# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # When adding a new object to this init, remember to add it twice: once inside the `_import_structure` dictionary and # once inside the `if TYPE_CHECKING` branch. The `TYPE_CHECKING` should have import statements as usual, but they are # only there for type checking. The `_import_structure` is a dictionary submodule to list of object names, and is used # to defer the actual importing for when the objects are requested. This way `import transformers` provides the names # in the namespace without actually importing anything (and especially none of the backends). __version__ = "4.57.1" from pathlib import Path from typing import TYPE_CHECKING # Check the dependencies satisfy the minimal versions required. from . import dependency_versions_check from .utils import ( OptionalDependencyNotAvailable, _LazyModule, is_essentia_available, is_g2p_en_available, is_librosa_available, is_mistral_common_available, is_mlx_available, is_pretty_midi_available, ) # Note: the following symbols are deliberately exported with `as` # so that mypy, pylint or other static linters can recognize them, # given that they are not exported using `__all__` in this file. from .utils import is_bitsandbytes_available as is_bitsandbytes_available from .utils import is_flax_available as is_flax_available from .utils import is_keras_nlp_available as is_keras_nlp_available from .utils import is_scipy_available as is_scipy_available from .utils import is_sentencepiece_available as is_sentencepiece_available from .utils import is_speech_available as is_speech_available from .utils import is_tensorflow_text_available as is_tensorflow_text_available from .utils import is_tf_available as is_tf_available from .utils import is_timm_available as is_timm_available from .utils import is_tokenizers_available as is_tokenizers_available from .utils import is_torch_available as is_torch_available from .utils import is_torchaudio_available as is_torchaudio_available from .utils import is_torchvision_available as is_torchvision_available from .utils import is_vision_available as is_vision_available from .utils import logging as logging from .utils.import_utils import define_import_structure logger = logging.get_logger(__name__) # pylint: disable=invalid-name # Base objects, independent of any specific backend _import_structure = { "audio_utils": [], "commands": [], "configuration_utils": ["PretrainedConfig"], "convert_graph_to_onnx": [], "convert_slow_tokenizers_checkpoints_to_fast": [], "convert_tf_hub_seq_to_seq_bert_to_pytorch": [], "data": [ "DataProcessor", "InputExample", "InputFeatures", "SingleSentenceClassificationProcessor", "SquadExample", "SquadFeatures", "SquadV1Processor", "SquadV2Processor", "glue_compute_metrics", "glue_convert_examples_to_features", "glue_output_modes", "glue_processors", "glue_tasks_num_labels", "squad_convert_examples_to_features", "xnli_compute_metrics", "xnli_output_modes", "xnli_processors", "xnli_tasks_num_labels", ], "data.data_collator": [ "DataCollator", "DataCollatorForLanguageModeling", "DataCollatorForMultipleChoice", "DataCollatorForPermutationLanguageModeling", "DataCollatorForSeq2Seq", "DataCollatorForSOP", "DataCollatorForTokenClassification", "DataCollatorForWholeWordMask", "DataCollatorWithFlattening", "DataCollatorWithPadding", "DefaultDataCollator", "default_data_collator", ], "data.metrics": [], "data.processors": [], "debug_utils": [], "dependency_versions_check": [], "dependency_versions_table": [], "dynamic_module_utils": [], "feature_extraction_sequence_utils": ["SequenceFeatureExtractor"], "feature_extraction_utils": ["BatchFeature", "FeatureExtractionMixin"], "file_utils": [], "generation": [ "AsyncTextIteratorStreamer", "CompileConfig", "GenerationConfig", "TextIteratorStreamer", "TextStreamer", "WatermarkingConfig", ], "hf_argparser": ["HfArgumentParser"], "hyperparameter_search": [], "image_transforms": [], "integrations": [ "is_clearml_available", "is_comet_available", "is_dvclive_available", "is_neptune_available", "is_optuna_available", "is_ray_available", "is_ray_tune_available", "is_sigopt_available", "is_swanlab_available", "is_tensorboard_available", "is_trackio_available", "is_wandb_available", ], "loss": [], "modelcard": ["ModelCard"], # Losses "modeling_tf_pytorch_utils": [ "convert_tf_weight_name_to_pt_weight_name", "load_pytorch_checkpoint_in_tf2_model", "load_pytorch_model_in_tf2_model", "load_pytorch_weights_in_tf2_model", "load_tf2_checkpoint_in_pytorch_model", "load_tf2_model_in_pytorch_model", "load_tf2_weights_in_pytorch_model", ], # Models "onnx": [], "pipelines": [ "AudioClassificationPipeline", "AutomaticSpeechRecognitionPipeline", "CsvPipelineDataFormat", "DepthEstimationPipeline", "DocumentQuestionAnsweringPipeline", "FeatureExtractionPipeline", "FillMaskPipeline", "ImageClassificationPipeline", "ImageFeatureExtractionPipeline", "ImageSegmentationPipeline", "ImageTextToTextPipeline", "ImageToImagePipeline", "ImageToTextPipeline", "JsonPipelineDataFormat", "KeypointMatchingPipeline", "MaskGenerationPipeline", "NerPipeline", "ObjectDetectionPipeline", "PipedPipelineDataFormat", "Pipeline", "PipelineDataFormat", "QuestionAnsweringPipeline", "SummarizationPipeline", "TableQuestionAnsweringPipeline", "Text2TextGenerationPipeline", "TextClassificationPipeline", "TextGenerationPipeline", "TextToAudioPipeline", "TokenClassificationPipeline", "TranslationPipeline", "VideoClassificationPipeline", "VisualQuestionAnsweringPipeline", "ZeroShotAudioClassificationPipeline", "ZeroShotClassificationPipeline", "ZeroShotImageClassificationPipeline", "ZeroShotObjectDetectionPipeline", "pipeline", ], "processing_utils": ["ProcessorMixin"], "quantizers": [], "testing_utils": [], "tokenization_utils": ["PreTrainedTokenizer"], "tokenization_utils_base": [ "AddedToken", "BatchEncoding", "CharSpan", "PreTrainedTokenizerBase", "SpecialTokensMixin", "TokenSpan", ], "trainer_callback": [ "DefaultFlowCallback", "EarlyStoppingCallback", "PrinterCallback", "ProgressCallback", "TrainerCallback", "TrainerControl", "TrainerState", ], "trainer_utils": [ "EvalPrediction", "IntervalStrategy", "SchedulerType", "enable_full_determinism", "set_seed", ], "training_args": ["TrainingArguments"], "training_args_seq2seq": ["Seq2SeqTrainingArguments"], "training_args_tf": ["TFTrainingArguments"], "utils": [ "CONFIG_NAME", "MODEL_CARD_NAME", "PYTORCH_PRETRAINED_BERT_CACHE", "PYTORCH_TRANSFORMERS_CACHE", "SPIECE_UNDERLINE", "TF2_WEIGHTS_NAME", "TF_WEIGHTS_NAME", "TRANSFORMERS_CACHE", "WEIGHTS_NAME", "TensorType", "add_end_docstrings", "add_start_docstrings", "is_apex_available", "is_av_available", "is_bitsandbytes_available", "is_datasets_available", "is_faiss_available", "is_flax_available", "is_keras_nlp_available", "is_matplotlib_available", "is_mlx_available", "is_phonemizer_available", "is_psutil_available", "is_py3nvml_available", "is_pyctcdecode_available", "is_sacremoses_available", "is_safetensors_available", "is_scipy_available", "is_sentencepiece_available", "is_sklearn_available", "is_speech_available", "is_tensorflow_text_available", "is_tf_available", "is_timm_available", "is_tokenizers_available", "is_torch_available", "is_torch_hpu_available", "is_torch_mlu_available", "is_torch_musa_available", "is_torch_neuroncore_available", "is_torch_npu_available", "is_torchvision_available", "is_torch_xla_available", "is_torch_xpu_available", "is_vision_available", "logging", ], "utils.quantization_config": [ "AqlmConfig", "AutoRoundConfig", "AwqConfig", "BitNetQuantConfig", "BitsAndBytesConfig", "CompressedTensorsConfig", "EetqConfig", "FbgemmFp8Config", "FineGrainedFP8Config", "GPTQConfig", "HiggsConfig", "HqqConfig", "Mxfp4Config", "QuantoConfig", "QuarkConfig", "FPQuantConfig", "SpQRConfig", "TorchAoConfig", "VptqConfig", ], "video_utils": [], } # tokenizers-backed objects try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_tokenizers_objects _import_structure["utils.dummy_tokenizers_objects"] = [ name for name in dir(dummy_tokenizers_objects) if not name.startswith("_") ] else: # Fast tokenizers structure _import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"] try: if not (is_sentencepiece_available() and is_tokenizers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_sentencepiece_and_tokenizers_objects _import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [ name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_") ] else: _import_structure["convert_slow_tokenizer"] = [ "SLOW_TO_FAST_CONVERTERS", "convert_slow_tokenizer", ] try: if not (is_mistral_common_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_mistral_common_objects _import_structure["utils.dummy_mistral_common_objects"] = [ name for name in dir(dummy_mistral_common_objects) if not name.startswith("_") ] else: _import_structure["tokenization_mistral_common"] = ["MistralCommonTokenizer"] # Vision-specific objects try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_vision_objects _import_structure["utils.dummy_vision_objects"] = [ name for name in dir(dummy_vision_objects) if not name.startswith("_") ] else: _import_structure["image_processing_base"] = ["ImageProcessingMixin"] _import_structure["image_processing_utils"] = ["BaseImageProcessor"] _import_structure["image_utils"] = ["ImageFeatureExtractionMixin"] try: if not is_torchvision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_torchvision_objects _import_structure["utils.dummy_torchvision_objects"] = [ name for name in dir(dummy_torchvision_objects) if not name.startswith("_") ] else: _import_structure["image_processing_utils_fast"] = ["BaseImageProcessorFast"] _import_structure["video_processing_utils"] = ["BaseVideoProcessor"] # PyTorch-backed objects try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_pt_objects _import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")] else: _import_structure["model_debugging_utils"] = [ "model_addition_debugger_context", ] _import_structure["activations"] = [] _import_structure["cache_utils"] = [ "CacheLayerMixin", "DynamicLayer", "StaticLayer", "StaticSlidingWindowLayer", "SlidingWindowLayer", "ChunkedSlidingLayer", "QuantoQuantizedLayer", "HQQQuantizedLayer", "Cache", "DynamicCache", "EncoderDecoderCache", "HQQQuantizedCache", "HybridCache", "HybridChunkedCache", "OffloadedCache", "OffloadedStaticCache", "QuantizedCache", "QuantoQuantizedCache", "SinkCache", "SlidingWindowCache", "StaticCache", ] _import_structure["data.datasets"] = [ "GlueDataset", "GlueDataTrainingArguments", "LineByLineTextDataset", "LineByLineWithRefDataset", "LineByLineWithSOPTextDataset", "SquadDataset", "SquadDataTrainingArguments", "TextDataset", "TextDatasetForNextSentencePrediction", ] _import_structure["generation"].extend( [ "AlternatingCodebooksLogitsProcessor", "BayesianDetectorConfig", "BayesianDetectorModel", "BeamScorer", "ClassifierFreeGuidanceLogitsProcessor", "ConstrainedBeamSearchScorer", "Constraint", "ConstraintListState", "DisjunctiveConstraint", "EncoderNoRepeatNGramLogitsProcessor", "EncoderRepetitionPenaltyLogitsProcessor", "EosTokenCriteria", "EpsilonLogitsWarper", "EtaLogitsWarper", "ExponentialDecayLengthPenalty", "ForcedBOSTokenLogitsProcessor", "ForcedEOSTokenLogitsProcessor", "GenerationMixin", "InfNanRemoveLogitsProcessor", "LogitNormalization", "LogitsProcessor", "LogitsProcessorList", "MaxLengthCriteria", "MaxTimeCriteria", "MinLengthLogitsProcessor", "MinNewTokensLengthLogitsProcessor", "MinPLogitsWarper", "NoBadWordsLogitsProcessor", "NoRepeatNGramLogitsProcessor", "PhrasalConstraint", "PrefixConstrainedLogitsProcessor", "RepetitionPenaltyLogitsProcessor", "SequenceBiasLogitsProcessor", "StoppingCriteria", "StoppingCriteriaList", "StopStringCriteria", "SuppressTokensAtBeginLogitsProcessor", "SuppressTokensLogitsProcessor", "SynthIDTextWatermarkDetector", "SynthIDTextWatermarkingConfig", "SynthIDTextWatermarkLogitsProcessor", "TemperatureLogitsWarper", "TopKLogitsWarper", "TopPLogitsWarper", "TypicalLogitsWarper", "UnbatchedClassifierFreeGuidanceLogitsProcessor", "WatermarkDetector", "WatermarkLogitsProcessor", "WhisperTimeStampLogitsProcessor", ] ) # PyTorch domain libraries integration _import_structure["integrations.executorch"] = [ "TorchExportableModuleWithStaticCache", "convert_and_export_with_cache", ] _import_structure["modeling_flash_attention_utils"] = [] _import_structure["modeling_layers"] = ["GradientCheckpointingLayer"] _import_structure["modeling_outputs"] = [] _import_structure["modeling_rope_utils"] = ["ROPE_INIT_FUNCTIONS", "dynamic_rope_update"] _import_structure["modeling_utils"] = ["PreTrainedModel", "AttentionInterface"] _import_structure["masking_utils"] = ["AttentionMaskInterface"] _import_structure["optimization"] = [ "Adafactor", "get_constant_schedule", "get_constant_schedule_with_warmup", "get_cosine_schedule_with_warmup", "get_cosine_with_hard_restarts_schedule_with_warmup", "get_cosine_with_min_lr_schedule_with_warmup", "get_cosine_with_min_lr_schedule_with_warmup_lr_rate", "get_inverse_sqrt_schedule", "get_linear_schedule_with_warmup", "get_polynomial_decay_schedule_with_warmup", "get_scheduler", "get_wsd_schedule", "get_reduce_on_plateau_schedule", ] _import_structure["pytorch_utils"] = [ "Conv1D", "apply_chunking_to_forward", "prune_layer", "infer_device", ] _import_structure["sagemaker"] = [] _import_structure["time_series_utils"] = [] _import_structure["trainer"] = ["Trainer"] _import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"] _import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"] # TensorFlow-backed objects try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_tf_objects _import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")] else: _import_structure["activations_tf"] = [] _import_structure["generation"].extend( [ "TFForcedBOSTokenLogitsProcessor", "TFForcedEOSTokenLogitsProcessor", "TFForceTokensLogitsProcessor", "TFGenerationMixin", "TFLogitsProcessor", "TFLogitsProcessorList", "TFLogitsWarper", "TFMinLengthLogitsProcessor", "TFNoBadWordsLogitsProcessor", "TFNoRepeatNGramLogitsProcessor", "TFRepetitionPenaltyLogitsProcessor", "TFSuppressTokensAtBeginLogitsProcessor", "TFSuppressTokensLogitsProcessor", "TFTemperatureLogitsWarper", "TFTopKLogitsWarper", "TFTopPLogitsWarper", ] ) _import_structure["keras_callbacks"] = ["KerasMetricCallback", "PushToHubCallback"] _import_structure["modeling_tf_outputs"] = [] _import_structure["modeling_tf_utils"] = [ "TFPreTrainedModel", "TFSequenceSummary", "TFSharedEmbeddings", "shape_list", ] _import_structure["optimization_tf"] = [ "AdamWeightDecay", "GradientAccumulator", "WarmUp", "create_optimizer", ] _import_structure["tf_utils"] = [] # FLAX-backed objects try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_flax_objects _import_structure["utils.dummy_flax_objects"] = [ name for name in dir(dummy_flax_objects) if not name.startswith("_") ] else: _import_structure["generation"].extend( [ "FlaxForcedBOSTokenLogitsProcessor", "FlaxForcedEOSTokenLogitsProcessor", "FlaxForceTokensLogitsProcessor", "FlaxGenerationMixin", "FlaxLogitsProcessor", "FlaxLogitsProcessorList", "FlaxLogitsWarper", "FlaxMinLengthLogitsProcessor", "FlaxTemperatureLogitsWarper", "FlaxSuppressTokensAtBeginLogitsProcessor", "FlaxSuppressTokensLogitsProcessor", "FlaxTopKLogitsWarper", "FlaxTopPLogitsWarper", "FlaxWhisperTimeStampLogitsProcessor", ] ) _import_structure["modeling_flax_outputs"] = [] _import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"] # Direct imports for type-checking if TYPE_CHECKING: # All modeling imports from .cache_utils import Cache as Cache from .cache_utils import ChunkedSlidingLayer as ChunkedSlidingLayer from .cache_utils import DynamicCache as DynamicCache from .cache_utils import DynamicLayer as DynamicLayer from .cache_utils import EncoderDecoderCache as EncoderDecoderCache from .cache_utils import HQQQuantizedCache as HQQQuantizedCache from .cache_utils import HQQQuantizedLayer as HQQQuantizedLayer from .cache_utils import HybridCache as HybridCache from .cache_utils import OffloadedCache as OffloadedCache from .cache_utils import OffloadedStaticCache as OffloadedStaticCache from .cache_utils import QuantizedCache as QuantizedCache from .cache_utils import QuantoQuantizedCache as QuantoQuantizedCache from .cache_utils import QuantoQuantizedLayer as QuantoQuantizedLayer from .cache_utils import SinkCache as SinkCache from .cache_utils import SlidingWindowCache as SlidingWindowCache from .cache_utils import SlidingWindowLayer as SlidingWindowLayer from .cache_utils import StaticCache as StaticCache from .cache_utils import StaticLayer as StaticLayer from .cache_utils import StaticSlidingWindowLayer as StaticSlidingWindowLayer from .configuration_utils import PretrainedConfig as PretrainedConfig from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS as SLOW_TO_FAST_CONVERTERS from .convert_slow_tokenizer import convert_slow_tokenizer as convert_slow_tokenizer # Data from .data import DataProcessor as DataProcessor from .data import InputExample as InputExample from .data import InputFeatures as InputFeatures from .data import SingleSentenceClassificationProcessor as SingleSentenceClassificationProcessor from .data import SquadExample as SquadExample from .data import SquadFeatures as SquadFeatures from .data import SquadV1Processor as SquadV1Processor from .data import SquadV2Processor as SquadV2Processor from .data import glue_compute_metrics as glue_compute_metrics from .data import glue_convert_examples_to_features as glue_convert_examples_to_features from .data import glue_output_modes as glue_output_modes from .data import glue_processors as glue_processors from .data import glue_tasks_num_labels as glue_tasks_num_labels from .data import squad_convert_examples_to_features as squad_convert_examples_to_features from .data import xnli_compute_metrics as xnli_compute_metrics from .data import xnli_output_modes as xnli_output_modes from .data import xnli_processors as xnli_processors from .data import xnli_tasks_num_labels as xnli_tasks_num_labels from .data.data_collator import DataCollator as DataCollator from .data.data_collator import DataCollatorForLanguageModeling as DataCollatorForLanguageModeling from .data.data_collator import DataCollatorForMultipleChoice as DataCollatorForMultipleChoice from .data.data_collator import ( DataCollatorForPermutationLanguageModeling as DataCollatorForPermutationLanguageModeling, ) from .data.data_collator import DataCollatorForSeq2Seq as DataCollatorForSeq2Seq from .data.data_collator import DataCollatorForSOP as DataCollatorForSOP from .data.data_collator import DataCollatorForTokenClassification as DataCollatorForTokenClassification from .data.data_collator import DataCollatorForWholeWordMask as DataCollatorForWholeWordMask from .data.data_collator import DataCollatorWithFlattening as DataCollatorWithFlattening from .data.data_collator import DataCollatorWithPadding as DataCollatorWithPadding from .data.data_collator import DefaultDataCollator as DefaultDataCollator from .data.data_collator import default_data_collator as default_data_collator from .data.datasets import GlueDataset as GlueDataset from .data.datasets import GlueDataTrainingArguments as GlueDataTrainingArguments from .data.datasets import LineByLineTextDataset as LineByLineTextDataset from .data.datasets import LineByLineWithRefDataset as LineByLineWithRefDataset from .data.datasets import LineByLineWithSOPTextDataset as LineByLineWithSOPTextDataset from .data.datasets import SquadDataset as SquadDataset from .data.datasets import SquadDataTrainingArguments as SquadDataTrainingArguments from .data.datasets import TextDataset as TextDataset from .data.datasets import TextDatasetForNextSentencePrediction as TextDatasetForNextSentencePrediction from .feature_extraction_sequence_utils import SequenceFeatureExtractor as SequenceFeatureExtractor # Feature Extractor from .feature_extraction_utils import BatchFeature as BatchFeature from .feature_extraction_utils import FeatureExtractionMixin as FeatureExtractionMixin # Generation from .generation import AlternatingCodebooksLogitsProcessor as AlternatingCodebooksLogitsProcessor from .generation import AsyncTextIteratorStreamer as AsyncTextIteratorStreamer from .generation import BayesianDetectorConfig as BayesianDetectorConfig from .generation import BayesianDetectorModel as BayesianDetectorModel from .generation import BeamScorer as BeamScorer from .generation import ClassifierFreeGuidanceLogitsProcessor as ClassifierFreeGuidanceLogitsProcessor from .generation import CompileConfig as CompileConfig from .generation import ConstrainedBeamSearchScorer as ConstrainedBeamSearchScorer from .generation import Constraint as Constraint from .generation import ConstraintListState as ConstraintListState from .generation import DisjunctiveConstraint as DisjunctiveConstraint from .generation import EncoderNoRepeatNGramLogitsProcessor as EncoderNoRepeatNGramLogitsProcessor from .generation import EncoderRepetitionPenaltyLogitsProcessor as EncoderRepetitionPenaltyLogitsProcessor from .generation import EosTokenCriteria as EosTokenCriteria from .generation import EpsilonLogitsWarper as EpsilonLogitsWarper from .generation import EtaLogitsWarper as EtaLogitsWarper from .generation import ExponentialDecayLengthPenalty as ExponentialDecayLengthPenalty from .generation import FlaxForcedBOSTokenLogitsProcessor as FlaxForcedBOSTokenLogitsProcessor from .generation import FlaxForcedEOSTokenLogitsProcessor as FlaxForcedEOSTokenLogitsProcessor from .generation import FlaxForceTokensLogitsProcessor as FlaxForceTokensLogitsProcessor from .generation import FlaxGenerationMixin as FlaxGenerationMixin from .generation import FlaxLogitsProcessor as FlaxLogitsProcessor from .generation import FlaxLogitsProcessorList as FlaxLogitsProcessorList from .generation import FlaxLogitsWarper as FlaxLogitsWarper from .generation import FlaxMinLengthLogitsProcessor as FlaxMinLengthLogitsProcessor from .generation import FlaxSuppressTokensAtBeginLogitsProcessor as FlaxSuppressTokensAtBeginLogitsProcessor from .generation import FlaxSuppressTokensLogitsProcessor as FlaxSuppressTokensLogitsProcessor from .generation import FlaxTemperatureLogitsWarper as FlaxTemperatureLogitsWarper from .generation import FlaxTopKLogitsWarper as FlaxTopKLogitsWarper from .generation import FlaxTopPLogitsWarper as FlaxTopPLogitsWarper from .generation import FlaxWhisperTimeStampLogitsProcessor as FlaxWhisperTimeStampLogitsProcessor from .generation import ForcedBOSTokenLogitsProcessor as ForcedBOSTokenLogitsProcessor from .generation import ForcedEOSTokenLogitsProcessor as ForcedEOSTokenLogitsProcessor from .generation import GenerationConfig as GenerationConfig from .generation import GenerationMixin as GenerationMixin from .generation import InfNanRemoveLogitsProcessor as InfNanRemoveLogitsProcessor from .generation import LogitNormalization as LogitNormalization from .generation import LogitsProcessor as LogitsProcessor from .generation import LogitsProcessorList as LogitsProcessorList from .generation import MaxLengthCriteria as MaxLengthCriteria from .generation import MaxTimeCriteria as MaxTimeCriteria from .generation import MinLengthLogitsProcessor as MinLengthLogitsProcessor from .generation import MinNewTokensLengthLogitsProcessor as MinNewTokensLengthLogitsProcessor from .generation import MinPLogitsWarper as MinPLogitsWarper from .generation import NoBadWordsLogitsProcessor as NoBadWordsLogitsProcessor from .generation import NoRepeatNGramLogitsProcessor as NoRepeatNGramLogitsProcessor from .generation import PhrasalConstraint as PhrasalConstraint from .generation import PrefixConstrainedLogitsProcessor as PrefixConstrainedLogitsProcessor from .generation import RepetitionPenaltyLogitsProcessor as RepetitionPenaltyLogitsProcessor from .generation import SequenceBiasLogitsProcessor as SequenceBiasLogitsProcessor from .generation import StoppingCriteria as StoppingCriteria from .generation import StoppingCriteriaList as StoppingCriteriaList from .generation import StopStringCriteria as StopStringCriteria from .generation import SuppressTokensAtBeginLogitsProcessor as SuppressTokensAtBeginLogitsProcessor from .generation import SuppressTokensLogitsProcessor as SuppressTokensLogitsProcessor from .generation import SynthIDTextWatermarkDetector as SynthIDTextWatermarkDetector from .generation import SynthIDTextWatermarkingConfig as SynthIDTextWatermarkingConfig from .generation import SynthIDTextWatermarkLogitsProcessor as SynthIDTextWatermarkLogitsProcessor from .generation import TemperatureLogitsWarper as TemperatureLogitsWarper from .generation import TextIteratorStreamer as TextIteratorStreamer from .generation import TextStreamer as TextStreamer from .generation import TFForcedBOSTokenLogitsProcessor as TFForcedBOSTokenLogitsProcessor from .generation import TFForcedEOSTokenLogitsProcessor as TFForcedEOSTokenLogitsProcessor from .generation import TFForceTokensLogitsProcessor as TFForceTokensLogitsProcessor from .generation import TFGenerationMixin as TFGenerationMixin from .generation import TFLogitsProcessor as TFLogitsProcessor from .generation import TFLogitsProcessorList as TFLogitsProcessorList from .generation import TFLogitsWarper as TFLogitsWarper from .generation import TFMinLengthLogitsProcessor as TFMinLengthLogitsProcessor from .generation import TFNoBadWordsLogitsProcessor as TFNoBadWordsLogitsProcessor from .generation import TFNoRepeatNGramLogitsProcessor as TFNoRepeatNGramLogitsProcessor from .generation import TFRepetitionPenaltyLogitsProcessor as TFRepetitionPenaltyLogitsProcessor from .generation import TFSuppressTokensAtBeginLogitsProcessor as TFSuppressTokensAtBeginLogitsProcessor from .generation import TFSuppressTokensLogitsProcessor as TFSuppressTokensLogitsProcessor from .generation import TFTemperatureLogitsWarper as TFTemperatureLogitsWarper from .generation import TFTopKLogitsWarper as TFTopKLogitsWarper from .generation import TFTopPLogitsWarper as TFTopPLogitsWarper from .generation import TopKLogitsWarper as TopKLogitsWarper from .generation import TopPLogitsWarper as TopPLogitsWarper from .generation import TypicalLogitsWarper as TypicalLogitsWarper from .generation import ( UnbatchedClassifierFreeGuidanceLogitsProcessor as UnbatchedClassifierFreeGuidanceLogitsProcessor, ) from .generation import WatermarkDetector as WatermarkDetector from .generation import WatermarkingConfig as WatermarkingConfig from .generation import WatermarkLogitsProcessor as WatermarkLogitsProcessor from .generation import WhisperTimeStampLogitsProcessor as WhisperTimeStampLogitsProcessor from .hf_argparser import HfArgumentParser as HfArgumentParser from .image_processing_base import ImageProcessingMixin as ImageProcessingMixin from .image_processing_utils import BaseImageProcessor as BaseImageProcessor from .image_processing_utils_fast import BaseImageProcessorFast as BaseImageProcessorFast from .image_utils import ImageFeatureExtractionMixin as ImageFeatureExtractionMixin # Integrations from .integrations import is_clearml_available as is_clearml_available from .integrations import is_comet_available as is_comet_available from .integrations import is_dvclive_available as is_dvclive_available from .integrations import is_neptune_available as is_neptune_available from .integrations import is_optuna_available as is_optuna_available from .integrations import is_ray_available as is_ray_available from .integrations import is_ray_tune_available as is_ray_tune_available from .integrations import is_sigopt_available as is_sigopt_available from .integrations import is_swanlab_available as is_swanlab_available from .integrations import is_tensorboard_available as is_tensorboard_available from .integrations import is_trackio_available as is_trackio_available from .integrations import is_wandb_available as is_wandb_available from .integrations.executorch import TorchExportableModuleWithStaticCache as TorchExportableModuleWithStaticCache from .integrations.executorch import convert_and_export_with_cache as convert_and_export_with_cache from .keras_callbacks import KerasMetricCallback as KerasMetricCallback from .keras_callbacks import PushToHubCallback as PushToHubCallback from .masking_utils import AttentionMaskInterface as AttentionMaskInterface from .model_debugging_utils import model_addition_debugger_context as model_addition_debugger_context # Model Cards from .modelcard import ModelCard as ModelCard from .modeling_flax_utils import FlaxPreTrainedModel as FlaxPreTrainedModel from .modeling_layers import GradientCheckpointingLayer as GradientCheckpointingLayer from .modeling_rope_utils import ROPE_INIT_FUNCTIONS as ROPE_INIT_FUNCTIONS from .modeling_rope_utils import dynamic_rope_update as dynamic_rope_update # TF 2.0 <=> PyTorch conversion utilities from .modeling_tf_pytorch_utils import ( convert_tf_weight_name_to_pt_weight_name as convert_tf_weight_name_to_pt_weight_name, ) from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model as load_pytorch_checkpoint_in_tf2_model from .modeling_tf_pytorch_utils import load_pytorch_model_in_tf2_model as load_pytorch_model_in_tf2_model from .modeling_tf_pytorch_utils import load_pytorch_weights_in_tf2_model as load_pytorch_weights_in_tf2_model from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model as load_tf2_checkpoint_in_pytorch_model from .modeling_tf_pytorch_utils import load_tf2_model_in_pytorch_model as load_tf2_model_in_pytorch_model from .modeling_tf_pytorch_utils import load_tf2_weights_in_pytorch_model as load_tf2_weights_in_pytorch_model from .modeling_tf_utils import TFPreTrainedModel as TFPreTrainedModel from .modeling_tf_utils import TFSequenceSummary as TFSequenceSummary from .modeling_tf_utils import TFSharedEmbeddings as TFSharedEmbeddings from .modeling_tf_utils import shape_list as shape_list from .modeling_utils import AttentionInterface as AttentionInterface from .modeling_utils import PreTrainedModel as PreTrainedModel from .models import * from .models.mamba.modeling_mamba import MambaCache as MambaCache from .models.timm_wrapper import TimmWrapperImageProcessor as TimmWrapperImageProcessor # Optimization from .optimization import Adafactor as Adafactor from .optimization import get_constant_schedule as get_constant_schedule from .optimization import get_constant_schedule_with_warmup as get_constant_schedule_with_warmup from .optimization import get_cosine_schedule_with_warmup as get_cosine_schedule_with_warmup from .optimization import ( get_cosine_with_hard_restarts_schedule_with_warmup as get_cosine_with_hard_restarts_schedule_with_warmup, ) from .optimization import ( get_cosine_with_min_lr_schedule_with_warmup as get_cosine_with_min_lr_schedule_with_warmup, ) from .optimization import ( get_cosine_with_min_lr_schedule_with_warmup_lr_rate as get_cosine_with_min_lr_schedule_with_warmup_lr_rate, ) from .optimization import get_inverse_sqrt_schedule as get_inverse_sqrt_schedule from .optimization import get_linear_schedule_with_warmup as get_linear_schedule_with_warmup from .optimization import get_polynomial_decay_schedule_with_warmup as get_polynomial_decay_schedule_with_warmup from .optimization import get_scheduler as get_scheduler from .optimization import get_wsd_schedule as get_wsd_schedule # Optimization from .optimization_tf import AdamWeightDecay as AdamWeightDecay from .optimization_tf import GradientAccumulator as GradientAccumulator from .optimization_tf import WarmUp as WarmUp from .optimization_tf import create_optimizer as create_optimizer # Pipelines from .pipelines import AudioClassificationPipeline as AudioClassificationPipeline from .pipelines import AutomaticSpeechRecognitionPipeline as AutomaticSpeechRecognitionPipeline from .pipelines import CsvPipelineDataFormat as CsvPipelineDataFormat from .pipelines import DepthEstimationPipeline as DepthEstimationPipeline from .pipelines import DocumentQuestionAnsweringPipeline as DocumentQuestionAnsweringPipeline from .pipelines import FeatureExtractionPipeline as FeatureExtractionPipeline from .pipelines import FillMaskPipeline as FillMaskPipeline from .pipelines import ImageClassificationPipeline as ImageClassificationPipeline from .pipelines import ImageFeatureExtractionPipeline as ImageFeatureExtractionPipeline from .pipelines import ImageSegmentationPipeline as ImageSegmentationPipeline from .pipelines import ImageTextToTextPipeline as ImageTextToTextPipeline from .pipelines import ImageToImagePipeline as ImageToImagePipeline from .pipelines import ImageToTextPipeline as ImageToTextPipeline from .pipelines import JsonPipelineDataFormat as JsonPipelineDataFormat from .pipelines import KeypointMatchingPipeline as KeypointMatchingPipeline from .pipelines import MaskGenerationPipeline as MaskGenerationPipeline from .pipelines import NerPipeline as NerPipeline from .pipelines import ObjectDetectionPipeline as ObjectDetectionPipeline from .pipelines import PipedPipelineDataFormat as PipedPipelineDataFormat from .pipelines import Pipeline as Pipeline from .pipelines import PipelineDataFormat as PipelineDataFormat from .pipelines import QuestionAnsweringPipeline as QuestionAnsweringPipeline from .pipelines import SummarizationPipeline as SummarizationPipeline from .pipelines import TableQuestionAnsweringPipeline as TableQuestionAnsweringPipeline from .pipelines import Text2TextGenerationPipeline as Text2TextGenerationPipeline from .pipelines import TextClassificationPipeline as TextClassificationPipeline from .pipelines import TextGenerationPipeline as TextGenerationPipeline from .pipelines import TextToAudioPipeline as TextToAudioPipeline from .pipelines import TokenClassificationPipeline as TokenClassificationPipeline from .pipelines import TranslationPipeline as TranslationPipeline from .pipelines import VideoClassificationPipeline as VideoClassificationPipeline from .pipelines import VisualQuestionAnsweringPipeline as VisualQuestionAnsweringPipeline from .pipelines import ZeroShotAudioClassificationPipeline as ZeroShotAudioClassificationPipeline from .pipelines import ZeroShotClassificationPipeline as ZeroShotClassificationPipeline from .pipelines import ZeroShotImageClassificationPipeline as ZeroShotImageClassificationPipeline from .pipelines import ZeroShotObjectDetectionPipeline as ZeroShotObjectDetectionPipeline from .pipelines import pipeline as pipeline from .processing_utils import ProcessorMixin as ProcessorMixin from .pytorch_utils import Conv1D as Conv1D from .pytorch_utils import apply_chunking_to_forward as apply_chunking_to_forward from .pytorch_utils import prune_layer as prune_layer # Tokenization from .tokenization_utils import PreTrainedTokenizer as PreTrainedTokenizer from .tokenization_utils_base import AddedToken as AddedToken from .tokenization_utils_base import BatchEncoding as BatchEncoding from .tokenization_utils_base import CharSpan as CharSpan from .tokenization_utils_base import PreTrainedTokenizerBase as PreTrainedTokenizerBase from .tokenization_utils_base import SpecialTokensMixin as SpecialTokensMixin from .tokenization_utils_base import TokenSpan as TokenSpan from .tokenization_utils_fast import PreTrainedTokenizerFast as PreTrainedTokenizerFast # Trainer from .trainer import Trainer as Trainer # Trainer from .trainer_callback import DefaultFlowCallback as DefaultFlowCallback from .trainer_callback import EarlyStoppingCallback as EarlyStoppingCallback from .trainer_callback import PrinterCallback as PrinterCallback from .trainer_callback import ProgressCallback as ProgressCallback from .trainer_callback import TrainerCallback as TrainerCallback from .trainer_callback import TrainerControl as TrainerControl from .trainer_callback import TrainerState as TrainerState from .trainer_pt_utils import torch_distributed_zero_first as torch_distributed_zero_first from .trainer_seq2seq import Seq2SeqTrainer as Seq2SeqTrainer from .trainer_utils import EvalPrediction as EvalPrediction from .trainer_utils import IntervalStrategy as IntervalStrategy from .trainer_utils import SchedulerType as SchedulerType from .trainer_utils import enable_full_determinism as enable_full_determinism from .trainer_utils import set_seed as set_seed from .training_args import TrainingArguments as TrainingArguments from .training_args_seq2seq import Seq2SeqTrainingArguments as Seq2SeqTrainingArguments from .training_args_tf import TFTrainingArguments as TFTrainingArguments # Files and general utilities from .utils import CONFIG_NAME as CONFIG_NAME from .utils import MODEL_CARD_NAME as MODEL_CARD_NAME from .utils import PYTORCH_PRETRAINED_BERT_CACHE as PYTORCH_PRETRAINED_BERT_CACHE from .utils import PYTORCH_TRANSFORMERS_CACHE as PYTORCH_TRANSFORMERS_CACHE from .utils import SPIECE_UNDERLINE as SPIECE_UNDERLINE from .utils import TF2_WEIGHTS_NAME as TF2_WEIGHTS_NAME from .utils import TF_WEIGHTS_NAME as TF_WEIGHTS_NAME from .utils import TRANSFORMERS_CACHE as TRANSFORMERS_CACHE from .utils import WEIGHTS_NAME as WEIGHTS_NAME from .utils import TensorType as TensorType from .utils import add_end_docstrings as add_end_docstrings from .utils import add_start_docstrings as add_start_docstrings from .utils import is_apex_available as is_apex_available from .utils import is_av_available as is_av_available from .utils import is_datasets_available as is_datasets_available from .utils import is_faiss_available as is_faiss_available from .utils import is_matplotlib_available as is_matplotlib_available from .utils import is_phonemizer_available as is_phonemizer_available from .utils import is_psutil_available as is_psutil_available from .utils import is_py3nvml_available as is_py3nvml_available from .utils import is_pyctcdecode_available as is_pyctcdecode_available from .utils import is_sacremoses_available as is_sacremoses_available from .utils import is_safetensors_available as is_safetensors_available from .utils import is_sklearn_available as is_sklearn_available from .utils import is_torch_hpu_available as is_torch_hpu_available from .utils import is_torch_mlu_available as is_torch_mlu_available from .utils import is_torch_musa_available as is_torch_musa_available from .utils import is_torch_neuroncore_available as is_torch_neuroncore_available from .utils import is_torch_npu_available as is_torch_npu_available from .utils import is_torch_xla_available as is_torch_xla_available from .utils import is_torch_xpu_available as is_torch_xpu_available # bitsandbytes config from .utils.quantization_config import AqlmConfig as AqlmConfig from .utils.quantization_config import AutoRoundConfig as AutoRoundConfig from .utils.quantization_config import AwqConfig as AwqConfig from .utils.quantization_config import BitNetQuantConfig as BitNetQuantConfig from .utils.quantization_config import BitsAndBytesConfig as BitsAndBytesConfig from .utils.quantization_config import CompressedTensorsConfig as CompressedTensorsConfig from .utils.quantization_config import EetqConfig as EetqConfig from .utils.quantization_config import FbgemmFp8Config as FbgemmFp8Config from .utils.quantization_config import FineGrainedFP8Config as FineGrainedFP8Config from .utils.quantization_config import FPQuantConfig as FPQuantConfig from .utils.quantization_config import GPTQConfig as GPTQConfig from .utils.quantization_config import HiggsConfig as HiggsConfig from .utils.quantization_config import HqqConfig as HqqConfig from .utils.quantization_config import QuantoConfig as QuantoConfig from .utils.quantization_config import QuarkConfig as QuarkConfig from .utils.quantization_config import SpQRConfig as SpQRConfig from .utils.quantization_config import TorchAoConfig as TorchAoConfig from .utils.quantization_config import VptqConfig as VptqConfig from .video_processing_utils import BaseVideoProcessor as BaseVideoProcessor else: import sys _import_structure = {k: set(v) for k, v in _import_structure.items()} import_structure = define_import_structure(Path(__file__).parent / "models", prefix="models") import_structure[frozenset({})].update(_import_structure) sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], import_structure, module_spec=__spec__, extra_objects={"__version__": __version__}, ) if not is_tf_available() and not is_torch_available() and not is_flax_available(): logger.warning_advice( "None of PyTorch, TensorFlow >= 2.0, or Flax have been found. " "Models won't be available and only tokenizers, configuration " "and file/data utilities can be used." )