# coding=utf-8 # Copyright 2025 the Fast authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for TextNet.""" from typing import Optional, Union import torch from torchvision.transforms.v2 import functional as F from ...image_processing_utils import BatchFeature from ...image_processing_utils_fast import BaseImageProcessorFast, DefaultFastImageProcessorKwargs from ...image_transforms import ( get_resize_output_image_size, group_images_by_shape, reorder_images, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, SizeDict, ) from ...processing_utils import Unpack from ...utils import ( TensorType, auto_docstring, ) class TextNetFastImageProcessorKwargs(DefaultFastImageProcessorKwargs): """ size_divisor (`int`, *optional*, defaults to 32): Ensures height and width are rounded to a multiple of this value after resizing. """ size_divisor: Optional[int] @auto_docstring class TextNetImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BILINEAR image_mean = IMAGENET_DEFAULT_MEAN image_std = IMAGENET_DEFAULT_STD size = {"shortest_edge": 640} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = False do_rescale = True do_normalize = True do_convert_rgb = True size_divisor = 32 valid_kwargs = TextNetFastImageProcessorKwargs def __init__(self, **kwargs: Unpack[TextNetFastImageProcessorKwargs]) -> None: super().__init__(**kwargs) @auto_docstring def preprocess(self, images: ImageInput, **kwargs: Unpack[TextNetFastImageProcessorKwargs]) -> BatchFeature: return super().preprocess(images, **kwargs) def resize( self, image: "torch.Tensor", size: SizeDict, interpolation: Optional["F.InterpolationMode"] = None, antialias: bool = True, size_divisor: int = 32, **kwargs, ) -> "torch.Tensor": if size.shortest_edge: new_size = get_resize_output_image_size( image, size=size.shortest_edge, default_to_square=False, input_data_format=ChannelDimension.FIRST, ) else: raise ValueError(f"Size must contain 'shortest_edge' key. Got {size}.") # ensure height and width are divisible by size_divisor height, width = new_size if height % size_divisor != 0: height += size_divisor - (height % size_divisor) if width % size_divisor != 0: width += size_divisor - (width % size_divisor) return super().resize( image, SizeDict(height=height, width=width), interpolation=interpolation, antialias=antialias ) def _preprocess( self, images: list["torch.Tensor"], do_resize: bool, size: SizeDict, size_divisor: int, interpolation: Optional["F.InterpolationMode"], do_center_crop: bool, crop_size: SizeDict, do_rescale: bool, rescale_factor: float, do_normalize: bool, image_mean: Optional[Union[float, list[float]]], image_std: Optional[Union[float, list[float]]], disable_grouping: Optional[bool], return_tensors: Optional[Union[str, TensorType]], **kwargs, ) -> BatchFeature: # Group images by size for batched resizing grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping) resized_images_grouped = {} for shape, stacked_images in grouped_images.items(): if do_resize: stacked_images = self.resize( image=stacked_images, size=size, interpolation=interpolation, size_divisor=size_divisor ) resized_images_grouped[shape] = stacked_images resized_images = reorder_images(resized_images_grouped, grouped_images_index) # Group images by size for further processing # Needed in case do_resize is False, or resize returns images with different sizes grouped_images, grouped_images_index = group_images_by_shape(resized_images, disable_grouping=disable_grouping) processed_images_grouped = {} for shape, stacked_images in grouped_images.items(): if do_center_crop: stacked_images = self.center_crop(stacked_images, crop_size) # Fused rescale and normalize stacked_images = self.rescale_and_normalize( stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std ) processed_images_grouped[shape] = stacked_images processed_images = reorder_images(processed_images_grouped, grouped_images_index) processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors) __all__ = ["TextNetImageProcessorFast"]