# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/ijepa/modular_ijepa.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_ijepa.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 import collections.abc from typing import Callable, Optional, Union import torch import torch.nn as nn from ...activations import ACT2FN from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import TransformersKwargs, auto_docstring, torch_int from ...utils.generic import can_return_tuple, check_model_inputs from .configuration_ijepa import IJepaConfig class IJepaPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config: IJepaConfig): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." f" Expected {self.num_channels} but got {num_channels}." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings class IJepaEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: IJepaConfig, use_mask_token: bool = False) -> None: super().__init__() self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None self.patch_embeddings = IJepaPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.randn(1, num_patches, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.patch_size = config.patch_size self.config = config def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] num_positions = self.position_embeddings.shape[1] # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings patch_pos_embed = self.position_embeddings dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return patch_pos_embed def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: batch_size, _, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if bool_masked_pos is not None: seq_length = embeddings.shape[1] mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): # Take the dot product between "query" and "key" to get the raw attention scores. attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling # Normalize the attention scores to probabilities. attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) # Mask heads if we want to if attention_mask is not None: attn_weights = attn_weights * attention_mask attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class IJepaSelfAttention(nn.Module): def __init__(self, config: IJepaConfig): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.config = config self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.dropout_prob = config.attention_probs_dropout_prob self.scaling = self.attention_head_size**-0.5 self.is_causal = False self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None ) -> tuple[torch.Tensor, torch.Tensor]: batch_size = hidden_states.shape[0] new_shape = batch_size, -1, self.num_attention_heads, self.attention_head_size key_layer = self.key(hidden_states).view(*new_shape).transpose(1, 2) value_layer = self.value(hidden_states).view(*new_shape).transpose(1, 2) query_layer = self.query(hidden_states).view(*new_shape).transpose(1, 2) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] context_layer, attention_probs = attention_interface( self, query_layer, key_layer, value_layer, head_mask, is_causal=self.is_causal, scaling=self.scaling, dropout=0.0 if not self.training else self.dropout_prob, ) new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.reshape(new_context_layer_shape) return context_layer, attention_probs class IJepaSelfOutput(nn.Module): """ The residual connection is defined in IJepaLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: IJepaConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class IJepaAttention(nn.Module): def __init__(self, config: IJepaConfig): super().__init__() self.attention = IJepaSelfAttention(config) self.output = IJepaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: set[int]): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None) -> torch.Tensor: self_attn_output, _ = self.attention(hidden_states, head_mask) output = self.output(self_attn_output, hidden_states) return output class IJepaIntermediate(nn.Module): def __init__(self, config: IJepaConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class IJepaOutput(nn.Module): def __init__(self, config: IJepaConfig): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class IJepaLayer(GradientCheckpointingLayer): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: IJepaConfig): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = IJepaAttention(config) self.intermediate = IJepaIntermediate(config) self.output = IJepaOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None) -> torch.Tensor: hidden_states_norm = self.layernorm_before(hidden_states) attention_output = self.attention(hidden_states_norm, head_mask) # first residual connection hidden_states = attention_output + hidden_states # in IJepa, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) return layer_output @auto_docstring class IJepaPreTrainedModel(PreTrainedModel): config: IJepaConfig base_model_prefix = "ijepa" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["IJepaEmbeddings", "IJepaLayer"] _supports_sdpa = True _supports_flash_attn = True _supports_flex_attn = True _supports_attention_backend = True _can_record_outputs = { "hidden_states": IJepaLayer, "attentions": IJepaSelfAttention, } def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, IJepaEmbeddings): module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.position_embeddings.dtype) if module.mask_token is not None: module.mask_token.data.zero_() class IJepaEncoder(nn.Module): def __init__(self, config: IJepaConfig): super().__init__() self.config = config self.layer = nn.ModuleList([IJepaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None) -> BaseModelOutput: for i, layer_module in enumerate(self.layer): layer_head_mask = head_mask[i] if head_mask is not None else None hidden_states = layer_module(hidden_states, layer_head_mask) return BaseModelOutput(last_hidden_state=hidden_states) class IJepaPooler(nn.Module): def __init__(self, config: IJepaConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.pooler_output_size) self.activation = ACT2FN[config.pooler_act] def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @auto_docstring class IJepaModel(IJepaPreTrainedModel): def __init__(self, config: IJepaConfig, add_pooling_layer: bool = False, use_mask_token: bool = False): r""" add_pooling_layer (bool, *optional*, defaults to `True`): Whether to add a pooling layer use_mask_token (`bool`, *optional*, defaults to `False`): Whether to use a mask token for masked image modeling. """ super().__init__(config) self.config = config self.embeddings = IJepaEmbeddings(config, use_mask_token=use_mask_token) self.encoder = IJepaEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = IJepaPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> IJepaPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: dict[int, list[int]]): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @check_model_inputs @auto_docstring def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, interpolate_pos_encoding: Optional[bool] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPooling: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype if pixel_values.dtype != expected_dtype: pixel_values = pixel_values.to(expected_dtype) embedding_output = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs: BaseModelOutput = self.encoder(embedding_output, head_mask=head_mask) sequence_output = encoder_outputs.last_hidden_state sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None return BaseModelOutputWithPooling(last_hidden_state=sequence_output, pooler_output=pooled_output) @auto_docstring( custom_intro=""" IJepa Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. Note that it's possible to fine-tune IJepa on higher resolution images than the ones it has been trained on, by setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained position embeddings to the higher resolution. """ ) class IJepaForImageClassification(IJepaPreTrainedModel): def __init__(self, config: IJepaConfig): super().__init__(config) self.num_labels = config.num_labels self.ijepa = IJepaModel(config, add_pooling_layer=False) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @can_return_tuple @auto_docstring def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, interpolate_pos_encoding: Optional[bool] = None, **kwargs: Unpack[TransformersKwargs], ) -> ImageClassifierOutput: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs: BaseModelOutputWithPooling = self.ijepa( pixel_values, head_mask=head_mask, interpolate_pos_encoding=interpolate_pos_encoding, **kwargs, ) sequence_output = outputs.last_hidden_state logits = self.classifier(sequence_output.mean(dim=1)) loss = None if labels is not None: loss = self.loss_function(labels, logits, self.config, **kwargs) return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["IJepaPreTrainedModel", "IJepaModel", "IJepaForImageClassification"]