# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/sam2_video/modular_sam2_video.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_sam2_video.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 The Meta AI Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig from ..auto import CONFIG_MAPPING, AutoConfig class Sam2VideoPromptEncoderConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Sam2VideoPromptEncoder`]. The [`Sam2VideoPromptEncoder`] module is used to encode the input 2D points and bounding boxes. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the hidden states. image_size (`int`, *optional*, defaults to 1024): The expected output resolution of the image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. mask_input_channels (`int`, *optional*, defaults to 16): The number of channels to be fed to the `MaskDecoder` module. num_point_embeddings (`int`, *optional*, defaults to 4): The number of point embeddings to be used. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function in the encoder and pooler. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. scale (`float`, *optional*, defaults to 1): The scale factor for the prompt encoder. """ base_config_key = "prompt_encoder_config" def __init__( self, hidden_size=256, image_size=1024, patch_size=16, mask_input_channels=16, num_point_embeddings=4, hidden_act="gelu", layer_norm_eps=1e-6, scale=1, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.image_size = image_size self.patch_size = patch_size self.mask_input_channels = mask_input_channels self.num_point_embeddings = num_point_embeddings self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.scale = scale class Sam2VideoMaskDecoderConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Sam2VideoMaskDecoder`]. It is used to instantiate a SAM2_VIDEO memory encoder according to the specified arguments, defining the model architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the hidden states. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function in the SAM2_VIDEO mask decoder. mlp_dim (`int`, *optional*, defaults to 2048): The dimension of the MLP in the two-way transformer. num_hidden_layers (`int`, *optional*, defaults to 2): The number of hidden layers in the two-way transformer. num_attention_heads (`int`, *optional*, defaults to 8): The number of attention heads in the two-way transformer. attention_downsample_rate (`int`, *optional*, defaults to 2): The downsample rate for the attention layers. num_multimask_outputs (`int`, *optional*, defaults to 3): The number of multimask outputs. iou_head_depth (`int`, *optional*, defaults to 3): The depth of the IoU head. iou_head_hidden_dim (`int`, *optional*, defaults to 256): The hidden dimension of the IoU head. dynamic_multimask_via_stability (`bool`, *optional*, defaults to `True`): Whether to use dynamic multimask via stability. dynamic_multimask_stability_delta (`float`, *optional*, defaults to 0.05): The stability delta for the dynamic multimask. dynamic_multimask_stability_thresh (`float`, *optional*, defaults to 0.98): The stability threshold for the dynamic multimask. """ base_config_key = "mask_decoder_config" def __init__( self, hidden_size=256, hidden_act="gelu", mlp_dim=2048, num_hidden_layers=2, num_attention_heads=8, attention_downsample_rate=2, num_multimask_outputs=3, iou_head_depth=3, iou_head_hidden_dim=256, dynamic_multimask_via_stability=True, dynamic_multimask_stability_delta=0.05, dynamic_multimask_stability_thresh=0.98, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_multimask_outputs = num_multimask_outputs self.hidden_act = hidden_act self.iou_head_depth = iou_head_depth self.iou_head_hidden_dim = iou_head_hidden_dim self.dynamic_multimask_via_stability = dynamic_multimask_via_stability self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh # TwoWayTransformer configuration self.num_hidden_layers = num_hidden_layers self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.mlp_dim = mlp_dim self.attention_downsample_rate = attention_downsample_rate class Sam2VideoConfig(PretrainedConfig): r""" [`Sam2Config`] is the configuration class to store the configuration of a [`Sam2Model`]. It is used to instantiate a SAM2 model according to the specified arguments, defining the memory attention, memory encoder, and image encoder configs. Instantiating a configuration defaults will yield a similar configuration to that of the SAM 2.1 Hiera-tiny [facebook/sam2.1-hiera-tiny](https://huggingface.co/facebook/sam2.1-hiera-tiny) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (Union[`dict`, `Sam2VisionConfig`], *optional*): Dictionary of configuration options used to initialize [`Sam2VisionConfig`]. prompt_encoder_config (Union[`dict`, `Sam2PromptEncoderConfig`], *optional*): Dictionary of configuration options used to initialize [`Sam2PromptEncoderConfig`]. mask_decoder_config (Union[`dict`, `Sam2MaskDecoderConfig`], *optional*): Dictionary of configuration options used to initialize [`Sam2MaskDecoderConfig`]. initializer_range (`float`, *optional*, defaults to 0.02): Standard deviation for parameter initialization. num_maskmem (`int`, *optional*, defaults to 7): The number of memory slots for the mask memory. image_size (`int`, *optional*, defaults to 1024): The size of the input images. sigmoid_scale_for_mem_enc (`float`, *optional*, defaults to 20.0): Scale factor for the sigmoid function in the memory encoder. sigmoid_bias_for_mem_enc (`float`, *optional*, defaults to -10.0): Bias for the sigmoid function in the memory encoder. enable_occlusion_spatial_embedding (`bool`, *optional*, defaults to `True`): Whether to enable spatial embedding for occlusions. multimask_output_in_sam (`bool`, *optional*, defaults to `True`): Whether to output multiple masks from the SAM head. multimask_min_pt_num (`int`, *optional*, defaults to 0): The minimum number of points to trigger multimask output. multimask_max_pt_num (`int`, *optional*, defaults to 1): The maximum number of points to trigger multimask output. multimask_output_for_tracking (`bool`, *optional*, defaults to `True`): Whether to use multimask output for tracking. max_object_pointers_in_encoder (`int`, *optional*, defaults to 16): The maximum number of object pointers in the encoder. enable_temporal_pos_encoding_for_object_pointers (`bool`, *optional*, defaults to `True`): Whether to enable temporal positional encoding for object pointers. memory_attention_hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the memory attention hidden states. memory_attention_num_layers (`int`, *optional*, defaults to 4): The number of layers in the memory attention module. memory_attention_num_attention_heads (`int`, *optional*, defaults to 1): Number of attention heads for each attention layer in the memory attention. memory_attention_downsample_rate (`int`, *optional*, defaults to 1): The downsample rate for the attention layers. memory_attention_feed_forward_hidden_size (`int`, *optional*, defaults to 2048): The dimension of the feedforward network in the memory attention module. memory_attention_feed_forward_hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function in the feedforward network in the memory attention module. memory_attention_dropout (`float`, *optional*, defaults to 0.1): The dropout rate for the memory attention module. memory_attention_rope_theta (`float`, *optional*, defaults to 10000): The Rope theta parameter. memory_attention_rope_feat_sizes (`list[int]`, *optional*, defaults to `[64, 64]`): The feature sizes for the Rope positional encoding. memory_attention_rope_dropout (`float`, *optional*, defaults to 0.1): The dropout rate for the Rope positional encoding. memory_encoder_hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the memory encoder hidden states. memory_encoder_output_channels (`int`, *optional*, defaults to 64): The number of output channels for the memory encoder. mask_downsampler_embed_dim (`int`, *optional*, defaults to 256): The dimension of the mask downsampler embedding. mask_downsampler_kernel_size (`int`, *optional*, defaults to 3): The kernel size for the mask downsampler. mask_downsampler_stride (`int`, *optional*, defaults to 2): The stride for the mask downsampler. mask_downsampler_padding (`int`, *optional*, defaults to 1): The padding for the mask downsampler. mask_downsampler_total_stride (`int`, *optional*, defaults to 16): The total stride for the mask downsampler. mask_downsampler_hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function in the mask downsampler. memory_fuser_num_layers (`int`, *optional*, defaults to 2): The number of layers in the memory fuser. memory_fuser_embed_dim (`int`, *optional*, defaults to 256): The dimension of the embedding layer in the memory fuser. memory_fuser_intermediate_dim (`int`, *optional*, defaults to 1024): The dimension of the intermediate layer in the memory fuser. memory_fuser_kernel_size (`int`, *optional*, defaults to 7): The kernel size for the memory fuser. memory_fuser_padding (`int`, *optional*, defaults to 3): The padding for the memory fuser. memory_fuser_layer_scale_init_value (`float`, *optional*, defaults to 1e-06): The initial value for the layer scale in the memory fuser. memory_fuser_hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function in the memory fuser. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ( ... Sam2VisionConfig, ... Sam2PromptEncoderConfig, ... Sam2MaskDecoderConfig, ... Sam2Model, ... ) >>> # Initializing a Sam2Config with `"facebook/sam2.1_hiera_tiny"` style configuration >>> configuration = Sam2config() >>> # Initializing a Sam2Model (with random weights) from the `"facebook/sam2.1_hiera_tiny"` style configuration >>> model = Sam2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a Sam2Config from a Sam2VisionConfig, Sam2PromptEncoderConfig, and Sam2MaskDecoderConfig >>> # Initializing SAM2 vision encoder, memory attention, and memory encoder configurations >>> vision_config = Sam2VisionConfig() >>> prompt_encoder_config = Sam2PromptEncoderConfig() >>> mask_decoder_config = Sam2MaskDecoderConfig() >>> config = Sam2Config(vision_config, prompt_encoder_config, mask_decoder_config) ```""" model_type = "sam2_video" sub_configs = { "vision_config": AutoConfig, "prompt_encoder_config": Sam2VideoPromptEncoderConfig, "mask_decoder_config": Sam2VideoMaskDecoderConfig, } def __init__( self, vision_config=None, prompt_encoder_config=None, mask_decoder_config=None, initializer_range=0.02, num_maskmem=7, image_size=1024, sigmoid_scale_for_mem_enc=20.0, sigmoid_bias_for_mem_enc=-10.0, enable_occlusion_spatial_embedding=True, multimask_output_in_sam=True, multimask_min_pt_num=0, multimask_max_pt_num=1, multimask_output_for_tracking=True, max_object_pointers_in_encoder=16, enable_temporal_pos_encoding_for_object_pointers=True, # memory attention memory_attention_hidden_size=256, memory_attention_num_layers=4, memory_attention_num_attention_heads=1, memory_attention_downsample_rate=1, memory_attention_feed_forward_hidden_size=2048, memory_attention_feed_forward_hidden_act="relu", memory_attention_dropout=0.1, memory_attention_rope_theta=10000, memory_attention_rope_feat_sizes=None, memory_attention_rope_dropout=0.1, # memory encoder memory_encoder_hidden_size=256, memory_encoder_output_channels=64, mask_downsampler_embed_dim=256, mask_downsampler_kernel_size=3, mask_downsampler_stride=2, mask_downsampler_padding=1, mask_downsampler_total_stride=16, mask_downsampler_hidden_act="gelu", memory_fuser_num_layers=2, memory_fuser_embed_dim=256, memory_fuser_intermediate_dim=1024, memory_fuser_kernel_size=7, memory_fuser_padding=3, memory_fuser_layer_scale_init_value=1e-6, memory_fuser_hidden_act="gelu", **kwargs, ): super().__init__(**kwargs) vision_config = vision_config if vision_config is not None else {} prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {} mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {} memory_attention_rope_feat_sizes = ( [64, 64] if memory_attention_rope_feat_sizes is None else memory_attention_rope_feat_sizes ) if isinstance(vision_config, dict): vision_config["model_type"] = vision_config.get("model_type", "sam2_vision_model") vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) if isinstance(prompt_encoder_config, Sam2VideoPromptEncoderConfig): prompt_encoder_config = prompt_encoder_config.to_dict() if isinstance(mask_decoder_config, Sam2VideoMaskDecoderConfig): mask_decoder_config = mask_decoder_config.to_dict() self.vision_config = vision_config self.prompt_encoder_config = Sam2VideoPromptEncoderConfig(**prompt_encoder_config) self.mask_decoder_config = Sam2VideoMaskDecoderConfig(**mask_decoder_config) self.initializer_range = initializer_range self.num_maskmem = num_maskmem # default 1 input frame + 6 previous frames self.image_size = image_size self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc self.multimask_output_in_sam = multimask_output_in_sam self.multimask_min_pt_num = multimask_min_pt_num self.multimask_max_pt_num = multimask_max_pt_num self.multimask_output_for_tracking = multimask_output_for_tracking self.max_object_pointers_in_encoder = max_object_pointers_in_encoder # The next 4 are True for sam2.1 and False for sam2 self.enable_occlusion_spatial_embedding = enable_occlusion_spatial_embedding self.enable_temporal_pos_encoding_for_object_pointers = enable_temporal_pos_encoding_for_object_pointers # memory attention self.memory_attention_hidden_size = memory_attention_hidden_size self.memory_attention_num_layers = memory_attention_num_layers self.memory_attention_num_attention_heads = memory_attention_num_attention_heads self.memory_attention_downsample_rate = memory_attention_downsample_rate self.memory_attention_feed_forward_hidden_size = memory_attention_feed_forward_hidden_size self.memory_attention_feed_forward_hidden_act = memory_attention_feed_forward_hidden_act self.memory_attention_dropout = memory_attention_dropout self.memory_attention_rope_theta = memory_attention_rope_theta self.memory_attention_rope_feat_sizes = memory_attention_rope_feat_sizes self.memory_attention_rope_dropout = memory_attention_rope_dropout # memory encoder self.memory_encoder_hidden_size = memory_encoder_hidden_size self.memory_encoder_output_channels = memory_encoder_output_channels self.mask_downsampler_embed_dim = mask_downsampler_embed_dim self.mask_downsampler_kernel_size = mask_downsampler_kernel_size self.mask_downsampler_stride = mask_downsampler_stride self.mask_downsampler_padding = mask_downsampler_padding self.mask_downsampler_total_stride = mask_downsampler_total_stride self.mask_downsampler_hidden_act = mask_downsampler_hidden_act self.memory_fuser_num_layers = memory_fuser_num_layers self.memory_fuser_embed_dim = memory_fuser_embed_dim self.memory_fuser_intermediate_dim = memory_fuser_intermediate_dim self.memory_fuser_kernel_size = memory_fuser_kernel_size self.memory_fuser_padding = memory_fuser_padding self.memory_fuser_layer_scale_init_value = memory_fuser_layer_scale_init_value self.memory_fuser_hidden_act = memory_fuser_hidden_act __all__ = ["Sam2VideoMaskDecoderConfig", "Sam2VideoPromptEncoderConfig", "Sam2VideoConfig"]