ELF>@8@8 @x x mm حؽؽ888$$PtdQtdRtd@@GNUOW°Snf"@"A  |wfR;p !U^, F" !=__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyArg_ParseTuplePyExc_ValueErrorPyErr_SetString_Py_Dealloccabscabsf__muldc3__mulsc3PyInit__splinePyImport_ImportModulePyObject_GetAttrStringPyCapsule_TypePyCapsule_GetPointerPyModule_Create2PyExc_ModuleNotFoundErrorPyErr_ExceptionMatchesPyErr_PrintPyExc_ImportErrorPyErr_ClearPyExc_RuntimeErrorPyErr_Formatmallocmemsetfreememcpypowsinsincostanlibm.so.6libgcc_s.so.1libc.so.6GLIBC_2.2.5GCC_4.0.0GLIBC_2.14 ui  `Z' ui Ƚ@нн# (8@ˠH(X`ߠh+xȿ пؿ ! (08@H P X ` hpx!HHůHtH5%@%h%گh%үh%ʯh%¯h%h%h%hp%h`%h P%h @%h 0%h %zh %rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hPH=ɾH¾H9tHέHt H=H5H)HH?HHHtHŭHtfD=Yu/UH=Ht H=r]h1]{f.AWHH5dAVAUATUSHHH$H$HDŽ$H$L$1{SH H$ADNHDH(hE1ɹH$HA@HD$HHH@ AH~IHXH1L$DLD$HDŽ$h1ɿH$HHLD$HI1 6H w w $f$ f/sf/v$f(fTGHD$ADD$@Ml$f/Hx E/ Hs ApIEHLt$H4fDHHBH9uMcDN 1EHLILd$HHEITHYHT$ Dd$@DD$4LIHHDAIHcHL$IILT$t$8MLt$(E11L4@YEHD$LHH9D$ HD$(LHI9|$f(HLffDf8HfB LfYfX@L9uڋT$89T$4tHYXf(ƒYf/HID9A@HcL$4D$HD$8HpApHcLut$A@Hct$4D$HD$8HxA@Mc߉D$IEf(f(HD$XHT$Pl$d$HD$XHT$Pl$d$(HD$XHT$PL$l$HD$XHT$Pfք$l$$X@HLX$L$@PI9[L$ D$(f(f()L$ D$(fք$$$ATH=w~UHmIHH5~LbHI$xHI$HHٝH9E1HHUHx HHUt|H=HeKHHCHH=]A\@LJHHp@H H8u%HH5H8H1]A\H=B}IH뼐HH5 ~H8JHExHHEuHH5~HWH81-cHAH5H8HH&H5_H8-H H5}H81 HH5|H8AVH1H5|AUATUSH@HL$HT$HD$HD$LD$HD$) HeH|$ADNHDDH(hH|$E1A@HƹHHHDL(hH|$E1AAHƹAIHjHëDL(hH|$E1AAHƹAIHYHDE1E1HHU HxjjjIH HHE =9HHpHE8@ H}(HtfDHuHHHD$0HGHD$(HHD$8HcHD$ IF HHH?H9H)HIE H8II?JL)H  ]HD$ M\$LUMMMFPHD$8PWLQLH #HExHHEuHIxHIuLIExHIEuLHL`H@[]A\A]A^fHH5|H8HExHHEuH`Ix HItpMtIEx HIEtIMtI$x HI$t"H@1[]A\A]A^@(+LfDLfDLH7H5mxH8AHD$ M\$LUMMMFPHD$8PWLQL, H HD$ M\$LUMMMFPHD$8PWLQL7H HHD$ M\$LUMMMFPHD$8PWLQL\%H HEHHEHfE1^H9H5B{H8Cff.fAVHH5wAUATUSH0H{{HL$HLL$H$HD$LD$1mH H<$A  DNHDH(hH<$E1A@HƹHHH@ }AL0~MLpH0DhLl$ Ht$ 1HHHD$(IH VHH5-vH8HExHHEJI$xHI$DE1H0L[]A\A]A^ÐT$ff/s f/yvyT$It$H}DDL$D$(RHQH:=LH5u:f.T$ff/sf/hyH{yGyHD$It$H}DDL$D$>@fHEx HHEtDHL`H0I[]LA\A]A^ÐHLHfDZiH5quOHEhHHEZHPH59xH56tAVHH5tAUATUSH0H;xHL$HLL$H$HD$LD$1-Hn H<$A  DNHIDH(hH<$E1A@HƹHHH@ }AL0~MLpHDhLl$ Ht$ 1HHѣHD$(IH VHH5rH8`HExHHEJI$xHI$DE1H0L[]A\A]A^ÐT$ff/s f/vvvT$It$H}DDL$D$fHH:=LH5r:f.T$ff/sf/(vH;vvHD$It$H}DDL$D$\fHEx HHEtDHML`H0I[]LA\A]A^ÐHLHfDZiH51rOHEhHHEZHfPH5ttH5p\AWAIAVAUATUSH|$Ht$T$DL$EMcLcd$8EHLIADLIH߃H\$Ic1fAE1HMHD(fDAY IHX9}D9HILLD9ILՃHHA9|GEA)N|@Y HLXL9uLHA9afD$8DL$H\$AE)HH E9Hcl$H\$EELcd$8AfHHAHIHHHCItf.HL(E9| @YHHX H9uALHE9uD$8H\$AHH D9L$Hct$D$DLc\$8HHDHIH߃IcHfE1H)IcAD+L$H)HT$L$AAL9AmL(MIIHAIYJXH9uHI,HE9/DD)HlH HYHXH9uALIA^[]A\A]A^A_L(AAH\$1fAE1HHfMHD(fDAMY HIX9~D9HILLD9IL׃HHA9EA)NlY HLXL9uLLA9ZEDD)AE1AD)AD+L$DHT$McfIHL4@AAL9D}L(MLK AYMHIXH9uLK>HE9|.EE)NlY HHXL9uALMA`5L(ƒAWAVIAUMATUHSHHHH$D$T$L$L$L$HD$xHD$pHIEJt$AM_L$IcD$f҉L IcL\$(D)HLL$@Hclj|$ HHHHD$HHcHHD$8IHHD$PDAH<LHAH|$XLHD$ DAHcI4Ht$HcHIHE9|.EE)NlY HHXL9uALMA`=Lf(ƒAWAVIAUMATUHSHHHH$D$T$L$L$L$HD$xHD$pHIEJt$AM_L$IcD$f҉L IcL\$(D)HLL$@Hclj|$ HHHHD$HHcHHD$8IHHD$PDAH<LHAH|$XLHD$ DAHcI4Ht$HcHIHAL߃Ht$ D$H\$8H4$H\$|$I9|$%$Dl$E~mHl$XIcLt$pHD$L$(HH$H\$hI$HHHEELHPT$(;ID$HHXZH;,$uH|$X荪1H[]A\A]A^A_fHfD(f(LL)oHT$`HH)$,HT$`Ht$XH|$hfA($LL$$L$H$D$H$L$$DD$xDD$xI9$L$H$ffXDXD$H$L$$L$$fA($L$L$L$$D$L$H$$$DD$xDD$xD$f$$fADXH$L$E9X$L$L$$$1fA($L$L$L$L$$L$H$$$DD$xCDD$xL$f$$fI9DXH$L$X$L$L$$$f(lj$ALL$L$H$L$$D$DD$x聧$DD$xfD$L$fD9DXH$L$DXL$$%fA($ML$$L$H$D$H$L$$$DD$xDD$xH9$$L$ffXDXH$D$H$L$$L$$.@Uf(ffSZ*ωoH(f.9$${Jf. :zxuvf(Ãbf۸Y$*)H(f[]*YYZÐuf(%Y$fH(*[]YZfff(T$T$D$f*T$Y薦T$D$f(聦,$Yl$f(D$H([]Y^ZfAWIAVAUATUSHHt$H$H$D$f(T$$T$HL$ L$D|$DD$H8T$$$f(EXY$$\f(YXZ t$f.5e8E„ff.D„uu|$ fHL$Ic1$ZY^ZfDAYHH9uA@DHDŽ$D$LHD$HX$|$  Ht$IcHTII9H9A@D$L  D(HLHLHH Y(@UH(@HH9uDA ƍAHt$HcH YPA9 Hc҃AYDA9 HDHDŽ$AHD$YHXDHJt$ Y1L$HHH$N4MIօT$$HIHIH$H|$@H|$HLɅHHHL$hIHD$8LDT$LL @DDILL$pDHDhIcH,9Dl$PDH D$HL$xASHcDl$\DhDl$XDL$THH-DT! @?;pkm}P@8 @P0px( `8|@P8zRx $jFJ w?;*3$"LDlBLB B(A0A8G 8D0A(B BBBI 4{=BHD  MBI Z CBA DBHB B(A0A8 0A(B BBBA \xBDEE E(A0C8PTOEY 8A0A(B BBBA DthBHB B(A0A8 0A(B BBBA \CDEE E(A0C8PTOEY 8A0A(B BBBA L#BEB B(A0A8G 8A0A(B BBBD \l DHB E(A0F8N TOEY 8A0A(B BBBE L BEB B(A0A8D 8A0A(B BBBB \@< DHB E(A0F8NpTVAY 8A0A(B BBBJ |{BNB A(A0Dp3xOBBMpxFADNph 0A(A BBBC r 0C(A BBBD oxFADNp_xFADNp_xFADNpD4h'IMQ@A EAR XEARH@`AAL|PBEB B(A0A8G 8A0A(B BBBF D (IMM@{ KER UAMMH@aEAL BBB B(A0A8I 8A0A(B BBBD Xd}9BLB A(A0D`M 0D(A BBBB  0D(A EBBB 4,C`p AL h AG XELBEB E(A0A8I 8A0A(B BBBD 0HD0CYpf AM ~ AQ BAL|@2BEE B(A0C8J 8A0A(B BBBK X9BLB A(A0D`M 0D(A BBBB  0D(A EBBB @н  dȽo`  p p o(oooؽ6FVfv&6FVfvout = symiirorder2_ic_bwd(input, r, omega, precision=-1.0) Compute the (backward) mirror-symmetric boundary conditions for a smoothing IIR filter that is composed of cascaded second-order sections. The starting condition returned by this function is computed based on the following transfer function:: cs H(z) = ------------------- (1 - a2 z - a3 z^2) where:: a2 = (2 r cos omega) a3 = - r^2 cs = 1 - 2 r cos omega + r^2 Parameters ---------- input : ndarray The input signal. r, omega : float Parameters in the transfer function. precision : float Specifies the precision for calculating initial conditions of the recursive filter based on mirror-symmetric input. Returns ------- zi : ndarray The mirror-symmetric initial condition for the forward IIR filter.out = symiirorder2_ic_fwd(input, r, omega, precision=-1.0) Compute the (forward) mirror-symmetric boundary conditions for a smoothing IIR filter that is composed of cascaded second-order sections. The starting condition returned by this function is computed based on the following transfer function:: cs H(z) = ------------------- (1 - a2/z - a3/z^2) where:: a2 = (2 r cos omega) a3 = - r^2 cs = 1 - 2 r cos omega + r^2 Parameters ---------- input : ndarray The input signal. r, omega : float Parameters in the transfer function. precision : float Specifies the precision for calculating initial conditions of the recursive filter based on mirror-symmetric input. Returns ------- zi : ndarray The mirror-symmetric initial condition for the forward IIR filter.out = symiirorder1_ic(input, z1, precision=-1.0) Compute the (forward) mirror-symmetric boundary conditions for a smoothing IIR filter that is composed of cascaded first-order sections. The starting condition returned by this function is computed based on the following transfer function:: 1 H(z) = ------------ (1 - z1/z) Parameters ---------- input : ndarray The input signal. If 2D, then it will find the initial conditions for each of the elements on the last axis. z1 : scalar Parameter in the transfer function. precision : Specifies the precision for calculating initial conditions of the recursive filter based on mirror-symmetric input. Returns ------- z_0 : ndarray The mirror-symmetric initial condition for the forward IIR filter.out = sepfir2d(input, hrow, hcol) Convolve with a 2-D separable FIR filter. Convolve the rank-2 input array with the separable filter defined by the rank-1 arrays hrow, and hcol. Mirror symmetric boundary conditions are assumed. This function can be used to find an image given its B-spline representation. Parameters ---------- input : ndarray The input signal. Must be a rank-2 array. hrow : ndarray A rank-1 array defining the row direction of the filter. Must be odd-length hcol : ndarray A rank-1 array defining the column direction of the filter. Must be odd-length Returns ------- output : ndarray The filtered signal. Examples -------- Examples are given :ref:`in the tutorial `. # ˠ(ߠ+GCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11)8`(     d pȽнؽ   ! @7CȽj v h #  (9E +9j A 02' M m @k 4B  d `{( `' | Rн_ W  j' _< ؽ 0/" 04 pE#k~ P:  ?C  9Pdp .ARh|2 L"h !=crtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry_splinemodule.cc_ZL15IIRsymorder1_icP7_objectS0__ZL11PyArray_API_ZL23PyArray_RUNTIME_VERSION_ZL9moduledef_ZL11FIRsepsym2dP7_objectS0__ZL19IIRsymorder2_ic_fwdP7_objectS0__ZL19IIRsymorder2_ic_bwdP7_objectS0__ZL22toolbox_module_methods_ZL15doc_FIRsepsym2d_ZL19doc_IIRsymorder1_ic_ZL23doc_IIRsymorder2_ic_fwd_ZL23doc_IIRsymorder2_ic_bwd__FRAME_END___Z21_sym_iir2_initial_bwdIdEiddPT_S1_iiS0__Z28_separable_2Dconvolve_mirrorISt7complexIfEEiPT_S3_iiS3_S3_iiPlS4__Z21_sym_iir2_initial_fwdIfEiddPT_S1_iiS0__Z28_separable_2Dconvolve_mirrorIfEiPT_S1_iiS1_S1_iiPlS2__Z21_sym_iir2_initial_bwdIfEiddPT_S1_iiS0__fini_Z3_hcIdET_iS0_dd_Z3_hsIfET_iS0_dd_Z21_sym_iir2_initial_fwdIdEiddPT_S1_iiS0___dso_handle_Z21_fir_mirror_symmetricISt7complexIdEEvPT_S3_iS3_iii_Z3_hcIfET_iS0_dd_Z28_separable_2Dconvolve_mirrorISt7complexIdEEiPT_S3_iiS3_S3_iiPlS4__DYNAMIC_Z21_fir_mirror_symmetricIfEvPT_S1_iS1_iii_Z3_hsIdET_iS0_dd_Z21_fir_mirror_symmetricISt7complexIfEEvPT_S3_iS3_iii__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE__Z21_fir_mirror_symmetricIdEvPT_S1_iS1_iii_init_Z28_separable_2Dconvolve_mirrorIdEiPT_S1_iiS1_S1_iiPlS2_free@@GLIBC_2.2.5_ITM_deregisterTMCloneTablePyObject_GetAttrString__muldc3@@GCC_4.0.0_Py_DeallocPyExc_RuntimeErrorcabsf@@GLIBC_2.2.5PyErr_SetStringPyExc_ValueErrorPyErr_Printmemset@@GLIBC_2.2.5PyErr_ExceptionMatchespow@@GLIBC_2.2.5sincos@@GLIBC_2.2.5PyErr_Clear__gmon_start__memcpy@@GLIBC_2.14PyModule_Create2PyImport_ImportModulemalloc@@GLIBC_2.2.5tan@@GLIBC_2.2.5PyExc_ModuleNotFoundErrorPyArg_ParseTuplePyCapsule_Typecabs@@GLIBC_2.2.5PyExc_ImportError__mulsc3@@GCC_4.0.0sin@@GLIBC_2.2.5PyErr_FormatPyCapsule_GetPointer_ITM_registerTMCloneTable__cxa_finalize@@GLIBC_2.2.5PyInit__spline.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``$8 H@ HoFUo((pdpnB  pxs  ~dd pp(ȽȭнЭؽحH 0/ H w7