# mypy: allow-untyped-defs from typing import Optional import torch from torch.ao.nn.quantized.modules.utils import ( _hide_packed_params_repr, _quantize_weight, ) __all__ = ["LinearPackedParams", "Linear"] # TODO (zaf): Inherit from `quantized.LinearPackedParams` (T83294430) class LinearPackedParams(torch.nn.Module): _version = 1 def __init__(self, row_block_size=1, col_block_size=4, dtype=torch.qint8): super().__init__() if dtype != torch.qint8: raise NotImplementedError("Linear prepacking only supports QINT8") self.dtype = dtype wq = torch._empty_affine_quantized( [1, 1], scale=1.0, zero_point=0, dtype=torch.qint8 ) self.set_weight_bias(wq, None, row_block_size, col_block_size) def _get_name(self): return "SparseQuantizedLinearPackedParams" @torch.jit.export def set_weight_bias( self, weight: torch.Tensor, bias: Optional[torch.Tensor], row_block_size: Optional[int], col_block_size: Optional[int], ) -> None: assert row_block_size is not None and col_block_size is not None self._packed_params = torch.ops.sparse.qlinear_prepack( weight, bias, row_block_size, col_block_size ) @torch.jit.export def _weight_bias(self): (weight, bias, block_sizes) = torch.ops.sparse.qlinear_unpack( self._packed_params ) return (weight, bias, block_sizes[0], block_sizes[1]) def forward(self, x): return x def _save_to_state_dict(self, destination, prefix, keep_vars): super()._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + "dtype"] = self.dtype destination[prefix + "_packed_params"] = self._weight_bias() def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) assert version <= self._version self.dtype = state_dict.pop(prefix + "dtype") weight, bias, row_block_size, col_block_size = state_dict.pop( prefix + "_packed_params" ) self.set_weight_bias(weight, bias, row_block_size, col_block_size) super()._load_from_state_dict( state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs, ) @torch.jit.export def __getstate__(self): return self._packed_params, self.training, self.dtype @torch.jit.export def __setstate__(self, state): (self._packed_params, self.training, self.dtype) = state def __repr__(self): return self._weight_bias().__repr__() # TODO (zaf): Inherit from `quantized.Linear` (T83294430) class Linear(torch.nn.Module): r""" A quantized sparse linear module with quantized tensor as inputs and outputs. """ _version = 1 _FLOAT_MODULE = torch.nn.Linear def __init__( self, in_features, out_features, row_block_size, col_block_size, bias=True, dtype=torch.qint8, ): super().__init__() if dtype != torch.qint8: raise NotImplementedError( "Only QINT8 is supported for Sparse Quantized Linear" ) self.in_features = in_features self.out_features = out_features if bias: bias = torch.zeros(self.out_features, dtype=torch.float) else: bias = None qweight = torch._empty_affine_quantized( [out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8 ) self._packed_params = LinearPackedParams( row_block_size=row_block_size, col_block_size=col_block_size, dtype=dtype ) self._packed_params.set_weight_bias( qweight, bias, row_block_size, col_block_size ) self.scale = 1.0 self.zero_point = 0 @classmethod def _get_name(cls): return "SparseQuantizedLinear" def extra_repr(self): return ( f"in_features={self.in_features}, out_features={self.out_features}, scale={self.scale}, " f"zero_point={self.zero_point}, qscheme={self.weight().qscheme()}" ) def __repr__(self): return _hide_packed_params_repr(self, LinearPackedParams) def forward(self, x: torch.Tensor) -> torch.Tensor: return torch.ops.sparse.qlinear( x, self._packed_params._packed_params, self.scale, self.zero_point ) def _save_to_state_dict(self, destination, prefix, keep_vars): super()._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + "scale"] = torch.tensor(self.scale) destination[prefix + "zero_point"] = torch.tensor(self.zero_point) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): self.scale = float(state_dict[prefix + "scale"]) state_dict.pop(prefix + "scale") self.zero_point = int(state_dict[prefix + "zero_point"]) state_dict.pop(prefix + "zero_point") state_dict.pop(prefix + "op_type") version = local_metadata.get("version", None) assert version <= self._version super()._load_from_state_dict( state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs, ) def _weight_bias(self): return self._packed_params._weight_bias() def weight(self): return self._weight_bias()[0] def bias(self): return self._weight_bias()[1] def set_weight_bias( self, w: torch.Tensor, b: Optional[torch.Tensor], row_block_size: Optional[int], col_block_size: Optional[int], ) -> None: assert row_block_size is not None and col_block_size is not None self._packed_params.set_weight_bias(w, b, row_block_size, col_block_size) @classmethod def from_float(cls, mod, use_precomputed_fake_quant=False): r"""Create a quantized sparse module from a float module. We only care about the convert at this stage, no need for observers just yet. TODO(zaf): Need to add the sparse params to the qconfig """ assert type(mod) == cls._FLOAT_MODULE, ( cls._get_name() + ".from_float only works for " + cls._FLOAT_MODULE.__name__ ) assert hasattr(mod, "sparse_params"), ( "Expecting the Linear to have `sparse_params`. Make sure you have provided arguments " 'in the `sparsifier.squash_mask(params_to_save=("sparse_block_shape",))` method.' ) sparse_block_shape = mod.sparse_params.get("sparse_block_shape", None) # type: ignore[operator, union-attr] assert isinstance(sparse_block_shape, (tuple, list)) assert len(sparse_block_shape) == 2 # TODO: Need to add options to qconfig to avoid the calibration. # TODO: Add calibration for the sparsity assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined" activation_post_process = mod.activation_post_process weight_post_process = mod.qconfig.weight() # type: ignore[operator, union-attr] # Assumption is that the weight is already sparsified by the # `sparsifier.convert` weight = mod.weight weight_post_process(weight) dtype = weight_post_process.dtype act_scale, act_zp = activation_post_process.calculate_qparams() # type: ignore[operator, union-attr] assert dtype == torch.qint8, "Weight observer must have dtype torch.qint8" w_sc, w_zp = weight_post_process.calculate_qparams() if isinstance(w_zp, torch.Tensor): assert not torch.any(w_zp.bool()), "All weight zero points must map to 0" else: assert w_zp == 0, "Weight zero point must map to 0" qweight = _quantize_weight(weight.float(), weight_post_process) row_block_size = mod.sparse_params["sparse_block_shape"][0] # type: ignore[index] col_block_size = mod.sparse_params["sparse_block_shape"][1] # type: ignore[index] qlinear = cls( mod.in_features, mod.out_features, row_block_size, col_block_size, dtype=dtype, ) qlinear.set_weight_bias( qweight, mod.bias, row_block_size, # type: ignore[arg-type] col_block_size, # type: ignore[arg-type] ) qlinear.scale = float(act_scale) qlinear.zero_point = int(act_zp) return qlinear