# coding=utf-8 # Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License=, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing=, software # distributed under the License is distributed on an "AS IS" BASIS=, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch TVP Model""" import math from dataclasses import dataclass from typing import Optional import torch from torch import nn from ...activations import ACT2FN from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ModelOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import prune_linear_layer from ...utils import auto_docstring, logging from ...utils.backbone_utils import load_backbone from .configuration_tvp import TvpConfig logger = logging.get_logger(__name__) @dataclass @auto_docstring class TvpVideoGroundingOutput(ModelOutput): r""" loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Temporal-Distance IoU loss for video grounding. logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Contains start_time/duration and end_time/duration. It is the time slot of the videos corresponding to the input texts. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None attentions: Optional[tuple[torch.FloatTensor, ...]] = None class TvpLoss(nn.Module): """ This class computes the losses for `TvpForVideoGrounding`. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box). Args: losses (`list[str]`): List of all the losses to be applied. """ def __init__(self, losses): super().__init__() self.loss_map = { "iou": self.loss_iou, "distance": self.loss_distance, "duration": self.loss_duration, } for loss in losses: if loss not in self.loss_map: raise ValueError(f"Loss {loss} not supported") self.losses = losses def loss_iou(self, start_time, end_time, candidates_start_time, candidates_end_time, duration): """ Measure the intersection over union. """ inter = torch.min(candidates_end_time, end_time) - torch.max(candidates_start_time, start_time) union = torch.max(candidates_end_time, end_time) - torch.min(candidates_start_time, start_time) iou = 1 - inter.clamp(min=0) / union return iou def loss_distance(self, start_time, end_time, candidates_start_time, candidates_end_time, duration): """ Measure the distance of mid points. """ mid_candidates = torch.div(torch.add(candidates_start_time, candidates_end_time), 2.0) mid_groundtruth = torch.div(torch.add(start_time, end_time), 2.0) distance_diff = torch.div( torch.max(mid_candidates, mid_groundtruth) - torch.min(mid_candidates, mid_groundtruth), duration ).clamp(min=0.2) return distance_diff def loss_duration(self, start_time, end_time, candidates_start_time, candidates_end_time, duration): """ Measure the difference of duration. """ duration_candidates = torch.sub(candidates_end_time, candidates_start_time) duration_groundtruth = torch.sub(end_time, start_time) duration_diff = torch.square(torch.div(torch.sub(duration_candidates, duration_groundtruth), duration)) duration_diff = duration_diff.clamp(min=0.4) return duration_diff def forward(self, logits, labels): """ This performs the loss computation. Args: logits (`torch.FloatTensor`): The output logits of head module. labels (`list[torch.FloatTensor]`): List of tensors ([start, end, duration]), which contains start time, end time of the video corresponding to the text, and also the duration. """ duration, start_time, end_time = labels candidates = torch.mul(logits, duration) candidates_start_time, candidates_end_time = candidates[:, 0].float(), candidates[:, 1].float() losses_dict = {} for loss in self.losses: losses_dict.update( {loss: self.loss_map[loss](start_time, end_time, candidates_start_time, candidates_end_time, duration)} ) return losses_dict class TvpVisionModel(nn.Module): def __init__(self, config): super().__init__() self.backbone = load_backbone(config) if config.backbone_config is not None: in_channels = config.backbone_config.hidden_sizes[-1] elif hasattr(self.backbone, "config") and hasattr(self.backbone.config, "hidden_sizes"): in_channels = self.backbone.config.hidden_sizes[-1] elif hasattr(self.backbone, "config") and hasattr(self.backbone.config, "hidden_size"): in_channels = self.backbone.config.hidden_size else: raise ValueError("Backbone config not found") self.grid_encoder_conv = nn.Conv2d( in_channels, config.hidden_size, kernel_size=3, stride=1, padding=1, groups=1, bias=False, ) def forward(self, pixel_values): batch_size, num_frames, num_channels, height, width = pixel_values.shape # (batch_size * num_frames, num_channels, height, width) pixel_values = pixel_values.view(batch_size * num_frames, num_channels, height, width) grid_feat_outputs = self.backbone(pixel_values)["feature_maps"][0] grid = self.grid_encoder_conv(grid_feat_outputs) grid = nn.functional.max_pool2d(grid, kernel_size=2, stride=2) grid = nn.functional.relu(grid, inplace=True) new_channel, new_height, new_width = grid.shape[-3:] # (batch_size, num_frames, num_channels, height, width) grid = grid.view(batch_size, num_frames, new_channel, new_height, new_width) # (batch_size, num_frames, height, width, num_channels) grid = grid.permute(0, 1, 3, 4, 2) return grid class TvpVisualInputEmbedding(nn.Module): """ Takes input of both image and video (multi-frame) """ def __init__(self, config): super().__init__() # sequence embedding self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.row_position_embeddings = nn.Embedding(config.max_grid_row_position_embeddings, config.hidden_size) self.col_position_embeddings = nn.Embedding(config.max_grid_col_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(1, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.max_grid_row_position_embeddings = config.max_grid_row_position_embeddings self.max_grid_col_position_embeddings = config.max_grid_col_position_embeddings def interpolate_pos_encoding(self, embedding: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained pad weights , to be able to use the model on collection of high resolution images (high resolution videos). """ h0 = w0 = 1 # if height dimension is to be interpolated if height > self.max_grid_row_position_embeddings: h0 = height / self.max_grid_row_position_embeddings # if width dimension is to be interpolated if width > self.max_grid_col_position_embeddings: w0 = width / self.max_grid_col_position_embeddings embedding = embedding.permute(0, 3, 1, 2) # (batch_size, hidden_dim, height, width) embedding = nn.functional.interpolate( embedding, scale_factor=(h0, w0), mode="bicubic", align_corners=False, ) embedding = embedding.permute(0, 2, 3, 1) # (batch_size, height, width, hidden_dim) return embedding def add_2d_positional_embeddings(self, grid, interpolate_pos_encoding: bool = False): """ Args: grid: (batch_size, height, width, hidden_dim) interpolate_pos_encoding: (`bool`, *optional*, defaults to `False`): Whether to interpolate the pre-trained position encodings. Returns: grid + col_position_embeddings.view(*col_shape): (batch_size, *, height, width, hidden_dim) """ batch_size, height, width, hidden_dim = grid.shape # add row-wise position embeddings # (height, ) row_height = min(self.max_grid_row_position_embeddings, height) row_position_ids = torch.arange(row_height, dtype=torch.long, device=grid.device) # (height, hidden_dim) row_position_embeddings = self.row_position_embeddings(row_position_ids) row_shape = (1,) * (len(grid.shape) - 3) + (row_height, 1, hidden_dim) # (batch_size, height, 1, hidden_dim) row_position_embeddings = row_position_embeddings.view(*row_shape) # add column-wise position embeddings row_width = min(self.max_grid_col_position_embeddings, width) col_position_ids = torch.arange(row_width, dtype=torch.long, device=grid.device) # (width, hidden_dim) col_position_embeddings = self.col_position_embeddings(col_position_ids) col_shape = (batch_size, 1, row_width, hidden_dim) # (batch_size, 1, width, hidden_dim) col_position_embeddings = col_position_embeddings.view(*col_shape) # (batch_size, height, width, hidden_dim) positional_embeddings = row_position_embeddings + col_position_embeddings # This interpolation gets triggered ONLY when the input image dim is larger in any dimension than the original position embeddings if interpolate_pos_encoding and ( height > self.max_grid_row_position_embeddings or width > self.max_grid_col_position_embeddings ): grid = grid + self.interpolate_pos_encoding(positional_embeddings, height, width) else: grid = grid + positional_embeddings return grid def forward(self, grid, interpolate_pos_encoding: bool = False): """ Args: grid: Array of shape (batch_size, num_frames, height, width, num_channels). It contains processed frames extracted from videos, and is generated by Tvp image preprocessor. Note, num_frames can be 1 interpolate_pos_encoding: (bool, *optional*, defaults to `False`): Whether to interpolate the pre-trained position encodings. Returns: embeddings: The embedding of grid with size (batch_size, height*width, num_channels) """ batch_size, num_frames, height, width, num_channels = grid.shape # temporal mean pooling, (batch_size, height, width, hidden_size) grid = grid.mean(1) grid = self.add_2d_positional_embeddings(grid, interpolate_pos_encoding=interpolate_pos_encoding) # image token sequence, (batch_size, height*width, num_channels) visual_tokens = grid.view(batch_size, -1, num_channels) visual_tokens_shape = visual_tokens.shape[:-1] device = visual_tokens.device # image token type embeddings. token_type_ids = torch.zeros(visual_tokens_shape, dtype=torch.long, device=device) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = visual_tokens + token_type_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class TvpTextInputEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class TvpAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.attn_dropout = nn.Dropout(config.attention_probs_dropout_prob) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.num_attention_heads, self.attention_head_size) heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in self.pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() # Prune linear layers self.query = prune_linear_layer(self.query, index) self.key = prune_linear_layer(self.key, index) self.value = prune_linear_layer(self.value, index) self.dense = prune_linear_layer(self.dense, index, dim=1) # Update hyper params and store pruned heads self.num_attention_heads = self.num_attention_heads - len(heads) self.all_head_size = self.attention_head_size * self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def _reshape(self, tensor: torch.Tensor, sequence_length: int, batch_size: int): return ( tensor.view(batch_size, sequence_length, self.num_attention_heads, self.attention_head_size) .transpose(1, 2) .contiguous() ) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions: Optional[bool] = None, ): batch_size, sequence_length = hidden_states.shape[:2] mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self._reshape(mixed_query_layer, sequence_length, batch_size) key_layer = self._reshape(mixed_key_layer, sequence_length, batch_size) value_layer = self._reshape(mixed_value_layer, sequence_length, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.attn_dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask attn_output = torch.matmul(attention_probs, value_layer) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, sequence_length, self.all_head_size) attn_output = self.dense(attn_output) attn_output = self.dropout(attn_output) attn_output = self.layer_norm(attn_output + hidden_states) # add attentions if we output them outputs = (attn_output, attention_probs) if output_attentions else (attn_output,) return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Tvp class TvpIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TvpOutputLayer(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.layer_norm(hidden_states + input_tensor) return hidden_states class TvpEncodeLayer(GradientCheckpointingLayer): def __init__(self, config): super().__init__() self.attention = TvpAttention(config) self.intermediate = TvpIntermediate(config) self.output = TvpOutputLayer(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions: Optional[bool] = None, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + outputs return outputs class TvpEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([TvpEncodeLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): return_dict = return_dict if return_dict is not None else self.config.return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: outputs = (hidden_states,) if output_hidden_states: outputs = outputs + (all_hidden_states,) if output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states if output_hidden_states else None, attentions=all_attentions if output_attentions else None, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Tvp class TvpPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @auto_docstring class TvpPreTrainedModel(PreTrainedModel): config: TvpConfig base_model_prefix = "model" supports_gradient_checkpointing = True def _init_weights(self, module: nn.Module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, TvpModel): nn.init.normal_(module.text_prompt) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() if hasattr(module, "pad_up"): nn.init.normal_(module.pad_up) if hasattr(module, "pad_down"): nn.init.normal_(module.pad_down) if hasattr(module, "pad_left"): nn.init.normal_(module.pad_left) if hasattr(module, "pad_right"): nn.init.normal_(module.pad_right) class TvpFrameDownPadPrompter(nn.Module): """ Pad frames extracted from videos only at the bottom. """ def __init__(self, config): if config.visual_prompter_apply not in ("add", "replace", "remove"): raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)") super().__init__() self.visual_prompt_size = config.visual_prompt_size self.frame_num = config.frame_num self.max_img_size = config.max_img_size self.visual_prompter_apply = config.visual_prompter_apply self.pad_down = nn.Parameter( torch.randn([1, config.frame_num, 3, config.visual_prompt_size, config.max_img_size]) ) def forward(self, pixel_values): if self.visual_prompter_apply != "add": visual_prompt_mask = torch.ones( [self.max_img_size, self.max_img_size], dtype=pixel_values.dtype, device=pixel_values.device ) visual_prompt_mask[self.max_img_size - self.visual_prompt_size : self.max_img_size, :] = 0.0 pixel_values *= visual_prompt_mask if self.visual_prompter_apply != "remove": prompt = torch.zeros( [pixel_values.shape[0], pixel_values.shape[1], 3, self.max_img_size, self.max_img_size], device=pixel_values.device, ) start_point = self.max_img_size - self.visual_prompt_size prompt[:, :, :, start_point : self.max_img_size, :] = self.pad_down pixel_values += prompt.to(pixel_values.dtype) return pixel_values class TvpFramePadPrompter(nn.Module): """ Pad frames extracted from videos in the surroundings. """ def __init__(self, config): if config.visual_prompter_apply not in ("add", "replace", "remove"): raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)") super().__init__() self.num_frames = config.num_frames self.max_img_size = config.max_img_size self.visual_prompter_apply = config.visual_prompter_apply self.base_size = config.max_img_size - config.visual_prompt_size * 2 self.pad_up = nn.Parameter( torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size]) ) self.pad_down = nn.Parameter( torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size]) ) self.pad_left = nn.Parameter( torch.randn( [ 1, config.num_frames, 3, config.max_img_size - config.visual_prompt_size * 2, config.visual_prompt_size, ] ) ) self.pad_right = nn.Parameter( torch.randn( [ 1, config.num_frames, 3, config.max_img_size - config.visual_prompt_size * 2, config.visual_prompt_size, ] ) ) def interpolate_pad_encoding(self, prompt: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained pad weights, to be able to use the model on collection of high resolution images (high resolution videos). """ # creates scale factor from height and width of original image wrt to the config.max_img_size h0, w0 = height / self.max_img_size, width / self.max_img_size batch, num_frames, channels, prompt_height, prompt_width = prompt.shape # reshaping the batch and num_frames dimension into a single one (i.e (b,frames,c,h,w)-->(b*frames,c,h,w)), to apply bicubic interpolation prompt = prompt.reshape(batch * num_frames, channels, prompt_height, prompt_width) prompt = nn.functional.interpolate( prompt, scale_factor=(h0, w0), mode="bicubic", align_corners=False, ) # reversing back to (batch,frames,channels,height,width), where height and width is the new interpolated height and width prompt = prompt.reshape(batch, num_frames, channels, height, width) return prompt def forward(self, pixel_values, interpolate_pad_encoding: bool = False): height, width = ( (pixel_values.shape[-2], pixel_values.shape[-1]) if interpolate_pad_encoding else (self.max_img_size, self.max_img_size) ) if self.visual_prompter_apply not in ("add", "remove", "replace"): raise ValueError(f"Invalid visual_prompter_apply value {self.visual_prompter_apply}") if self.visual_prompter_apply in ("replace", "remove"): visual_prompt_mask = torch.ones([height, width], dtype=pixel_values.dtype, device=pixel_values.device) pixel_values *= visual_prompt_mask if self.visual_prompter_apply in ("replace", "add"): base = torch.zeros(1, self.num_frames, 3, self.base_size, self.base_size, device=pixel_values.device) prompt = torch.cat([self.pad_left, base, self.pad_right], dim=4) prompt = torch.cat([self.pad_up, prompt, self.pad_down], dim=3) prompt = torch.cat(pixel_values.size(0) * [prompt]) if interpolate_pad_encoding: prompt = self.interpolate_pad_encoding(prompt, height, width) pixel_values = pixel_values + prompt.to(pixel_values.dtype) return pixel_values TVP_PROMPTER_CLASSES_MAPPING = { "framedownpad": TvpFrameDownPadPrompter, "framepad": TvpFramePadPrompter, } @auto_docstring( custom_intro=""" The bare Tvp Model transformer outputting BaseModelOutputWithPooling object without any specific head on top. """ ) class TvpModel(TvpPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.vision_model = TvpVisionModel(config) self.embeddings = TvpTextInputEmbeddings(config) self.visual_embeddings = TvpVisualInputEmbedding(config) self.encoder = TvpEncoder(config) self.pooler = TvpPooler(config) self.text_prompt = nn.Parameter(torch.randn([1, 10, config.hidden_size])) self.dropout = nn.Dropout(config.hidden_dropout_prob) if config.visual_prompter_type not in TVP_PROMPTER_CLASSES_MAPPING: raise ValueError("`visual_prompter_type` must be in (framedownpad, framepad)") self.visual_prompter = TVP_PROMPTER_CLASSES_MAPPING[config.visual_prompter_type](config) self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ): r""" Examples: ```python >>> import torch >>> from transformers import AutoConfig, AutoTokenizer, TvpModel >>> model = TvpModel.from_pretrained("Jiqing/tiny-random-tvp") >>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp") >>> pixel_values = torch.rand(1, 1, 3, 448, 448) >>> text_inputs = tokenizer("This is an example input", return_tensors="pt") >>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask) ```""" return_dict = return_dict if return_dict is not None else self.config.return_dict # Add visual prompt, it compensates for the spatiotemporal information loss in 2D visual features. pixel_values = self.vision_model( self.visual_prompter(pixel_values, interpolate_pad_encoding=interpolate_pos_encoding) ) # (batch_size, sequence_length, hidden_size) text_embedding_output = self.embeddings(input_ids=input_ids) # (batch_size, visual_sequence_length, hidden_size) visual_embedding_output = self.visual_embeddings( pixel_values, interpolate_pos_encoding=interpolate_pos_encoding ) if attention_mask is not None: # (batch_size, visual_sequence_length) visual_attention_mask = attention_mask.new_ones(visual_embedding_output.shape[:2]) pt_mask = torch.ones(attention_mask.shape[0], 10).to( device=attention_mask.device, dtype=attention_mask.dtype ) attention_mask = torch.cat([pt_mask, attention_mask, visual_attention_mask], dim=-1) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size()).to(input_ids.device) text_prompt = self.text_prompt.expand(text_embedding_output.shape[0], -1, -1) # (batch_size, sequence_length + visual_sequence_length, hidden_size) embedding_output = torch.cat([text_prompt, text_embedding_output, visual_embedding_output], dim=1) encoder_outputs = self.encoder( embedding_output, attention_mask=attention_mask, head_mask=self.get_head_mask(head_mask, self.config.num_hidden_layers), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) last_hidden_state = self.dropout(last_hidden_state) pooled_output = self.dropout(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TvpVideoGroundingHead(nn.Module): def __init__(self, config): super().__init__() self.layer_0 = nn.Linear(config.hidden_size, config.hidden_size * 2) self.layer_1 = nn.Linear(config.hidden_size * 2, 2) self.activation_0 = nn.ReLU() self.activation_1 = nn.Sigmoid() def forward(self, pooler_output): logits = self.activation_0(self.layer_0(pooler_output)) logits = self.activation_1(self.layer_1(logits)) return logits @auto_docstring( custom_intro=""" Tvp Model with a video grounding head on top computing IoU, distance, and duration loss. """ ) class TvpForVideoGrounding(TvpPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.model = TvpModel(config) self.video_grounding_head = TvpVideoGroundingHead(config) self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, labels: Optional[tuple[torch.Tensor]] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ): r""" labels (`torch.FloatTensor` of shape `(batch_size, 3)`, *optional*): The labels contains duration, start time, and end time of the video corresponding to the text. Examples: ```python >>> import torch >>> from transformers import AutoConfig, AutoTokenizer, TvpForVideoGrounding >>> model = TvpForVideoGrounding.from_pretrained("Jiqing/tiny-random-tvp") >>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp") >>> pixel_values = torch.rand(1, 1, 3, 448, 448) >>> text_inputs = tokenizer("This is an example input", return_tensors="pt") >>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask) ```""" return_dict = return_dict if return_dict is not None else self.config.return_dict outputs = self.model( input_ids, pixel_values, attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, ) pooler_output = outputs[1] logits = self.video_grounding_head(pooler_output) loss = None if labels is not None: criterion = TvpLoss(["iou", "distance", "duration"]) criterion.to(self.device) loss_dict = criterion(logits, labels) loss = ( loss_dict["iou"] + self.config.distance_loss_weight * loss_dict["distance"] + self.config.duration_loss_weight * loss_dict["duration"] ) if not return_dict: outputs = (logits,) + outputs[2:] if loss is not None: outputs = (loss,) + outputs return outputs return TvpVideoGroundingOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["TvpModel", "TvpPreTrainedModel", "TvpForVideoGrounding"]