# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for FLAVA """ import warnings from collections.abc import Iterable from typing import Optional, Union from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin class FlavaImagesKwargs(ImagesKwargs): # Mask related params return_image_mask: Optional[bool] input_size_patches: Optional[int] total_mask_patches: Optional[int] mask_group_min_patches: Optional[int] mask_group_max_patches: Optional[int] mask_group_min_aspect_ratio: Optional[float] mask_group_max_aspect_ratio: Optional[float] # Codebook related params return_codebook_pixels: Optional[bool] codebook_do_resize: Optional[bool] codebook_size: Optional[bool] codebook_resample: Optional[int] codebook_do_center_crop: Optional[bool] codebook_crop_size: Optional[int] codebook_do_rescale: Optional[bool] codebook_rescale_factor: Optional[Union[int, float]] codebook_do_map_pixels: Optional[bool] codebook_do_normalize: Optional[bool] codebook_image_mean: Optional[Union[float, Iterable[float]]] codebook_image_std: Optional[Union[float, Iterable[float]]] class FlavaProcessorKwargs(ProcessingKwargs, total=False): images_kwargs: FlavaImagesKwargs _defaults = {} class FlavaProcessor(ProcessorMixin): r""" Constructs a FLAVA processor which wraps a FLAVA image processor and a FLAVA tokenizer into a single processor. [`FlavaProcessor`] offers all the functionalities of [`FlavaImageProcessor`] and [`BertTokenizerFast`]. See the [`~FlavaProcessor.__call__`] and [`~FlavaProcessor.decode`] for more information. Args: image_processor ([`FlavaImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`BertTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "FlavaImageProcessor" tokenizer_class = ("BertTokenizer", "BertTokenizerFast") valid_processor_kwargs = FlavaProcessorKwargs def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor __all__ = ["FlavaProcessor"]