# coding=utf-8 # Copyright 2025 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput, make_nested_list_of_images from ...processing_utils import ( ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack, ) from ...tokenization_utils_base import BatchEncoding, TextInput from ...utils import logging logger = logging.get_logger(__name__) class Lfm2VlImagesKwargs(ImagesKwargs, total=False): downsample_factor: Optional[int] do_image_splitting: Optional[bool] min_tiles: Optional[int] max_tiles: Optional[int] use_thumbnail: Optional[bool] min_image_tokens: Optional[int] max_image_tokens: Optional[int] encoder_patch_size: Optional[int] tile_size: Optional[int] max_pixels_tolerance: Optional[float] patch_size: Optional[int] do_pad: Optional[bool] return_row_col_info: Optional[bool] class Lfm2VlProcessorKwargs(ProcessingKwargs, total=False): images_kwargs: Lfm2VlImagesKwargs _defaults = { "images_kwargs": { "return_row_col_info": True, }, "text_kwargs": { "use_image_special_tokens": True, "add_special_tokens": False, "padding": False, "is_split_into_words": False, }, } class Lfm2VlProcessor(ProcessorMixin): r""" Constructs a Lfm2Vl processor which wraps a Lfm2Tokenizer tokenizer and Lfm2VlImageProcessor into a single processor. [`Lfm2VlProcessor`] offers all the functionalities of [`Lfm2ImageProcessor`] and [`Lfm2Tokenizer`]. Args: image_processor (`Lfm2VlImageProcessor`): An instance of [`Lfm2VlImageProcessor`]. The image processor is a required input. tokenizer (`PreTrainedTokenizerBase`): An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. use_image_special_tokens (`bool`, *optional*, defaults to `True`): Whether to use image special tokens or not when processing. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "Lfm2VlImageProcessorFast" tokenizer_class = "AutoTokenizer" def __init__( self, image_processor, tokenizer, chat_template: Optional[str] = None, use_image_special_tokens: Optional[bool] = True, **kwargs, ): self.image_token = tokenizer.image_token self.image_token_id = tokenizer.image_token_id self.use_image_special_tokens = use_image_special_tokens self.image_start_token = tokenizer.image_start_token self.image_end_token = tokenizer.image_end_token self.image_thumbnail_token = tokenizer.image_thumbnail super().__init__(image_processor, tokenizer, chat_template=chat_template, **kwargs) def __call__( self, images: Optional[Union[ImageInput, list[ImageInput], list[list[ImageInput]]]] = None, text: Optional[Union[TextInput, list[TextInput]]] = None, **kwargs: Unpack[Lfm2VlProcessorKwargs], ) -> BatchEncoding: """ Processes the input prompts and returns a BatchFeature. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`, *optional*): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. If is of type `list[ImageInput]`, it's assumed that this is for a single prompt i.e. of batch size 1. text (`TextInput`, *optional*): The sequence or batch of sequences to be encoded. Wherever an image token, `` is encountered it is expanded to a proper sequence of image tokens. return_tensors (`Optional[str, TensorType]`, *optional*): If set, will return tensors of a particular framework. See [`PreTrainedTokenizerFast.__call__`] for more information. """ if text is None and images is None: raise ValueError("You must provide one of `text` or `images`.") if images is not None and text is None: raise ValueError( "You must provide `text` when `images` is provided. Minimal text consists of a single image token." ) output_kwargs = self._merge_kwargs( Lfm2VlProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") n_images_in_text = [sample.count(self.image_token) for sample in text] if sum(n_images_in_text) > 0 and images is None: raise ValueError(f"We detected {sum(n_images_in_text)} tokens in the text but no images were passed") inputs = {} use_image_special_tokens = output_kwargs["text_kwargs"].pop("use_image_special_tokens") if images is not None: images = self.image_processor.fetch_images(images) batched_images = make_nested_list_of_images(images) vision_inputs = self.image_processor(batched_images, **output_kwargs["images_kwargs"]) n_images_in_images = [len(sublist) for sublist in batched_images] if n_images_in_images != n_images_in_text: raise ValueError( f"The number of images in the text {n_images_in_text} and images {n_images_in_images} should be the same." ) text = self.expand_text_with_placeholders( text, batched_images, image_rows=vision_inputs.pop("image_rows"), image_cols=vision_inputs.pop("image_cols"), image_sizes=vision_inputs.pop("image_sizes"), use_image_special_tokens=use_image_special_tokens, **output_kwargs["images_kwargs"], ) inputs.update(vision_inputs) return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) inputs.update(text_inputs) return BatchFeature(inputs, tensor_type=return_tensors) def expand_text_with_placeholders( self, text: list[str], images: list[list[ImageInput]], image_rows: list[list[int]], image_cols: list[list[int]], image_sizes: list[list[int]], use_image_special_tokens: bool, **images_kwargs, ): prompt_strings = [] image_data = iter(zip(*[image_rows, image_cols, image_sizes])) for sample_text, sample_images in zip(text, images): split_sample = sample_text.split(self.image_token) sample_text_with_image_tokens = "" for i, image in enumerate(sample_images): sample_text_with_image_tokens += split_sample[i] if use_image_special_tokens: sample_text_with_image_tokens += self.image_start_token rows, cols, image_size = next(image_data) num_thumbnail_tokens, num_tokens_per_tile = self._get_image_num_tokens(image_size, **images_kwargs) if rows > 1 or cols > 1: for row in range(rows): for col in range(cols): if use_image_special_tokens: sample_text_with_image_tokens += f"<|img_row_{row + 1}_col_{col + 1}|>" sample_text_with_image_tokens += self.image_token * num_tokens_per_tile if num_thumbnail_tokens > 0: if use_image_special_tokens: sample_text_with_image_tokens += self.image_thumbnail_token sample_text_with_image_tokens += self.image_token * num_thumbnail_tokens else: sample_text_with_image_tokens += self.image_token * num_thumbnail_tokens if use_image_special_tokens: sample_text_with_image_tokens += self.image_end_token sample_text_with_image_tokens += split_sample[i + 1] prompt_strings.append(sample_text_with_image_tokens) return prompt_strings def _get_image_num_tokens(self, image_size: list[int], **images_kwargs) -> tuple[int, int]: tile_size = images_kwargs.get("tile_size", self.image_processor.tile_size) downsample_factor = images_kwargs.get("downsample_factor", self.image_processor.downsample_factor) encoder_patch_size = images_kwargs.get("encoder_patch_size", self.image_processor.encoder_patch_size) use_thumbnail = images_kwargs.get("use_thumbnail", self.image_processor.use_thumbnail) thumbnail_tokens = 0 if use_thumbnail: image_height, image_width = image_size num_patches_height = image_height // encoder_patch_size num_patches_width = image_width // encoder_patch_size dwn_num_patches_height = math.ceil(num_patches_height / downsample_factor) dwn_num_patches_width = math.ceil(num_patches_width / downsample_factor) thumbnail_tokens = dwn_num_patches_height * dwn_num_patches_width num_patches_tile = tile_size // encoder_patch_size dwn_num_patches_tile = math.ceil(num_patches_tile / downsample_factor) tile_tokens = dwn_num_patches_tile * dwn_num_patches_tile return thumbnail_tokens, tile_tokens def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LFM2Tokeniser's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ batched_decode_output = self.tokenizer.batch_decode(*args, **kwargs) return batched_decode_output def decode(self, *args, **kwargs): """ This method forwards all its arguments to LFM2Tokeniser's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ decode_output = self.tokenizer.decode(*args, **kwargs) return decode_output @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names # LFM2-VL has no dedicated tokenizer class and uses the Base class with default model input names tokenizer_input_names = [name for name in tokenizer_input_names if name != "token_type_ids"] return list(tokenizer_input_names + image_processor_input_names) __all__ = ["Lfm2VlProcessor"]