range(len(local_buf.get_layout().size)) ] sorted_symbols = sorted(index.free_symbols, key=lambda s: s.name) # type: ignore[attr-defined] replacements = {} for x in sorted_symbols: if x.name.startswith("x") and x.name not in indices_to_keep: # type: ignore[attr-defined] # Only keep index used by local buffer replacements[x] = sympy.core.numbers.Zero() index = sympy_subs(index, replacements) # type: ignore[arg-type] return index def rewrite_index_for_nodes( localize_buffer_handler: "LocalizeBufferHandler", index: sympy.Expr, global_buf_name: str, ): used_vars = OrderedSet( s for s in index.free_symbols if symbol_is_type(s, SymT.INDEX) ) index_vars = [] local_buf = localize_buffer_handler.global_to_local[global_buf_name] for i in range(len(local_buf.get_size())): var = sympy_index_symbol_with_prefix(SymT.INDEX, i) index_vars.append(var if var in used_vars else 0) index = local_buf.get_layout().make_indexer()(index_vars) return index class LocalizeBufferHandler(V.WrapperHandler): # type: ignore[name-defined] def __init__( self, inner, global_to_local: dict[str, ir.Buffer], rewrite_index: Callable[["LocalizeBufferHandler", sympy.Expr, str], sympy.Expr], ) -> None: super().__init__(inner) self.global_to_local = global_to_local self.rewrite_index = rewrite_index def localize(self, name: str, index: sympy.Expr): if self.global_to_local and name in self.global_to_local: assert self.rewrite_index is not None index = self.rewrite_index(self, index, name) name = self.global_to_local[name].get_name() return name, index def load(self, name: str, index: sympy.Expr): return self._inner.load(*self.localize(name, index)) def store(self, name, index, value, mode=None): local_buffer_name, local_buffer_index = self.localize(name, index) res = self._inner.store(local_buffer_name, local_buffer_index, value, mode) if ( self.global_to_local and name in self.global_to_local and isinstance(V.kernel, Kernel) ): # Remove name of local buffer from Kernel.store_buffer_names # local_buffer_name is added to Kernel.store_buffer_names in Kernel.CSEProxy.store. V.kernel.store_buffer_names.discard(local_buffer_name) return res def store_reduction(self, name, index, value): return self._inner.store_reduction(*self.localize(name, index), value) class LocalBufferContext: """ This class creates a context that helps to generate code involving Inductor IR with function local buffers. These buffers are constructed during the codegen process and are used to store intermediate results such as local accumulators. We do not want to add them to `V.graph` since they are not global and we do not want to add them as function arguments either. So we patch the codegen processes under this scope to support these buffers without exposure to the outside world. """ def __init__(self, kernel_args: KernelArgs) -> None: self.kernel_args = kernel_args self.exit_stack = contextlib.ExitStack() # map local buffer name to local buffer self.local_buffers: dict[str, ir.Buffer] = {} # map global buffer name to global buffer self.global_buffers: dict[str, ir.Buffer] = {} # map global buffer name to local buffer self.global_to_local: dict[str, ir.Buffer] = {} # record the global buffers that are removed by this LocalBufferContext self.removed_buffers: OrderedSet[str] = OrderedSet() def __enter__(self): self.exit_stack.__enter__() original_get_dtype = V.graph.get_dtype def get_dtype(name): if name in self.local_buffers: return self.local_buffers[name].get_dtype() return original_get_dtype(name) self.exit_stack.enter_context(patch.object(V.graph, "get_dtype", get_dtype)) original_input = self.kernel_args.input def input(name): if name in self.local_buffers: return name return original_input(name) self.exit_stack.enter_context(patch.object(self.kernel_args, "input", input)) original_output = self.kernel_args.output def output(name): if name in self.local_buffers: return name return original_output(name) self.exit_stack.enter_context(patch.object(self.kernel_args, "output", output)) # Set current LocalBufferContext into V self.exit_stack.enter_context(V.set_local_buffer_context(self)) return self def __exit__(self, exc_type, exc_val, exc_tb): self.local_buffers.clear() self.exit_stack.__exit__(exc_type, exc_val, exc_tb) def add_local_buffer( self, local_buffer: ir.Buffer, global_buffers: Optional[list[ir.Buffer]] = None ): assert local_buffer.get_name() not in self.local_buffers self.local_buffers[local_buffer.get_name()] = local_buffer if global_buffers: for global_buffer in global_buffers: global_buffer_name = global_buffer.get_name() assert ( global_buffer_name not in self.global_buffers and global_buffer_name not in self.global_to_local ) self.global_buffers[global_buffer_name] = global_buffer self.global_to_local[global_buffer_name] = local_buffer if global_buffer_name not in V.graph.removed_buffers: # Record the global buffers that are removed by this LocalBufferContext # since which may need to restore. Refer to issue: # https://github.com/pytorch/pytorch/issues/144186 self.removed_buffers.add(global_buffer_name) V.graph.removed_buffers.add(global_buffer_name) def localize_function( self, fn: Callable[..., Any], rewrite_index: Callable[ ["LocalizeBufferHandler", sympy.Expr, str], sympy.Expr ] = rewrite_index_for_function, ): def inner(*args, **kwargs): with V.set_ops_handler( LocalizeBufferHandler( V.get_ops_handler(), global_to_local=self.global_to_local, rewrite_index=rewrite_index, ) ): return fn(*args, **kwargs) return inner def localize_nodes( self, nodes: list[ir.IRNode], rewrite_index: Callable[ ["LocalizeBufferHandler", sympy.Expr, str], sympy.Expr ] = rewrite_index_for_nodes, ) -> list[ir.IRNode]: """ Given `local_buf` and `global_buf` registered in current `LocalBufferContext` though the method of `add_local_buffer`, localizes the `global_buf` to `local_buf` for the given `nodes` and returns a new list of IR nodes that work on `local_buf` instead of `global_buf`, i.e., all the loads and stores are redirected to `local_buf`. This helps the fused loops to work on smaller-sized local buffers for better data locality. The the data access of `local_buf` is assumed to be contiguous with the same order as the `global_buf`. """ assert len(nodes) > 0 def wrap_inner_fn_for_node(node: ir.IRNode): loops = node.data if isinstance(node, ir.ComputedBuffer) else node assert isinstance(loops, ir.Loops) new_inner_fn = self.localize_function( loops.inner_fn, rewrite_index, ) new_loops = dataclasses.replace(loops, inner_fn=new_inner_fn) if isinstance(node, ir.ComputedBuffer): new_node = ir.ComputedBuffer( name=node.get_name(), layout=node.get_layout(), data=new_loops ) else: new_node = new_loops # type: ignore[assignment] return new_node return [wrap_inner_fn_for_node(node) for node in nodes] def unify_mask_base_type( buffer: IndentedBuffer, vars: tuple[CSEVariable, ...], dtype=torch.float, ): """ Given list of cse variables, Cast each to new mask base dtype and return casted cse variable. """ new_vars = ( V.kernel.cse.generate( buffer, f"{V.kernel._get_mask_cast(var, dtype)}", ) for var in vars ) return new_vars def may_unify_binary_op_mask_type(a, b): """ Given two cse variables, when dtype is bool, unify them to the same mask dtype and return casted cse variable. """ if a.dtype == torch.bool: assert b.dtype == torch.bool mask_dtype = torch.int32 return unify_mask_base_type(V.kernel.compute, (a, b), mask_dtype) return a, b def codegen_rand(offset, code, rand_function, dst_dtype=torch.float32): assert is_integer_dtype(offset.dtype) code.writeline("[&]()") with code.indent(): code.writeline( f"{DTYPE_TO_CPP[offset.dtype]} offset[{V.kernel.tiling_factor}];" ) code.writeline(f"{DTYPE_TO_CPP[dst_dtype]} result[{V.kernel.tiling_factor}];") code.writeline(f"{offset}.store(offset);") code.writeline( f"for( {DTYPE_TO_CPP[offset.dtype]} offset_idx = 0; offset_idx < {V.kernel.tiling_factor}; offset_idx++ )" ) with code.indent(): code.writeline(rand_function) num_vectors = V.kernel._get_num_vectors(dtype=dst_dtype) if num_vectors == 1: code.writeline( f"return at::vec::Vectorized<{DTYPE_TO_CPP[dst_dtype]}>::loadu(result);" ) else: code.writeline( f"return at::vec::VectorizedN<{DTYPE_TO_CPP[dst_dtype]}, {num_vectors}>::loadu(result);" ) code.writeline("()") return code def get_gemm_template_output_and_compute_dtype(input_dtype): if input_dtype in [torch.uint8, torch.int8]: return (torch.int32, torch.int32) else: return (torch.float32, torch.float32) def create_epilogue_with_attr(input_buffer, attr, **kwargs): input_loader = input_buffer.make_loader() dtype = input_buffer.get_dtype() if attr == "relu": def inner_fn(index): input = input_loader(index) zero = ops.constant(0, dtype) return ops.maximum(input, zero) elif attr == "gelu": assert "algorithm" in kwargs if kwargs["algorithm"] == "none": def inner_fn(index): input = input_loader(index) if dtype != torch.float: input = ops.to_dtype(input, torch.float) half = ops.constant(0.5, torch.float) one = ops.constant(1.0, torch.float) const = ops.constant(0.7071067811865476, torch.float) result = input * half * (ops.erf(input * const) + one) if dtype != torch.float: result = ops.to_dtype(result, dtype) return result else: assert kwargs["algorithm"] == "tanh" def inner_fn(index): input = input_loader(index) if dtype != torch.float: input = ops.to_dtype(input, torch.float) half = ops.constant(0.5, torch.float) one = ops.constant(1.0, torch.float) const1 = ops.constant(0.7978845608028654, torch.float) const2 = ops.constant(0.044715, torch.float) result = ( half * input * ( one + ops.tanh(const1 * (input + const2 * input * input * input)) ) ) if dtype != torch.float: result = ops.to_dtype(result, dtype) return result elif attr == "swish": def inner_fn(index): input = input_loader(index) result = input * ops.sigmoid(input) return result elif attr == "sigmoid": def inner_fn(index): return ops.sigmoid(input_loader(index)) elif attr == "tanh": def inner_fn(index): return ops.tanh(input_loader(index)) elif attr == "hardswish" or attr == "hardsigmoid": def hardsigmoid_float(input): zero = ops.constant(0, torch.float) six = ops.constant(6, torch.float) three = ops.constant(3, torch.float) one_over_six = ops.constant(0.16666666666666666, torch.float) max = ops.maximum(input + three, zero) min = ops.minimum(max, six) return min * one_over_six def inner_fn(index): input = input_loader(index) if dtype != torch.float: input = ops.to_dtype(input, torch.float) result = hardsigmoid_float(input) if attr == "hardswish": result = input * result if dtype != torch.float: result = ops.to_dtype(result, dtype) return result elif attr == "leaky_relu": assert "scalars" in kwargs assert len(kwargs["scalars"]) == 1 negative_slope = kwargs["scalars"][0] def inner_fn(index): input = input_loader(index) if dtype != torch.float: input = ops.to_dtype(input, torch.float) zero = ops.constant(0, torch.float) result = ops.where( input > zero, input, input * ops.constant(negative_slope, torch.float) ) if dtype != torch.float: result = ops.to_dtype(result, dtype) return result elif attr == "hardtanh": assert "scalars" in kwargs assert len(kwargs["scalars"]) == 2 min_value = kwargs["scalars"][0] max_value = kwargs["scalars"][1] def inner_fn(index): input = input_loader(index) if dtype != torch.float: input = ops.to_dtype(input, torch.float) result = ops.minimum( ops.maximum(input, ops.constant(min_value, torch.float)), ops.constant(max_value, torch.float), ) if dtype != torch.float: result = ops.to_dtype(result, dtype) return result elif attr in ["add", "sub", "mul"]: assert "other" in kwargs other = kwargs["other"] num_input_dims = len(input_buffer.get_size()) num_other_dims = len(other.get_size()) dims_diff = num_input_dims - num_other_dims other_loader = other.make_loader() def inner_fn(index): op = getattr(ops, attr) if dims_diff != 0: return op(input_loader(index), other_loader(index[dims_diff:])) else: return op(input_loader(index), other_loader(index)) elif attr == "bias_add": assert "other" in kwargs assert "beta" in kwargs assert "dtype" in kwargs beta = kwargs["beta"] other = kwargs["other"] dtype = kwargs["dtype"] bias_loader = other.make_loader() def inner_fn(index): bias = bias_loader(index) input = input_loader(index) if beta != 1: result = ops.constant(beta, torch.float) * bias + input else: result = bias + input return result else: raise ValueError(f"Unsupported epilogue attribute: {attr}") return ir.Pointwise( device=input_buffer.get_device(), dtype=dtype, inner_fn=inner_fn, ranges=input_buffer.get_size(), ) def _get_loop_body(fn_list): if all(isinstance(fn, LoopBody) for fn in fn_list): loop_bodies = fn_list else: if hasattr(fn_list[0], "original_fn"): # For the case of local buffer, we wrap the fn with localize_function assert all(hasattr(fn, "original_fn") for fn in fn_list) assert all( isinstance(fn.original_fn.args[0]._body, LoopBody) for fn in fn_list ) loop_bodies = [fn.original_fn.args[0]._body for fn in fn_list] else: assert all(isinstance(fn, functools.partial) for fn in fn_list) assert all(isinstance(fn.args[0]._body, LoopBody) for fn in fn_list) loop_bodies = [fn.args[0]._body for fn in fn_list] assert loop_bodies is not None return loop_bodies def _get_dtype_from_loopbodies(loop_bodies): dtypes = OrderedSet[torch.dtype]() for loop_body in loop_bodies: graphs = [loop_body.root_block.graph] + [ body.graph for body in list(loop_body.subblocks.values()) ] for graph in graphs: for node in graph.nodes: if node.op != "call_method": continue dtypes.add(node.meta[OptimizationContext.key].dtype) return dtypes def template_fusion_with_epilogues_supported( template: BaseSchedulerNode, epilogues: list[BaseSchedulerNode] ) -> tuple[bool, bool]: def _get_indexes_of_template_buf_read( epilogue_node: ir.Operation, template_buf_names: list[str] ) -> list[sympy.Expr]: return [ read.index for read in epilogue_node.get_reads() if read.name in template_buf_names ] def _check_supported_and_same_indexes( index_of_template_buf_read: Sequence[sympy.Expr], epilogue_writes: OrderedSet[Dep], ) -> tuple[bool, bool]: num_indexes = len(OrderedSet(index_of_template_buf_read)) if num_indexes > 1: same_index = False supported = False # Different read indexes not supported elif num_indexes == 0: same_index = True supported = True # No reads, automatically supported elif num_indexes == 1: iotbr = index_of_template_buf_read[0] same_index = all(write.index == iotbr for write in epilogue_writes) # TODO: Add support of fusion when the read of template buffer and the write of epilogue output # in the epilogue node don't have the same index and change supported to True supported = same_index else: raise AssertionError("Should not reach here") return supported, same_index def _template_fusion_supported( template_outputs: Sequence[SchedulerBuffer], epilogue_nodes: list[ir.Operation] ) -> tuple[bool, bool]: template_buf_names = [x.get_name() for x in template_outputs] indexes_of_template_buf_reads = [ _get_indexes_of_template_buf_read(epilogue_node, template_buf_names) for epilogue_node in epilogue_nodes ] epilogue_nodes_writes = [ epilogue_node.get_read_writes().writes for epilogue_node in epilogue_nodes ] results = [ _check_supported_and_same_indexes(reads, writes) for reads, writes in zip( indexes_of_template_buf_reads, epilogue_nodes_writes ) ] supported, same_indexes = zip(*results) return all(supported), all(same_indexes) assert template.is_template() template_outputs = template.get_outputs() epilogue_nodes = [ n.node for epilogue in epilogues for n in epilogue.get_nodes() if n.node is not None ] return _template_fusion_supported(template_outputs, epilogue_nodes)