# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import TYPE_CHECKING from ..integrations import prepare_for_hqq_linear from ..utils import is_hqq_available, is_torch_available, logging from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel if is_torch_available(): import torch if is_hqq_available(): from hqq.core.quantize import HQQLinear # This is a compatibility hack. HQQ-quantized linear layers do not have a `weight` attribute, # but some models attempt to access `weight.dtype` during the forward pass. To prevent runtime errors, # we patch HQQLinear with a dummy `weight` property that returns an empty tensor with the correct dtype and device. @property def weight(self): return torch.empty(0, dtype=self.compute_dtype, device=self.device) HQQLinear.weight = weight logger = logging.get_logger(__name__) class HqqHfQuantizer(HfQuantizer): """ HQQ quantizer base HF class. nn.Linear modules are first tagged with quant_config in _process_model_before_weight_loading(). """ use_keep_in_fp32_modules = False requires_parameters_quantization = True requires_calibration = False required_packages = ["hqq"] def __init__(self, quantization_config, **kwargs): if not is_hqq_available(): raise ImportError( "A valid HQQ version (>=0.2.1) is not available. Please follow the instructions to install it: `https://github.com/mobiusml/hqq/`." ) super().__init__(quantization_config, **kwargs) self.dtype = None self.using_multi_gpu = False # Keys that are serialized specifically by hqq self.hqq_keys = HQQLinear(None, None).state_dict_keys() - {"bias"} if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) if self.dtype is None: if "dtype" in kwargs: self.dtype = kwargs["dtype"] else: self.dtype = torch.float32 logger.info("Setting dtype to torch.float32 as the default value since it was not specified.") device_map = kwargs.get("device_map") if isinstance(device_map, dict): if "cpu" in device_map.values() or "disk" in device_map.values(): raise ValueError( "You are attempting to use an HQQ model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." ) else: self.using_multi_gpu = len(set(device_map.values())) > 1 def update_missing_keys( self, model: "PreTrainedModel", missing_keys: list[str], prefix: str, **kwargs ) -> list[str]: if self.pre_quantized: return [key for key in missing_keys if ("weight" not in key)] else: return missing_keys # Adds missing keys for HQQLinear modules that are loaded but the model with initialized with torch.nn.Linear def update_expected_keys( self, model: "PreTrainedModel", expected_keys: list[str], loaded_keys: list[str] ) -> list[str]: if not self.pre_quantized: return expected_keys # Collects all quantizable (linear) layers def _find_hqq_quantizable_layers(model, layers): for name, module in model.named_children(): if isinstance(module, (torch.nn.Linear)): layers.add(module.name) _find_hqq_quantizable_layers(module, layers) new_keys = set(expected_keys) # Name modules for name, module in model.named_modules(): module.name = name # valid modules are Linear layers that have HQQLinear state_dict. We ignore skip_modules and any layers with Linear state_dict() params _valid_modules = set() _find_hqq_quantizable_layers(model, _valid_modules) # Remove skipped modules _skipped_modules = set() for _module in _valid_modules: for _skip_module in model.config.quantization_config["skip_modules"]: if _skip_module in _module: _skipped_modules.add(_module) _valid_modules -= _skipped_modules # Append new expected layers based on _ref_keys _ref_keys = HQQLinear( linear_layer=None, quant_config=None, compute_dtype=torch.float16, device="cpu", del_orig=False, ).state_dict_keys() - {"bias"} # Clean-up _rm_keys = set() for key in new_keys: if any(_module in key for _module in _valid_modules): _rm_keys.add(key) new_keys -= _rm_keys # At this point, new_keys contains all the keys of the layers that are NOT HQQLinear or torch.nn.Linear # Re-populate Linear/HQQLinear for _module in _valid_modules: if _module + ".weight" in loaded_keys: new_keys.add(_module + ".weight") else: new_keys.update({_module + "." + _ref_key for _ref_key in _ref_keys}) if _module + ".bias" in loaded_keys: new_keys.add(_module + ".bias") return list(new_keys) def param_needs_quantization(self, model: "PreTrainedModel", param_name: str, **kwargs) -> bool: module, _ = get_module_from_name(model, param_name) # Since we do not prepare the modules in advance, we need every param of the Linear layer to go through # `create_quantized_param`, even when `self.is_quantized == True` return isinstance(module, torch.nn.Linear) def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", **kwargs, ): module, tensor_name = get_module_from_name(model, param_name) module_name = param_name.rsplit(".", 1)[0] parent_module, node = get_module_from_name(model, module_name) quant_config = model.config.quantization_config["quant_config"] skip_modules = model.config.quantization_config["skip_modules"] # In this case we do not quantize this layer (it's explicitly skipped) -> simply load param if any(skip_module in module.name for skip_module in skip_modules): module.load_state_dict( {tensor_name: param_value.to(device=target_device, dtype=self.dtype)}, strict=False, assign=True ) return # We need this hack as the model is not pre-prepared as an empty skeleton on meta device if self.pre_quantized: # Save them for later if not hasattr(self, "hqq_params"): self.hqq_params = defaultdict(dict) self.hqq_params[module_name].update({tensor_name: param_value}) hqq_params = self.hqq_params[module_name] # If they are all present and saved, make it a HQQLinear layer! (we cannot do it param after param because # hqq does not support it...) if all(k in hqq_params for k in self.hqq_keys) and ("bias" in hqq_params or module.bias is None): hqq_layer = HQQLinear( linear_layer=None, quant_config=None, compute_dtype=self.dtype, device=target_device, del_orig=False, ) hqq_layer.load_state_dict(hqq_params) if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor): hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias) if self.using_multi_gpu: hqq_layer = self._patch_layer_for_multigpu(hqq_layer) setattr(parent_module, node, hqq_layer) del self.hqq_params[module_name], module return # Load param in the module (without caring about device or dtype, it will be changed later) module.load_state_dict({tensor_name: param_value}, strict=False, assign=True) # If both the weight and bias have already been loaded, time to quantize! module_is_ready = module.weight.device.type != "meta" and ( module.bias is None or module.bias.device.type != "meta" ) if module_is_ready: module_tag = ".".join(module.name.split(".")[-2:]) if "weight_quant_params" in quant_config: module_quant_config = quant_config elif module_tag in quant_config: module_quant_config = quant_config[module_tag] hqq_layer = HQQLinear( module, quant_config=module_quant_config, compute_dtype=self.dtype, device=target_device, del_orig=True, ) if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor): hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias) if self.using_multi_gpu: hqq_layer = self._patch_layer_for_multigpu(hqq_layer) setattr(parent_module, node, hqq_layer) def _patch_layer_for_multigpu(self, hqq_layer): def forward_with_device(self, x): out = torch.matmul(x.to(self.device), self.dequantize().t()) if self.bias is not None: out += self.bias return out hqq_layer.forward = lambda x: forward_with_device(hqq_layer, x) return hqq_layer def _process_model_before_weight_loading( self, model: "PreTrainedModel", **kwargs, ): # Add the corresponding quant_config to each valid module. This allows us to do the actual nn.Linear -> HQQLinear conversion in create_quantized_param(). # prepare_for_hqq_linear() also sets the right quantization config inside the model (model.config.quantization_config) and the layers (hqq_layer.quant_config) model = prepare_for_hqq_linear(model, quantization_config=self.quantization_config) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): model.is_hqq_quantized = True model.is_hqq_serializable = self.is_serializable() return model def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return True