# coding=utf-8 # Copyright 2025 The LLAMA4 and HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import Callable, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from transformers.models.llama4.configuration_llama4 import Llama4VisionConfig from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...integrations import use_kernel_forward_from_hub from ...masking_utils import create_causal_mask, create_chunked_causal_mask from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging from ...utils.deprecation import deprecate_kwarg from ...utils.generic import check_model_inputs from .configuration_llama4 import Llama4Config, Llama4TextConfig logger = logging.get_logger(__name__) class Llama4TextExperts(nn.Module): def __init__(self, config: Llama4TextConfig): super().__init__() self.num_experts = config.num_local_experts self.intermediate_size = config.intermediate_size self.hidden_size = config.hidden_size self.expert_dim = self.intermediate_size self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim)) self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size))) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """ This should really not be run on a single machine, as we are reaching compute bound: - the inputs are expected to be "sorted" per expert already. - the weights are viewed with another dim, to match num_expert, 1, shape * num_tokens, shape Args: hidden_states (torch.Tensor): (batch_size * token_num, hidden_size) selected_experts (torch.Tensor): (batch_size * token_num, top_k) routing_weights (torch.Tensor): (batch_size * token_num, top_k) Returns: torch.Tensor """ hidden_states = hidden_states.view(self.gate_up_proj.shape[0], -1, self.hidden_size) gate_up = torch.bmm(hidden_states, self.gate_up_proj) gate, up = gate_up.chunk(2, dim=-1) # not supported for DTensors next_states = torch.bmm((up * self.act_fn(gate)), self.down_proj) next_states = next_states.view(-1, self.hidden_size) return next_states # Phi3MLP class Llama4TextMLP(nn.Module): def __init__(self, config, intermediate_size=None): super().__init__() if intermediate_size is None: intermediate_size = config.intermediate_size self.config = config self.gate_proj = nn.Linear(config.hidden_size, intermediate_size, bias=False) self.up_proj = nn.Linear(config.hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, config.hidden_size, bias=False) self.activation_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.activation_fn(self.gate_proj(x)) * self.up_proj(x) return self.down_proj(down_proj) class Llama4TextL2Norm(torch.nn.Module): def __init__(self, eps: float = 1e-6): super().__init__() self.eps = eps def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): return self._norm(x.float()).type_as(x) def extra_repr(self): return f"eps={self.eps}" class Llama4TextRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-5): """ Llama4RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(hidden_size)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.eps}" class Llama4Router(nn.Linear): def __init__(self, config): super().__init__(config.hidden_size, config.num_local_experts, bias=False) self.num_experts = config.num_local_experts self.top_k = config.num_experts_per_tok def forward(self, hidden_states): router_logits = super().forward(hidden_states) router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=1) router_scores = torch.full_like(router_logits, float("-inf")).scatter_(1, router_indices, router_top_value) router_scores = torch.nn.functional.sigmoid(router_scores.float()).to(router_scores.dtype) return router_scores, router_logits @use_kernel_forward_from_hub("Llama4TextMoe") class Llama4TextMoe(nn.Module): def __init__(self, config): super().__init__() self.top_k = config.num_experts_per_tok self.hidden_dim = config.hidden_size self.num_experts = config.num_local_experts self.experts = Llama4TextExperts(config) self.router = Llama4Router(config) self.shared_expert = Llama4TextMLP(config) def forward(self, hidden_states): hidden_states = hidden_states.reshape(-1, self.hidden_dim) router_scores, router_logits = self.router(hidden_states) routed_in = hidden_states.repeat(router_scores.shape[1], 1) routed_in = routed_in * router_scores.transpose(0, 1).reshape(-1, 1) routed_out = self.experts(routed_in) out = self.shared_expert(hidden_states) out.add_(routed_out.reshape(router_scores.shape[1], -1, routed_out.shape[-1]).sum(dim=0)) return out, router_logits class Llama4TextRotaryEmbedding(nn.Module): inv_freq: torch.Tensor # fix linting for `register_buffer` def __init__(self, config: Llama4TextConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" self.rope_type = "llama3" if config.rope_scaling is not None else "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.to(x.device) @ position_ids_expanded).transpose(1, 2) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # Convert to complex representation freqs_cis = freqs_cis * self.attention_scaling return freqs_cis def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor]: xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) xq_out = torch.view_as_real(xq_ * freqs_cis[:, :, None, :]).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis[:, :, None, :]).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) # Adapted from transformers.models.llama.modeling_llama.eager_attention_forward -> llama4 doesn't cast attn weights to fp32 def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights # Adapted from transformers.models.llama.modeling_llama.eager_attention_forward -> llama4 doesn't cast attn weights to fp32 def vision_eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * module.head_dim**-0.5 if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class Llama4TextAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Llama4TextConfig, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_attention_heads = config.num_attention_heads self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.num_key_value_heads = config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attn_scale = config.attn_scale self.floor_scale = config.floor_scale self.attn_temperature_tuning = config.attn_temperature_tuning self.attention_dropout = config.attention_dropout self.is_causal = True self.use_rope = config.no_rope_layers[layer_idx] self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) if self.config.use_qk_norm and self.use_rope: self.qk_norm = Llama4TextL2Norm(config.rms_norm_eps) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape) key_states = self.k_proj(hidden_states).view(*input_shape, -1, self.head_dim) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) if self.use_rope: # the 16E model skips rope for long context on certain layers query_states, key_states = apply_rotary_emb( query_states, key_states, position_embeddings.to(query_states.device) ) if hasattr(self, "qk_norm"): # the 128E model does not use qk_norm query_states = self.qk_norm(query_states) key_states = self.qk_norm(key_states) # Use temperature tuning from https://huggingface.co/papers/2501.19399) to NoROPE layers if self.attn_temperature_tuning and not self.use_rope: attn_scales = ( torch.log1p(torch.floor((cache_position.float() + 1.0) / self.floor_scale)) * self.attn_scale + 1.0 ) attn_scales = attn_scales.view((1, input_shape[-1], 1, 1)).expand((*input_shape, 1, 1)) # batch size > 1 query_states = (query_states * attn_scales).to(query_states.dtype) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) if past_key_values is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class Llama4TextDecoderLayer(GradientCheckpointingLayer): def __init__(self, config, layer_idx): super().__init__() self.hidden_size = config.hidden_size self.layer_idx = layer_idx self.attention_type = config.layer_types[layer_idx] self.self_attn = Llama4TextAttention(config, layer_idx) self.is_moe_layer = layer_idx in config.moe_layers if self.is_moe_layer: # the 128E model interleaves dense / sparse self.feed_forward = Llama4TextMoe(config) else: self.feed_forward = Llama4TextMLP(config, intermediate_size=config.intermediate_size_mlp) self.input_layernorm = Llama4TextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Llama4TextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention attention_states, _ = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + attention_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.feed_forward(hidden_states) if self.is_moe_layer: hidden_states, _ = hidden_states hidden_states = residual + hidden_states.view(residual.shape) return hidden_states @auto_docstring class Llama4PreTrainedModel(PreTrainedModel): config: Llama4Config supports_gradient_checkpointing = True _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = False _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = True _supports_attention_backend = True def _init_weights(self, module): std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.weight.data.fill_(1.0) module.bias.data.zero_() elif isinstance(module, Llama4TextRMSNorm): module.weight.data.fill_(1.0) elif isinstance(module, Llama4TextExperts): module.gate_up_proj.data.normal_(mean=0.0, std=std) module.down_proj.data.normal_(mean=0.0, std=std) elif isinstance(module, Llama4VisionModel): module.class_embedding.data.normal_(std=module.scale) module.positional_embedding_vlm.data.normal_(std=module.scale) @auto_docstring class Llama4TextModel(Llama4PreTrainedModel): _no_split_modules = ["Llama4TextDecoderLayer"] base_model_prefix = "model" config: Llama4TextConfig _can_record_outputs = { "attentions": Llama4TextAttention, "hidden_states": Llama4TextDecoderLayer, "router_logits": Llama4TextMoe, } def __init__(self, config: Llama4TextConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Llama4TextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Llama4TextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = Llama4TextRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @can_return_tuple @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, BaseModelOutputWithPast]: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids.to(self.embed_tokens.weight.device)) if use_cache and past_key_values is None: past_key_values = DynamicCache(config=self.config) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # It may already have been prepared by e.g. `generate` if not isinstance(causal_mask_mapping := attention_mask, dict): # Prepare mask arguments mask_kwargs = { "config": self.config, "input_embeds": inputs_embeds, "attention_mask": attention_mask, "cache_position": cache_position, "past_key_values": past_key_values, "position_ids": position_ids, } # Create the masks causal_mask_mapping = { "full_attention": create_causal_mask(**mask_kwargs), "chunked_attention": create_chunked_causal_mask(**mask_kwargs), } hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers freq_cis = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers[: self.config.num_hidden_layers]: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask_mapping[decoder_layer.attention_type], position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=freq_cis, **kwargs, ) hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, ) class Llama4ForCausalLM(Llama4PreTrainedModel, GenerationMixin): _no_split_modules = ["Llama4TextDecoderLayer"] base_model_prefix = "language_model" _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} config: Llama4TextConfig def __init__(self, config: Llama4TextConfig): super().__init__(config) self.model = Llama4TextModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, Llama4ForCausalLM >>> model = Llama4ForCausalLM.from_pretrained("meta-llama4/Llama4-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama4/Llama4-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @dataclass @auto_docstring( custom_intro=""" Base class for Llava causal language model (or autoregressive) outputs. """ ) class Llama4CausalLMOutputWithPast(ModelOutput): r""" loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[Cache] = None hidden_states: Optional[tuple[torch.FloatTensor]] = None attentions: Optional[tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None class Llama4VisionMLP2(torch.nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.fc1 = nn.Linear(self.intermediate_size, config.projector_input_dim, bias=False) self.fc2 = nn.Linear(config.projector_output_dim, config.projector_output_dim, bias=False) self.activation_fn = nn.GELU() # ACT2FN[config.hidden_act] self.dropout = config.projector_dropout def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) return self.activation_fn(self.fc2(hidden_states)) class Llama4MultiModalProjector(nn.Module): def __init__(self, config): super().__init__() self.linear_1 = nn.Linear( config.vision_config.vision_output_dim, config.text_config.hidden_size, bias=False, ) def forward(self, image_features): hidden_states = self.linear_1(image_features) return hidden_states def pixel_shuffle(input_tensor, shuffle_ratio): # input_tensor: [batch_size, num_patches, channels] batch_size, num_patches, channels = input_tensor.shape patch_size = int(math.sqrt(num_patches)) input_tensor = input_tensor.view(batch_size, patch_size, patch_size, -1) batch_size, height, width, channels = input_tensor.size() reshaped_tensor = input_tensor.view(batch_size, height, int(width * shuffle_ratio), int(channels / shuffle_ratio)) reshaped_tensor = reshaped_tensor.permute(0, 2, 1, 3).contiguous() reshaped_tensor = reshaped_tensor.view( batch_size, int(height * shuffle_ratio), int(width * shuffle_ratio), int(channels / (shuffle_ratio**2)) ) reshaped_tensor = reshaped_tensor.permute(0, 2, 1, 3).contiguous() output_tensor = reshaped_tensor.view(batch_size, -1, reshaped_tensor.shape[-1]) return output_tensor class Llama4VisionPixelShuffleMLP(nn.Module): def __init__(self, config): super().__init__() self.pixel_shuffle_ratio = config.pixel_shuffle_ratio self.inner_dim = int(config.projector_input_dim // (self.pixel_shuffle_ratio**2)) self.output_dim = config.projector_output_dim self.mlp = Llama4VisionMLP2(config) def forward(self, encoded_patches: torch.Tensor) -> torch.Tensor: encoded_patches = pixel_shuffle(encoded_patches, self.pixel_shuffle_ratio) return self.mlp(encoded_patches) # TODO there is a different RoPE for vision encoder, defined as below def reshape_for_broadcast(freqs_ci: torch.Tensor, query: torch.Tensor): ndim = query.ndim shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(query.shape)] return freqs_ci.view(*shape) def vision_apply_rotary_emb( query: torch.Tensor, key: torch.Tensor, freqs_ci: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor]: query_ = torch.view_as_complex(query.float().reshape(*query.shape[:-1], -1, 2)) key_ = torch.view_as_complex(key.float().reshape(*key.shape[:-1], -1, 2)) freqs_ci = reshape_for_broadcast(freqs_ci=freqs_ci, query=query_) # freqs_ci[:,:,None,:] freqs_ci = freqs_ci.to(query_.device) query_out = torch.view_as_real(query_ * freqs_ci).flatten(3) key_out = torch.view_as_real(key_ * freqs_ci).flatten(3) return query_out.type_as(query), key_out.type_as(key) # but this drops to 8e-3 class Llama4VisionAttention(nn.Module): def __init__(self, config: Llama4VisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = config.hidden_size // config.num_attention_heads self.num_key_value_groups = 1 self.attention_dropout = config.attention_dropout self.scaling = self.head_dim**-0.5 self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=True) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=True) def forward( self, hidden_states: torch.Tensor, freqs_ci: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape) key_states = self.k_proj(hidden_states).view(hidden_shape) value_states = self.v_proj(hidden_states).view(hidden_shape) query_states, key_states = vision_apply_rotary_emb(query_states, key_states, freqs_ci=freqs_ci) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attention_interface: Callable = vision_eager_attention_forward # flex disable because breaks on TP 8, embed is 88 not power of 2 if self.config._attn_implementation not in ["eager", "flex_attention"]: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, None, dropout=0.0 if not self.training else self.attention_dropout, scaling=None, # TODO Might be enforced here for TP compatibility as scaling is not just sqrt(head_dim) is_causal=False, # HAS TO BE ENFORCED **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class Llama4VisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = nn.GELU() # ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class Llama4VisionEncoderLayer(GradientCheckpointingLayer): def __init__(self, config: Llama4VisionConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = Llama4VisionAttention(config) self.mlp = Llama4VisionMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size) def forward( self, hidden_state: torch.Tensor, freqs_ci: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, ): # Self Attention residual = hidden_state hidden_state = self.input_layernorm(hidden_state) hidden_state, attn_weights = self.self_attn( hidden_state, freqs_ci=freqs_ci, attention_mask=attention_mask, ) hidden_state = residual + hidden_state # Feed forward residual = hidden_state hidden_state = self.post_attention_layernorm(hidden_state) hidden_state = self.mlp(hidden_state) hidden_state = residual + hidden_state outputs = (hidden_state,) if output_attentions: outputs += (attn_weights,) return outputs class Llama4VisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`Llama4VisionEncoderLayer`]. Args: config: Llama4VisionConfig """ def __init__(self, config: Llama4VisionConfig): super().__init__() self.config = config self.layers = nn.ModuleList([Llama4VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.config = config def forward( self, hidden_states: torch.Tensor, freqs_ci: torch.Tensor, # TODO move this to an attribute instead of keeping it around attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_state=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, freqs_ci=freqs_ci, ) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = layer_outputs[0] if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class Llama4UnfoldConvolution(nn.Module): def __init__(self, config): super().__init__() kernel_size = config.patch_size if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) self.unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=config.patch_size) self.linear = nn.Linear( config.num_channels * kernel_size[0] * kernel_size[1], config.hidden_size, bias=False, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.unfold(hidden_states) hidden_states = hidden_states.permute(0, 2, 1) hidden_states = self.linear(hidden_states) return hidden_states class Llama4VisionRotaryEmbedding(nn.Module): def __init__(self, config): super().__init__() idx = config.image_size // config.patch_size img_idx = torch.arange(idx**2, dtype=torch.int32).reshape(idx**2, 1) img_idx = torch.cat([img_idx, img_idx[:1]], dim=0) img_idx[-1, -1] = -2 # ID_CLS_TOKEN frequencies_x = img_idx % idx # get the coordinates of the 2d matrix along x frequencies_y = img_idx // idx # get the coordinates of the 2d matrix along y freq_dim = config.hidden_size // config.num_attention_heads // 2 rope_freq = 1.0 / (config.rope_theta ** (torch.arange(0, freq_dim, 2)[: (freq_dim // 2)].float() / freq_dim)) freqs_x = ((frequencies_x + 1)[..., None] * rope_freq[None, None, :]).repeat_interleave(2, dim=-1) freqs_y = ((frequencies_y + 1)[..., None] * rope_freq[None, None, :]).repeat_interleave(2, dim=-1) freqs = torch.cat([freqs_x, freqs_y], dim=-1).float().contiguous()[..., ::2] freqs = freqs.masked_fill(img_idx.reshape(-1, 1, 1) < 0, 0) freq_cis = torch.view_as_complex(torch.stack([torch.cos(freqs), torch.sin(freqs)], dim=-1)) self.freqs_ci = freq_cis # idx**2, idx**2, idx * 2 def forward(self, hidden_states): return self.freqs_ci.to(hidden_states.device) class Llama4VisionModel(Llama4PreTrainedModel): base_model_prefix = "vision_model" _no_split_modules = ["Llama4VisionEncoderLayer"] config: Llama4VisionConfig def __init__(self, config: Llama4VisionConfig): super().__init__(config) self.image_size = config.image_size self.patch_size = config.patch_size self.hidden_size = config.hidden_size self.num_channels = config.num_channels self.num_patches = (self.image_size // self.patch_size) ** 2 + 1 self.scale = config.hidden_size**-0.5 self.patch_embedding = Llama4UnfoldConvolution(config) self.class_embedding = nn.Parameter(self.scale * torch.randn(self.hidden_size)) self.positional_embedding_vlm = nn.Parameter(self.scale * torch.randn(self.num_patches, self.hidden_size)) self.rotary_embedding = Llama4VisionRotaryEmbedding(config) # layer norms self.layernorm_pre = nn.LayerNorm(self.hidden_size) self.layernorm_post = nn.LayerNorm(self.hidden_size) # encoders self.model = Llama4VisionEncoder(config) self.vision_adapter = Llama4VisionPixelShuffleMLP(config) self.post_init() def get_input_embeddings(self): """ This function is used to fetch the first embedding layer to activate grads on inputs. """ return self.patch_embedding def forward( self, pixel_values: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BaseModelOutput, tuple[torch.Tensor, ...]]: r""" Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, MllamaVisionModel >>> checkpoint = "meta-llama/Llama-3.2-11B-Vision" >>> model = MllamaVisionModel.from_pretrained(checkpoint) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> output = model(**inputs) >>> print(output.last_hidden_state.shape) torch.Size([1, 1, 4, 1025, 7680]) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # num_concurrent_media and num_chunks are both currently 1 batch_size_times_num_tiles, num_channels, height, width = pixel_values.shape num_concurrent_media = 1 num_chunks = 1 hidden_state = self.patch_embedding(pixel_values) _, num_patches, hidden_dim = hidden_state.shape # Add cls token hidden_state = hidden_state.reshape( batch_size_times_num_tiles * num_concurrent_media * num_chunks, num_patches, hidden_dim ) class_embedding = self.class_embedding.expand(hidden_state.shape[0], 1, hidden_state.shape[-1]) hidden_state = torch.cat([hidden_state, class_embedding], dim=1) num_patches += 1 # Position embeddings hidden_state = hidden_state.reshape( batch_size_times_num_tiles * num_concurrent_media, num_chunks, num_patches, hidden_dim ) positional_embedding = self.positional_embedding_vlm.to(dtype=hidden_state.dtype, device=hidden_state.device) hidden_state = hidden_state + positional_embedding hidden_state = self.layernorm_pre(hidden_state) hidden_state = hidden_state.view(batch_size_times_num_tiles, -1, hidden_dim) freqs_ci = self.rotary_embedding(pixel_values) output = self.model( hidden_state, attention_mask=None, output_hidden_states=output_hidden_states, output_attentions=output_attentions, freqs_ci=freqs_ci, ) hidden_state = output.last_hidden_state hidden_state = self.layernorm_post(hidden_state) hidden_state = hidden_state[:, :-1, :] # now, we use Llama4VisionPixelShuffle + mlp to project embeddings hidden_state = self.vision_adapter(hidden_state) hidden_states = output.hidden_states if output_hidden_states else None if output_attentions: attentions = output[2] else: attentions = None if not return_dict: return tuple(v for v in [hidden_state, hidden_states, attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_state, hidden_states=hidden_states, attentions=attentions, ) class Llama4ForConditionalGeneration(Llama4PreTrainedModel, GenerationMixin): _no_split_modules = ["Llama4TextDecoderLayer", "Llama4VisionEncoderLayer"] _tp_plan = {} base_model_prefix = "" config: Llama4Config def __init__(self, config: Llama4Config): super().__init__(config) self.vision_model = Llama4VisionModel(config.vision_config) self.multi_modal_projector = Llama4MultiModalProjector(config) self.language_model = Llama4ForCausalLM(config.text_config) self.vocab_size = config.text_config.vocab_size self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def get_image_features( self, pixel_values: torch.FloatTensor, vision_feature_select_strategy: str, **kwargs, ): """ Obtains image last hidden states from the vision tower and apply al projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) The tensors corresponding to the input images. vision_feature_select_strategy (`str`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"` Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ if vision_feature_select_strategy not in ["default", "full"]: raise ValueError(f"Unexpected select feature strategy: {self.vision_feature_select_strategy}") kwargs = {k: v for k, v in kwargs.items() if v is not None} image_outputs = self.vision_model(pixel_values, output_hidden_states=False, **kwargs) hidden_state = image_outputs.last_hidden_state return hidden_state def get_placeholder_mask( self, input_ids: torch.LongTensor, inputs_embeds: torch.FloatTensor, image_features: torch.FloatTensor ): """ Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is equal to the length of multimodal features. If the lengths are different, an error is raised. """ if input_ids is None: special_image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) special_image_mask = special_image_mask.all(-1) else: special_image_mask = input_ids == self.config.image_token_id n_image_tokens = special_image_mask.sum() special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) if inputs_embeds[special_image_mask].numel() != image_features.numel(): raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}" ) return special_image_mask @auto_docstring @deprecate_kwarg("vision_feature_layer", version="4.58") def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[Union[int, list[int]]] = None, vision_feature_select_strategy: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, Llama4CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, LlavaForConditionalGeneration >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf") >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf") >>> prompt = "USER: \nWhat's the content of the image? ASSISTANT:" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_new_tokens=15) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_select_strategy = ( vision_feature_select_strategy if vision_feature_select_strategy is not None else self.config.vision_config.vision_feature_select_strategy ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if pixel_values is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" ) if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_features = self.get_image_features( pixel_values=pixel_values, vision_feature_select_strategy=vision_feature_select_strategy, ) vision_flat = image_features.view(-1, image_features.size(-1)) projected_vision_flat = self.multi_modal_projector(vision_flat).to( inputs_embeds.device, inputs_embeds.dtype ) special_image_mask = self.get_placeholder_mask( input_ids, inputs_embeds=inputs_embeds, image_features=projected_vision_flat ) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, projected_vision_flat) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, logits_to_keep=logits_to_keep, **kwargs, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return Llama4CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, cache_position=None, logits_to_keep=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = self.language_model.prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, logits_to_keep=logits_to_keep, **kwargs, ) if cache_position[0] == 0: # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model model_inputs["pixel_values"] = pixel_values return model_inputs __all__ = [ "Llama4PreTrainedModel", "Llama4TextModel", "Llama4VisionModel", "Llama4ForCausalLM", "Llama4ForConditionalGeneration", ]