L iC@dZddlmZddlmZmZmZmZddl m Z ddl m Z ddl mZddlmZmZmZd gZdZdZd Zd Zd ZeezezezZed ededededediZdZdZdZd ZdZ d Z!dZ"dZ#dZ$edededede de!de"de#de$d i Z%d!d"dd!d#d!d!edd!ddddddddd!d!fd$Z& d&d%Z'y!)'a TNC: A Python interface to the TNC non-linear optimizer TNC is a non-linear optimizer. To use it, you must provide a function to minimize. The function must take one argument: the list of coordinates where to evaluate the function; and it must return either a tuple, whose first element is the value of the function, and whose second argument is the gradient of the function (as a list of values); or None, to abort the minimization. ) _moduleTNC) MemoizeJacOptimizeResult_check_unknown_options_prepare_scalar_function)old_bound_to_new)array_namespace)array_api_extra)infarrayzerosfmin_tncz No messageszOne line per iterationzInformational messagesz Version infoz Exit reasonsz All messagesz&Infeasible (lower bound > upper bound)z!Local minimum reached (|pg| ~= 0)zConverged (|f_n-f_(n-1)| ~= 0)zConverged (|x_n-x_(n-1)| ~= 0)z+Max. number of function evaluations reachedzLinear search failedz.All lower bounds are equal to the upper boundszUnable to progressz"User requested end of minimizationN:0yE>c$|r|}d}n|t|}|j}n|}|}||}n5tttt t tdj| t}||||| | | | ||||||dd}t|||||fd|i|}|d|d|dfS) a* Minimize a function with variables subject to bounds, using gradient information in a truncated Newton algorithm. This method wraps a C implementation of the algorithm. Parameters ---------- func : callable ``func(x, *args)`` Function to minimize. Must do one of: 1. Return f and g, where f is the value of the function and g its gradient (a list of floats). 2. Return the function value but supply gradient function separately as `fprime`. 3. Return the function value and set ``approx_grad=True``. If the function returns None, the minimization is aborted. x0 : array_like Initial estimate of minimum. fprime : callable ``fprime(x, *args)``, optional Gradient of `func`. If None, then either `func` must return the function value and the gradient (``f,g = func(x, *args)``) or `approx_grad` must be True. args : tuple, optional Arguments to pass to function. approx_grad : bool, optional If true, approximate the gradient numerically. bounds : list, optional (min, max) pairs for each element in x0, defining the bounds on that parameter. Use None or +/-inf for one of min or max when there is no bound in that direction. epsilon : float, optional Used if approx_grad is True. The stepsize in a finite difference approximation for fprime. scale : array_like, optional Scaling factors to apply to each variable. If None, the factors are up-low for interval bounded variables and 1+|x| for the others. Defaults to None. offset : array_like, optional Value to subtract from each variable. If None, the offsets are (up+low)/2 for interval bounded variables and x for the others. messages : int, optional Bit mask used to select messages display during minimization values defined in the MSGS dict. Defaults to MGS_ALL. disp : int, optional Integer interface to messages. 0 = no message, 5 = all messages maxCGit : int, optional Maximum number of hessian*vector evaluations per main iteration. If maxCGit == 0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to max(1,min(50,n/2)). Defaults to -1. maxfun : int, optional Maximum number of function evaluation. If None, maxfun is set to max(100, 10*len(x0)). Defaults to None. Note that this function may violate the limit because of evaluating gradients by numerical differentiation. eta : float, optional Severity of the line search. If < 0 or > 1, set to 0.25. Defaults to -1. stepmx : float, optional Maximum step for the line search. May be increased during call. If too small, it will be set to 10.0. Defaults to 0. accuracy : float, optional Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0. fmin : float, optional Minimum function value estimate. Defaults to 0. ftol : float, optional Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1. xtol : float, optional Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1. pgtol : float, optional Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1. rescale : float, optional Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at each iteration. If a large value, never rescale. If < 0, rescale is set to 1.3. callback : callable, optional Called after each iteration, as callback(xk), where xk is the current parameter vector. Returns ------- x : ndarray The solution. nfeval : int The number of function evaluations. rc : int Return code, see below See also -------- minimize: Interface to minimization algorithms for multivariate functions. See the 'TNC' `method` in particular. Notes ----- The underlying algorithm is truncated Newton, also called Newton Conjugate-Gradient. This method differs from scipy.optimize.fmin_ncg in that 1. it wraps a C implementation of the algorithm 2. it allows each variable to be given an upper and lower bound. The algorithm incorporates the bound constraints by determining the descent direction as in an unconstrained truncated Newton, but never taking a step-size large enough to leave the space of feasible x's. The algorithm keeps track of a set of currently active constraints, and ignores them when computing the minimum allowable step size. (The x's associated with the active constraint are kept fixed.) If the maximum allowable step size is zero then a new constraint is added. At the end of each iteration one of the constraints may be deemed no longer active and removed. A constraint is considered no longer active is if it is currently active but the gradient for that variable points inward from the constraint. The specific constraint removed is the one associated with the variable of largest index whose constraint is no longer active. Return codes are defined as follows: - ``-1`` : Infeasible (lower bound > upper bound) - ``0`` : Local minimum reached (:math:`|pg| \approx 0`) - ``1`` : Converged (:math:`|f_n-f_(n-1)| \approx 0`) - ``2`` : Converged (:math:`|x_n-x_(n-1)| \approx 0`) - ``3`` : Max. number of function evaluations reached - ``4`` : Linear search failed - ``5`` : All lower bounds are equal to the upper bounds - ``6`` : Unable to progress - ``7`` : User requested end of minimization References ---------- Wright S., Nocedal J. (2006), 'Numerical Optimization' Nash S.G. (1984), "Newton-Type Minimization Via the Lanczos Method", SIAM Journal of Numerical Analysis 21, pp. 770-778 NrrrrrrF)epsscaleoffsetmesg_nummaxCGitmaxfunetastepmxaccuracyminfevftolxtolgtolrescaledispcallbackxnfevstatus) r derivativeMSG_NONEMSG_ITERMSG_INFOMSG_VERSMSG_EXITMSG_ALLget _minimize_tnc)funcx0fprimeargs approx_gradboundsepsilonrrmessagesr r!r"r#r$fminr&r'pgtolr)r*r+funjacroptsress Y/mnt/ssd/data/python-lab/Trading/venv/lib/python3.12/site-packages/scipy/optimize/_tnc.pyrrYs~ nn (h('++.3x+A    D RsF NX N NC s8S[#h- //c zt|| }|}t|}tj|j |d|}|j }|j |jdr |j}|j|j||d}t|}|dg|z}t||k7r tdt|}|6tttt t"t$dj'|t$}n|rt$}nt}t)||||||||}|j*} t-|}!t-|}"t/|D]@}#||#t0 t0}%}$||#\}$}%|$ t0 |!|#<n|$|!|#<|% t0|"|#<<|%|"|#<B| t3g}| t3g}|t5d d t|z}t7j8| ||!|"|||| || | | ||||||\}&}'}(})}*}+| |)\}*}+t;|)|*|+|j<|(|&t>|&d|&cxkxr d k Sc S) am Minimize a scalar function of one or more variables using a truncated Newton (TNC) algorithm. Options ------- eps : float or ndarray If `jac is None` the absolute step size used for numerical approximation of the jacobian via forward differences. scale : list of floats Scaling factors to apply to each variable. If None, the factors are up-low for interval bounded variables and 1+|x] for the others. Defaults to None. offset : float Value to subtract from each variable. If None, the offsets are (up+low)/2 for interval bounded variables and x for the others. disp : bool Set to True to print convergence messages. maxCGit : int Maximum number of hessian*vector evaluations per main iteration. If maxCGit == 0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to max(1,min(50,n/2)). Defaults to -1. eta : float Severity of the line search. If < 0 or > 1, set to 0.25. Defaults to -1. stepmx : float Maximum step for the line search. May be increased during call. If too small, it will be set to 10.0. Defaults to 0. accuracy : float Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0. minfev : float Minimum function value estimate. Defaults to 0. ftol : float Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1. xtol : float Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1. gtol : float Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1. rescale : float Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at each iteration. If a large value, never rescale. If < 0, rescale is set to 1.3. finite_diff_rel_step : None or array_like, optional If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to use for numerical approximation of the jacobian. The absolute step size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``, possibly adjusted to fit into the bounds. For ``method='3-point'`` the sign of `h` is ignored. If None (default) then step is selected automatically. maxfun : int Maximum number of function evaluations. If None, `maxfun` is set to max(100, 10*len(x0)). Defaults to None. workers : int, map-like callable, optional A map-like callable, such as `multiprocessing.Pool.map` for evaluating any numerical differentiation in parallel. This evaluation is carried out as ``workers(fun, iterable)``. .. versionadded:: 1.16.0 r)ndimxpz real floatingr)NNz length of x0 != length of boundsr)rCr;r>finite_diff_rel_stepr=workersd r)r,rBrCr-nitr.messagesuccess) rr xpx atleast_ndasarrayfloat64isdtypedtypereshapeastypelen ValueErrorr r0r1r2r3r4r5r6r fun_and_gradrranger r max moduleTNC tnc_minimizerr- RCSTRINGS),rBr9r;rCr=rrrrr r"r#r$r%r&r'r(r)r*r+rKr!rLunknown_optionsr@rArJrWn new_boundsr?sf func_and_gradlowupilurcnfrOr,funvjacvs, rFr7r7s[Z?+ D E  B  2Q2 6B JJE zz"((O, BIIb%(" -B BA ~" 6{a;<<!&)J(h('++.3x+A   !#rss7K)3W FBOOM (C qB 1X  !9 4qA)CAayAAy11  }b  ~r ~S"SW*%!*!7!7r3E'6 VXtT eWh "BCD$q!JD$ A4T!"im#%;Q; 11#. 11rG)rNNrNNNrrrrrrrrrFNNNN)(__doc__scipy.optimizerr_ _optimizerrrr _constraintsr scipy._lib._array_apir scipy._libr rRnumpyr r r__all__r0r1r2r3r4r5MSGS INFEASIBLE LOCALMINIMUM FCONVERGED XCONVERGEDMAXFUNLSFAILCONSTANT NOPROGRESS USERABORTrarr7rrGrFrsE2311*1-## ,      X  (8 3 -**..          <944=&B(7  #$d4r$B2dT A0H6:>B9:HMCG Y1rG