# Copyright 2025 Bytedance-Seed Ltd and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SeedOss model.""" from typing import Callable, Optional import torch import torch.nn as nn from ...activations import ACT2FN from ...cache_utils import Cache from ...modeling_outputs import CausalLMOutputWithPast from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import TransformersKwargs, logging from ...utils.deprecation import deprecate_kwarg from ..llama.modeling_llama import ( LlamaDecoderLayer, LlamaForCausalLM, LlamaForQuestionAnswering, LlamaForSequenceClassification, LlamaForTokenClassification, LlamaModel, LlamaPreTrainedModel, LlamaRMSNorm, apply_rotary_pos_emb, eager_attention_forward, ) from .configuration_seed_oss import SeedOssConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "ByteDance-Seed/SeedOss-36B" class SeedOssRMSNorm(LlamaRMSNorm): pass class SeedOssMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] self.residual_dropout = config.residual_dropout def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) down_proj = nn.functional.dropout(down_proj, p=self.residual_dropout, training=self.training) return down_proj class SeedOssAttention(nn.Module): def __init__(self, config: SeedOssConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = config.head_dim self.num_key_value_heads = config.num_key_value_heads self.num_attention_heads = config.num_attention_heads self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, self.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( self.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_out_bias ) self.residual_dropout = config.residual_dropout @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, torch.Tensor]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_values is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) attn_output = nn.functional.dropout(attn_output, p=self.residual_dropout, training=self.training) return attn_output, attn_weights class SeedOssDecoderLayer(LlamaDecoderLayer): pass class SeedOssPreTrainedModel(LlamaPreTrainedModel): pass class SeedOssModel(LlamaModel): pass class SeedOssForCausalLM(LlamaForCausalLM): def forward( self, **super_kwargs: Unpack[TransformersKwargs], ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, SeedOssForCausalLM >>> model = SeedOssForCausalLM.from_pretrained("ByteDance-Seed/SeedOss-36B") >>> tokenizer = AutoTokenizer.from_pretrained("ByteDance-Seed/SeedOss-36B") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" return super().forward(**super_kwargs) class SeedOssForSequenceClassification(LlamaForSequenceClassification): pass class SeedOssForTokenClassification(LlamaForTokenClassification): pass class SeedOssForQuestionAnswering(LlamaForQuestionAnswering): pass __all__ = [ "SeedOssForCausalLM", "SeedOssForQuestionAnswering", "SeedOssPreTrainedModel", "SeedOssModel", "SeedOssForSequenceClassification", "SeedOssForTokenClassification", ]