# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech processor class for Wav2Vec2-BERT """ import warnings from typing import Optional, Union from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack from ...tokenization_utils_base import AudioInput, PreTokenizedInput, TextInput from ..seamless_m4t.feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor from ..wav2vec2.tokenization_wav2vec2 import Wav2Vec2CTCTokenizer class Wav2Vec2BertProcessorKwargs(ProcessingKwargs, total=False): _defaults = {} class Wav2Vec2BertProcessor(ProcessorMixin): r""" Constructs a Wav2Vec2-BERT processor which wraps a Wav2Vec2-BERT feature extractor and a Wav2Vec2 CTC tokenizer into a single processor. [`Wav2Vec2Processor`] offers all the functionalities of [`SeamlessM4TFeatureExtractor`] and [`PreTrainedTokenizer`]. See the docstring of [`~Wav2Vec2Processor.__call__`] and [`~Wav2Vec2Processor.decode`] for more information. Args: feature_extractor (`SeamlessM4TFeatureExtractor`): An instance of [`SeamlessM4TFeatureExtractor`]. The feature extractor is a required input. tokenizer ([`PreTrainedTokenizer`]): An instance of [`PreTrainedTokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "SeamlessM4TFeatureExtractor" tokenizer_class = "AutoTokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): try: return super().from_pretrained(pretrained_model_name_or_path, **kwargs) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: ", FutureWarning, ) feature_extractor = SeamlessM4TFeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs) tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) return cls(feature_extractor=feature_extractor, tokenizer=tokenizer) def __call__( self, audio: Optional[AudioInput] = None, text: Optional[Union[str, list[str], TextInput, PreTokenizedInput]] = None, images=None, videos=None, **kwargs: Unpack[Wav2Vec2BertProcessorKwargs], ): """ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `audio` and `kwargs` arguments to SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.__call__`] if `audio` is not `None` to pre-process the audio. To prepare the target sequences(s), this method forwards the `text` and `kwargs` arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.__call__`] if `text` is not `None`. Please refer to the docstring of the above two methods for more information. Args: audio (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`): The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the sample length of the audio. text (`str`, `list[str]`, `list[list[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_features** -- Audio input features to be fed to a model. Returned when `audio` is not `None`. - **attention_mask** -- List of indices specifying which timestamps should be attended to by the model when `audio` is not `None`. When only `text` is specified, returns the token attention mask. - **labels** -- List of token ids to be fed to a model. Returned when both `text` and `audio` are not `None`. - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None` and `audio` is `None`. """ if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") output_kwargs = self._merge_kwargs( Wav2Vec2BertProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if audio is not None: inputs = self.feature_extractor(audio, **output_kwargs["audio_kwargs"]) if text is not None: encodings = self.tokenizer(text, **output_kwargs["text_kwargs"]) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def pad(self, input_features=None, labels=None, **kwargs): """ If `input_features` is not `None`, this method forwards the `input_features` and `kwargs` arguments to SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.pad`] to pad the input features. If `labels` is not `None`, this method forwards the `labels` and `kwargs` arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.pad`] to pad the label(s). Please refer to the docstring of the above two methods for more information. """ if input_features is None and labels is None: raise ValueError("You need to specify either an `input_features` or `labels` input to pad.") if input_features is not None: input_features = self.feature_extractor.pad(input_features, **kwargs) if labels is not None: labels = self.tokenizer.pad(labels, **kwargs) if labels is None: return input_features elif input_features is None: return labels else: input_features["labels"] = labels["input_ids"] return input_features @property def model_input_names(self): # The processor doesn't return text ids and the model seems to not need them feature_extractor_input_names = self.feature_extractor.model_input_names return feature_extractor_input_names + ["labels"] __all__ = ["Wav2Vec2BertProcessor"]