from typing import Optional import torch from torch import nn def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_paged_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], # shape [seqlen_q, seqlen_k] scaling: float, **kwargs, ): # Add KV cache to the key and value tensors cache = kwargs.pop("cache", None) if cache is not None: # This changes the shape of k and v from [1, num_kv_heads, seqlen_kv, head_dim] to [-1, num_kv_heads, head_dim] key, value = cache.update(key, value, module.layer_idx, **kwargs) key = key.transpose(0, 1).unsqueeze(0) value = value.transpose(0, 1).unsqueeze(0) # Repeat the key and value tensors for each group of key-value heads if hasattr(module, "num_key_value_groups"): key = repeat_kv(key, module.num_key_value_groups) value = repeat_kv(value, module.num_key_value_groups) # Get the right causal mask for the current layer if isinstance(attention_mask, dict): sliding_window = getattr(module, "sliding_window", 1) layer_type = "full_attention" if sliding_window == 1 or sliding_window is None else "sliding_attention" causal_mask = attention_mask[layer_type] else: causal_mask = attention_mask attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling if causal_mask is not None: attn_weights = attn_weights + causal_mask # Handle attention sinks if the model has them if hasattr(module, "sinks"): # Retrieve the sink and add it to the attention weights sinks = module.sinks.reshape(1, -1, 1, 1).expand(query.shape[0], -1, query.shape[-2], -1) attn_weights = torch.cat([attn_weights, sinks], dim=-1) # Normalize the attention weights for better numerical stability attn_weights = attn_weights - attn_weights.max(dim=-1, keepdim=True).values # Apply softmax and drop the sink. Not exactly the same code as eager w/ sink, but the same code does not produce the same results. attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = attn_weights[..., :-1] else: attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights