# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Callable, Optional import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxQuestionAnsweringModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_distilbert import DistilBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "distilbert-base-uncased" _CONFIG_FOR_DOC = "DistilBertConfig" FLAX_DISTILBERT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DISTILBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def get_angles(pos, i, d_model): angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model)) return pos * angle_rates def positional_encoding(position, d_model): # create the sinusoidal pattern for the positional encoding angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model) # apply sin to even indices in the array; 2i angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) # apply cos to odd indices in the array; 2i+1 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) pos_encoding = angle_rads[np.newaxis, ...] return jnp.array(pos_encoding) class FlaxEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.dim, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) if not self.config.sinusoidal_pos_embds: self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.dim, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) else: self.pos_encoding = positional_encoding(self.config.max_position_embeddings, self.config.dim) self.LayerNorm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.dropout) def __call__(self, input_ids, deterministic: bool = True): # Embed batch_size, seq_length = input_ids.shape inputs_embeds = self.word_embeddings(input_ids.astype("i4")) if not self.config.sinusoidal_pos_embds: position_ids = jnp.arange(seq_length).astype("i4") position_ids = jnp.broadcast_to(position_ids, shape=(batch_size, seq_length)) position_embeds = self.position_embeddings(position_ids.astype("i4")) else: position_embeds = self.pos_encoding[:, :seq_length, :] # explicitly cast the positions here, since self.embed_positions are not registered as parameters position_embeds = position_embeds.astype(inputs_embeds.dtype) # Sum all embeddings hidden_states = inputs_embeds + position_embeds # Layer Norm hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxMultiHeadSelfAttention(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.n_heads = self.config.n_heads self.dim = self.config.dim self.dropout = nn.Dropout(rate=self.config.attention_dropout) if not (self.dim % self.n_heads == 0): raise ValueError(f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}") self.q_lin = nn.Dense( self.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.k_lin = nn.Dense( self.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.v_lin = nn.Dense( self.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.out_lin = nn.Dense( self.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) def __call__( self, query, key, value, mask, deterministic: bool = True, output_attentions: bool = False, ): bs, q_len, dim = query.shape k_len = key.shape[1] # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' # assert key.size() == value.size() dim_per_head = self.dim // self.n_heads mask_reshp = (bs, 1, 1, k_len) def shape(x): """separate heads""" return x.reshape(bs, -1, self.n_heads, dim_per_head).transpose(0, 2, 1, 3) def unshape(x): """group heads""" return x.transpose(0, 2, 1, 3).reshape(bs, -1, self.n_heads * dim_per_head) q = shape(self.q_lin(query)) # (bs, n_heads, q_len, dim_per_head) k = shape(self.k_lin(key)) # (bs, n_heads, k_len, dim_per_head) v = shape(self.v_lin(value)) # (bs, n_heads, k_len, dim_per_head) q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_len, dim_per_head) scores = jnp.matmul(q, k.transpose(0, 1, 3, 2)) # (bs, n_heads, q_len, k_len) mask = jnp.reshape(mask, mask_reshp) mask = mask.astype(scores.dtype) scores = scores - 1e30 * (1.0 - mask) weights = nn.softmax(scores, axis=-1) # (bs, n_heads, q_len, k_len) weights = self.dropout(weights, deterministic=deterministic) context = jnp.matmul(weights, v) # (bs, n_heads, q_len, dim_per_head) context = unshape(context) # (bs, q_len, dim) context = self.out_lin(context) # (bs, q_len, dim) if output_attentions: return (context, weights) else: return (context,) class FlaxFFN(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout = nn.Dropout(rate=self.config.dropout) self.chunk_size_feed_forward = self.config.chunk_size_feed_forward self.seq_len_dim = 1 self.lin1 = nn.Dense( self.config.hidden_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.lin2 = nn.Dense( self.config.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.activation = ACT2FN[self.config.activation] def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.lin1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.lin2(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxTransformerBlock(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): assert self.config.dim % self.config.n_heads == 0, ( f"Hidden size {self.config.dim} not dividable by number of heads {self.config.n_heads}" ) self.attention = FlaxMultiHeadSelfAttention(self.config, dtype=self.dtype) self.sa_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) self.ffn = FlaxFFN(self.config, dtype=self.dtype) self.output_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) def __call__( self, hidden_states, attn_mask, output_attentions: bool = False, deterministic: bool = True, ): # Self-Attention sa_output = self.attention( query=hidden_states, key=hidden_states, value=hidden_states, mask=attn_mask, output_attentions=output_attentions, deterministic=deterministic, ) if output_attentions: sa_output, sa_weights = sa_output else: assert type(sa_output) is tuple sa_output = sa_output[0] sa_output = self.sa_layer_norm(sa_output + hidden_states) # Feed Forward Network ffn_output = self.ffn(sa_output, deterministic=deterministic) ffn_output = self.output_layer_norm(ffn_output + sa_output) output = (ffn_output,) if output_attentions: output = (sa_weights,) + output return output class FlaxTransformer(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxTransformerBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.n_layers) ] def __call__( self, hidden_states, attention_mask, output_attentions: bool = False, output_hidden_states: bool = False, deterministic: bool = True, return_dict: bool = False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for layer_module in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, attn_mask=attention_mask, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[-1] if output_attentions: assert len(layer_outputs) == 2 attentions = layer_outputs[0] all_attentions = all_attentions + (attentions,) else: assert len(layer_outputs) == 1 # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_attentions, all_hidden_states] if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxTransformerEncoder(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layer = FlaxTransformer(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, output_attentions: bool = False, output_hidden_states: bool = False, deterministic: bool = True, return_dict: bool = False, ): return self.layer( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, deterministic=deterministic, return_dict=return_dict, ) class FlaxDistilBertLMDecoder(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros def setup(self): self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) def __call__(self, inputs, kernel): inputs = jnp.asarray(inputs, self.dtype) kernel = jnp.asarray(kernel, self.dtype) y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ()))) bias = jnp.asarray(self.bias, self.dtype) y = y + bias return y class FlaxDistilBertPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DistilBertConfig base_model_prefix = "distilbert" module_class: nn.Module = None def __init__( self, config: DistilBertConfig, input_shape: tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, head_mask=None, params: Optional[dict] = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxDistilBertModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.embeddings = FlaxEmbeddings(self.config, dtype=self.dtype) self.transformer = FlaxTransformerEncoder(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict input_embeds = self.embeddings(input_ids, deterministic=deterministic) return self.transformer( hidden_states=input_embeds, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings( "The bare DistilBert Model transformer outputting raw hidden-states without any specific head on top.", FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertModel(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertModule append_call_sample_docstring(FlaxDistilBertModel, _CHECKPOINT_FOR_DOC, None, _CONFIG_FOR_DOC) class FlaxDistilBertForMaskedLMModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.distilbert = FlaxDistilBertModule(self.config, dtype=self.dtype) self.vocab_transform = nn.Dense( self.config.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.vocab_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) if self.config.tie_word_embeddings: self.vocab_projector = FlaxDistilBertLMDecoder( self.config, dtype=self.dtype, ) else: self.vocab_projector = nn.Dense( self.config.vocab_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict dlbrt_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, deterministic=deterministic, return_dict=return_dict, ) hidden_states = dlbrt_output[0] prediction_logits = self.vocab_transform(hidden_states) prediction_logits = ACT2FN[self.config.activation](prediction_logits) prediction_logits = self.vocab_layer_norm(prediction_logits) if self.config.tie_word_embeddings: shared_embedding = self.distilbert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] prediction_logits = self.vocab_projector(prediction_logits, shared_embedding.T) else: prediction_logits = self.vocab_projector(prediction_logits) if not return_dict: output = (prediction_logits,) + dlbrt_output[1:] return output return FlaxMaskedLMOutput( logits=prediction_logits, hidden_states=dlbrt_output.hidden_states, attentions=dlbrt_output.attentions, ) @add_start_docstrings("""DistilBert Model with a `language modeling` head on top.""", FLAX_DISTILBERT_START_DOCSTRING) class FlaxDistilBertForMaskedLM(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForMaskedLMModule append_call_sample_docstring(FlaxDistilBertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) class FlaxDistilBertForSequenceClassificationModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) self.pre_classifier = nn.Dense( self.config.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout) self.classifier = nn.Dense( self.config.num_labels, dtype=self.dtype, ) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Model distilbert_output = self.distilbert( input_ids, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = ACT2FN["relu"](pooled_output) pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) # (bs, dim) if not return_dict: return (logits,) + distilbert_output[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) @add_start_docstrings( """ DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertForSequenceClassification(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForSequenceClassificationModule append_call_sample_docstring( FlaxDistilBertForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxDistilBertForMultipleChoiceModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) self.pre_classifier = nn.Dense( self.config.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout) self.classifier = nn.Dense( 1, dtype=self.dtype, ) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None # Model outputs = self.distilbert( input_ids, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] pooled_output = hidden_state[:, 0] pooled_output = self.pre_classifier(pooled_output) pooled_output = ACT2FN["relu"](pooled_output) pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[2:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertForMultipleChoice(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForMultipleChoiceModule overwrite_call_docstring( FlaxDistilBertForMultipleChoice, DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxDistilBertForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC, ) class FlaxDistilBertForTokenClassificationModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.dropout) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Model outputs = self.distilbert( input_ids, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertForTokenClassification(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForTokenClassificationModule append_call_sample_docstring( FlaxDistilBertForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxDistilBertForQuestionAnsweringModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) assert self.config.num_labels == 2 self.dropout = nn.Dropout(rate=self.config.qa_dropout) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Model distilbert_output = self.distilbert( input_ids, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = distilbert_output[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.qa_outputs(hidden_states) start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + distilbert_output[1:] return FlaxQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) @add_start_docstrings( """ DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertForQuestionAnswering(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForQuestionAnsweringModule append_call_sample_docstring( FlaxDistilBertForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) __all__ = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ]