// Implementation of specal math functions for Metal #pragma once #include #include #include #include namespace c10 { namespace metal { /* * Approximation to the error function. * Based on code from: * https://stackoverflow.com/questions/35148198/efficient-faithfully-rounded-implementation-of-error-function-erff#answer-35148199 * Copy-n-pasted from * https://github.com/ml-explore/mlx/blob/2e8cf0b4506c200a5c2d199ecbbf655fdf4c2ce2/mlx/backend/metal/kernels/erf.h#L11 */ template inline float erf(T x) { const auto a = static_cast(x); const auto t = ::metal::abs(a); const auto s = a * a; if (t > 0.927734375f) { // maximum error 0.99527 ulp auto r = ::metal::fma( -1.72853470e-5f, t, 3.83197126e-4f); // -0x1.220000p-16,0x1.91cfb2p-12 const auto u = ::metal::fma( -3.88396438e-3f, t, 2.42546219e-2f); // -0x1.fd1438p-9, 0x1.8d6342p-6 r = ::metal::fma(r, s, u); r = ::metal::fma(r, t, -1.06777877e-1f); // -0x1.b55cb8p-4 r = ::metal::fma(r, t, -6.34846687e-1f); // -0x1.450aa0p-1 r = ::metal::fma(r, t, -1.28717512e-1f); // -0x1.079d0cp-3 r = ::metal::fma(r, t, -t); // TODO, replace with expm1 when implemented r = 1.0f - ::metal::exp(r); r = ::metal::copysign(r, a); return r; } // maximum error 0.98929 ulp auto r = -5.96761703e-4f; // -0x1.38e000p-11 r = ::metal::fma(r, s, 4.99119423e-3f); // 0x1.471a58p-8 r = ::metal::fma(r, s, -2.67681349e-2f); // -0x1.b691b2p-6 r = ::metal::fma(r, s, 1.12819925e-1f); // 0x1.ce1c44p-4 r = ::metal::fma(r, s, -3.76125336e-1f); // -0x1.812700p-2 r = ::metal::fma(r, s, 1.28379166e-1f); // 0x1.06eba8p-3 r = ::metal::fma(r, a, a); return r; } template float erfc(T x) { return 1.0 - erf(x); } template inline float erfinv(T y) { /* coefficients in rational expansion */ constexpr float a[4] = {0.886226899, -1.645349621, 0.914624893, -0.140543331}; constexpr float b[4] = {-2.118377725, 1.442710462, -0.329097515, 0.012229801}; constexpr float c[4] = {-1.970840454, -1.624906493, 3.429567803, 1.641345311}; constexpr float d[2] = {3.543889200, 1.637067800}; float x, z, num, dem; /*working variables */ float y_abs = ::metal::abs(static_cast(y)); if (y_abs >= 1.0f) { return y_abs > 1.0f ? NAN : ::metal::copysign(INFINITY, static_cast(y)); } if (y_abs <= 0.7f) { z = y * y; num = ((a[3] * z + a[2]) * z + a[1]) * z + a[0]; dem = (((b[3] * z + b[2]) * z + b[1]) * z + b[0]) * z + 1.0f; x = y * num / dem; } else { z = ::metal::sqrt(-1.0f * ::metal::log((1.0 - y_abs) / 2.0)); num = ((c[3] * z + c[2]) * z + c[1]) * z + c[0]; dem = (d[1] * z + d[0]) * z + 1.0f; x = ::metal::copysign(num, static_cast(y)) / dem; } return x; } /* * For licensing information and documentation, please refer to the cpu * implementation located in "ATen/native/Math.h". */ template inline T chbevl(T x, const float array[], const int len) { T b0, b1, b2; b0 = array[0]; b1 = 0; for (int i = 1; i < len; ++i) { b2 = b1; b1 = b0; b0 = x * b1 - b2 + array[i]; } return T{0.5} * (b0 - b2); } // Copied from // https://github.com/pytorch/pytorch/blob/58b661cda2c002a8e1ac3bee494bfe1f7420437c/aten/src/ATen/native/cuda/Math.cuh#L502 template inline T i0(T _x) { auto x = ::metal::fabs(_x); if (x <= 8.0) { /* Chebyshev coefficients for exp(-x) I0(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I0(x) } = 1. */ constexpr float A[] = { -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1}; auto y = (x / 2.0) - 2.0; return static_cast(::metal::exp(x) * chbevl(y, A, 30)); } // Handles x > 8 case /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). */ constexpr float B[] = { -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1}; return static_cast( (::metal::exp(x) * chbevl(32.0 / x - 2.0, B, 25)) / ::metal::sqrt(x)); } template inline T i0e(T _x) { auto x = ::metal::fabs(_x); if (x <= 8.0) { constexpr float coefficients[] = { -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1}; auto y = (x / 2.0) - 2.0; return static_cast(chbevl(y, coefficients, int{30})); } // x > 8 constexpr float coefficients[] = { -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1}; return static_cast( chbevl(32.0 / x - 2.0, coefficients, 25) / ::metal::sqrt(x)); } // Copied from // https://github.com/pytorch/pytorch/blob/58b661cda2c002a8e1ac3bee494bfe1f7420437c/aten/src/ATen/native/cuda/Math.cuh#L576 template inline T i1(T _x) { const auto x = ::metal::fabs(_x); if (x <= 8.0) { // Chebyshev coefficients for exp(-x) i1(x) in the internal [0, 8] // lim(x->0){ exp(-x) i1(x) / x } = 1/2 constexpr float coefficients[] = { 2.77791411276104639959E-18, -2.11142121435816608115E-17, 1.55363195773620046921E-16, -1.10559694773538630805E-15, 7.60068429473540693410E-15, -5.04218550472791168711E-14, 3.22379336594557470981E-13, -1.98397439776494371520E-12, 1.17361862988909016308E-11, -6.66348972350202774223E-11, 3.62559028155211703701E-10, -1.88724975172282928790E-9, 9.38153738649577178388E-9, -4.44505912879632808065E-8, 2.00329475355213526229E-7, -8.56872026469545474066E-7, 3.47025130813767847674E-6, -1.32731636560394358279E-5, 4.78156510755005422638E-5, -1.61760815825896745588E-4, 5.12285956168575772895E-4, -1.51357245063125314899E-3, 4.15642294431288815669E-3, -1.05640848946261981558E-2, 2.47264490306265168283E-2, -5.29459812080949914269E-2, 1.02643658689847095384E-1, -1.76416518357834055153E-1, 2.52587186443633654823E-1}; const auto y = x / 2.0 - 2.0; const auto out = ::metal::exp(x) * x * chbevl(y, coefficients, 29); return static_cast(_x < T(0.) ? -out : out); } // Chebyshev coefficients for exp(-x) sqrt(x) i1(x) // in the inverted interval [8, infinity] // lim(x->inf){ exp(-x) sqrt(x) i1(x) } = 1/sqrt(2pi) constexpr float coefficients[] = { 7.51729631084210481353E-18, 4.41434832307170791151E-18, -4.65030536848935832153E-17, -3.20952592199342395980E-17, 2.96262899764595013876E-16, 3.30820231092092828324E-16, -1.88035477551078244854E-15, -3.81440307243700780478E-15, 1.04202769841288027642E-14, 4.27244001671195135429E-14, -2.10154184277266431302E-14, -4.08355111109219731823E-13, -7.19855177624590851209E-13, 2.03562854414708950722E-12, 1.41258074366137813316E-11, 3.25260358301548823856E-11, -1.89749581235054123450E-11, -5.58974346219658380687E-10, -3.83538038596423702205E-9, -2.63146884688951950684E-8, -2.51223623787020892529E-7, -3.88256480887769039346E-6, -1.10588938762623716291E-4, -9.76109749136146840777E-3, 7.78576235018280120474E-1}; const auto out = (::metal::exp(x) * chbevl(32. / x - 2., coefficients, 25)) / ::metal::sqrt(x); return static_cast(_x < T(0.) ? -out : out); } template inline T i1e(T _x) { const auto x = ::metal::fabs(_x); if (x <= 8.0) { // Chebyshev double coefficients for exp(-x) i1(x) in the interval [0,8]. // Note: lim(x->0){ exp(-x) i1(x) / x } = 1/2. constexpr float coefficients[] = { 9.38153738649577178388E-9f, -4.44505912879632808065E-8f, 2.00329475355213526229E-7f, -8.56872026469545474066E-7f, 3.47025130813767847674E-6f, -1.32731636560394358279E-5f, 4.78156510755005422638E-5f, -1.61760815825896745588E-4f, 5.12285956168575772895E-4f, -1.51357245063125314899E-3f, 4.15642294431288815669E-3f, -1.05640848946261981558E-2f, 2.47264490306265168283E-2f, -5.29459812080949914269E-2f, 1.02643658689847095384E-1f, -1.76416518357834055153E-1f, 2.52587186443633654823E-1f}; const auto y = x / 2.0 - 2.0; const auto out = chbevl(y, coefficients, 17) * x; return static_cast(_x < 0. ? -out : out); } // Chebyshev coefficients for exp(-x) sqrt(x) i1(x) // in the inverted interval (8, infinity]. // Note: lim(x->inf){ exp(-x) sqrt(x) i1(x) } = 1/sqrt(2pi). // TODO: what's an "inverted interval"? Open on the left // and closed on the right? constexpr float coefficients[] = { -3.83538038596423702205E-9f, -2.63146884688951950684E-8f, -2.51223623787020892529E-7f, -3.88256480887769039346E-6f, -1.10588938762623716291E-4f, -9.76109749136146840777E-3f, 7.78576235018280120474E-1f}; const auto out = chbevl(32. / x - 2., coefficients, 7) / ::metal::precise::sqrt(x); return static_cast(_x < 0. ? -out : out); } // gamma, lgamma template inline float log_gamma(const T); template inline float gamma(const T x) { if (x < 0.001) { constexpr float EULER_MASCHERONI = 0.577215664901532860606512090; // For small x, 1/gamma(x) has power series x + gamma x^2 - ... // So in this range, 1/gamma(x) = x + gamma x^2 with error on the order of // x^3. The relative error over this interval is less than 6e-7. return 1.0 / (x * (1.0 + EULER_MASCHERONI * x)); } if (x >= 12.0) { return ::metal::exp(log_gamma(x)); } // The algorithm directly approximates gamma over (1,2) and uses // reduction identities to reduce other arguments to this interval. // numerator coefficients for gamma approximation over the interval (1,2) constexpr float GAMMA_NUMERATOR_COEF[8] = { -1.71618513886549492533811E+0, 2.47656508055759199108314E+1, -3.79804256470945635097577E+2, 6.29331155312818442661052E+2, 8.66966202790413211295064E+2, -3.14512729688483675254357E+4, -3.61444134186911729807069E+4, 6.64561438202405440627855E+4}; // denominator coefficients for gamma approximation over the interval (1,2) constexpr float GAMMA_DENOMINATOR_COEF[8] = { -3.08402300119738975254353E+1, 3.15350626979604161529144E+2, -1.01515636749021914166146E+3, -3.10777167157231109440444E+3, 2.25381184209801510330112E+4, 4.75584627752788110767815E+3, -1.34659959864969306392456E+5, -1.15132259675553483497211E+5}; // Add or subtract integers as necessary to bring y into (1,2) float y = 1.0 + ::metal::fract(x); float num = 0.0; float den = 1.0; float z = y - 1; for (int i = 0; i < 8; i++) { num = (num + GAMMA_NUMERATOR_COEF[i]) * z; den = den * z + GAMMA_DENOMINATOR_COEF[i]; } float result = num / den + 1.0; // Apply correction if argument was not initially in (1,2) if (x < 1.0) { // identity gamma(z) = gamma(z+1)/z result /= (y - 1.0); } else { // identity gamma(z+n) = z*(z+1)* ... *(z+n-1)*gamma(z) auto n = static_cast(::metal::floor(x)); for (int i = 1; i < n; i++) { result *= y++; } } return result; } template inline float log_gamma(const T x) { constexpr float LOG_PI = 1.14472988584940017414342735135305; constexpr float HALF_LOG_TWO_PI = 0.91893853320467274178032973640562; constexpr float LGAMMA_EXPANSION_COEF[8] = { 1.0 / 12.0, -1.0 / 360.0, 1.0 / 1260.0, -1.0 / 1680.0, 1.0 / 1188.0, -691.0 / 360360.0, 1.0 / 156.0, -3617.0 / 122400.0}; float rc; const auto abs_x = ::metal::abs(static_cast(x)); if (abs_x == 0) { return INFINITY; } if (abs_x < 12.0) { rc = ::metal::log(::metal::abs(gamma(abs_x))); } else { // Abramowitz and Stegun 6.1.41 // Asymptotic series should be good to at least 11 or 12 figures // For error analysis, see Whittiker and Watson // A Course in Modern Analysis (1927), page 252 float z = 1.0 / (abs_x * abs_x); float sum = LGAMMA_EXPANSION_COEF[7]; for (int i = 6; i >= 0; i--) { sum *= z; sum += LGAMMA_EXPANSION_COEF[i]; } float series = sum / abs_x; rc = (abs_x - 0.5) * ::metal::log(abs_x) - abs_x + HALF_LOG_TWO_PI + series; } if (x >= 0) { return rc; } // Reflection formula // Compute arg first to workaround Metal compiler bgg of sorts on M4 // See https://github.com/pytorch/pytorch/pull/145740 for more details auto log_arg = abs_x * ::metal::abs(::metal::sinpi(abs_x)); return LOG_PI - rc - ::metal::log(log_arg); } inline float zeta(float x, float q) { constexpr float MACHEP = 1.11022302462515654042E-16; constexpr float ZETA_EXPANSION[] = { 12.0, -720.0, 30240.0, -1209600.0, 47900160.0, -1.8924375803183791606e9, 7.47242496e10, -2.950130727918164224e12, 1.1646782814350067249e14, -4.5979787224074726105e15, 1.8152105401943546773e17, -7.1661652561756670113e18}; if (x == 1.0f) { return INFINITY; } if (x < 1.0f) { return NAN; } if (q <= 0.0f) { if (q == ::metal::trunc(q)) { return INFINITY; } if (x != ::metal::trunc(x)) { return NAN; } } float s = ::metal::pow(q, -x); float a = q; int i = 0; float b = 0.0f; while ((i < 9) || (a <= 9.0f)) { i += 1; a += 1.0f; b = ::metal::pow(a, -x); s += b; if ((-MACHEP * s < b) && (b < MACHEP * s)) { return s; } } float w = a; s += b * w / (x - 1.0f); s -= 0.5f * b; a = 1.0f; float t; float k = 0.0f; for (int i = 0; i < 12; i++) { a *= x + k; b /= w; t = a * b / ZETA_EXPANSION[i]; s += t; t = ::metal::fabs(t / s); if (t < MACHEP) { return s; } k += 1.0f; a *= x + k; b /= w; k += 1.0f; } return s; } inline float calc_digamma_positive_domain(float x) { constexpr float DIGAMMA_COEF[7] = { 8.33333333333333333333E-2, -2.10927960927960927961E-2, 7.57575757575757575758E-3, -4.16666666666666666667E-3, 3.96825396825396825397E-3, -8.33333333333333333333E-3, 8.33333333333333333333E-2, }; // Push x to be >= 10 float result = 0; while (x < 10) { result -= 1 / x; x += 1; } if (x == 10) { constexpr float PSI_10 = 2.25175258906672110764; return result + PSI_10; } // Compute asymptotic digamma float y = 0; if (x < 1.0E+17) { float z = 1.0 / (x * x); for (int i = 0; i <= 6; i++) { y += ::metal::pow(z, i) * DIGAMMA_COEF[i]; } y *= z; } return result + ::metal::log(x) - (0.5 / x) - y; } template inline float digamma(T0 x) { if (x < 0.0f) { if (x == ::metal::trunc(x)) { // As per C++ standard for gamma related functions and SciPy, // If the argument is a negative integer, NaN is returned return NAN; } else { // Extracts the fractional part of x as r, since tan(pi * r) is more // numerically accurate than tan(pi * x). While these operations are // mathematically equivalent since both x and r are in radians and tan() // has a periodicity of pi, in practice the computation of pi * x is a // source of error (when |x| > 1). float r = ::metal::fract(x); return calc_digamma_positive_domain(1.0f - x) - M_PI_F / ::metal::tan(M_PI_F * r); } } else if (x == 0.0f) { // As per C++ standard for gamma related functions and SciPy, // If the argument is ±0, ±∞ is returned return ::metal::copysign(INFINITY, static_cast(-x)); } else { return calc_digamma_positive_domain(x); } } template inline float polygamma(const int64_t order, const T0 input) { // Filter out n == 0. if (order == 0) { return digamma(input); } float x = input; float n = order; float sgn = ((order % 2) ? 1 : -1); return sgn * gamma(n + 1) * zeta(n + 1, x); } template inline ::metal::enable_if_t, T> sinc(T a) { if (a == static_cast(0)) { return static_cast(1); } auto product = M_PI_F * static_cast(a); return static_cast(::metal::precise::sin(product) / product); } // Complex sinc2 implementation template inline ::metal::enable_if_t, T> sinc(T inp) { auto a = static_cast(inp) * M_PI_F; const float a2 = a.x * a.x + a.y * a.y; if (a2 == 0) { return 0; } float cosx; float sinx = ::metal::sincos(a.x, cosx); float sinhy = ::metal::sinh(a.y); float coshy = ::metal::cosh(a.y); auto re = sinx * coshy * a.x + cosx * sinhy * a.y; auto im = cosx * sinhy * a.x - sinx * coshy * a.y; return T(re, im) / a2; } template inline T spherical_bessel_j0(T x) { if (::metal::isinf(x)) return T(0.0); T x2 = x * x; T k1 = static_cast(-1.0); T k2 = static_cast(1.0); if (::metal::fabs(static_cast(x)) < T(0.5)) { return T(1.0) + x2 * (k1 / T(6.0) + x2 * (k2 / T(120.0) + x2 * (k1 / T(5040.0) + x2 * (k2 / T(362880.0) + x2 * (k1 / T(39916800.0) + x2 * (k2 / T(6227020800.0))))))); } return static_cast(::metal::sin(x) / x); } template inline float xlog1py(T x, T y) { if (::metal::isnan(y)) { return NAN; } if (x == 0) { return x; } return x * ::c10::metal::log1p(y); } template inline T entr(T a) { if (a != a) { return a; } if (a > 0) { return static_cast(-a * ::metal::log(a)); } if (a == 0) { return 0; } return static_cast(-INFINITY); } // Copy-n-paste from aten/src/ATen/native/cuda/Math.cuh lines 1463-1915 template inline float bessel_j0_forward(T x) { constexpr float PP[] = { +7.96936729297347051624e-04, +8.28352392107440799803e-02, +1.23953371646414299388e+00, +5.44725003058768775090e+00, +8.74716500199817011941e+00, +5.30324038235394892183e+00, +9.99999999999999997821e-01, }; constexpr float PQ[] = { +9.24408810558863637013e-04, +8.56288474354474431428e-02, +1.25352743901058953537e+00, +5.47097740330417105182e+00, +8.76190883237069594232e+00, +5.30605288235394617618e+00, +1.00000000000000000218e+00, }; constexpr float QP[] = { -1.13663838898469149931e-02, -1.28252718670509318512e+00, -1.95539544257735972385e+01, -9.32060152123768231369e+01, -1.77681167980488050595e+02, -1.47077505154951170175e+02, -5.14105326766599330220e+01, -6.05014350600728481186e+00, }; constexpr float QQ[] = { +6.43178256118178023184e+01, +8.56430025976980587198e+02, +3.88240183605401609683e+03, +7.24046774195652478189e+03, +5.93072701187316984827e+03, +2.06209331660327847417e+03, +2.42005740240291393179e+02, }; constexpr float RP[] = { -4.79443220978201773821e+09, +1.95617491946556577543e+12, -2.49248344360967716204e+14, +9.70862251047306323952e+15, }; constexpr float RQ[] = { +4.99563147152651017219e+02, +1.73785401676374683123e+05, +4.84409658339962045305e+07, +1.11855537045356834862e+10, +2.11277520115489217587e+12, +3.10518229857422583814e+14, +3.18121955943204943306e+16, +1.71086294081043136091e+18, }; if (x < T(0)) { x = -x; } if (x <= T(5.0)) { if (x < T(0.00001)) { return 1.0 - x * x / 4.0; } float rp = 0.0; for (auto index = 0; index <= 3; index++) { rp = rp * (x * x) + RP[index]; } float rq = 0.0; for (auto index = 0; index <= 7; index++) { rq = rq * (x * x) + RQ[index]; } return (x * x - 5.78318596294678452118e+00) * (x * x - T(3.04712623436620863991e+01)) * rp / rq; } float pp = 0.0; for (auto index = 0; index <= 6; index++) { pp = pp * (25.0 / (x * x)) + PP[index]; } float pq = 0.0; for (auto index = 0; index <= 6; index++) { pq = pq * (25.0 / (x * x)) + PQ[index]; } float qp = 0.0; for (auto index = 0; index <= 7; index++) { qp = qp * (25.0 / (x * x)) + QP[index]; } float qq = 0.0; for (auto index = 0; index <= 6; index++) { qq = qq * (25.0 / (x * x)) + QQ[index]; } return (pp / pq * ::metal::precise::cos( x - T(0.785398163397448309615660845819875721)) - 5.0 / x * (qp / qq) * ::metal::precise::sin( x - 0.785398163397448309615660845819875721)) * 0.797884560802865355879892119868763737 / ::metal::precise::sqrt(x); } // bessel_j0_forward(T x) template inline float bessel_y0_forward(T x) { constexpr float PP[] = { +7.96936729297347051624e-04, +8.28352392107440799803e-02, +1.23953371646414299388e+00, +5.44725003058768775090e+00, +8.74716500199817011941e+00, +5.30324038235394892183e+00, +9.99999999999999997821e-01, }; constexpr float PQ[] = { +9.24408810558863637013e-04, +8.56288474354474431428e-02, +1.25352743901058953537e+00, +5.47097740330417105182e+00, +8.76190883237069594232e+00, +5.30605288235394617618e+00, +1.00000000000000000218e+00, }; constexpr float QP[] = { -1.13663838898469149931e-02, -1.28252718670509318512e+00, -1.95539544257735972385e+01, -9.32060152123768231369e+01, -1.77681167980488050595e+02, -1.47077505154951170175e+02, -5.14105326766599330220e+01, -6.05014350600728481186e+00, }; constexpr float QQ[] = { +6.43178256118178023184e+01, +8.56430025976980587198e+02, +3.88240183605401609683e+03, +7.24046774195652478189e+03, +5.93072701187316984827e+03, +2.06209331660327847417e+03, +2.42005740240291393179e+02, }; constexpr float YP[] = { +1.55924367855235737965e+04, -1.46639295903971606143e+07, +5.43526477051876500413e+09, -9.82136065717911466409e+11, +8.75906394395366999549e+13, -3.46628303384729719441e+15, +4.42733268572569800351e+16, -1.84950800436986690637e+16, }; constexpr float YQ[] = { +1.04128353664259848412e+03, +6.26107330137134956842e+05, +2.68919633393814121987e+08, +8.64002487103935000337e+10, +2.02979612750105546709e+13, +3.17157752842975028269e+15, +2.50596256172653059228e+17, }; if (x <= T(5.0)) { if (x == T(0.0)) { return -INFINITY; } if (x < T(0.0)) { return NAN; } float yp = 0.0; for (auto index = 0; index <= 7; index++) { yp = yp * (x * x) + YP[index]; } float yq = 0.0; for (auto index = 0; index <= 6; index++) { yq = yq * (x * x) + YQ[index]; } return yp / yq + (0.636619772367581343075535053490057448 * ::metal::precise::log(x) * bessel_j0_forward(x)); } float pp = 0.0; for (auto index = 0; index <= 6; index++) { pp = pp * (25.0 / (x * x)) + PP[index]; } float pq = 0.0; for (auto index = 0; index <= 6; index++) { pq = pq * (25.0 / (x * x)) + PQ[index]; } float qp = 0.0; for (auto index = 0; index <= 7; index++) { qp = qp * (25.0 / (x * x)) + QP[index]; } float qq = 0.0; for (auto index = 0; index <= 6; index++) { qq = qq * (25.0 / (x * x)) + QQ[index]; } return (pp / pq * ::metal::precise::sin( x - 0.785398163397448309615660845819875721) + 5.0 / x * (qp / qq) * ::metal::precise::cos( x - 0.785398163397448309615660845819875721)) * 0.797884560802865355879892119868763737 / ::metal::precise::sqrt(x); } // bessel_y0_forward(T x) template inline float bessel_j1_forward(T x) { constexpr float PP[] = { +7.62125616208173112003e-04, +7.31397056940917570436e-02, +1.12719608129684925192e+00, +5.11207951146807644818e+00, +8.42404590141772420927e+00, +5.21451598682361504063e+00, +1.00000000000000000254e+00, }; constexpr float PQ[] = { +5.71323128072548699714e-04, +6.88455908754495404082e-02, +1.10514232634061696926e+00, +5.07386386128601488557e+00, +8.39985554327604159757e+00, +5.20982848682361821619e+00, +9.99999999999999997461e-01, }; constexpr float QP[] = { +5.10862594750176621635e-02, +4.98213872951233449420e+00, +7.58238284132545283818e+01, +3.66779609360150777800e+02, +7.10856304998926107277e+02, +5.97489612400613639965e+02, +2.11688757100572135698e+02, +2.52070205858023719784e+01, }; constexpr float QQ[] = { +7.42373277035675149943e+01, +1.05644886038262816351e+03, +4.98641058337653607651e+03, +9.56231892404756170795e+03, +7.99704160447350683650e+03, +2.82619278517639096600e+03, +3.36093607810698293419e+02, }; constexpr float RP[] = { -8.99971225705559398224e+08, +4.52228297998194034323e+11, -7.27494245221818276015e+13, +3.68295732863852883286e+15, }; constexpr float RQ[] = { +6.20836478118054335476e+02, +2.56987256757748830383e+05, +8.35146791431949253037e+07, +2.21511595479792499675e+10, +4.74914122079991414898e+12, +7.84369607876235854894e+14, +8.95222336184627338078e+16, +5.32278620332680085395e+18, }; if (x < T(0.0)) { return -bessel_j1_forward(-x); } if (x <= T(5.0)) { float rp = 0.0; for (auto index = 0; index <= 3; index++) { rp = rp * (x * x) + RP[index]; } float rq = 0.0; for (auto index = 0; index <= 7; index++) { rq = rq * (x * x) + RQ[index]; } return rp / rq * x * (x * x - 1.46819706421238932572e+01) * (x * x - 4.92184563216946036703e+01); } float pp = 0.0; for (auto index = 0; index <= 6; index++) { pp = pp * (5.0 / x * (5.0 / x)) + PP[index]; } float pq = 0.0; for (auto index = 0; index <= 6; index++) { pq = pq * (5.0 / x * (5.0 / x)) + PQ[index]; } float qp = 0.0; for (auto index = 0; index <= 7; index++) { qp = qp * (5.0 / x * (5.0 / x)) + QP[index]; } float qq = 0.0; for (auto index = 0; index <= 6; index++) { qq = qq * (5.0 / x * (5.0 / x)) + QQ[index]; } return (pp / pq * ::metal::precise::cos( x - 2.356194490192344928846982537459627163) - 5.0 / x * (qp / qq) * ::metal::precise::sin( x - 2.356194490192344928846982537459627163)) * 0.797884560802865355879892119868763737 / ::metal::precise::sqrt(x); } // bessel_j1_forward(T x) template inline float bessel_y1_forward(T x) { constexpr float PP[] = { +7.62125616208173112003e-04, +7.31397056940917570436e-02, +1.12719608129684925192e+00, +5.11207951146807644818e+00, +8.42404590141772420927e+00, +5.21451598682361504063e+00, +1.00000000000000000254e+00, }; constexpr float PQ[] = { +5.71323128072548699714e-04, +6.88455908754495404082e-02, +1.10514232634061696926e+00, +5.07386386128601488557e+00, +8.39985554327604159757e+00, +5.20982848682361821619e+00, +9.99999999999999997461e-01, }; constexpr float QP[] = { +5.10862594750176621635e-02, +4.98213872951233449420e+00, +7.58238284132545283818e+01, +3.66779609360150777800e+02, +7.10856304998926107277e+02, +5.97489612400613639965e+02, +2.11688757100572135698e+02, +2.52070205858023719784e+01, }; constexpr float QQ[] = { +7.42373277035675149943e+01, +1.05644886038262816351e+03, +4.98641058337653607651e+03, +9.56231892404756170795e+03, +7.99704160447350683650e+03, +2.82619278517639096600e+03, +3.36093607810698293419e+02, }; constexpr float YP[] = { +1.26320474790178026440e+09, -6.47355876379160291031e+11, +1.14509511541823727583e+14, -8.12770255501325109621e+15, +2.02439475713594898196e+17, -7.78877196265950026825e+17, }; constexpr float YQ[] = { +5.94301592346128195359e+02, +2.35564092943068577943e+05, +7.34811944459721705660e+07, +1.87601316108706159478e+10, +3.88231277496238566008e+12, +6.20557727146953693363e+14, +6.87141087355300489866e+16, +3.97270608116560655612e+18, }; if (x <= T(5.0)) { if (x == T(0.0)) { return -INFINITY; } if (x <= T(0.0)) { return NAN; } float yp = 0.0; for (auto index = 0; index <= 5; index++) { yp = yp * (x * x) + YP[index]; } float yq = 0.0; for (auto index = 0; index <= 7; index++) { yq = yq * (x * x) + YQ[index]; } return x * (yp / yq) + (0.636619772367581343075535053490057448 * (bessel_j1_forward(x) * ::metal::precise::log(x) - 1.0 / x)); } float pp = 0.0; for (auto index = 0; index <= 6; index++) { pp = pp * (5.0 / x * (5.0 / x)) + PP[index]; } float pq = 0.0; for (auto index = 0; index <= 6; index++) { pq = pq * (5.0 / x * (5.0 / x)) + PQ[index]; } float qp = 0.0; for (auto index = 0; index <= 7; index++) { qp = qp * (5.0 / x * (5.0 / x)) + QP[index]; } float qq = 0.0; for (auto index = 0; index <= 6; index++) { qq = qq * (5.0 / x * (5.0 / x)) + QQ[index]; } return (pp / pq * ::metal::precise::sin( x - 2.356194490192344928846982537459627163) + 5.0 / x * (qp / qq) * ::metal::precise::cos( x - 2.356194490192344928846982537459627163)) * 0.797884560802865355879892119868763737 / ::metal::precise::sqrt(x); } // bessel_y1_forward(T x) template inline float modified_bessel_i0_forward(T x) { constexpr float A[] = { -4.41534164647933937950e-18, +3.33079451882223809783e-17, -2.43127984654795469359e-16, +1.71539128555513303061e-15, -1.16853328779934516808e-14, +7.67618549860493561688e-14, -4.85644678311192946090e-13, +2.95505266312963983461e-12, -1.72682629144155570723e-11, +9.67580903537323691224e-11, -5.18979560163526290666e-10, +2.65982372468238665035e-09, -1.30002500998624804212e-08, +6.04699502254191894932e-08, -2.67079385394061173391e-07, +1.11738753912010371815e-06, -4.41673835845875056359e-06, +1.64484480707288970893e-05, -5.75419501008210370398e-05, +1.88502885095841655729e-04, -5.76375574538582365885e-04, +1.63947561694133579842e-03, -4.32430999505057594430e-03, +1.05464603945949983183e-02, -2.37374148058994688156e-02, +4.93052842396707084878e-02, -9.49010970480476444210e-02, +1.71620901522208775349e-01, -3.04682672343198398683e-01, +6.76795274409476084995e-01, }; constexpr float B[] = { -7.23318048787475395456e-18, -4.83050448594418207126e-18, +4.46562142029675999901e-17, +3.46122286769746109310e-17, -2.82762398051658348494e-16, -3.42548561967721913462e-16, +1.77256013305652638360e-15, +3.81168066935262242075e-15, -9.55484669882830764870e-15, -4.15056934728722208663e-14, +1.54008621752140982691e-14, +3.85277838274214270114e-13, +7.18012445138366623367e-13, -1.79417853150680611778e-12, -1.32158118404477131188e-11, -3.14991652796324136454e-11, +1.18891471078464383424e-11, +4.94060238822496958910e-10, +3.39623202570838634515e-09, +2.26666899049817806459e-08, +2.04891858946906374183e-07, +2.89137052083475648297e-06, +6.88975834691682398426e-05, +3.36911647825569408990e-03, +8.04490411014108831608e-01, }; float p; float q = 0.0; if (::metal::fabs(x) <= 8.0) { float a = A[0]; for (uint8_t index = 1; index < 30; index++) { p = q; q = a; a = (.5 * ::metal::fabs(x) - 2.0) * q - p + A[index]; } return ::metal::exp(::metal::fabs(x)) * (T(0.5) * (a - p)); } float b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (32.0 / ::metal::fabs(x) - 2.0) * q - p + B[index]; } return ::metal::exp(::metal::fabs(x)) * (.5 * (b - p)) / ::metal::precise::sqrt(::metal::fabs(x)); } // modified_bessel_i0_forward(T x) template inline float modified_bessel_i1_forward(T x) { constexpr float A[] = { +2.77791411276104639959e-18, -2.11142121435816608115e-17, +1.55363195773620046921e-16, -1.10559694773538630805e-15, +7.60068429473540693410e-15, -5.04218550472791168711e-14, +3.22379336594557470981e-13, -1.98397439776494371520e-12, +1.17361862988909016308e-11, -6.66348972350202774223e-11, +3.62559028155211703701e-10, -1.88724975172282928790e-09, +9.38153738649577178388e-09, -4.44505912879632808065e-08, +2.00329475355213526229e-07, -8.56872026469545474066e-07, +3.47025130813767847674e-06, -1.32731636560394358279e-05, +4.78156510755005422638e-05, -1.61760815825896745588e-04, +5.12285956168575772895e-04, -1.51357245063125314899e-03, +4.15642294431288815669e-03, -1.05640848946261981558e-02, +2.47264490306265168283e-02, -5.29459812080949914269e-02, +1.02643658689847095384e-01, -1.76416518357834055153e-01, +2.52587186443633654823e-01, }; constexpr float B[] = { +7.51729631084210481353e-18, +4.41434832307170791151e-18, -4.65030536848935832153e-17, -3.20952592199342395980e-17, +2.96262899764595013876e-16, +3.30820231092092828324e-16, -1.88035477551078244854e-15, -3.81440307243700780478e-15, +1.04202769841288027642e-14, +4.27244001671195135429e-14, -2.10154184277266431302e-14, -4.08355111109219731823e-13, -7.19855177624590851209e-13, +2.03562854414708950722e-12, +1.41258074366137813316e-11, +3.25260358301548823856e-11, -1.89749581235054123450e-11, -5.58974346219658380687e-10, -3.83538038596423702205e-09, -2.63146884688951950684e-08, -2.51223623787020892529e-07, -3.88256480887769039346e-06, -1.10588938762623716291e-04, -9.76109749136146840777e-03, +7.78576235018280120474e-01, }; float p; float q = 0.0; if (::metal::fabs(x) <= T(8.0)) { float a = A[0]; for (uint8_t index = 1; index < 29; index++) { p = q; q = a; a = (.5 * ::metal::fabs(x) - 2.0) * q - p + A[index]; } return .5 * (a - p) * x * ::metal::precise::exp(::metal::fabs(x)); } float b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (32.0 / ::metal::fabs(x) - 2.0) * q - p + B[index]; } if (x < 0.0) { return -( ::metal::precise::exp(::metal::fabs(x)) * (0.5 * (b - p)) / ::metal::precise::sqrt(::metal::fabs(x))); } return ::metal::precise::exp(::metal::fabs(x)) * (0.5 * (b - p)) / ::metal::precise::sqrt(::metal::fabs(x)); } // modified_bessel_i1_forward(T x) template inline float modified_bessel_k0_forward(T x) { constexpr float A[] = { +1.37446543561352307156e-16, +4.25981614279661018399e-14, +1.03496952576338420167e-11, +1.90451637722020886025e-09, +2.53479107902614945675e-07, +2.28621210311945178607e-05, +1.26461541144692592338e-03, +3.59799365153615016266e-02, +3.44289899924628486886e-01, -5.35327393233902768720e-01, }; constexpr float B[] = { +5.30043377268626276149e-18, -1.64758043015242134646e-17, +5.21039150503902756861e-17, -1.67823109680541210385e-16, +5.51205597852431940784e-16, -1.84859337734377901440e-15, +6.34007647740507060557e-15, -2.22751332699166985548e-14, +8.03289077536357521100e-14, -2.98009692317273043925e-13, +1.14034058820847496303e-12, -4.51459788337394416547e-12, +1.85594911495471785253e-11, -7.95748924447710747776e-11, +3.57739728140030116597e-10, -1.69753450938905987466e-09, +8.57403401741422608519e-09, -4.66048989768794782956e-08, +2.76681363944501510342e-07, -1.83175552271911948767e-06, +1.39498137188764993662e-05, -1.28495495816278026384e-04, +1.56988388573005337491e-03, -3.14481013119645005427e-02, +2.44030308206595545468e+00, }; if (x == 0.0) { return INFINITY; } if (x < 0.0) { return NAN; } float p; float q = 0.0; if (x <= 2.0) { float a = A[0]; for (uint8_t index = 1; index < 10; index++) { p = q; q = a; a = (x * x - 2.0) * q - p + A[index]; } return 0.5 * (a - p) - ::metal::log(0.5 * x) * modified_bessel_i0_forward(x); } float b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (8.0 / x - 2.0) * q - p + B[index]; } return ::metal::exp(-x) * (0.5 * (b - p)) / ::metal::sqrt(x); } // modified_bessel_k0_forward(T x) template inline float modified_bessel_k1_forward(T x) { constexpr float A[] = { -7.02386347938628759343e-18, -2.42744985051936593393e-15, -6.66690169419932900609e-13, -1.41148839263352776110e-10, -2.21338763073472585583e-08, -2.43340614156596823496e-06, -1.73028895751305206302e-04, -6.97572385963986435018e-03, -1.22611180822657148235e-01, -3.53155960776544875667e-01, +1.52530022733894777053e+00, }; constexpr float B[] = { -5.75674448366501715755e-18, +1.79405087314755922667e-17, -5.68946255844285935196e-17, +1.83809354436663880070e-16, -6.05704724837331885336e-16, +2.03870316562433424052e-15, -7.01983709041831346144e-15, +2.47715442448130437068e-14, -8.97670518232499435011e-14, +3.34841966607842919884e-13, -1.28917396095102890680e-12, +5.13963967348173025100e-12, -2.12996783842756842877e-11, +9.21831518760500529508e-11, -4.19035475934189648750e-10, +2.01504975519703286596e-09, -1.03457624656780970260e-08, +5.74108412545004946722e-08, -3.50196060308781257119e-07, +2.40648494783721712015e-06, -1.93619797416608296024e-05, +1.95215518471351631108e-04, -2.85781685962277938680e-03, +1.03923736576817238437e-01, +2.72062619048444266945e+00, }; if (x == 0.0) { return INFINITY; } if (x < 0.0) { return NAN; } float p; float q = 0.0; if (x <= 2.0) { float a = A[0]; for (uint8_t index = 1; index < 11; index++) { p = q; q = a; a = (x * x - T(2.0)) * q - p + A[index]; } return ::metal::precise::log(T(0.5) * x) * modified_bessel_i1_forward(x) + 0.5 * (a - p) / x; } float b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (8.0 / x - 2.0) * q - p + B[index]; } return ::metal::precise::exp(-x) * (0.5 * (b - p)) / ::metal::precise::sqrt(x); } template inline float scaled_modified_bessel_k0_forward(T x) { constexpr float A[] = { +1.37446543561352307156e-16, +4.25981614279661018399e-14, +1.03496952576338420167e-11, +1.90451637722020886025e-09, +2.53479107902614945675e-07, +2.28621210311945178607e-05, +1.26461541144692592338e-03, +3.59799365153615016266e-02, +3.44289899924628486886e-01, -5.35327393233902768720e-01, }; constexpr float B[] = { +5.30043377268626276149e-18, -1.64758043015242134646e-17, +5.21039150503902756861e-17, -1.67823109680541210385e-16, +5.51205597852431940784e-16, -1.84859337734377901440e-15, +6.34007647740507060557e-15, -2.22751332699166985548e-14, +8.03289077536357521100e-14, -2.98009692317273043925e-13, +1.14034058820847496303e-12, -4.51459788337394416547e-12, +1.85594911495471785253e-11, -7.95748924447710747776e-11, +3.57739728140030116597e-10, -1.69753450938905987466e-09, +8.57403401741422608519e-09, -4.66048989768794782956e-08, +2.76681363944501510342e-07, -1.83175552271911948767e-06, +1.39498137188764993662e-05, -1.28495495816278026384e-04, +1.56988388573005337491e-03, -3.14481013119645005427e-02, +2.44030308206595545468e+00, }; if (x == 0.0) { return INFINITY; } if (x < 0.0) { return NAN; } float p; float q = 0.0; if (x <= 2.0) { float a = A[0]; for (uint8_t index = 1; index < 10; index++) { p = q; q = a; a = (x * x - T(2.0)) * q - p + A[index]; } return (0.5 * (a - p) - ::metal::precise::log(0.5 * x) * modified_bessel_i0_forward(x)) * ::metal::precise::exp(x); } float b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (8.0 / x - 2.0) * q - p + B[index]; } return 0.5 * (b - p) / ::metal::precise::sqrt(x); } template inline float scaled_modified_bessel_k1_forward(T x) { constexpr float A[] = { -7.02386347938628759343e-18, -2.42744985051936593393e-15, -6.66690169419932900609e-13, -1.41148839263352776110e-10, -2.21338763073472585583e-08, -2.43340614156596823496e-06, -1.73028895751305206302e-04, -6.97572385963986435018e-03, -1.22611180822657148235e-01, -3.53155960776544875667e-01, +1.52530022733894777053e+00, }; constexpr float B[] = { -5.75674448366501715755e-18, +1.79405087314755922667e-17, -5.68946255844285935196e-17, +1.83809354436663880070e-16, -6.05704724837331885336e-16, +2.03870316562433424052e-15, -7.01983709041831346144e-15, +2.47715442448130437068e-14, -8.97670518232499435011e-14, +3.34841966607842919884e-13, -1.28917396095102890680e-12, +5.13963967348173025100e-12, -2.12996783842756842877e-11, +9.21831518760500529508e-11, -4.19035475934189648750e-10, +2.01504975519703286596e-09, -1.03457624656780970260e-08, +5.74108412545004946722e-08, -3.50196060308781257119e-07, +2.40648494783721712015e-06, -1.93619797416608296024e-05, +1.95215518471351631108e-04, -2.85781685962277938680e-03, +1.03923736576817238437e-01, +2.72062619048444266945e+00, }; if (x == 0.0) { return INFINITY; } if (x < 0.0) { return NAN; } float p; float q = 0.0; if (x <= 2.0) { float a = A[0]; for (uint8_t index = 1; index < 11; index++) { p = q; q = a; a = (x * x - 2.0) * q - p + A[index]; } return (::metal::precise::log(0.5 * x) * modified_bessel_i1_forward(x) + 0.5 * (a - p) / x) * ::metal::precise::exp(x); } float b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (8.0 / x - 2.0) * q - p + B[index]; } return (0.5 * (b - p) / ::metal::precise::sqrt(x)); } template float chebyshev_polynomial_t_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (::metal::fabs(x) == 1.0) { if (x > 0.0 || n % 2 == 0) { return 1.0; } return -1.0; } if ((n > 6) && (::metal::precise::fabs(x) < 1.0)) { return ::metal::precise::cos(n * ::metal::precise::acos(x)); } if (n == 0) { return 1.0; } if (n == 1) { return x; } float p = 1.0; float q = x; float r; for (int64_t k = 2; (k <= n) && !::metal::isnan(q); k++) { r = (x + x) * q - p; p = q; q = r; } return r; } template float chebyshev_polynomial_u_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (::metal::fabs(x) == 1.0) { if (x > 0.0 || n % 2 == 0) { return n + 1; } return -(n + 1); } if ((n > 8) && (::metal::fabs(x) < 1.0)) { const auto acos_x = ::metal::precise::acos(x); if (::metal::precise::sin(acos_x) != 0.0) { return ::metal::precise::sin((n + 1) * acos_x) / ::metal::precise::sin(acos_x); } return (n + 1) * ::metal::precise::cos((n + 1) * acos_x) / x; } if (n == 0) { return 1.0; } auto q = 2.0 * x; if (n == 1) { return q; } auto p = 1.0; float r; for (int64_t k = 2; (k <= n) && !::metal::isnan(q); k++) { r = 2 * x * q - p; p = q; q = r; } return r; } template float chebyshev_polynomial_v_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (::metal::fabs(x) == 1.0) { if (x > 0.0) { return 1.0; } if (n % 2 == 0) { return n + n + 1; } return -(n + n + 1); } if ((n > 8) && (::metal::fabs(x) < 1.0)) { const auto acos_x = ::metal::precise::acos(x); if (::metal::precise::sin(.5 * acos_x) != 1.0) { return ::metal::precise::cos((n + 0.5) * acos_x) / ::metal::precise::cos(.5 * acos_x); } if (n % 2 == 0) { return n + n + 1; } return -(n + n + 1); } if (n == 0) { return 1.0; } auto q = 2.0 * x - 1.0; if (n == 1) { return q; } auto p = 1.0; float r; for (int64_t k = 2; (k <= n) && !::metal::isnan(q); k++) { r = 2 * x * q - p; p = q; q = r; } return r; } // chebyshev_polynomial_v_forward(T x, int64_t n) template float chebyshev_polynomial_w_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (::metal::fabs(x) == 1.0) { if (x > 0.0) { return n + n + 1; } if (n % 2 == 0) { return 1.0; } return -1.0; } if ((n > 8) && (::metal::fabs(x) < 1.0)) { const auto acos_x = ::metal::precise::acos(x); if (::metal::precise::cos(.5 * acos_x) != 1.0) { return ::metal::precise::sin((n + 0.5) * acos_x) / ::metal::precise::sin(.5 * acos_x); } if (x > 0.0) { return n + n + 1; } if (n % 2 == 0) { return 1.0; } return -1.0; } if (n == 0) { return 1.0; } auto q = 2.0 * x + 1.0; if (n == 1) { return q; } auto p = 1.0; float r; for (int64_t k = 2; (k <= n) && !::metal::isnan(q); k++) { r = 2.0 * x * q - p; p = q; q = r; } return r; } // chebyshev_polynomial_w_forward(T x, int64_t n) template float shifted_chebyshev_polynomial_t_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (x == T(1.0)) { return 1.0; } if (x == 0.0) { if (n % 2 == 0) { return 1.0; } return -1.0; } const float xpxm1 = x + x - 1.0; if ((n > 6) && (::metal::abs(xpxm1) < 1.0)) { return ::metal::precise::cos(n * ::metal::precise::acos(xpxm1)); } if (n == 0) { return 1.0; } if (n == 1) { return xpxm1; } float p = 1.0; float q = xpxm1; float r; for (int64_t k = 2; (k <= n) && !::metal::isnan(q); k++) { r = (xpxm1 + xpxm1) * q - p; p = q; q = r; } return r; } // shifted_chebyshev_polynomial_t_forward(T x, int64_t n) template float shifted_chebyshev_polynomial_u_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (x == 1.0) { return n + 1; } if (x == 0.0) { if (n % 2 == 0) { return n + 1; } return -(n + 1); } const float xpxm1 = x + x - 1.0; if ((n > 6) && (::metal::abs(xpxm1) < 1.0)) { const float acos_2xm1 = ::metal::precise::acos(xpxm1); const float divisor = ::metal::precise::sin(acos_2xm1); if (divisor != 0.0) { return ::metal::precise::sin((n + 1) * acos_2xm1) / divisor; } return (n + 1) * ::metal::precise::cos((n + 1) * acos_2xm1) / xpxm1; } if (n == 0) { return 1.0; } if (n == 1) { return xpxm1 + xpxm1; } float p = 1.0; float q = xpxm1 + xpxm1; float r; for (int64_t k = 2; (k <= n) && !::metal::isnan(q); k++) { r = (xpxm1 + xpxm1) * q - p; p = q; q = r; } return r; } // shifted_chebyshev_polynomial_u_forward(T x, int64_t n) template float shifted_chebyshev_polynomial_v_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (x == 1.0) { return 1.0; } if (x == 0.0) { if (n % 2 == 0) { return (n + n + 1); } return -(n + n + 1); } const float xpxm1 = x + x - 1.0; if ((n > 6) && (::metal::abs(xpxm1) < 1.0)) { const float acos_2xm1 = ::metal::precise::acos(xpxm1); if (::metal::precise::sin(acos_2xm1 / 2.0) != 1.0) { return ::metal::precise::cos((n + 0.5) * acos_2xm1) / ::metal::precise::cos(acos_2xm1 / 2.0); } if (n % 2 == 0) { return n + n + 1; } return -(n + n + 1); } if (n == 0) { return T(1.0); } if (n == 1) { return xpxm1 + xpxm1 - 1.0; } float p = 1.0; float q = xpxm1 + xpxm1 - 1.0; float r; for (int64_t k = 2; (k <= n) && !::metal::isnan(q); k++) { r = (xpxm1 + xpxm1) * q - p; p = q; q = r; } return r; } // shifted_chebyshev_polynomial_v_forward(T x, int64_t n) template float shifted_chebyshev_polynomial_w_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (x == 1.0) { return n + n + 1; } if (x == 0.0) { if (n % 2 == 0) { return 1.0; } return -1.0; } const float xpxm1 = x + x - 1.0; if ((n > 4) && (::metal::abs(xpxm1) < 1.0)) { const float acos_2xm1 = ::metal::precise::acos(xpxm1); if (::metal::precise::cos(acos_2xm1 / 2.0) != 1.0) { return ::metal::precise::sin((n + 0.5) * acos_2xm1) / ::metal::precise::sin(acos_2xm1 / 2.0); } if (n % 2 == 0) { return 1.0; } return -1.0; } if (n == 0) { return 1.0; } if (n == 1) { return xpxm1 + xpxm1 + 1.0; } float p = 1.0; float q = xpxm1 + xpxm1 + 1.0; float r; for (int64_t k = 2; (k <= n) && !::metal::isnan(q); k++) { r = (xpxm1 + xpxm1) * q - p; p = q; q = r; } return r; } // shifted_chebyshev_polynomial_w_forward(T x, int64_t n) template // TODO: Add 512 if/when double will be supported in Metal inline constexpr int getHermitianLimit() { return 128; } template inline float hermite_polynomial_h_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (n == 0) { return 1.0; } if (n == 1) { return x + x; } if (n > getHermitianLimit()) { return NAN; } float p = 1.0; float q = x + x; float r = 0.0; for (int64_t k = 2; k < n + n; k += 2) { r = (x + x) * q - k * p; p = q; q = r; } return r; } // hermite_polynomial_h_forward(T x, int64_t n) template inline float hermite_polynomial_he_forward(T x, int64_t n) { if (n < 0) { return 0.0; } if (n == 0) { return 1.0; } if (n == 1) { return x; } if (n > getHermitianLimit()) { return NAN; } float p = 1.0; float q = x; float r; for (int64_t k = 1; k < n; k++) { r = x * q - k * p; p = q; q = r; } return r; } // hermite_polynomial_he_forward(T x, int64_t n) } // namespace metal } // namespace c10