""" PyTorch Inductor Autotuning Cache System This module implements a caching system for autotuning configurations in PyTorch's Inductor compiler. It provides mechanisms to store and retrieve optimal kernel configurations both locally and remotely, which significantly speeds up compilation by reusing previously discovered optimal parameters. The caching system includes: - Local filesystem caching for individual machine reuse - Remote caching for sharing optimizations across machines - Bundled caching to efficiently store multiple related configurations - Cache invalidation based on PyTorch versions and backend changes - Serialization/deserialization support for worker processes Key components: - AutotuneCache: Main class for managing cache access and storage - AutotuneCacheBundler: Bundles multiple cache entries for efficient storage - LocalAutotuneCache: Handles filesystem-based caching - _LocalAutotuneCacheBackend: Low-level file operations for cache storage - AutotuneCacheArtifact: Integration with PyTorch's artifact system This caching system is critical for performance as it eliminates the need to re-run expensive autotuning operations when the same kernels are compiled multiple times. """ from __future__ import annotations import dataclasses import hashlib import logging import os import os.path import re from typing import Any, Optional, TYPE_CHECKING from typing_extensions import override import torch from torch._dynamo.precompile_context import PrecompileContext from torch._inductor.runtime.runtime_utils import cache_dir from torch.compiler._cache import ( CacheArtifact, CacheArtifactFactory, CacheArtifactManager, ) from torch.utils._triton import has_triton from ..remote_cache import ( create_cache, JsonDataTy, RemoteCache, RemoteCacheBackend, RemoteCacheJsonSerde, ) from .triton_compat import Config, HAS_WARP_SPEC if TYPE_CHECKING: from ..remote_cache import Sample log = logging.getLogger(__name__) _InductorMetaTy = dict[str, object] def inductor_meta_from_config() -> _InductorMetaTy: from torch._inductor import config backend_hash = None if has_triton(): try: backend_hash = torch.utils._triton.triton_hash_with_backend() except RuntimeError: # This can get the error: # RuntimeError: 0 active drivers ([]). There should only be one. pass is_hip = None if torch.version.hip is not None: is_hip = True return { "autotune_local_cache": config.autotune_local_cache, "autotune_remote_cache": config.autotune_remote_cache, "backend_hash": backend_hash, "bundled_autotune_remote_cache": config.bundled_autotune_remote_cache, "coordinate_descent_tuning": config.coordinate_descent_tuning, "is_fbcode": config.is_fbcode(), "is_hip": is_hip, } @CacheArtifactFactory.register class AutotuneCacheArtifact(CacheArtifact): @override def populate_cache(self) -> None: autotune_cache = _LocalAutotuneCacheBackend() key = os.path.join(cache_dir(), self.key) autotune_cache._put(key, self.content) @override @staticmethod def type() -> str: return "autotune" @override @staticmethod def encode(content: JsonDataTy) -> bytes: assert not isinstance(content, bytes) serde = RemoteCacheJsonSerde() content_bytes = serde.encode(content) assert isinstance(content_bytes, bytes) return content_bytes @dataclasses.dataclass class AutotuneCache: configs_hash: str local_cache: Optional[tuple[RemoteCache[JsonDataTy], str]] = None remote_cache: Optional[tuple[RemoteCache[JsonDataTy], str]] = None # Create a AutotuneCache. Returns None if none of the caches can be used. @staticmethod def create( inductor_meta: _InductorMetaTy, filename: str, configs_hash: str ) -> Optional[AutotuneCache]: cache = AutotuneCache(configs_hash) key = AutotuneCache._prepare_key(filename) cache._setup_local_cache(inductor_meta, os.path.dirname(filename), key) cache._setup_remote_autotune_cache(inductor_meta, key) if cache.local_cache or cache.remote_cache: return cache else: return None @staticmethod def _prepare_key(filename: str) -> str: from torch.compiler import config as cconfig # base of filename is already sha256 hash the source contents key = f"{os.path.basename(filename)}:{cconfig.cache_key_tag}" return hashlib.sha256(key.encode("utf-8")).hexdigest() # Read the best config options from the most local cache and return it. def _read(self) -> Optional[dict[str, JsonDataTy]]: if local_cache := self.local_cache: cache, key = local_cache if best_config := cache.get(key): if isinstance(best_config, dict): return best_config if remote_cache := self.remote_cache: cache, key = remote_cache if best_config := cache.get(key): if isinstance(best_config, dict): return best_config return None # Read the best config options from the most local cache and figure out # which `configs` represents that option. def read_best( self, inductor_meta: _InductorMetaTy, configs: list[Config] ) -> Optional[Config]: if best := self._read(): return _load_cached_autotuning( best, self.configs_hash, configs, inductor_meta ) return None # Set up local filesystem caching information def _setup_local_cache( self, inductor_meta: _InductorMetaTy, dirname: str, cache_key: str ) -> None: if not inductor_meta.get("autotune_local_cache", True): return from ..codecache import torch_key """ [Note: torch_key in autotune cache key] Include torch_key() in the cache key so that different versions of torch result in cache invalidation. This is important in case of changes to the best_config format or other code changes that are not backward compatible w.r.t. the cache. """ hasher = hashlib.sha256() hasher.update(cache_key.encode("utf-8")) hasher.update(torch_key()) updated_cache_key = hasher.hexdigest() cache_filename = f"{dirname}/{updated_cache_key}.best_config" local_cache = LocalAutotuneCache() self.local_cache = (local_cache, cache_filename) # Set up remote caching information def _setup_remote_autotune_cache( self, inductor_meta: _InductorMetaTy, cache_key: str ) -> None: if not _should_use_remote_autotune_cache(inductor_meta): return if (backend_hash := inductor_meta.get("backend_hash", None)) is None: log.debug( "backend_hash is not passed on the inductor_meta, unable to use autotune remote cache" ) return assert isinstance(backend_hash, str) from ..codecache import torch_key is_fbcode = bool(inductor_meta.get("is_fbcode", False)) salt = "autotune-best-config-v2" # re: torch_key - see [Note: torch_key in autotune cache key] key = torch_key().hex() + backend_hash + self.configs_hash + salt key = hashlib.sha256(key.encode("utf-8")).hexdigest() remote_cache = create_cache( key, is_fbcode, "FbRemoteAutotuneCache", "RemoteAutotuneCache", ) if not remote_cache: return # Save the args passed to create_cache # in case AutotuneCache needs to be pickled self.remote_cache_full_key = key self.is_fbcode = is_fbcode self.remote_cache = (remote_cache, cache_key) # The AutotuneCache may be serialized/deserialized if we're using # AsyncCompile worker processes to run triton compilation. # This is because AutotuneCache instances are created on the worker # process, but we need to run AutotuneCache.save on the parent process # when actually doing autotuning. def __getstate__(self) -> dict[str, Any]: # The remote cache handles themselves may not be serializable # So clear it and reconstruct it on setstate remote_cache = getattr(self, "remote_cache", None) return { **self.__dict__, # Save the cache_key portion "remote_cache": remote_cache and remote_cache[1], } def __setstate__(self, state: dict[str, Any]) -> None: # Reconstruct the remote cache on the parent class self.__dict__.update(state) if self.remote_cache is not None: assert isinstance(self.remote_cache, str) assert hasattr(self, "remote_cache_full_key") assert hasattr(self, "is_fbcode") cache_key = self.remote_cache remote_cache = create_cache( self.remote_cache_full_key, self.is_fbcode, "FbRemoteAutotuneCache", "RemoteAutotuneCache", ) if remote_cache is not None: self.remote_cache = (remote_cache, cache_key) else: log.warning("Warning, failed to recreate remote cache after pickling") self.remote_cache = None # Save the config in the caches def save( self, config: Config, time_taken_ns: int, found_by_coordesc: bool = False, triton_cache_hash: Optional[str] = None, ) -> None: data = { **config.kwargs, "num_warps": config.num_warps, "num_stages": config.num_stages, "configs_hash": self.configs_hash, "found_by_coordesc": found_by_coordesc, "time_taken_ms": time_taken_ns // 1000000, # Convert from NS to MS "triton_cache_hash": triton_cache_hash, } if HAS_WARP_SPEC: data.update( { "num_consumer_groups": getattr(config, "num_consumer_groups", 0), "num_buffers_warp_spec": getattr( config, "num_buffers_warp_spec", 0 ), } ) if local_cache := self.local_cache: cache, key = local_cache cache.put(key, data) AutotuneCacheBundler.put(key, data) autotune_artifact_key = os.path.join(*key.split(os.sep)[-2:]) CacheArtifactManager.record_artifact( AutotuneCacheArtifact.type(), autotune_artifact_key, data ) if torch._dynamo.config.caching_precompile: PrecompileContext.record_artifact( AutotuneCacheArtifact.type(), autotune_artifact_key, data ) if log.isEnabledFor(logging.DEBUG): type_str = "coordesc" if found_by_coordesc else "heuristic" log.debug("Save %s tuning result to %s", type_str, key) if remote_cache := self.remote_cache: cache, key = remote_cache cache.put(key, data) class _AutotuneCacheBundlerImpl: """ Caches a set of LocalAutotuneCacheBackend entries together in a single cache. """ _key: str _cache: RemoteCache[JsonDataTy] # All known entries from LocalAutotuneCache.put() _entries: dict[str, JsonDataTy] def end_compile(self) -> None: # TODO: Do we need to compute time_taken_ms and encode that somehow? if self._entries: self._cache.put(self._key, self._entries) def put(self, basename: str, data: JsonDataTy) -> None: # Do we need to worry about duplicates? We only have a single local fs # entry - so probably not. self._entries[basename] = data def __init__(self, key: str, cache: RemoteCache[JsonDataTy]) -> None: self._key = key self._cache = cache self._entries = {} def sync(self) -> None: # We don't currently use this - but we could async load starting at # `begin_compile` and wait for the load to be finished here. pass @classmethod def _should_use_bundled_autotune_remote_cache( cls, inductor_meta: _InductorMetaTy ) -> bool: # The bundled autotune cache is only available if you've also got local # caching enabled (because we feed the bundled data to the local cache). if not inductor_meta.get("autotune_local_cache", True): return False # Check if the we're enabled via config if ( bundled_autotune_remote_cache := inductor_meta.get( "bundled_autotune_remote_cache" ) ) is not None: return bool(bundled_autotune_remote_cache) if not cls._get_is_fbcode(inductor_meta): return False if torch._utils_internal.is_fb_unit_test(): return False if inductor_meta.get("is_hip"): return False try: from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION except ModuleNotFoundError: return False jk = torch._utils_internal.justknobs_getval_int( "pytorch/remote_cache:bundled_autotune_remote_cache_version" ) return REMOTE_CACHE_VERSION >= jk def _load_cache(self) -> bool: from torch._inductor import codecache # The single key is defined on construction of the cache. entries = self._cache.get(self._key) if entries is None or not isinstance(entries, dict): # We couldn't load the cache - so mark _entries as non-None so we # store local cache values. return False # Go through the entries we got from the cache and save them locally. time_saved_ns = 0 for basename, data in entries.items(): # Reconstruct the final filename (see put()) root, ext = _splitext_nodot(basename) _, _, filename = codecache.get_path(root, ext) if isinstance(data, dict) and (tsns := data.get("time_saved_ns")): time_saved_ns += int(tsns) # type: ignore[arg-type] local_cache = LocalAutotuneCache() local_cache.put(filename, data) codecache.add_ephemeral_timeout_increase_for_distributed(time_saved_ns) return True @staticmethod def _get_is_fbcode(inductor_meta: _InductorMetaTy) -> bool: return bool(inductor_meta.get("is_fbcode", False)) @staticmethod def _get_backend_hash(inductor_meta: _InductorMetaTy) -> str: backend_hash = inductor_meta["backend_hash"] assert isinstance(backend_hash, str) return backend_hash class AutotuneCacheBundler: _bundler: Optional[_AutotuneCacheBundlerImpl] = None def __init__(self) -> None: pass # Call this before we start any autotune computation for an inductor python # file. On a cache hit it copies the individual results into the local # autotune caches. @classmethod def begin_compile( cls, inductor_meta: _InductorMetaTy, *, code: Optional[str] = None, code_hash: Optional[str] = None, ) -> None: assert cls._bundler is None if code is not None: assert code_hash is None, "Cannot specify both code and code_hash" code_hash = _comment_stripped_hash(code) assert code_hash is not None if not _AutotuneCacheBundlerImpl._should_use_bundled_autotune_remote_cache( inductor_meta ): return cache = create_cache( "bundled-autotune-v1", _AutotuneCacheBundlerImpl._get_is_fbcode(inductor_meta), "FbRemoteBundledAutotuneCache", "RemoteBundledAutotuneCache", ) if not cache: return # We're starting a compilation phase. We have a cache key for the code # we're compiling. We'll get the individual autotune bundles later (via # self.put()). For now create the AutotuneCacheBundler and try to load # from the cache. salt = "bundled-autotune-best-configs-v1" backend_hash = _AutotuneCacheBundlerImpl._get_backend_hash(inductor_meta) # TODO: The autotune cache includes configs_hash in the key. The problem # is that the configs_hash includes info from the individual pointwise() # calls (size_hints, for example) which we can't know yet. I *think* # that info is basically present in the `code_hash` (since it's a # parameter to the pointwise decorator) - but is there other info we # need to include from inductor_meta? key = code_hash + backend_hash + salt key = hashlib.sha256(key.encode("utf-8")).hexdigest() bundler = _AutotuneCacheBundlerImpl(key, cache) if not bundler._load_cache(): # We couldn't load from the cache - so save the data so we can store # the saved autotunes. cls._bundler = bundler # If we get a cache hit don't bother saving any of the individual # autotune results. # Call this after all individual autotune results are finished for a # inductor python file. If we gathered any individual results then we bundle # those and put it into the cache. @classmethod def end_compile(cls) -> None: if bundler := cls._bundler: cls._bundler = None bundler.end_compile() @classmethod def sync(cls) -> None: if bundler := cls._bundler: bundler.sync() @classmethod def put(cls, filename: str, data: JsonDataTy) -> None: if bundler := cls._bundler: # The filename comes in as something like # "/tmp/tmp{random}/{aa}/{basename}.py" (where aa is # basename[1:3]). Strip it down and make sure that it looks like a path # we could reconstruct (because it's possible for the caller to # customize the path). basename = os.path.basename(filename) # TODO: check cache_dir() vs filename, then strip dirname bundler.put(basename, data) # Remove the comments from the code (which include things like run ids and file # paths) and then hash the result. def _comment_stripped_hash(code: str) -> str: code = re.sub(r"#.*$", "", code, count=0, flags=re.MULTILINE) return torch._inductor.codecache.code_hash(code) def _should_use_remote_autotune_cache(inductor_meta: _InductorMetaTy) -> bool: if (config := inductor_meta.get("autotune_remote_cache")) is not None: return bool(config) if not inductor_meta.get("is_fbcode"): return False if torch._utils_internal.is_fb_unit_test(): return False if inductor_meta.get("is_hip"): return False try: from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION except ModuleNotFoundError: return False return REMOTE_CACHE_VERSION >= torch._utils_internal.justknobs_getval_int( "pytorch/remote_cache:autotune_memcache_version" ) def _load_cached_autotuning( best_config: dict[str, JsonDataTy], configs_hash: str, configs: list[Config], inductor_meta: _InductorMetaTy, ) -> Optional[Config]: if best_config is None: return None if best_config.pop("configs_hash", None) != configs_hash: return None # Remove time taken for comparison best_config.pop("time_taken_ms", None) best_config.pop("triton_cache_hash", None) if inductor_meta.get("coordinate_descent_tuning") and best_config.pop( "found_by_coordesc", False ): num_warps = best_config.pop("num_warps") num_stages = best_config.pop("num_stages") # Extract common arguments config_args = { "num_warps": num_warps, "num_stages": num_stages, } if HAS_WARP_SPEC: config_args.update( { "num_consumer_groups": best_config.pop("num_consumer_groups", 0), "num_buffers_warp_spec": best_config.pop( "num_buffers_warp_spec", 0 ), } ) # Create the triton_config with the appropriate arguments triton_config = Config(best_config, **config_args) triton_config.found_by_coordesc = True return triton_config matching_configs = [ cfg for cfg in configs if all(val == best_config.get(key) for key, val in cfg.kwargs.items()) and cfg.num_warps == best_config.get("num_warps") and cfg.num_stages == best_config.get("num_stages") ] if len(matching_configs) != 1: return None return matching_configs[0] class _LocalAutotuneCacheBackend(RemoteCacheBackend[bytes]): @override def _get(self, key: str) -> Optional[bytes]: try: with open(key, "rb") as fd: return fd.read() except FileNotFoundError: return None @override def _put(self, key: str, data: bytes) -> None: os.makedirs(os.path.dirname(key), exist_ok=True) from torch._inductor import codecache codecache.write_atomic(key, data) class LocalAutotuneCache(RemoteCache[JsonDataTy]): def __init__(self) -> None: backend = _LocalAutotuneCacheBackend() serde = RemoteCacheJsonSerde() super().__init__(backend, serde) @override def _get(self, key: str, sample: Optional[Sample]) -> Optional[JsonDataTy]: AutotuneCacheBundler.sync() result = super()._get(key, sample) if result is not None: assert isinstance(result, dict) # What? Why are we doing a put() here? Imagine we have a new model # that reuses some existing kernels that have already been # compiled. If we didn't do a `put` here (on cache hit) then the new # model would only bundle *newly* compiled kernels, not existing # kernels that were already compiled and cached. AutotuneCacheBundler.put(key, result) autotune_artifact_key = os.path.join(*key.split(os.sep)[-2:]) CacheArtifactManager.record_artifact( AutotuneCacheArtifact.type(), autotune_artifact_key, result ) if torch._dynamo.config.caching_precompile: PrecompileContext.record_artifact( AutotuneCacheArtifact.type(), autotune_artifact_key, result ) return result @override def _put(self, key: str, value: JsonDataTy, sample: Optional[Sample]) -> None: AutotuneCacheBundler.put(key, value) super()._put(key, value, sample) def _splitext_nodot(basename: str) -> tuple[str, str]: root, ext = os.path.splitext(basename) if ext: ext = ext[1:] return root, ext