# coding=utf-8 # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch RecurrentGemma model.""" import math from typing import Optional, Union import torch from torch import nn from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithNoAttention, CausalLMOutput from ...modeling_utils import PreTrainedModel from ...utils import auto_docstring, logging from ...utils.import_utils import is_torchdynamo_compiling from .configuration_recurrent_gemma import RecurrentGemmaConfig logger = logging.get_logger(__name__) _MAX_SQRT_GRADIENT = 1000.0 # Copied from transformers.models.gemma.modeling_gemma.GemmaRMSNorm with Gemma->RecurrentGemma class RecurrentGemmaRMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.zeros(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()) # Llama does x.to(float16) * w whilst RecurrentGemma is (x * w).to(float16) # See https://github.com/huggingface/transformers/pull/29402 output = output * (1.0 + self.weight.float()) return output.type_as(x) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.eps}" class RecurrentGemmaRotaryEmbedding(nn.Module): inv_freq: torch.Tensor # fix linting for `register_buffer` def __init__(self, dim, base=10000, device=None): super().__init__() self.dim = dim self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) @torch.no_grad() def forward(self, x, position_ids, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] self.inv_freq.to(x.device) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class RecurrentGemmaSdpaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: RecurrentGemmaConfig): super().__init__() self.config = config self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_attention_heads = config.num_attention_heads self.head_dim = config.head_dim self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads self.partial_rotary_factor = config.partial_rotary_factor self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, self.hidden_size, bias=True) self.rotary_emb = RecurrentGemmaRotaryEmbedding( int(self.partial_rotary_factor * self.head_dim), base=config.rope_theta, ) def forward( self, hidden_states: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, cache_position: Optional[torch.LongTensor] = None, use_cache: bool = False, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) # Partial rotary embedding query_rot, query_pass = torch.chunk(query_states, int(1 / self.partial_rotary_factor), dim=-1) key_rot, key_pass = torch.chunk(key_states, int(1 / self.partial_rotary_factor), dim=-1) query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if use_cache and hasattr(self, "key_states"): cache_kwargs = {"cache_position": cache_position} key_states, value_states = self._update_cache(key_states, value_states, **cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] attn_output = torch.nn.functional.scaled_dot_product_attention( query_states.contiguous(), key_states.contiguous(), value_states.contiguous(), attn_mask=causal_mask, # pretty much a must for sliding window backend! dropout_p=self.attention_dropout if self.training else 0.0, scale=self.head_dim**-0.5, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output def _setup_cache(self, batch_size, device, dtype=None): if dtype is None and self.config.dtype is not None: dtype = self.config.dtype dtype = dtype if dtype is not None else torch.float32 cache_shape = (batch_size, self.num_key_value_heads, self.config.attention_window_size, self.head_dim) self.value_states = torch.zeros(cache_shape, dtype=dtype, device=device) self.key_states = torch.zeros(cache_shape, dtype=dtype, device=device) @torch.no_grad() def _update_cache(self, key_states, value_states, **cache_kwargs): """ torch.compile compatible sliding window. Computes the `indices` based on `cache_position >= self.config.attention_window_size - 1`. The `to_shift` is only true once we are above attention_window_size. Thus with `attention_window_size==64`: indices = (slicing + to_shift[-1].int()-1) % self.config.attention_window_size tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 0]) We overwrite the cache using these, then we always write at cache_position (clamped to `attention_window_size`) """ cache_position = cache_kwargs.get("cache_position") if cache_position.shape[0] > self.config.attention_window_size: # int indexing -> device sync? in compile, use tensor k_out = key_states[:, :, -self.config.attention_window_size :, :] v_out = value_states[:, :, -self.config.attention_window_size :, :] else: slicing = torch.ones( self.config.attention_window_size, dtype=torch.long, device=value_states.device ).cumsum(0) cache_position = cache_position.clamp(0, self.config.attention_window_size - 1) to_shift = cache_position >= self.config.attention_window_size - 1 indices = (slicing + to_shift[-1].int() - 1) % self.config.attention_window_size k_out, v_out = self.key_states.to(key_states.device), self.value_states.to(value_states.device) k_out = k_out[:, :, indices] v_out = v_out[:, :, indices] k_out[:, :, cache_position] = key_states.to(k_out.dtype) v_out[:, :, cache_position] = value_states.to(v_out.dtype) self.key_states, self.value_states = k_out, v_out return k_out, v_out class SqrtBoundDerivative(torch.autograd.Function): """Computes a square root with a gradient clipped at `_MAX_SQRT_GRADIENT`.""" @staticmethod def forward(ctx, x: torch.Tensor) -> torch.Tensor: """The forward pass, which is a normal `sqrt`.""" ctx.save_for_backward(x) return torch.sqrt(x) @staticmethod def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: """The backward pass, which clips the `sqrt` gradient.""" (x,) = ctx.saved_tensors clipped_x_times_4 = torch.clip(4.0 * x, min=1 / (_MAX_SQRT_GRADIENT**2)) return grad_output / torch.sqrt(clipped_x_times_4) class RecurrentGemmaRglru(nn.Module): """A Real-Gated Linear Recurrent Unit (RG-LRU) layer.""" def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.block_width = config.lru_width // self.num_attention_heads self.recurrent_param = nn.Parameter(torch.empty([config.lru_width])) self.input_gate_weight = nn.Parameter( torch.empty([self.num_attention_heads, self.block_width, self.block_width]) ) self.input_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width])) self.recurrent_gate_weight = nn.Parameter( torch.empty([self.num_attention_heads, self.block_width, self.block_width]) ) self.recurrent_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width])) self.recurrent_states = None def forward( self, activations: torch.Tensor, position_ids: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor]: batch_size, seq_len, lru_width = activations.shape reset = position_ids[:, :, None] == 0 reshape_act = activations.reshape(batch_size * seq_len, self.num_attention_heads, self.block_width) reshape_act = reshape_act.permute(1, 0, 2) res = torch.baddbmm(self.input_gate_bias[:, None, :], reshape_act, self.input_gate_weight) input_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width)) res = torch.baddbmm(self.recurrent_gate_bias[:, None, :], reshape_act, self.recurrent_gate_weight) recurrent_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width)) # Compute the parameter `A` of the recurrence. log_recurrent_gate = -8.0 * recurrent_gate * nn.functional.softplus(self.recurrent_param) recurrent_gate = torch.exp(log_recurrent_gate) a_square = torch.exp(2 * log_recurrent_gate) # Gate the input. gated_inputs = activations * input_gate # Apply gamma normalization to the input. We need to clip the derivatives of # `sqrt` in order to prevent NaNs during training in bfloat16. TODO a bit annoying multiplier = 1 tracing = isinstance(activations, torch.fx.Proxy) or is_torchdynamo_compiling() if not torch.jit.is_tracing() and not tracing: multiplier = SqrtBoundDerivative.apply(1 - a_square) multiplier = reset + ~reset * multiplier normalized_x = gated_inputs * multiplier.type(activations.dtype) hidden_states, recurrent_states = self._rnn_scan( hidden_states=normalized_x, recurrent_gate=recurrent_gate, reset=reset, recurrent_states=self.recurrent_states, ) self.recurrent_states = recurrent_states return hidden_states # TODO refactor def _rnn_scan( self, hidden_states: torch.Tensor, recurrent_gate: torch.Tensor, reset: torch.Tensor, recurrent_states: Union[torch.Tensor, None], acc_dtype: torch.dtype = torch.float32, ) -> tuple[torch.Tensor, torch.Tensor]: """Runs the recurrence of a linear RNN. Args: hidden_states: The input sequence. recurrent_gate: The diagonal of the recurrence matrix `A`. reset: Indicator of document boundaries, e.g. when to reset the hidden state of the RNN. recurrent_states: The initial hidden state. acc_dtype: The data type for the accumulation. Returns: The output of the linear recurrence. """ # Multiply `a` by the reset. recurrent_gate = recurrent_gate * ~reset if hidden_states.shape[1] == 1: # Using scan in sampling mode. if recurrent_states is None: # same here, when decoding you always have cache return hidden_states, hidden_states[:, 0].type(acc_dtype) else: contextualized_states = recurrent_gate.type(acc_dtype) * recurrent_states[:, None].to( recurrent_gate.device ) contextualized_states += hidden_states.type(acc_dtype) return contextualized_states.type(hidden_states.dtype), contextualized_states[:, -1] else: # Using scan in linear mode. if recurrent_states is None: recurrent_states = torch.zeros(hidden_states[:, 0].shape, dtype=acc_dtype, device=hidden_states.device) contextualized_states = torch.zeros_like(hidden_states) for t in range(hidden_states.shape[1]): recurrent_states = recurrent_gate[:, t].type(acc_dtype) * recurrent_states.to(recurrent_gate.device) recurrent_states = recurrent_states + hidden_states[:, t].type(acc_dtype) contextualized_states[:, t] = recurrent_states.type(hidden_states.dtype) return contextualized_states, recurrent_states class RecurrentGemmaRecurrentBlock(nn.Module): """Griffin and Hawk's recurrent block.""" def __init__(self, config): super().__init__() self.lru_width = config.lru_width self.hidden_size = config.hidden_size self.linear_y = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width) self.linear_x = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width) self.linear_out = nn.Linear(in_features=config.lru_width, out_features=config.hidden_size) self.conv1d_width = config.conv1d_width self.conv_1d = nn.Conv1d( config.lru_width, config.lru_width, kernel_size=config.conv1d_width, groups=config.lru_width, padding=config.conv1d_width - 1, ) self.rg_lru = RecurrentGemmaRglru(config) self.act_fn = ACT2FN[config.hidden_activation] self.conv1d_state = None def forward( self, input_states: torch.Tensor, position_ids: torch.Tensor, attention_mask: torch.Tensor, cache_position: torch.Tensor, use_cache: bool = True, ) -> tuple[torch.Tensor, dict[str, torch.Tensor]]: _, seq_len, _ = input_states.shape y_branch = self.linear_y(input_states) y_branch = self.act_fn(y_branch) x_branch = self.linear_x(input_states) x_branch = x_branch.transpose(1, 2) if use_cache: if cache_position.shape[0] != 1: # prefill self.conv1d_state = nn.functional.pad(x_branch, (self.conv1d_width - x_branch.shape[-1] - 1, 0)) x_branch = self.conv_1d(x_branch)[..., :seq_len] else: # decoding conv_state = torch.cat((self.conv1d_state, x_branch), -1) x_branch = torch.sum(conv_state * self.conv_1d.weight[:, 0, :], dim=-1) + self.conv_1d.bias x_branch = x_branch.unsqueeze(-1) self.conv1d_state = conv_state[:, :, 1:] else: x_branch = self.conv_1d(x_branch)[..., :seq_len] x_branch = self.rg_lru(x_branch.transpose(1, 2), position_ids) hidden_states = x_branch * y_branch hidden_states = self.linear_out(hidden_states) return hidden_states def _setup_cache(self, batch, device, dtype): # recurrent_states always computed in full precision self.rg_lru.recurrent_states = torch.zeros((batch, self.lru_width), device=device, dtype=torch.float32) self.conv1d_state = torch.zeros((batch, self.hidden_size, self.conv1d_width - 1), device=device, dtype=dtype) TEMPORAL_BLOCK_CLASSES = {"recurrent": RecurrentGemmaRecurrentBlock, "attention": RecurrentGemmaSdpaAttention} class RecurrentGemmaMlp(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size // 2 self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) self.act_fn = ACT2FN[config.hidden_activation] def forward(self, hidden_states): gate = self.act_fn(self.gate_proj(hidden_states)) return self.down_proj(gate * self.up_proj(hidden_states)) class RecurrentGemmaDecoderLayer(GradientCheckpointingLayer): """Griffin and Hawk's residual block.""" def __init__(self, config, layer_idx): super().__init__() self.temporal_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.temporal_block = TEMPORAL_BLOCK_CLASSES[config.layers_block_type[layer_idx]](config) self.channel_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.mlp_block = RecurrentGemmaMlp(config) def forward( self, activations: torch.Tensor, position_ids: torch.Tensor, attention_mask: torch.Tensor, cache_position: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, ) -> tuple[torch.Tensor, dict[str, torch.Tensor]]: raw_activations = activations inputs_normalized = self.temporal_pre_norm(raw_activations) # RMSNorm introduces slight slight differences hidden_states = self.temporal_block( inputs_normalized, position_ids, attention_mask, cache_position=cache_position, use_cache=use_cache ) residual = hidden_states + raw_activations hidden_states = self.channel_pre_norm(residual) hidden_states = self.mlp_block(hidden_states) hidden_states = hidden_states + residual return hidden_states @auto_docstring class RecurrentGemmaPreTrainedModel(PreTrainedModel): config: RecurrentGemmaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["RecurrentGemmaDecoderLayer"] _skip_keys_device_placement = ["cache"] _supports_flash_attn = False _supports_sdpa = False # we can't compare with eager for now def _init_weights(self, module): std = math.sqrt(self.config.w_init_variance_scale / self.config.conv1d_width) if isinstance(module, nn.Conv1d): torch.nn.init.normal_(module.weight, mean=0.0, std=std) torch.nn.init.zeros_(module.bias) elif isinstance(module, RecurrentGemmaSdpaAttention): torch.nn.init.normal_(module.q_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) torch.nn.init.normal_(module.k_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) torch.nn.init.normal_(module.v_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) std = math.sqrt(self.config.final_w_init_variance_scale / self.config.hidden_size) torch.nn.init.normal_(module.o_proj.weight, mean=0.0, std=std) elif isinstance(module, RecurrentGemmaRecurrentBlock): torch.nn.init.zeros_(module.linear_x.bias) torch.nn.init.normal_(module.linear_x.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) torch.nn.init.zeros_(module.linear_y.bias) torch.nn.init.normal_(module.linear_y.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) std = math.sqrt(self.config.final_w_init_variance_scale / self.config.lru_width) torch.nn.init.normal_(module.linear_out.weight, mean=0.0, std=std) torch.nn.init.zeros_(module.linear_out.bias) elif isinstance(module, RecurrentGemmaRglru): std = math.sqrt( self.config.w_init_variance_scale / (self.config.lru_width // self.config.num_attention_heads) ) torch.nn.init.normal_(module.input_gate_weight, mean=0.0, std=std) torch.nn.init.normal_(module.recurrent_gate_weight, mean=0.0, std=std) torch.nn.init.zeros_(module.input_gate_bias) torch.nn.init.zeros_(module.recurrent_gate_bias) module.recurrent_param.data.uniform_(0.9**2 + 1e-8, 0.999**2 + 1e-8) module.recurrent_param.data.log_().mul_(0.5) module.recurrent_param.data.neg_().exp_().sub_(1.0).log_() elif isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=std) if getattr(module, "bias", None) is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() # We initialize with 0s to be 1 centered as the RMSNorm here does (1 + weight) elif isinstance(module, RecurrentGemmaRMSNorm): module.weight.data.zero_() def _setup_cache(self, config, batch, device, dtype): layers = getattr(self, "model", self).layers for layer in layers: layer.temporal_block._setup_cache(batch, device, dtype) def reset_cache(self, batch, device, dtype): pass @auto_docstring class RecurrentGemmaModel(RecurrentGemmaPreTrainedModel): def __init__(self, config: RecurrentGemmaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.final_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False self.register_buffer( "normalizer", torch.tensor(self.config.hidden_size**0.5, dtype=torch.bfloat16), persistent=False ) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, cache_position: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds if use_cache and inputs_embeds.shape[1] != 1: # TODO let's maybe only call in the `generate`? self._setup_cache(self.config, hidden_states.shape[0], hidden_states.device, hidden_states.dtype) if cache_position is None: cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) hidden_states = hidden_states * self.normalizer.type(hidden_states.dtype) all_hidden_states = () if output_hidden_states else None for i, residual_block in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) hidden_states = residual_block(hidden_states, position_ids, causal_mask, cache_position, use_cache) hidden_states = self.final_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) # Ignore copy def _update_causal_mask(self, attention_mask, input_tensor, cache_position): dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] target_length = max(self.config.attention_window_size, sequence_length) diagonal = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) causal_mask = diagonal if sequence_length != 1: causal_mask = torch.triu(diagonal, diagonal=-1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: # Crop the attention mask to the target length. attention_mask = attention_mask[:, -target_length:] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) if attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"]: # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask # TODO: re-enable check: Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->RECURRENTGEMMA,Llama->RecurrentGemma,llama->gemma @auto_docstring class RecurrentGemmaForCausalLM(RecurrentGemmaPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = RecurrentGemmaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() @auto_docstring # Ignore copy def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_cache: Optional[bool] = None, **kwargs, ) -> Union[tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, RecurrentGemmaForCausalLM >>> model = RecurrentGemmaForCausalLM.from_pretrained("google/recurrentgemma-2b") >>> tokenizer = AutoTokenizer.from_pretrained("google/recurrentgemma-2b") >>> prompt = "What is your favorite condiment?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is your favorite condiment?" ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True outputs = self.model( input_ids=input_ids, position_ids=position_ids, cache_position=cache_position, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) # Soft-cap the logits TODO remove if always done. # if self.config.logits_soft_cap is not None: cap = self.config.logits_soft_cap logits = nn.functional.tanh(logits / cap) * cap loss = None if labels is not None: # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.float() loss = self.loss_function( logits, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) __all__ = ["RecurrentGemmaForCausalLM", "RecurrentGemmaModel", "RecurrentGemmaPreTrainedModel"]