# coding=utf-8 # Copyright 2021 The Fairseq Authors The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 XGLM model.""" from __future__ import annotations import math import random from typing import Any import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation # Public API from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import TFBaseModelOutputWithPastAndCrossAttentions, TFCausalLMOutputWithCrossAttentions from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSharedEmbeddings, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import logging from .configuration_xglm import XGLMConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/xglm-564M" _CONFIG_FOR_DOC = "XGLMConfig" LARGE_NEGATIVE = -1e8 def create_sinusoidal_positions(num_positions: int, embedding_dim: int, padding_idx: int | None) -> tf.Tensor: half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = tf.exp(tf.range(half_dim, dtype=tf.float32) * -emb) emb = tf.expand_dims(tf.range(num_positions, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0) emb = tf.reshape(tf.concat([tf.sin(emb), tf.cos(emb)], axis=1), (num_positions, -1)) if embedding_dim % 2 == 1: # zero pad emb = tf.concat([emb, tf.zeros((num_positions, 1))], axis=1) if padding_idx is not None: _padding_mask = tf.concat( [ tf.ones((padding_idx, shape_list(emb)[1])), tf.zeros((1, shape_list(emb)[1])), tf.ones((shape_list(emb)[0] - padding_idx - 1, shape_list(emb)[1])), ], axis=0, ) emb *= _padding_mask return tf.constant(emb, name="embed_positions") def _create_position_ids_from_input_ids( input_ids: tf.Tensor, past_key_values_length: int, padding_idx: int | None ) -> tf.Tensor: """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = tf.where(input_ids != padding_idx, 1, 0) incremental_indices = (tf.cast(tf.cumsum(mask, axis=1), dtype=mask.dtype) + past_key_values_length) * mask return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx def _create_position_ids_from_inputs_embeds( inputs_embeds: tf.Tensor, past_key_values_length: int, padding_idx: int | None ) -> tf.Tensor: """ Args: We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. inputs_embeds: tf.Tensor Returns: tf.Tensor """ input_shape = shape_list(inputs_embeds)[:-1] sequence_length = input_shape[1] position_ids = tf.range(padding_idx + 1, sequence_length + padding_idx + 1, dtype=tf.int64) return tf.broadcast_to(tf.expand_dims(position_ids, axis=0), input_shape) + past_key_values_length # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: int | None = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->XGLM class TFXGLMAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: tuple[tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: bool | None = False, ) -> tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) class TFXGLMDecoderLayer(keras.layers.Layer): def __init__(self, config: XGLMConfig, **kwargs: Any) -> None: super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFXGLMAttention( embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, name="self_attn", ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) if config.add_cross_attention: self.encoder_attn = TFXGLMAttention( embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, name="encoder_attn", ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization( epsilon=1e-5, name="encoder_attn_layer_norm" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config # Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer.call def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: tuple[tf.Tensor] | None = None, training: bool | None = False, ) -> tuple[tf.Tensor, tf.Tensor, tuple[tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)* encoder_attention_mask (`tf.Tensor`): encoder attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(decoder_attention_heads,)* cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. *(decoder_attention_heads,)* past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) @keras_serializable class TFXGLMMainLayer(keras.layers.Layer): config_class = XGLMConfig def __init__( self, config: XGLMConfig, embed_tokens: TFSharedEmbeddings | None = None, *inputs, **kwargs: Any ) -> None: super().__init__(*inputs, **kwargs) self.config = config self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = TFSharedEmbeddings( config.vocab_size, config.d_model, self.padding_idx, name="embed_tokens" ) self.offset = 2 self._embed_positions_weights = create_sinusoidal_positions( num_positions=config.max_position_embeddings + self.offset, embedding_dim=config.d_model, padding_idx=config.pad_token_id, ) self.dropout = keras.layers.Dropout(config.dropout) self.layers = [TFXGLMDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_layers)] self.layerdrop = config.layerdrop self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def get_input_embeddings(self) -> TFSharedEmbeddings: return self.embed_tokens def set_input_embeddings(self, value: TFSharedEmbeddings) -> None: self.embed_tokens = value def _prepare_decoder_attention_mask( self, attention_mask: tf.Tensor | None, input_shape: tf.TensorShape, past_key_values_length: int, ) -> tf.Tensor: # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length) combined_attention_mask = tf.cond( input_shape[-1] > 1, lambda: combined_attention_mask, lambda: tf.ones_like(combined_attention_mask) ) if attention_mask is None: return combined_attention_mask expand_attention_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1]) return expand_attention_mask + combined_attention_mask def embed_positions(self, position_ids: np.ndarray | tf.Tensor | None = None) -> tf.Tensor: position_ids += self.offset positions = tf.gather(self._embed_positions_weights, position_ids, axis=0) return positions @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: tuple[tuple[np.ndarray | tf.Tensor]] | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool | None = False, **kwargs: Any, ) -> TFBaseModelOutputWithPastAndCrossAttentions | tuple[tf.Tensor]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = tf.shape(input_ids) input_ids = tf.reshape(input_ids, (-1, input_shape[-1])) elif inputs_embeds is not None: input_shape = tf.shape(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if position_ids is None: position_ids = tf.expand_dims( tf.range(past_key_values_length, input_shape[-1] + past_key_values_length), axis=0 ) position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]]) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(position_ids) hidden_states = tf.cast(inputs_embeds, dtype=tf.float32) + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://huggingface.co/papers/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), past_key_value=past_key_value, ) if use_cache: next_decoder_cache += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attentions += (layer_cross_attn,) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "embed_tokens", None) is not None: with tf.name_scope(self.embed_tokens.name): self.embed_tokens.build(None) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) class TFXGLMPreTrainedModel(TFPreTrainedModel): config_class = XGLMConfig base_model_prefix = "model" XGLM_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! Args: config ([`XGLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ XGLM_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(num_layers, attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(num_layers, attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple[tuple[tf.Tensor]]` of length `config.num_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.", XGLM_START_DOCSTRING, ) class TFXGLMModel(TFXGLMPreTrainedModel): """ Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`TFXGLMDecoderLayer`] Args: config: XGLMConfig embed_tokens: [TFSharedEmbeddings]: output embedding """ def __init__( self, config: XGLMConfig, embed_tokens: TFSharedEmbeddings | None = None, *inputs: Any, **kwargs: Any ) -> None: super().__init__(config, *inputs, **kwargs) self.model = TFXGLMMainLayer(config, embed_tokens=embed_tokens, name="model") @unpack_inputs @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: tuple[tuple[np.ndarray | tf.Tensor]] | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool | None = False, **kwargs: Any, ) -> TFBaseModelOutputWithPastAndCrossAttentions | tuple[tf.Tensor]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) @add_start_docstrings( """ The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XGLM_START_DOCSTRING, ) class TFXGLMForCausalLM(TFXGLMPreTrainedModel, TFCausalLanguageModelingLoss): base_model_prefix = "model" _keys_to_ignore_on_load_missing = [ r"model.embed_positions.weights", r"lm_head.weight", ] _keys_to_ignore_on_save = [ r"model.embed_positions.weights", ] def __init__( self, config: XGLMConfig, embed_tokens: TFSharedEmbeddings | None = None, *inputs: Any, **kwargs: Any ) -> None: super().__init__(config, *inputs, **kwargs) self.model = TFXGLMMainLayer(config, embed_tokens=embed_tokens, name="model") self.lm_head = keras.layers.Dense( config.vocab_size, use_bias=False, kernel_initializer=get_initializer(config.init_std), name="lm_head", ) self.config = config def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs): # only last token for inputs_ids if past is defined in kwargs if past_key_values: inputs = tf.expand_dims(inputs[:, -1], -1) position_ids = kwargs.get("position_ids") attention_mask = kwargs.get("attention_mask") if attention_mask is not None and position_ids is None: position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True) if past_key_values: position_ids = tf.expand_dims(position_ids[:, -1], -1) return { "input_ids": inputs, "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, } @unpack_inputs @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: tuple[tuple[np.ndarray | tf.Tensor]] | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool | None = False, **kwargs: Any, ) -> TFCausalLMOutputWithCrossAttentions | tuple[tf.Tensor]: r""" labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # shift labels to the left and cut last logit token labels = tf.concat( [labels[:, 1:], tf.fill((labels.shape[0], 1), tf.cast(-100, labels.dtype))], axis=-1, ) loss = self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build([None, None, self.config.hidden_size]) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "lm_head.weight": return tf_weight, "model.embed_tokens.weight" else: return (tf_weight,) __all__ = ["TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel"]