# coding=utf-8 # Copyright 2024 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VideoLlava model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING, AutoConfig logger = logging.get_logger(__name__) class VideoLlavaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VideoLlavaForConditionalGeneration`]. It is used to instantiate an VideoLlava model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the like LanguageBind/Video-LLaVA-7B-hf. e.g. [LanguageBind/Video-LLaVA-7B-hf](https://huggingface.co/LanguageBind/Video-LLaVA-7B-hf) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`VideoLlavaVisionConfig`, *optional*): Custom vision config or dict. Defaults to `CLIPVisionConfig` if not indicated. text_config (`Union[AutoConfig, dict]`, *optional*): The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. Defaults to `LlamaConfig` if not indicated. image_token_index (`int`, *optional*, defaults to 32000): The image token index to encode the image prompt. video_token_index (`int`, *optional*, defaults to 32001): The video token index to encode the image prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the CLIP backbone. Can be either "full" to select all features or "default" to select features without `CLS`. vision_feature_layer (`Union[int, list[int]]`, *optional*, defaults to -2): The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. image_seq_length (`int`, *optional*, defaults to 256): Sequence length of one image embedding. video_seq_length (`int`, *optional*, defaults to 2056): Sequence length of one video embedding. multimodal_projector_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the multimodal projector. Example: ```python >>> from transformers import VideoLlavaForConditionalGeneration, VideoLlavaConfig, CLIPVisionConfig, LlamaConfig >>> # Initializing a CLIP-vision config >>> vision_config = CLIPVisionConfig() >>> # Initializing a Llama config >>> text_config = LlamaConfig() >>> # Initializing a VideoLlava video_llava-1.5-7b style configuration >>> configuration = VideoLlavaConfig(vision_config, text_config) >>> # Initializing a model from the video_llava-1.5-7b style configuration >>> model = VideoLlavaForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "video_llava" attribute_map = { "image_token_id": "image_token_index", "video_token_id": "video_token_index", } sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig} def __init__( self, vision_config=None, text_config=None, image_token_index=32000, video_token_index=32001, projector_hidden_act="gelu", vision_feature_select_strategy="default", vision_feature_layer=-2, image_seq_length=256, video_seq_length=2056, multimodal_projector_bias=True, **kwargs, ): self.image_token_index = image_token_index self.video_token_index = video_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer self.image_seq_length = image_seq_length self.video_seq_length = video_seq_length self.multimodal_projector_bias = multimodal_projector_bias self.vision_config = vision_config if isinstance(self.vision_config, dict): if "model_type" not in vision_config: vision_config["model_type"] = "clip_vision_model" logger.warning("Key=`model_type` not found in vision config, setting it to `clip_vision_model`") self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: self.vision_config = CONFIG_MAPPING["clip_vision_model"]( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=224, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, projection_dim=768, ) if isinstance(text_config, dict): if "model_type" not in text_config: text_config["model_type"] = "llama" logger.warning("Key=`model_type` not found in text config, setting it to `llama`") text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: text_config = CONFIG_MAPPING["llama"]() self.text_config = text_config super().__init__(**kwargs) __all__ = ["VideoLlavaConfig"]