# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union from ...audio_utils import AudioInput, make_list_of_audio from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack from ...tokenization_utils_base import PreTokenizedInput, TextInput from ...utils import logging logger = logging.get_logger(__name__) class ParakeetProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "audio_kwargs": { "sampling_rate": 16000, "padding": "longest", }, "text_kwargs": { "padding": True, "padding_side": "right", "add_special_tokens": False, }, "common_kwargs": {"return_tensors": "pt"}, } class ParakeetProcessor(ProcessorMixin): attributes = ["feature_extractor", "tokenizer"] feature_extractor_class = "ParakeetFeatureExtractor" tokenizer_class = "ParakeetTokenizerFast" def __call__( self, audio: AudioInput, text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput], None] = None, sampling_rate: Optional[int] = None, **kwargs: Unpack[ParakeetProcessorKwargs], ): audio = make_list_of_audio(audio) output_kwargs = self._merge_kwargs( ParakeetProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if sampling_rate is None: logger.warning_once( f"You've provided audio without specifying the sampling rate. It will be assumed to be {output_kwargs['audio_kwargs']['sampling_rate']}, which can result in silent errors." ) elif sampling_rate != output_kwargs["audio_kwargs"]["sampling_rate"]: raise ValueError( f"The sampling rate of the audio ({sampling_rate}) does not match the sampling rate of the processor ({output_kwargs['audio_kwargs']['sampling_rate']}). Please provide resampled the audio to the expected sampling rate." ) if audio is not None: inputs = self.feature_extractor(audio, **output_kwargs["audio_kwargs"]) if text is not None: encodings = self.tokenizer(text, **output_kwargs["text_kwargs"]) if text is None: return inputs else: inputs["labels"] = encodings["input_ids"] return inputs @property def model_input_names(self): feature_extractor_input_names = self.feature_extractor.model_input_names return feature_extractor_input_names + ["labels"] __all__ = ["ParakeetProcessor"]