ELF>G@@8 @>>@@@%%ГУУ(((888$$PtdpwpwpwQtdRtdГУУ0 0 GNUƄ:(& yE@[ ?*ig@ V y9 Y  RO1c [ JXoReu  {x? 78$)3~UqO_0d1 mL /iI=  vX p , B   F" 0 m,  w __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyDict_NewPyExc_ValueErrorPyErr_SetStringPyErr_FormatPyExc_TypeErrorPyExc_SystemErrorPyDict_SizePyLong_FromLongPyUnicode_InternFromStringPyUnicode_FromStringPyUnicode_FromFormatPyObject_GetAttr_Py_DeallocPyExc_AttributeErrorPyErr_ExceptionMatchesPyExc_ImportErrorPyErr_ClearPyModule_GetNamePyUnicode_ConcatPyImport_GetModulePyExc_DeprecationWarningPyErr_WarnFormatPyTuple_NewPyDict_SetDefaultPyBytes_FromStringAndSizePyBytes_AsStringPyUnstable_Code_NewWithPosOnlyArgsPyObject_GetAttrStringPyDict_SetItemStringPyDict_GetItemStringPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyThreadState_GetPyInterpreterState_GetIDPyModule_NewObjectPyModule_GetDictPyLong_AsLongPyErr_OccurredPyExc_OverflowErrorPyLong_TypePyUnicode_TypePyUnicode_Resize_PyUnicode_FastCopyCharactersPyMethod_NewPyTuple_GetSlicePyTuple_GetItemPyMem_MallocPyDict_NextPyMem_FreePyErr_NoMemorystrrchrPyImport_AddModulePyDict_GetItemWithErrorPyType_FromMetaclassPyList_New_PyObject_GC_NewPyObject_GC_TrackPyList_TypePyTuple_TypePyLong_FromSsize_tPyObject_GetItemvsnprintf_Py_FatalErrorFuncPyObject_RichCompareBoolPyExc_RuntimeErrorPyImport_ImportModuleLevelObjectmemcmpPyObject_RichCompare_Py_TrueStruct_Py_FalseStructPyObject_IsTruePyObject_HashPyBaseObject_TypePyErr_GivenExceptionMatchesPyCFunction_TypePyObject_VectorcallDictPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallmemmovePyMem_Realloc_PyThreadState_UncheckedGetPyCode_NewEmptyPyException_SetTracebackPyFrame_NewPyTraceBack_HerePyExc_RuntimeWarningPyErr_WarnExPyErr_SetObjectPyObject_GC_UnTrackPyObject_ClearWeakRefsPyObject_GC_DelPyObject_SetAttrPyArg_ValidateKeywordArgumentsPyUnicode_FormatPyNumber_RemainderPyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyExc_NameError_PyDict_GetItem_KnownHashPyObject_SetAttrStringPy_VersionPyOS_snprintfPyUnicode_FromStringAndSizePyDict_TypePyUnicode_DecodePyType_TypePyTuple_PackPyImport_GetModuleDictPyImport_ImportModulePyDict_SetItemPyException_GetTracebackPyExc_ModuleNotFoundErrorPyCapsule_TypePyExc_ExceptionPyObject_SetItem_PyDict_SetItem_KnownHashPyMethod_TypePyObject_VectorcallPyObject_VectorcallMethodPyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyLong_FromLongLongPyFloat_TypePyNumber_MultiplyPyFloat_FromDoublePyObject_IsSubclassPySlice_NewPyObject_GetIterPyNumber_InPlaceAddPyNumber_SubtractPyObject_IsInstancePyExc_StopIterationPyNumber_AddPyExc_UnboundLocalErrorPyInit__flowPyModuleDef_Initlibc.so.6GLIBC_2.2.5J ui T Уwأw8wxv \v0Vv@HtPr`@qp qlKut*wФ6w8tPv@ss Jv0r@uPu`up r'wus0suХ4wu@vpsr l0u@sP w`tptv7vw1vsЦ+vuvt(t t0u@`rPv`Kp p@Kq2wt%vЧxuuvsv s0r@qPHu`0wp.wvqxtwsШLqtup u0u@puPw`,wpv w$wvKJЩw`u@rht8u v0v@(uP`s`tprXtsXusqЪs`qpplv u0 v@vP@p` spuJtovwЫvPsvtv v@ | سPP~Є(@8HXh^@it8}ȵе}ص} }(@HwPphp`zx`zxx  x0 8 xX! `@x+ @x4 0pзB ط0pO ~ ^ (z0Hn PPȸi}hȹzKع5X  ) (8 *@,HWX`*`Qhx@,@    (0 1(3048G@HHJPLXN`YhZp[x`cdfijoqtuȯwЯ|د (08@HP X`hpxȰаذ !"#$%& '()0*8+@,H-P.X/`2h5p6x789:;<=>?@ȱAбBرCDEFHIKMO P(Q0R8S@THUPVXW`Xh\p]x^_abeghklmȲnвpزrsvxyz{}~ (08@HPX`hpxHH5oHtH5o%o@%oh%oh%oh%oh%oh%oh%oh%ohp%oh`%oh P%oh @%oh 0%oh %zoh %roh%joh%boh%Zoh%Roh%Joh%Boh%:oh%2oh%*ohp%"oh`%ohP%oh@% oh0%oh %nh%nh%nh%nh %nh!%nh"%nh#%nh$%nh%%nh&%nh'p%nh(`%nh)P%nh*@%nh+0%nh, %znh-%rnh.%jnh/%bnh0%Znh1%Rnh2%Jnh3%Bnh4%:nh5%2nh6%*nh7p%"nh8`%nh9P%nh:@% nh;0%nh< %mh=%mh>%mh?%mh@%mhA%mhB%mhC%mhD%mhE%mhF%mhGp%mhH`%mhIP%mhJ@%mhK0%mhL %zmhM%rmhN%jmhO%bmhP%ZmhQ%RmhR%JmhS%BmhT%:mhU%2mhV%*mhWp%"mhX`%mhYP%mhZ@% mh[0%mh\ %lh]%lh^%lh_%lh`%lha%lhb%lhc%lhd%lhe%lhf%lhgp%lhh`%lhiP%lhj@%lhk0%lhl %zlhmAWAVIAUATUHSQJ7IHHwhH8u H\hLH5>H81FH.HHu 1E1E11JIHtH5tHIHt"LH1HHtH H11H6L6L6HTIZL[]A\A]A^A_AWIAVI E1AUIfA?ATMUSHH8HT$ HHHL$ЃLL$(HHT$D$HOHT$LL$(H1H9}IttHtHHHLuIHuE1E1E1LAIHtCt?1E1%D$IHHIHL$1LIHHI E1HL$HAHq5qHATSt$ t$(t$HPPAUPPAWH`IHt ǀL5L4HExHHEuHH8L[]A\A]A^A_AVIAUIHATUSDtHt@H;eHuE1tHLLmAHEx2HHEu)HHeAH8tsE1[D]A\A]A^AWIAVIH5MAUIATUSHAPIHtLH=HHt%tGEB1L3H3LLH5vHHdH81LHuLPIѹ1҃/w ΃LHHLA0tA0MHHuHXAWIAVIAUIATUHSLAQH=g&HTfInfHnIǀflH@(H@p@Ht EtEAWIl$ AD$@tAAEMt$PID$XID$8Ml$`tAEHttAGWI\$hID$xA$%IDŽ$A$t6tKuQH"?ID$0w=t#=u5Hv>ID$0[H,ID$0MH=ID$0?ID$04HIZH5H8I$xHI$uLE1LlZL[]A\A]A^A_AVIHAUIATUDSHQIHH@u HZLLH5H81sML$(ID$ Mt ILLIL9v#HYILLH5mH81s,u3H9s.RL1IPMHD11Y^y LE1([L]A\A]A^ATE1UQH5iHtN1HHIHu \HuHYH5 H8QHExHHEuHLZ]A\AVIAUIATE1UQHHtH5dE1LHLIH(ZL]A\A]A^AWAVAUIATUSHH|$&HiLL$HHt{=ix HcH;\b119~!)LcIB;\|~H߉HcH;\ ~9~&HHH;XuL(AEAELu`HE`Mt%M~AtAMf(MtA$t A$E1E1LLn1I'MuL1'L&L&zMtM9f(t LLH}`Lu`&L&MtI$xHI$uLLp@H)cH1LHHt X(HLq&HH[]A\A]A^A_[&AWAVAUATUSHL%3iMt)1I9HVH5-H8tH=hHbH"tH=HttHabHH=HttH@bHH(bH=yhH5}H>VH0HH u1HaHuhpHl$(RHHHHA L lRHaPHrP1yH 1H1H=eHwaH1H=G@HaaHHAeHJ~UfHnHL-flaH;HteC t0@tD3sHc$t1ITsHcHtKHEH~Ht:HH1HeHHHeHu1L5A1>HeHtaHHE11AL5^Hv#Ln#H=VftNH=_ttLDH= 0H=,fHtAHfHx/HHu'8 HuHTH5ֺH81H=eTH5S1IH.HH5\1^HdI$xHI$uLH={dH1H5W H-_H=^uIH$HAbH5bH=#eH5sHEHtH=`TqHdH_ HdH5:L?H=_qHcH!H=bpH H=z_pHcHH=LIHAHHDH5uH^HI$xHI$uL6H=IHA HHH5b0H]HsAH LH>H51H}]HBA0LHH5HT]HALHH5ϽH+]HALHƽH5lH]HALHH5m;H\H~ALH{H5< H\HMALHDH5 H\HALHH5ڼH^\HALHH5wH5\HALHμH5xFH \HALHH5GH[HXALHuH5H[H'ALHMH5H[HALH&H5Hh[HI$xHI$uL&H=IHApHH H5û H[HcHHNALHH5}HZHHHI$xHI$uLiE1H=)IHH ȬH`HH5H ìH_LH5H H_LH5|^H Hz_LH5W9H 4HM_LH5ʺ2H H _LH5 H H^LH5H H^LH5H H^LH5H Hl^LH5y[H H?^LH5sT6H H^LH5^/H ,H]LH5T H /H]LH5>H 2H]LH5(H MH^]LH5}H hH1]LH5 vXH kH]LH5Q3H H\LH5,H H\LH5޹H $H}\LH5ȹH ?HP\LH5H BH#\LH5x~H QH[LH5wx]H hH[LH5VxHHDH-IIH H5}H81k1H@HytH H-IH5H817DH IHysATUHHGHGHvNHHH)HHtbH3HcAH9t5Hub HtXAH)‹GHHcAH9u3HD]A\GWHH HHcAH9tDH,H5AH8褿fGWHH HcAH9uHD]A\DH@`HtnHHtbHHtXH,H9Eu6@HAHE>HHE0Hk#H.HHuHH+H5H8ݾAUATUHSHHL`MLnMHL)L9H8uH+H9PuH uH9VtHHH[]A\A]IfH~ @@8wŃ@t@tK4,HMucH;M1HL膿HtH[]A\A]@HuH[]A\A]H*H5~H8躽11fHt ƽfDtHAWAVIAUATIUHSHhLG0MtHwHhHL[]A\A]A^A_HVLIHL1虽IHmLLHHlIIEx HIEtOHhL[]A\A]A^A_DL~HvHu;HhLH1[]A\A]A^A_Af.E1LfDHBHD$HtJ<8LD$HIH4MLD$tWIF I9IGHL1HHAoDADHH9uLHAt ITITH|$LD$茽LD$HHD$KD1AL|$ HHD$HL$PLHD$XH|$HLl$0IHl$8IHIHD$HLD$(EHD$PHPH#tHL$XtH|$JDHD$J ILLHLuL|$ LD$(ILl$0Hl$8HHL$LLHAIH\$Hx HHH\$H~nLd$1DHH9tWIHx8 M\$8@LI\uHD$I)IL8H([]A\A]A^A_DH9Ml$(M|$8HH9HHL;puL@M;D$uDX AT$ Dމ@@@8uA Hx8 M\$8@LI襲uHZHT$LH5sH813H(1[]A\A]A^A_L\$@MDHx(H8A@HDHx(H8A@HDS衳IH@MMD6ff.LVIIM1fHI9tM9Duf.1fDITHBtv@tmL9tIXHt,HqH~S1HH9t?H;TufDLDHH9xHuH;<ffDHI9k1ËLGH?t HA`HtH>HHA`@HH}IH SH5H81"1Hff.H?IIHHWtLWHw8HBLL@Ht#LIHw8HHBLLHHHH H5H81芲1HHLOH?tHu`HHu'IA1HHtsHu~H>HDHiIIH H5H81 1H@HytH KH+IH5UH81ױDH HywHG@t~HFHtt@tkH9t.HXHt*HJH~A1DHH9t/H;tufHH9tHu1H;5f1Dst@AUIIIATI?UHSHH>&HwMItCH9HF8HDHHH1L[L]A\A]@H9H=hH9LXMI[H~&1@ILH9"H9HH9un MHH1L[L]A\A]魮DH9H=H9LXMI[H~&1@ILH9H9HH9uHL%$HH=n]1LHIMHL[]A\A]@HE0HDHH9t4HuH H9t#HHH9tHuH9FfDHMA1HYE1 uLeH=n覩1LI?MLIHHvH5mH8ߪ HHH9t4HuH H9t#HHH9tHuH9fDHMAM)HYE1 uLeH=@muL;E1HMA@HMAuHLH1[]A\A]qAVAUIATUH=(SHcD%(DHcH;l1 ~.S9})HcHD9}9|9A9LcIIA;n='A9D)؍PIcHHHHHD9HMHHD9HMHtHHHAEAAnM.D%'tAE[]A\A]A^DD&A9D`@IcHFHHtD%&LcD%&IH&IA92|覬HtHJH&H&hL(AE_^@HcHL4+G1AEI>M.tAEH"HH[]A\A]A^>ff.Ht+tLGXHwXMtIx HIt1fH5HL1Hff.fHH;5}tKHtFHF tQtLHMtIx HIt1HfD1@LhfDHH5*jH8HHtOHFtBtLGPHwPMtIx HIt 1HDLfDHaH5iH8肦HHHtOHFtBtLGHHwHMtIx HIt 1HDLpfDHH5iH8HUHSHHH9tHHucHH)H5iH8tHHHtHx HHt 1H[]ˤfHFuH,H5iH8MfDUHSHH8H9tHHucHHyH5}iH8EtHHHtHx HHt 1H[]fHF uH|H5hH8蝤fDATUHHGHGHvNHHH)HHtbHCHcAH9t5HubHtXAH)‹GHHcAH9u3HD]A\GWHH HHcAH9tDHH5hAH8责fGWHH HcAH9uHD]A\DH@`HtnHHtbHHtXHH9Eu6@HAHE>HHE0H{#H>HHuHHH5zH8HHtOHF tjtLG@Hw@MtIx HIt 1HDLfDHQH5zgH8rHH)H5gH8JAUATUHHH@u~@tz1諣IHtR1HHfIIEx HIEtyMt+IL$@tvLHCI$x HI$t9]A\A]H]A\A]Ha]H51gA\A]H8}D]LA\A]黠L谠zH!HH5fH81ͤuATSHLMtA$tA$HL[A\DHHHtYHHtL`A$LtA$HW HtHxHHuLDL% off.HWD_@GDHtWH H1LH9t)HRLIHL1LLHH%X(H*IExHIEuL萃HExHHHEH[]A\A]A^A_M|$`ID$`MMGAtAMw(Mt AtAHLD$H=M@LD$HIM9w(JI|$`M|$`HtHx HHMtIx HIMtIx HILFIE HIELH[]A\A]A^A_`HH=MIHE1E1CW1Ix HIIx HItqMIwHLIgfLс,LāLD$赁LD$LLLD$苀LD$L艁Lhf.AWHfAVfHnAUATUHSHHH)D$@fHnflHD$pHD$PHD$x)D$`HnLyIM^HHtHHtHT$@ID$L,LL$`O4)"I1LT$@IM\LHu[HPHHGL;uITL)LЋ t HHI9uLd$@H8H|@KHEHt"H|@*HHt H|@HT$HLl$PID$H5)LHHSЅID$H5LLHHЅHatH|$@HtHx HH`H|$HHtHx HH.H|$PH HHHHD$4HD$Hu4HVtHT$PHVtHT$HHHHeHXL VUAH XH5IH81XZH|$@HtHx HHXH|$HHtHx HH0H|$PHtHx HHH=I1HĈ[]A\A]A^A_HD$8H8I9CFLLHL$8LLWLT$LL$L\$L\$LL$LT$LHBHWH5HH81DHL&A$tA$HVLd$@tLnHT$HAEtAELl$POO}E};}HD$,}HD$HD$}HD$HD$8ITI ‹tHH=3HN17LLHL$8LLVLT$LL$L\$LT$LL$L\$LLL$|IE1LL$LHu6ztHIL)HD@HHM9Ht=H0LLL$kLL$HuLL$~LL$HtB~6M9HD$(Hl$0H\$(HD$0Ll$81HHLLL$/IH|$0LLL$HtfH;8tHBHHuHD$8HH9Gu6LL}HUHtqx HHUtOI$HI$LHD$0xHD$HD$8II ‹tH8HHD$wHD$띅x HHUt2 H=bCE1w|HH)zFHwHHH QH5BAVL PAHjQH81{Y^DLLHL$8LLDQLT$LL$L\$LT$LL$L\$HLL$wIEE1LL$LHu1kftHIL)HD HHM9Ht3H0HLL$|LL$HuLL$OyLL$HtzM9HD$(Ld$0H\$(HD$0Lt$81LHHLL$y3IEH|$0LLL$HtH;8tHBHHuHD$8H6H9Gu:LLOLLLL$LL$zHL$0LLOLLLL$$LL$@@HGHH;6u 1`uAVAUATUSHHtIMt%HL[]A\A]A^DzIfD[tHHALC`H(MtIxH9HEHHW@@HXHtYHJHN1HH96H;luHC`IHIL|tHH9tHuH;-?tHtLC`HC`MLmM1 HI9t H;|u_E1JtH9tH|$|H|$uIM9u`DAVAUIATUSHH=2HGHH;@u.1LgsIHHL[]A\A]A^LH,IMumrHHSLC`L MIxI9tzID$HHW@A$@HXHtTHJH~61 fHH9t'L;duHC`IxHIuLr;uIHt+E1HI9tHuL;%StHLH5OLH81vvILrtLC`HC`MrUIl$H_1 HH9t I;|u&E1KtH9tH|$_H|$uIL9uUHHWHH=itHtt]f{sH]fAWAVAUIATUSHHGH5HH= IM@ ID$HoH9&H;o9HhpHtPH}tI1rIH HLUIIxGHIu>LLL$pLL$*fDH@hHZ H@HM 1LIMM I$xHI$ IAIAHH)AAHHcAH9A Ix HIL%wH=xIT$LrHH tEHEH5HHH IHEMkxHHEzIEH5xLHH HHHEH5HHH IHEMxHHEID$H9H;xHXpHuH{j1pHHHLSHHExHHE% HI$xHI$L%_H=IT$LcqHHm tEHI9F H$HDŽ$HDŽ$pIH5 H'HPtLH$LHLD$H$qLD$MIHx HHHExHHEIx HI&Ix HI3MM L$L5;1LD$0HM9iHL$@H|$0LL$HLL$ fo$fo$`fDo$ fDo$0fDo$@fo$P)$fo$pfo$)$0fo$fo$D)$H$L$D)$H$`)$ fo$fo$)$@fo$D)$)$P)$`)$p)$)$)$H Ix HIIEfLnfMnH$`fElLT$LH5D)$H)$fo$`D)\$@D)T$PD)L$`D)D$p)$)$)$)$)$)$)$)$HS LT$IM2 L$1ME1LD$,HM9tYHL$0H|$,LT$HLL$LL$LT$$ L$H$L$0M Ix HI-HE1E~4B /DA9~HcHLD0H9uLE9u$1H,H55$$$$$$$$$$$$$$$$$$$$$$$$$KHHAHHH)HHqHLLL$lLL$HcAH9!HukLL$Hu HH5*LL$H8iLL$LL$kLL$HADID$LAYAQ@ML$AgmHE11,gL5{LgeI\$?8L$L1E1fo$fo$`fDo$ fDo$0fDo$@fo$P)$fo$pfo$)$0fo$fo$D)$fo$fo$D)$fo$)$ D)$)$@)$P)$`)$p)$)$)$jIML51Ay:HLL$LD$LT$eLL$LD$LT$HLL$LD$LT$eLL$LD$LT$LLL$LT$weLL$LT$LLL$[eLL$1fHHI$HI$1E1Ay1LLT$ eHLT$MHx HHtMHdgHUEHHU7HHD$dHD$ I$-HI$LHD$jdHD$[fLIHL5AzLLT$(dLT$fDo$ fDo$0fDo$@fo$Pfo$pfo$fo$fo$fo$fo$fo$shIfhHLHD$LT$cHD$LT$8hIAy1L5E1HLNdIHEHHEHLL$$cLL$eL=HHMHMօ AzDMfMVA$tA$AtAIx HI#fHnfInĿLT$HDŽ$fl)$dLT$HIGI$`HAzI$N.L51E1AzE1A{{fLT$I1cHHHLbHHEA{IE1#HAILaHa1AzAzLLT$|aLT$L5#1Ay닍rH=/$!1[H@`HHHLL$LLL$HHHH9EuAHLL$)LL$AHEHHEH`LL$H荞LL$HHurH=v#!1袩LL$(cLL$HZHH58H8aLL$:MiHeHAz1AL5E1Ay1~HHPtLL׺LD$H$LT$H$cLT$LD$II$HI$LLL$LD$LT$_LL$LD$LT$AWHAVIAUATUSHXHD$ HD$@HD$HHLyHMHttHt]HHH<L 8AVAH 8H5*H81DcXZwH=3a1HX[]A\A]A^A_HtHT$ HEN$LL$@O,!/I1LT$ IUL\LHuUDHPHHtCL;uIL)LЋ t HHI9uM J| KH\$ @HD$8H@I9CcLLHL$8LLe;LT$LL$L\$蕫L\$LL$LT$t"LHNH#;H5(H81aH|$ HHHH]fDI9HtH\$ HHA1H\ESHxHHuHHD$ ]HD$HD$8II ‹tHHHpH 6H5'AVL K6AH(:H81aY^LLHL$8LL:LT$LL$L\$LT$LL$L\$HLL$\IEE1LL$LHu3mtHIL)HD HCHHtHtHx HHNMItHIgLLT$t$vLLT$t$HMeImA$tA$EtEIExHIE3fInfInLHflź)D$POII$GHI$9LLT$KLT$"IEx HIEtpE1E1LKLLT$t$LD$KLT$t$LD$HLT$t$LD$mKLT$t$LD$HLT$t$LD$DKLT$t$LD$H)KLLK)LKZHK9LL IHE1qHHLH $H5AVL '$AH(H81NY^yLLHL$HLL'LL$LT$L\$ΔLL$LT$L\$ HD$1E1qLd$IE1LE1IEx HIEtM+:fDLLT$t$LD$ILT$t$LD$NIHD$E111E1۾pI$x HI$t#E1MOLd$Mdf.LL\$ t$LD$zILD$t$L\$ LbIYNH@HLT$IIEE1LT$LHu9IftHIL)HD0HCHHM9/H0HLT$.NLT$HuLT$jKLT$HtHD$1۾q_aMIE1۾r1JIHiHLHD$iI L\H/RJLzHD$HHD$qLT$ME111sf.MgM_A$tA$AtAIx HIfInfInĿL\$HD$`fl)D$PJL\$HH~HD$E1qE1qxIHIHLd$r51LD$HLD$HH/HL-HLd$E1ҾrZKILLd$E1rKLD$IM9HD$8Ld$@H\$8HD$@Lt$H1LHHLT$#J}IEH|$@LLT$HtDH98tHBHHuHD$HHvH9GlLL#LLLT$ړLT$tHL$@f.HD$E111E1p.LLT$ELT$7HLT$ELT$6E11E1۾rE1Lվr\LT$GHLT$HILd$LT$sLE1E1۾rLT$RELT$L[LkAtAAEtAEHx HH\LE1LD$FL"LD$HIHHfLd$rLL\$DL\$H@`HRHHBLHH1H]H9Eu3H藄D$HEHHEHADuHHHuLd$tHLT$ILLT$CLT$LLF!LLLT$.LT$HL\$LE1LD$CLD$L\$HHE1E1MqHD$HLd$M'EHHH5H8CzHHPu1LHt$PHٺL\$Hl$`FL\$HD$MMA1ff.@AWAVAUATIUHSH(HWHBpHtH@HtH(H[]A\A]A^A_HBhH#HxHII9D$vID$HAI)AD$LIHUH;eH;h:LbpMtQI|$tILCIHHHAT$IUxHIUH([]A\A]A^A_DLbhM#ID$HMhL@MHULH9HUH‹t@H5ܼHͮH91H@IHNHt$LHHD$Ld$(IU MHELI9s0JDIDHUJ*ILBIHHHaAI$HI$LHD$:@HD$lBHHUH;_mH;bIDHELI)fLDIHtHAIIHI{L?nHƹHH)HHCH)AD$AL$HH H;IUH;>|LHD$3?HD$eH{IH >IHL IF`Ht;LhM9t!ID$ LLdtI~`IF`{@HUH/HRH5H81B1H,HH2!?t)ID$L`o@H8H5LH81B1L@I El$AD$II II$HHHxIID$tHUHH88?t?ID$IM|$1M;lHI91I9ItI9L'HfAUATUSHHHFHFHw8H)‹FHHcЉH9udtu+H[]A\A]DHHH)HHtdHt~H?HcЉH9tHu?Hu@HqH5RH8r=]?Hsf.FVHH HHcЉH9F먋FVHH HcЉH9)H@`HHHzHIHiH@H;ufDsID$HwhH)AD$HHcЉH9I$HI$L;LyIHH@DHHH)HHHtZL">HcЉH9tH\HH5H8;I$zHI$lL&;_AD$AT$HH HcЉH9AD$AT$HH HHcЉH9s1d=HH4H5H8U;H@`HtlHHt`LIHtSH_I9Eu1L艖IEuHIEgLE:ZLxIHu3HHD$3L\$HH^H&LXtHU H=葿IHHnE1II9EfHnfInĿL\$flLD$ HDŽ$)$,3L\$HHD$hnHLD$ HPtHL$hLLL\$H$L$H4HD$p3ML\$It.I$x&HI$uLL\$ LT$Q0L\$ LT$HEx&HHEuHL\$ LT$#0L\$ LT$IxHIuLLT$/LT$H\$hHxHHuHLT$/LT$IExHIEuLLT$/LT$MH4eH$L;T$X| H©IBH9t5HXH*HqH?1 HH9.H;TuIH=ƙe AJdIj@LT$hE1HD$hHPXGH$1HD$0HD$hHxPLT$IHHD$0DHDl$ B,gB@HD$hHH I&ALL\$e.L\$1LT$`HD$HHD$@%:0HbHcHڛHD$hAHDŽ$HDŽ$HD$`HD$XDDH=fIHDŽ$HDŽ$HD$pHD$`H\$XH9tHtHøC86H$Ht H\$XH9tHøC8XH$H\$XH9tHtHøC8^HD$hH\$XH9tHtHøC8gHD$pHtH\$XH9tX8pH$~L$pfo$fo$H$ HD$x$fo$fo$fo$ Pfo$0fo$@X fo$P`0fo$`h@fo$ppPfo$x`fo$PpHx[]A\A]A^A_LT$+LT$LT$+LT$LLT$+LT$LLT$+LT$L+L+HAAHDŽ$HD$`HD$XHD$hE1HDŽ$HD$I$x HI$tiMtIx HIthH\$HtHx HHt0MIE HIEL*H*LL\$*L\$L*j/IYHSHD$hAHDŽ$HDŽ$HD$`HD$HD$X"*H\$`HHHH-*L$HD$HD$PrH$HHHH)uH$HHH|H)oH\$hHHHvHx)iH\$pHzHHmHH)`>+HfIHUHD$hAHDŽ$HDŽ$HD$hAHDŽ$HDŽ$L\$*HL\$HHD$`H^MAHDŽ$HD$XLLT$z(LT$ LLT$c(LT$ LT$O(LT$LT$;(LT$IkMcEtEA$tA$IxHIuL'fInfHnſHDŽ$fl)$*HD$`HIHpMHD$hMHDŽ$E1AHDŽ$HD$XHEx HHEtM -HL\$S'L\$LD'HH9HuH;LT$1L׾H LT$HHD$hHdHH|$pLT$HZfHnfHnH$H\$hflH$H@@)$fo=\H$@Hsh)$ fHDŽ$H$HDŽ$)$0LT$HHk@IL&<$ <$ 2LT$h11HDŽ$Ix HIo H=E(HD$IHH5pHxbIHI$xHI$ Hc$L\$ 4'L\$ HHD$H="赳L\$ HIHE1II9CfInL$D$LD$ H$LL$0HDŽ$)$?'LD$ L$HI=H ǠLL$0H$HHtHt$pLLLL\$0L$L$'L$HD$ LXaHt$LT$ L\$0Hx HH IExHIE I$xHI$ Ix HI MI H|$LLT$躘H$LT$H$H$HHD$pH$H$[Ix HI fo$Mfo$fo$Hc$fo$)$fo$HD$H)$HD$@fo$)$ fo$)$0fo$)$@fo$ H$H$)$Pfo$0)$`Hfo$@)$pfo$P)$fo$`HD$0)$)$)$)$Lt$P$HT$@1~&$Ht$Hf.H9uH\$PLd$HAH$$D$H$H\$80H$HD$H$L$L$L$Ll$@L|$ If.HD$D$Hc9$H$PHt$ HcHDH) A9~gIHcHHHT$(HH$MT@~+HcHIL8uEADIcAIA<HHA9uLt$D;L$IH\$XH9\$ptH\$pC8 fo$~D$pfo$ H$)$$fo$0fo$@fo$pH$P)$fo$Pfo$`)$fo$)$fo$)$ fo$)$0fo$)$@fo$)$)$)$P)$`)$p)$)$OL$L|$ $H\$PD$P1H$L$LL~$LD$f1L2L9u$A1MHD$EHD$0fDHL$HT$L$HLc\ ILJ<H$Lc7H|$MLt$ LF E~mLd$8HT$(MNc$"HT$HLMLHT$@FAF9"u8E9EOD9t$PHD$0HكDt DHcHD$MDHIA9rkH)fDH)كtUHcT HHT$HIL‹:A9tHcHT$H$HD$HHD$8D@MH$HHl$MDHcLl$LD$ HH$L$L$L$L$HHl$#HcH)HMcLIALD)IA LIH$HcMIE FHcID)uHl$Ll$LLT$PLT$"HD$HD$hAHDŽ$HDŽ$HHD$hAHDŽ$HDŽ$HD$`IHILHD$hAHDŽ$HD$hHHt J<LT$T$ H5tLT$HH81~ LT$LLT$AYLT$HD$hEH6HIDHDŽ$AHDŽ$LXHhAtAEtEH|$Hx HHHl$1dLLT$xLT$HLT$aLT$LLT$JLT$HLT$3LT$dL! L?H]HfDHD$hE1E1AHDŽ$HD$FIE1AELD$LD$LǦIHHD$hE1AHDŽ$HD$HD$hAHDŽ$HDŽ$eHD$hAHDŽ$HDŽ$9HD$hAHD$HD$hAIt$IT$Ht$D$ ttI$xHI$I1 HD$hE1ALmHD$hALT$HD$hH@xHEHH@H$H|$hHo@G8MD$HHIfDL\$I H|$L\$ L\$ HD$hAp(H=Z1aHD$hE1AHD$HD$AMeI]A$tA$tIExHIE:IA1L\$Hl$L\$1HD$hAHDŽ$AHL\$0LT$ LLL\$ LT$L\$ LT$As(H=I1z`LT$'LL\$ LT$NL\$ LT$LLT$2LT$p(H=1"`p(H=1 `p(H=1_E1AJ<`;LE1AnAcLAMMCMcAtAA$tA$Ix HIVM1AbH\$pD$$Ld$hLHT$ HT$ 1IԺyHD$hHXXH@pH$HXLL\$I1L\$AHLT$HeH HOHAPHLUH5LH81AXAYLT$+AHD$hHLT$H5H81nLd$hLT$E1LT$DH5`LT$LLD$ LD$ M1Ap(H=1]IQHD$HeMHD$hE1HDŽ$AHDŽ$HD$X.HgHD$`HPtHD$HL$`LH$H$VIHEHHEHLT$ LT$fAWAVAUATUHSHHGH5HH9IMCIEH; H; HXpHtDH{t=1HD$(IHHLSIIx6HIu-@H@hH[H@HN1LIMIExHIE L-o$Ix HI HEH5HHHIM}L$1DŽ$LHHNHD$I9 H$MMH$H|1H$L$H$H$`HD$xMIExHIE$ HEH5HHHfIM1LDŽ$HL;l$ H$MMH$H3|nH$H$H$`HD$HH$Ht$HIExHIE HEH5эHHH.IM1LDŽ$HL;l$ H$MMH$Hk{要H$H$H$`HD$(H$H$H}IExHIE L-JH=IUL7IH+tAEtEH=ߎ1LLL$HH$HDŽ$LL$IHExHHEuHLL$LL$MH}I9AlLH$HLL$ HDŽ$L$bLL$ HD$MIExHIE6 Ix HI H|$H|$H5ҋHGHHIM1LDŽ$HL;l$H$MMH$Hsy]H$H$H$`HD$PH$Ht$@HIExHIE H|$H5HGHH IM1LDŽ$HL;l$H$MMH$Hx~=H$H$H$`HD$XH$H$H IExHIEL- H=!IULuIHtAIFH54LHHIMKIx HIHEH5HHHIMIFH;{H=ًIFHH)AFHHjIMPIx HIJHkH=LL$ HSHkLL$ HItAHyI9EUH$LHL$LL$0LHDŽ$L$ q_LL$0HD$ Ix HICIx HIHx HH+H|$ mHt$ L蒀H$H$H$`HD$`H$H$HhL-H=IULRIHwtAIFH5LHHHH?Ix HIHEH5HHH|IM;IFH;xH=IFVHH)AFHHGIMIxHIuL H=DטIH HwH9CJH$HHHDŽ$L$HL$q]HD$0IExHIEuL IxHIuL HExHHEuH H|$0MHt$0L~H$H$H$`HD$hH$HG H=ݗIH&H5*H2FIH.Ix HI$LL$8xHc LL$8HI:H=ۃnLL$8HIHFvH$1HI9AfInfHnLLL$pflL$)$[HHD$8EILL$px HIaIExHIE]Ix HI*H|$8Ht$8L}H$HD$pH$q H$`L$L$E1L$L$DŽ$IH$L$L$L$L$L$L$L$fDH$H$IcH$$DH$8D HIHH$H$)@A97 HcHT$@AAHLA9tA9 H\$HcLcLD$@HGE9DAEH\$HHT$xA\AEtIEL8AADHD$xMHDŽ$iM}AUAMLl$PHD$@HDŽ$LHL8L(L*Ll$HHDŽ$HD$LLl$(HDŽ$HDŽ$'fDL_LS IMH1sE11E1HD$p1۾1HD$hHD$`HD$XHD$PHD$(HD$HHD$8HD$0HD$ HD$HD$fHtHx HHMtI$xHI$HtHExHHEH=ZE1L;|$tMtAG8HD$HHt Ht$H9tHøC8HD$(Ht HT$H9tHøC8HL$HtHx HHHD$PHt$H9tHtHA8HD$XHt H|$H9tHøC8HT$ HtHx HH&HD$`Ht$H9tHtHA8H\$0HtHx HHHD$hHt Ht$H9tHøC8|HL$8HtHx HHHD$pHT$H9tHtP8gHL[]A\A]A^A_fH߉t$t$Lt$t$Ht$t$HkHpH`HP=H=HoM1E1HD$p1E11HD$hHD$`HD$XHD$PHD$(HD$HHD$8HD$0HD$ HD$HD$fMIEHIELt$t$xMIHILJDHnE11E1HD$p1۾2HD$hHD$`HD$XHD$PHD$(HD$HHD$8HD$0HD$ HD$HD$DsIoHt$HH:HH-H} cHT$(H,HHHEIHL$PHDHH7H*/H|$XH>HH1'kHt$`HVHHIH<QHT$hHnHHaHTHL$pHHHvHUiLl$XHDŽ$HDŽ$YfDHD$pHD$hHD$`HD$XHD$PHD$(HD$HHl1E11HD$8E1E1ɾ1HD$0HD$ HD$HD$IEx HIEtUMtIx HIt`MwIlHI_Lt$St$Jf.Lt$@LL$/LL$t$@@Lωt$t$fDHD$p1E11HD$h3HD$`HD$XHD$PHD$(HD$HHD$8HD$0HD$ HD$@KILxHD$p1E11HD$h4HD$`HD$XHD$PHD$(HD$8HD$0HD$ HD$DI1yHD$(HHtLHLIHHHH|$(sLgHD$pE1HD$hHD$`HD$XHD$PHD$HiHD$p1E11HD$8G/E1Hc DH$H$H$H$DHЋ$H$H$H$9$L$H=wIHTIHOHt$ D$tHD$ H|$0IFD$tHD$0Ht$8IF D$tHD$8Hc$IF(HHHHIHUHHfInfHnúE1Ifl@HhI9EfInfInHT$@flLL$HDŽ$)$LL$HT$@HHH xHKtHHLLLL$H$aLL$IL7Ix HIHExHHE Hx HHIExHIE 11۾kM)fDHD$pE111HD$h2E1HD$`HD$XHD$PHD$(HD$HHD$8HD$0HD$ HD$fL8t+LSHHD$p1E11HD$h:HD$`HD$XHD$PHD$8HD$0HD$ HD$HD$p1E11HD$h3HD$`HD$XHD$PHD$(HD$HHD$8HD$0HD$ HD$@L0HD$p1E11HD$hE1:HD$`HD$XHD$PHD$8HD$0HD$ HD$.HD$p1E11HD$h:HD$`HD$XHD$PHD$8HD$0HD$ gIYMqtAtAIx HIfInfHnLLfl)$JJHD$HnHHaHTHD$p1E11HD$h4HD$`HD$XHD$PHD$(HD$8HD$0HD$ HD$DLLL$ cLL$ f IHD$p1E11HD$h;HD$`HD$XHD$PHD$8HD$0HD$ LLHHD$p1E11HD$h<HD$`HD$XHD$8HD$0HD$ `IHD$p1E11HD$h2HD$`HD$XHD$PHD$(HD$HHD$8HD$0HD$ HD$,@LH HD$p1E11HD$hDHD$`HD$8HD$0HD$ {HD$p1E11HD$h;HD$`HD$XHD$PHD$8HD$0HD$ oHD$p1E11HD$hDHD$`HD$8HD$0HD$ QIWHD$p1E11HD$h3HD$`HD$XHD$PHD$(HD$8HD$0HD$ HD$IHD$p1E11HD$hE1ɾDHD$`HD$8HD$0HD$ ZHD$p1E1FHD$hHD$8HD$0NHD$p1E11HD$h<HD$`HD$XHD$8HD$0HD$ HD$p1E11HD$hDHD$`HD$8HD$0HD$ H;_LrICHD$p1E11HD$h4HD$`HD$XHD$PHD$8HD$0HD$ HD$LL$ H}LL$ HIL1E1E1HD$pDHD$hHD$`HD$8HD$0HD$ AMmAeH_LH@`PICMEI]AtAtIExHIEdfInfInLHflºLD$8LL$0L$ )$CLD$8LL$0HD$ IoHIbLLL$0|LL$0KHD$p1E11HD$hDHD$`HD$8HD$04HD$p1E11HD$hEHD$8HD$0L"|HHD$p1E11HD$hFHD$8HD$0LLL$8LL$8KXHGHD$p1E11HD$h;HD$`HD$XHD$8HD$0HD$ L8p/H=1-8p.H=18p0H=б18p2H=17p3H=17HD$p1E1FHD$hHD$8HD$0MI|rH=S917p5H=81i7p7H="1S7L;L.LL$pLLL$pLL$pH;V[~LHIfInfInݺHflH$LD$8L$)$?LD$8HD$0IuHIhL[HD$p1E11HD$hFHD$8[HD$p1E11HD$8H8HD$p1E11HD$8HL +LHHIYIAttIx HIHIH$HD$p1E11۾HLLL$0LD$ rLD$ LL$0{1E11۾IR1E11۾kA1E11E1ɾk1E1E1ɾkt1E1ɾkeE1ɾkXMMI]AtAtIExHIEI1AE1k HLD$0LD$0AFX*IAFXILHD$8^HD$8H$I\LLL$IA.LL$1^III{f.AWHdAVIAUATUSHXHD$ HD$@HD$HHLyHMHttHt]HH"WHL AVAH lH5H81XZH=d1HX[]A\A]A^A_HtHT$ HEN$LL$@O,!/I1LT$ IUL\LHuUDHPHHtCL;uIL)LЋ t HHI9uM J| KH\$ @HD$8HVI9CcLLHL$8LLLT$LL$L\$6L\$LL$LT$t"LHUHH5H81fH|$ HHHHfDI9HtH\$ HHA1H\ESHxHHuHHD$HD$HD$8II ‹tHHHTH @H5bAVL AHH81rY^LLHL$8LLLT$LL$L\$b1LT$LL$L\$HLL$AIEE1LL$LHu3mtHIL)HD HCHHtEL%THDŽ$8AtAL%SA$tA$H$ H=3QfIn1D$PHHLD$)$ H$hLH$0L$0LD$MLXL COAtAH5RLLD$LL$7LL$LD$HIX111HLD$ LL$HD$LT$LL$HLD$ H`XIx HIPHrH;5ALRXHB]H\HH)ȋJHLD$ HxLL$HT$jHT$LL$LD$ IMYHx HH{QfInfIn1LD$ H=OflH$HLL$)$ LL$HD$LIEL\$LD$ xHIE*QMJXH$0LD$H9QI9QLH$0L\$LD$L\$IMWH$0Hx HHQHDŽ$0Ix HIRH$8LH$ HLD$H$ L$ %H$8HD$!IELD$HDŽ$8xHIEHRIx HIRH|$WLl$L]0IE!RHIEsQHD$HE11ҾHD$E1E1E1HD$0HD$(HD$8HD$ HD$@HD$LAŅHD$HE1ɾHD$1E1E1HD$0E1HD$(HD$8HD$ HD$@HD$M I$HI$Lt$pL\$hLT$`LL$XHT$PHT$PLL$XLT$`L\$ht$pft$pL\$hLT$`LL$XHT$Pt$pL\$hLT$`LL$XHT$PfDt$pL\$hLT$`LL$XHT$PCt$pL\$hLT$`LL$XHT$PxfDL߉t$hLT$`LL$XHT$Pt$hLT$`LL$XHT$PXDLωt$`LT$XHT$Pt$`LT$XHT$PCL׉t$XHT$Pt$XHT$P6fH׉t$Pt$P1LpiH`tHPL@H0H HHHHHLfDD7LLZH$0HHDHD$HE11H <HD$E1E1E1HD$0MHD$(HD$8HD$ HD$@HD$HD$@LeH}A$tA$tHEH$0xHHEfInfInĺflH$ )$ HI$HI$LgfHD$HE11H;HD$E1E1E1HD$0MHD$(HD$8HD$ HD$@HD$HD$D7H$PHHDŽ$PHHHt$Pt$P6H$ HHDŽ$ HHHt$PTt$P{6H$HHDŽ$HHHzt$Pt$Ph6H$HHDŽ$HtHHgt$Pt$PU6H$HxHDŽ$HaHHTt$Pdt$PBF6H$`HeHDŽ$`HNHHAt$Pt$P/"6H$0HRHDŽ$0H;HH.t$Pt$P5H$H?HDŽ$H(HHt$Ptt$P 5H$H,HDŽ$HHHt$P$t$Pt5H\$HHHHHLLD$LD$fL8LUH$8IHpHD$HE11E1HD$E1۾HD$0HD$(HD$8HD$ HD$@HD$BfE1HD$HME1ɾ1E1HD$E1E1HD$0HD$(HD$8HD$ HD$@HD$MIHILljt$pL\$hLT$`LL$XHT$Pt$pL\$hLT$`LL$XHT$PHD$HE11E1HD$E1E1HD$0HD$(HD$8HD$ HD$@HD$ MEI}AtAtIEH$8x$HIEuLLD$H$8LD$fInfIn׺LD$flH$ )$ LD$IIHILkfD[LD$FLxAŅHD$HE1ɾLaHH$0GILL|$IfDDLHD$HE1ɾNf.LW{fDLhLXHD$HE11E1HD$E1E1MHD$0HD$(HD$8HD$ HD$@HD$DHD$fHD$HE11E1HD$E1E1HD$0HD$(HD$8HD$ HD$@HD$+Ic[LQIHrcHD$HE11E1HD$E1MHD$0HD$(HD$8HD$ HD$@HD$HD$HE11E1HD$E1E1HD$0HD$(HD$8HD$ HD$@HD$~;II@M`H$0tA$tA$Ix HI0MAE1lDHD$HE1ɾf.DLH=BtH@H$ HH$8HDŽ$ H$ H$8IHx HH/HDŽ$8MV3L!IE/HIE0HD$HE11ҾHD$E1E1E1HD$0HD$(HD$8HD$ HD$@HD$HD$HE11E1HD$E1E1HD$0HD$(HD$8HD$ HD$@HD$;I$HD$HE11E1HD$E1E1HD$0HD$(HD$8HD$ HD$@HD$ LD$L.NLD$HH$8IHD$HE11E1HD$E1۾HD$0HD$(HD$8HD$ HD$@HD$HD$HE11E1HD$E1E1HD$0HD$(HD$8HD$ HD$@HD$QH5Q?LIH2111HWH$8IH 3I$xHI$0H|$PL+IH3H$8Hx HH0L;%T.HDŽ$8AL;%-D)I9)LAŅ-I$xHI$/EH5>H|$1IH/H;-L;%-I9LAŅ'/I$xHI$-EL>AtAL%=A$tA$H$ H=;fIn1D$HHLT$)$ H$LH$8 L$8LT$M~EH9H$0tH5C=LLT$LT$HIE111HLT$HD$5LL$LT$HHmEIx HIi@HrH;5,LY=JHBJH6JHH)ȋJHHxLT$HT$HT$LT$IMlIHx HH&@H$0H=T:1LT$H$L$ HH$ H$0HD$IEL\$HDŽ$0LT$xHIE?MOLT$H$8I9BH9BLH$8L\$SLT$L\$IMLH$8Hx HHpFHDŽ$8Ix HIBLH$ HLT$HDŽ$ L$ .1HD$IELT$xHIEZBIx HIBH|$KLl$L IEXDHIECHD$HE11ҾHD$E1E1E1HD$0HD$(HD$8HD$ HD$@HD$0D@HD$HE11E1HD$E1E1HD$0HD$(HD$8HD$ HD$@HD$L註H59LQIH3111HIHd4I$xHI$,H|$LƺLD$讻LD$HI4Ix HI,L;%(AL;%(D_(I9V(LAŅ/*I$xHI$,EH5!7LqIH9-H;f(L;%(Y"I9P"L訽AŅa-I$xHI$)E")AtAH=81H$ HL$ HDŽ$ 诽LIHD$ MO3Ix HIH+H=7&HIH4-H={4HD$ HLL$HIy0H&E1II9A:2fLL$8)$ fInD$ LT$HT$@)$ 螻LT$LL$8HI*H 5HT$@HHtH `6L$ H54IO tH$ LLLL$H$( H4LLT$8H$LT$8ILIELL$xHIE)Ix HI)Ix HI)M)ID$H;%j2IT$H3Ml$AEtAEIL$ HL$D$8tI$xHI$*H54H|$ HD$@HH 3Hx HH]*L9l$@q)H=3FIH4H53H|$ HD$8]LL$8HHD$@5йLL$8LD$@HI5L@AEtAEHL$Mj D$8tHD$L|$ LL$@H5e5LT$8IB(LLT$8LL$@HH$59H52LLL$8L$LL$8L$HHD$@L$H$8V;H#AE1II9A9ffInL$)$ fInflL$L\$@LT$8)$ 蠸LT$8L\$@HH$0HL$L$7HS4HPtH1L$ H$8HQ tH$LLLT$@H$( J48L$LL$8L$ѸL$IL~LT$@LL$8L$Ix HI2Ix HI92H$8Hx HH42H$0HDŽ$8Hx HH 2HDŽ$0Ix HI2M8HL$ Hx HH1H=0"CHD$@HH$0HY5H5!E1HH9q5fInH|$@fInH$flH4)$ LHD$@=H$0Hx HHX/H|$@HDŽ$0~3H= 1mBHD$8HH3H5E!HH9q<7H$0Ld$8H$ HL$@LH$ H$H4H$0HD$ I$HDŽ$0xHI$K/H|$ 6H5o/H|$()6-'H=@0AHD$8HH$0HEH5k E1HH9qd=H$H|$8fInD$@H4)$ 'LHD$8H$0Hx HH^6H|$8HDŽ$0<H5//H|$@UIH_<H$PLHH$)H|$H4H$H$PHD$(H:I$xHI$:L$Ht$8LI)H|$XL4L$H$ HD$(HCH5m.H|$@IHBH$H(H|$`4H$H$HD$(H:I$xHI$;H5X-H|$@.IHAH$H(H|$h4H$H$HD$(HAI$xHI$AL$Ht$ L-(H|$p4LH$HD$(H.HH|$P $HH|$ $*HH$XH$p 4L%-H$H$IT$LH$`H$H$H$H$(H$H$pH$ H$H$0H$@H$H$H$(H$HD$xH$H$H$H$8H$H$@1H=()胲IHEtAIALL$LH5 ,HHELL$HD$(H|$(DIx HI@L%)H=(IT$LHD$HHE$tHD$(H FH9HCLd$(HD$H$ HHDŽ$ LH$ IHL$Hx HH?I$xHI$?M]I@LD$LH5n+HH>]LD$IIM\x HI7LLL$R LL$$L]Ix HI7L%j+H=k'IT$L辰IH ]tAIALL$LH5u,HHTLL$HD$(H|$(SIx HIR7Hc|$x/IHSL$(H=&IPLLD$x$LD$xHHD$H4SD$xtHD$(H eH9HSL$ HDŽ$ HDŽ$ AHD$xHRSHD$(E1H$H (Ht$xHNtHL$LD$(H)H$H$ HH?H H$H4HL$x蓯LD$(IMtIx HISI$xHI$SHL$Hx HH HHL$xHx HHHH$Hx HHHMGH$@ 41DŽ$@H$I9&GL$H$ H$@H$LL$H$RLL$FH$H$4H$H H$@ H$ H$H$H$H$ HD$H$4H/FHD$(Ix HI1G~D$(H$4H$H$$H$ L%()$@ IT$H=$LgIHmEtAIALL$xLH5v&HH,ELL$xHD$H|$DIx HILE$$HHHH$迫IHDL%$H=e#HD$xIT$L賬LD$xHI+DtAHD$H H9HCLd$E1fInfInL$flL$LD$xH$HDŽ$ )$ 謫LD$xL$HHD$L$BH*%H$HPtHȺLL\$xH)H?L$H H$L$L$ H4HL$L$L\$xL$IMtIx HIuTIx HITIx HITHL$Hx HHTI$xHI$SMSH$41DŽ$,I9SL$H$@H$,HLL$LL$SH$ H$ H$H$` HD$H$HRHD$xIx HIXSL%$H= IT$LIIHRtAIALL$LH5X#HH:RLL$IIMRx HIRH$輨HH$QL!H=] IRLLT$謩LT$L$HIKQtAHI9D$OL$HD$~D$fInL$L$flH$HDŽ$ )$ 蜨L$L$HI6OH!"H$HPtHȺH$L$H)H?L$ H H$L$H4LHL$L$H$L$HtHx HHQOIx HIZOIx HIdOI$xHI$[OH$Hx HHLOH$HnRH$HH$@ L$H L$ HD$H#RH$Hx HHNL$L$L$D$H$L$L$L$H$H$1$HL~L9$HuE7AL$DŽ$H$H$H$$$HHH)ȋ95HcH$L$HIIIH$0LL$(H<HcHIL؃8u8A9t3D?E98~+9$rIcL$AH$A LIL9uH$L$H$D9$H$HD$(L$H$L$L$H9tH8KH$H$4H|$(H9tHtG8JHD$xHtH9tH8/KHD$HtH9tH8;KHD$(H$H$H$fHnH$ 4$)$p H|$0H$ 4HPH|$HMH|$XfO)$PH|$`fQ)$ H|$hfS)$H|$pfU)$fHt$0H$@ HH$H$`4)$HD$H)$`H=/HD$(H$8H*H5HHD$(H$0H*H$8Hx HH^*HD$HHHDŽ$4HmcH$ H$pHH5V H$H$HHK+H$0H E1H9H[+H$8AHL$p I)H$x HH?I H$p H4LH${LHD$(H$8Hx HH*H$0HDŽ$8Hx HH +H|$(HDŽ$004H=.HD$0H$8H3Ld$@H5,L\IHOH5LHD$7HDŽ$8,fH=)tHH$ HH$8HDŽ$ H$ 61IH$8Hx HHHDŽ$8ML#IEHIEJ HD$HE11ҾHD$E1E1E1HD$0HD$(HD$8HD$ HD$@HD$IfDHD$HE11E1HD$E1۾HD$0HD$(HD$8HD$ HD$@HD$ӸHD$HE11E1HD$E1E1HD$0HD$(HD$8HD$ HD$@HD$sL[uHD$HE11ҾHD$E1E1E1HD$0HD$(HD$8HD$ HD$@HD$HD$HE11E1HD$E1E1HD$0HD$(HD$8HD$ HD$@鯷L藖MEH$@HH$ Hc<;H$I)>Hc 9uLHT$LLD$ LL$HT$#H0MLLL$8LL$8LL$8 LL$8LL$8LL$8LLLD$@҂LD$@LL$8KL|$ 1E1E1HD$HHD$HD$0HD$(HD$8HD$@HD$ }HD$HE11E1HD$E1۾HD$0HD$(HD$8HD$ HD$@HD$ HLD$LL$LD$LL$dLLD$LD$L\$麮L|$ 1E1E1HD$HHD$HD$0HD$(HD$8HD$@HD$ 鍢L|$ 1E1۾HD$HHD$HD$0HD$(HD$8HD$@HD$ [LL\$荀L\$LD$IHXHHJ1H;tHH9L|$ 1E1ҾHD$HHD$HD$0HD$(HD$8HD$@HD$HD$ kML9BMuH;5H-L|$ 1E1E1HD$HHD$HD$0HD$(HD$8HD$@HD$HD$ |t0LLL$肫LL$t.I`IG`HLLL$\LL$L|$ 1E1HD$HE1E1HD$HD$0HD$(HD$8HD$ HD$@HD$|HT$HH9HuH;5HT$HL|$ 1E1E1HD$HHD$HD$0HD$(HD$8HD$@HD$ 鵑tBH|$LD$@LL$8HLL$8LD$@I|$`ID$`H5&H|$L$L\$@LL$8ZL\$@LL$8L$LD$\LD$L#HD$HLL$(E1HD$HD$(HD$x@HD$x`^LL$HD$(LL$(E1۾HD$(L@H@H$AtAH$D$xtHL$(Hx HHfInfInLD$(HDŽ$ fl)$ L[LD$(HHD$xL$E1۾HD$(IHHI;LL$L$$XL$L$$HLD$xpXLD$x91鑫LLL$(RXLL$(LLL$(;XLL$(1E1E1۾PLX]1E1E1۾yLWLD$PvuBHL$($Ѵʴu8HHHWݴqU$H=s1褠ps$H=]1莠uVHL$xHHHHWW饴u@HL$HHHH+W陴qt$H=1 qu$H=1 ML$E1ɾIL$ID$H$HL$$tH$$tI$HI$LL$L$H$dVH$L$L$鶯H?VL$L$钰LLL$VLL$鏰1{LV鏰LU阰HU駰HL$UL$L$L$L$L$H$L$H$D$L$H$L$LT$fWLT$LL$HIHD$E1۾_MᾶQME1E1ɾHD$6YLL$I龭HD$xE1VHD$xE1HD$7VLIHCHD$E1LTjLL$xHDŽ$HDŽ$鹬E1E1E1LLL$FTLL$L4T雬LL$LL$xTL$LL$xL$\LL$LL$xSL$LL$xILLL$xSLL$xFHLL$xSLL$xHHQLaH$8tA$tA$HD$Hx@HHtH|$HD$XXSHD$X[E11E1E1۾It1?E1ɾ1E1HD$E1L SE11E1E1HD$sLT$RT$L$E178H; LL$Xt9Ht$H|$P(RLL$XHD$錶1E1E1۾HD$~sHD$PX@SLL$XHD$K1E1E1۾HD$+LLD$PLL$RLD$PLL$^E11E1E1HD$rLLL$QLL$IE11E1E1۾rHQHD$HD$0ѴE11E1E1HD$H HD$HD$0rHD$xE1ɾHD$(HD$HD$xE1E1侫HD$(HD$XULD$I麢LL$SLL$HHD$xE1HD$(HD$NRLIHHD$xE1HD$(HD$ HPH$011HHOHWH$0ttHH$8x HHtC1[E11E1۾HD$0(qHD$1E1۾HD$0(LT$0OLT$01 1E1E1۾HD$HD$0p1E1E1۾HD$HD$0pHҽH-H5%H81SE11E1HD$E1۾lpHL$LOL$ff.@AWHAVAUATUHSHHD$`HHD$hHHD$pH- HD$@HD$HHD$PHD$XHD$xHDŽ$HLyIMH&HtHHtHT$@ID$L,LL$`O4)KI1LT$@IM\LHuHPHHL;uITL)LЋ t HHI9uHL$XHH|$@H>H|@t{HEHt,H|@tfHEHtH|@tTHHtH|@tELD$HHT$PHHVtHT$PHVtHT$HHHHӺH 3'H5UUL $AH*H81fQY^H|$@HtHx HHJH|$HHtHx HH"H|$PHtHx HH"H|$XHtHx HH#H=`#E1HĘL[]A\A]A^A_HD$8HI9CLLHL$8LL)LT$LL$L\$ݙL\$LL$LT$LHH)H5H81:PDHH>tLFH|$@AtAHVLD$HtH HT$PtHL$XL"fH|$@IHtHx HHH|$HHtHx HHH|$PHtHx HHH|$XHHHHw KmHHzH(L "UAH $H5H81 OXZJJJJJ_J7JHD$8ITI ‹tH^H BtHL$X[LLHL$8LL'LT$LL$L\$~LT$LL$L\$LLL$]JIE1LL$LHu0jtHIL)HD@HCHHtcannot import name %S__pyx_capi____loader__loader__file__origin__package__parent__path__submodule_search_locationsneeds an argumentan integer is requiredkeywords must be stringsendunparsable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'buffer dtype__init__exactly__repr__name '%U' is not definedbuiltinscython_runtime__builtins__scipy.sparse.csgraph._flowdoes not matchnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncscipy._cyutilitymemoryview_allocate_bufferarray_cwrappermemoryview_cwrappermemview_sliceslice_memviewslicepybuffer_indexint (__Pyx_memviewslice *)transpose_memslicememoryview_fromsliceget_slice_from_memviewslice_copymemoryview_copymemoryview_copy_from_sliceget_best_orderslice_get_sizefill_contig_strides_arraycopy_data_to_temp_err_extents_err_dimint (PyObject *, PyObject *)_errint (void)_err_no_memorymemoryview_copy_contentsbroadcast_leadingrefcount_copyingrefcount_objects_in_slice_slice_assign_scalarnumpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy.import_array_make_tails_make_edge_pointers_add_reverse_edgespydata_sparse_clsmaximum_flow__reduce____module____dictoffset____vectorcalloffset____weaklistoffset__func_doc__doc__func_name__name____qualname__func_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutineconst ITYPE_t@hhh@hhhhhh`hhhhghhggghhhhhhhhhhhhhhhh@h@hghhPh`hhhhghhh@hgh@h, D  fr ~ P ʂ8N Z = =fBNZrv*d6dtlltllllll\ll\llLLLllllllllllllllllttlvl\ll\llltLlt ;̀̀|l\\\\̀̀|l\̀\̀v`````````F``F``````````````````F[````````````````````````O[O`````````````…`````.```O``````````````````a ]Ap Sa Z3__pyx_fatalerrorCreate for each edge pointers to its tail.Create for each edge pointers to its reverse.Add reversed edges to all edges in a graph. This adds to a given directed weighted graph all edges in the reverse direction and give them weight 0, unless they already exist. Parameters ---------- a : csr_array The square matrix in CSR format representing a directed graph Returns ------- res : csr_array A new matrix in CSR format in which the missing edges are represented by explicit zeros. maximum_flow(csgraph, source, sink) Maximize the flow between two vertices in a graph. .. versionadded:: 1.4.0 Parameters ---------- csgraph : csr_array The square matrix representing a directed graph whose (i, j)'th entry is an integer representing the capacity of the edge between vertices i and j. source : int The source vertex from which the flow flows. sink : int The sink vertex to which the flow flows. method: {'edmonds_karp', 'dinic'}, optional The method/algorithm to be used for computing the maximum flow. Following methods are supported, * 'edmonds_karp': Edmonds Karp algorithm in [1]_. * 'dinic': Dinic's algorithm in [4]_. Default is 'dinic'. .. versionadded:: 1.8.0 Returns ------- res : MaximumFlowResult A maximum flow represented by a ``MaximumFlowResult`` which includes the value of the flow in ``flow_value``, and the flow graph in ``flow``. Raises ------ TypeError: if the input graph is not in CSR format. ValueError: if the capacity values are not integers, or the source or sink are out of bounds. Notes ----- This solves the maximum flow problem on a given directed weighted graph: A flow associates to every edge a value, also called a flow, less than the capacity of the edge, so that for every vertex (apart from the source and the sink vertices), the total incoming flow is equal to the total outgoing flow. The value of a flow is the sum of the flow of all edges leaving the source vertex, and the maximum flow problem consists of finding a flow whose value is maximal. By the max-flow min-cut theorem, the maximal value of the flow is also the total weight of the edges in a minimum cut. To solve the problem, we provide Edmonds--Karp [1]_ and Dinic's algorithm [4]_. The implementation of both algorithms strive to exploit sparsity. The time complexity of the former :math:`O(|V|\,|E|^2)` and its space complexity is :math:`O(|E|)`. The latter achieves its performance by building level graphs and finding blocking flows in them. Its time complexity is :math:`O(|V|^2\,|E|)` and its space complexity is :math:`O(|E|)`. The maximum flow problem is usually defined with real valued capacities, but we require that all capacities are integral to ensure convergence. When dealing with rational capacities, or capacities belonging to :math:`x\mathbb{Q}` for some fixed :math:`x \in \mathbb{R}`, it is possible to reduce the problem to the integral case by scaling all capacities accordingly. Solving a maximum-flow problem can be used for example for graph cuts optimization in computer vision [3]_. References ---------- .. [1] Edmonds, J. and Karp, R. M. Theoretical improvements in algorithmic efficiency for network flow problems. 1972. Journal of the ACM. 19 (2): pp. 248-264 .. [2] Cormen, T. H. and Leiserson, C. E. and Rivest, R. L. and Stein C. Introduction to Algorithms. Second Edition. 2001. MIT Press. .. [3] https://en.wikipedia.org/wiki/Graph_cuts_in_computer_vision .. [4] Dinic, Efim A. Algorithm for solution of a problem of maximum flow in networks with power estimation. In Soviet Math. Doklady, vol. 11, pp. 1277-1280. 1970. Examples -------- Perhaps the simplest flow problem is that of a graph of only two vertices with an edge from source (0) to sink (1):: (0) --5--> (1) Here, the maximum flow is simply the capacity of the edge: >>> import numpy as np >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import maximum_flow >>> graph = csr_array([[0, 5], [0, 0]]) >>> maximum_flow(graph, 0, 1).flow_value 5 >>> maximum_flow(graph, 0, 1, method='edmonds_karp').flow_value 5 If, on the other hand, there is a bottleneck between source and sink, that can reduce the maximum flow:: (0) --5--> (1) --3--> (2) >>> graph = csr_array([[0, 5, 0], [0, 0, 3], [0, 0, 0]]) >>> maximum_flow(graph, 0, 2).flow_value 3 A less trivial example is given in [2]_, Chapter 26.1: >>> graph = csr_array([[0, 16, 13, 0, 0, 0], ... [0, 0, 10, 12, 0, 0], ... [0, 4, 0, 0, 14, 0], ... [0, 0, 9, 0, 0, 20], ... [0, 0, 0, 7, 0, 4], ... [0, 0, 0, 0, 0, 0]]) >>> maximum_flow(graph, 0, 5).flow_value 23 It is possible to reduce the problem of finding a maximum matching in a bipartite graph to a maximum flow problem: Let :math:`G = ((U, V), E)` be a bipartite graph. Then, add to the graph a source vertex with edges to every vertex in :math:`U` and a sink vertex with edges from every vertex in :math:`V`. Finally, give every edge in the resulting graph a capacity of 1. Then, a maximum flow in the new graph gives a maximum matching in the original graph consisting of the edges in :math:`E` whose flow is positive. Assume that the edges are represented by a :math:`\lvert U \rvert \times \lvert V \rvert` matrix in CSR format whose :math:`(i, j)`'th entry is 1 if there is an edge from :math:`i \in U` to :math:`j \in V` and 0 otherwise; that is, the input is of the form required by :func:`maximum_bipartite_matching`. Then the CSR representation of the graph constructed above contains this matrix as a block. Here's an example: >>> graph = csr_array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 1, 0]]) >>> print(graph.toarray()) [[0 1 0 1] [1 0 1 0] [0 1 1 0]] >>> i, j = graph.shape >>> n = graph.nnz >>> indptr = np.concatenate([[0], ... graph.indptr + i, ... np.arange(n + i + 1, n + i + j + 1), ... [n + i + j]]) >>> indices = np.concatenate([np.arange(1, i + 1), ... graph.indices + i + 1, ... np.repeat(i + j + 1, j)]) >>> data = np.ones(n + i + j, dtype=int) >>> >>> graph_flow = csr_array((data, indices, indptr)) >>> print(graph_flow.toarray()) [[0 1 1 1 0 0 0 0 0] [0 0 0 0 0 1 0 1 0] [0 0 0 0 1 0 1 0 0] [0 0 0 0 0 1 1 0 0] [0 0 0 0 0 0 0 0 1] [0 0 0 0 0 0 0 0 1] [0 0 0 0 0 0 0 0 1] [0 0 0 0 0 0 0 0 1] [0 0 0 0 0 0 0 0 0]] At this point, we can find the maximum flow between the added sink and the added source and the desired matching can be obtained by restricting the flow function to the block corresponding to the original graph: >>> result = maximum_flow(graph_flow, 0, i+j+1, method='dinic') >>> matching = result.flow[1:i+1, i+1:i+j+1] >>> print(matching.toarray()) [[0 1 0 0] [1 0 0 0] [0 0 1 0]] This tells us that the first, second, and third vertex in :math:`U` are matched with the second, first, and third vertex in :math:`V` respectively. While this solves the maximum bipartite matching problem in general, note that algorithms specialized to that problem, such as :func:`maximum_bipartite_matching`, will generally perform better. This approach can also be used to solve various common generalizations of the maximum bipartite matching problem. If, for instance, some vertices can be matched with more than one other vertex, this may be handled by modifying the capacities of the new graph appropriately. source and sink vertices must differnumpy._core.umath failed to importnumpy._core.multiarray failed to importgraph must be specified as a square matrix.graph capacities must be integersRepresents the result of a maximum flow calculation. Attributes ---------- flow_value : int The value of the maximum flow. flow : csr_array The maximum flow. maximum_flow(csgraph, source, sink) Maximize the flow between two vertices in a graph. .. versionadded:: 1.4.0 Parameters ---------- csgraph : csr_array The square matrix representing a directed graph whose (i, j)'th entry is an integer representing the capacity of the edge between vertices i and j. source : int The source vertex from which the flow flows. sink : int The sink vertex to which the flow flows. method: {'edmonds_karp', 'dinic'}, optional The method/algorithm to be used for computing the maximum flow. Following methods are supported, * 'edmonds_karp': Edmonds Karp algorithm in [1]_. * 'dinic': Dinic's algorithm in [4]_. Default is 'dinic'. .. versionadded:: 1.8.0 Returns ------- res : MaximumFlowResult A maximum flow represented by a ``MaximumFlowResult`` which includes the value of the flow in ``flow_value``, and the flow graph in ``flow``. Raises ------ TypeError: if the input graph is not in CSR format. ValueError: if the capacity values are not integers, or the source or sink are out of bounds. Notes ----- This solves the maximum flow problem on a given directed weighted graph: A flow associates to every edge a value, also called a flow, less than the capacity of the edge, so that for every vertex (apart from the source and the sink vertices), the total incoming flow is equal to the total outgoing flow. The value of a flow is the sum of the flow of all edges leaving the source vertex, and the maximum flow problem consists of finding a flow whose value is maximal. By the max-flow min-cut theorem, the maximal value of the flow is also the total weight of the edges in a minimum cut. To solve the problem, we provide Edmonds--Karp [1]_ and Dinic's algorithm [4]_. The implementation of both algorithms strive to exploit sparsity. The time complexity of the former :math:`O(|V|\,|E|^2)` and its space complexity is :math:`O(|E|)`. The latter achieves its performance by building level graphs and finding blocking flows in them. Its time complexity is :math:`O(|V|^2\,|E|)` and its space complexity is :math:`O(|E|)`. The maximum flow problem is usually defined with real valued capacities, but we require that all capacities are integral to ensure convergence. When dealing with rational capacities, or capacities belonging to :math:`x\mathbb{Q}` for some fixed :math:`x \in \mathbb{R}`, it is possible to reduce the problem to the integral case by scaling all capacities accordingly. Solving a maximum-flow problem can be used for example for graph cuts optimization in computer vision [3]_. References ---------- .. [1] Edmonds, J. and Karp, R. M. Theoretical improvements in algorithmic efficiency for network flow problems. 1972. Journal of the ACM. 19 (2): pp. 248-264 .. [2] Cormen, T. H. and Leiserson, C. E. and Rivest, R. L. and Stein C. Introduction to Algorithms. Second Edition. 2001. MIT Press. .. [3] https://en.wikipedia.org/wiki/Graph_cuts_in_computer_vision .. [4] Dinic, Efim A. Algorithm for solution of a problem of maximum flow in networks with power estimation. In Soviet Math. Doklady, vol. 11, pp. 1277-1280. 1970. Examples -------- Perhaps the simplest flow problem is that of a graph of only two vertices with an edge from source (0) to sink (1):: (0) --5--> (1) Here, the maximum flow is simply the capacity of the edge: >>> import numpy as np >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import maximum_flow >>> graph = csr_array([[0, 5], [0, 0]]) >>> maximum_flow(graph, 0, 1).flow_value 5 >>> maximum_flow(graph, 0, 1, method='edmonds_karp').flow_value 5 If, on the other hand, there is a bottleneck between source and sink, that can reduce the maximum flow:: (0) --5--> (1) --3--> (2) >>> graph = csr_array([[0, 5, 0], [0, 0, 3], [0, 0, 0]]) >>> maximum_flow(graph, 0, 2).flow_value 3 A less trivial example is given in [2]_, Chapter 26.1: >>> graph = csr_array([[0, 16, 13, 0, 0, 0], ... [0, 0, 10, 12, 0, 0], ... [0, 4, 0, 0, 14, 0], ... [0, 0, 9, 0, 0, 20], ... [0, 0, 0, 7, 0, 4], ... [0, 0, 0, 0, 0, 0]]) >>> maximum_flow(graph, 0, 5).flow_value 23 It is possible to reduce the problem of finding a maximum matching in a bipartite graph to a maximum flow problem: Let :math:`G = ((U, V), E)` be a bipartite graph. Then, add to the graph a source vertex with edges to every vertex in :math:`U` and a sink vertex with edges from every vertex in :math:`V`. Finally, give every edge in the resulting graph a capacity of 1. Then, a maximum flow in the new graph gives a maximum matching in the original graph consisting of the edges in :math:`E` whose flow is positive. Assume that the edges are represented by a :math:`\lvert U \rvert \times \lvert V \rvert` matrix in CSR format whose :math:`(i, j)`'th entry is 1 if there is an edge from :math:`i \in U` to :math:`j \in V` and 0 otherwise; that is, the input is of the form required by :func:`maximum_bipartite_matching`. Then the CSR representation of the graph constructed above contains this matrix as a block. Here's an example: >>> graph = csr_array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 1, 0]]) >>> print(graph.toarray()) [[0 1 0 1] [1 0 1 0] [0 1 1 0]] >>> i, j = graph.shape >>> n = graph.nnz >>> indptr = np.concatenate([[0], ... graph.indptr + i, ... np.arange(n + i + 1, n + i + j + 1), ... [n + i + j]]) >>> indices = np.concatenate([np.arange(1, i + 1), ... graph.indices + i + 1, ... np.repeat(i + j + 1, j)]) >>> data = np.ones(n + i + j, dtype=int) >>> >>> graph_flow = csr_array((data, indices, indptr)) >>> print(graph_flow.toarray()) [[0 1 1 1 0 0 0 0 0] [0 0 0 0 0 1 0 1 0] [0 0 0 0 1 0 1 0 0] [0 0 0 0 0 1 1 0 0] [0 0 0 0 0 0 0 0 1] [0 0 0 0 0 0 0 0 1] [0 0 0 0 0 0 0 0 1] [0 0 0 0 0 0 0 0 1] [0 0 0 0 0 0 0 0 0]] At this point, we can find the maximum flow between the added sink and the added source and the desired matching can be obtained by restricting the flow function to the block corresponding to the original graph: >>> result = maximum_flow(graph_flow, 0, i+j+1, method='dinic') >>> matching = result.flow[1:i+1, i+1:i+j+1] >>> print(matching.toarray()) [[0 1 0 0] [1 0 0 0] [0 0 1 0]] This tells us that the first, second, and third vertex in :math:`U` are matched with the second, first, and third vertex in :math:`V` respectively. While this solves the maximum bipartite matching problem in general, note that algorithms specialized to that problem, such as :func:`maximum_bipartite_matching`, will generally perform better. This approach can also be used to solve various common generalizations of the maximum bipartite matching problem. If, for instance, some vertices can be matched with more than one other vertex, this may be handled by modifying the capacities of the new graph appropriately. &QfAQ"!1%Qa$AQ  !1Ja&b%Rqrq"AV1$A"F!2Rqa'q6"Bc&aQ1 "Cq x}ATar1 qN!2RqfCvSs! V3aWCqawc gSV3aq>! q!N!1QkAQ q O1A! q QqQ 9Bj ]'AMaximumFlowResult with value of %dscipy/sparse/csgraph/_flow.pyxconvert_pydata_sparse_to_scipy&BfAQe6$fA$AQU!1 Ea}ATar1 %q 1+1D1)!qG10.uHAYd'Aiqt:QgV9Aj s!'wcjwfAS7&jwb#WCwfAQj=WAXQ#7!7&BauBb57&j;7!6#7!7&Bat7!' Y.ay 'QxwgQ)2WG9A"'wa  !1&aqwc 1A}AQiwaqg^81 1vQay1G1aj:'!81A)2\*AZvQaq''9! 1N!j*AQgQhawawb A[Dsource value ({}) must be between {} method is not supported yet.graph must be in CSR formatsink value ({}) must be between scipy.sparse.csgraph._flow& RwaqV1Da 81Jaz4vQ !:Q 1Asafely_cast_index_arraysMaximumFlowResult.__repr__MaximumFlowResult.__init__scipy.sparse._sputilsmaximum_flow (line 35)_make_edge_pointersis_pydata_spmatrixhas_sorted_indicescline_in_tracebackasyncio.coroutinespydata_sparse_clsfrom_scipy_sparse_add_reverse_edgesMaximumFlowResultres_indices_viewis_pydata_sparseres_indptr_viewat_indices_viewsorted_indicesat_indptr_viewa_indices_viewtarget_formatres_data_view__class_getitem__a_indptr_viewscipy.sparserev_edge_ptrmaximum_flow_is_coroutine_initializingedmonds_karpcsgraph_origsource_flowres_indicesflow_matrixa_data_viewImportErrorres_indptr__pyx_vtable___make_tailsflow_valueflow_arraycsr_matrixValueErrortranspose__metaclass__idx_dtypecsr_arrayTypeError__set_name__res_data__qualname__issparseres_ptr__prepare__move_atindicesfloat64csgraphasarraysourcemove_a__module__methodindptrformatb_dataat_ptrat_endastypearangeA N! HAzerostailsshaperangenumpyint32iinfoemptydtypedinic__class__a_ptra_endITYPEDTYPEA4Bd!0 and {}type__test____spec__sinkself__repr____name____main____init____func__flowdatasumpopnnzmsgmax__doc__csrnpat?nmjiba.@?;[S8 \YHs8 R dp(<Pdx@`L``|p P0\ p 4 l@ `   P     8   p    # p#@ $\ $| % % `& (,(L)p*`-3H7:;?LpAtCEH@@OTpVTXXj@oD`T@@t{zRx $FJ w?;*3$"D@XLlXd!4\AA ABDF Ul h Jd e$XW w B `H d D @$PAGG0k GAF d DAG Z CAJ h|Dab bah G ,8D%DBBE B(A0D8A@8D0A(B BBB(LBAD ] DBF xA@ G m K x BEI K(D0A8Gp"xIDDDDAABAABIp8D0A(B BBB8OBEH A(A0m(D BBBHT.BEL E(A0A8E@8A0A(B BBB8~{BBE D(A0b(D BBB4BDD  GBG AABGAE ,xDq K K E 4P4BAD  DBI \ DBF \BBA D(D0Y (G ABBN ] (A ABBE N (A ABBD lxxBBE B(D0D8Dc 8G0A(B BBBF ] 8D0A(B BBBF Q 8I0A(B BBBM HxhBEB B(A0A8GPk8D0A(B BBB(BAGABlD`HBEE E(A0D8E@w8D0A(B BBBDT3BHE A(D08I@T8A0P(D BBBxDb@BAD D0  AABG `  DABI l AG |ix, 'BBB E(A0A8D@_ 8A0A(B BBBF _ 8A0A(B BBBG _ 8F0A(B BBBB $nBDA cAB4MBEE D(A0q(D BBB 4 JAD0 AAG H0`T 5BBB B(D0D8G` 8A0A(B BBBF  8C0A(B BBBH |He|hdh Do E C E  p4 `oBKF D(D0F (I DBBF u (I DBBJ  (D ABBE (I ABBL \BBE A(J0 (A BBBF (A BBB ,SDNH BBB E(A0A8FP8D0A(B BBB\ (DM G x xD~ F o xD~ F o( \ADD d AAA ( ADD d AAA 4 dBAD  DBI \ DBF H D~ F o I Ph \BBA  BBD D BBH H IBM A EBH ( BAD ] DBF  d xQBB B(A0D8DP`HPg 8D0A(B BBBD Hd #BBB B(H0D8GP  8D0A(B BBBA 4(A  G H H  +)Act 4+BEE E(D0D8G 8C0A(B BBBD PHRAb 8A0A(B BBBA $h .bBT  EK $ 0bBT  EK 8 <3BBA A(D0] (D ABBH d 4BBB B(A0D8FP  8A0A(B BBBI  8A0A(B BBBE \\7hBMG B(A0D8RUV_At 8A0A(B BBBH l=LBIE B(A0A8DW_AW 8A0A(B BBBA W_A@,xBbBB A(A0D@S 0D(A BBBF @pDBBE A(A0D@z 0D(A BBBD E>Ae J I\BBB B(A0A8GiHHKn8A0A(B BBB4EBBB E(A0A8GWLGGGGGGGGGGGGGGGGGGGGGGGMc 8A0A(B BBBA lVBIE B(A0A8DW_AW 8A0A(B BBBA W_Al`Z1BIE B(A0A8DW_AX 8D0A(B BBBE uW_A`r7BBB B(D0D8D`Z 8D0A(B BBBE  8A0A(B BBBF 84wBBA A(G0G (A ABBF \p{%BGJ B(A0A8G 8A0A(B BBBA hGaBL)BBB B(A0D8G  8D0A(B BBBC l 4BIE B(A0A8DW_AW 8A0A(B BBBA W_A|T1BDE B(A0A8G 8D0A(B BBBG 9VbABGGGGGFldBIB B(A0D8GV_A 8D0A(B BBBD V_A8 ww8w xv \v`Vv`Ht `r`@q` q`l# K u `t `*w 6w`8t `Pv`@s`s`Jv`r`u`u`u` r`'w`u`s`0s`u`4w`u`@v `ps`r`l`u`s ` w`t `t `v`7v`w`1v`s `+v`u`v`t `(t `t `u``r`v `K" p @K, q`2w`t `%v`xu`u`v `s`v`s`r`q`Hu `0w`.w`v `q`xt `w`s `L5 q t`u`p u `u`pu`w`,w`v ` w`$w`v`K( J# w``u `@r`ht`8u `v`v `(u ``s`t `r`Xt `s`Xu`s `q`s ``q`pp`l v`u ` v`v`@p! s`u`J% t `o# v `w`v`Ps`v `t `v`v` I| IJ @ Уأo`  ` P @4x oooo(6@F@V@f@v@@@@@@@@@AA&A6AFAVAfAvAAAAAAAAABB&B6BFBVBfBvBBBBBBBBBCC&C6CFCVCfCvCCCCCCCCCDD&D6DFDVDfDvDDDDDDDDDEE&E6EFEVEfEvEEEEEEEEEFF&F6FFFVFfFvFFFFFFFFFGM4PBP~2ЄG3@@HI6^@i t@0(}}}}wp`z`zxx  x  x! @x+ @x4 0pB 0pO ~ ^ zn PIi}zK5X  ) *,W`*Q@,@GCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11)8` @4 @ @ G  pwXzУأ(  w' xD xa @x!{ px zU `zJ z { p}= }DW } } }b P~ p~ ~% G x ~ @ HQ Ik LJ. zK{  LG   < O Єm  5X @  )1  Q  k    x p ` X P/ HH @c 8 0 (    *Jm;f  M` @    9 @z 0  10 7G %| -) W @\1A w@h@ P0 8w9 xv G \vU Vvc Ht w r @q q l# K$ u 6 t I *wT 6w^ 8t r Pv @s s Jv r u u u r 'w) u8 sP 0sg uv 4w u @v  ps r l u s  w& t 8 t K vX 7vf wr 1v s  +v u v t  (t  t  u  `r# v 0 K"Y p} @K, q 2w t  %v xu u  v  s, v: sO rh q Hu  0w .w v  q xt  w s  L5, qI t[ uj p  u  u pu w ,w v  w $w v K(- J#V wb `u r @r ht 8u  v v  (u  `s t  r Xt 2 sJ XuZ s o q s  `q pp l  v u + v9 vF @p!i s u J% t  o# v  w  v Ps. v ; t M vZ vh v0 )+ *. `*= @,5s~ w Pw wأ wУs    N [ (d pww   @      !!#!