from typing import Optional import torch from ..generation.continuous_batching import PagedAttentionCache from ..utils import is_flash_attn_2_available # For some reason, if we dont assign the function to a variable here, it will be garbage collected try: if is_flash_attn_2_available(): from flash_attn import flash_attn_varlen_func # noqa: F401 FLASH_ATTN_VARLEN_FUNC = flash_attn_varlen_func else: raise RuntimeError( "Flash Attention 2 is not installed. Please refer to https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install it" ) except Exception as e: msg = repr(e) def FLASH_ATTN_VARLEN_FUNC(*args, **kwargs): raise Exception(f"flash_attn_varlen_func is not available: {msg}") def paged_attention_forward( module: torch.nn.Module, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, cache: PagedAttentionCache = None, cu_seq_lens_q=None, cu_seq_lens_k=None, max_seqlen_q=None, max_seqlen_k=None, implementation=None, **kwargs, ) -> torch.Tensor: r"""Perform the forward pass of attention with paged key-value cache. This function handles the cache updates and performs the attention computation using the flash_attn_varlen_func for efficient processing. Args: q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch. k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch. but if there is a block table it can be the full k v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch. but if there is a block table it can be the full v cu_seq_lens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. cu_seq_lens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_q: int. Maximum query sequence length in the batch. max_seqlen_k: int. Maximum key sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). window_size: (left, right). If not (-1, -1), implements sliding window local attention. softcap: float. Anything > 0 activates softcapping attention. """ sliding_window = (-1, -1) if not getattr(module, "sliding_window", False) else (module.sliding_window - 1, 0) layer_type = "full_attention" if sliding_window == (-1, -1) else "sliding_attention" # .update changes the shape of k and v from [1, num_kv_heads, seqlen_kv, head_dim] to [-1, num_kv_heads, head_dim] if cache is not None: k, v = cache.update(k, v, module.layer_idx, **kwargs) # Retrieve the cumulative sequence lengths for the current layer if isinstance(cu_seq_lens_k, dict): cu_seq_lens_k = cu_seq_lens_k[layer_type] max_seqlen_k = max_seqlen_k[layer_type] if implementation is not None and hasattr(implementation, "flash_attn_varlen_func"): flash_attn_varlen_func = implementation.flash_attn_varlen_func else: flash_attn_varlen_func = FLASH_ATTN_VARLEN_FUNC custom_kwargs = {"s_aux": kwargs.get("s_aux")} if "s_aux" in kwargs else {} attn_output = flash_attn_varlen_func( q.transpose(1, 2).squeeze(0).contiguous(), k.contiguous(), v.contiguous(), cu_seq_lens_q.to(torch.int32), cu_seq_lens_k.to(torch.int32).clone(), max_seqlen_q, max_seqlen_k, softmax_scale=module.scaling, causal=True, # kind of a must, it automatically aligns the mask for q < k window_size=sliding_window, # -1 means infinite context window **custom_kwargs, ) if isinstance(attn_output, tuple): attn_output = attn_output[0] return attn_output, None