# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch import torch.nn as nn from torch import Tensor from ..utils import is_accelerate_available, is_scipy_available, is_vision_available, requires_backends if is_accelerate_available(): from accelerate import PartialState from accelerate.utils import reduce if is_scipy_available(): from scipy.optimize import linear_sum_assignment if is_vision_available(): from transformers.image_transforms import center_to_corners_format def dice_loss(inputs, targets, num_boxes): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_boxes def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://huggingface.co/papers/1708.02002. Args: inputs (`torch.FloatTensor` of arbitrary shape): The predictions for each example. targets (`torch.FloatTensor` with the same shape as `inputs`) A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class and 1 for the positive class). alpha (`float`, *optional*, defaults to `0.25`): Optional weighting factor in the range (0,1) to balance positive vs. negative examples. gamma (`int`, *optional*, defaults to `2`): Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") # add modulating factor p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py class ImageLoss(nn.Module): """ This class computes the losses for DetrForObjectDetection/DetrForSegmentation. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box). A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes` parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2 (`max_obj_id` + 1). For more details on this, check the following discussion https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223" Args: matcher (`DetrHungarianMatcher`): Module able to compute a matching between targets and proposals. num_classes (`int`): Number of object categories, omitting the special no-object category. eos_coef (`float`): Relative classification weight applied to the no-object category. losses (`list[str]`): List of all the losses to be applied. See `get_loss` for a list of all available losses. """ def __init__(self, matcher, num_classes, eos_coef, losses): super().__init__() self.matcher = matcher self.num_classes = num_classes self.eos_coef = eos_coef self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) # removed logging parameter, which was part of the original implementation def loss_labels(self, outputs, targets, indices, num_boxes): """ Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim [nb_target_boxes] """ if "logits" not in outputs: raise KeyError("No logits were found in the outputs") source_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device ) target_classes[idx] = target_classes_o loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight) losses = {"loss_ce": loss_ce} return losses @torch.no_grad() def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. """ logits = outputs["logits"] device = logits.device target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) losses = {"cardinality_error": card_err} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ if "pred_boxes" not in outputs: raise KeyError("No predicted boxes found in outputs") idx = self._get_source_permutation_idx(indices) source_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag( generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) ) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses def loss_masks(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the masks: the focal loss and the dice loss. Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. """ if "pred_masks" not in outputs: raise KeyError("No predicted masks found in outputs") source_idx = self._get_source_permutation_idx(indices) target_idx = self._get_target_permutation_idx(indices) source_masks = outputs["pred_masks"] source_masks = source_masks[source_idx] masks = [t["masks"] for t in targets] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(source_masks) target_masks = target_masks[target_idx] # upsample predictions to the target size source_masks = nn.functional.interpolate( source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False ) source_masks = source_masks[:, 0].flatten(1) target_masks = target_masks.flatten(1) target_masks = target_masks.view(source_masks.shape) losses = { "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), "loss_dice": dice_loss(source_masks, target_masks, num_boxes), } return losses def _get_source_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) source_idx = torch.cat([source for (source, _) in indices]) return batch_idx, source_idx def _get_target_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) target_idx = torch.cat([target for (_, target) in indices]) return batch_idx, target_idx def get_loss(self, loss, outputs, targets, indices, num_boxes): loss_map = { "labels": self.loss_labels, "cardinality": self.loss_cardinality, "boxes": self.loss_boxes, "masks": self.loss_masks, } if loss not in loss_map: raise ValueError(f"Loss {loss} not supported") return loss_map[loss](outputs, targets, indices, num_boxes) def forward(self, outputs, targets): """ This performs the loss computation. Args: outputs (`dict`, *optional*): Dictionary of tensors, see the output specification of the model for the format. targets (`list[dict]`, *optional*): List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the losses applied, see each loss' doc. """ outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes across all nodes, for normalization purposes num_boxes = sum(len(t["class_labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) world_size = 1 if is_accelerate_available(): if PartialState._shared_state != {}: num_boxes = reduce(num_boxes) world_size = PartialState().num_processes num_boxes = torch.clamp(num_boxes / world_size, min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "auxiliary_outputs" in outputs: for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): indices = self.matcher(auxiliary_outputs, targets) for loss in self.losses: if loss == "masks": # Intermediate masks losses are too costly to compute, we ignore them. continue l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) return losses # taken from https://github.com/facebookresearch/detr/blob/master/models/matcher.py class HungarianMatcher(nn.Module): """ This class computes an assignment between the targets and the predictions of the network. For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). Args: class_cost: The relative weight of the classification error in the matching cost. bbox_cost: The relative weight of the L1 error of the bounding box coordinates in the matching cost. giou_cost: The relative weight of the giou loss of the bounding box in the matching cost. """ def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): super().__init__() requires_backends(self, ["scipy"]) self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: raise ValueError("All costs of the Matcher can't be 0") @torch.no_grad() def forward(self, outputs, targets): """ Args: outputs (`dict`): A dictionary that contains at least these entries: * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. targets (`list[dict]`): A list of targets (len(targets) = batch_size), where each target is a dict containing: * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. Returns: `list[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ batch_size, num_queries = outputs["logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes target_ids = torch.cat([v["class_labels"] for v in targets]) target_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be omitted. class_cost = -out_prob[:, target_ids] # Compute the L1 cost between boxes bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) # Compute the giou cost between boxes giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) # Final cost matrix cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] # below: bounding box utilities taken from https://github.com/facebookresearch/detr/blob/master/util/box_ops.py def _upcast(t: Tensor) -> Tensor: # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() def box_area(boxes: Tensor) -> Tensor: """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. Args: boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 < x2` and `0 <= y1 < y2`. Returns: `torch.FloatTensor`: a tensor containing the area for each box. """ boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. Returns: `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") iou, union = box_iou(boxes1, boxes2) top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] area = width_height[:, :, 0] * width_height[:, :, 1] return iou - (area - union) / area # below: taken from https://github.com/facebookresearch/detr/blob/master/util/misc.py#L306 def _max_by_axis(the_list): # type: (list[list[int]]) -> list[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes class NestedTensor: def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) def nested_tensor_from_tensor_list(tensor_list: list[Tensor]): if tensor_list[0].ndim == 3: max_size = _max_by_axis([list(img.shape) for img in tensor_list]) batch_shape = [len(tensor_list)] + max_size batch_size, num_channels, height, width = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False else: raise ValueError("Only 3-dimensional tensors are supported") return NestedTensor(tensor, mask) # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py @torch.jit.unused def _set_aux_loss(outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] def ForSegmentationLoss( logits, labels, device, pred_boxes, pred_masks, config, outputs_class=None, outputs_coord=None, **kwargs ): # First: create the matcher matcher = HungarianMatcher(class_cost=config.class_cost, bbox_cost=config.bbox_cost, giou_cost=config.giou_cost) # Second: create the criterion losses = ["labels", "boxes", "cardinality", "masks"] criterion = ImageLoss( matcher=matcher, num_classes=config.num_labels, eos_coef=config.eos_coefficient, losses=losses, ) criterion.to(device) # Third: compute the losses, based on outputs and labels outputs_loss = {} outputs_loss["logits"] = logits outputs_loss["pred_boxes"] = pred_boxes outputs_loss["pred_masks"] = pred_masks auxiliary_outputs = None if config.auxiliary_loss: auxiliary_outputs = _set_aux_loss(outputs_class, outputs_coord) outputs_loss["auxiliary_outputs"] = auxiliary_outputs loss_dict = criterion(outputs_loss, labels) # Fourth: compute total loss, as a weighted sum of the various losses weight_dict = {"loss_ce": 1, "loss_bbox": config.bbox_loss_coefficient} weight_dict["loss_giou"] = config.giou_loss_coefficient weight_dict["loss_mask"] = config.mask_loss_coefficient weight_dict["loss_dice"] = config.dice_loss_coefficient if config.auxiliary_loss: aux_weight_dict = {} for i in range(config.decoder_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict if k in weight_dict) return loss, loss_dict, auxiliary_outputs def ForObjectDetectionLoss( logits, labels, device, pred_boxes, config, outputs_class=None, outputs_coord=None, **kwargs ): # First: create the matcher matcher = HungarianMatcher(class_cost=config.class_cost, bbox_cost=config.bbox_cost, giou_cost=config.giou_cost) # Second: create the criterion losses = ["labels", "boxes", "cardinality"] criterion = ImageLoss( matcher=matcher, num_classes=config.num_labels, eos_coef=config.eos_coefficient, losses=losses, ) criterion.to(device) # Third: compute the losses, based on outputs and labels outputs_loss = {} auxiliary_outputs = None outputs_loss["logits"] = logits outputs_loss["pred_boxes"] = pred_boxes if config.auxiliary_loss: auxiliary_outputs = _set_aux_loss(outputs_class, outputs_coord) outputs_loss["auxiliary_outputs"] = auxiliary_outputs loss_dict = criterion(outputs_loss, labels) # Fourth: compute total loss, as a weighted sum of the various losses weight_dict = {"loss_ce": 1, "loss_bbox": config.bbox_loss_coefficient} weight_dict["loss_giou"] = config.giou_loss_coefficient if config.auxiliary_loss: aux_weight_dict = {} for i in range(config.decoder_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict if k in weight_dict) return loss, loss_dict, auxiliary_outputs