# mypy: allow-untyped-defs from __future__ import annotations import abc import contextlib import dataclasses import difflib import io import sys from typing import Any, Callable, TYPE_CHECKING import torch import torch.fx from torch._subclasses.fake_tensor import unset_fake_temporarily if TYPE_CHECKING: from torch._subclasses import fake_tensor @dataclasses.dataclass class PackageInfo: package_name: str version: str | None commit_hash: str | None def to_onnx_domain_string(self) -> str: return ".".join( filter(None, ("pkg", self.package_name, self.version, self.commit_hash)) ) @classmethod def from_python_class(cls, python_class_name: type | str) -> PackageInfo: if isinstance(python_class_name, type): python_class_name = python_class_name.__module__ package_name = python_class_name.split(".")[0] package = __import__(package_name) version = getattr(package, "__version__", None) # TODO: Figure out how to retrieve commit hash. commit_hash = None return cls(package_name, version, commit_hash) @dataclasses.dataclass class GraphModuleOnnxMeta: package_info: PackageInfo @contextlib.contextmanager def _patch_difflib_sequence_matcher_init(): """Context patching `difflib.SequenceMatcher` for fx readable graph. Under this context, the `autojunk` argument of `difflib.SequenceMatcher` will always be considered as `False`. This is to prevent `difflib.SequenceMatcher` recognizing stacktrace messages in fx readable graph as junk, as these messages tend to be long (>200) and repeat multiple times, which falls under the junk filter criteria. `difflib.SequenceMatcher` is used underneath by all sorts of diffing functions in `difflib`, including `difflib.unified_diff`, `difflib.ndiff`, `difflib.context_diff`. Unfortunately, there is no way to pass `autojunk` argument to these functions, and they all default to `True`. This context patching will affect all of them. `Reference: Automatic junk heuristic `_ """ original_init = difflib.SequenceMatcher.__init__ def patched_init(self, isjunk=None, a="", b="", autojunk=True): original_init(self, isjunk, a, b, autojunk=False) difflib.SequenceMatcher.__init__ = patched_init # type: ignore[assignment] try: yield finally: difflib.SequenceMatcher.__init__ = original_init # type: ignore[assignment] def _unified_diff(a: str, b: str) -> str: """Return a string containing the unified diff of two strings. This function calls a patched version of `difflib.unified_diff` with `autojunk` set to `False` for `difflib.SequenceMatcher` class. More details can be found in `_patch_difflib_sequence_matcher_init` function. Args: a: The first string. b: The second string. Returns: The unified diff of the two strings. If there is no diff, return "". Example:: >>> a = '''class GraphModule(torch.nn.Module): ... def forward(self, input_ids : torch.Tensor, attention_mask : torch.Tensor): ... # File: /modeling.py:770, code: input_ids = input_ids.view(-1, input_shape[-1]) ... view = input_ids.view(-1, 3); input_ids = None ... ''' >>> b = '''class (torch.nn.Module): ... def forward(self, input_ids: i64[1, 3], attention_mask: i64[1, 3]): ... # File: /modeling.py:770, code: input_ids = input_ids.view(-1, input_shape[-1]) ... view: i64[1, 3] = torch.ops.aten.view.default(input_ids, [-1, 3]); input_ids = None ... ''' >>> print(_unified_diff(a, b)) --- +++ @@ -1,4 +1,4 @@ -class GraphModule(torch.nn.Module): - def forward(self, input_ids : torch.Tensor, attention_mask : torch.Tensor): +class (torch.nn.Module): + def forward(self, input_ids: i64[1, 3], attention_mask: i64[1, 3]): # File: /modeling.py:770, code: input_ids = input_ids.view(-1, input_shape[-1]) - view = input_ids.view(-1, 3); input_ids = None + view: i64[1, 3] = torch.ops.aten.view.default(input_ids, [-1, 3]); input_ids = None """ a_list = a.splitlines(keepends=True) b_list = b.splitlines(keepends=True) with _patch_difflib_sequence_matcher_init(): # Set `n` to `sys.maxsize` to show entire graph when there is a diff. diff = "".join(difflib.unified_diff(a_list, b_list, n=sys.maxsize)) if not diff: return "" return diff def _transform_diagnose_call_message_formatter( run: Callable, self: Transform, *args: Any, **kwargs: Any, ) -> str: return f"Running {self.__class__.__name__} pass. " def maybe_fx_graph_tabular(graph: torch.fx.Graph) -> str | None: """Return the Graph nodes in tabular format. Equivalent to stdout of `graph.print_tabular()`. If `tabulate` is not installed, return `None`. Args: graph: The Graph to print. Returns: The Graph printed in a tabular format. None if `tabulate` is not installed. """ f = io.StringIO() with contextlib.redirect_stdout(f): try: graph.print_tabular() except ImportError: return None return f.getvalue() class Transform(abc.ABC): """Base class for FX graph transformations to be used by FX-ONNX exporter. Similar to `FX Interpreter `_, specializations of this class execute the FX graph Node-by-Node. Methods in the `Transform` class can be overridden to customize the behavior of the model. This pattern can be useful for many things, including writing code transformations as well as analysis passes. The following methods can be overridden:: _run() +-- run_node() +-- placeholder() +-- get_attr() +-- call_function() +-- call_method() +-- call_module() +-- output() One important aspect to note is that if the transformation modifies the model input and/or output signature, (e.g. additional inputs/outputs are added to the model), :class:`InputAdaptStep` and/or :class:`OutputAdaptStep` are needed to reconcile :attr:`ONNXProgram.model_proto`. That is, the model signature and the model representation must match. TODO(bowbao): Add more overridable methods in call hierarchy TODO(bowbao): Create an example once more overridable methods are added. """ module: torch.fx.GraphModule """The module to be transformed.""" fake_mode: fake_tensor.FakeTensorMode | None """The existing fake mode detected from `self.module`.""" def __init__( self, module: torch.fx.GraphModule, ): """Initialize the transform. Args: module: The module to be transformed. """ self.module = module self.fake_mode = self._detect_fake_mode() def _detect_fake_mode(self) -> fake_tensor.FakeTensorMode | None: """Detect fake mode from the graph. Scan through all nodes in graph and their meta['val'] to detect fake mode. """ fake_tensors = [node.meta.get("val") for node in self.module.graph.nodes] with unset_fake_temporarily(): return torch._dynamo.utils.detect_fake_mode(fake_tensors) def _maybe_fakefy_args( self, fake_mode: fake_tensor.FakeTensorMode | None, *args: Any ) -> tuple[Any, ...]: if fake_mode is None: return args # NB: This should hit the cache if tensors were fakefied before. # E.g., when the fx graph is produced by Dynamo. return tuple( fake_mode.from_tensor(t) if isinstance(t, torch.Tensor) else t for t in args ) @abc.abstractmethod def _run(self, *args, **kwargs) -> torch.fx.GraphModule: ... def run(self, *args, **kwargs) -> torch.fx.GraphModule: """Run the transform on `self.module`. Note that this method may or may not mutate `self.module`, and the returned `GraphModule` could be either `self.module` or a new `GraphModule`. Args: *args: Positional arguments for `self.module` to run. **kwargs: Keyword arguments for `self.module` to run. """ return self._run(*args, **kwargs)