# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AutoVideoProcessor class.""" import importlib import json import os import warnings from collections import OrderedDict from typing import TYPE_CHECKING, Optional, Union # Build the list of all video processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...utils import CONFIG_NAME, VIDEO_PROCESSOR_NAME, cached_file, is_torchvision_available, logging from ...utils.import_utils import requires from ...video_processing_utils import BaseVideoProcessor from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) logger = logging.get_logger(__name__) if TYPE_CHECKING: # This significantly improves completion suggestion performance when # the transformers package is used with Microsoft's Pylance language server. VIDEO_PROCESSOR_MAPPING_NAMES: OrderedDict[str, tuple[Optional[str], Optional[str]]] = OrderedDict() else: VIDEO_PROCESSOR_MAPPING_NAMES = OrderedDict( [ ("glm4v", "Glm4vVideoProcessor"), ("instructblip", "InstructBlipVideoVideoProcessor"), ("instructblipvideo", "InstructBlipVideoVideoProcessor"), ("internvl", "InternVLVideoProcessor"), ("llava_next_video", "LlavaNextVideoVideoProcessor"), ("llava_onevision", "LlavaOnevisionVideoProcessor"), ("perception_lm", "PerceptionLMVideoProcessor"), ("qwen2_5_omni", "Qwen2VLVideoProcessor"), ("qwen2_5_vl", "Qwen2VLVideoProcessor"), ("qwen2_vl", "Qwen2VLVideoProcessor"), ("qwen3_omni_moe", "Qwen2VLVideoProcessor"), ("qwen3_vl", "Qwen3VLVideoProcessor"), ("qwen3_vl_moe", "Qwen3VLVideoProcessor"), ("sam2_video", "Sam2VideoVideoProcessor"), ("smolvlm", "SmolVLMVideoProcessor"), ("video_llava", "VideoLlavaVideoProcessor"), ("vjepa2", "VJEPA2VideoProcessor"), ] ) for model_type, video_processors in VIDEO_PROCESSOR_MAPPING_NAMES.items(): fast_video_processor_class = video_processors # If the torchvision is not available, we set it to None if not is_torchvision_available(): fast_video_processor_class = None VIDEO_PROCESSOR_MAPPING_NAMES[model_type] = fast_video_processor_class VIDEO_PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, VIDEO_PROCESSOR_MAPPING_NAMES) def video_processor_class_from_name(class_name: str): for module_name, extractors in VIDEO_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: module_name = model_type_to_module_name(module_name) module = importlib.import_module(f".{module_name}", "transformers.models") try: return getattr(module, class_name) except AttributeError: continue for extractor in VIDEO_PROCESSOR_MAPPING._extra_content.values(): if getattr(extractor, "__name__", None) == class_name: return extractor # We did not find the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. main_module = importlib.import_module("transformers") if hasattr(main_module, class_name): return getattr(main_module, class_name) return None def get_video_processor_config( pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: Optional[bool] = None, proxies: Optional[dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, **kwargs, ): """ Loads the video processor configuration from a pretrained model video processor configuration. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. - a path to a *directory* containing a configuration file saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `hf auth login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the video processor configuration from local files. Passing `token=True` is required when you want to use a private model. Returns: `Dict`: The configuration of the video processor. Examples: ```python # Download configuration from huggingface.co and cache. video_processor_config = get_video_processor_config("llava-hf/llava-onevision-qwen2-0.5b-ov-hf") # This model does not have a video processor config so the result will be an empty dict. video_processor_config = get_video_processor_config("FacebookAI/xlm-roberta-base") # Save a pretrained video processor locally and you can reload its config from transformers import AutoVideoProcessor video_processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf") video_processor.save_pretrained("video-processor-test") video_processor = get_video_processor_config("video-processor-test") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token resolved_config_file = cached_file( pretrained_model_name_or_path, VIDEO_PROCESSOR_NAME, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, ) if resolved_config_file is None: logger.info( "Could not locate the video processor configuration file, will try to use the model config instead." ) return {} with open(resolved_config_file, encoding="utf-8") as reader: return json.load(reader) @requires(backends=("vision", "torchvision")) class AutoVideoProcessor: r""" This is a generic video processor class that will be instantiated as one of the video processor classes of the library when created with the [`AutoVideoProcessor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise OSError( "AutoVideoProcessor is designed to be instantiated " "using the `AutoVideoProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(VIDEO_PROCESSOR_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate one of the video processor classes of the library from a pretrained model vocabulary. The video processor class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained video_processor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a video processor file saved using the [`~video_processing_utils.BaseVideoProcessor.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved video processor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model video processor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the video processor files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `hf auth login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final video processor object. If `True`, then this functions returns a `Tuple(video_processor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not video processor attributes: i.e., the part of `kwargs` which has not been used to update `video_processor` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (`dict[str, Any]`, *optional*): The values in kwargs of any keys which are video processor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* video processor attributes is controlled by the `return_unused_kwargs` keyword parameter. Passing `token=True` is required when you want to use a private model. Examples: ```python >>> from transformers import AutoVideoProcessor >>> # Download video processor from huggingface.co and cache. >>> video_processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf") >>> # If video processor files are in a directory (e.g. video processor was saved using *save_pretrained('./test/saved_model/')*) >>> # video_processor = AutoVideoProcessor.from_pretrained("./test/saved_model/") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token") is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True config_dict, _ = BaseVideoProcessor.get_video_processor_dict(pretrained_model_name_or_path, **kwargs) video_processor_class = config_dict.get("video_processor_type", None) video_processor_auto_map = None if "AutoVideoProcessor" in config_dict.get("auto_map", {}): video_processor_auto_map = config_dict["auto_map"]["AutoVideoProcessor"] # If we still don't have the video processor class, check if we're loading from a previous image processor config # and if so, infer the video processor class from there. if video_processor_class is None and video_processor_auto_map is None: image_processor_class = config_dict.pop("image_processor_type", None) if image_processor_class is not None: video_processor_class_inferred = image_processor_class.replace("ImageProcessor", "VideoProcessor") # Some models have different image processors, e.g. InternVL uses GotOCRImageProcessor # We cannot use GotOCRVideoProcessor when falling back for BC and should try to infer from config later on if video_processor_class_inferred in VIDEO_PROCESSOR_MAPPING_NAMES.values(): video_processor_class = video_processor_class_inferred if "AutoImageProcessor" in config_dict.get("auto_map", {}): image_processor_auto_map = config_dict["auto_map"]["AutoImageProcessor"] video_processor_auto_map = image_processor_auto_map.replace("ImageProcessor", "VideoProcessor") # If we don't find the video processor class in the video processor config, let's try the model config. if video_processor_class is None and video_processor_auto_map is None: if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) # It could be in `config.video_processor_type`` video_processor_class = getattr(config, "video_processor_type", None) if hasattr(config, "auto_map") and "AutoVideoProcessor" in config.auto_map: video_processor_auto_map = config.auto_map["AutoVideoProcessor"] if video_processor_class is not None: video_processor_class = video_processor_class_from_name(video_processor_class) has_remote_code = video_processor_auto_map is not None has_local_code = video_processor_class is not None or type(config) in VIDEO_PROCESSOR_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: class_ref = video_processor_auto_map video_processor_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) _ = kwargs.pop("code_revision", None) video_processor_class.register_for_auto_class() return video_processor_class.from_dict(config_dict, **kwargs) elif video_processor_class is not None: return video_processor_class.from_dict(config_dict, **kwargs) # Last try: we use the VIDEO_PROCESSOR_MAPPING. elif type(config) in VIDEO_PROCESSOR_MAPPING: video_processor_class = VIDEO_PROCESSOR_MAPPING[type(config)] if video_processor_class is not None: return video_processor_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: raise ValueError( "This video processor cannot be instantiated. Please make sure you have `torchvision` installed." ) raise ValueError( f"Unrecognized video processor in {pretrained_model_name_or_path}. Should have a " f"`video_processor_type` key in its {VIDEO_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in VIDEO_PROCESSOR_MAPPING_NAMES)}" ) @staticmethod def register( config_class, video_processor_class, exist_ok=False, ): """ Register a new video processor for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. video_processor_class ([`BaseVideoProcessor`]): The video processor to register. """ VIDEO_PROCESSOR_MAPPING.register(config_class, video_processor_class, exist_ok=exist_ok) __all__ = ["VIDEO_PROCESSOR_MAPPING", "AutoVideoProcessor"]