# coding=utf-8 # Copyright 2025 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Callable, Optional import torch import torch.nn.functional as F from torch import nn from ...cache_utils import Cache from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...utils import ( logging, ) from ...utils.deprecation import deprecate_kwarg from ..llama.configuration_llama import LlamaConfig from ..llama.modeling_llama import ( LlamaDecoderLayer, LlamaForCausalLM, LlamaForSequenceClassification, LlamaMLP, LlamaModel, LlamaPreTrainedModel, LlamaRMSNorm, eager_attention_forward, ) from ..llama4.modeling_llama4 import Llama4TextRotaryEmbedding logger = logging.get_logger(__name__) class DeepseekV2Config(LlamaConfig): r""" This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate a DeepSeek model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of DeepSeek-V2-Lite" [deepseek-ai/DeepSeek-V2-Lite"](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite"). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the DeepSeek model. Defines the number of different tokens that can be represented by the `input_ids` passed when calling [`DeepseekV2Model`]. hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): The number of key-value heads used to implement Grouped Query Attention (GQA). If `num_key_value_heads=num_attention_heads`, the model will use Multi-Head Attention (MHA). If `num_key_value_heads=1`, the model will use Multi-Query Attention (MQA). Otherwise, GQA is used. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated normal initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon value used by the RMS normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/value attentions (useful for inference optimization). pad_token_id (`int`, *optional*): Padding token ID. bos_token_id (`int`, *optional*, defaults to 1): Beginning-of-sequence token ID. eos_token_id (`int`, *optional*, defaults to 2): End-of-sequence token ID. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie input and output embeddings. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the Rotary Position Embeddings (RoPE). rope_scaling (`Dict`, *optional*): Configuration for scaling RoPE embeddings. Supports `linear` and `dynamic` scaling strategies. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value, and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout probability applied to attention weights. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias term in the MLP layers. aux_loss_alpha (`float`, *optional*, defaults to 0.001): Weight coefficient for auxiliary loss in Mixture of Experts (MoE) models. first_k_dense_replace (`int`, *optional*, defaults to 0): Number of dense layers in the shallow layers before switching to MoE layers. kv_lora_rank (`int`, *optional*, defaults to 512): Rank of the LoRA decomposition for key-value projections. q_lora_rank (`int`, *optional*, defaults to 1536): Rank of the LoRA decomposition for query projections. Specifically, it determines the dimensionality to which the query (q) vectors are compressed before being expanded back to their original size. It reduces computational overhead while maintaining model performance. n_group (`int`, *optional*): Number of groups for routed experts. n_routed_experts (`int`, *optional*, defaults to 64): Number of routed experts (None indicates a dense model). n_shared_experts (`int`, *optional*, defaults to 2): Number of shared experts (None indicates a dense model). qk_nope_head_dim (`int`, *optional*, defaults to 128): The head dimension for the QK (query-key) projections when using NOPE (Neural Operator Position Encoding). qk_rope_head_dim (`int`, *optional*, defaults to 64): The head dimension for QK projections when using RoPE. routed_scaling_factor (`float`, *optional*, defaults to 1.0): Scaling factor for routed experts in MoE models. seq_aux (`bool`, *optional*, defaults to `True`): Whether to compute the auxiliary loss for each individual sequence. topk_group (`int`, *optional*): Number of selected groups per token for expert selection. topk_method (`str`, *optional*, defaults to `"greedy"`): The method used for selecting top-k experts in the routed gate mechanism. v_head_dim (`int`, *optional*, defaults to 128): The dimension of value projections in the attention layers. num_experts_per_tok (`int`, *optional*): The number of experts selected per token. If `None`, the model behaves as a dense Transformer. norm_topk_prob (`bool`, *optional*, defaults to `False`): Whether to normalize the probability distribution over top-k selected experts. moe_intermediate_size (`int`, *optional*, defaults to 1407): Dimension of the MoE (Mixture of Experts) representations. ```python >>> from transformers import DeepseekV2Model, DeepseekV2Config >>> # Initializing a DeepSeek-V2 style configuration >>> configuration = DeepseekV2Config() >>> # Accessing the model configuration >>> model = DeepseekV2Model(configuration) >>> print(model.config) ``` """ base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.q_a_proj": "colwise", "layers.*.self_attn.q_b_proj": "colwise", "layers.*.self_attn.kv_b_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } model_type = "deepseek_v2" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, aux_loss_alpha=0.001, first_k_dense_replace=0, kv_lora_rank=512, q_lora_rank=1536, n_group=None, n_routed_experts=64, n_shared_experts=2, qk_nope_head_dim=128, qk_rope_head_dim=64, routed_scaling_factor=1.0, seq_aux=True, topk_group=None, topk_method="greedy", v_head_dim=128, num_experts_per_tok=None, norm_topk_prob=False, moe_intermediate_size=1407, **kwargs, ): super().__init__(**kwargs) del self.pretraining_tp self.aux_loss_alpha = aux_loss_alpha self.first_k_dense_replace = first_k_dense_replace self.kv_lora_rank = kv_lora_rank self.q_lora_rank = q_lora_rank self.n_group = n_group self.n_routed_experts = n_routed_experts self.n_shared_experts = n_shared_experts self.qk_nope_head_dim = qk_nope_head_dim self.qk_rope_head_dim = qk_rope_head_dim self.routed_scaling_factor = routed_scaling_factor self.seq_aux = seq_aux self.topk_group = topk_group self.topk_method = topk_method self.v_head_dim = v_head_dim self.num_experts_per_tok = num_experts_per_tok self.norm_topk_prob = norm_topk_prob self.moe_intermediate_size = moe_intermediate_size self.head_dim = qk_rope_head_dim def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor]: xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # Broadcast to [1, 1, seq_len, dim // 2] freqs_cis = freqs_cis.unsqueeze(1).to(xq_.device) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk) return xq_out, xk_out class DeepseekV2MoEGate(nn.Module): def __init__(self, config: DeepseekV2Config): super().__init__() self.config = config self.top_k = config.num_experts_per_tok self.num_experts = config.n_routed_experts self.routed_scaling_factor = config.routed_scaling_factor self.alpha = config.aux_loss_alpha self.seq_aux = config.seq_aux self.topk_method = config.topk_method self.num_group = config.n_group self.topk_group = config.topk_group # topk selection algorithm self.norm_topk_prob = config.norm_topk_prob self.gating_dim = config.hidden_size self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim))) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, seq_len, hidden_dim = hidden_states.shape ### compute gating score hidden_states = hidden_states.view(-1, hidden_dim) logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32), None) scores = logits.softmax(dim=-1, dtype=torch.float32) # select top-k experts # greedy method is used for DeepSeek-V2-Lite # group_limited_greedy for DeepSeek-V2 and DeepSeek-V2-Chat if self.topk_method == "greedy": topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) elif self.topk_method == "group_limited_greedy": group_scores = scores.view(batch_size * seq_len, self.num_group, -1).max(dim=-1).values # [n, num_group] group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] # [n, top_k_group] group_mask = torch.zeros_like(group_scores) # [n, num_group] group_mask.scatter_(1, group_idx, 1) # [n, num_group] score_mask = ( group_mask.unsqueeze(-1) .expand(batch_size * seq_len, self.num_group, self.num_experts // self.num_group) .reshape(batch_size * seq_len, -1) ) # [n, e] tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e] topk_weight, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False) topk_weight = topk_weight * self.routed_scaling_factor ### expert-level computation auxiliary loss return topk_idx, topk_weight class DeepseekV2MoE(nn.Module): """ A mixed expert module containing shared experts. """ def __init__(self, config: DeepseekV2Config): super().__init__() self.config = config self.num_experts_per_tok = config.num_experts_per_tok self.experts = nn.ModuleList( [ (DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size)) for _ in range(config.n_routed_experts) ] ) self.gate = DeepseekV2MoEGate(config) if config.n_shared_experts is not None: intermediate_size = config.moe_intermediate_size * config.n_shared_experts self.shared_experts = DeepseekV2MLP(config=config, intermediate_size=intermediate_size) self.ep_rank = 0 self.experts_per_rank = config.n_routed_experts def moe(self, hidden_states: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor: cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) cnts.scatter_(1, topk_ids, 1) tokens_per_expert = cnts.sum(dim=0) indices = topk_ids.view(-1).argsort() sorted_tokens = hidden_states[indices // topk_ids.shape[1]] # Process experts outputs = [] start_idx = 0 for i, num_tokens in enumerate(tokens_per_expert): if num_tokens == 0: continue end_idx = start_idx + num_tokens expert = self.experts[i + self.ep_rank * self.experts_per_rank] tokens_for_this_expert = sorted_tokens[start_idx:end_idx] expert_out = expert(tokens_for_this_expert) outputs.append(expert_out) start_idx = end_idx outs = torch.cat(outputs, dim=0) if outputs else sorted_tokens.new_empty(0) # Reorder and combine outputs new_x = torch.empty_like(outs) new_x[indices] = outs hidden_states = ( new_x.view(*topk_ids.shape, -1) .type(topk_weight.dtype) .mul_(topk_weight.unsqueeze(dim=-1)) .sum(dim=1) .type(new_x.dtype) ) return hidden_states def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residuals = hidden_states orig_shape = hidden_states.shape topk_indices, topk_weights = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape) hidden_states = hidden_states + self.shared_experts(residuals) return hidden_states class DeepseekV2MLP(LlamaMLP): def __init__(self, config: DeepseekV2Config, hidden_size=None, intermediate_size=None): super().__init__(config) self.hidden_size = config.hidden_size if hidden_size is None else hidden_size self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size class DeepseekV2RMSNorm(LlamaRMSNorm): pass class DeepseekV2RotaryEmbedding(Llama4TextRotaryEmbedding): def __init__(self, config: DeepseekV2Config, device=None): super().__init__(config=config, device=device) # BC: "rope_type" was originally "type" self.rope_type = ( config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) if config.rope_scaling is not None else "default" ) class DeepseekV2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = config.head_dim self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.q_lora_rank = config.q_lora_rank self.qk_rope_head_dim = config.qk_rope_head_dim self.kv_lora_rank = config.kv_lora_rank self.v_head_dim = config.v_head_dim self.qk_nope_head_dim = config.qk_nope_head_dim self.qk_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.is_causal = True if self.q_lora_rank is None: self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.qk_head_dim, bias=False) else: self.q_a_proj = nn.Linear(self.hidden_size, config.q_lora_rank, bias=config.attention_bias) self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank) self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False) self.kv_a_proj_with_mqa = nn.Linear( self.hidden_size, config.kv_lora_rank + config.qk_rope_head_dim, bias=config.attention_bias, ) self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank) self.kv_b_proj = nn.Linear( config.kv_lora_rank, self.num_heads * (self.qk_head_dim - self.qk_rope_head_dim + self.v_head_dim), bias=False, ) self.o_proj = nn.Linear( self.num_heads * self.v_head_dim, self.hidden_size, bias=config.attention_bias, ) self.scaling = self.qk_head_dim ** (-0.5) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, position_ids: Optional[torch.Tensor] = None, **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) batch_size, seq_length = hidden_states.shape[:-1] query_shape = (batch_size, seq_length, -1, self.qk_head_dim) key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim) if self.q_lora_rank is None: q = self.q_proj(hidden_states) else: q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) q = q.view(query_shape).transpose(1, 2) q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) compressed_kv = self.kv_a_proj_with_mqa(hidden_states) k_nope, k_pe = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) k_nope = self.kv_b_proj(self.kv_a_layernorm(k_nope)).view(key_shape).transpose(1, 2) k_nope, value_states = torch.split(k_nope, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) k_pe = k_pe.view(batch_size, 1, seq_length, self.qk_rope_head_dim) q_pe, k_pe = apply_rotary_emb(q_pe, k_pe, position_embeddings.to(q_pe.device)) k_pe = k_pe.expand(*k_nope.shape[:-1], -1) query_states = torch.cat((q_nope, q_pe), dim=-1) key_states = torch.cat((k_nope, k_pe), dim=-1) if past_key_values is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim]) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: attn_output = attn_output[:, :, :, : self.v_head_dim] attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class DeepseekV2DecoderLayer(LlamaDecoderLayer): def __init__(self, config: DeepseekV2Config, layer_idx: int): super().__init__(config, layer_idx) self.self_attn = DeepseekV2Attention(config=config, layer_idx=layer_idx) self.mlp = DeepseekV2MoE(config) if layer_idx >= config.first_k_dense_replace else DeepseekV2MLP(config) self.input_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) class DeepseekV2PreTrainedModel(LlamaPreTrainedModel): _can_compile_fullgraph = False def _init_weights(self, module): PreTrainedModel._init_weights(self, module) if isinstance(module, DeepseekV2MoEGate): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) class DeepseekV2Model(LlamaModel): pass class DeepseekV2ForCausalLM(LlamaForCausalLM): pass class DeepseekV2ForSequenceClassification(LlamaForSequenceClassification): pass __all__ = [ "DeepseekV2PreTrainedModel", "DeepseekV2Model", "DeepseekV2ForCausalLM", "DeepseekV2ForSequenceClassification", "DeepseekV2Config", ]