# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import logging from typing import Callable, Optional import torch from ..cache_utils import ( DynamicCache, DynamicLayer, DynamicSlidingWindowLayer, EncoderDecoderCache, StaticCache, ) from ..generation.configuration_utils import GenerationConfig from ..masking_utils import ( ALL_MASK_ATTENTION_FUNCTIONS, _ignore_causal_mask_sdpa, _is_torch_greater_or_equal_than_2_5, prepare_padding_mask, ) from ..modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ..pytorch_utils import ( is_torch_greater_or_equal, is_torch_greater_or_equal_than_2_3, is_torch_greater_or_equal_than_2_6, ) class TorchExportableModuleForVLM: """ A wrapper class for exporting Vision-Language Models (VLMs) like SmolVLM2 for ExecuTorch. This class handles the export of three main components: 1. Vision encoder (processes images to visual features) 2. Connector/projector (maps visual features to text embedding space) 3. Text decoder (generates text from combined visual and text tokens) """ def __init__(self, model, max_batch_size: int = 1, max_cache_len: int = 1024): """ Initialize the exportable VLM module. Args: model: The VLM (e.g. SmolVLM) model instance max_batch_size: Maximum batch size. Always 1 for ExecuTorch max_cache_len: Maximum cache length for text generation """ self.model = model self.max_batch_size = max_batch_size self.max_cache_len = max_cache_len self.config = model.config # Extract individual components self.vision_encoder = model.model.vision_model self.connector = model.model.connector self.text_decoder = model.model.text_model # Store exported programs self.exported_vision_encoder = None self.exported_connector = None self.exported_text_decoder = None def export_vision_encoder(self): """Export the vision encoder component.""" self.vision_encoder.eval() # Create example input pixel_values = torch.randn(1, 3, 384, 384, dtype=torch.float32) # Define dynamic shapes dynamic_shapes = { "pixel_values": { 2: torch.export.Dim.AUTO, 3: torch.export.Dim.AUTO, } } self.exported_vision_encoder = torch.export.export( self.vision_encoder, args=(pixel_values,), dynamic_shapes=dynamic_shapes, strict=False, ) return self.exported_vision_encoder def export_connector(self): """Export the connector component.""" self.connector.eval() # Vision encoder output shape: [batch_size, num_patches, vision_hidden_size] vision_hidden_size = self.config.vision_config.hidden_size image_size = self.config.vision_config.image_size patch_size = self.config.vision_config.patch_size patches_per_dim = image_size // patch_size num_patches = patches_per_dim * patches_per_dim image_hidden_states = torch.randn(1, num_patches, vision_hidden_size, dtype=torch.float32) # Define dynamic shapes - static batch_size=1, dynamic num_patches dynamic_shapes = {"image_hidden_states": {1: torch.export.Dim.AUTO}} # Export the connector using torch.export self.exported_connector = torch.export.export( self.connector, args=(image_hidden_states,), dynamic_shapes=dynamic_shapes, strict=False, ) return self.exported_connector def export_text_decoder(self): """Export the text decoder component.""" # Create text decoder exportable wrapper self.exportable_text_decoder = TorchExportableModuleForDecoderOnlyLM(model=self.text_decoder) # Use the existing text decoder exportable wrapper seq_length = 3 input_ids = torch.zeros((1, seq_length), dtype=torch.long) cache_position = torch.arange(seq_length, dtype=torch.long) max_seq_length = min(self.max_cache_len, self.config.text_config.max_position_embeddings) seq_len_dim = torch.export.Dim("seq_length_dim", max=max_seq_length - 1) dynamic_shapes = { "input_ids": {1: seq_len_dim}, "cache_position": {0: seq_len_dim}, } self.exported_text_decoder = self.exportable_text_decoder.export( input_ids=input_ids, cache_position=cache_position, dynamic_shapes=dynamic_shapes, strict=False, ) return self.exported_text_decoder def export(self, **kwargs): """Export all components of the VLM model.""" self.export_vision_encoder(**kwargs) self.export_connector(**kwargs) self.export_text_decoder(**kwargs) return { "vision_encoder": self.exported_vision_encoder, "connector": self.exported_connector, "text_decoder": self.exported_text_decoder, } def forward(self, pixel_values, input_ids, cache_position): """ Simplified forward pass for inference with guaranteed non-null input_ids and cache_position. Args: pixel_values: Input images [1, channels, height, width] (optional) input_ids: Text token IDs [1, seq_len] (required - won't be None) cache_position: Cache positions [seq_len] (required - won't be None) Returns: Output with logits for text generation """ pass def generate( self, pixel_values=None, input_ids=None, max_new_tokens=50, do_sample=False, temperature=1.0, **kwargs ): """ Simplified generate method with guaranteed non-null input_ids. Args: pixel_values: Input images [1, channels, height, width] (optional) input_ids: Initial text tokens [1, seq_len] (required - won't be None) max_new_tokens: Maximum number of tokens to generate do_sample: Whether to use sampling or greedy decoding temperature: Temperature for sampling Returns: Generated sequences """ pass class TorchExportableModuleForDecoderOnlyLM(torch.nn.Module): """ A recipe module designed to make a `PreTrainedModel` exportable with `torch.export`, specifically for decoder-only LM with cache. This module ensures that the exported model is compatible with further lowering and execution in `ExecuTorch`. """ def __init__( self, model: PreTrainedModel, batch_size: Optional[int] = None, max_cache_len: Optional[int] = None, device: Optional[torch.device] = None, ) -> None: """ Initializes the exportable module. Args: model (`PreTrainedModel`): The pretrained model to wrap. Raises: ValueError: If the model is configured with a unsupported cache implementation. """ super().__init__() config = model.config.get_text_config() if not hasattr(config, "use_cache") or config.use_cache is False: raise ValueError("The model must have caching enabled to be performant.") if hasattr(config, "layer_types") and getattr(config, "sliding_window", None) is not None: self.model = TorchExportableModuleWithHybridCache(model, batch_size, max_cache_len, device) else: # If `layer_types` is not specified explicitly in the config or `sliding_window` is null, # there is only 1 type of layers, so export will use `StaticCache` by default. logging.info( "Using `StaticCache` for export as `layer_types` is not specified or `sliding_window` is `null` in the config." ) self.model = TorchExportableModuleWithStaticCache(model, batch_size, max_cache_len, device) # This is the same as sdpa, but mask creation does not use `vmap` which is not exportable ALL_MASK_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", sdpa_mask_without_vmap) ALL_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", ALL_ATTENTION_FUNCTIONS["sdpa"]) self.model.model.config._attn_implementation = "sdpa_without_vmap" def forward( self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, cache_position: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Forward pass of the module, which is compatible with the ExecuTorch llm runner. Args: input_ids (`torch.Tensor`): Tensor representing current input token id to the module. inputs_embeds (`torch.Tensor`): Tensor representing current input embeddings to the module. cache_position (`torch.Tensor`): Tensor representing current input position in the cache. Returns: torch.Tensor: Logits output from the model. """ return self.model.forward( input_ids=input_ids, inputs_embeds=inputs_embeds, cache_position=cache_position, ) def export( self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, cache_position: Optional[torch.Tensor] = None, dynamic_shapes: Optional[dict] = None, strict: Optional[bool] = None, ) -> torch.export.ExportedProgram: """ Export the wrapped module using `torch.export`. Args: input_ids (`Optional[torch.Tensor]`): Tensor representing current input token id to the module. Must specify either this or inputs_embeds. inputs_embeds (`Optional[torch.Tensor]`): Tensor representing current input embeddings to the module. Must specify either this or input_ids. cache_position (`Optional[torch.Tensor]`): Tensor representing current input position in the cache. If not provided, a default tensor will be used. dynamic_shapes (`Optional[dict]`): Dynamic shapes to use for export if specified. strict(`Optional[bool]`): Flag to instruct `torch.export` to use `torchdynamo`. Returns: torch.export.ExportedProgram: The exported program that can be used for inference. Examples: Export with input_ids: ```python # Prepare inputs input_ids = torch.tensor([[1, 2, 3]], dtype=torch.long, device=model.device) cache_position = torch.arange(input_ids.shape[-1], dtype=torch.long, device=model.device) # Export exported = exportable_module.export( input_ids=input_ids, cache_position=cache_position ) ``` Export with inputs_embeds: ```python # Prepare embeddings inputs_embeds = torch.randn(1, 3, 768, device=model.device) # batch_size=1, seq_len=3, hidden_size=768 cache_position = torch.arange(inputs_embeds.shape[1], dtype=torch.long, device=model.device) # Export exported = exportable_module.export( inputs_embeds=inputs_embeds, cache_position=cache_position ) ``` """ if not (input_ids is None) ^ (inputs_embeds is None): raise ValueError("Need to specify either input_ids or inputs_embeds.") if hasattr(self.model, "base_model_prefix"): base = getattr(self.model, self.model.base_model_prefix, self.model) model_device = base.device elif hasattr(self.model, "model"): model_device = self.model.model.device else: model_device = "cpu" logging.warning( "TorchExportableModuleForDecoderOnlyLM.export Can't infer device from the model. Set to CPU by default." ) if input_ids is not None: input_kwargs = { "input_ids": input_ids, "cache_position": cache_position if cache_position is not None else torch.arange(input_ids.shape[-1], dtype=torch.long, device=model_device), } else: # inputs_embeds input_kwargs = { "inputs_embeds": inputs_embeds, "cache_position": cache_position if cache_position is not None else torch.arange(inputs_embeds.shape[1], dtype=torch.long, device=model_device), } exported_program = torch.export.export( self.model, args=(), kwargs=input_kwargs, dynamic_shapes=dynamic_shapes, strict=strict if strict is not None else True, ) return exported_program @staticmethod def generate( exported_program: torch.export.ExportedProgram, tokenizer, prompt: str, max_new_tokens: int = 20, do_sample: bool = False, temperature: float = 1.0, top_k: int = 50, top_p: float = 1.0, device: str = "cpu", ) -> str: """ Generate a sequence of tokens using an exported program. Args: exported_program (`torch.export.ExportedProgram`): The exported model being used for generate. tokenizer: The tokenizer to use. prompt (str): The input prompt. max_new_tokens (int): Maximum number of new tokens to generate. do_sample (bool): Whether to use sampling or greedy decoding. temperature (float): The temperature for sampling. top_k (int): The number of highest probability tokens to keep for top-k sampling. top_p (float): The cumulative probability for nucleus sampling. device (str): The device to use. Returns: str: The generated text. """ # Get the module from the exported program exported_module = exported_program.module() # Tokenize the prompt input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) # Initialize with the prompt generated_ids = input_ids.clone() # Process the prompt tokens first curr_position = 0 for i in range(input_ids.shape[1]): # Process one token at a time curr_input_ids = input_ids[:, i : i + 1] curr_cache_position = torch.tensor([curr_position], dtype=torch.long, device=device) # Forward pass _ = exported_module(input_ids=curr_input_ids, cache_position=curr_cache_position) curr_position += 1 # Generate new tokens for _ in range(max_new_tokens): # Get the last token as input curr_input_ids = generated_ids[:, -1:] curr_cache_position = torch.tensor([curr_position], dtype=torch.long, device=device) # Forward pass to get next token logits outputs = exported_module(input_ids=curr_input_ids, cache_position=curr_cache_position) # Get the next token ID if do_sample: # Apply temperature if temperature > 0: logits = outputs / temperature else: logits = outputs # Apply top-k filtering if top_k > 0: indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = float("-inf") # Apply top-p (nucleus) filtering if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # Scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = float("-inf") # Sample from the filtered distribution probs = torch.softmax(logits, dim=-1) next_token_id = torch.multinomial(probs, num_samples=1) else: # Greedy decoding next_token_id = outputs.argmax(dim=-1, keepdim=True) # Ensure next_token_id has the right shape before concatenation if next_token_id.dim() > 2: next_token_id = next_token_id.squeeze(-1) # Append to the generated sequence generated_ids = torch.cat([generated_ids, next_token_id], dim=-1) curr_position += 1 # Stop if we generate an EOS token if next_token_id.item() == tokenizer.eos_token_id: break # Decode the generated text return tokenizer.decode(generated_ids[0], skip_special_tokens=True) class TorchExportableModuleWithStaticCache(torch.nn.Module): """ A recipe module designed to make a `PreTrainedModel` exportable with `torch.export`, specifically for decoder-only LM to `StaticCache`. This module ensures that the exported model is compatible with further lowering and execution in `ExecuTorch`. Note: This class is specifically designed to support export process using `torch.export` in a way that ensures the model can be further lowered and run efficiently in `ExecuTorch`. """ def __init__( self, model: PreTrainedModel, batch_size: Optional[int] = None, max_cache_len: Optional[int] = None, device: Optional[torch.device] = None, ) -> None: """ Initializes the wrapper module with the pretrained model. Args: model (`PreTrainedModel`): The pretrained model to wrap. The model must have caching enabled and use a 'static' caching implementation. batch_size (`Optional[int]`): The batch size of the model. If not provided, we check if a value can be found in `generation_config.cache_config` and otherwise we raise a ValueError. max_cache_len (`Optional[int]`): The maximum cache length for generation. Same mechanism as `batch_size` if not provided. device (`Optional[torch.device]`): The device to use. If not provided, we check if a value can be found in `generation_config.cache_config` and otherwise we use `model.device` (no error is raised). Raises: AssertionError: If the pretrained model does not have caching enabled or if it does not use a 'static' caching implementation in `model.generation_config`. ValueError: If `batch_size` or `max_cache_len` is not provided, either as an argument or in `cache_config`. """ super().__init__() config = model.config.get_text_config() generation_config = model.generation_config # Sanity checks if generation_config is None: raise AssertionError( "The model must have a generation config to be exported with static caching. " "Please set `generation_config` in `model`." ) if not generation_config.use_cache: raise AssertionError( "The model must have caching enabled to be exported with static caching. " "Please set `generation_config.use_cache=True`." ) if generation_config.cache_implementation != "static": raise AssertionError( "The model must use a 'static' caching implementation to be exported with static caching. " "Please set `generation_config.cache_implementation='static'`." ) cache_config = {} if generation_config.cache_config is None else generation_config.cache_config # Ensure batch_size and max_cache_len are set if batch_size is None: batch_size = cache_config.get("batch_size", None) if batch_size is None: raise ValueError("batch_size must be provided, either as an argument or in cache_config.") if max_cache_len is None: max_cache_len = cache_config.get("max_cache_len", None) if max_cache_len is None: raise ValueError("max_cache_len must be provided, either as an argument or in cache_config.") # Infer device if not provided if device is None: device = cache_config.get("device", model.device) # Initialize the static cache self.model = model self.static_cache = StaticCache(max_cache_len=max_cache_len, config=config) head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) num_heads = getattr(config, "num_key_value_heads", config.num_attention_heads) dtype = self.model.dtype # We need this call to initialize all the layers (otherwise it's done lazily, which is not exportable) self.static_cache.early_initialization(batch_size, num_heads, head_dim, dtype, device) for i in range(len(self.static_cache)): self.register_buffer(f"key_cache_{i}", self.static_cache.layers[i].keys, persistent=False) self.register_buffer(f"value_cache_{i}", self.static_cache.layers[i].values, persistent=False) def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.Tensor] = None, cache_position: Optional[torch.Tensor] = None, ): """ Forward pass of the module, which is compatible with the ExecuTorch runtime. Args: input_ids (`torch.Tensor`): Tensor representing current input token id to the module. inputs_embeds (`torch.Tensor`): Tensor representing current input embeddings to the module. cache_position (`torch.Tensor`): Tensor representing current input position in the cache. Returns: torch.Tensor: Logits output from the model. This forward adapter serves two primary purposes: 1. **Making the Model `torch.export`-Compatible**: The adapter hides unsupported objects, such as the `Cache`, from the graph inputs and outputs, enabling the model to be exportable using `torch.export` without encountering issues. 2. **Ensuring Compatibility with `ExecuTorch` runtime**: The adapter matches the model's forward signature with that in `executorch/extension/llm/runner`, ensuring that the exported model can be executed in `ExecuTorch` out-of-the-box. """ past_key_values = self.static_cache outs = self.model( input_ids=input_ids, inputs_embeds=inputs_embeds, cache_position=cache_position, attention_mask=None, past_key_values=past_key_values, use_cache=True, ) if hasattr(outs, "logits"): # Returned outputs is `CausalLMOutputWithPast` return outs.logits else: # Returned the `last_hidden_state` from `BaseModelOutputWithPast` return outs.last_hidden_state @staticmethod def generate( exported_program: torch.export.ExportedProgram, prompt_token_ids: torch.Tensor, max_new_tokens: int, ) -> torch.Tensor: """ Generate a sequence of tokens using an exported program. This util function is designed to test exported models by simulating the generation process. It processes the input prompt tokens sequentially (no parallel prefill). This generate function is not intended to replace the original `generate` method, and the support for leveraging the original `generate` is potentially planned! Args: exported_program (`torch.export.ExportedProgram`): The exported program generated via `torch.export`. prompt_token_ids (`torch.Tensor`): Tensor representing the input prompt token IDs. max_new_tokens (`int`): Maximum number of new tokens to generate. Note that the total generation length is limited by both `max_new_tokens` and the model's cache size. Returns: torch.Tensor: A tensor containing the generated sequence of token IDs, including the original prompt tokens. """ device = prompt_token_ids.device prompt_token_len = prompt_token_ids.shape[-1] max_generation_length = prompt_token_len + max_new_tokens for buffer_name, buffer in exported_program.named_buffers(): if buffer_name.startswith("key_cache"): max_cache_len = buffer.shape[2] max_generation_length = min(max_generation_length, max_cache_len) break response_tokens = [] for input_pos in range(min(max_generation_length, prompt_token_len)): result = exported_program.module().forward( input_ids=prompt_token_ids[:, input_pos : input_pos + 1], cache_position=torch.tensor([input_pos], dtype=torch.long, device=device), ) response_tokens.append(prompt_token_ids[0][input_pos].item()) current_token = torch.argmax(result[:, -1, :], dim=-1).item() response_tokens.append(current_token) while len(response_tokens) < max_generation_length: result = exported_program.module().forward( input_ids=torch.tensor([[current_token]], dtype=torch.long, device=device), cache_position=torch.tensor([len(response_tokens)], dtype=torch.long, device=device), ) current_token = torch.argmax(result[:, -1, :], dim=-1).item() response_tokens.append(current_token) return torch.tensor([response_tokens], dtype=torch.long, device=device) class TorchExportableModuleWithHybridCache(torch.nn.Module): """ A recipe module designed to make a `PreTrainedModel` exportable with `torch.export`, specifically for decoder-only LM to hybrid `StaticCache`. This module ensures that the exported model is compatible with further lowering and execution in `ExecuTorch`. """ def __init__( self, model: PreTrainedModel, batch_size: Optional[int] = None, max_cache_len: Optional[int] = None, device: Optional[torch.device] = None, ) -> None: """ Initializes the exportable module. Args: model (`PreTrainedModel`): The pretrained model to wrap. batch_size (`Optional[int]`): The batch size of the model. If not provided, we check if a value can be found in `generation_config.cache_config` and otherwise we raise a ValueError. max_cache_len (`Optional[int]`): The maximum cache length for generation. Same mechanism as `batch_size` if not provided. device (`Optional[torch.device]`): The device to use. If not provided, we check if a value can be found in `generation_config.cache_config` and otherwise we use `model.device` (no error is raised). Raises: AssertionError: If the model doesn't have the expected configuration for hybrid StaticCache. ValueError: If `batch_size` or `max_cache_len` is not provided, either as an argument or in `cache_config`. """ super().__init__() self.model = model config = model.config.get_text_config() generation_config = model.generation_config # Sanity checks if generation_config is None: raise AssertionError( "The model must have a generation config to be exported with static caching. " "Please set `generation_config` in `model`." ) if not config.use_cache: raise AssertionError("Model must have caching enabled.") cache_config = {} if generation_config.cache_config is None else generation_config.cache_config # Ensure batch_size and max_cache_len are set if batch_size is None: batch_size = cache_config.get("batch_size", None) if batch_size is None: raise ValueError("batch_size must be provided, either as an argument or in cache_config.") if max_cache_len is None: max_cache_len = cache_config.get("max_cache_len", None) if max_cache_len is None: raise ValueError("max_cache_len must be provided, either as an argument or in cache_config.") # Infer device if not provided if device is None: device = cache_config.get("device", model.device) # Initialize the cache self.cache = StaticCache(config=config, max_cache_len=max_cache_len) head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) num_heads = getattr(config, "num_key_value_heads", config.num_attention_heads) dtype = self.model.dtype # We need this call to initialize all the layers (otherwise it's done lazily, which is not exportable) self.cache.early_initialization(batch_size, num_heads, head_dim, dtype, device) # Register all key and value cache tensors as buffers for i in range(len(self.cache)): self.register_buffer(f"key_cache_{i}", self.cache.layers[i].keys, persistent=False) self.register_buffer(f"value_cache_{i}", self.cache.layers[i].values, persistent=False) def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.Tensor] = None, cache_position: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Forward pass of the module, which is compatible with the ExecuTorch llm runner. Args: input_ids (`torch.Tensor`): Tensor representing current input token id to the module. inputs_embeds (`Optional[torch.Tensor]`): Tensor representing current input embeddings to the module. cache_position (`torch.Tensor`): Tensor representing current input position in the cache. Returns: torch.Tensor: Logits output from the model. """ # Forward pass with the model outputs = self.model( input_ids=input_ids, inputs_embeds=inputs_embeds, cache_position=cache_position, attention_mask=None, past_key_values=self.cache, use_cache=True, ) # Return only the logits to simplify the export return outputs.logits def convert_and_export_with_cache( model: PreTrainedModel, example_input_ids: Optional[torch.Tensor] = None, example_cache_position: Optional[torch.Tensor] = None, dynamic_shapes: Optional[dict] = None, strict: Optional[bool] = None, ): """ Convert a `PreTrainedModel` into an exportable module and export it using `torch.export`, ensuring the exported model is compatible with `ExecuTorch`. Args: model (`PreTrainedModel`): The pretrained model to be exported. example_input_ids (`Optional[torch.Tensor]`): Example input token id used by `torch.export`. example_cache_position (`Optional[torch.Tensor]`): Example current cache position used by `torch.export`. dynamic_shapes(`Optional[dict]`): Dynamic shapes used by `torch.export`. strict(`Optional[bool]`): Flag to instruct `torch.export` to use `torchdynamo`. Returns: Exported program (`torch.export.ExportedProgram`): The exported program generated via `torch.export`. """ if not is_torch_greater_or_equal_than_2_3: raise ImportError("torch >= 2.3 is required.") import torch.export._trace # This is the same as sdpa, but mask creation does not use `vmap` which is not exportable ALL_MASK_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", sdpa_mask_without_vmap) ALL_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", ALL_ATTENTION_FUNCTIONS["sdpa"]) model.config._attn_implementation = "sdpa_without_vmap" with torch.no_grad(): # TODO: The default inputs only work for text models. We need to add support for vision/audio models. example_input_ids = ( example_input_ids if example_input_ids is not None else torch.tensor([[1]], dtype=torch.long, device=model.device) ) example_cache_position = ( example_cache_position if example_cache_position is not None else torch.tensor([0], dtype=torch.long, device=model.device) ) if is_torch_greater_or_equal("2.6.0"): exported_program = torch.export.export( TorchExportableModuleWithStaticCache(model), args=(), kwargs={"input_ids": example_input_ids, "cache_position": example_cache_position}, dynamic_shapes=dynamic_shapes, strict=strict if strict is not None else True, ) else: if dynamic_shapes is not None: logging.warning( "Dynamic shapes spec will be ignored by convert_and_export_with_cache for torch < 2.6.0." ) if strict is not None: logging.warning("The strict flag will be ignored by convert_and_export_with_cache for torch < 2.6.0.") # We have to keep this path for BC. # # Due to issue https://github.com/pytorch/pytorch/issues/128394, we need to switch to use an internal # export API and pre_dispatch=False. Switch to use the public API once the issue is included in 2.5 release. exported_program = torch.export._trace._export( TorchExportableModuleWithStaticCache(model), args=(), kwargs={"input_ids": example_input_ids, "cache_position": example_cache_position}, pre_dispatch=False, strict=True, ) return exported_program class Seq2SeqLMEncoderExportableModule(torch.nn.Module): """ A wrapper module designed to make a Seq2Seq LM encoder exportable with `torch.export`. This module ensures that the exported encoder model is compatible with ExecuTorch. """ def __init__(self, encoder_model): super().__init__() self.encoder = encoder_model def forward(self, input_ids): return self.encoder(input_ids=input_ids).last_hidden_state class Seq2SeqLMDecoderExportableModuleWithStaticCache(torch.nn.Module): """ A wrapper module designed to make a Seq2Seq LM decoder exportable with `torch.export`, specifically for use with static caching. This module ensures the exported decoder is compatible with ExecuTorch. """ def __init__(self, model, max_static_cache_length, batch_size): super().__init__() # Get the decoder component self.decoder = model.get_decoder() self.lm_head = model.lm_head self.config = model.config # Detect the device of the exported models by checking a parameter # We'll use the model's device as the target device model_device = next(model.parameters()).device # Initialize static cache for decoder and DynamicCache for encoder self.static_cache = StaticCache(config=self.config, max_cache_len=max_static_cache_length) head_dim = getattr(self.config, "head_dim", self.config.hidden_size // self.config.num_attention_heads) num_heads = getattr(self.config, "num_key_value_heads", self.config.num_attention_heads) self.static_cache.early_initialization(batch_size, num_heads, head_dim, torch.float32, model_device) self.cache = EncoderDecoderCache(self.static_cache, DynamicCache(config=self.config)) register_dynamic_cache_export_support() # Register cache buffers to make them exportable for i in range(len(self.static_cache)): self.register_buffer(f"key_cache_{i}", self.static_cache.layers[i].keys, persistent=False) self.register_buffer(f"value_cache_{i}", self.static_cache.layers[i].values, persistent=False) def forward(self, decoder_input_ids, encoder_hidden_states, cache_position): # Get outputs from decoder outputs = self.decoder( input_ids=decoder_input_ids, encoder_hidden_states=encoder_hidden_states, past_key_values=self.cache, use_cache=True, cache_position=cache_position, ) # Apply language model head lm_logits = self.lm_head(outputs[0]) return lm_logits class Seq2SeqLMExportableModule(torch.nn.Module): def __init__( self, model, batch_size=1, max_hidden_seq_length=4096, cache_implementation="static", max_cache_length=1024 ): super().__init__() self.full_model = model self.encoder = model.get_encoder() self.config = model.config self.max_hidden_seq_length = max_hidden_seq_length self.generation_config = GenerationConfig( use_cache=True, max_length=max_cache_length, cache_implementation=cache_implementation, cache_config={ "batch_size": batch_size, "max_cache_len": max_cache_length, }, ) self.exported_encoder = None self.exported_decoder = None def _export_encoder(self, encoder_input_ids): wrapped_encoder = Seq2SeqLMEncoderExportableModule(self.encoder).to(self.full_model.device).eval() # Define dynamic sequence length for encoder seq_len_dim = torch.export.Dim("encoder_seq_length", max=self.max_hidden_seq_length) # Export the encoder with torch.no_grad(): exported_encoder = torch.export.export( wrapped_encoder, (encoder_input_ids,), dynamic_shapes={"input_ids": {1: seq_len_dim}}, strict=True ) return exported_encoder def _export_decoder(self, decoder_input_ids, encoder_hidden_states, cache_position): target_device = self.full_model.device wrapped_decoder = ( Seq2SeqLMDecoderExportableModuleWithStaticCache( model=self.full_model, max_static_cache_length=self.generation_config.cache_config.get("max_cache_len"), batch_size=self.generation_config.cache_config.get("batch_size"), ) .to(target_device) .eval() ) # Move input tensors to the same device as the wrapped decoder decoder_input_ids = decoder_input_ids.to(target_device) encoder_hidden_states = encoder_hidden_states.to(target_device) cache_position = cache_position.to(target_device) # Define dynamic dimension for encoder output sequence length encoder_seq_len_dim = torch.export.Dim("encoder_hidden_seq_length", max=self.max_hidden_seq_length) # Export the decoder with torch.no_grad(): exported_decoder = torch.export.export( wrapped_decoder, (decoder_input_ids, encoder_hidden_states, cache_position), dynamic_shapes={ "decoder_input_ids": None, "encoder_hidden_states": {1: encoder_seq_len_dim}, "cache_position": None, }, strict=True, ) return exported_decoder def export(self, encoder_input_ids=None, decoder_input_ids=None, encoder_hidden_states=None, cache_position=None): device = self.full_model.device example_encoder_input_ids = ( encoder_input_ids if encoder_input_ids is not None else torch.ones((1, 10), dtype=torch.long, device=device) ) example_decoder_input_ids = ( decoder_input_ids if decoder_input_ids is not None else torch.tensor([[0]], dtype=torch.long, device=device) ) # Start token example_cache_position = ( cache_position if cache_position is not None else torch.tensor([0], dtype=torch.long, device=device) ) example_encoder_hidden_states = ( encoder_hidden_states if encoder_hidden_states is not None else torch.zeros( (self.generation_config.cache_config.get("batch_size"), 10, self.config.d_model), dtype=torch.float32, device=device, ) ) self.exported_encoder = self._export_encoder(example_encoder_input_ids) self.exported_decoder = self._export_decoder( example_decoder_input_ids, example_encoder_hidden_states, example_cache_position ) # Return self to allow chaining return self def generate(self, prompt_token_ids, max_new_tokens): with torch.no_grad(): model_device = self.full_model.device # Move input to the model's device if it's on a different device if prompt_token_ids.device != model_device: prompt_token_ids = prompt_token_ids.to(model_device) # Run encoder encoder_output = self.exported_encoder.module()(prompt_token_ids) # Initialize with start token (0 for T5) on the correct device decoder_input_ids = torch.tensor([[0]], dtype=torch.long, device=model_device) generated_ids = [0] # Generate tokens one by one for i in range(max_new_tokens - 1): # Run decoder for next token prediction logits = self.exported_decoder.module()( decoder_input_ids, encoder_output, torch.tensor([i], dtype=torch.long, device=model_device) ) # Get next token next_token = torch.argmax(logits[:, -1, :], dim=-1).item() generated_ids.append(next_token) # Update input for next iteration on the correct device decoder_input_ids = torch.tensor([[next_token]], dtype=torch.long, device=model_device) # Check if EOS token if next_token == self.config.eos_token_id: break return generated_ids def export_with_dynamic_cache( model: PreTrainedModel, example_input_ids: Optional[torch.Tensor] = None, example_attention_mask: Optional[torch.Tensor] = None, ): """ Export a model with DynamicCache using `torch.export`, ensuring the exported model is compatible with `ExecuTorch`. Args: model (`PreTrainedModel`): The pretrained model to be exported. example_input_ids (`Optional[torch.Tensor]`): Example input token id used by `torch.export`. example_attention_mask (`Optional[torch.Tensor]`): Example attention mask used by `torch.export`. Returns: Exported program (`torch.export.ExportedProgram`): The exported program generated via `torch.export`. """ if not is_torch_greater_or_equal_than_2_3: raise ImportError("torch >= 2.3 is required.") # This is the same as sdpa, but mask creation does not use `vmap` which is not exportable ALL_MASK_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", sdpa_mask_without_vmap) ALL_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", ALL_ATTENTION_FUNCTIONS["sdpa"]) model.config._attn_implementation = "sdpa_without_vmap" register_dynamic_cache_export_support() with torch.no_grad(): exported_program = torch.export.export( model, (), { "input_ids": example_input_ids, "attention_mask": example_attention_mask, "past_key_values": DynamicCache(config=model.config), "use_cache": True, }, strict=False, ) return exported_program def register_dynamic_cache_export_support(): """ Utilities for `DynamicCache` <> torch.export support """ try: torch.utils._pytree.register_pytree_node( DynamicCache, lambda dynamic_cache: torch.utils._pytree._dict_flatten(_get_cache_dict(dynamic_cache)), _unflatten_dynamic_cache, serialized_type_name=f"{DynamicCache.__module__}.{DynamicCache.__name__}", flatten_with_keys_fn=lambda dynamic_cache: torch.utils._pytree._dict_flatten_with_keys( _get_cache_dict(dynamic_cache) ), ) # TODO (tmanlaibaatar) This won't be needed in torch 2.7. torch.fx._pytree.register_pytree_flatten_spec( DynamicCache, lambda cache, spec: torch.fx._pytree._dict_flatten_spec(_get_cache_dict(cache), spec), ) # Catching this in case there are multiple runs for some test runs except ValueError as e: if "already registered as pytree node" not in str(e): raise def _get_cache_dict(cache: DynamicCache): """Convert cache to dictionary format for pytree operations.""" if any(not isinstance(layer, (DynamicLayer, DynamicSlidingWindowLayer)) for layer in cache.layers): raise RuntimeError("This pytree flattening function should only be applied to DynamicCache") if not is_torch_greater_or_equal_than_2_6: logging.warning("DynamicCache + torch.export is tested on torch 2.6.0+ and may not work on earlier versions.") return { "key_cache": [layer.keys for layer in cache.layers if layer.keys is not None], "value_cache": [layer.values for layer in cache.layers if layer.values is not None], } def _unflatten_dynamic_cache(values, context: torch.utils._pytree.Context): dictionary = torch.utils._pytree._dict_unflatten(values, context) cache = DynamicCache() # Reconstruct layers from keys and values lists key_list = dictionary.get("key_cache", []) value_list = dictionary.get("value_cache", []) for idx in range(max(len(key_list), len(value_list))): key = key_list[idx] if idx < len(key_list) else None value = value_list[idx] if idx < len(value_list) else None cache.update(key, value, idx) return cache def sdpa_mask_without_vmap( batch_size: int, cache_position: torch.Tensor, kv_length: int, kv_offset: int = 0, mask_function: Optional[Callable] = None, attention_mask: Optional[torch.Tensor] = None, local_size: Optional[int] = None, allow_is_causal_skip: bool = True, allow_torch_fix: bool = True, **kwargs, ) -> Optional[torch.Tensor]: """ Create a 4D boolean mask of shape `(batch_size, 1, query_length, kv_length)` where a value of True indicates that the element should take part in the attention computation, and False that it should not. This is similar to `masking_utils.sdpa_mask` but does not use `vmap` which is incompatible with export. Args: batch_size (`int`): The batch size of the input sequence. cache_position (`torch.Tensor`): A tensor of shape (query_length,) indicating the current indices of the input sequence elements. kv_length (`int`): The size that the key and value states will have during the attention computation. kv_offset (`int`, optional): An optional offset to indicate at which first position the key and values states will refer to. mask_function (`Callable`): The mask factory function describing the mask pattern. attention_mask (`torch.Tensor`, optional): The 2D attention mask corresponding to padded tokens of shape (batch_size, number_of_seen_tokens+q_length) local_size (`int`, optional): The size of the local attention, if we do not use full attention. This is used only if `allow_is_causal_skip=True` to try to skip mask creation if possible. allow_is_causal_skip (`bool`, optional): Whether to allow to return `None` for the mask under conditions where we can use the `is_causal` argument in `torch.sdpa` instead. Default to `True`. allow_torch_fix (`bool`, optional): Whether to update the mask in case a query is not attending to any tokens, to solve a bug in torch's older versions. We need an arg to skip it when using eager. By default `True`. """ q_length = cache_position.shape[0] # Potentially pad the 2D mask, and slice it correctly padding_mask = prepare_padding_mask(attention_mask, kv_length, kv_offset) # Under specific conditions, we can avoid materializing the mask, instead relying on the `is_causal` argument if allow_is_causal_skip and _ignore_causal_mask_sdpa(padding_mask, q_length, kv_length, local_size): return None # Similar to `kv_arange = torch.arange(start=kv_offset, end=kv_offset + kv_length, device=cache_position.device)` # but without data-dependent slicing (i.e. torch.compile friendly) kv_arange = torch.arange(kv_length, device=cache_position.device) kv_arange += kv_offset reshaped_cache_position = cache_position.view(-1, 1) # This is a bit hacky to know what pattern we are using, but all mask creation function actually forward # the config through kwargs anyway, so it allows to rely on it # Usually, the `mask_function` is the only entry-point to define the pattern - we could do for loops over it, # but this is more efficient sliding_window = getattr(kwargs["config"], "sliding_window", None) chunk_size = getattr(kwargs["config"], "attention_chunk_size", None) if sliding_window is not None and chunk_size is not None: raise ValueError("Cannot use both `sliding_window` and `attention_chunk_size`") # Simplest and most efficient way to obtain a causal mask causal_mask = kv_arange <= reshaped_cache_position # If using sliding window, add the sliding mask if sliding_window is not None: sliding_mask_overlay = kv_arange > reshaped_cache_position - sliding_window causal_mask *= sliding_mask_overlay # If using chunk attention, add the chunked mask elif chunk_size is not None: chunked_mask_overlay = kv_arange // chunk_size == reshaped_cache_position // chunk_size causal_mask *= chunked_mask_overlay causal_mask = causal_mask[None, None, :, :].expand(batch_size, -1, -1, -1) if padding_mask is not None: causal_mask = causal_mask * padding_mask[:, None, None, :] # Due to a bug in some older torch version, we need to update the mask in case a query is not attending to any # tokens (due to padding). See details in https://github.com/pytorch/pytorch/issues/110213 if not _is_torch_greater_or_equal_than_2_5 and allow_torch_fix: causal_mask |= torch.all(~causal_mask, dim=-1, keepdim=True) return causal_mask