# coding=utf-8 # Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Qwen3-Next model configuration""" from ...configuration_utils import PretrainedConfig, layer_type_validation from ...modeling_rope_utils import rope_config_validation from ...utils import logging logger = logging.get_logger(__name__) class Qwen3NextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Qwen3NextModel`]. It is used to instantiate a Qwen3-Next model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of Qwen3-Next-80B-A3B-Instruct [Qwen/Qwen3-Next-80B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 151936): Vocabulary size of the model. Defines the number of different tokens that can be represented by the `inputs_ids`. hidden_size (`int`, *optional*, defaults to 2048): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 5632): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 48): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 2): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. hidden_act (`str`, *optional*, defaults to `"silu"`): The non-linear activation function in the decoder. max_position_embeddings (`int`, *optional*, defaults to 32768): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE partial_rotary_factor (`float`, *optional*, defaults to 0.25): Percentage of the query and keys which will have rotary embedding. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. head_dim (`int`, *optional*, defaults to 256): Projection weights dimension in multi-head attention. linear_conv_kernel_dim (`int`, *optional*, defaults to 4): Kernel size of the convolution used in linear attention layers. linear_key_head_dim (`int`, *optional*, defaults to 128): Dimension of each key head in linear attention. linear_value_head_dim (`int`, *optional*, defaults to 128): Dimension of each value head in linear attention. linear_num_key_heads (`int`, *optional*, defaults to 16): Number of key heads used in linear attention layers. linear_num_value_heads (`int`, *optional*, defaults to 32): Number of value heads used in linear attention layers. decoder_sparse_step (`int`, *optional*, defaults to 1): The frequency of the MoE layer. moe_intermediate_size (`int`, *optional*, defaults to 512): Intermediate size of the routed expert. shared_expert_intermediate_size (`int`, *optional*, defaults to 512): Intermediate size of the shared expert. num_experts_per_tok (`int`, *optional*, defaults to 10): Number of selected experts. num_experts (`int`, *optional*, defaults to 512): Number of routed experts. norm_topk_prob (`bool`, *optional*, defaults to `True`): Whether to normalize the topk probabilities. output_router_logits (`bool`, *optional*, defaults to `False`): Whether or not the router logits should be returned by the model. Enabling this will also allow the model to output the auxiliary loss, including load balancing loss and router z-loss. router_aux_loss_coef (`float`, *optional*, defaults to 0.001): The aux loss factor for the total loss. mlp_only_layers (`list[int]`, *optional*, defaults to `[]`): Indicate which layers use Qwen3NextMLP rather than Qwen3NextSparseMoeBlock The list contains layer index, from 0 to num_layers-1 if we have num_layers layers If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity. layer_types (`list[str]`, *optional*): Types of each layer (attention or linear). ```python >>> from transformers import Qwen3NextModel, Qwen3NextConfig >>> # Initializing a Qwen3Next style configuration >>> configuration = Qwen3NextConfig() >>> # Initializing a model from the Qwen3-Next-80B-A3B style configuration >>> model = Qwen3NextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "qwen3_next" keys_to_ignore_at_inference = ["past_key_values"] base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.experts.*.gate_proj": "colwise", "layers.*.mlp.experts.*.up_proj": "colwise", "layers.*.mlp.experts.*.down_proj": "rowwise", "layers.*.mlp.shared_experts.gate_proj": "colwise", "layers.*.mlp.shared_experts.up_proj": "colwise", "layers.*.mlp.shared_experts.down_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=151936, hidden_size=2048, intermediate_size=5632, num_hidden_layers=48, num_attention_heads=16, num_key_value_heads=2, hidden_act="silu", max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, partial_rotary_factor=0.25, attention_bias=False, attention_dropout=0.0, head_dim=256, linear_conv_kernel_dim=4, linear_key_head_dim=128, linear_value_head_dim=128, linear_num_key_heads=16, linear_num_value_heads=32, decoder_sparse_step=1, moe_intermediate_size=512, shared_expert_intermediate_size=512, num_experts_per_tok=10, num_experts=512, norm_topk_prob=True, output_router_logits=False, router_aux_loss_coef=0.001, mlp_only_layers=[], layer_types=None, **kwargs, ): super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.partial_rotary_factor = partial_rotary_factor self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.head_dim = head_dim rope_config_validation(self) self.layer_types = layer_types if self.layer_types is None: interval_pattern = kwargs.get("full_attention_interval", 4) self.layer_types = [ "linear_attention" if bool((i + 1) % interval_pattern) else "full_attention" for i in range(self.num_hidden_layers) ] layer_type_validation(self.layer_types, self.num_hidden_layers) # linear attention part self.linear_conv_kernel_dim = linear_conv_kernel_dim self.linear_key_head_dim = linear_key_head_dim self.linear_value_head_dim = linear_value_head_dim self.linear_num_key_heads = linear_num_key_heads self.linear_num_value_heads = linear_num_value_heads # MoE arguments self.decoder_sparse_step = decoder_sparse_step self.moe_intermediate_size = moe_intermediate_size self.shared_expert_intermediate_size = shared_expert_intermediate_size self.num_experts_per_tok = num_experts_per_tok self.num_experts = num_experts self.norm_topk_prob = norm_topk_prob self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef self.mlp_only_layers = mlp_only_layers __all__ = ["Qwen3NextConfig"]