# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Phi4Multimodal """ import re from typing import Optional, Union from ...audio_utils import AudioInput from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack from ...tokenization_utils_base import TextInput from ...utils import logging logger = logging.get_logger(__name__) class Phi4MultimodalProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "audio_kwargs": { "device": "cpu", }, } class Phi4MultimodalProcessor(ProcessorMixin): r""" Constructs a Phi4Multimodal processor which raps an image processor, a audio processor, and a GPT tokenizer into a single processor. [`Phi4MultimodalProcessor`] offers all the functionalities of [`Phi4MultimodalImageProcessorFast`] and [`GPT2Tokenizer`]. See the [`~Phi4MultimodalProcessor.__call__`] and [`~Phi4MultimodalProcessor.decode`] for more information. Args: image_processor (`Phi4MultimodalImageProcessorFast`): The image processor to use for images. audio_processor (`Phi4MultimodalFeatureExtractor`): The audio processor to use for audio inputs. tokenizer (`GPT2TokenizerFast`): The tokenizer to use for text. fake_image_token_pattern (`str`, *optional*, defaults to `r"<\|image_\d+\|>"`): The fake image token pattern. fake_audio_token_pattern (`str`, *optional*, defaults to `r"<\|audio_\d+\|>"`): The fake audio token pattern. """ attributes = ["image_processor", "audio_processor", "tokenizer"] tokenizer_class = "GPT2TokenizerFast" image_processor_class = "Phi4MultimodalImageProcessorFast" audio_processor_class = "Phi4MultimodalFeatureExtractor" def __init__( self, image_processor, audio_processor, tokenizer, **kwargs, ): self.image_token = tokenizer.image_token self.image_token_id = tokenizer.image_token_id self.audio_token = tokenizer.audio_token self.audio_token_id = tokenizer.audio_token_id super().__init__(image_processor, audio_processor, tokenizer, **kwargs) def __call__( self, text: Union[TextInput, list[TextInput]], images: Optional[ImageInput] = None, audio: Optional[AudioInput] = None, **kwargs: Unpack[ProcessingKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forards the `text` and `kwargs` arguments to GPT2Tokenizer's [`~GPT2Tokenizer.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to Phi4MultimodalImageProcessorFast's [`~Phi4MultimodalImageProcessorFast.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `list[str]`, `list[list[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. audio (`list[Union[np.ndarray, torch.Tensor]]`): List of the audios to be prepared. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model. - **input_image_embeds** -- Pixel values to be fed to a model. - **image_sizes** -- List of tuples specifying the size of each image in `input_image_embeds`. - **image_attention_mask** -- List of attention masks for each image in `input_image_embeds`. - **input_audio_embeds** -- Audio embeddings to be fed to a model. - **audio_embed_sizes** -- List of integers specifying the size of each audio in `input_audio_embeds`. """ output_kwargs = self._merge_kwargs(Phi4MultimodalProcessorKwargs, self.tokenizer.init_kwargs, **kwargs) image_kwargs = output_kwargs["images_kwargs"] audio_kwargs = output_kwargs["audio_kwargs"] image_inputs = self.image_processor(images, **image_kwargs) if images is not None else {} audio_inputs = self.audio_processor(audio, **audio_kwargs) if audio is not None else {} # We pop here for images as we don't need it later num_img_tokens = image_inputs.pop("num_img_tokens", []) audio_embed_sizes = audio_inputs.get("audio_embed_sizes", []) # Replace certain special tokens for compatibility if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise TypeError("Invalid input text. Please provide a string, or a list of strings") image_token = self.tokenizer.image_token audio_token = self.tokenizer.audio_token # Check that the number of special tokens is sound concatenated_prompt = "".join(text) if concatenated_prompt.count(image_token) != len(num_img_tokens): raise ValueError( "You should add as much image tokens `<|image|>` in your prompt as you pass `images` to the processor. ", f"Input contains {concatenated_prompt.count(image_token)} tokens != {len(num_img_tokens)} images", ) if concatenated_prompt.count(audio_token) != len(audio_embed_sizes): raise ValueError( "You should add as much audio tokens `<|audio|>` in your prompt as you pass `audios` to the processor. " f"Input contains {concatenated_prompt.count(audio_token)} tokens != {len(audio_embed_sizes)} audios" ) # Add appropriate number of image/audio tokens (note that the count of replacement is dynamic) image_count_iter = iter(num_img_tokens) audio_count_iter = iter(audio_embed_sizes) processed_text = [ re.sub(re.escape(image_token), lambda _: image_token * next(image_count_iter), t) for t in text ] processed_text = [ re.sub(re.escape(audio_token), lambda _: audio_token * next(audio_count_iter), t) for t in processed_text ] return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) text_inputs = self.tokenizer(processed_text, **output_kwargs["text_kwargs"]) self._check_special_mm_tokens(processed_text, text_inputs, modalities=["image"]) # prepare batch feature data = { **text_inputs, **image_inputs, **audio_inputs, } return BatchFeature(data=data, tensor_type=return_tensors) __all__ = ["Phi4MultimodalProcessor"]