# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for ALIGN """ from ...processing_utils import ProcessingKwargs, ProcessorMixin class AlignProcessorKwargs(ProcessingKwargs, total=False): # see processing_utils.ProcessingKwargs documentation for usage. _defaults = { "text_kwargs": { "padding": "max_length", "max_length": 64, }, } class AlignProcessor(ProcessorMixin): r""" Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and [`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that inherits both the image processor and tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information. The preferred way of passing kwargs is as a dictionary per modality, see usage example below. ```python from transformers import AlignProcessor from PIL import Image model_id = "kakaobrain/align-base" processor = AlignProcessor.from_pretrained(model_id) processor( images=your_pil_image, text=["What is that?"], images_kwargs = {"crop_size": {"height": 224, "width": 224}}, text_kwargs = {"padding": "do_not_pad"}, common_kwargs = {"return_tensors": "pt"}, ) ``` Args: image_processor ([`EfficientNetImageProcessor`]): The image processor is a required input. tokenizer ([`BertTokenizer`, `BertTokenizerFast`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "EfficientNetImageProcessor" tokenizer_class = ("BertTokenizer", "BertTokenizerFast") valid_processor_kwargs = AlignProcessorKwargs def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) __all__ = ["AlignProcessor"]