import functools import math import os import statistics import subprocess import sys from contextlib import contextmanager from typing import Any, Dict, List from . import language as tl from . import runtime def nvsmi(attrs): attrs = ','.join(attrs) cmd = ['nvidia-smi', '-i', '0', '--query-gpu=' + attrs, '--format=csv,noheader,nounits'] out = subprocess.check_output(cmd) ret = out.decode(sys.stdout.encoding).split(',') ret = [int(x) for x in ret] return ret # pure Python implementation of np.quantile/torch.quantile # to avoid unnecessary runtime dependency on numpy/torch def _quantile(a, q): n = len(a) a = sorted(a) def get_quantile(q): if not (0 <= q <= 1): raise ValueError("Quantiles must be in the range [0, 1]") point = q * (n - 1) lower = math.floor(point) upper = math.ceil(point) t = point - lower return (1 - t) * a[lower] + t * a[upper] return [get_quantile(q) for q in q] def _summarize_statistics(times, quantiles, return_mode): if quantiles is not None: ret = _quantile(times, quantiles) if len(ret) == 1: ret = ret[0] return ret if return_mode == "all": return times elif return_mode == "min": return min(times) elif return_mode == "max": return max(times) elif return_mode == "mean": return statistics.mean(times) elif return_mode == "median": return statistics.median(times) def do_bench_cudagraph(fn, rep=20, grad_to_none=None, quantiles=None, return_mode="mean"): """ Benchmark the runtime of the provided function. :param fn: Function to benchmark :type fn: Callable :param rep: Repetition time (in ms) :type rep: int :param grad_to_none: Reset the gradient of the provided tensor to None :type grad_to_none: torch.tensor, optional :param return_mode: The statistical measure to return. Options are "min", "max", "mean", "median", or "all". Default is "mean". :type return_mode: str """ import torch assert return_mode in ["min", "max", "mean", "median", "all"] with torch.cuda.stream(torch.cuda.Stream()): # warmup fn() if grad_to_none is not None: for x in grad_to_none: x.detach_() x.requires_grad_(True) x.grad = None # step 1 - we estimate the amount of time the kernel call takes # NOTE: this estimate isn't super accurate because the GPU isn't warmed up at this point # but it is probably good enough # NOTE: we don't use a graph to estimate the runtime because creating a graph is expensive, # ~300ms on A100, so we default to the same method used in `do_bench` (minus the L2 # cache flush). start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() for _ in range(5): fn() end_event.record() torch.cuda.synchronize() estimate_ms = start_event.elapsed_time(end_event) / 5 # Rewrite to avoid possible division by 0 issues with fast benchmarks if estimate_ms == 0: n_repeat = 1000 else: n_repeat = max(1, int(rep / estimate_ms)) # step 2 - construct a cuda graph with `n_repeat` unrolled function calls to minimize # host overhead g = torch.cuda.CUDAGraph() with torch.cuda.graph(g): for _ in range(n_repeat): if grad_to_none is not None: for x in grad_to_none: x.grad = None fn() torch.cuda.synchronize() # measure time and return ret = [] n_retries = 10 for _ in range(n_retries): start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() g.replay() end_event.record() torch.cuda.synchronize() ret += [start_event.elapsed_time(end_event) / n_repeat] return _summarize_statistics(ret, quantiles, return_mode) def do_bench(fn, warmup=25, rep=100, grad_to_none=None, quantiles=None, return_mode="mean"): """ Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with the 20-th and 80-th performance percentile. :param fn: Function to benchmark :type fn: Callable :param warmup: Warmup time (in ms) :type warmup: int :param rep: Repetition time (in ms) :type rep: int :param grad_to_none: Reset the gradient of the provided tensor to None :type grad_to_none: torch.tensor, optional :param quantiles: Performance percentile to return in addition to the median. :type quantiles: list[float], optional :param return_mode: The statistical measure to return. Options are "min", "max", "mean", "median", or "all". Default is "mean". :type return_mode: str """ assert return_mode in ["min", "max", "mean", "median", "all"] di = runtime.driver.active.get_device_interface() fn() di.synchronize() cache = runtime.driver.active.get_empty_cache_for_benchmark() # Estimate the runtime of the function start_event = di.Event(enable_timing=True) end_event = di.Event(enable_timing=True) start_event.record() for _ in range(5): runtime.driver.active.clear_cache(cache) fn() end_event.record() di.synchronize() estimate_ms = start_event.elapsed_time(end_event) / 5 # compute number of warmup and repeat n_warmup = max(1, int(warmup / estimate_ms)) n_repeat = max(1, int(rep / estimate_ms)) start_event = [di.Event(enable_timing=True) for i in range(n_repeat)] end_event = [di.Event(enable_timing=True) for i in range(n_repeat)] # Warm-up for _ in range(n_warmup): fn() # Benchmark for i in range(n_repeat): # we don't want `fn` to accumulate gradient values # if it contains a backward pass. So we clear the # provided gradients if grad_to_none is not None: for x in grad_to_none: x.grad = None # we clear the L2 cache before each run runtime.driver.active.clear_cache(cache) # record time of `fn` start_event[i].record() fn() end_event[i].record() # Record clocks di.synchronize() times = [s.elapsed_time(e) for s, e in zip(start_event, end_event)] return _summarize_statistics(times, quantiles, return_mode) def assert_close(x, y, atol=None, rtol=None, err_msg=''): """ Asserts that two inputs are close within a certain tolerance. :param x: The first input. :type x: scala, list, numpy.ndarray, or torch.Tensor :param y: The second input. :type y: scala, list, numpy.ndarray, or torch.Tensor :param atol: The absolute tolerance. Default value is 1e-2. :type atol: float, optional :param rtol: The relative tolerance. Default value is 0. :type rtol: float, optional :param err_msg: The error message to use if the assertion fails. :type err_msg: str """ import numpy as np import torch # canonicalize arguments to be tensors if not isinstance(x, torch.Tensor): x = torch.tensor(x) if not isinstance(y, torch.Tensor): y = torch.tensor(y) # absolute tolerance if atol is None: atol = 1e-2 atol = atol(x.dtype) if callable(atol) else atol # relative tolerance hook if rtol is None: rtol = 0. rtol = rtol(x.dtype) if callable(rtol) else rtol # we use numpy instead of pytorch # as it seems more memory efficient # pytorch tends to oom on large tensors if isinstance(x, torch.Tensor): if x.dtype == torch.bfloat16: x = x.float() x = x.cpu().detach().numpy() if isinstance(y, torch.Tensor): if y.dtype == torch.bfloat16: y = y.float() y = y.cpu().detach().numpy() # we handle size==1 case separately as we can # provide better error message there if x.size > 1 or y.size > 1: np.testing.assert_allclose(x, y, atol=atol, rtol=rtol, equal_nan=True) return if not np.allclose(x, y, atol=atol, rtol=rtol): raise AssertionError(f'{err_msg} {x} is not close to {y} (atol={atol}, rtol={rtol})') class Benchmark: """ This class is used by the :code:`perf_report` function to generate line plots with a concise API. """ def __init__( self, x_names: List[str], x_vals: List[Any], line_arg: str, line_vals: List[Any], line_names: List[str], plot_name: str, args: Dict[str, Any], xlabel: str = '', ylabel: str = '', x_log: bool = False, y_log: bool = False, styles=None, ): """ Constructor. x_vals can be a list of scalars or a list of tuples/lists. If x_vals is a list of scalars and there are multiple x_names, all arguments will have the same value. If x_vals is a list of tuples/lists, each element should have the same length as x_names. :param x_names: Name of the arguments that should appear on the x axis of the plot. :type x_names: List[str] :param x_vals: List of values to use for the arguments in :code:`x_names`. :type x_vals: List[Any] :param line_arg: Argument name for which different values correspond to different lines in the plot. :type line_arg: str :param line_vals: List of values to use for the arguments in :code:`line_arg`. :type line_vals: List[Any] :param line_names: Label names for the different lines. :type line_names: List[str] :param plot_name: Name of the plot. :type plot_name: str :param args: Dictionary of keyword arguments to remain fixed throughout the benchmark. :type args: Dict[str, Any] :param xlabel: Label for the x axis of the plot. :type xlabel: str, optional :param ylabel: Label for the y axis of the plot. :type ylabel: str, optional :param x_log: Whether the x axis should be log scale. :type x_log: bool, optional :param y_log: Whether the y axis should be log scale. :type y_log: bool, optional :param styles: A list of tuples, where each tuple contains two elements: a color and a linestyle. :type styles: list[tuple[str, str]] """ self.x_names = x_names self.x_vals = x_vals self.x_log = x_log self.line_arg = line_arg self.line_vals = line_vals self.line_names = line_names self.y_log = y_log self.styles = styles # plot info self.xlabel = xlabel self.ylabel = ylabel self.plot_name = plot_name self.args = args class Mark: def __init__(self, fn, benchmarks): self.fn = fn self.benchmarks = benchmarks def _run(self, bench: Benchmark, save_path: str, show_plots: bool, print_data: bool, diff_col=False, save_precision=6, **kwrags): import os import matplotlib.pyplot as plt import pandas as pd y_mean = bench.line_names y_min = [f'{x}-min' for x in bench.line_names] y_max = [f'{x}-max' for x in bench.line_names] x_names = list(bench.x_names) df = pd.DataFrame(columns=x_names + y_mean + y_min + y_max) for x in bench.x_vals: # x can be a single value or a sequence of values. if not isinstance(x, (list, tuple)): x = [x for _ in x_names] if len(x) != len(x_names): raise ValueError(f"Expected {len(x_names)} values, got {x}") x_args = dict(zip(x_names, x)) row_mean, row_min, row_max = [], [], [] for y in bench.line_vals: ret = self.fn(**x_args, **{bench.line_arg: y}, **bench.args, **kwrags) try: y_mean, y_min, y_max = ret except TypeError: y_mean, y_min, y_max = ret, None, None row_mean += [y_mean] row_min += [y_min] row_max += [y_max] df.loc[len(df)] = list(x) + row_mean + row_min + row_max if bench.plot_name: plt.figure() ax = plt.subplot() # Plot first x value on x axis if there are multiple. first_x = x_names[0] for i, y in enumerate(bench.line_names): y_min, y_max = df[y + '-min'], df[y + '-max'] col = bench.styles[i][0] if bench.styles else None sty = bench.styles[i][1] if bench.styles else None ax.plot(df[first_x], df[y], label=y, color=col, ls=sty) if not y_min.isnull().all() and not y_max.isnull().all(): y_min = y_min.astype(float) y_max = y_max.astype(float) ax.fill_between(df[first_x], y_min, y_max, alpha=0.15, color=col) ax.legend() ax.set_xlabel(bench.xlabel or first_x) ax.set_ylabel(bench.ylabel) # ax.set_title(bench.plot_name) ax.set_xscale("log" if bench.x_log else "linear") ax.set_yscale("log" if bench.y_log else "linear") if show_plots: plt.show() if save_path: plt.savefig(os.path.join(save_path, f"{bench.plot_name}.png")) df = df[x_names + bench.line_names] if diff_col and df.shape[1] == 2: col0, col1 = df.columns.tolist() df['Diff'] = df[col1] - df[col0] if print_data: print(bench.plot_name + ':') print(df.to_string()) if save_path: df.to_csv(os.path.join(save_path, f"{bench.plot_name}.csv"), float_format=f"%.{save_precision}f", index=False) return df def run(self, show_plots=False, print_data=False, save_path='', return_df=False, **kwargs): has_single_bench = isinstance(self.benchmarks, Benchmark) benchmarks = [self.benchmarks] if has_single_bench else self.benchmarks result_dfs = [] try: for bench in benchmarks: result_dfs.append(self._run(bench, save_path, show_plots, print_data, **kwargs)) finally: if save_path: # Create directory if it doesn't exist os.makedirs(save_path, exist_ok=True) with open(os.path.join(save_path, "results.html"), "w") as html: html.write("
\n") for bench in benchmarks[:len(result_dfs)]: html.write(f"