# coding=utf-8 # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional import torch from torch import nn from torch.nn import functional as F from ...cache_utils import Cache, DynamicCache from ...integrations.hub_kernels import use_kernel_forward_from_hub from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask from ...modeling_outputs import ( MoeModelOutputWithPast, ) from ...modeling_rope_utils import dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import ( TransformersKwargs, auto_docstring, logging, ) from ...utils.deprecation import deprecate_kwarg from ...utils.generic import OutputRecorder, check_model_inputs from ..llama.modeling_llama import ( LlamaDecoderLayer, LlamaPreTrainedModel, LlamaRMSNorm, LlamaRotaryEmbedding, repeat_kv, ) from ..mixtral.modeling_mixtral import ( MixtralForCausalLM, MixtralForSequenceClassification, MixtralForTokenClassification, MixtralModel, ) from ..qwen2.modeling_qwen2 import Qwen2Attention from .configuration_gpt_oss import GptOssConfig logger = logging.get_logger(__name__) class GptOssRMSNorm(LlamaRMSNorm): def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return (self.weight * hidden_states).to(input_dtype) # main diff with Llama class GptOssExperts(nn.Module): def __init__(self, config): super().__init__() self.intermediate_size = config.intermediate_size self.num_experts = config.num_local_experts self.hidden_size = config.hidden_size self.expert_dim = self.intermediate_size self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim)) self.gate_up_proj_bias = nn.Parameter(torch.empty(self.num_experts, 2 * self.expert_dim)) self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size))) self.down_proj_bias = nn.Parameter(torch.empty(self.num_experts, self.hidden_size)) self.alpha = 1.702 self.limit = 7.0 def forward(self, hidden_states: torch.Tensor, router_indices=None, routing_weights=None) -> torch.Tensor: """ When training it is more efficient to just loop over the experts and compute the output for each expert as otherwise the memory would explode. For inference we can sacrifice some memory and compute the output for all experts at once. By repeating the inputs. Args: hidden_states (torch.Tensor): (batch_size, seq_len, hidden_size) selected_experts (torch.Tensor): (batch_size * token_num, top_k) routing_weights (torch.Tensor): (batch_size * token_num, num_experts) Returns: torch.Tensor """ batch_size = hidden_states.shape[0] hidden_states = hidden_states.reshape(-1, self.hidden_size) # (num_tokens, hidden_size) num_experts = routing_weights.shape[1] if hidden_states.device.type == "cpu" or self.training: next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device) with torch.no_grad(): expert_mask = torch.nn.functional.one_hot( router_indices, num_classes=num_experts + 1 ) # masking is also a class expert_mask = expert_mask.permute(2, 1, 0) # we sum on the top_k and on the sequence length to get which experts # are hit this time around expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() for expert_idx in expert_hit[:]: # expert_idx only have 1 element, so we can use scale for fast indexing expert_idx = expert_idx[0] # skip masking index if expert_idx == num_experts: continue with torch.no_grad(): _, token_idx = torch.where(expert_mask[expert_idx]) current_state = hidden_states[token_idx] gate_up = current_state @ self.gate_up_proj[expert_idx] + self.gate_up_proj_bias[expert_idx] gate, up = gate_up[..., ::2], gate_up[..., 1::2] gate = gate.clamp(min=None, max=self.limit) up = up.clamp(min=-self.limit, max=self.limit) glu = gate * torch.sigmoid(gate * self.alpha) gated_output = (up + 1) * glu out = gated_output @ self.down_proj[expert_idx] + self.down_proj_bias[expert_idx] weighted_output = out * routing_weights[token_idx, expert_idx, None] next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype)) next_states = next_states.view(batch_size, -1, self.hidden_size) else: hidden_states = hidden_states.repeat(num_experts, 1) hidden_states = hidden_states.view(num_experts, -1, self.hidden_size) gate_up = torch.bmm(hidden_states, self.gate_up_proj) + self.gate_up_proj_bias[..., None, :] gate, up = gate_up[..., ::2], gate_up[..., 1::2] gate = gate.clamp(min=None, max=self.limit) up = up.clamp(min=-self.limit, max=self.limit) glu = gate * torch.sigmoid(gate * self.alpha) next_states = torch.bmm(((up + 1) * glu), self.down_proj) next_states = next_states + self.down_proj_bias[..., None, :] next_states = next_states.view(num_experts, batch_size, -1, self.hidden_size) next_states = next_states * routing_weights.transpose(0, 1).view(num_experts, batch_size, -1)[..., None] next_states = next_states.sum(dim=0) return next_states class GptOssTopKRouter(nn.Module): def __init__(self, config): super().__init__() self.top_k = config.num_experts_per_tok self.num_experts = config.num_local_experts self.hidden_dim = config.hidden_size self.weight = nn.Parameter(torch.empty(self.num_experts, self.hidden_dim)) self.bias = nn.Parameter(torch.empty(self.num_experts)) def forward(self, hidden_states): hidden_states = hidden_states.reshape(-1, self.hidden_dim) router_logits = F.linear(hidden_states, self.weight, self.bias) # (seq_len, num_experts) router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) # (seq_len, top_k) router_top_value = torch.nn.functional.softmax(router_top_value, dim=1, dtype=router_top_value.dtype) router_scores = torch.zeros_like(router_logits).scatter_(1, router_indices, router_top_value) return router_scores, router_indices @use_kernel_forward_from_hub("MegaBlocksMoeMLP") class GptOssMLP(nn.Module): def __init__(self, config): super().__init__() self.router = GptOssTopKRouter(config) self.experts = GptOssExperts(config) def forward(self, hidden_states): router_scores, router_indices = self.router(hidden_states) # (num_experts, seq_len) routed_out = self.experts(hidden_states, router_indices=router_indices, routing_weights=router_scores) return routed_out, router_scores class GptOssRotaryEmbedding(LlamaRotaryEmbedding): @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = freqs cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(x.dtype), sin.to(x.dtype) def _apply_rotary_emb( x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ) -> torch.Tensor: first_half, second_half = torch.chunk(x, 2, dim=-1) first_ = first_half * cos - second_half * sin second_ = second_half * cos + first_half * sin return torch.cat((first_, second_), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = _apply_rotary_emb(q, cos, sin) k_embed = _apply_rotary_emb(k, cos, sin) return q_embed, k_embed def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask sinks = module.sinks.reshape(1, -1, 1, 1).expand(query.shape[0], -1, query.shape[-2], -1) combined_logits = torch.cat([attn_weights, sinks], dim=-1) # This was not in the original implementation and slightly affect results; it prevents overflow in BF16/FP16 # when training with bsz>1 we clamp max values. combined_logits = combined_logits - combined_logits.max(dim=-1, keepdim=True).values probs = F.softmax(combined_logits, dim=-1, dtype=combined_logits.dtype) scores = probs[..., :-1] # we drop the sink here attn_weights = nn.functional.dropout(scores, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class GptOssAttention(Qwen2Attention): def __init__(self, config: GptOssConfig, layer_idx: int): super().__init__(config, layer_idx) self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) self.sinks = nn.Parameter(torch.empty(config.num_attention_heads)) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, torch.Tensor]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_values is not None: cache_kwargs = {"cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=self.sliding_window, s_aux=self.sinks, # diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class GptOssDecoderLayer(LlamaDecoderLayer): def __init__(self, config: GptOssConfig, layer_idx: int): super().__init__(config, layer_idx) self.hidden_size = config.hidden_size self.self_attn = GptOssAttention(config=config, layer_idx=layer_idx) self.mlp = GptOssMLP(config) self.input_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.attention_type = config.layer_types[layer_idx] @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[TransformersKwargs], ) -> torch.Tensor: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, _ = self.mlp(hidden_states) # diff with llama: router scores hidden_states = residual + hidden_states return hidden_states class GptOssPreTrainedModel(LlamaPreTrainedModel): _keep_in_fp32_modules = ["post_attention_layernorm", "input_layernorm", "norm"] _supports_sdpa = False _supports_flash_attention = False _supports_flex_attention = False _can_record_outputs = { "router_logits": OutputRecorder(GptOssTopKRouter, index=0), "hidden_states": GptOssDecoderLayer, "attentions": GptOssAttention, } def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Parameter): module.data.normal_(mean=0.0, std=std) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, GptOssRMSNorm): module.weight.data.fill_(1.0) elif isinstance(module, GptOssExperts): module.gate_up_proj.data.normal_(mean=0.0, std=std) module.gate_up_proj_bias.data.zero_() module.down_proj.data.normal_(mean=0.0, std=std) module.down_proj_bias.data.zero_() elif isinstance(module, GptOssAttention): module.sinks.data.normal_(mean=0.0, std=std) elif isinstance(module, GptOssTopKRouter): module.weight.data.normal_(mean=0.0, std=std) module.bias.data.normal_(mean=0.0, std=std) class GptOssModel(MixtralModel): _no_split_modules = ["GptOssDecoderLayer"] @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> MoeModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if use_cache and past_key_values is None: past_key_values = DynamicCache(config=self.config) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # It may already have been prepared by e.g. `generate` if not isinstance(causal_mask_mapping := attention_mask, dict): mask_kwargs = { "config": self.config, "input_embeds": inputs_embeds, "attention_mask": attention_mask, "cache_position": cache_position, "past_key_values": past_key_values, } causal_mask_mapping = { "full_attention": create_causal_mask(**mask_kwargs), "sliding_attention": create_sliding_window_causal_mask(**mask_kwargs), } hidden_states = inputs_embeds position_embeddings = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask_mapping[decoder_layer.attention_type], position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.norm(hidden_states) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) class GptOssForCausalLM(MixtralForCausalLM): pass class GptOssForSequenceClassification(MixtralForSequenceClassification): pass class GptOssForTokenClassification(MixtralForTokenClassification): pass __all__ = [ "GptOssForCausalLM", "GptOssForSequenceClassification", "GptOssForTokenClassification", "GptOssModel", "GptOssPreTrainedModel", ]