# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for XGLM."""
import os
from shutil import copyfile
from typing import Optional
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xglm import XGLMTokenizer
else:
XGLMTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
class XGLMTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" XGLM tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`RobertaTokenizer`]
and [`XLNetTokenizer`]. Based on
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `""`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
eos_token (`str`, *optional*, defaults to `""`):
The end of sequence token.
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
sep_token (`str`, *optional*, defaults to `""`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `""`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `""`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `""`):
The token used for padding, for example when batching sequences of different lengths.
additional_special_tokens (`list[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`):
Additional special tokens used by the tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = XGLMTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
bos_token="",
eos_token="",
sep_token="",
cls_token="",
unk_token="",
pad_token="",
**kwargs,
):
# Compatibility with the original tokenizer
self.num_madeup_words = 7
madeup_words = [f"" for i in range(self.num_madeup_words)]
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or []
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
**kwargs,
)
self.vocab_file = vocab_file
def build_inputs_with_special_tokens(
self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None
) -> list[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLM-RoBERTa sequence has the following format:
- single sequence: ` X `
- pair of sequences: ` A B `
Args:
token_ids_0 (`list[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`list[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`list[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.sep_token_id] + token_ids_0
sep = [self.sep_token_id]
return sep + token_ids_0 + sep + sep + token_ids_1
def create_token_type_ids_from_sequences(
self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None
) -> list[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
not make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`list[int]`):
List of IDs.
token_ids_1 (`list[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`list[int]`: List of zeros.
"""
sep = [self.sep_token_id]
if token_ids_1 is None:
return len(sep + token_ids_0) * [0]
return len(sep + token_ids_0 + sep + sep + token_ids_1) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
__all__ = ["XGLMTokenizerFast"]