ELF>`F@@8 @77@@@д(((888$$PtdQtdRtdд0 0 GNU2wࣻ ]}`oALjJ+S  . >X& <G lj+ ,[ PG<oeAMxepvjXK }TCBU/dw>-X,X|[, xlu6F"L6  n __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyDict_NewPyExc_TypeErrorPyErr_FormatPyExc_SystemErrorPyErr_SetStringPyDict_SizePyLong_FromLongPyUnicode_InternFromStringPyUnicode_FromStringPyUnicode_FromFormatPyObject_GetAttr_Py_DeallocPyExc_AttributeErrorPyErr_ExceptionMatchesPyExc_ImportErrorPyErr_ClearPyModule_GetNamePyUnicode_ConcatPyImport_GetModulePyTuple_NewPyDict_SetDefaultPyBytes_FromStringAndSizePyBytes_AsStringPyUnstable_Code_NewWithPosOnlyArgsPyObject_GetAttrStringPyDict_SetItemStringPyDict_GetItemStringPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyThreadState_GetPyInterpreterState_GetIDPyModule_NewObjectPyModule_GetDictPyLong_AsLongPyErr_OccurredPyExc_OverflowErrorPyLong_TypePyExc_DeprecationWarningPyErr_WarnFormatPyMethod_NewPyTuple_GetSlicePyTuple_GetItemPyMem_MallocPyDict_NextPyMem_FreePyErr_NoMemorystrrchrPyImport_AddModulePyDict_GetItemWithErrorPyType_FromMetaclassPyList_New_PyObject_GC_NewPyObject_GC_TrackPyExc_ValueError_Py_TrueStructPyFloat_Type_Py_FalseStructPyObject_RichComparePyObject_RichCompareBoolvsnprintf_Py_FatalErrorFuncPyImport_ImportModuleLevelObjectPyObject_GetItemPyExc_RuntimeErrorPyUnicode_TypememcmpPyObject_IsTruePyObject_HashPyArg_ValidateKeywordArgumentsPyBaseObject_TypePyErr_GivenExceptionMatchesPyCFunction_TypePyObject_VectorcallDictPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyExc_RuntimeWarningPyErr_WarnExPyErr_SetObjectPyObject_GC_UnTrackPyObject_ClearWeakRefsPyObject_GC_Del_PyThreadState_UncheckedGetPyExc_StopIterationPyFrame_NewPyTraceBack_HerePyCode_NewEmptymemmovePyMem_ReallocPyException_SetTracebackPyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyExc_NameError_PyDict_GetItem_KnownHashPyObject_SetAttrStringPy_VersionPyOS_snprintfPyUnicode_FromStringAndSizePyDict_TypePyUnicode_DecodePyType_TypePyTuple_PackPyImport_GetModuleDictPyObject_SetAttrPyImport_ImportModulePyDict_SetItemPyException_GetTracebackPyExc_ModuleNotFoundErrorPyCapsule_TypePyExc_ExceptionPyList_TypePyTuple_TypePyLong_FromSsize_tPyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyMethod_TypePyObject_VectorcallPyObject_VectorcallMethodPyObject_GetIterPyObject_StrPyObject_SetItemPyNumber_NegativePyObject_FormatPyInit__matchingPyModuleDef_Initlibc.so.6GLIBC_2.2.5X ui b ooٛ ӛ0͛@HP`pxsqj~H@w} 80@;P`pp@f6b8^1iǛ Й0@gPg`0pb(Yp{([( 0@P`hpyU@Qh@g @f0P@MP`0pngfIXؚE 0P@ Pf`ȚpAߛwu @JR@`/x  u@z@v `@ z ,(`7BQf@yHtPhptxPtPto`Pr@08Pr@@X`oopp0p (0pHPuXpxu,qP<@/X`h7t"  (`hJxRX/9P4@S    '. /(1028C@DHFPHXI`ShTpUxZ]^`cdikmnptw{~ (08@HP X`hpx !"#$%& (()0*8+@,H-P0X3`4h5p6x789:;<=>?@ABDEGJKLMNO P(Q0R8V@WHXPYX[`\h_paxbefghjloqrsuvxyz|}~ (HH5HtH5%@%h%ڏh%ҏh%ʏh%h%h%h%hp%h`%h P%h @%h 0%h %zh %rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %h%h%h%h %ڎh!%Ҏh"%ʎh#%Žh$%h%%h&%h'p%h(`%h)P%h*@%h+0%h, %zh-%rh.%jh/%bh0%Zh1%Rh2%Jh3%Bh4%:h5%2h6%*h7p%"h8`%h9P%h:@% h;0%h< %h=%h>%h?%h@%ڍhA%ҍhB%ʍhC%hD%hE%hF%hGp%hH`%hIP%hJ@%hK0%hL %zhM%rhN%jhO%bhP%ZhQ%RhR%JhS%BhT%:hU%2hV%*hWp%"hX`%hYP%hZ@% h[0%h\ %h]%h^%h_%h`%ڌha%ҌhbAWAVIAUATUHSQ.IHH'H8Ou H LH5 H81HHHu 1E1E11J%IHtH5vHIHt"LH1HHtHH11H8.L0.L(.HTIZL[]A\A]A^A_AWIAVI E1AUIfA?ATMUSHHH8HT$ HL$LL$(D$Ht$HOHt$LL$(H1H9}ILtHLHHHLIHuE1E1E1LAZIHtCt?1E1%D$2IHHIHL$1LIHHIE1HL$HAHɑ5ˑHATSt$(t$0t$HPPAUPPAWuH`IHt ǀL,L,HExHHEuHH8L[]A\A]A^A_AVIAUIHATUSDHt@H;7HuE1tHLL4AHEx2HHEu)H8H?AH8ctE1[D]A\A]A^AWIAVIH5AUIATUSHAPIHtLHHHt%tGEB1Lw+Ho+LoLH5HHH81aLHduHH2H=vIHtAtA$LH$Ht&H<$HGIHuCHtDL=(E1L2(HEHHEHQtLAGH|$LHLIHtH<$HH'IHt1tAM9t=Iy$HcSLL^dMQHIuLI?HI3L&HL[]A\A]A^A_HXHt$(HT$06H|$`Ht$ D$H|$Ht$Ht>HHvD$tHxL$H7Hʃ/vHT$H tHOHXAWIAVIAUIATUHSLAQH=HTfInfHnIǀflH@(H@p@Ht EtEAWIl$ AD$@tAAEMt$PID$XID$8Ml$`tAEHttAGWI\$hID$xA$%IDŽ$A$t6tKuQHg=ID$0w=t#=u5H<ID$0[Hm'ID$0MH/<ID$0?ID$04H~H5UH8WI$xHI$uLE1LZL[]A\A]A^A_AVIHAUIATUDSHIHH@u H~LLH5iH81sML$(ID$ Mt ILLIL9v#Hr~ILLH5JH81,u3H9s.RL1IPMH!11Y^y LE1_$[L]A\A]A^AVIAUIATE1UQHHtH5E1LHLMIH$ZL]A\A]A^ATE1UQH5`#HtN1HHIHu dHuHx}H5 H8HExHHEuHLZ]A\AVIAUATUVHH58HIkHHH5HkIHu HEy6EH;Q}L;-}u L;-)}uL2tHHEuH;1L"HtUHExHHEuHI$x"HI$uLCHtYL]1A\A]A^DZL]A\A]A^AWAVAUATUSHL%Mt)1I9H|H5(H88tH=Y|HH!tH=}HttH܆HH=]HttHHHH=܋H55H{H0HH u1HlHuhoHl$ RHHHHA L qRHPHP1H 1HA1H=۽HH1H=H܅HH$H]p~zfHnHL-:flOH;HteC t0@t?3sHc$t1ITqsHcJHtJHEHyHt9HH1H4HH~HH Hu1L5A1(sHHE11AL5pHLH=ЉtNH=~ttLDH=ZcH=HtAHHx/HHu' HuHyH5H8(1H=VH5y1IH.HH5ہ1HI$xHI$uLH=H1H5|HH=?uXIH$HCH5H=H5HWHtH={hHH_ HUH5VL>?H=hhH(H=0ShH4H H=7hHHH5@1tHHH5uw1QHrHIH( Ʉ(-bLl$ Ifm H +LD@LHH=)l$P((p)L$0ffY)D$@)T$ HH5DML2=% Lfl.=G0-yfl)D$05 H(fH f)\$PHH=fHD$p)T$ )D$@)L$`8H6HtI$xNHI$uEL`;I$;HI$.LL5E1.A#H=LIHAHHH5xHHI$xHI$uLH=%IHA HHH5HaHsAH LH͸H5H8HBA0LHH5HHALH~H5^HHALHUH5-RHHALH,H5!HH~ALH H5˷HkHMALHӷH5HBHALHH5iHHALHH58]H~HALH]H5,H~HALH%H5ֶH~HXALHH5Hu~H'ALHܶH5tHL~HALHH5ChH#~HI$xHI$uLH=IHApHHH5RH}HcHHNALH$H5 H}HHHI$xHI$uLE1H=NIHH +HHH5H &HwLH5H QHJLH5`^H lHLH5p;9H HLH5YH HÀLH5GH BHLH5LH HiLH5:H #H<LH5*H NHLH5][H iHLH586H tHLH5H HLH5H H[LH5ʹH H.LH5H HLH5}H H~LH5ZXH H~LH553H vHz~LH5H sHM~LH5mH H ~LH5WH H}LH5KH H}LH58|x~H H}LH5([x]H Ht}LH5":xHHDHWIIH H5hH811H@HytH H[WIH5H81DH 4HysATUHHGHGHvNHHH)HHtbHHcAH9t5Hub}HtXAH)‹GHHcAH9u3HD]A\GWHH HHcAH9tDHyVH5AH8dfGWHH HcAH9uHD]A\DH@`HtUHHtIHHt?H@H;VVu_HAHEBHHE4H/'uHHUH5AH8HPtOHqUHѾHH810lHEHHEHyH*UH5SH81iHt 6fDtHAWAVIAUATIUHSHhLG0MtHwHhHL[]A\A]A^A_HVLIHL1 IHmLLHHIIEx HIEtOHhL[]A\A]A^A_DL~HvHu;HhLH1[]A\A]A^A_Af.E1L`fDHBHD$HtJ<8LD$HIH4MLD$tWIF I9IGHL1HHAoDADHH9uLHAt ITITH|$LD$LD$HHD$KD1AL|$ HHD$HL$PLHD$XH|$HLl$0IHl$8IHIHD$HLD$(EHD$PHPH#tHL$XtH|$JDHD$J ILLHL1uL|$ LD$(ILl$0Hl$8HHL$LLHAIH\$Hx HHH\$H~nLd$1DHH9tWIHH~u{HGxHtbHHCPHGpHHHCHHtHHHG@H;HCO81 t[fDt[DHGXf.HLH5*H8f[ff.UHH$H$H$L$L$t@)$ )$0)$@)$P)$`)$p)$)$Hl$ H$D$HD$HH$HL$HD$ 0HD$$HH=ʵDHH;>LtHtP8HG~Hu/LMt&IHxHIuL'DBH1DH=@LGPAtALff.fATASHH9uHKH9GH9FHWH9VHGHNH9AHAt HDO DF DD8u}A +H8A 5Hv8ȃ=DA9uBHH褾1Au&1@HJH9ut1AH[A\H9uuDIHH;tJL;%*JuI9uFI$xHI$uLD$ eD$ 1AH[A\LfDD@HO(H8A@HEHN(H8A@HED f.AWAVAUATIUHSHH(LwHL$LD$IHEHIL$(IMl$8HL$IGIHHL9puL@M;D$uDX AT$ Dމ@@@8uA >Hx8 M\$8@LI謼uHD$I)IL8H([]A\A]A^A_DH9Ml$(M|$8HH9HHL;puL@M;D$uDX AT$ Dމ@@@8uA Hx8 M\$8@LIuHGHT$LH5CH813H(1[]A\A]A^A_L\$@MDHx(H8A@HDHx(H8A@HDSIH@MMD6ff.AWAVIAUMATL$UHSH8H$LL$ǹtfI$HtqM1M9+tH4$LHL)HIGIHt9I9H0H輽HuRHtH8[]A\A]A^A_1I9HD$Ll$ H\$HD$ L|$(D1LHHػtI$H|$ LHtH;8tHBHHuHD$(HFH9GuYLD$LLLtKHEHL$ H5eHT$H81$H81[]A\A]A^A_LD$LLL;롐AWAVAUATUJ,SH8M~bIIII1HL$(fDHUMdHHuMDHPHHt;L;"uIL)LЋ2t2HHL9uH81[]A\A]A^A_fDHD$(HxEI9D$LD$pHLLLL$LT$HL$SHL$LT$LL$t9t%HDHT$pLH5$H81ʺH8[]A\A]A^A_HD$(II4‹tH8LD$pHLLLL$LT$HL$FLL$LT$HL$nfLVIIM1fHI9tM9Duf.1fDITHBtv@tmL9tIXHt,HqH~S1HH9t?H;TufDLDHH9xHuH;CffDHI9k1ËLGH?t HA`HtH>HHA`@HHBIH ބH5+H81"1Hff.H?IIHHWtLWHw8HBLL@Ht#LIHw8HHBLLHHUBHH FH5H81芸1HHLOH?tHu`HHu'IA1HHtsHu~H>HDHAIIH H5H81 1H@HytH ւHAIH5H81׷DH tHywHG@t~HFHtt@tkH9t.HXHt*HJH~A1DHH9t/H;tufHH9tHu1H;56Af1Dӳt@AUIIIATI?UHSHHKHwMItCH9HF8HDHHH1L[L]A\A]@H9H=@H9LXMI[H~&1@ILH9"H9HH9un MHH1L[L]A\A]齴DH9H=H@H9LXMI[H~&1@ILH9H9HH9uHL%ZJHH=ݰ1LHIMHL[]A\A]@HE0HDHH9t4HuH ?H9t#HHH9tHuH9FfDHMA1HYE1 uLeH=;&1LIOMLIHH=H5H8? HHH9t4HuH X>H9t#HHH9tHuH9fDHMAM)HYE1 uLeH=xcuL;E1HMA@HMAuHLH1[]A\A]qHt+tLGXHwXMtIx HIt1fH5A=HLd1Hff.fHH;5 =tKHtFHF tQtLHMtIx HIt1HfD1@LfDHi<H5H8zHHtOHFtBtLGHHwHMtIx HIt 1HDLpfDH;H5:H8HHHtOHFtBtLGPHwPMtIx HIt 1HDLfDHq;H5H8肮HUHSHHx;H9tHHucHH;H5H8utHHHtHx HHt 1H[]KfHFuH:H5]H8ͭfDUHSHH:H9tHHucHH ;H5ՉH8ŬtHHHtHx HHt 1H[]蛬fHF uH :H5=H8fDHHtOHF tjtLG@Hw@MtIx HIt 1HDLfDH9H5ZH8袬HHi9H5bH8zAUATUHHH@u~@tz1諭IHtR1HH6IIEx HIEtyMt+IL$@tvLHsI$x HI$t9]A\A]H]A\A]KH8]H5A\A]H8魫D]LA\A]LzHa8HH5H81蝮uATSHLMtA$tA$HL[A\DHHHtYHHtHPHtLg A$Lt?A$HxHHu&LDL%7A$ofHWD_@GDHtWH H1LH9t)HRLIHLH$~D$fo$H-H H$0fo$$fo$Hfo$ )$ fo$0)$0fo$@fo$P)$@fo$fo$`)$Pfo$fo$p)$`fo$)$HU)$)$p)$)$)$)$)$)$H=oIH tAIGH5LHH HH Ix HIHc$nIHL-H=}IULQoIH tA$HAE1HH9E fInfInƿHT$0HDŽ$fl)$nHD$ HG H HT$0HHtHD$(HL$ HL$J4(nIMtIx HILIx HII$xHI$oHL$ Hx HHIHExHHE&MB1HDŽ$HL;l$H$MH5 HH$] H$fDo$fDo$fDo$fDo$fo$H$fo$fo$ D)$fo$0fo$@D)$fo$Pfo$`D)$H$H$D)$fo$p)$fDo$HD$ H$D)$)$)$)$)$)$ )$0)$@D)$D)$D)$D)$D)$ )$0)$@)$P)$`)$p)$)$)$H%IExHIEH$~D$ fo$H-H$0fo$$fo$Hfo$ )$fo$0)$fo$@fo$P)$fo$fo$`)$fo$fo$p)$fo$)$HU)$)$)$ )$0)$@)$P)$`)$pH=E kHHtHCH5XHHHQIHMx HH$HHHD$PiHHH-H=HUHjIHktAH?A1HI9D$fHnfHnſHT$0HDŽ$fl)$iIHH VHT$0HHtHD$(LLL$J4(0jIHt HExHHEuH>gfDHx HHIx HIIx HIzI$xHI$~MH|$(1DŽ$HL;l$HL$(H$MH$H59"H$H$H\$xH$HD$8H$H$IExHIED$H$1E~#H$$@H9uD$H$1E~%H$$$2H9uH-H=^HUH2hIHOtAIFH5iLHHy IIM; x HIH|$PfIHN H-H=HUHgHH tH`E1II9GU!fInfInĿHt$0HDŽ$fl)$fHH H xHt$0HHtHt$(HLLH$SgHD$0MtI$xHI$GIExHIEHx HHHExHHEIx HIH\$0H H|$(1DŽ$HHD$H9HL$(IH$H$H5Z !H$H$H$H$HD$HH$Hb#H\$0Hx HHH-NH=HUHeIHtAEIEH5LHHV HH8 IExHIEWH|$PpdHHL%H=fIT$L9eIH tAHAE1HH9C5 fHnfInǿHT$0HDŽ$fl)$ndIHH HT$0HHtHD$(LHL$J4(dIMtIx HIHExHHEIx HIyI$xHI$pHx HHiMoH|$(1DŽ$HL;l$HL$(H$MH$H5K2 H$H$H\$XH$HD$0H\$`He!IExHIEH-H=HUHbcIHtA$ID$H5LHHII$MxHI$H|$@bIHL-CH=IULbHH tEHA1HI9FfInfHnÿHT$PHDŽ$fl)$bIHSH HT$PHHtHD$(LLH$J4(}bIHtHx HHSI$xHI$HExHHEIx HIIx HIM`H|$(1DŽ$HL;l$dHL$(H$MH$H5\H$H$H$H$HD$(H\$PHIExHIENHD$@L$H\$xL$IL$Lt$HH$D$EH$HE11H$D$H$H$DDNHLA9 D EyIcAH$t DHHH)HHHL`HcЉ$H9Hu _HuH)H5Z5H8^_HDŽ$@L@]H0]L ]H]RAFAVHH HcЉ$H9raAFAVHH HHcЉ$H9G6fDL\,H\H\Lx\Lh\LX\u+^HcHrHHD$(HD$0HD$HHD$8HD$ HD$HD$HY>H=GE1HD$HL$H9tHtHøC8`HD$ H\$H9tHtHøC8fHD$8Ht H\$H9tHøC8lHD$HHt H\$H9tHøC8rHD$0Ht HL$H9tHøC8xHD$(HtH\$H9tX8HXL[]A\A]A^A_@fDo$fDo$L$fDo$fDo$fDo$fo$D)$fo$ fo$0D)$fo$@fo$PD)$fo$`fo$pD)$fo$)$D)$)$)$)$)$)$ )$0)$@D)$D)$D)$D)$D)$ )$0Ll$HDŽ$HDŽ$)$@)$P)$`)$p)$)$)$f.SHHHD$(HD$0HD$HHD$8HD$ HD$HD$fD]IHHD$0HD$HHD$8HD$ HD$HD$(E11Ll$E1I$x HI$tkMtIEx HIEtlHtHEx HHEtmMDI9HI,Lt$Xt$Lt$Wt$fDLt$Wt$fDHt$Wt$fDYLHH,H`E1HD$(HD$0HD$HHD$8HD$ HD$HD$H\$HHH}H%Wp H\$ HHHwHVj H\$8H~HHqHVd H\$HHxHHkHV^m H\$0HrHHeHeVXi H\$(HiHH\H5VOMuMeAtAA$tA$IExHIEfHnfInƺLflH$)$询HIHILUyHaE1HD$HHD$8HD$ HD$HD$HD$(HE1E1HD$0DMf.L(U[YI=HE11E1HD$0HD$HHD$8HD$ HD$HD$Hx HHtRMHD$(E1IRHIELt$Tt$MH߉t$\Tt$fDLHT?{XI6HE1HD$0HD$HHD$8HD$ HD$`Ll$8HD$xHDŽ$|HD$(E11HD$0HD$HHD$8HD$ HD$$HS^LzSyLmSXL`SuLSSTfDH$$L$x$(E L$E1@L$E9Ic:AHIH;~Ht$pHL$hHcHD$H)4A9~DL$HcIH$HcILHcIH9*u(DAD IcAH$L$ALA9uH$DL$A;$ DŽ$4fD$H$H$A;$$H$0yċ$Ht$XLl$1HcȉD$@Ht$pAH|$hH$HHD,H)4A9IIHcIIH$LA9t`HcA$IHD$LHc8IMB9u9|$xtaHcHD$`HT$XL<H|$PH$T$@8A9upHt$XHcHD$`D$@HcDH$L$$L$H|$@Ll$IA,$D$Lы8D D9rML$Lt$HM@HD$PHcIIIcHIˉ, HILɋA?DD9uLt$HE11E1HD$(HD$0HD$HHD$8HD$ HD$HD$G@fDo$fDo$L$fDo$fDo$fDo$fo$D)$fo$ fo$0D)$fo$@fo$PD)$fo$`fo$pD)$fo$)$D)$)$)$)$)$)$ )$0)$@D)$D)$D)$D)$D)$ )$0Ll$ HDŽ$HDŽ$)$@)$P)$`)$p)$)$)$f.HD$(HD$0HD$HHD$8HD$ 9fHD$(HD$0HD$HHD$8HD$ OLHD$H.HE1HD$(E1HD$0HD$HHD$8HD$ HD$H}MHpMLcMLVMaHHD$0HD$HHD$8HD$ HD$E1HFZI^MntAEtAEIx HIMAE1[LLLLNHH5IIDHL0HD$(HD$0HD$HHD$8HD$ PHNLJHI_fHD$0HD$HHD$81LuLmAtAAEtAEHExHHELE1Ll$kLKLiMHHHHD$HE1侦HD$8LNKE11E1HD$0HD$HHD$8RWOIHD$HHD$8H\$HHDŽ$HDŽ$[HD$(E11HD$0HD$HHD$8HD$ *pLHIH HD$01HD$HHD$8LAME1AJHD$(E11HD$0HD$HHD$8HD$ HD$0HD$HHD$8Il$Ml$EtEAEtAEI$xHI$ ME1LI9H~I@HqIILdIPpH=0$1pH=$1pH=$1͉pH=#1跉pH=#1衉sH=#1苉HD$(HD$0HD$HHD$8HHCH$$$H$1҅~.H$$$@;0uH9u$1HH5z$$$$$$$$$$$$$$$$$$$$$$$$$#IHH$x1HH5y$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x?HHHHIHfInfHnfl@}2HHjHHD$(HD$0HD$H,LFH@`HCHH3LHH"H@H;sH1|$HE:HHE,HELEHGME11HD$(HD$0HD$HHD$8HD$ HD$HD$1E1E1侻HD$(HD$0HD$H`@IIHD$(HD$0HD$HLl$0HD$XHD$`HD$(E11HD$0HD$HHD$8_FHIHM1E1HD$(HD$0HD$HFHQIHHD$(HD$0HD$(E11HD$0HD$HHD$8kHLE1C(HD$0MHD$HMgIoA$tA$EtEIx HI}I1AgHSCsLFCzL9CH,CHD$(HD$HLCLBLB\E1E1E1HD$0E1LPFHLl$(HD$PHDŽ$Ll$0E11HD$(HD$0HD$HHD$0L{LcAtAA$tA$Hx HHLE1CLIHJHD$0E1E1 HD$(HD$(E11HD$0HD$H,LME1ALwAHjAL]ALPALCAH6A CHDHGIHHD$(E11HD$0E11E1HD$(/Ll$2EICH@H3H59H8DA%iI^MntAEtAEIx HIME1$BLVIHjHD$(E1oLl$0E11HD$(HD$0LAI?1E1TIE11HD$(E11*E11HD$(E11LME1`?7HPtgHHѾHKH81CXHEHHEH>HE1L>cHkH5H81BIHvIHIH HD$(E1?Iff.@AWHAVAUATUSHHt$tH-H=H $HUH@H $HI@tAH_I9@LH$(L$HH$(HL$HDŽ$ 變L$HL$HMI$xHI$ HHx HH L-H=IUL?IH~tA$HI9D$H$(LHHDŽ$ H$(MIIExHIE7M'L;L;}L;LL$?L$E1E1E1HD$Ix HI1E1E1E1E1E1H,$MtIx HIMtI x HI uAB8tH;tHtC8HlH=(L\$+E1ML\$tIx HI H\$HtHx HH MtI$xHI$) MtIExHIE6 MtIx HIE MtIx HID H$HxH<$HH HL[]A\A]A^A_Ix HIYYHEH5HHHIMuH5fL9HI9XH9^@ H VI9  H5H9H9^LǺL$HL$:L$HI (H;AH;DHL$I9L5LD$L\$p@AL݃tAHI9@LHt$HL\$HLD$HD$@Hl$HLD$L\$ILHExHHEHx HHMH,$1E1E1j@LH $2H $H2'IPH;VI@HNH9@H@t HEH ~ Dȉ8ugA MP8@ Hv8ȃ_oA >9u-HKLL$H3L$,@H5L9I9XH9^„H@IPH;VI@HNH9@H@t HEH ~ Dȉ8ugA  MP8@ Hv8ȃnA >9u-HcLL$H2L$D@H5L90I9X@H9^@  IPH;VE I@HNH9@H@t H EH ~ Dȉ8 A  MP8@ Hv8ȃimA >9 HqLL$1H1L$IxHIuL 0GL% A$tA$L-H5HDŽ$ ID$L$(H9 HH9LXMMHM~#1ɐI|H9H9HI9uH@8IHH$(1LHII$xHI$MtLSIExHIE1E1E1E1E1E1E1HD$E1E1YLL$.L$L.H.TH.#LL$v.LL$D@LLL$L\$V.LL$L\$LLL$L\$..LL$L\$LLL$ .LL$LLL$-LL$fLLL$L\$-LL$L\$HLL$L\$-LL$L\$Llj4$1E1-4$E1E1E1E1LLL$0D$(L\$ t$LT$A-LL$0D$(L\$ t$LT$@LψD$(L\$ t$LT$-D$(L\$ t$LT$fD.LIH=1E1E1E1E1E1E1E1HD$.L,H9uLǺL$HL$,L$HI-H;.AH;DwHL$I9iL /L$AIx HInEUE1E1E1HD$MfH $-HH $HI1E1E1E1E1E1E1HE1ɸHD$D1E1E1E1E1E1E1E1E1H͸HD$MhM`AEtAEA$tA$Ix HI:fHnfInźLflH$ H $)$ wH $HIEHIE LH $*H $DI{HInLL\$t$*t$L\$OH\HHOHL\$t$A*t$L\$0Mt$Ml$AtAAEtAEI$xHI$fHnfInƺLflH$ )$ vIIHILL$)L$DL%A$tA$L-H5FHDŽ$ ID$L$(H9THH9DLXMMHM~+1fI|H9H9HI9u H@8IH H$(1LHII$xHI$ M(fHHH)HHHfAFAVHH HcAH9HH5*L\$0LT$H8(LT$L\$0L\$0ALT$a*LT$L\$0HL;H,$E1E1E1E1hf.HHH)HHHFL\$0LT$)LT$L\$0HcAH9H4)LT$L\$0HA1E1E1E1E1E1E1E1HD$[+IELL\$0LT$^)LT$L\$0HcAH9H&)LT$L\$0HsfDH59L9H9^„uH9< @3 IHIsLk&ffDGWHH HcAH9U@HH5L\$0LT$H8<$L\$0L\$0LT$W(LT$L\$0AH fLH $%H $IEx HIEfE1I$xHI$ZMIExHIEkE1E1E1E11E1Ml$Il$AEtAEEtEI$xHI$ I1fLHL$ L\$$HL$ L\$AFAVHH HHcAH9dRfGWHH HHcAH9<@Lp$sLHL$(L\$ LD$Q$LD$L\$ HL$(DH9L$uuH9f ^ ALADIL$QE1 HYuMt$H=7"# LLIJ&MI$xHI$LwIExHIE1E1E1E1E1E1E1HD$E1E1H I9LLL$ t$LD$#LL$ t$LD$}LLL$ E1E1t$E11LD$"LL$ E1E1ҋt$LD$KfLLT$"LT$OfHLT$"LT$fLLT$c"LT$H9PID$0[fD1E1E1E1E1E1E1E1E1HD$fDL"3&IH,$1E1E1E1E1E1E1E1ɸHD$CDLLD$ LT$!LD$ LT$H II9uH9SfDH;KLLD$$LD$HI Ix HI+ ID$LHIHA LHD$H LIH HD$LL$ I$HI$L f.HHHH[H LD$HEHۭH5 H81*$H,$LD$E1E1HD$E1D!H3IHH,$1E1E1E1E1E1ɸqH$(1ɺLi"IHD$!HΝLD$HII@DL;QH,$E1E1E1H,$E1E1E1E1E1E11۸IEQHIDLL$L$!H;QLLT$^"LT$HIt Ix HIlI@LD$LHLD$HI LLD$HI| LLD$HW LD$萒LD$IlHI_LCRfDH,$1E1ҸHHx8HHH LT$HEHoH5( H81!LT$H,$MоE1E1&fH$(1ɺLI IkLL$L$}HLL$L\$vLL$L\$SHLL$L\$NLL$L\$?H,$1E1E1E1E1LSIPHbIPL2AtAHRHT$D$L;H,$E1E1E1E1*@LHN(H8@HE1@IH(MP8A@LE LǺL$HL$L$HI H;L;5HL$I9LL$I fHiH5:LD$H8uH,$LD$fIL$QE1 HYuMt$H= LLIM I$:HI$,L?_HHH H LD$HEHH5BH81H,$LD$IH^LD$H5 H81tH|$L\$ LD$HL$(LD$L\$ HIRH;[L; @@HL$(I9LLL$1LL$LD$L\$ Ix HI*LHsHHfHHL$ LD$LD$HL$ E?IHILHL$ LD$LD$HL$ HL$(L\$HD$ QH艗L\$LL$ HHL$(IITfDIHILL$L$!IRHIRL"A$tA$LjAEA >HL$(L\$ LL$IpjH=1JYpkH=k14YH,$E1E1HD$E1MPIXAtAtIx HIHfInfHnHt$@HflúL\$LT$)D$@dLT$L\$IIHILLL$L\$LL$L\$A >IHItLL\$LD$L\$LD$KHN(H8@HEIH(MP8A@LEHǤLT$H5vH81 LT$ILLD$I1LD$H9ID$0LA >HNLD$H5H81H,$LD$A >SH,$HN(H8@HEIH(MP8A@LELLD$PLD$}HL$HY(H8@HHD?HN(H8A@HE8H,$E1E1HD$\A >LL\$LT$LT$L\$M龑E1#I$1ۅ:HI$躉H1H hHH5ME1H81AHD$ME1E1I$yMME1E1E1E1tLl$MྐMHD$E1SA >H@`HdHHTL\$0H|$LT$LT$L\$0HI-H@H;LL\$8LT$0LD$JLD$LT$0AL\$8I`HISLL\$8LT$0DL$+DL$LT$0L\$8(H@`HUHHEL\$0LLT$LT$L\$0HI H@H;LL\$8LT$0LL$JLL$LT$0AL\$8IFHI9LL\$0LT$jLT$L\$0DHx HI;HH5mH81Ll$ME1ME1HD$bH,$1E1ҾE1m*HuHH5GH8oI$9HI$+LME1HD$,p H=P1SH,$E1E1MоpH=#1RDmHD$E1E1侍{HHH9tHuH=H9IL$Q(HuHH5EH8mI$HI$LI1ۅHIo藅Hm1H @HОH5H81HI9HNLD$IxE1E1LHHH9t.HuH=H9tHHH9tHuH97IL$Q!LH 莄H,$1E1E1E1E1E1E1E1HD$HHH9-HuH9 LLH uH,$1E1E1E1E1E1E1H /L H^HNLNHSL@H3H H5eH81kXZH|$HtHx HHH|$HtHx HHHH=u1H@[DHVtHT$HtHT$HGHL$HT$ HMHMH4IPSY^LD$tH|$KfDHL bASH fH>tLݦH|$AtALD${ )fDk fDLAtALD$@HT$Ht$ HL PUfAW1AVAUATUSHHH-H$ H$HT$hHUH$HH=sHt$pHLD$xL$9 HIċtA$ID$H5fLHH#IMU"I$xHI$Hc$HHD$` HH~#L%H=СIT$L IH&tAEHUAE1II9F'fInfHnLL$HDŽ$fl)$ LL$HH$&HfHPtH $LLLL$H$L$J48HD$ 4 LL$IMtIx HI[HExHHEIExHIEH4$Hx HHIx HIsMH|$ L=1DŽ$PHM9HL$ MH$H$PH5L$sL$C(H$H$H$H$H$H$H ,Ix HI L%+H=̟IT$L HH#tEHEH5֡HHHs'IM 'HExHHEHc$HHD$@BHH$L5wH=8IVL IH8(tA$HD$HE1II9E(fHnfInƿLD$HDŽ$fl)$=HD$Ho(HРLD$HPtHL$Ht$LLHt$ L$IMtIx HIp%HExHHEbI$xHI$,HL$Hx HHIExHIEM`!H$1DŽ$@H$HM9vH$MH$PH$@H5L\$pL\$(fo$fo$@fDo$fDo$fDo$ fo$0)$fo$Pfo$`)$fo$pfo$D)$H$H$D)$H$@)$fo$fo$HD$fo$HT$HL$D)$)$ )$0)$@)$P)$`)$p)$H*Ix HI#HD$D~\$)$D$HT$D)$`H$@D\$1fo$@D)$D)$PD)$pD)$)$)$)$)$)$)$)$)$E~!HL$$DH9uH-H=HUH^IH"$tAIALL$(LH5HH%LL$(IIM%x HI"H|$`HHD$(%L-7H=IULLL$(HH&tEHD$0HqE1HI9D$8'fInfInſLL$(flHT$8HDŽ$)$LL$(HI?'H HT$8HHtHt$0LHt$ LLL$(H$WMLL$(ItIExHIE4!Ix HI#HExHHEZ#Ix HI&#I$xHI$"Mp"H|$ 1DŽ$<HM9|!HL$ MH$@H$<H5eL\$(lL\$(O'H$H$H$HD$8H$H$Hz+Ix HIS#D$H$1E~$H$$DH9uH-H=HUHIH#tAIFH5LHH &HH%Ix HIH|$@>IH%L%kH=4IT$LIH&tAHD$(HE1HH9E[(fInfInĿLL$0flHT$HHDŽ$)$4LL$0HI'H ęHT$HHHtHt$(LHt$ HL$LL$0MLL$0It3I$x+HI$u!LL\$0LL$(L\$0LL$(DIx%HIuLL\$0LL$(fL\$0LL$(IxHIuLL\$(?L\$(IExHIEuLL\$(L\$(HExHHEuHL\$(L\$(M!H|$ 1DŽ$<HM9HL$ MH$@H$<H5LJL\$(iL\$(*(H$H$H$H$HD$HH$HV-Ix HI #H-6H=וHUHIH&tAEIEH5ٙLHH#'IM&IExHIE"H|$`LL$(SLL$(HI&H-{H=DHUHLL$(HI'tAHD$(H1HI9A.(fInfHnſLL$0flHT$PHDŽ$)$ALL$0HI'H іHT$PHHtHt$(LHt$ LLL$0L$HLL$0HD$(tHExHHE2%IExHIE&$Ix HI)$I$xHI$*$Ix HI#Ht$(H'H|$ 1DŽ$<HL9!HL$ IH$@H$<H5,g~*H$H$H$HD$XH$H$H0HL$(Hx HH$$H-H=AHUHIH(tA$ID$H5BLHH)IM(I$xHI$$H|$`HH(L%H=IT$LIH(tAEH<E1HI9F*fInfHnͿLL$(flHT$PHt$0HDŽ$)$LL$(HI)H EHt$0HT$PHHtHt$ LLLL$(L$LL$(HD$0MtIx HIF'HExHHE1%IExHIE(%I$xHI$%Ix HI%HT$0H)H|$ 1DŽ$<HL9#HL$ IH$<H$@H5 {d,H$H$H$H$HD$(H$H2Ht$0Hx HH$L%H=IT$LHH;'tEHEH5HHH+IMu+HExHHEE&H|$@6HHo'L%[H=,IT$LIH/'tAHE1II9E,fInfHnͿLD$PflH$HDŽ$)$-LD$PHHD$0,HH$HPtHD$ LLLD$PL$H4HL$0LD$PIMtIx HI/*HExHHE-'Ix HI0'HT$0Hx HH.'IExHIE/'M%H|$ 1DŽ$<HM9/%HL$ MH$@H$<H5L\$0aL\$0\.H$H$H$H$HD$0H$H:0Ix HI&L%H=#IT$LHH)tEHEH5-HHH.IHEM.xHHE)H|$@HHD$@.L-׎H=IULlLL$@HH.tEHE1HI9D$-fInfInſLL$@flH$HT$PHDŽ$)$LL$@HI8-H HT$PH$HHtHt$ LLLL$@H$MLL$@ItIExHIE)+Ix HIW(HExHHE'Ix HI'I$xHI$'M'H$LL\$@bH$L\$@H$H$@HHD$PH$H$#.Ix HI*D$H$1E~%H$$fDH9uH=4sIH,H@H5LHHn2HH2Ix HI*H|$`.IH2H=crIH2HE1IH9E2fInfInĿH$flL$HDŽ$)$;HD$@H,HΌL$H$HPtHD$ LHL$H4HL$@LH$x%IL$x HI+IExHIE+Ht$@Hx HH+HExHHE_+MC+H$LL$ v`H$H$H$@L$ HHD$@H$H$+Ix HI+$H$1~H$$H9uH=pIH-H5aH)$IH\-IExHIEb-H|$`L$ L$ HI-H=LL$`ppLL$`HI}2Hh}I9A 2LL$`E1fInfInտL$ HDŽ$fl)$L$ HI1HzHPtHH|$`LH)H?L$ H HD$ L$H4=L$ HL#IExHIE\,Ix HI.I$xHI$x/HL$`Hx HH;/H+H$H(^H$@L$L$HD$ Ma/HExHHE.$9$,1$H$\H$9$uH$%RIDŽ$AH$H$H$(L$H\$xL$L$L$M$H$L1~$@!LH9uHt$hH$(f(HT$p$HHD H)4A9>HcHLd$`H$HHl$xL$L$H$L$L$D$H$H$H9Af(IcH$H$8f(ȃHH$A9HcIHMB\DIMHD$ f/CErvH$E1f.LDL$HDŽ$HDŽ$1LL$lL$xHL\$SIEL\$&DLL\$+H4$L\$H fHL\$IL\$fDLL\$HEL\$DHfDo$L\$L$fo$fDo$fDo$ HD$)$fo$@fo$0fo$Pfo$`HD$fo$fo$)$fo$fo$pD)$fo$)$D)$D)$)$ )$0)$@)$P)$`)$p)$fLL\$L\$,fHL\$sL\$fLL\$SL\$fHL\$3L\$fH3hH+E1HD$@L=wOHD$PHD$0HD$(HD$XHD$HHD$8HD$H$HH=L\$ 1`L\$ HD$HD$H$HtL9tHA8HD$HtL9tHA8HD$8HtL9tHA89HD$HL9tHtHA8THD$XHtL9tHA8oHD$(HtL9tHA8HD$0HtL9tHA8HD$PL9tHtHǸG80HD$@HtL9tHA8KM9tMtAC8HD$fHnfo$0fo$@l$fo$Pfo$`H$pHfo$psfo$fo${ fo$[0fo$S@fo$KPfo$c`fo$+spHĘ[]A\A]A^A_L(HD$0E11L=tHD$(OHD$XHD$HHD$8HD$H$HD$PHD$@I$E1ۅxHI$MtIx HIMtIEx HIEtFHHEHHEHt$L\$Bt$L\$@Lt$L\$t$L\$@Lt$L\$L\$t$KLt$L\$t$L\$D IEHD$@E1L=usE1HD$POHD$0HD$(HD$XHD$HHD$8HD$H$f~ H$HHHHL\$ !L\$  HL$HHHHL$L$ HT$8HHHHL$L$F Ht$HHHHHL$aL$t HL$XH{HHnHL$!L$YL#bHHE1HD$@PHD$PHD$0HD$(HD$XHD$HHD$8HD$f HT$(HHHHL$qL$ Ht$0HHHHL$1L$m HL$PHHHHL$L$C HT$@HHHHL$L$}HD$@E1۾PHD$PHD$0HD$(HD$XHD$HHD$8HD$ I*HIL"DL+`IHIO1HD$0HD$(L=oHD$XHD$HHD$8HD$H$HD$XL=`oIOHD$HHD$8HD$HD$@1HD$PHD$0HD$(MIx HItMnE1DLωt$t$fDMNMfAtAA$tA$Ix HIME1ALfDo$fDo$fDo$ fo$0fo$Pfo$`fo$pfo$fo$fo$fo$DLL\$;L\$yLL\$0#L\$0LL$(@LKL\$HHDŽ$HDŽ$LUHD$@E1۾PHD$PHD$0HD$(HD$XHD$HHD$8HD$IL\$8HDŽ$HDŽ$fDHD$@OHD$PHD$0HD$(HD$XHD$HHD$8HD$H$Ix HIt E1+L߉t$t$E1H\H%E1HD$@SHD$PHD$0HD$(HD$XHD$HHD$8fD#L[\HIf.LL\$(L\$(fLL\$(L\$(fHL\$(L\$(fLL\$(L\$(YfHD$0PHD$(HD$XHD$HHD$8fMuIUAtAtIExHIE,HD$IALHD$@E11E1HD$PSHD$0HD$(HD$XHD$HHD$8lLL$(IHD$0E11E1HD$(SHD$XHD$HHD$8HD$@PHD$PHD$0HD$(HD$XHD$HHD$8HD$$H"ZH#E1HD$@VHD$PHD$0HD$(HD$XHD$HLL$(LYLL$(HHbHD$@E1E1SHD$PHD$0HD$(HD$XHD$HHD$8HD$@OHD$PHD$0HD$(HD$XHD$HHD$8HD$LL $ME1AL $Ml$Mt$AEtAEAtAI$xHI$tHD$0MzHD$@SHD$PHD$0HD$(HD$XHD$HHD$8L2LLL$( LL$(DHD$@E1E1VHD$PHD$0HD$(HD$XHD$H* HHD$@E1۾VHD$PHD$0HD$(HD$XHD$H Ht$XHDŽ$HDŽ$HD$@SHD$PHD$0HD$(HD$XHD$HHD$8*HD$@PHD$PHD$0HD$(HD$XHD$HHD$8p)H=1fLVIHHD$@E1۾VHD$PHD$0HD$(HD$XHD$Hp)H=+1p)H=1p)H=1p)H=1LHT$HT$AHD$Ip)H=1sp)H=1]p)H=~1Gp)H=h11LyLLL$0gLL$0LLL$0PLL$0LLL$09LL$0HD$@VHD$PHD$0HD$(HD$XHD$HLeLmA$tA$AEtAEHExHHE;HD$(LWp)H=r1;HHvLL$0GHTHHD$@E1۾WHD$PHD$0HD$(HD$XtLHD$@E11WHD$PHD$0HD$(HD$XFIHD$@E11E1HD$PWHD$0HD$(HD$XAHT$(HDŽ$HDŽ$)HD$@VHD$PHD$0HD$(HD$XHD$H:LLL$(MLL$(HD$0HD$@SHD$PHD$0HD$(HD$XHD$HLL$(HRLL$(HH8HD$@E1WHD$PHD$0HD$(HD$XHD$@WHD$PHD$0HD$(HD$XIiMaEtEA$tA$Ix HIHD$(MHLLLHD$@E1۾WHD$PHD$0HD$XHrJLd$`Hl$xL$A7H$L$1L$L$DHŃLAD9MHcHHIA<8uL\$`MMH$D$LL$L\$ HcLىHINj A HcIHD$0A9uL\$ L\$`H$ALL$L$L$tAIx HI $H$$H$(;$,MH$L$HD$L9tp8kH$4Hl$H$PpLHOHTHD$@E1۾XHD$PHD$0HD$(HD$0E11XHD$(HcIHD$@E1E1XHD$PHD$0HD$(wL0OIHIX1HD$0HD$(L\$0HDŽ$HDŽ$LNHHE1HD$@YHD$PHD$0L\$(WHD$@HD$PHD$0HD$(HD$XYLWNIHHD$@E1۾YHD$PHD$0vHD$@VHD$PHD$0HD$(HD$XIXJMNMfAtAA$tA$Ix HIDM1HLL$0LlLL$0HD$( HL\$PGL\$PLL\$P0L\$PHL\$PL\$PLL\$0L\$0LZHD$@E1۾XHD$PHD$($L$L$L$$HH$H$H$ $$IcH$AH$H$H$Lc H$H$ IMHcD HL$p$HD$hLc<HD$`HILLH HL$xD; t"AOHHcH@0HHHA9uL$H$H$HL$hHD$`HD$p>C\ D \D9L$HL$xLT$`Dl$xLLc9LMHL8H$LT$`IA\:LI\Lf/vlH|$ L$D$If.ET=zDuBH$L$IA<:XD$xHc|$xH$L$E<:HH$A91Dl$xLT$`A[H$$H)$ LL\$P[L\$PHD$@E1۾YHD$PHD$0dIMHHL\$@L\$@%LL\$@L\$@"LL\$@L\$@!LIE1HHNHD$@ZHD$PLL\$@L\$@L\$0XHD$@HD$PHD$0HD$(]L@MHD$($LLf(1f.&w+f/r%:u f/w4AIcH$H$1~LH9$H$f(E1L\$(WHD$@HD$PHD$0HD$(MYMMEMeAtAA$tA$IExHIEM1AAH$L$1LŃH$CD9LcH$IMA< uL$;$~eHc$H$HH$HHc9H$L$H$HH$IA:\XЃ9uAtAIxHIu fMcHD$ H$DIL$H$BHcHD$HD$D89$uA_]LL\$PL\$PLL$@LL\$`d$xL\$`d$x2LL?Dl$xL$$9$~fHc$L$H$H$HIH$LcH$LIMHB\X9$uAtAIx HIH$H$ McHD$ DIL$HcB>HHD$HD$D89$uHD$@YHD$PHD$0o$$LLL$(M7LL$(1VHD$@ZHD$PMl$Mt$AEtAEAtAI$xHI$M1LL$@LDLL$@HHHD$@E1E1ZHD$P8E1E11ZIE1E11HD$@ZHD$PIL\$0XHD$@HD$PHD$0#E1HD$@]PHL\$@L\$@LLL$#LL$L$HL$L$M]E1/]HD$@YHD$PdLLD$0MA9LD$01HD$@Z/MH$L$H-bEtEL%`HEHDŽ$H]L$H9H RH9HXHLO1LDL9I9HI9H@8HDHL\$1HH$HL\$IHExHHEMt$LL\$QI$L\$x HI$t,H^L\$H=;L\$&LL\$1ɺHL\$H$CL\$I]L\$H1 HExHAHEmHL\$ZL\$-L$H$L$,E1E11`E11`E1۾`]LL$ L$ LLDD$xL\$`$DD$xL\$`H$H$$$~*H$%v1"H$9$u1탼$LT$pL\$`L$L$LL$xHD$hA2AEA9~mHcLH$HH$H$HHc9HILf/vH$H$D48LH$A9uLT$h9$jL\$`$HcH$H$/H$H$H+$HctHt$HHt$>uL%'^A$tA$H\H$LL\$HHDŽ$H$ L\$HI$xHI$H>HL\$HEL\$ HsHEHxL\$sLa,HLeHUA$tA$tHExHHEH1AHD$@E1۾]HD$@E1E1]6HD$@E1۾] H辿HL\$`謿L\$`L蚿{HHT$@舿HT$@1AHsII`iI8LLD$xL\$`$1L\$`LD$x$HHH9t.HuH5LH9tHHH9tHuH9^HuNuMHuNtm LvXLmH=L\$L\$ LLAIML\$HEGHHE9H9HE0LLL$@M0LL$@1rIuLL$`Lž`IAMAHD$`AtAHT$`$ tIx>HILL$ 诽L$ E11`M1LT$pLl$1E1H$L$L$HHt$xH9uH$HcH$H$ H$\ Hc|L$L$HD$`L$H$DŽ$1D9HcH\$hHL$pDgH$H$HcPIHcHD,H)DE9zLL$xIcAH>H$ LL$H$fHnH$fHnIc)H$HH$\(f/vf/f(As f(Af(‰ALL$xH$E9uH$ L$H$HcH$HLL$HD$HD$f/ELwSAt}IcH$H$ DDt$Hc$H$H$$ DnH$\H$XEAtDAȉEL%VL$H$A$tA$HUH$LL\$HHDŽ$H$dL\$HI$x HI$tIHtSHL\$ HEL\$x9HHEH0L\$yLL\$먾`H|$`u=$L$L$H$pL͸L\$ HD$`D$I4IյuHt$D$ xv(H=Q1IjIݻE1HEH5ēH8L\$fAW1AVAUATIUSHXH$pHt$H|$0HH$@H|$PHH$H|$HHH$H|$XHH$H|$`HH$H|$@HA$tA$L-RH=PIULHHl,tEHDH9EI-H$XHHHDŽ$PL$XIIIx HI1 M,I$xHI$" L%CRH=tOIT$LGHHK-tEHCH9E0H$XHHHDŽ$PL$XIOIIx HI8M?/L;% DH DL;%CI9LŅE1E1E1E1E1E1HD$1HD$0HD$ HD$HD$8HD$HD$(H$MtI$xHI$ MtIx HI MtIx HI MtIx HI3MtIx HIRMtIx HIiMtIx HIpH$pHt$H9tP8HDŽ$x+HDŽ$pH$@H9t$HtP8HDŽ$H+HDŽ$@H$H9t$HtP8HDŽ$,HDŽ$H$Ht$H9tP8HDŽ$,HDŽ$H$Ht$H9tP8HDŽ$+,HDŽ$H$H9t$HtP8HDŽ$>,HDŽ$HH=E1*HtHExHHE H$HtHx HH HL$(HtHx HH H\$HtHx HH HL$8HtHx HH H\$HtHx HH HT$ HtHx HH Ht$0HtHx HH H|$HtHx HHz IExHIEt HXL[]A\A]A^A_I$xHI$&,IEH5 MLHHA-IM,H5LL9L5@M9t$L9v I9:&2&H5CLH9L9v-LHHKH;P?AH;?DI2H9@2H0AHExHHE=2E%&fDEI$xHI$H-LH=IHUHhIH.tAIFH57LLHHD/IM.Ix HIIEL$LH5HKHH/L$HH&/H=I9@}0HNILH$XHL$HDŽ$PH$XH$`L$IMHExHHEuHIxHIuLЯM/L;%=L;%N=I9LzŅh0I$xHI$* IEH5/JLHH3IM2L=HAtAH-%KH=GHUH蚱IHG3tAIAL $LH5RIHH'4L $HH/Ix HI+L$XLHHDŽ$PLH$XkIHExHHEZ+Ix HI.+M4LƺLL$豮L$HI5I$xHI$u LL$IxHIuLL;=;L;=;*I9*L记Ņ6Ix HI/L%JA$tA$IEH5QHLHH@IM>ALL$L="F襭L$HH}AHf;H9E1DIx HI9H=!HH1IH_CHExHHEL:H=GLL$L$HHUCIx HI:HLLHDŽ$PH$XoH$HExHHE:I$xHI$}:H<$CL<$LI:HIw;HD$E1E1HD$0E1E11HD$ HD$HD$8HD$HD$(H$mLȫL踫IT$H;VID$HNH9@H@tHuED$ ~ D8u`A -ML$8@ -Hv8ȃ13A >9u%HLH謬@H5EL9M9t$L9v„w)o)IT$H;VID$HNH9@H@tHu~ED$ ~ D8u_A 4ML$8@ 3Hv8ȃ67A >9u$H"LH˫ H5DL9M9t$L9v„w'o'IT$H;V$&ID$HNH9@H@t H%EL$ DF DD8%A 8I|$8A 8Hv8ȃ>?DA9%H3E1HܪAI$xHI$uLEL%FA$tA$H DH$XLHHDŽ$PH$XHI$xHI${,H3HHEk,HHEa-HD$E1E1HD$0E1E11HD$ HD$HD$8HD$HD$(H$@LLhLL$L$ILL\$`LT$XLL$PLD$Ht$@踧L\$`LT$XLL$PLD$Ht$@LL\$`LT$XLL$PLD$Ht$@xL\$`LT$XLL$PLD$Ht$@LL\$`LT$XLL$PLD$Ht$@8L\$`LT$XLL$PLD$Ht$@LL\$XLT$PLL$Ht$@L\$XLT$PLL$Ht$@DLL\$PLT$Ht$@ʦL\$PLT$Ht$@LL\$Ht$@蟦L\$Ht$@xL߉t$@脦t$@{Hp H`HP%H@3H0AH OH]Hk|fDLAEtAEH-AH=]>HUH1IHM'tAIFH5P@LHH]'HH$Ix HI$H$PfHnH=?1fInHHD$hHfl)$PmH$IExHIE!HExHHE=$H<$'IExHIE%HL$H; 2H; N2u H9F L,$H-@H=)=HUHIH(tA$ID$H5r>LHH)IM)I$xHI$;%IEH5>LHH*HH*H@1I9F+H$XLHHDŽ$PH$XMIHExHHE$%I$xHI$%M+L;=N1L;=1!I9 L0Ņf,Ix HI"%H-?H=;HUH营IH0tA$ID$H5?LHH2HH{2I$xHI$,H/H9E2H=H$XHIHHDŽ$PH$XMH$I$xHI$,H<$ 3H $Hx HHi,IEH5<LHHX,IMW,H-=H=:HUHjIH,tA$ID$H5'=LHHV-IMU-I$xHI$U'IEL$LH56<HH-L$HH-H.I9B.LH$XL$HHDŽ$PH$XL$IMHExHHEZ(I$xHI$Y(ML-H=LLL$tL$*.Ix HID)Ix HIA)AEtAEHt$h1H=E;HL$PHDŽ$X袣HIExHIEd+H.HExHHE)IEH5<LHH1IM1I@H;K-^1IPH2IhEtEIH H $D$tIx HI*L%;H=)8IT$LIHX2tAIGH5{9LHH3IM2Ix HI4+L5;H=7IVL茡IH3tAIALL$LH5:HH>5LL$IM3Ix HI1,IEL\$LH5;HHr5L\$HD$(H|$(5H+I9C^6HD$(LH$XHL\$HDŽ$PH$XL\$HD$MHL$(Hx HH:,Ix HI,H|$5H++I9D$6HD$H$XLMHHDŽ$PH$XzHD$(HL$Hx HH-Ix HI-H|$(,6IEH5I8LHH6IM6H57LǺLD$7LD$7)H57LǺLD$A0FIx HI8E5H<$1H%IHEH;z*L;%0*.I9.L\AƅEI$xHI$AAEE1tAEfL$P$XEIHEH6HPtH)Ht$hLHH=}8H$X(LHD$I$LT$xHI$tDMCEIExHIEeBMH=7IHAH=G5HD$HAH(AE1HI9G3BHD$fInfInĿflLD$HT$HDŽ$hH$`)$PIH5H 6H5{5HT$LD$HHtHD$hH$hLLJ4xIMtI$xHI$5HL$Hx HH3Ix HI 3Ix HI2M5I@H;'{AIPHQBIHHL$D$tIH HL$8D$tIx HIC5H55LrHD$HHADHx HH5Lt$L9t$QH=F4IHbEH564LIHXCHD${LT$HI8CLPAD$tAHD$HL$8ID$ D$tHD$8H55LID$(IHFH53LHD$LT$HHD$FH&E1HI9GEHffInLT$x)$`fInflL\$Ht$pHT$ )$P茚L\$LT$xHIGH 4HT$ Ht$pHHtH 2L$`IN tHD$Ht$hLLLT$ L\$pH$hŚL\$pHD$LI$LT$ xHI$AIx HIAHL$Hx HHAIx HIAIx HIAH|$GIExHIECLl$H<$1H讗IHBH;%H;$b.I9Y.LLD$LD$AAIx HI>EO2H50LdHD$HFH51HGIHuFH5<1HHD$LD$ADIx HIzDEHL$D$tL|$H=21HHt$hHDŽ$XL$P]LIHD$ MI9>LLD$PLT$qLT$LD$PAFIx HIKEHIH $D$IIHExHHE-IH $Hx HHwILLǺLL$PLD$oLD$LL$PHIIIx HIIIx HIIL;=L;=H=I9=LtAƅ9IIx HITIEIH=],IH\IH5}*HHD$LL$HIIIx HIIH5T+H|$IHNHLHD$P.H|$H4LLL$PH$HHD$NIx HINH5*H|$?IH@NHLHD$PH|$X4LLL$PH$HHD$MIx HIJNH5)H|$IHMHLHD$PH|$`4LLL$PH$HHD$=NIx HIgMH<$AD$NH,AǃMRLAWD$P$H$H$8L$L$PH$QH|$`4LH$HD$(H HMH|$Hj H|$Xfl )$H|$`fn )$fH4)$H$HHYH5pm+HIH!MH|$@r #fH)$I9F*MME1HȺfInLH)H?fInLD$@H HD$hfl)$PH4LD$@HD$LI$xHI$wLIx HILH|$tDH=() IHIDH5&HHD$@iLL$@HIDIx HI9DHI9D$CMAE1LfInLL)H?D$LD$@H HD$h)$PJ4,LD$@ILIx HIlCMBHL$Hx HHBH|$LIHAH|$(LIHAHD$LD$HIAfInfInLt$fl@!L舋\H9usL֋HHl%H;+AH;DH9H AHExHHEEӌL HHHD$E1E1HHD$0E1E1MHD$ HD$HD$8HD$HD$(H$HD$E1E11HD$0E1E1HHD$ MHD$HD$8HD$HD$(H$L}LuAtAAtAHExHHE<fInfInǺLflH$P)$PII~HIqL~dfKLHHHD$E1E1H HD$0E1E1HD$ HD$HD$8HD$HD$(H$H$pHHDŽ$pHHHt$@謈t$@H$@HHDŽ$@HHHt$@\t$@{H$HHDŽ$HHHt$@ t$@AH$HHDŽ$HHHt$@輇t$@H$HHDŽ$HHHt$@lt$@ H$HHDŽ$HHHt$@t$@HD$E1E11HD$0E1HE1HD$ HD$HD$8HD$HD$(H$Ff.L}LuAtAAtAHExHHE|fInfInǺLflH$P)$P!IIHILfL%#A$tA$H!H$XLHHDŽ$PH$XHI$xHI$uL誅HHHEHHEHD$E1E1HD$0E1E11HD$ HD$HD$8HD$HD$(H$HD$E1E11HD$0E1E1HD$ HD$HD$8HD$HD$(H$]IL訄)L<$L4IH^IHIH<$gfH8L,$E1E1HD$E1E11HD$0HD$ HD$HD$8HD$HD$(H$DH5iI9L9v„uH9d\I$HI$L蚃DH舃HEEHHEHZCDL80LL$$L$HL$ L$L7HwHD$E1E1HD$0E1E11HD$ HD$HD$8HD$HD$(H$I9fEObf+HcHHP8HD$E1E1E1HD$0E1HD$ HD$HD$8HD$HD$(H$vf.HD$E1E11HD$0E1ɾHD$ HD$HD$8HD$HD$(H$@諅II9ukH9"DHD$E1E1E1HD$0HD$ HD$HD$8HD$HD$(H$zfDL$H`L踀XH言HD$E1E1E1HD$0E1E1MHD$ HD$HD$8HD$HD$(H$DHD$E1E11HD$0E1E1HD$ HD$HD$8HD$HD$(H$ufMxMpAtAAtAIx HI%HfHnLfInflH$PH$`)$PDIITHIGLA:@L0_fDHEEHHEH~DL~HD$E1E1E1HD$0E1HD$ HD$HD$8HD$HD$(H$Hp~L`~3HkHHIL(~s[HL~H1}E1E1HD$E1E1HD$0HD$ HD$HD$8HD$HD$(H$5fHN(H8@HE9@IL$(ML$8A@LEL}HHYH; H;- H9HAHEEDHD$E1E11HD$0E1E1HD$ HD$HD$8HD$HD$(=HD$E1E11HD$0E1E1HD$ HD$HD$8HD$HD$(H${IL+|xHD$E1E1HD$0E1E11HD$ HD$HD$8HD$HD$(H$cH$}HL $HHIfDs}HHHW0HD$E1E1E1HD$0E1HD$ HD$HD$8HD$HD$(H$H1{E1E1HD$E1E1HD$0HD$ HD$HD$8HD$HD$(H$W~L $HHD$E1E1E1HD$0E11E1HD$ HD$HD$8HD$HD$(H$~ILL$/zL$rH=TJ"1DHEHHEHyrH=TK"1rH=TL"1irH=TM"1SrH=yTN"1=rH=cTO"1'A >BE1E1E1E1E1HD$1HD$0HD$ HD$HD$8HD$HD$(H$XD}HHD$E1E1E1HD$0E1HD$ HD$HD$8HD$HD$(H$"HL$xL$LL$~xL$E1E1E1E1MFMfAtAA$tA$Ix HI fInfHnHt$hLflźL$)$PL$II@HI3Lw&HD$E1E11HD$0E1E1HD$ HD$HD$8HD$HD$(H$LqwA >7LXwL$LGwE1E1E1E1HD$E11HD$0HD$ HD$HD$8HD$HD$(H$JHD$E1E1E1HD$0E1HD$ HD$HD$8HD$HD$(H$HtvUHN(H8@HEIL$(ML$8A@LELlE1}wL$H6LsnHD$E1E11HD$0E1E1HD$ HD$HD$8HD$HD$(H$陽MrMbAtAA$tA$Ix HIPfHnHt$hfInLflƺ)$P賿IIHILL$rL$HL$rL$E1E1E1JLL\$nrL\$A >3tHkHHLD$@HEH H5Y1H81WqLD$@E1E1HD$E1HD$0HD$ HD$HD$8HD$HD$(H$鴷nL+HD$(H#HD$E1E1E1HD$0E1HD$ HD$HD$8HD$MLL$lL$lpIHD$E1E1E1HD$0E1E1HD$ HD$HD$8HD$HD$(顶rpIE1E1E1E1HD$E11HD$0HD$ HD$HD$8HD$HD$(H$HD$E1E1E1HD$0E1E1HD$ HD$HD$8HD$HD$(H$鷵DHD$2mLjLL$HHD$(,(E1E1HD$E1E1E1HD$0HD$ HD$HD$8HD$7HD$E1E1E1HD$0E1HD$ HD$HD$8HD$HD$(tAEfL$P$XlIHHHPtHHt$hLHH=H$XpmLHD$ӝI$LT$xHI$6MHHD$E1E1ɾHD$0E1HD$ HD$HD$8HD$BE1E1E1IwmLL$IDHD$E1E1E1HD$0E1E1HD$ HD$HD$8HD$HD$(H$fRmL\$HD$(LHLT$hLT$H$HExHHEH$HH鋻E1E1DHD$E1E11HD$0E1E1HD$ HD$HD$8HD$HD$(HD$E1E1E1HD$0E1E1E1HD$ HD$HD$8HD$(QM{MsAtAAtAIx HIHt$hfInǺLD$()$P茴HD$IHItLggLLD$ugLD$"HLD$^gLD$LLD$GgLD$xkIHD$E1E1E1HD$0E1HD$ HD$HD$8HD$週M|$Mt$AtAAtAI$xHI$Ht$hfInǺLD$)$PjHD$(IHILefHD$E1E1E1HD$0HD$ HD$HD$8HD$鳰IPHJIPH*EtEHJ2HD$E1E1E1HD$0E1E1E1HD$ HD$HD$8HD$HD$(H$گHHErHD$E1E1ҾHD$0E1HD$ HD$HD$8HD$˯HD$E1E1LT$E1E1E1E1HD$HD$0HD$ HD$HD$8HD$LLD$dLD$.LdLdLdHdH5uLIHH5 HuAąUIx HIEtrAEtAEH=Ht$h1HL$PHDŽ$XCgLIHD$裗MIExHIELl$H5LPIHQL$HLAH|$04LH$pHD$HIx HIH5LIHHLH|$P4LH$@HD$HIx HIHaAǃOH<$LAƃH$EEH$HH$H$xUIHH|$0'! H|$Pf)!)$pf)$@I9$'IVH&M~AtAIN HL$0D$tIx HIH=GIH!H5$HHD$臕LD$HHD$Ix HIHD$H H9H$Lt$E1HfInLH)H?fInLD$H HL$hfl)$PH4?LD$HD$ L Ix HIH|$ dIx HI}H= MIHH5H蒔IHIx HIH5H|$ LD$LD$HHD$HHI9@ME1ALfInLL)H?D$LL$H HD$h)$PJ42LL$ILHL$Hx HHIx HIt$MC$H $D$tEtEH<$1HR`IH#H;H;]I9LLT$bLT$Av$Ix HI#ESH $D$E#IHExHHEEH $Hx HH#LκLLL$_LL$HI"Ix HI"Ix HI]"L;L;jI9LLD$aLD$A!Ix HI"EH=uIHH5HHD$LL$HIJIx HI1 H5lLđIH HLHD$HH|$@4LLL$H$HHD$ Ix HI H5L[IHHLHD$H|$X4LLL$H$HHD$1Ix HIC H5LIHHLHD$H|$`4LLL$H$HHD$eIx HIH`D$,H<$JAƃPLAVD$P$H$H$L$L$PH$oRH|$h4LH$0HD$0H H H|$@"םH|$Xf")$輝H|$`f")$衝fH4)$H$HHwH5H$HHpH|$H "LRVLMRE1^HD$E1E1E1HD$0E1HD$ HD$LTRE1E1E1E1HD$HD$0HD$ mHD$E1E1E1HD$0E1HD$ HD$3LQyMLQϼHQHD$ HD$ڻE1E1E1HD$HD$0HD$ LuQLhQgHD$E1E1ҾHD$0E1HD$ HD$HD$8HD$鶛HLD$@H5B*H81TLD$@E1E1HD$E1HD$0HD$ HD$HD$8HD$FLd$LL$Ld$E1E1HD$HD$0HD$ HD$鶚M_MwAtAAtAIx HI M1zE1E1E1ɾHD$HD$0HD$ 锚E1E1E1E1HD$HD$0HD$ cHD$E1E1E1 HD$E1E11HD$0E1ɾHD$ HD$HD$8HD$HD$(H$LLOL?O'L2OmDE#EIDpHLL$NLL$E1E1E1E1sLLT$NLT$KE1E1E1ɾHD$HD$07E1E1E1ɾHD$HD$0HD$ L\$89LT$@AIx HItITu1IHLH H5T:HEHH81QE1LME1E1E1ɾHD$HD$0HD$ TE1E1E1E1HD$HD$0,HHH_H LD$@HEHH59H81.QLD$@E1E1HD$E1HD$0HD$ 鷗HH5u9LD$@H8MLD$@E1E1HD$E1HD$0HD$ iE1E1E1HD$HD$0HD$ ;HLD$@H5%H81]PLD$@E1E1HD$E1HD$0HD$ E1E1E1ɾHD$HD$0HD$ 鸖gNHDE1E1E1HD$E1HD$0HD$ y(NHE1E1E1HD$E1HD$0HD$ :E1E1E1ɾHD$HD$0L<$IE1HD$E1ÕE1E1E1E1HD$HD$0HD$ ĕI麦IEHD$E1E1E1HD$0E1HD$ HD$z)MHHD$E1E1Ҿ HD$0E1E1HD$ HD$2LHHD$E1E1Ҿ HD$0E1E1HD$ HD$E1E1E1E1HD$HD$0HD$ 頔Lt$E1E1E1E1lLt$E1E1E1E1郔I IqE1E1E1E1HD$ TLIMwMgAtAA$tA$IxKHILHL$eIHL$E1E1E1E1HD$E1 飓1E1E1E1E1鸓HI MD$M|$AtAAtAI$x8HAI$MLLD$@HLD$@6LH釼E1!E1E1E10E1E1E1E1E1E1E1LcH麻LVHHD$E1E1E1HD$0E1HD$ HD$鳒Et,EI齶HLL$PLD$GLL$PLD$鲶I锶HD$E1E1Ҿ^LLL$GLL$ֶL $[HLL$PLD$GLL$PLD$hE1E1E1E1HD$HD$0HD$ ӑE1E1E1HD$E1E1阑L&G`LG韶E1E1E1HD$锑E1E1E1HD$xL%A$tA$HH$XLHHDŽ$PH$XsHD$I$x HI$tUH|$L|$L裚IxhHIt6E1E1E1HD$E1АL,F LFH|$FE1E1HD$E1E1鐐E1E1E1HD$E1qE1E1E1E1[L<$E1E1IHD$ LLD$ELD$ E1E1E1ɾHD$LLD$_ELD$DMOMwAtAAtAIxLHILHD$pLL$P ELL$PHD$pjE1E1E1E1E1N1JE1E1E1E1HD$AH|$DLD$P酲E1E1E1E1HD$'LD鰱HD$PE1E1E1HD$E1HD$ HMD3LxLpAtAAtAHD$Hx8HH|H|$HD$ CHD$ cLC鬰1OHD$PE1E1E1E1E1HD$ &HD$PE1E1E1HD$E1HD$ /LCӯLL\$ MLT$qCLT$L\$ 1鯪HD$E1E1ɾHD$0HD$ HD$HD$8HD$鱍L|$*I IL|$ E1E1E1HD$ vL|$ E1E1E1HD$ HD$LMHMxAtAAtAIxFHAILLL$kBLL$E1E1E1ɾ HD$E1E1E1E1E1HD$ HD$H BE1E1E1E1HD$ HD$|LLD$ALD$L|$ E1E1E1HD$E1 HD$8LAvE1E1E1HD$LkA録E1E1E1֋E1E1E1HD$麋E1E1E1HD$鞋LA^E1E1E1~L@驱9CH0E1E1E1HD$E1D CHE1E1E1!L@|E1E1E1E1HD$E1E1E1E1ߊMFM~AtAAtAIx@HILHL$@LD$@LD$HL$@鉲L?1u;BHE1E1E1HD$E1E1HD$!BHE1E1E1E1HD$H|$~?DE1E1E1E1HD$HD$黉LI?LE1E1E1E1HD$鏉E1E1E1E1HD$HD$gE1E1E1 HD$HD$tE1E1E1 HD$HD$OL%A$tA$HH$XLHHDŽ$PH$XJHD$I$x HI$t^H|$L|$LzIxzHIt? E1E1E1HD$E1HD$鞈L=L=H|$= E1E1HD$E1E1HD$U E1E1E1HD$E1HD$-E1E1E1E1HD$ E1E1E1E1HD$ HD$鴇LB=sE1E1E1E1HD$ 鈇L=L@LpAtAAtAHD$HxZHH8H|$HD$ LD$LD$tH|$KfDHL ASH fH>tLH|$AtALD$ 8)fD7fDLAtALD$@HT$Ht$ HL t%'~UHHtakes no arguments%.200s() %s (%zd given)takes exactly one argumentBad call flags for CyFunctiontakes no keyword arguments%.200s() %s_cython_3_1_6cannot import name %S__pyx_capi____loader__loader__file__origin__package__parent__path__submodule_search_locationsneeds an argumentan integer is requiredkeywords must be stringsendunparsable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'buffer dtypeconst ITYPE_tname '%U' is not definedbuiltinscython_runtime__builtins__does not matchnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncscipy._cyutilitymemoryview_allocate_bufferarray_cwrappermemoryview_cwrappermemview_sliceslice_memviewslicepybuffer_indexint (__Pyx_memviewslice *)transpose_memslicememoryview_fromsliceget_slice_from_memviewslice_copymemoryview_copymemoryview_copy_from_sliceget_best_orderslice_get_sizefill_contig_strides_arraycopy_data_to_temp_err_extents_err_dimint (PyObject *, PyObject *)_errint (void)_err_no_memorymemoryview_copy_contentsbroadcast_leadingrefcount_copyingrefcount_objects_in_slice_slice_assign_scalarnumpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy.import_arrayat mostat leastmaximum_bipartite_matching__reduce____module____dictoffset____vectorcalloffset____weaklistoffset__func_doc__doc__func_name__name____qualname__func_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutineBTYPE_tDTYPE_tC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sInterpreter change detected - this module can only be loaded into one interpreter per process.Shared Cython type %.200s is not a type objectShared Cython type %.200s has the wrong size, try recompiling__int__ returned non-int (type %.200s). The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__int__ returned non-int (type %.200s)value too large to convert to npy_int32unbound method %.200S() needs an argument%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%.200s() keywords must be strings%s() got multiple values for keyword argument '%U'too many values to unpack (expected %zd)Unexpected format string character: '%c'Buffer is not indirectly contiguous in dimension %d.Buffer and memoryview are not contiguous in the same dimension.C-contiguous buffer is not contiguous in dimension %dC-contiguous buffer is not indirect in dimension %dBuffer exposes suboffsets but no stridesmemviewslice is already initialized!Acquisition count is %d (line %d)invalid vtable found for imported type%s() got an unexpected keyword argument '%U' while calling a Python objectNULL result without error in PyObject_Call__annotations__ must be set to a dict object__name__ must be set to a string object__qualname__ must be set to a string object__defaults__ must be set to a tuple objectchanges to cyfunction.__defaults__ will not currently affect the values used in function calls__kwdefaults__ must be set to a dict objectchanges to cyfunction.__kwdefaults__ will not currently affect the values used in function callsfunction's dictionary may not be deletedsetting function's dictionary to a non-dictcalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringDoes not understand character buffer dtype format string ('%c')Expected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Buffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)Buffer not compatible with direct access in dimension %d.Buffer is not indirectly accessible in dimension %d.../scipy/sparse/csgraph/parameters.pxiscipy/sparse/csgraph/_matching.pyxModule '_matching' has already been imported. Re-initialisation is not supported.scipy.sparse.csgraph._matchingcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%dint (struct __pyx_array_obj *)struct __pyx_array_obj *(PyObject *, Py_ssize_t, char *, char const *, char *)PyObject *(PyObject *, int, int, __Pyx_TypeInfo const *)struct __pyx_memoryview_obj *(struct __pyx_memoryview_obj *, PyObject *)int (__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int)char *(Py_buffer *, char *, Py_ssize_t, Py_ssize_t)PyObject *(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int)__Pyx_memviewslice *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)void (struct __pyx_memoryview_obj *, __Pyx_memviewslice *)PyObject *(struct __pyx_memoryview_obj *)PyObject *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)char (__Pyx_memviewslice *, int)Py_ssize_t (__Pyx_memviewslice *, int)Py_ssize_t (Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char)void *(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int)int (int, Py_ssize_t, Py_ssize_t)int (PyObject *, PyObject *, int)int (__Pyx_memviewslice, __Pyx_memviewslice, int, int, int)void (__Pyx_memviewslice *, int, int)void (__Pyx_memviewslice *, int, int, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, int)void (__Pyx_memviewslice *, int, size_t, void *, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *)_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule was compiled against NumPy C-API version 0x%x (NumPy 1.23) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtime../../tmp/build-env-99e64tom/lib/python3.12/site-packages/numpy/__init__.cython-30.pxdinit scipy.sparse.csgraph._matchingcannot fit '%.200s' into an index-sized integer'%.200s' object is not subscriptablescipy.sparse.csgraph._matching._hopcroft_karpneed more than %zd value%.1s to unpack'NoneType' object is not iterablescipy.sparse.csgraph._matching.maximum_bipartite_matching%.200s() takes %.8s %zd positional argument%.1s (%zd given)scipy.sparse.csgraph._matching._lapjvsp_single_lscipy.sparse.csgraph._matching._lapjvspscipy.sparse.csgraph._matching.min_weight_full_bipartite_matchingmin_weight_full_bipartite_matching_cython_3_1_6.cython_function_or_method_cython_3_1_6._common_types_metatype`P0P0P`P0P0P0P0P0PP P0P0PP0P0PPPP0P0P0P0P0P0P0P0P0P0P0P0P0P0P0P0P`P`PP0P PpPP P0P0PP0P0P0P`PP0P`Piggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggiggigggggtiiggiggihiggigggggggggggggii&ig@iZiihgghggggiggfeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeefeefeeeeeffeefeeffrf~feefeeeeeeeeeeeeefgfe&f@fZffeefeeeefeeiggigggggiiggiggiiiggggggggggggggggii:jg'jjiiggigggiigiiCfCfiCfCfCfCfCfiiCfCfiCfCfiiiCfCfCfCfCfCfCfCfCfCfCfCfCfCfCfCfyijiCfiiyiyiCfCfyiCfCfCfyiyiCfyi\gTfTf\gTfTfTfTfTf ihTfTfhTfTfhhhTfTfTfTfTfTfTfTfTfTfTfTfTfTfTfTf\g\g)iTf>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import min_weight_full_bipartite_matching Let us first consider an example in which all weights are equal: >>> biadjacency = csr_array([[1, 1, 1], [1, 0, 0], [0, 1, 0]]) Here, all we get is a perfect matching of the graph: >>> print(min_weight_full_bipartite_matching(biadjacency)[1]) [2 0 1] That is, the first, second, and third rows are matched with the third, first, and second column respectively. Note that in this example, the 0 in the input matrix does *not* correspond to an edge with weight 0, but rather a pair of vertices not paired by an edge. Note also that in this case, the output matches the result of applying :func:`maximum_bipartite_matching`: >>> from scipy.sparse.csgraph import maximum_bipartite_matching >>> biadjacency = csr_array([[1, 1, 1], [1, 0, 0], [0, 1, 0]]) >>> print(maximum_bipartite_matching(biadjacency, perm_type='column')) [2 0 1] When multiple edges are available, the ones with lowest weights are preferred: >>> biadjacency = csr_array([[3, 3, 6], [4, 3, 5], [10, 1, 8]]) >>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency) >>> print(col_ind) [0 2 1] The total weight in this case is :math:`3 + 5 + 1 = 9`: >>> print(biadjacency[row_ind, col_ind].sum()) 9 When the matrix is not square, i.e. when the two partitions have different cardinalities, the matching is as large as the smaller of the two partitions: >>> biadjacency = csr_array([[0, 1, 1], [0, 2, 3]]) >>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency) >>> print(row_ind, col_ind) [0 1] [2 1] >>> biadjacency = csr_array([[0, 1], [3, 1], [1, 4]]) >>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency) >>> print(row_ind, col_ind) [0 2] [1 0] When one or both of the partitions are empty, the matching is empty as well: >>> biadjacency = csr_array((2, 0)) >>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency) >>> print(row_ind, col_ind) [] [] In general, we will always reach the same sum of weights as if we had used :func:`scipy.optimize.linear_sum_assignment` but note that for that one, missing edges are represented by a array entry of ``float('inf')``. Let us generate a random sparse array with integer entries between 1 and 10: >>> import numpy as np >>> from scipy.sparse import random_array >>> from scipy.optimize import linear_sum_assignment >>> sparse = random_array((10, 10), rng=42, density=.5, format='coo') * 10 >>> sparse.data = np.ceil(sparse.data) >>> dense = sparse.toarray() >>> dense = np.full(sparse.shape, np.inf) >>> dense[sparse.row, sparse.col] = sparse.data >>> sparse = sparse.tocsr() >>> row_ind, col_ind = linear_sum_assignment(dense) >>> print(dense[row_ind, col_ind].sum()) 25.0 >>> row_ind, col_ind = min_weight_full_bipartite_matching(sparse) >>> print(sparse[row_ind, col_ind].sum()) 25.0 maximum_bipartite_matching(graph, perm_type='row') Returns a matching of a bipartite graph whose cardinality is at least that of any given matching of the graph. Parameters ---------- graph : sparse array or matrix Input sparse in CSR format whose rows represent one partition of the graph and whose columns represent the other partition. An edge between two vertices is indicated by the corresponding entry in the matrix existing in its sparse representation. perm_type : str, {'row', 'column'} Which partition to return the matching in terms of: If ``'row'``, the function produces an array whose length is the number of columns in the input, and whose :math:`j`'th element is the row matched to the :math:`j`'th column. Conversely, if ``perm_type`` is ``'column'``, this returns the columns matched to each row. Returns ------- perm : ndarray A matching of the vertices in one of the two partitions. Unmatched vertices are represented by a ``-1`` in the result. Notes ----- This function implements the Hopcroft--Karp algorithm [1]_. Its time complexity is :math:`O(\lvert E \rvert \sqrt{\lvert V \rvert})`, and its space complexity is linear in the number of rows. In practice, this asymmetry between rows and columns means that it can be more efficient to transpose the input if it contains more columns than rows. By Konig's theorem, the cardinality of the matching is also the number of vertices appearing in a minimum vertex cover of the graph. Note that if the sparse representation contains explicit zeros, these are still counted as edges. The implementation was changed in SciPy 1.4.0 to allow matching of general bipartite graphs, where previous versions would assume that a perfect matching existed. As such, code written against 1.4.0 will not necessarily work on older versions. If multiple valid solutions are possible, output may vary with SciPy and Python version. References ---------- .. [1] John E. Hopcroft and Richard M. Karp. "An n^{5 / 2} Algorithm for Maximum Matchings in Bipartite Graphs" In: SIAM Journal of Computing 2.4 (1973), pp. 225--231. :doi:`10.1137/0202019` Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import maximum_bipartite_matching As a simple example, consider a bipartite graph in which the partitions contain 2 and 3 elements respectively. Suppose that one partition contains vertices labelled 0 and 1, and that the other partition contains vertices labelled A, B, and C. Suppose that there are edges connecting 0 and C, 1 and A, and 1 and B. This graph would then be represented by the following sparse array: >>> graph = csr_array([[0, 0, 1], [1, 1, 0]]) Here, the 1s could be anything, as long as they end up being stored as elements in the sparse array. We can now calculate maximum matchings as follows: >>> print(maximum_bipartite_matching(graph, perm_type='column')) [2 0] >>> print(maximum_bipartite_matching(graph, perm_type='row')) [ 1 -1 0] The first output tells us that 1 and 2 are matched with C and A respectively, and the second output tells us that A, B, and C are matched with 1, nothing, and 0 respectively. Note that explicit zeros are still converted to edges. This means that a different way to represent the above graph is by using the CSR structure directly as follows: >>> data = [0, 0, 0] >>> indices = [2, 0, 1] >>> indptr = [0, 1, 3] >>> graph = csr_array((data, indices, indptr)) >>> print(maximum_bipartite_matching(graph, perm_type='column')) [2 0] >>> print(maximum_bipartite_matching(graph, perm_type='row')) [ 1 -1 0] When one or both of the partitions are empty, the matching is empty as well: >>> graph = csr_array((2, 0)) >>> print(maximum_bipartite_matching(graph, perm_type='column')) [-1 -1] >>> print(maximum_bipartite_matching(graph, perm_type='row')) [] When the input array is square, and the graph is known to admit a perfect matching, i.e. a matching with the property that every vertex in the graph belongs to some edge in the matching, then one can view the output as the permutation of rows (or columns) turning the input array into one with the property that all diagonal elements are non-empty: >>> a = [[0, 1, 2, 0], [1, 0, 0, 1], [2, 0, 0, 3], [0, 1, 3, 0]] >>> graph = csr_array(a) >>> perm = maximum_bipartite_matching(graph, perm_type='row') >>> print(graph[perm].toarray()) [[1 0 0 1] [0 1 2 0] [0 1 3 0] [2 0 0 3]] min_weight_full_bipartite_matching (line 290)scipy/sparse/csgraph/_matching.pyxnumpy._core.umath failed to importnumpy._core.multiarray failed to importmin_weight_full_bipartite_matchingexplicit zero weights are removed before matchingexpected a matrix containing numerical entries, min_weight_full_bipartite_matching(biadjacency, maximize=False) Returns the minimum weight full matching of a bipartite graph. .. versionadded:: 1.6.0 Parameters ---------- biadjacency : sparse array or matrix Biadjacency matrix of the bipartite graph: A sparse array in CSR, CSC, or COO format whose rows represent one partition of the graph and whose columns represent the other partition. An edge between two vertices is indicated by the corresponding entry in the matrix, and the weight of the edge is given by the value of that entry. This should not be confused with the full adjacency matrix of the graph, as we only need the submatrix defining the bipartite structure. maximize : bool (default: False) Calculates a maximum weight matching if true. Returns ------- row_ind, col_ind : array An array of row indices and one of corresponding column indices giving the optimal matching. The total weight of the matching can be computed as ``graph[row_ind, col_ind].sum()``. The row indices will be sorted; in the case of a square matrix they will be equal to ``numpy.arange(graph.shape[0])``. Notes ----- Let :math:`G = ((U, V), E)` be a weighted bipartite graph with non-zero weights :math:`w : E \to \mathbb{R} \setminus \{0\}`. This function then produces a matching :math:`M \subseteq E` with cardinality .. math:: \lvert M \rvert = \min(\lvert U \rvert, \lvert V \rvert), which minimizes the sum of the weights of the edges included in the matching, :math:`\sum_{e \in M} w(e)`, or raises an error if no such matching exists. When :math:`\lvert U \rvert = \lvert V \rvert`, this is commonly referred to as a perfect matching; here, since we allow :math:`\lvert U \rvert` and :math:`\lvert V \rvert` to differ, we follow Karp [1]_ and refer to the matching as *full*. This function implements the LAPJVsp algorithm [2]_, short for "Linear assignment problem, Jonker--Volgenant, sparse". The problem it solves is equivalent to the rectangular linear assignment problem. [3]_ As such, this function can be used to solve the same problems as :func:`scipy.optimize.linear_sum_assignment`. That function may perform better when the input is dense, or for certain particular types of inputs, such as those for which the :math:`(i, j)`'th entry is the distance between two points in Euclidean space. If no full matching exists, this function raises a ``ValueError``. For determining the size of the largest matching in the graph, see :func:`maximum_bipartite_matching`. We require that weights are non-zero only to avoid issues with the handling of explicit zeros when converting between different sparse representations. Zero weights can be handled by adding a constant to all weights, so that the resulting matrix contains no zeros. If multiple valid solutions are possible, output may vary with SciPy and Python version. References ---------- .. [1] Richard Manning Karp: An algorithm to Solve the m x n Assignment Problem in Expected Time O(mn log n). Networks, 10(2):143-152, 1980. .. [2] Roy Jonker and Anton Volgenant: A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems. Computing 38:325-340, 1987. .. [3] https://en.wikipedia.org/wiki/Assignment_problem Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import min_weight_full_bipartite_matching Let us first consider an example in which all weights are equal: >>> biadjacency = csr_array([[1, 1, 1], [1, 0, 0], [0, 1, 0]]) Here, all we get is a perfect matching of the graph: >>> print(min_weight_full_bipartite_matching(biadjacency)[1]) [2 0 1] That is, the first, second, and third rows are matched with the third, first, and second column respectively. Note that in this example, the 0 in the input matrix does *not* correspond to an edge with weight 0, but rather a pair of vertices not paired by an edge. Note also that in this case, the output matches the result of applying :func:`maximum_bipartite_matching`: >>> from scipy.sparse.csgraph import maximum_bipartite_matching >>> biadjacency = csr_array([[1, 1, 1], [1, 0, 0], [0, 1, 0]]) >>> print(maximum_bipartite_matching(biadjacency, perm_type='column')) [2 0 1] When multiple edges are available, the ones with lowest weights are preferred: >>> biadjacency = csr_array([[3, 3, 6], [4, 3, 5], [10, 1, 8]]) >>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency) >>> print(col_ind) [0 2 1] The total weight in this case is :math:`3 + 5 + 1 = 9`: >>> print(biadjacency[row_ind, col_ind].sum()) 9 When the matrix is not square, i.e. when the two partitions have different cardinalities, the matching is as large as the smaller of the two partitions: >>> biadjacency = csr_array([[0, 1, 1], [0, 2, 3]]) >>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency) >>> print(row_ind, col_ind) [0 1] [2 1] >>> biadjacency = csr_array([[0, 1], [3, 1], [1, 4]]) >>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency) >>> print(row_ind, col_ind) [0 2] [1 0] When one or both of the partitions are empty, the matching is empty as well: >>> biadjacency = csr_array((2, 0)) >>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency) >>> print(row_ind, col_ind) [] [] In general, we will always reach the same sum of weights as if we had used :func:`scipy.optimize.linear_sum_assignment` but note that for that one, missing edges are represented by a array entry of ``float('inf')``. Let us generate a random sparse array with integer entries between 1 and 10: >>> import numpy as np >>> from scipy.sparse import random_array >>> from scipy.optimize import linear_sum_assignment >>> sparse = random_array((10, 10), rng=42, density=.5, format='coo') * 10 >>> sparse.data = np.ceil(sparse.data) >>> dense = sparse.toarray() >>> dense = np.full(sparse.shape, np.inf) >>> dense[sparse.row, sparse.col] = sparse.data >>> sparse = sparse.tocsr() >>> row_ind, col_ind = linear_sum_assignment(dense) >>> print(dense[row_ind, col_ind].sum()) 25.0 >>> row_ind, col_ind = min_weight_full_bipartite_matching(sparse) >>> print(sparse[row_ind, col_ind].sum()) 25.0 maximum_bipartite_matching (line 18) maximum_bipartite_matching(graph, perm_type='row') Returns a matching of a bipartite graph whose cardinality is at least that of any given matching of the graph. Parameters ---------- graph : sparse array or matrix Input sparse in CSR format whose rows represent one partition of the graph and whose columns represent the other partition. An edge between two vertices is indicated by the corresponding entry in the matrix existing in its sparse representation. perm_type : str, {'row', 'column'} Which partition to return the matching in terms of: If ``'row'``, the function produces an array whose length is the number of columns in the input, and whose :math:`j`'th element is the row matched to the :math:`j`'th column. Conversely, if ``perm_type`` is ``'column'``, this returns the columns matched to each row. Returns ------- perm : ndarray A matching of the vertices in one of the two partitions. Unmatched vertices are represented by a ``-1`` in the result. Notes ----- This function implements the Hopcroft--Karp algorithm [1]_. Its time complexity is :math:`O(\lvert E \rvert \sqrt{\lvert V \rvert})`, and its space complexity is linear in the number of rows. In practice, this asymmetry between rows and columns means that it can be more efficient to transpose the input if it contains more columns than rows. By Konig's theorem, the cardinality of the matching is also the number of vertices appearing in a minimum vertex cover of the graph. Note that if the sparse representation contains explicit zeros, these are still counted as edges. The implementation was changed in SciPy 1.4.0 to allow matching of general bipartite graphs, where previous versions would assume that a perfect matching existed. As such, code written against 1.4.0 will not necessarily work on older versions. If multiple valid solutions are possible, output may vary with SciPy and Python version. References ---------- .. [1] John E. Hopcroft and Richard M. Karp. "An n^{5 / 2} Algorithm for Maximum Matchings in Bipartite Graphs" In: SIAM Journal of Computing 2.4 (1973), pp. 225--231. :doi:`10.1137/0202019` Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import maximum_bipartite_matching As a simple example, consider a bipartite graph in which the partitions contain 2 and 3 elements respectively. Suppose that one partition contains vertices labelled 0 and 1, and that the other partition contains vertices labelled A, B, and C. Suppose that there are edges connecting 0 and C, 1 and A, and 1 and B. This graph would then be represented by the following sparse array: >>> graph = csr_array([[0, 0, 1], [1, 1, 0]]) Here, the 1s could be anything, as long as they end up being stored as elements in the sparse array. We can now calculate maximum matchings as follows: >>> print(maximum_bipartite_matching(graph, perm_type='column')) [2 0] >>> print(maximum_bipartite_matching(graph, perm_type='row')) [ 1 -1 0] The first output tells us that 1 and 2 are matched with C and A respectively, and the second output tells us that A, B, and C are matched with 1, nothing, and 0 respectively. Note that explicit zeros are still converted to edges. This means that a different way to represent the above graph is by using the CSR structure directly as follows: >>> data = [0, 0, 0] >>> indices = [2, 0, 1] >>> indptr = [0, 1, 3] >>> graph = csr_array((data, indices, indptr)) >>> print(maximum_bipartite_matching(graph, perm_type='column')) [2 0] >>> print(maximum_bipartite_matching(graph, perm_type='row')) [ 1 -1 0] When one or both of the partitions are empty, the matching is empty as well: >>> graph = csr_array((2, 0)) >>> print(maximum_bipartite_matching(graph, perm_type='column')) [-1 -1] >>> print(maximum_bipartite_matching(graph, perm_type='row')) [] When the input array is square, and the graph is known to admit a perfect matching, i.e. a matching with the property that every vertex in the graph belongs to some edge in the matching, then one can view the output as the permutation of rows (or columns) turning the input array into one with the property that all diagonal elements are non-empty: >>> a = [[0, 1, 2, 0], [1, 0, 0, 1], [2, 0, 0, 3], [0, 1, 3, 0]] >>> graph = csr_array(a) >>> perm = maximum_bipartite_matching(graph, perm_type='row') >>> print(graph[perm].toarray()) [[1 0 0 1] [0 1 2 0] [0 1 3 0] [2 0 0 3]] graph must be in CSC, CSR, or COO format.4AN0t81Aiq{(('iquBk+Zy we6"AjLA%[+WARqqaqt2T+QQauARyJaqt;a'"DA{(('kqZr7+VSTTYYZ Y.a}G4qxwkirG9A &k{!r1 1 =1 Mq$nA]!%2!%(2XQa 2T)4s'A *AQ Bhaxq Q -Q -Q #1"HAQ*AQa ;hc +V1$nA[%0%(2XQa 2T)4s'A *AQ Bhaxq 1 +1 +1 #11scipy.sparse.csgraph._matchingconvert_pydata_sparse_to_scipy&ap *!1t81AiquHHG7!iq Eqt5 Y.awgTt>)83a 2XQe:Samaximum_bipartite_matchingsafely_cast_index_arraysno full matching existsscipy.sparse._sputilsgraph must be sparsecline_in_tracebackasyncio.coroutineseliminate_zeros__class_getitem__biadjacency_tscipy.sparse_is_coroutine_initializingbiadjacencyImportError__pyx_vtable__issubdtypeValueErrorperm_typecsr_arrayTypeErrorwarnings__set_name____qualname__maximizematchingissparseisposinfindicesfloat64csgraphasarrayargsort__module__indptrformatdoublecolumnastypearangezerosuint8tocsrtocscshaperangenumpyint32iinfographemptydtypeITYPEDTYPEBTYPEwarn__test____spec____name____main____func__datacopybool_sumrowpopmsgminmaxgot csrcsccooallnp_?yxjibaT.@;X`Lլ ~ůRαnHM  <70$P8pL`0  <P`l\pP`  < T | ` 8 L  P P ` @ @  0 0  D p 0 $P`  h 0PT  !# %`%L)0pfdjzRx $p@FJ w?;*3$"DXl!48\AA ABDF Ul hJd e@AGG0k GAF d DAG Z CAJ @lThDabp bah G %DBBE B(A0D8A@8D0A(B BBB($BAD ] DBF xPoBGL N(D0A8JpxIDDDDAABAABIp8D0A(B BBB8BEH A(A0m(D BBBH.BEL E(A0A8E@8A0A(B BBB8Tۧ{BBE D(A0b(D BBB4BDD  GBG AABGAE Dq K K E 4x BAD  DBI \ DBF <PxP\BBE B(D0D8Dc 8G0A(B BBBF ] 8D0A(B BBBF Q 8I0A(B BBBM H%BEB B(A0A8GPk8D0A(B BBBf|D`wH0ʩBEE E(A0D8E@w8D0A(B BBBD|BHE A(D08I@T8A0P(D BBBjx'BBB E(A0A8D@_ 8A0A(B BBBF _ 8A0A(B BBBG _ 8F0A(B BBBB TGDv F pDb$TW w B pH h H $LAh G J F sAG|i4 mMBEE D(A0q(D BBB$DnBDA cABl8BDD0  ABH u ABH `5BBB B(D0D8G` 8A0A(B BBBF  8C0A(B BBBH ` \BBE E(E0D8Dp| 8F0A(B BBBA  8C0A(B BBBA `nBBB B(A0E8Dpk 8C0A(B BBBG  8A0A(B BBBA pe|h dh , @Do E C E P pd oBKF D(D0F (I DBBF u (I DBBJ  (D ABBE (I ABB SDN DM G  @xD~ F o, xD~ F o(L ADD d AAA (x ADD d AAA  D~ F o I P BBA  BBD D BBH H IBM A EBH ( DBAD ] DBF D dX QBB B(A0D8DP`HPg 8D0A(B BBBD H BBB B(H0D8GP  8D0A(B BBBA pA  G H H 0 \)AcLL pHBIB D(JG (D BBBD PHYAt p>BBE E(D0D8G 8C0A(B BBBC XHRAb 8A0A(B BBBA $ 8bBT EE $< bBT EE d CAZ E  A 8 BBA A(D0] (D ABBH d BBB B(D0D8FP 8A0A(B BBBI 9 8A0A(B BBBM @, bBB A(A0D@S 0D(A BBBF HpģBEB A(A0 (D DBBE F(D BBB@pBBE A(A0D@z 0D(A BBBD L>Ae J I\ &BBB B(A0A8GiHHK8A0A(B BBB8 JBBA A(G0G (A ABBF ` BBB B(D0D8D`Z 8D0A(B BBBE  8A0A(B BBBF $ 5BBB B(A0A8G e 8D0A(B BBBE  W L G G G G G G G G G G G G G G G G G G G G G G G P P W L G G G G G G G G G G G G G G G G G G G G G G G P LHTR1BEB B(A0A8G; 8D0A(B BBBD D$.ANPXD`dXAPZ AF BXR`FXAP XN`N L QBDB B(A0A8J " 8A0A(B BBBD 0C}BIB B(D0A8G  8D0A(B BBBH # E E G M Yz 0 E E G M YB DlT.ANPXD`dXAPZ AF BXR`FXAP XN`N [ oo ٛ`ӛ`͛`H `` `x `s q``j`~`H`@`w``}`8 ``;```p`@`f`6`b`8`^` `1`i`Ǜ`Й``g1 g2 0`b`( `Y `* p {``(`[`(``` ` `h `y` ` `U` `` @% Q`h7 @g#`@f. P `M` `0 n``g( f#  `I`X`ؚ ``E`` `P` `f# Ț `` `A` ````ߛ` `w`u``JURRIIX @ o` n H 8. oxoono(6@F@V@f@v@@@@@@@@@AA&A6AFAVAfAvAAAAAAAAABB&B6BFBVBfBvBBBBBBBBBCC&C6CFCVCfCvCCCCCCCCCDD&D6DFDVDfDvDDDDDDDDDEE&E6EFEVEfEvEEEEEEEEEFF&F6FFFVF/M4 B u2@zG@v3@ H`I@6 z,7 B@Q0f(yttPtPto`Pr@Pr@oopp0p0puu,qP</`I7t" `JRX/9P4@SGCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11)8`nx8. @ @ `F  (@  o+ oH pe 0p! `p qU PrJ r @t1 PtDK t q tb u @u `u% `F@` u SG  I: I.U J{h@~ @v >LG 0w x  z @z  LJ N|h N  p e .P2 }jR P~'z G  p  P8 8C |d QM} ZQn   Ѕ5   n1 X Ѝ o S P x `x 9 Y @s     @  )- PHhp  >/  b @h  PbB h  C        Q  4  >O  Rj @{  8 @ `     `B  8J  _r  8z  x h ` X P H' @R 8n 0 (    1Ng|*Ou   Je p| P5 01 P4.X 7Q@h pC}4 .h @`@` P= F ٛT ӛb ͛p H     x  s q  j ~ H @ w 8 }B 8 V l ;y   p @ f 6 b 8 ^!  3 1@ iO Ǜ] Йu  g1 g2 0 b (  Y   *C p` {j x ( [ (       h  y    , U8  I l  @% Q h7 @g# @f.D P S M_  l 0 n  g( f#   I X( ؚ 9 G ES t   P  f# Ț    # A/  < J X f ߛs   w u   `0 97 @Scn op @o o oc< BO(Xkw @7E an{%<Oi (=Tfyk  . G W e |        ! n !1!=!O!b!r! !!!!!!!!""5"K"c"t"""""""###1#<#M#Y#e#w#######$%$7$F$[$l$$$$$$$$$%"% <%M%\%m%~%%%"%%%%&_matching.c__Pyx_CyFunction_get_qualname__Pyx_CyFunction_get_globals__Pyx_CyFunction_get_closure__Pyx_CyFunction_get_code__pyx_typeinfo_cmp__Pyx_CyFunction_get_annotations__Pyx_CyFunction_get_dict__Pyx_CyFunction_CallMethod__pyx_memview_get_nn___pyx_t_5scipy_6sparse_7csgraph_9_matching_ITYPE_t__Pyx_CyFunction_get_name__pyx_CommonTypesMetaclass_get_module__Pyx_CyFunction_get_doc__Pyx_CyFunction_repr__Pyx_PyObject_GetAttrStrPy_XDECREF__Pyx_ImportFrom__pyx_mstate_global_static__Pyx_CyFunction_get_defaults__Pyx_PyCode_New__Pyx_copy_spec_to_module__Pyx_ImportFunction_3_1_6__pyx_pymod_createmain_interpreter_id.2__pyx_m__Pyx_CyFunction_traverse__Pyx_VerifyCachedType__Pyx_CyFunction_Vectorcall_O__Pyx_PyLong_As_npy_int32__Pyx_PyMethod_New__Pyx_CyFunction_CallAsMethod__Pyx_FetchCommonTypeFromSpec.constprop.0__Pyx_PyList_Pack.constprop.0__Pyx_CyFunction_New.constprop.0__Pyx_CyFunction_Vectorcall_NOARGS__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS__Pyx_ImportType_3_1_6.constprop.0__Pyx_PyLong_NeObjC.constprop.0__Pyx_MatchKeywordArg_nostr.constprop.0__Pyx_IternextUnpackEndCheck.part.0.constprop.0__Pyx_BufFmt_TypeCharToAlignment.constprop.0__pyx_check_strides.constprop.0__Pyx_init_memviewslice.constprop.0__pyx_fatalerror.constprop.0__func__.3__Pyx_XCLEAR_MEMVIEW.constprop.0__Pyx_Import.constprop.0__Pyx_GetVtable.isra.0__Pyx_CyFunction_reduce__Pyx_PyUnicode_Equals__Pyx_MatchKeywordArg_str.constprop.0__Pyx_ParseKeywordDict.constprop.0__Pyx_ParseKeywordsTuple.constprop.0__Pyx_PyErr_GivenExceptionMatchesTuple__Pyx_PyErr_GivenExceptionMatches.part.0__Pyx_PyObject_FastCallDict.constprop.0__Pyx_CyFunction_set_doc__Pyx_CyFunction_set_annotations__Pyx_CyFunction_set_name__Pyx_CyFunction_set_qualname__Pyx_CyFunction_set_defaults__Pyx_CyFunction_set_kwdefaults__Pyx_CyFunction_set_dict__Pyx_Raise.constprop.0__Pyx_CyFunction_get_kwdefaults__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx_CyFunction_clear__Pyx_CyFunction_dealloc__Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5scipy_6sparse_7csgraph_9_matching_ITYPE_t__const__.constprop.0__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_9_matching_ITYPE_t__const____pyx_memoryview_new__Pyx_ValidateAndInit_memviewslice.constprop.0__Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5scipy_6sparse_7csgraph_9_matching_ITYPE_t.constprop.0__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_9_matching_ITYPE_t__Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5scipy_6sparse_7csgraph_9_matching_DTYPE_t.constprop.0__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_9_matching_DTYPE_t__Pyx_IterFinish__Pyx_CyFunction_get_is_coroutine__Pyx_AddTraceback.constprop.0__Pyx_PyObject_GetAttrStrNoError__Pyx_ImportDottedModule.constprop.0__Pyx_GetBuiltinName__Pyx__GetModuleGlobalName__pyx_pymod_exec__matching__pyx_string_tab__pyx_string_tab_encodings__pyx_CommonTypesMetaclass_spec__pyx_CyFunctionType_spec__pyx_builtin_TypeError__pyx_builtin_ValueError__pyx_builtin_ImportError__pyx_k_ap_1_t81A_iq_uHHG7_iq_E_q_t5_Ydescr.0__pyx_k_4AN_0_t81A_iq_iq_uBk_Zy_we6_A_jdescr.1__pyx_array_allocate_buffer__pyx_array_new__pyx_memview_slice__pyx_memoryview_slice_memviewslice__pyx_pybuffer_index__pyx_memslice_transpose__pyx_memoryview_fromslice__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview_slice_copy__pyx_memoryview_copy_object__pyx_memoryview_copy_object_from_slice__pyx_get_best_slice_order__pyx_memoryview_slice_get_size__pyx_fill_contig_strides_array__pyx_memoryview_copy_data_to_temp__pyx_memoryview_err_extents__pyx_memoryview_err_dim__pyx_memoryview_err__pyx_memoryview_err_no_memory__pyx_memoryview_copy_contents__pyx_memoryview_broadcast_leading__pyx_memoryview_refcount_copying__pyx_memoryview_refcount_objects_in_slice__pyx_memoryview_slice_assign_scalar__pyx_memoryview__slice_assign_scalarPyArray_API__pyx_mdef_5scipy_6sparse_7csgraph_9_matching_1maximum_bipartite_matching__pyx_mdef_5scipy_6sparse_7csgraph_9_matching_3min_weight_full_bipartite_matching__pyx_memview_set_nn___pyx_t_5scipy_6sparse_7csgraph_9_matching_ITYPE_t__Pyx_PyObject_GetItem__pyx_f_5scipy_6sparse_7csgraph_9_matching__hopcroft_karp.isra.0__pyx_pf_5scipy_6sparse_7csgraph_9_matching_maximum_bipartite_matching.constprop.0__pyx_pw_5scipy_6sparse_7csgraph_9_matching_1maximum_bipartite_matching__pyx_f_5scipy_6sparse_7csgraph_9_matching__lapjvsp.isra.0__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_9_matching_BTYPE_t__pyx_pf_5scipy_6sparse_7csgraph_9_matching_2min_weight_full_bipartite_matching.constprop.0__pyx_pw_5scipy_6sparse_7csgraph_9_matching_3min_weight_full_bipartite_matching__pyx_moduledef__pyx_CyFunctionType_slots__pyx_CyFunction_methods__pyx_CyFunction_members__pyx_CyFunction_getsets__pyx_CommonTypesMetaclass_slots__pyx_CommonTypesMetaclass_getset__pyx_k___pyx_k_BTYPE__pyx_k_DTYPE__pyx_k_ITYPE__pyx_k_ImportError__pyx_k_T__pyx_k_TypeError__pyx_k_ValueError__pyx_k__2__pyx_k__3__pyx_k_a__pyx_k_all__pyx_k_arange__pyx_k_argsort__pyx_k_asarray__pyx_k_astype__pyx_k_asyncio_coroutines__pyx_k_b__pyx_k_biadjacency__pyx_k_biadjacency_t__pyx_k_bool__pyx_k_class_getitem__pyx_k_cline_in_traceback__pyx_k_column__pyx_k_convert_pydata_sparse_to_scipy__pyx_k_coo__pyx_k_copy__pyx_k_csc__pyx_k_csgraph__pyx_k_csr__pyx_k_csr_array__pyx_k_data__pyx_k_double__pyx_k_dtype__pyx_k_eliminate_zeros__pyx_k_empty__pyx_k_expected_a_matrix_containing_num__pyx_k_explicit_zero_weights_are_remove__pyx_k_float64__pyx_k_format__pyx_k_func__pyx_k_got__pyx_k_graph__pyx_k_graph_must_be_in_CSC_CSR_or_COO__pyx_k_graph_must_be_sparse__pyx_k_i__pyx_k_iinfo__pyx_k_indices__pyx_k_indptr__pyx_k_initializing__pyx_k_int32__pyx_k_is_coroutine__pyx_k_isposinf__pyx_k_issparse__pyx_k_issubdtype__pyx_k_j__pyx_k_main__pyx_k_matching__pyx_k_max__pyx_k_maximize__pyx_k_maximum_bipartite_matching__pyx_k_maximum_bipartite_matching_grap__pyx_k_maximum_bipartite_matching_line__pyx_k_min__pyx_k_min_weight_full_bipartite_match__pyx_k_min_weight_full_bipartite_matchi__pyx_k_min_weight_full_bipartite_matchi_2__pyx_k_module__pyx_k_msg__pyx_k_name__pyx_k_no_full_matching_exists__pyx_k_np__pyx_k_numpy__pyx_k_numpy__core_multiarray_failed_to__pyx_k_numpy__core_umath_failed_to_impo__pyx_k_perm_type__pyx_k_pop__pyx_k_pyx_vtable__pyx_k_qualname__pyx_k_range__pyx_k_row__pyx_k_safely_cast_index_arrays__pyx_k_scipy_sparse__pyx_k_scipy_sparse__sputils__pyx_k_scipy_sparse_csgraph__matching__pyx_k_scipy_sparse_csgraph__matching_p__pyx_k_set_name__pyx_k_shape__pyx_k_spec__pyx_k_sum__pyx_k_test__pyx_k_tocsc__pyx_k_tocsr__pyx_k_uint8__pyx_k_warn__pyx_k_warnings__pyx_k_x__pyx_k_y__pyx_k_zeros__pyx_methods__pyx_moduledef_slots__pyx_doc_5scipy_6sparse_7csgraph_9_matching_2min_weight_full_bipartite_matching__pyx_doc_5scipy_6sparse_7csgraph_9_matching_maximum_bipartite_matchingcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END____pyx_module_is_main_scipy__sparse__csgraph___matching_fini__dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE__initPyUnicode_FromFormatPyNumber_NegativePyObject_SetItemPyList_NewPyExc_SystemErrorPyType_FromMetaclassPyDict_SetItemStringPyDict_SizePyException_SetTracebackPyMethod_Type_ITM_deregisterTMCloneTablePyFloat_TypePyTuple_TypePyObject_FormatPyObject_ClearWeakRefs_PyThreadState_UncheckedGetPyModuleDef_InitPy_EnterRecursiveCallPyFrame_NewPyMem_FreePyCapsule_GetNamevsnprintf@@GLIBC_2.2.5PyObject_GetAttrStringPyImport_AddModulePyBytes_FromStringAndSize_PyObject_GenericGetAttrWithDictPyObject_SetAttrStringPyErr_WarnEx_Py_DeallocPyModule_NewObjectPyErr_NoMemoryPyErr_SetObjectPyObject_GC_DelPyObject_StrPyArg_ValidateKeywordArgumentsPyObject_RichComparePyImport_GetModuleDictPyObject_GC_TrackPyExc_RuntimeErrorPyErr_GivenExceptionMatchesPyErr_SetString_PyObject_GC_NewPyException_GetTracebackPyExc_ExceptionPyExc_ValueErrorstrrchr@@GLIBC_2.2.5PyExc_DeprecationWarningPyExc_TypeErrorPyInterpreterState_GetIDPyTuple_GetItemPyMem_ReallocPyErr_ExceptionMatchesPyOS_snprintf_Py_FatalErrorFuncPyTraceBack_HerePyLong_FromSsize_tPyLong_FromLongmemcmp@@GLIBC_2.2.5PyLong_AsSsize_tPyObject_RichCompareBoolPyInit__matchingPyModule_GetNamePyErr_ClearPyCapsule_IsValidPyImport_GetModule_Py_FalseStruct__gmon_start__PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyType_TypePyObject_SetAttrPyErr_OccurredPyLong_AsLongPyImport_ImportModule_PyDict_GetItem_KnownHashPy_LeaveRecursiveCallPyObject_VectorcallDictPyTuple_GetSlicePyDict_GetItemStringPy_Version_Py_NoneStructPyExc_ModuleNotFoundErrorPyObject_VectorcallPyObject_IsTruePyImport_ImportModuleLevelObjectPyObject_Hash_Py_TrueStructPyDict_SetDefaultPyDict_NewPyExc_IndexErrorPyDict_TypePyDict_NextPyBaseObject_Typememmove@@GLIBC_2.2.5PyObject_VectorcallMethodPyLong_TypePyCapsule_TypePyUnicode_FromStringPyObject_GetIterPyUnicode_InternFromStringPyUnstable_Code_NewWithPosOnlyArgsPyExc_ImportErrorPyDict_SetItemPyExc_AttributeErrorPyBytes_AsStringPyExc_StopIterationPyExc_RuntimeWarningPyObject_CallPyUnicode_TypePyUnicode_DecodePyErr_FormatPyCapsule_GetPointerPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDict_ITM_registerTMCloneTablePyUnicode_ConcatPyNumber_IndexPyObject_GetAttrPyCFunction_TypePyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5PyTuple_PackPyCode_NewEmptyPyObject_GC_UnTrackPyDict_GetItemWithErrorPyList_Type.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``$8 x @n Honn Uoxx dnB8.8.H x@@s @ @@~`F`F    дشH ((0@@  0/x'!  &