ELF>i@@8 @PVPV```OO S S ",,,888$$PtdQtdRtd PPGNU."֫_͗ @`)*lJ Xf^   S /  o - A  C LM + j }  N_iU 4)L  M .U  A>,   F" Xm DF T -o  " <       3 g v  2x54 c 3 U   ,>@ ,    x 7q   g j E "  \[c w x ?! xdN {  __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyDict_NewPyExc_ValueErrorPyErr_SetStringPyErr_FormatPyExc_TypeErrorPyExc_SystemErrorPyDict_SizePyFloat_FromDoublePyUnicode_FromStringPyLong_FromLongPyList_NewPyUnicode_InternFromStringPyUnicode_FromFormatPyErr_Occurred__cxa_rethrow__cxa_begin_catchPyExc_MemoryError__cxa_end_catchPyExc_IOErrorPyExc_IndexErrorPyExc_OverflowErrorPyExc_ArithmeticErrorPyExc_RuntimeError_Unwind_Resume__gxx_personality_v0PyObject_GetAttr_Py_DeallocPyExc_AttributeErrorPyErr_ExceptionMatchesPyExc_ImportErrorPyErr_ClearPyModule_GetNamePyUnicode_ConcatPyImport_GetModulePyExc_DeprecationWarningPyErr_WarnFormatPyDict_SetItemPyType_ModifiedPyObject_HasAttrPyObject_CallMethodObjArgsPyTuple_NewPyDict_SetDefaultPyBytes_FromStringAndSizePyBytes_AsStringPyUnstable_Code_NewWithPosOnlyArgsPyObject_GC_UnTrackPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyObject_GetAttrStringPyDict_SetItemStringPyDict_GetItemStringPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyThreadState_GetPyInterpreterState_GetIDPyModule_NewObjectPyModule_GetDictPyLong_AsLongPyLong_TypePyMem_MallocPyDict_NextPyTuple_GetSlicePyTuple_GetItemPyMem_FreePyErr_NoMemoryPyType_ReadyPyGC_DisablePyGC_EnablePyMethod_NewstrrchrPyImport_AddModulePyDict_GetItemWithErrorPyType_FromMetaclass_PyObject_GC_NewPyObject_GC_Trackvsnprintf_Py_FatalErrorFuncPyObject_RichCompareBoolmemmove_Znwmmemcpy_ZSt17__throw_bad_allocvPyImport_ImportModuleLevelObjectPyObject_GetItemPyUnicode_New_PyUnicode_FastCopyCharactersmemcmpPyObject_HashPyUnicode_TypePyObject_RichCompare_Py_TrueStruct_Py_FalseStructPyObject_IsTruePyCFunction_TypePyObject_VectorcallDictPy_EnterRecursiveCallPy_LeaveRecursiveCallPyBaseObject_TypePyObject_CallPyErr_GivenExceptionMatchesPyMem_ReallocPyLong_AsUnsignedLongPyExc_RuntimeWarningPyErr_WarnExmemsetPyUnicode_FromOrdinalPyObject_IsSubclassPyErr_SetObjectPyTuple_PackPyObject_GetBufferPyBuffer_ReleasePyLong_FromSsize_tPyObject_ClearWeakRefsPyObject_GC_Del_PyThreadState_UncheckedGetPyErr_PrintExPyErr_WriteUnraisablePyException_SetTracebackPyList_TypePyTuple_TypePyNumber_IndexPyLong_AsSsize_tPyExc_StopIterationPyFrame_NewPyTraceBack_HerePyCode_NewEmptyPyArg_ValidateKeywordArgumentsPyException_GetTracebackPyImport_ImportModulePyExc_ModuleNotFoundErrorPyCapsule_TypePyExc_ExceptionPyObject_VectorcallMethodPyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyExc_NameError_PyDict_GetItem_KnownHashPyMethod_TypePyObject_VectorcallPyNumber_LongPySlice_NewPyObject_SetItemPyNumber_InvertPyFloat_TypePyUnicode_FormatPyNumber_RemainderPyErr_GetRaisedExceptionPyErr_SetRaisedExceptionPyNumber_InPlaceAddPyNumber_AddPyObject_SizePyObject_GetIterPyObject_SetAttrStringPy_VersionPyOS_snprintfPyUnicode_FromStringAndSizePyDict_TypePyUnicode_DecodePyEval_GetBuiltinsPyType_TypePyImport_GetModuleDictPyCapsule_NewPyObject_SetAttr_PyType_LookupPyDict_DelItemPyList_AppendPyList_SetSlicePyList_AsTuplePyType_IsSubtype_PyDict_SetItem_KnownHashPyObject_CallObjectPyInit__shortest_pathPyModuleDef_Init_ZSt20__throw_length_errorPKcPyGILState_EnsurePyGILState_ReleasePyObject_Format_Py_BuildValue_SizeTPyFloat_AsDoublePyNumber_InPlaceSubtractPyNumber_SubtractPyExc_UnboundLocalError_ZTINSt8ios_base7failureE_ZTISt10bad_typeid_ZTISt11range_error_ZTISt12domain_error_ZTISt12out_of_range_ZTISt14overflow_error_ZTISt15underflow_error_ZTISt16invalid_argument_ZTISt8bad_cast_ZTISt9bad_alloc_ZTISt9exception_ZdlPvlibstdc++.so.6libgcc_s.so.1libc.so.6GCC_3.0GLIBC_2.14GLIBC_2.2.5CXXABI_1.3GLIBCXX_3.4Y P&y qg0yui Jӯkt)p0dIb O0`@KP@`Fp OE N0^\Zp P0C@pPp`Np`NML@  A ?0 0@ 0P 0` ,p  ? p    @ P 0!P! !0!(@!P!`!p!9!$!! ! !! !!"" "0"p@"`P"`"p"""""""P""#3#0 #`0#@#-P#'`#p#########$$< $0$@$xP$`$p$$$$!$$x$$$%% %p0%`@%P%`%p%@%%9%%h%%%%&&  &0& @&P&`M`&6p&0&& M&L&& &&&'X' '@0'@'P'`'p''P'''h''X'0'L( L(`L ({0(p@(`P(`(p((_((v(q(((h(H))X )0)@)P)0`)p)Q)P)))P))**++,,@5X5`5h5x5555565@65 75066p@6h666 7(707H7P7X7p7x7`777`77777'77p818 8p88:@8`8Gh88S88`88l8 9v9 (909@89P9X9@`9x99 999P999 :8:@:H:`:`:h:и:: ;@;@;H;.qX;;0;p8<@<p<@8=hP= >>X>0x>=>/>k>p  ?k(?p @?=H?/`?h?`x? ????~?0?`????c?po?#@@@/ @(@0%......./!/&/)/* /+(/:0/<8/?@/BH/JP/LX/O`/Ph/Qp/Wx/X/Y/]/`/b/i/m/o/r/x//////@@H@P@X@q`@7h@p@Sx@@@@@0 0(00080 @0 H0 P0 X0 `0h0p0x000000000000 0"0#0$0%0'1(1,1-1. 1/(10011812@13H14P15X16`18h19p1;x1=1>1@1A1C1D1E1F1G1H1I1K1M1N1O1R1T2U2V2Z2[ 2\(2^02_82a@2cH2dP2eX2f`2gh2hp2jx2k2l2n2p2s2t2u2v2w2y2z2{2|2}2~223333 3(30383@3H3P3X3`3h3p3x333333333333333334444 4(40484@4H4P4X4`4h4p4x44444444444HHHtH5%@%h%h%h%h%h%h%h%hp%h`%h P%h @%h 0%h %zh %rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %h%h%h%h %h!%h"%h#%h$%h%%h&%h'p%h(`%h)P%h*@%h+0%h, %zh-%rh.%jh/%bh0%Zh1%Rh2%Jh3%Bh4%:h5%2h6%*h7p%"h8`%h9P%h:@% h;0%h< %h=%h>%h?%h@%hA%hB%hC%hD%hE%hF%hGp%hH`%hIP%hJ@%hK0%hL %zhM%rhN%jhO%bhP%ZhQ%RhR%JhS%BhT%:hU%2hV%*hWp%"hX`%hYP%hZ@% h[0%h\ %h]%h^%h_%h`%ha%hb%hc%hd%he%hf%hgp%hh`%hiP%hj@%hk0%hl %zhm%rhn%jho%bhp%Zhq%Rhr%Jhs%Bht%:hu%2hv%*hwp%"hx`%hyP%hz@% h{0%h| %h}%h~%h%h%h%h%h%h%h%h%hp%h`%hP%h@%h0%h %zh%rh%jh%bh%Zh%Rh%Jh%Bh%:h%2hSHHPHT$0HL$8Ht$(LD$@LL$HHT$`HL$ D$HT$HL$HtBLPLL$H׹1҃/w ΃LHHLA0tA0MHH9uHP[UH]HHH H oHcHHHPHHH8]7HHPHHgH8wHHPHHEH8U~HHPHHH83\HHPHHH8o7HHPHHH8JHHPHHH8%HHPHHbH8HHPHHH8}HHPHHH8X~HHPHHH83YHH5IfH8q HHHH]AWAVIAUATUHSQrMIHHoH8u HLLH5eH81HHHHu 1E1E11JIHtH5&HVIHt"LH1AHHtHH11HLLLLLHTIZL[]A\A]A^A_AVIAUIATUHQHAąuWLH5HtHH^I$xHI$uLIHExHHEuH01Z[]A\A]A^A_AVAUIATE1UQ/HxHIHHu Hx#H9tHZH5@E1H8L%MtA$A$H5WgLcIHu1HHIxHIuLbHtHIHAH o`HLHm`QxfAH ^`LLHZ`.xCAH K`LLHJ` x E1H >`LLH:`y HXGIZL]A\A]A^QHGu HH5@1Ht$H;W tHH5&@H'H81ZATHUHSHPuHHu[H]A\HPHtH HqH9~jHDu"HPHH5;@AH81ukHu0H t&HHHH52@AHUH81@6HHHHAątD[]A\AWIAVAUATUSHHL..H|$L7HtLhLE1SHH2H=]kIHtAtA$LAH$Ht&H<$HIHuCHtDLrEE1LgEHEHHEHtLAGH|$LHLIHtH<$HHIHt1tAM9t=Iy$HcSLL^dMQHIuLI?HI3L&HL[]A\A]A^A_ATUHH+HHqH IHPILFYLH`H$HHD$HH((%ILL3fmTfm%LHHxH H()$$f( (HD$Pf f!)\$)T$ )L$0)D$@JH!HH)H 2ILHMLKH@$H$HHD$HHD$HHD$HuHD$ HqHD$(HmHD$0HH((5f)D$@(flILfl5n(-7f->)l$ (%r(-)$Lfl%()t$H`HHH=;HH H=HH H=(H H=CHH| H=׾ңHH` H=趣H_HD H=g蚣H;H( H51HdHeH L-LLLH8HHL1H&HH51H HL%L5PAUH51LLMMZYHѷHVMLLL1HH.MLLL1hHH`HH ݨHVH_fHnH fHnHH=бflfHnH0'H=)fHnflH)f|H=11HIHL3.1E1AHD$L53L .L.H|$-H-H=tMH=/ttLDH=B'H=XHtAHHHx/HHu' HuHiH5JBH81H=!$HIELHI$LXH8HI$L`HĹH5H=~QHeH5N:LHH53HXI$xHI$uLHE1HLPHD$H|$A|$tHD$AHHD$HcH.IcAIHIFHD$IDHD$Dd$$L;d$KDHHHLLH9T$H:u5IHT$8Ht$0LD$(IHT$8Ht$0LD$(HHBL:L9tSHMu>HcD$$H5n9IDHHHHPHkH819La M_I L;HLH5H=qL5*H5LL-$HHuH5LHH6H5LhH9tE1E1E11HD$HD$ H52LR*HD$HqH9H5L IHjH5L*HD$H^H5̷I9uH5L踛IHu cH|$ÅuE1E1E1kH5HL IH5h#Åu L5#L;l$H1H5L!IHH5LIHt=H5bHLxIH5MÅu LxZMtSbHuIL~HD$E1E1E1HD$"HD$E1E1E1E1E1E1E1Hu2HXIVH56H81{E1E1E11HD$H|$k(H|$a(LY(LQ(LI(_H=ʩH=s.DH=CHHAHHoBH5CeHnHHExHHEuH$H=C8HHA HH BH5iCHHAH HHECH58CHHfA0HHCH5CH®H5AHHBH5BpHHAHHBH5B?HpHAHHBH5tBHGHAHHBH5CBHHqAHHKBH5BHH@AHHBH5A{H̭HAHHAH5AJHHAHHAH5AHzHAHHAH5NAHQH|AHH|AH5AH(HKAHHTAH5@HHAHH-AH5@UH֬HHExHHEuHH=@(HHApHHBH5@HHHHrAHH@H5@HNHAHH,HExHHEuHW1 H=1@bHHH ?2HHH5$@H :2HóHH5@H e2HHH5?H 2HiHH5?Z^H 2H<HH5?59H 3HHH5?H ?HHH5?H 2HHH5?H 73HHH5?H b3H[HH5?|H }3H.HH5{?W[H 3HHH5f?26H 3HԱHH5\? H 3HHH5F?H 3HzHH50?H 3HMHH5%?H 3H HH5?y}H 3HHH5>TXH >HưHH5>/3H >HHH5> H 3HlHH5>H 3H?HH5>H 3HHH5>H 3HHH5>vx~H 3HHH5>Ux]H 3HHH5u>4xxHEx"HHEuHFH1H=IHH5vH=HIxHIuLH=pIHH5H=HIxHIuLHH5-1IHH=H]IHIxHIuLCH5ܩL,IHbH5H= HfIxHIuLH5LIHH5H=HIxHIuLI$xHI$uLH5Ӭ1IHH= HSIHI$xHI$uL7H5L IHH5eH=HI$xHI$uLIxHIuLHGH51IH}H=1HIHIxHIuLvH5L_IHnH5H==HE7IxHIuL&H5LIHH5H=H"IxHIuLI$xHI$uLjH=yIHH5H IHI$xHI$uLdH5H=FLNIxHIuL/H=sIHH5HIHIxHIuLH5H=ǢLI$xHI$uLHgH01IHLp11Ll$HI9M|IGt Hu.1H5L虌HHu(LLu2HyH5-1L5A*H8n&MHMMuL-AEAE1E1AHD$L5]1E1AL5A1E1AHD$L51E1AL5x1E1AHD$L5SHD$1L5A11AL51E1AHD$L5{HD$1L5_A1AL5@1E1AHD$L51AL5zHD$1L5AX1AL5?1E1E1A"L5 1E1AHD$L5$HD$1L5#A1E1AL5#1E1AHD$L5#HD$1L5#Av1E1AL5z#Z1E1A*HD$L55HD$1L5A*H5LH L5蹇HH{fInfInHHflHt$HHD$@D$Hz+HD$HEHl$Hd H5HHy*H5"LH_M9-I$@L L1H={H <HIHHHtH5OH8H9EHNLHI$HLLHt$HHHD$@HD$HL|$PHl$XU*1IMKH5H=ԛL-I$HEIEIL L1H=>H HXIHHHtH5*H=;LCIYL L1H=H HtIHH+HtH5UH=ƚLIL L1H=H 5HvIH|H=^1觾IGxIHH=0諈IHH5 HHHI$IGxH5LH=HhH(tIsI^L JL˙1H="H cHĜ-IHNHHtH5H=L?IL ݚLV1H=H HIHHwHtH5QH= L I*IH HH5؜HL-H52LLH5LLL Lw1H=H HHHLAtAIH5H=%H-HEL LH=H HZHH]H5)H=—HʿHHEL 7LH=lH -H.HH H5>H=_Hg HE`~HHiHD$E1E1AL51HD$E1A1L5HHEHݸH-HHEHHEH覼LH5-H菵HI$LmLHݹ HI$LCHI$iL)\HHE[HNHIEML@HI?Lܻ2HILûHIL誻HI$pL萻cHILwHIL^HINLEAHIL,HHEHHHEJH=HHEH޺HH5HüH4H55H襼dH~H5H臼FHH5Hi(HH5HK HH5H-H5FH=HHE!HHEHLl$1L5A*PLl$L5A+4Ll$L5A*1E1A/HD$L5{1E1A/L5_1E1A"HD$L5:1E1A"L51E1AHD$L5qHD$1L5AOHD$1L5A-Ld$L5E1A1E1AL5z1E1AfHD$L5U1E1AfL591E1AWHD$L51E1AWL5p11E1AqL5PE1L5HD$Aq-E1E1AqL5HD$E1E1AL5$HD$E1E1AL5s$HIL#H覸HH1H9FILHUH ‹tHHIALѶ4H5HE1PMH[]A\A]A^A_H=g肷\LHH|$HHt$XH)HtH|$ Ht$0H)HtH起0 薶T鑅H脶 sRnθZIUHHhH;[H.NH$H$H)HtLH@H=َHҎH9tHV}Ht H=H5H)HH?HHHtH-}HtfD=iu/UH=}Ht H=rk}hA]{f.1f/fHGH9G ÐHHHHt 1DLGPAtALff.fLG`AtALff.fL|AtALf.HGhHttDH|ff.@HHE1u!H9thHOHFH9t\HtEE1~\HtHHDHqIIH fH5GH81k1H@HytH uHsqIH5H817DH %HysATUHHGHGHvNHHH)HHtbH蓤HcAH9t5HubHtXAH)‹GHHcAH9u3HD]A\GWHH HHcAH9tDHAqH5AH8tfGWHH HcAH9uHD]A\DH@`HtnHHtbHHtXHpH9Eu6@HAHE>HHE0H#HHHuHHoH5H8譨AWAVIAUATIUHSHhLG0Mt0L~HvHuSHhLH1[]A\A]A^A_Af.HwHhHL[]A\A]A^A_!HBHD$HtJ<8LD$HШLD$HIMtWIF I9IGHvL1HHAoDADHH9uLHAt ITITH|$LD$LD$HHD$FKD1AL|$ HHD$HL$PLHD$XH|$HLl$0IHl$8IHIHD$HLD$(EHD$PHPH#tHL$XtH|$JDHD$J ILLHL9uL|$ LD$(Ll$0Hl$8HLHL$LHAIH\$Hx HHH\$HLd$1@HH9IH9'AWAVAUATUHSHHHVL6L?LoIM)M)M9w7HIM)M9L9LLLL#DMHI9LHT$L;LkHT$HM)L9tLLHBMt LL"IH+Lc:fDMt#LLL荝H{L;HULuIM)K4H9u'MLcH[]A\A]A^A_fH)@L#1\lff.LGPAtALff.fAWIHAVAUIATIUSH(FHIƁAF D$H =IN(IV8@HDHL$L9KE1HD$8Hr(Hz8@HD9tRM1LL%MIL9|$|ILbMtHL)L9|<J  uHr89uD$LLHHH|$gDH!fH5bH8ZIx HItzE1H(L[]A\A]A^A_DH?HHF؁D$AF  IF8HD$f.LyAWAVAUATIUHSHH(LwHL$LD$IHEHIL$(IMl$8HL$IGIHHL9puL@M;D$uDX AT$ Dމ@@@8uA VHx(H8A@HD -L\$@MD@LIqHD$I)IL8H([]A\A]A^A_fDH9Ml$(M|$8HH9HHL;puL@M;D$uDX AT$ Dމ@@@8uA Hx8 @MMD@LI(uHcHT$LH5H81Ė-f.H(1[]A\A]A^A_M\$8fDHx8Hx(H8A@HD ]M\$8]PIHfH9wUSHHbH9GH9FHW1H;VHOLFL9AHAt IDW DN 1DEAAD8uiA H8A  HF(H8A@HEDD1E9uHtH聙H[]fHbH9u1uH9u1uںHHH;aH;-tauEH9t@HȓHUxHHUuHD$ *D$ xf.HG(H8A@HEHv8DDDDfLGH?t HA`HtH>HHA`@HH%`IH H5*H811Hff.H?IIHHWtLWHw8HBLL@Ht#LIHw8HHBLLHH_HH WH5H81J1HAUIIATIUI?HSHH qHMH9H5`H9LXMMZM~'1DITH9H9HI9uHG8HDHHH1L[L]A\A]fIH9}H5v_H9tqLXMqMZM~(1fDITH9H9HI9uhHLH1[L]A\A]yfHUB`H9f.MuHL%%pHH= x1LHI输MIH|He]H5H8莖^@HE0HUBIHZE1 uLeH=1LI7MyHL[]A\A]HDHH9tHDHZIIH KH5WH81{1H@HytH HZIH5H81GDH 5HywHG@HFH@H9t*HXHt.HJH~v1 HH9thH;tuf.HH9tHu1H;5YfHDHH9tHuH;YtfDIM9uG1@stLVM~1 @HI9tH;|ucE1DJTHBt@tH94HXHTLAMo1HI9[H;TufDAVAUIATUH=rSHkD%rDxLHcH;l1~5S9}$)HcHD9}@G19A9LcIIAF92 rA9D)؍PIcHHHHHD9HMHHD9HMHtHHHLAEAAnM.D%qtAE[]A\A]A^@DqA9D`@IcHnHHtD%kqLcD%]qIHZqIA93@HtHH+qHqhL(AE`_@HcHL4,AEI>M.tAEH-HH []A\A]A^G9I1tfDHYWLGHWtMtIx HIt1HL褎1Hff.fHt+tLGXHwXMtIx HIt1fH5VHLD1Hff.fUHHHGHGu_Hv1HHt7H5V1葎xSt8HH]GH]GWH]HH DH1VH5H8jHH]DH@`HtuHHtiHHt_HUH9Eu=@H HUoHHUaHHD$)HD$JHHHupHbHTH5H8趍Hff.fHH;5EUtKHtFHF tQtLHMtIx HIt1HfD1@LhfDHTH5H8HHtOHFtBtLGHHwHMtIx HIt 1HDLfDHSH5H8袌HHHtOHFtBtLGPHwPMtIx HIt 1HDLpfDHSH5*H8"HUHSHHSH9tHHucHHRH5=H8%tHHHtHx HHt 1H[]ˊfHFuHdRH5H8mfDUHSHHSH9tHHucHHARH5H8utHHHtHx HHt 1H[]fHF uHQH5H8轊fDHHtOHF tjtLG@Hw@MtIx HIt 1HDL萉fDH9QH5H8BHHQH5H8AVL%AUATUSHH\$Hc‰HHiQH%)kd)ʉ1щ) HAfu1 HHD$H)؅y C-HHHHHcHIAII)IH0@ ;I}8M~L 譁Hf.HIcLBI*HJ471HfoHH9uHHHH9I)H)IvH4 HJ41HHHH9 HB 2HHH9~mtJ7HH@tH9}VHLB 7HHH9~AtHH@tH9~.tHH@tH9~tHH@tH9~D HL[]A\A]A^IU(I}8@HED;H[]A\A]A^11AUIATUHHH@H;5mOHHt'H5`H?HN]A\A]H8鋇A@HLfI$@t'M9LL菂HEHEtE1HL詅IHExHHEMt|IL$@LL莂I$xWHI$uM]LA\A]߅H5@Hu3tA@t1HHY]A\A]f]LA\A]H1聂H@]LA\A]HP+tHL]A\A]ÁHLLH5H81襀ATSHLMtA$tA$HL[A\DHHHtYHHtL`A$LtA$HW HtHxHHu膄LDL%Loff.HWD_@GDHtWH H1LH9t)HRLIHLD$IMII!MIIH.EH5E1H8\~UFD$UQɉσC@|$:D$1f<4IcDLADA}DAmDMII UDMII=DMII%DHPHXHUHH9HEHu;EDE1E@HD[]A\A]A^A_HHHALH5HCH81wAD$HALLH5HCDDH5H81{wASAWAVAUATL%UHSHH<}w^IcLfE18ED8H,HE(HHE0EEEFCDm@EDHE(<}vfDPЀ jCHKҍp@ w0HPp@ vHcHHU(PHH}(HtQHE1HLEAXf)t; MH5HBBH818vE1HL[]A\A]A^A_D9EGHE(HEEHHAH5E1H8 {멀}Dt H}CHtH}+IxHLm8Lc\EDMRHM 1HIH=LH)HM .H[HE(HE HEEHE(HE0EDEFCHSHvH50E1H8 xH>H5BE1H8wuH>H5H8wWff.@ATIԺ=UHHSHHHPHEsFM$fo*HL$$HHD$H@@H;HCA|$\S)D$ fHD$H\$HD$@)D$0u.HKLfH@HHAHHAHx\StHT$Hu(BHtJHUML$L91H}@trHP[]A\fHy=H5H81cqH}HqCH9E@tHvHP[]A\DHE@fDH9CH]@HP[]A\@fH]XEfHnH CflH]@E0HP[]A\HIH M$HHGHHNHH<VH5H81pXZ$ff.fAU1ATIUSHHH.H8HtIH H{FuH5HUhIEE1H L-WHH H1Ҿ<HHVHHPxH!HIT$PHPpHHIT$HHtHI$HP@I$IT$@81ҾA$A$A$A$A$A$A$A$A$A$At$xAt$pAt$hAt$`At$XAt$PAt$HAt$@At$8At$0At$(At$ At$At$At$A4$sxspshs`sXsPsHs@s8s0s(s sss3THĠIEx HIEtxHExHHEuHrHL[]A\A]H :1H5@H81mHL[]A\A]IEf1A$xHIEu L0rHtvIEfA$y`HPXI<$HtHx HHt.IEfA$)HIEtf.qfSHHpHtHHCpx HHH{ HtHHC x HHH{@HtHHC@x HHH{HHtHHCHx HHH{PHtHHCPx HHH{XHtHHCXx HHH{`HtHHC`x HHH{hHtHHChx HH|H{8HC8HtHx HHgHHtHǃHx HHLHHtHǃHx HH1HHtHǃHx HHHHtHǃHx HHH{xHtHHCxx HHt 1[fDo1[sofDcofDSofDCo&fD3o;fD#oPfDoefDozfDnfDnfDnfDnfDnff.UHhH}(tH(mHH]hAVIAUATUSPoL``HH@`MMl$IT$(AE1AE1Ht HՃt AEHՃtAEA$tA$Ht EtEH9Lc`HIExHIEHtHExHHE1UoLgII9l$(H{`Lc`HtHx HH^MtIExHIE3HtHExHHEMLiIx HI[]A\A]A^f.H A$HՃLHlH{`Lc`HHHHlf11E14nLfI@H=4[]A\A]A^h@A$gA$^f[L]A\A]A^0lH(lLl lfDHkGLkHLkAAWAVAUATUSHHL$H|$L$ELAEDl$0HID$,HMHD$ H$sH$H$MHD$ADHD$8HD$D\$4HcD9L HHL$LHLHHH9HL) +L9IAI9H$f(XLf/vXf/v A$f(HHA9H\$H9\$ HD$HD$I9|L$H;$}gH$H$DH$HD$H\$H;$t6A$HD$fDHHxL HH 21H5H81veH=j1HH[]A\A]A^A_ÃD$,D$,9D$04L$A1~%/MHD$8Hc9D$4L HHL$LHLHHH9VIM)A L9AIIcHL9'H$XA\fTf/HH9D$4H;l$ HI9A$EH;$H$L$H$H$H\$8D$4H;$fDHHtL H#_vL@afAWAVAUATUSHXL$H|$L$EAFDt$8HID$HMHD$ H$H$H$HD$(A,HD$@H$l$HHHdfoHL4$HxHD$H@@H;HCA~\S)D$ fHD$H\$HD$@)D$0u-HKLH@HHAHHAHx\StHT$HuhHVH}@IHUXMNL9H}P~BA]1f!EtHHIH8?I<$I|$HExHHID$PHEpHHID$HHtHI$HE@I,$ID$E8u M:HX1[]A\A]A^A_HH9(HuH;!-H xHIMHHGHHOHH1!VH5H81UXZMtIx HIHX[]A\A]A^A_HHH 1H5H81TMdH}@E13H H5BH81TfDLXgHEXsUWUOfDHA H5IH81(T IH H52H8BYfA$H8 H1H5H81Sff.AT1IIH H;5 HD$ t1HL$H|$ MHt&H LA\@I4$H LA\f.fA$DAT1IIH H;5 HD$ t1HL$H|$ MHKt&H LA\@I4$H LA\f.fA$DAT1IIH H;5HD$ t1HL$H|$ MH t&H LA\@I4$H LA\f.fA$DAT1IIH H;5HD$ t1HL$H|$ MH Kt&H LA\@I4$H LA\f.fA$DAUATIUSHHHH9FHFHH)ŋFHHuID$H;H;HXpHtMH{tFH^VHHHLSHUxHHUH[]A\A]HXhHHCHHUHHL[]A\A]HxsID$HH9v~ID$HЋtH[]A\A]fHID$HH9s:IDWfDHfID$H(DHDHPUHHtHLOHUkPHID$H;tH;HzID$HHAHVIHtHQHIEHIE LSfDHHH)HHHuRVFHH HGH;ZHH;HHD${SHD$HPHqHHH2Nt*HCL`mSHFH5LH81Nf1fnFHH H HHLHxHHCHGHNH8NtRHC_ff.AUATUSHLMt"A$tA$HL[]A\A]Hu,L%mA$ЃtA$tA$LfH-$1SIHtEtEID$E1L11H(H=.NOII$xHI$uLQMthIEHLHHHIEx HIEt{Ht2LMHEHHEt@LQH-EtELMuI@H(QfDLQxLHYEIPSQHx`Ht LGMu1[@HQHH2L9u&HC`HxHHuP1DIPA@HVH@IXHHt)HJ1H~H;toHH9u[ML9OMuH;5H:fDLJtH{`HC`H1tL^M~1DL;DHI9uE1JTHBtC@t:I9IXHt3LIM~1fDH;THI9uIM9uLHH9eHuH;uRAWAVAUATUHSHOH=0IHD0DƃxNHcH;\1f~5H9}$)HcHT9}@W19A9HHHNjG9L/AEtAEH5(1LLHGHHX(HMIExHIEuLNHExHHHE5H[]A\A]A^A_ËG9p@M|$`ID$`MMGAtAMw(Mt AtAHLD$H=JLD$HItnM9w(GI|$`M|$`HtHx HHMtIx HIMtIx HILIx HIIx HIMIHLIH[]A\A]A^A_LfDHH=IIHE1E1IEvHIEhL또LD$FLLD$L4LL'LLLLD$LLD$LL LKff.AUIATUSHL%A$tA$KHHHtHHUtA$H] Le(ƒt DA$IExLe0HPtHU8Le@KHtLHhtHX H[]A\A]I$x HI$t>H=:H1[]A\A]HExHHEuHJ@LJfDUSHHHGP FHu$tH[]ÐHCH[]Ð[H=_Hf[]@USHHHGP IFHu$tH[]ÐHC @H[]þ`H=̢Hf[]@AWAVAUATIUHSHJH=+IHD+DƃxKHcH;\1fD~5H9}$)HcHT9}@W19A9HHHNjG9L'A$tA$H%#1LL8BHHX(HHI$xHI$uLHHExHHHE-H[]A\A]A^A_ËG9p@M}`IE`MMGAtAMw(Mt AtALHLD$ELD$HItlM9w(=I}`M}`HtHx HHMtIx HIMtIx HILIx HIIx HIMIHLIH[]A\A]A^A_GfDLHDIHE1E1@I$HI$xL렐LD$FGLD$L4G#L'GLLLD$GLD$LGLFff.AWH&AVIAUATUSHXHD$ HD$@HD$HHLyHMHHtiHH6HL AVAH H5H81AXZH~H=6HX1[]A\A]A^A_DHtHT$ HEN$LL$@O,!HI1LT$ IUL\HtZLDHPHHtCL;uIL)LЋ t HHI9uM J| dH\$ @HD$8H I9C|LLHL$8LLdLT$LL$L\$EL\$LL$LT$t"LH H"H5H81@H|$ HHHHDxfDI-HtH\$ H5f$H=g&肽H±H=zHA1H2E)HxHHuHBDHD$8II ‹tHHH H ?H59AVL AHH81y?Y^LLHL$8LLLT$LL$L\$LT$LL$L\$HLL$<IEE1LL$LHu9sf.tHIL)HD HHM9Ht3H0HLL$>LL$HuLL$?LL$HtM9pHD$(Ld$0H\$(HD$0Lt$81LHHLL$>IEH|$0LL$HtLH98tHBHHuHD$8H H9Gu:LLLLLL$~LL$zbHL$09LL_LLLL$tLL$@@AWH"AVAUATUHSHxHD$PH-8HD$@HD$HHD$XHD$`HdLIIMTHHHHH_H PHNH7L VLNL@HH# UH.H5H81&fDHHHFtHHD$HtHL$@L|$PHHH ߫H5FUL AH̫H819Y^JH=uIL9uff.UHHWHH=7Htt]f7H]fAUATUH HHHL%H- I|$HH@H;-HNA$@?H LmI@t'M9LL2HHEHEtE1HL 6IHExHHEMtlIM@ LL2IExHHIEu>LF64@Ht HH5H86Ht3L2H@H=H 1]A\A]@t!A$@t16HHtfHqH5rH8z6HHME1L cRH HiH8H510XZ1H ]A\A]DHyUHD$HAH@h1PHD$HHHHH5H810H|$HHH4DHLM1H4"H11HfgHL0WHLH5OH81/HD$HL$--H|$1HT$Ht$O/HL$AWfAVAUATUHSHHHGHD$0)D$ P /IHHEH|$ HpYH]HD$0fHD$0HU Lt$ Dk H(L|$(HD$)D$ H9HHH)HHHIHfooSHSKH{HCHsSHSCHH)H(zSfɉSIuH] H{HCHE Ht HsH)dzM)LHHt@L$L$LKt>H$@HcJHx]HHA H9uHm0Ld$M)H|$ Ht Ht$0H)yMt LLyHHD[]A\A]A^A_fDLHHA H9ufS H(SIH] nH=̎E1E1E1jH-EtEL- H HD$HULl$H9FH=H96LXMMHM~,1f.ItH9H9HI9uHB8HDHHt$1HHIHExHHEMt 1LéI$xHI$oHHH9t.HuH5H9tHHH9tHuH9FHuFu76fDHHt$1ɺHT*DHuFteH^ uLeH=!+u{LLI-MtFHEHHE H/L/H9HE0+HuHDH5~H8m0HEHHEH{/HMff.AWAVAUATUSHHG"HIHH;}H5> 1d(HHH ! HULd$H$H9H=H9LXMMHM~.1@ItH9H9HI9uHB8HDH Ht$1HHIHL)tI}`IE`HS.HCHPHH5UE1H81)HL[]A\A]A^A_fDHuFt\H^E1 uLmH=|2)LLIz+MHExHHEuH-H9HE0Ht$1ɺHd'IHoHH).IHI}`H(HLgL9HEHTIT$A$@{p@cI$XHtWHJHt1HH9[H;luIE`HAHH4W,*M$L9tMuH;-!t fE1HDHH9t.HuH5H9tHHH9tHuH9VHuFBf'H'IHuHGH5zH8p,LuMf1 HI9t L;duE1JtI9 L̘IM9ufDHWHBpHtH@Ht HBhHtHxtAWAVAUMATUSH(L%5 H|$H=HT$ IT$Ht$LHL$=*HHŋtEL%`H=IT$L *IHtAL;-L;-} L;- L$ HfH_$tHH9EAE1HffIn޿H$)$fInD$)$~D$fl)$)IHX H aH$HHtHH H$IO tH$LHH$J4 HD$("H$MtIExHIEJIx HIfHx HHBIx HIHExHHEH<$L%H=IT$L2(HHtEHH9EsHD$H$HIHHDŽ$H$襐IIExHIEM<L;%dL;%: L;% L"ŅI$xHI$ :H\$H;H; H;2 H$"D H|$ H;=H;= H;=\$ȈD$u!…H-H=,LEHL<&IHtAI@LD$0LH5FHH&LD$0HHIx HIH<$H5HGHHIML%sH=|LD$0IT$L%LD$0HIhtAHH9EN fLT$8L$LD$0HDŽ$)$Z&LD$0LT$8HHu-E1HH HKtH L$H=pHK tH$Ht$(HHLT$8LD$0IMLD$0LT$8It'IExHIEuLm%LT$8LD$0Ix HIDIx HI#Hx HH@HExHHEL<$MZH$H;qqL;$$H\$HCH;IH HD$HH@i(H\$HCHH)‹CHHcЉD$0H9|$0H\$Hx HHHD$hH$HD$`H;HDŽ$HDŽ$HH HD$pfHnH$fl$L;%YH(:fHHn$fHnH$fl$L8H$=`H@ HH\$FH<$H5HGHHIMHD$HHD$@"HH5HHD$8H!L\$8HIIx HIH~LLc IE1xHIEuL"IxHIuL"Ht$0ET$ML$ LDLAH ="A$tA$HH=Ll$P1HLLd$PHD$X"II$xHI$aMIx HIL5H=IVLW!IH0"tAICL\$0LH5HH6"L\$0IIM"x HIL5@H=YLD$0IVL LD$0HI9tAIBLD$8LLT$0H5EHH!LT$0LD$8IM!Ix HIHRI9F!H$Ht$XLLD$0HHD$PHD$XLD$0MIIx HI\MLLD$8L\$0L\$0LD$8HIIA"x HI" HI9@="LHt$XLL$XHLL$8LD$0HD$PVLD$0LL$8IMIx HIIx HIM~IFH;jEH;LhpMI}18 H8HD$0HLAULD$0IIx HI#MLLLIExHIEaID$H5{LHH"IMH|$@xIH"H5UHHD$0HLD$0HIIx HIs HALLLL$0 LL$0oIExHIEfIx HI HL$hHt$HL$0~HL$HcH1Lt$8HMILd$@ILE1E1DuAHMD9 f.{DD$1O)  HXF Bf/v EBEH9uDD$fD@HH$<9@M$~E1E1IExHIEE1HtHExHHEMtIx HIHtHx HHnMtIx HI=MtIExHIE H=czE1MtIE1x HIMtI$xHI$H(L[]A\A]A^A_@L(AL%H=IT$LzHHntEHEH5HHH+IM HExHHE H I9FH$H$LLHHDŽ$H$謃IHExHHE MLIHdI$xHI$F HH<$LLL$xLL$ILHI?L2fDLWIIHD9L E1H|$0tH:H9$H|$hH$t"HH9$H$MtIx HI5H-H=HUHIH+tAI@LD$LH5HH=LD$IM<Ix HI H$D$tH$Ht$(1HH=]HDŽ$H$LIHx HH M H51LLD$LD$HH Ix HIY HzI9EH$LHHDŽ$H$MIHExHHE Ix HI M L; L;  L;  LLL$LL$Ix HI s|$uH|$ D$D$ EIHH$D$tH$IEA$tA$H$Me HNH$HH=I@L$L4$4$DLlj4$u4$DH߉t$L$Xt$L$uLt$L$8t$L$<Ht$L$t$L$Lt$E1L$L$t$HLHL~f(/IH H5 H$H9 HCH;LCHLD`LLLD$LD$ Ix HI{I$1HI$#LkIH tAEIEH5LHH IIEM xHIEH-kH=tLD$0HUHLD$0HI| tAEHA1II9@ HELD$0HDŽ$H$H$BLD$0HH H HPtHD$(LLHLD$0J40L$iHLD$0It$HExHHEuHLD$0DIExHIE!Hx HHIx HIL<$M<E1L;L#IHL<$GfLLIHWH$~LIHH$E11E1~IL<$1F@H$E11E1fLmLeAEtAEA$tA$HExHHELE1 ʉL$0.'E1~HHH)HHfHCSHH HcЉD$0H9 HH5[^H83^HD$0E11E1E1E1I$xHI$oML<$IML1HD$Ht$htcE11AfDD9v/HIHHHHf/rу 9wAHID9uDLAHLT$hyE1LT$0MLIfDLL1HuHH9}f.{1 X f/vH9wHM HcЉD$0H9nHZ HL]LLD$0LD$0LLxH?HzLmHLD$0[LD$0LLD$0DLD$0CSHH HHcЉD$0H9L LLT$0LT$0HHLLLL$LL$LLL$ LT$t$LD$LD$t$LT$LL$ ^DHHL$PH|$hHoAH$AjE12Hh`HH@`HL}AtALm(Mt AEtAEH|$htHH9$H|$hH$t"H|H9$H$Ht L9m(L H{`Hk`HtHx HH|MtIx HImMtIExHIEH=kџ@HMHI9-Lt$8Ld$@}ME1E1E1IExHIEMtKIxDHAIu5LLT$0LL$ LL$LT$0MtIx HIMTIIHII|$H90HXHHqH~1fDH;THH9uHHJH5:gHWH81LfHIEuL ME1IE3E1E1ms HxIHPm HUIH -H`HHH5wH8 HL<$IE1fDLD$0HE1侌;IwLD$IL徒LIHH{E11E1E1IT$H9PH= 1E1IbE11E1LLD$0 HLD$0HIKML<$E11۾E11E1)vIH;~HߺIHE11E1E1ҾL<$MƾIhIXEtEtIx HI IE1ALD$0'LLD$0HI(1E1]T$OHD$hE1HD$0MnInAEtAEEtEIx HI4 Ht$(fInźH$)$nIIEHIEL5IEE1HIEL fDLeLMA$tA$AtAHExHHEffInLL$@)$fInflLT$8LD$0)$LD$0LT$8HLL$@H$ E12M}MuAtAAtAIExHIEXfHnHt$(fInLflĺ)$[mII1HI$LLL$LL$ LLD$0LD$0KE11E1E1ҾxLHDŽ$HDŽ$,L<$LE1E1xE1來LH;LLD$09LD$0FLLD$8L\$0LD$8L\$0LD$04LLD$0HIIE1HI" E1E1H= HH H=vIH>H5HVHHW Ix HIH $D$tL<$H="1HHt$(HDŽ$L$LIUMH51LIH Ix HImH DE1HH9KHL$(fInfInHflLT$H4)$jLI!ULT$Ix HIHx HHMIFH;H;{>LhpMI}1HHHLAUIHx HH MIx HIH=H;=6I@t H;LLD$LD$IMIx HIHE1HH9]Ht$(fInfInHflH)$kiLISIx HITHExHHEKMO1LyIEHIELt$t$H@hHH@H1LIIFL(AEAEVLLT$0;LT$0OL)VLLD$8LL$0LD$8LL$0ff.CLHID$ T$H9H;P^LMnAEEPLIH8DE1!CL\$0IZDLAHrIMIE1ɅkLD$8LT$0ILLL$0MVMNAtAAtAIx HIfInLϺL$LD$HLT$8LL$0)D$PfLT$8LL$0ILD$HIHILLD$HL\$8LL$0NLD$HL\$8LL$0L2LLL$0 LL$0vHI@MXMPAtAAtAIx HIxfInfInLLflźL\$HLL$8LT$0)D$PeL\$HLT$0ILL$8IHItLLT$8LL$0XLT$8LL$0SLALE1A+IL4H<$HLL$@LT$8LD$0LD$0LT$8LL$@ILE1LL$>LDH;H5jH8dHHH9KHuH;S9HHJH5YHWH81IH@`H$HHH|$HHH|H9Eu3HvRD$0HEwHHEiH\HSOHHuSfD1YHYHLHD$0L*LE1LLT$aLT$|1E1HHH9THuH;BBfDH@hHnH@Ha1LII~GMFAALLD$LD$LDLHL|HoI~IFLAxoL}H]AtAtHExHHEH11۾LLD$]LD$I_LkLsAEtAEAtAHx HHnL11FHHHLIHME1IM!E1_LLT$HL\$8LL$07LL$0L\$8LT$H]ME1E1IMHHH5dH8~LLD$HLL$8LT$0LT$0LL$8LD$HIOE1E1IH<$IGL<$E1E1M־ZIE1E1~=HHLM1LHLT$L.LT$1eIAHH 1HLD$LD$AWHfAVfHnAUATUHSHpHPfHnH-@H)D$@)D$PfHnHflHD$`)D$pfHnflH$HDŽ$)$HLyIMH2HrHcHHV tHT$`HVtHT$XHVtHT$PHVtHT$HHtHT$@ID$L,LL$pO4)I1LT$@fDIM\HLfHPHHL;uITL)LЋ t HHI9uLL$HMHT$PHHL$XHzLD$`MOH|$@HcH|@aHEHtNH|@IHEHt8H|@3HEHt"H|@HHt H|@ LH|$@IHtHx HHzH|$HHtHx HHRH|$PHtHx HH*H|$XHtHx HHH|$`HtHx HHHĨL[]A\A]A^A_HD$8HI9CLLHL$8LLbLT$LL$L\$WL\$LL$LT$lt"LH6HbH5pMH81H|$@HtHx HHH|$HHtHx HHH|$PHtHx HHH|$XHtHx HHH|$`HtHx HHtx"H=QE1谤HHoHcHHHL ?`AUH DaH3HaH5LH81XZW~MZC29 /%|E1HNtHL$XHVtHT$PLNAtAH>LL$HH|$@MHcH=MH0t0HD$`IE11zE111H>0E111E1LF AtALD$`,HD$8ITI ‹tHHH_H _HNL \H^LNHLUAHԹ0t0HD$`IHtHD$XHiHtHD$PH>L AtALL$HHatHD$XHHDtHD$PHH|$@11E1L ;AtALL$HOH|$@ELLHL$8LL^LT$LL$L\$NLT$LL$L\$LLL$,IE1LL$LHu5oDtHIL)HD@HCHHtIHz'I$xHI$T'H|$XLH+IExHIE6(HExHHE(H-ѼH=HUHnIHB,tA$ID$H5LHHh-IM*I$xHI$\(H5H|$X1!HD$ H.HܤI9G.HD$ H$ LMHHDŽ$ H$ |DHHL$ Hx HH`(I$xHI$:(H,H"H9H$H;-Z#L9Q#H9Å,HExHHE9)$H-zEtEH@H$ HHHDŽ$ H$ CHD$ HExHHE8H|$ O@H\$ 1HTHx HH=8HD$XE1E1HD$@1HD$HD$PHD$HHD$8HD$(HD$0HD$ DLLOH@hH !H@H 1LHD$H|$~HD$@E111HD$PE1L5E1HD$HHD$8HD$(HD$0HD$ MIEHIELt$`LD$Xt$`LD$X@+IH/(tA$ID$H5`LHH)HH7)I$xHI$$H-*H=3HUHIH)tA$HE1IH9C*fInſLD$ D$HDŽ$ )$ IH\%HݶLD$ HPtHD$`LLHL$ H4('HH&IH'Ht$D$tHD$LHID$HD$ H}(HExHHEg#I$xHI$A#H-2H=KHUHHH)tHCH5HHH *HD$0H|$0Y$Hx HHHD$0H YH9H)HHD$XH$ HHDŽ$ HH$ >HD$(HExHHENH|$( *Ht$(D$tH\$(H1HHt$`H=H$ H$ HD$Hx#HH>xHt$(HHH|$*Ht$XHx HHH-H=ůHUHIIHu+tA$ID$H5LHH+IMI$xHI$uLLD$(fLD$(H|$LD$("LD$(HH+LD$(HIb`LD$(HIGHt$L`D$(tHD$H-LD$(H=ѮIG HUHQLD$(HI-tA$H1HI9@[.fInfHnſLD$(flHT$0HDŽ$ )$ LD$(HI)H eHT$0HHtHD$`LLLD$(L$ H4HLD$(HD$0tHExHHE*Ix HI'I$xHI$'IExHIE'Ix HI'HL$0H(D$(tH-GH=`HUHHH.tHCH5HHH.HD$(H|$()Hx HHX)H\$0Ht$`1HH=MfHnD$()$ HD$8Hx HH+HL$(Hx HH(H|$8s.Ht$8Hx HH)H-HH=aHUHIH.tAI@LD$(LH5HH.LD$(HHG,Ix HI(+H|$HH,HD$(H.HDH9C/HD$(H$ HHHHDŽ$ H$ 9IHL$(Hx HH+HExHHEv+E1E11M+HH /Ht$LhD$(tHD$HHH|$0HC +Hx HH,HH|$hH9H$@H;=ߘ@ L9t$XȈ$u"….H=a'ԘIHy-H5HHD$("LD$(HIW-Ix HIa.H|$HH6IH-HD$(HLD$(HI,Ht$L@D$(tHD$H=IG HD$8H;H'E1II9D$$;fInfInſLD$(HDŽ$ fl)$ HH:HvLD$(HPtHD$8HLLH$ HD$`H4LHD$(!Ix HI4H\$8Hx HHq4HExHHEh4I$xHI$84Ht$(H-?D$8tH\$(H;1HH=Ht$`H$ H$ FHIHD$8 M=Ht$8Hx HHX4HL$HH$H9H; 2-*L9$*H~3*H=2IHM=H5ǭHG IH<IExHIEc4H5fH|$ IHU;H5QHHD$HH};IExHIE:H1HI9_n@H\$HHt$`fHnLfHnHfl)$ X5HHD$8Hx HH?:Ix HI:H|$8?H=@ HH9H=HD$HH>:HE1IH9E9HD$HfInǿHDŽ$ D$H$ )$ }IH2HҫH HPtHD$`H$ LLHH4LHHL$HHx HH[2I$xHI$1HExHHE1H1HCH;ۓ9HSHY;HsHt$HD$PtHK HL$P$tHx HH1H\$@H$H9H;:)L9)H|$@>;H$Ht$H)rH$4HH$`HD$@H<Ht$8HrH$4HH$0HD$@H:Ht$HHErH$4HH$HD$@H:Ht$PHrH$4HH$HD$@Hu:Ht$0HkmH|$x4HH$HD$@H:Ht$(HlH|$p4HH$pHD$@H:H$hL$4HH1H$H$@H$H$H$H$H$H$H$H$PH$xH$H$H$H$hH$ H$H$H$H$H$H$H$H$xH$H$H$H$H$H$H$pH$HH$0H$@H$H4H$PH$8H$XH$H$H$@H$H$0H$P HH$0H5HHH1H@H5HHHFIHEM3xHHE9H5?LBHIEH3xHIE:HEEHEHn8H)‹EHHcAH98A8HExHHE7$E1D$HDŽ$$HHD$@HDŽ$H$Lt$@L$D9$HEL9$(9H$H$$H$8H<H$xH$H$9$=H$I1ɉ9$ CI90L9$f9H9$U9H$H$$PH9$,9L$HcH$H$MA LHNJ0IH$X9$PyBH4I94AH9$4HH$L$IcH7/I97/H$Xf/H6H9$c4HH$L$IcH6I9.IL$BEtQHCH9$ 4HCH;$ .L9$h7H$`L$A HHL$f11E1HD$@E1E1HD$PHD$HHD$8HD$(HD$0HD$ HD$Lt$L5f.MtIx HI'HtHExHHE,HtHx HH3MtI$xHI$8MtIx HI?H$`Ht$L9tP8HDŽ$hHDŽ$`H$0L9t$HtP8HDŽ$8aHDŽ$0H$L9t$HtP8HDŽ$tHDŽ$H$Ht$L9tP8HDŽ$HDŽ$H$Ht$L9tP8HDŽ$HDŽ$H$pHt$L9tP8HDŽ$xHDŽ$pH$@Ht$L9tP8HDŽ$HHDŽ$@H$L9t$HtP8HDŽ$HDŽ$H$L9t$HtP8HDŽ$HDŽ$H$ Ht$L9tP8HDŽ$ HDŽ$ H=^ E1rH|$tHt$Hx HHH\$ HtHx HHH\$0HtHx HHHt$(HtHx HHHL$8HtHx HHH\$HHtHx HHHt$PHtHx HHqHL$@HtHx HHcHD$HxHt$HHUHT$HtHx HHGHX L[]A\A]A^A_f.Lt$`LD$X迿t$`LD$XHt$`LD$X蟿t$`LD$XH߉t$`LD$Xt$`LD$XLt$`LD$X_t$`LD$XLljt$XDt$XH0.H <HJHXHfHtHоHH谾H蠾L萾I}I]H\$D$ fD胾LkHD$H:Lt$E1E11HD$@L5HD$PHD$HHD$8HD$(HD$0HD$  LHD$Ht:Lt$E1E1HD$@L5%HD$PHD$HHD$8HD$(HD$0HD$ sf.H$`HHDŽ$`HHHt$Xt$XL}LeAtAA$tA$HExHHELE1f.hH$0HHDŽ$0H}HHpt$X|t$X^H$HHDŽ$HjHH]t$X,t$XKH$HnHDŽ$HWHHJt$Xܻt$X8H$H[HDŽ$HDHH7t$X茻t$X%jH$pHHHDŽ$pH1HH$t$XLLD$(LD$(=LDHD$XE1E11HD$@HD$PHD$HHD$8HD$(HD$0HD$L胫rrH=d61rH=N61rH=861rH="61vrH= 61`rH=61JrH=614rH=61rH=61rH=61E1E11E1HD$@1HD$PHD$HHD$8HD$(HD$0EHMsH[pHD$0H'HD$@E11۾HD$PHD$HHD$8HD$(LszIS貥IfHnfHnfl@(@LLt$@H+^H5$H81蚑H='DŽ$Hc$vHD$@HH$5f例5H$)$`f侍5H$)$0f侏5H$)$H|$xf侑5)$qH|$pf侓5)$Vf)$patHL$0H\$0H=nu1HHt$`fHnD$ )$ ƔHI{ME1E11۾L|$(LD$8L|$(11HD$@HD$PHD$HHD$8HD$(逺Ml$I\$AEtAEtI$xHI$IA1HD$@E111HD$PHD$HHD$(HEHHEHٓHIEL趓M`IXA$tA$tIx HIIA1VHEHHEHMHIEL*HD$8HD$(LHGH$AH,E1E11۾HD$@HD$PHD$HL躒L譒SH|$H螒L}H]AtAtHExHHE4HA1E1E11۾HD$@HD$PHH1HHH)HH H H臉HcЉH9XHHVH5H8ɎH|+Hۍ4H΍E1E11۾H@UH5dH81*LA臍I1dLupLhHSH/HSH2Ht$HD$PtHJHAH1 H$[ Lt$@BE1E11۾HD$@HD$PHD$HLt$@1IoI_EtEtIx HI(I1SE1E1H=hTHHH=hL9HD$@H@t H;UTHt$@赅IMHTH9EIE1HfInLH?H)fInLD$XH HD$`fl)$ H4LD$XILOIExHIEI$xHI$M1L`Ix HIE1E11nE1E11\3H,HD$@E1HD$PHD$H!HGXH@`HHHHIHH-SH9XIECIEHiH)AEHHcЉH9IEHIELILl$PE11HD$@E1HD$PHD$HAIx HIk9u1IHLH H5cHEHXQH81NE1E11HD$@HD$PHD$HHt$@I]E1E11۾LIb1#L$I1҉;$I9L9$RH9$EH$H$H9$#IcL$H$A I4ILH9LIHI9HH)BDH9$L$H$NcDMM9=XXHH$L$Bf/oLt$@;E1E11۾%LELeAtAA$tA$HEx7HHEHLD$XԇLD$XL‡:1L讇M7oMIL$IHL$L$H$@H$pIH$H$0H$H$NHHH)HHHtbLUHcЉH9|Ht:HbOH5H8蛇IEHIE[袂HtAEAUHH HcЉH9AEAUHH HHcЉH9vH@`HHHLHHH9XH$H$HHH{LD$HH_IH蹁HHaMH5@H8jE1L腅 HHPeHH MH5H8vLE114E1KE1E1;E1E1E1E1HH$L$L$ DŽ$Lt$@4$L$L$1H$9$H9$nL9$H9$H$H$DH9$vIcMAH$LI4IH 3A9HHI95HH)B H9$H$H$Hc<;HH9$H$X HLD=\fTf/lLt$@HLD$HkLD$HI餮IH;H¼HL$H$üHl$HڷLHGH$ H-HL$L$?H$XH$PIH$H$xH$8H$0TIq~I4EUHH HcЉH9ZEUHH HHcЉH97I骨I龢IWIEUHH HcAH9ʺ]EUHH HHcAH99IѢH@`H:HH*HIHHJH9XIEIIEHH)AEHHcAH9IE HIEL7 }IPH$ VH17DŽ$Lt$@AEAUHH HHcAH9uHOIH5H8舁IEHAIEYHHH)HHtHL{HcAH9HuK|HtH@`HHHLHHH9XH${H$AHHHuAEAUHH HcAH9WH3IH{HH5GH5H8>HHPN{HHFH5H8rf.AWH]fAVfHnAUATUHSHpHxfHnHH)D$@)D$PfHnHXflHD$`)D$pfHnflH$HDŽ$)$HLyIMH2HaHcHHV tHT$`HVtHT$XHVtHT$PHVtHT$HHtHT$@ID$L,LL$pO4)I1LT$@fDIM\HLfHPHHL;uITL)LЋ t HHI9uLL$HMHT$PHHL$XHzLD$`MOH|$@HcH|@aHEHtNH|@IHEHt8H|@3HEHt"H|@HHt H|@ L=H|$@IHtHx HHzH|$HHtHx HHRH|$PHtHx HH*H|$XHtHx HHH|$`HtHx HHHĨL[]A\A]A^A_HD$8H8DI9CLLHL$8LL'LT$LL$L\$L\$LL$LT$lt"LHvCHH5H816wH|$@HtHx HHH|$HHtHx HHH|$PHtHx HHH|$XHtHx HHH|$`HtHx HHtxfH=@E1+HHHcHHHL AUH HsBHH5H813vXZz~zZz2yz ozez[zQzGz=z|E1HNtHL$XHVtHT$PLNAtAH>LL$HH|$@MH`H:MHA0t0HD$`IE11zE111H>*E111E1LF AtALD$`,HD$8ITI ‹tHHHH HNL HLNHLUAHA0t0HD$`IH@tHD$XHiHBAtHT$PAL @AtALL$HH@tHD$XHH@tHT$PH|$@11E1L @AtALL$HUH|$@KLLHL$8LLCLT$LL$L\$ALT$LL$L\$LLL$@q2IE1LL$LHu3mtHIL)HD@HCHHtH9Gu:LLLLLL$LL${HL$0LLLLLL$LL$A@AWHUfAVIHfHnAUHATfHnHhIUfHnH-HSH)$)$)$fHnHflHDŽ$)$fHnHPflH$)$fHnHDŽ$fl)$MvMNMiHHJcHHV0tH$HV(tH$HV tH$HVtH$HVtH$HVtH$HtH$IFN,H$N<+Ld$II1L$LIM\HLf.HPHHL;uITL)LЋ t HHH9uLd$L$MH$HD$ HeH$HD$0HH$HD$8HH$HD$(HH$HD$HHMH$HD$MJID$MHĐID$ItvHĐID$It\HĐhID$ItBHĐNID$It(HĐ4IItJHt$D$tAEtAEH-PH=LHUHZrIH]tAH-RH=LHUH*rIHtA$ID$H5_QLHHHH[I$xHI$FL=RH=2LIWLqIHtA$ID$H5QLHHIMDI$xHI$LD$]sLD$HIHEStIT$fHnfHnH:flLBI9F&fHDŽ$D$)$qIHE1HH MIHtH$LLLD$HL$jMLD$HD$@tIx HII$xHI$Ix HI*Ix HI#H|$@Ht$Hx HHH-QH=aJHUHoIH;tAH-LH=1JLD$HUHoLD$HItA$HE8H|$(H58H9HD$XH 8AHt$PH9HD$E H9D@@uLD$EE N D8A IU(I}8A@HE HV(H8@HEЃ)x)9ItIH?eHt$PH9t$H9H-CH=9?HUHdIHtAH-1II9@ufHD$ LD$$fHnD$Ht$@HDŽ$H$)$dLD$HIH EHt$@HHtHD$0H EH$IL$ tHD$8H jDH$IL$(tHD$(HLLLLD$H$]HLD$ItHExHHEI$xHI$$Ix HI'ME11 E1E1E1 HDŽ$H+I9Cp LL LLH$LT$L\$L\$LT$t"LH +HH5DH81^H$HtHx HH H$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHt}H$HtHx HHtY/H=E17HL[]A\A]A^A_fIHcJcHbbaayaRa'aHD$HHN(HL$(D$tHD$(H$HN HL$8D$tHD$8H$HNHL$0D$tHD$0H$HNHL$ D$tHD$ H$LnAEtAEHL$HD$D$Ht$H$MH|$ CH|$0H|$8H|$(H|$HH 3)HL$PD$tHD$PH$HD$HwHD$HHD$(HD$8HD$0HD$HHD$(HD$8HD$0HD$ HD$HHD$(qHD$HHD$(HD$8tIHL AATH H'HEH5H81L[XZ{1E1E1MHD$Ix HI"MtI$xHI$(HtHExHHEMtIx HIMtIx HIuH=E1Ht$HtHx HHMtIx HIHD$HxHt$HHIExHIEH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HtHx HHH$HH{HHn]dH$ITI ‹tH&H &HL$PD$tHD$PH$HD$HH5j%Ht$D$tHD$H$HD$(=H :%HL$D$tHD$H$HD$8H5 %Ht$D$tHD$H$HD$0H5$Ht$XD$tHD$XH$HD$ kL-9AEtAEL$4MH0H !AHNȸL )LNHLNHAT\H H$HL$D$tHD$H$HD$85H5$Ht$D$tHD$H$HD$0H5#Ht$D$tHD$H$HD$(H5#Ht$XD$tHD$XH$HD$ HD$HHD$HD$8H$HD$(HD$0HD$ L-.8AEtAEL$&HD$H$L[HZLZ HZLZ%HL$IωD$"LZ~HLT$ LD$ZLT$ LD$+LLT$pZLT$-LLT$ LD$TZLT$ LD$LLT$ LD$3ZLT$ LD$OZL7 IHE1E1E1HD$MML[LLD$YLD$HL$H͉D$g`HD$E1E1һY LYLyYoYeY[Y6QYMLLD$?YLD$i0YMLLLLH$LT$L\$DLT$L\$H^0H\$HD$tHD$HH$HHD$D$?HD$ E1HD$0HD$(HD$8HD$HsLLL$tXLL$LLL$LD$XXLL$LD$\HLL$LD$7XLL$LD$'LLL$LD$XLL$LD$LLL$LD$WLL$LD$LWL;l$PHD$Ll$PE1GLLL$WLL$LD$SE1E1E1E1HvWWHIHE1E1E11HD$E1CLLL$PIE1LL$HRLd$HMLM8tLIH)HIIEL9HH0LQHuRHtjVHIHE1E1E11HD$yHRHLXVLD$lL;l$PuH;t$PuuyLSIHH;D$XAH;D$D L;D$P LLD$iPLD$AIx HI EETH5l1L LH-w3H=/HUHUIHtAHI9@;M¾E1IfHD$ LT$$fInD$Ht$(HDŽ$H$)$=ULT$HHH U5Ht$(HHtHD$0H 6H$HM tHD$8H f3H$HM(tHD$HHLLHLT$H$NMLT$ItI$xHI$HExHHEIx HIAM E1E11E1OIH;t$PuHD$E1oLkQIHgH;D$X@H;D$@1L;t$P&LNIx HI$HD$E1M~M^AtAAtAIx HIfInǿL\$D$HDŽ$)$LLD$HIxHIuLPH|$H5/HGHHHD$H|$H|$H5i.HGHHkIMEH5(-LLD$@LD$@H5,LߴLD$@H5,L軴LD$@Ix HI HL$D$@tL|$1HH==0HHDŽ$L$NIIx HIHE1MI@LD$@LH5|,HH\LD$@IM[I~HIqLqNd@H@hH H@H} LT$L1LT$H&IzY IBH(EE Iz3 IjEuHMLMHMLLD$MLD$LMIHILMKH{MhHLD$iMLD$LWM3H5(L裲H=.*yIHHI9@LAE1IfHD$ LT$$fInD$H$HDŽ$)$LLT$HIH -HHtHD$0H -H$IH tHD$8H +H$IH(tHD$HLLJ4#HLD$LT$ H$ELT$ IL谞LD$Ix HIHExHHEoME1E11E1MIx HItE1E1E1LLD$E1E1KLD$E1I@HILPKLL\$>KL\$ H5-'L腰% H=@*[IH HhI9@;Mľ1IfHD$ Ht$$fHnD$H$HDŽ$)$JIHH *Ht$HHtHD$0H +H$IH tHD$8H )H$IH(tHD$HLLHLLD$H$CHI蟜LD$Ix HI I$xHI$ ME11ME1E1E1MfInA$tA$EtEIx HI; fInĺHHD$@)$覱HD$I$HI$L/ILL\$IL\$M1ɺHILD$Hv8II}8(IEHILHL-LLH fIhM`EtEA$tA$Ix HIA M1AGwHH_IH E11E1E1 *H-*EtEH#H$HHHDŽ$H$'IHExHHEt M* 1LIx HI! E1E11E1E1MfInA$tA$EtEIx HI fInĺHHD$)$yII$HI$xLLD$FLD$aYH=&/IH H5%HHD$?LD$HIs Ix HI HI9F LE1HfInH4HD$)$覮LHD$HELT$xHHE MZ H|$LLT$LT$HI Ix HID H5w'I9> IGH;K Lt$XAGLEt$LLrIHS Ix HI2 Ix HII H5o&LMIHHD$NHD$@E1E1E11E1E1HD$HD$4@'HD$@E1E1HD$HD$JHD$@E1E11HD$E1E1HD$1LT$uELT$HIHLHD$?oH5`"H|$IHIrDH IHHD$@E1E1E1HD$1E1HD$BH|$@ @ILDLT$@HHD$@IE1E11E1E1HD$HD$Hv8I}8LCHD$`fHH*Y*?IH|H|$1HHD$@ ALT$@HHyIx HIXH;l$XAH;l$D H;l$PH=AąHExHHE$EH-EtEIEx HIEtIkLIBH5H9XKfE1E11E1HD$E1BHIHE1E1E11HD$E1QLLT$8BLT$LLT$!BI$LT$L B"E1E11E1HD$E1ME1E11HD$E1=IE1E11HD$E1E11HD$E1E1AHIH{E1E1E11HD$E1ME1E11E1HD$/IE11E1E1EE11E1E1L@E1!H@E1E1E11E1E1E11E1E1H|$LD$@|@LD$@E1E11E1E1fH|$0IH-E97E11E1E1E1E1E11E1E1H|$>pL|>LT$'HLT$e>LT$&E1E11E1RHLD$@9>LD$@MpM`MPA$tA$AtAIx HIt 1ALLT$A=LT$1~=HIH?E11E1E1L=@E1E11E1 L i=LIY=HD$HD$@HB=L5=E11E1E1'LA =M1I_IfLHIE0L4#HqIHu@HHH)HHtdHt:L0HcЉH9tH1HH5tH8I5dAEAUHH HcЉH9GDAEAUHH HHcЉH9 )0HHH5H84H@`HtyHHtmLIHt`H9hu/LUIHIL3H6IHu/HJ[~/HuH*H5 H834\/H볐HAVfI~fAUATUSHHpHG H+GHT$HD$0HHD$X)D$ D$HH9G0w0HGPD$.HKfInf/\$T$Ld$ Ll$9tOHt$(H;t$0HHt$(HcD$HH$H$xT$9uLl$uIjf.HHt$(HcD$HyH$H$H$T$t#Ht$(H;t$0uLLnf.H|$HLLt$@螑Ld$@Hs H{H |Ll$`oHH{LuHC HsHHK0HH)HHH9sFfDHxHPHS HHpH)yHC HsHK0HH)HHH9wH|$HHt Ht$XH)xH|$ Ht Ht$0H)xHp[]A\A]A^DH$H$xH$T$9mHt$(H;t$0(LLmm#HH)HHH9YHBH=o:HyyHSzH(zH\zDAWAAVAUIATUHSHH$H$D$f)$fHL$LD$8LL$HDŽ$HD$PH\$0)$H~D$L9! HD$0H~D$L9 E1E11҅yH$E1E1E1H$Xf/w p9HH H|$0x~H$H$D$AL$LE9 ]H$H$HÉ$IHHcH$M9Zfo$IAPL$H$LAHAxH)HHHHHII?IHD2IH'LHHf/pHHщqIqHH?HHLHMIH$XH$L9B:D$(LIH)<$HD|$(H$L$H$$IfWnf/wH$H$HfH$H$)$HD$XH$H|$@HD$`AGHD$pH$PHt$HD,H$PIHcA9HL$8H$0IIL$@HHD$hH$@LHHD$ H$HD$xgfHt$ HL)2HD$H|$d$\$f/r!H$AIH$f/w0HH$@A9[HHyHD$8UHfDfW$$M9kfo$IAxL$H$LAHAxH)HHHPHII?IHDIH~)LHHf/wof/wH9weHHH|$Px~HD$`Ht$X|$(Iĉ<H|$0L$HD$hLd$HHt$@B&HHHJIIHH?HHLHMuIDLD$(EpH)AA8IA@IID$MHAH?HHH 1!fDDOHHDIH9~XHHqL6HIBHHHHf/wf/DNwoD9vAf(HL@MIHpLHH?III9fDHHHf/w,f/wyA9w!HH DqfyHHЉxH~HH?HHHHHtHHMuHwH1HDHHHIOHpHOH$H$LoL$HD$pH$fH$)$D,H$IHcA9L$xHD$HH$pIIL$HD$@L$HD$ H$LHD$hLk@HL)B:H$hH$`t$\$f/r!H$AIH$f/w.HH$A9HHHyUH$X@fW$$M9mfo$IApL$H$LAHAxH)HHHPHII?IHDIH~)LHHf/wof/wH9reHHH|$Px~HD$`H|$Xt$(Iĉ4H|$0L$HD$ Ld$HH|$@B'HHHJIIHH?HHLHMuIDE1MtLLL)nHD[]A\A]A^A_DHT$xH$L+mL$HT$hH$L mL$$HD$ H$D$t(HH 1E1L$*fDAtAHEL4HH@N MI|&IHMtIxHIuL &$L5D$AtAr'IH H$1E1H$'EtEIGH,HH@IH$H<?&HHMtIExHIEuLd%HwH=_JMIx HIHExHHEuH%M IFHH9 ALtAIx HIML\$IH$IHLxH@H9 AMtAIxHIuLs$H\H$L$H$HH$HH$E @DЉAAG @uÃt ADDHUIGDH\-H$IHAAHH?HGAHD$AD$0D$AF IV(IN8@HDHT$(H9\$H$L$E1HD$;Hz(Hr8@HE;D$MI1LLIIL;d$LI$HZHtHD$H)L9|J  uHr8HwH=MHIExHIEuLz"IxHIuLb"HD HEHnH9yEItEHExHHEL!IH&C"HHLhH@H9EItEHExHHEuH!HL$L$H$H`H$H1H$AG @CD‰ƉAU @ut DIWIEH$HT(PHHIx HIIExHIEH$LHHDŽ$H$IHExHHExIx HI~Mp1L\IExHIEbAE11E1E1|$,7MtIExHIE?MtIx HIHtHExHHEMtIx HIDH=L$L$AALLr@HQ+Ix HIE1E1AHExHHEuHE11A|$ H<$H4$HHHHD$0LHډHHH|$(c HExHHEIx HIH$H HDŽ$L$H@H9H5H9LXMZMHM~"1I|H9~H9uHI9ujH@8H$HHUH<$1H$HIIx HIH$Hx HHCMk1LoIx HI)H$E11E1AMHH5lH8 Ix HIAE1L HL$EtEMILAtAIL$IF8HD$(`HD$0HD$D$H<$H$1ɺ~HaLTHGL:L-8L AH{LWLuL1AE1AH;=GHPXIHvIA1XH͈uH=E1E1AqLlAH;LPXHH`MAE14AH>uH= 1E1AH;WHPXIHfH;1LPXIH@H$HsVtX1 H^uH$HhH=niu#LHI%MGHt\E1|f.H9*HC0:H$E11AE11E1ALHwH5hH8HHH9t.HuH=H9tHHH9tHuH9H$HsV{H;qH5|HH;PH5[LH;/PH5:HBE1E1A1E1AH;4H5LX&Hcff.AW1AVAUIATUSH(HL$PH$L$HLD$XH$HL$t$LHT$xL$LL$`D$hL9 H;$H;$8HD$I9M I9ވT$M H9$(T$H$( H$0T$ HD$0H$HD$8H$HD$(H$HD$pAEH=$IHH=1zHHHD$@LD$pIT$ H qH|$@HHHx HH(I$xHI$L$P1DŽ$LHH9H$IH$Hj蕺dL$PH$L$XH$`McHExHHE|$uAG8sH$|$H$uAF8iHD$(|$ HDŽ$@H$H$H$H$ H$H$0H$uH$(A8HD$0L$LHDŽ$H$H$@H$H$PH$H$(H$$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$$$$x$x$x$x$x$x$x$x$x$x$x$x$x$L$L$xH$pH I9tAD$8|$uAG8|$u AF8HDŽ$|$ HDŽ$u'H$(F8HDŽ$;H$HD$Ht$0H$H$HL$(Ht$8D$HDŽ$Ll$x9D$L1FIHHxHHEE1E1E1E11`HDŽ$(MtI$xHI$FHtHExHHEMtIExHIEMtIx HIwuAB8H(I9tMtAG8MtI9tAF84H$(t%H9$(tH$(C8lH=uy H([]A\A]A^A_fI1E11~LfDHH$L$HT$@H$HT$@L$LT$LT$HIZE1E1E11E1ɻ[HDŽ$(7Ll$Hl$Lt$H5KHH8 L\$IxHIuLfDIx HIt(E1E1E1HDŽ$(E1ɾWLfDHD$LJ<0af.Ld$Hl$Lt$H5jJHH8[L\$SIxHI9DIx HIt(E1E1E1HDŽ$(E1E1Lt$E1E1t$E1HDŽ$(E1E1HyH5ILd$Hl$H8IE[_HIEQLt$t$<@IC8HD$fA>gIHZ1SIC8HD$f.;(HHf.A>IH8E1E1E1ɻHDŽ$(WIE8HD$7fA<$HHDHM8BA>LT$LT$HH][1DIO8H}82Ld$Hl$MLl$ I$xHI$HExHHEH ;IWHDŽ$L$H9HH9HXHLGM~!JtH9H9IM9u3HB8IH"L\$1LH$HL\$HIx HIIx HI4HD1H!qHExHHEDE1E1E1HDŽ$(E1ɾR@H}8tILl$MH\$ Hl$x HI!HExHHEH IUHDŽ$L$H9DHH94HXH|LGM~#HtH9H9HI9u#HB8IDHL\$1LH$HL\$HIx HI IExHIEH1HoHExHHE#E1E1E1HDŽ$(E1ɾV1ɺLL\$H$dL\$HILd$Hl$x HIHExHHEH$LHHDŽ$L$.^HIExHIEjI$xHI$aH1HnHExHHEEE1E1E1HDŽ$(E1ɾZLPLLt$;L\$HL\$#L\$fL1ɺLL\$H$L\$HHLLHL\$L\$LLt$L\$LzSHmH`OLSLFH9L߉t$(t$IwFtmH^1 uIoH=BL\$VL\$u9L\$LHHHL\$NL\$HH11DH9IG0p0H=`A1Op 1H=JA1Op1H=4A1ODIuFtmH^1 uImH=BL\$~L\$u9L\$LHHHL\$L\$HH]1DH9IE0pQ1H=@1NpR1H=r@1Np41H=\@1Np:1H=F@1Np61H=0@1NpS1H=@1sNp81H=@1]NpT1H=?1GNE1E1E1E1ɻRHDŽ$(E1E1E1E1ɻVHDŽ$([7E1E1E1E1ɻZHDŽ$(11H1111W11`11Jz11JHHH9t.HuH5H9tHHH9tHuH9NIwF:f.HHH9t.HuH5H9tHHH9tHuH9sIuFg_H H5?H8IL\$HH5?H8)L\$dff.@AW1AVAUATIULSHhHL$pH$ H$HHt$ H$H$HH$HT$H$HH$H$HH$`H|$HH$0H|$(HH$H|$8HH$H$HH$H$HH$p H$HH$@ H$HH$ H$HH$ H$HH$ H$HH$ H$HH$PH$HH$ H$HH$H$HH$H$HH$H$HA$tA$H\$D$tH;-SH;-)6HH9&HnHD$(E1E1ҾHD$ E1E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`HD$hfMtIExHIEMtIx HIMtIx HIH$ Ht$H9tP8HDŽ$(4HDŽ$ H$H9t$HtP8HDŽ$%4HDŽ$H$H9t$HtP8HDŽ$84HDŽ$H$Ht$H9tP8HDŽ$K4HDŽ$H$`Ht$H9tP8HDŽ$h^6HDŽ$`H$0Ht$H9tP8HDŽ$8q6HDŽ$0H$Ht$H9tP8HDŽ$6HDŽ$H$Ht$H9tP8HDŽ$6HDŽ$H$Ht$H9tP8HDŽ$6HDŽ$H$p H9t$HtP8HDŽ$x 6HDŽ$p H$@ H9t$HtP8HDŽ$H 6HDŽ$@ H$ H9t$HtP8HDŽ$ 6HDŽ$ H$ H9t$HtP8HDŽ$ 6HDŽ$ H$ Ht$H9tP8HDŽ$  7HDŽ$ H$ H9t$HtP8HDŽ$ 7HDŽ$ H$PHt$H9tP8HDŽ$X/7HDŽ$PH$ H9t$HtP8HDŽ$(B7HDŽ$ H$Ht$H9tP8HDŽ$8HDŽ$H$H9t$HtP8HDŽ$8HDŽ$H$H9t$HtP8HDŽ$8HDŽ$H=PE10MtIx HI'Ht$hHtHx HHH\$`HHHHHfDH=fL-IUL+HH6tEL5NH=wIVLIH_9tAEHͯE1IH9E9fInfInfInտflLD$)$~D$ HDŽ$fl)$9LD$HI,H HHtHLLHLD$H$H$H4H$NLD$HD$xMtIxHIuLwIExHIEIx HIHExHHEH|$x+I$xHI$n H|$xH5HGHHn9IM8IGH;GH;,HXpH% H{ 1SHD$hHHy@HLSIHE HHE H|$hb DL-1IULIHY4tAHI9F^6HD$ H$LHHDŽ$MH$HD$L$H$HD$pH$H$MIIExHIEML5HD$(HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$Ht$HtHx HH H\$0HtHx HH Ht$XHtHx HH HT$@HtHx HH H\$PHtHx HH| Ht$HHtHx HHN HT$8HtHx HH H\$HtHx HH HL$ HtHx HHt Ht$(HtHx HHF I$xHI$ HT$HtHx HH HhL[]A\A]A^A_DLLeLAH[I 6IGL0AtAIx HIW)L% H=9HªIT$LH9\$ HH6tEHEH5HHH7IM87HExHHE4L%H=LT$IT$L2LT$HH7tEHAE1HI9B7fLT$)$fInD$HT$0)$LT$HIX5H )H5ʼHT$0HHtH )H$IO tH$LLLT$H$J4 MLT$ItIExHIE-)HExHHE4Ix HIk4Ix HIG4M4HL$Hx HH(ID$H5LHH[7IMZ7LD$QLD$HIU9AtAMrLLLT$LD$LD$LT$HHD$h:Ix HIX(Ix HI4(H-eH=~HUHIH;tAEIEH5PLHH"=HD$`H|$` <IExHIEuL HD$`H H9H=H$HHHDŽ$L$H)GHD$HExHHEuHH|$9=HL$D$tL|$H01HH$H=վL$H$@HD$Ix'HI7xHL$HHuH-H|$&I$xHI$4Hl$H51HIH>HUHHBpH8H@H7LIM@LLLD$wLD$HI?BIx HI7H|$LLLT$LT$CIx HI8Ix HI8H-H=HUHIHqDtAI@LD$LH5ŹHHqHLD$IMGIx HI:H5GH|$1LL$FLL$HHD$`HHI9A#IHD$`LH$HLL$HDŽ$H$DLL$ILHL$`Hx HH;HExHHE;MrIL;=8L;=2I92LZŅGIx HIs=3H-EtEHcH$HHHDŽ$H$CHD$`HExHHEQH|$``L|$`1L'TIRHI RHD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`D@LH@hH.H@H.1LIMHD$(Ld$xE1E1HD$ E1E11HD$HHD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`HD$hM' I HI L$L$LT$xLD$pLT$xLD$p$L$HhZHXMHHH8H(wHIHLHLHHHQH#L$LL$xLT$pwLL$xLT$p$L׉t$xLL$pOt$xLL$pLωt$p4t$pIHK4tAIBLT$LH5ҴHH5LT$IM5IxHIuLH-H=HUH%IH6tAHD$0HE1II9E3!fInfInǿLT$HDŽ$fl)$wLT$HHn H?HPtHt$0LHLH$L$LT$MLT$ItIx HI1Ix HI-HExHHE-IExHIE-MHx HH-ID$H50LHHb:HH9uIH:AtAMuLHHD$hH;HExHHE1IELd$xHIE[1H-H=HUH6IH7tAIBLT$LH5ճHH:LT$IM9Ix HIS/H|$LL$LL$HH:LL$HI <LL$0HD$KLT$LL$0HH?LPAtALu H=LL$0!LL$0HHD$i@H'AE1II9AAfInfHnLL$@flLD$0HDŽ$)$LD$0LL$@HI#6HgHPtHD$LLLLD$@H$H$LL$0J4 LD$@LL$0HD$`MtIx HI9HExHHE3HL$Hx HH3IExHIE3Ix HI3HL$`H>5D$tH=6豛IHWAH5&H%HD$HAIExHIE\8Hl$`L|$1HH$H=]fInfHnfl)$HHD$0u%Ix HI8H|$0AHL$0Hx HH|8H=eIH'BH5UHHD$$LL$HIBIx HI=H|$HHBHD$HDCH 1HI9MCLd$H$fHnLfInH4fl)$ :HIe$I$xHI$?IExHIE?M^CIH=DHL$LxD$tHD$HLH|$`IE DIExHIE<@H|$pH;=U@H;='@ H9߉$Ȉ$ug…DH=8IHJH5HHD$)#LL$HIrIIx HIEH|$LT$ELT$HH|PLT$HIOHD$0~LT$LL$0HHiOLHAtALu H=LT$TLT$HHD$0NHZE1II9B[QfHnfInǿLT$flHt$@HDŽ$)$LT$HIPH Ht$@HHtHD$0LLLH$LT$@H$LHD$!HELT$@xHHEHHL$0Hx HHHI$xHI$^FIx HIaFHL$HTD$0tL|$H\1HH=H$L$H$dLHHD$0!HRHt$0Hx HHEH=薖IHKH5H IHHKIx HIDH=ĩLD$0JLD$0HHD$X'LHPAE1II9@KfInfInLD$@flLL$0HDŽ$)$LL$0LD$@HHCHHPtL|$XLHLH$LD$@LL$HJ4 L$LL$HHD$0LILD$@x HITCHExHHECIx HICH|$0?CH5H|$x@HD$@HQHƋD$HtL|$@H$1HH=©HDŽ$L$ILHD$XIx HIGH|$XPH=耔HHD$H\PH=fLD$HHHD$@OHlI9@PMA1HD$@fHnſHDŽ$D$xH$)$IHL&pLT$HHD$h0HD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`MjMbAEtAEA$tA$Ix HI7ME1fL(L^HdLjHبg认ILd$E1Ld$xE1HD$(E1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`HD$hݺL5H=tpH[H5HHD$LD$HIIx HIUH|$LLT$kLT$HHD$`H !p1HI9JLd$`fHnLLT$H$fInflH4)$HII$LT$xHI$.Ix HI.ML;=Po@L;=%o@I9LpŅIx HI DL|$L賦IdLd$E1Ld$xE1HD$(HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`HD$hHLD$HA1LD$¾LLL$LL$LLT$ߥLT$SHBhH|$LHIHx>OILd$E1Ld$xE1HD$(HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`L#LT$PHD$(Ld$xE1E1HD$ E1E11HD$HdmE1HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`L臤JLz)LmH`p膤HnjHD$`H*Ld$E1Ld$xE1HD$(HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$lHD$LiLT$HHD$h*HD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`ϵLd$E1Ld$xE1HD$(HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$[HD$(Ld$xE1ɾHD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`HD$hݴLT$IKHD$`LLL$LL$GLhHhAEtAEEtEHt$`Hx HHbfInH$fInHflƺ)$ HD$IEHIELzLd$E1Ld$xE1HD$(E1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$`鞳HD$$H gLT$HHD$h*'HD$(Ld$xE1ɾHD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`H\GHO$HLL$0=LL$0hHLL$0&LL$0jLLL$LL$iLprH=.B12rH=/B1rH=0B1rH=1B1rH=2B1rH=p3B1rH=Z4B1HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`郱rH=5B1rH=6B1rH=7B1rH=8B1rH=q9B1rH=[;B1rH=E:B1LAHD$E1E11LT$Ld$xE1HD$(HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$` HD$םHcLT$HHD$`')HD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$齯rH=HD$(Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`A̘H^HD$`HHD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$鴪@%LME1逶>`HMH5&vHHD$QLD$HIV Ix HI H|$LL$mLL$HHE6LL$HHD$0詗LL$LD$0HH HxL@tHU H=sLL$z_LL$HHD$0H_AE1II9AfInfHnLL$@flLT$HDŽ$)$LT$LL$@HIGH tHHtHD$0LLLLL$@H$H$LT$HJ48LT$HHD$LHELL$@xHHE]HL$0Hx HHVI$xHI$WIx HI H|$HD$0E1E1LD$0Hl$E1HD$(HD$ Ld$xHD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$(Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`錧E1HD$(Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`OLD$I釷LZ HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$`;Ld$xE1E1HHD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$MaIiA$tA$EtEIx HI0 H$fInĺHD$`)$TII$HI$Lߒ零MAMaAtAA$tA$Ix HIMAE1HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`麤LtH|$OHD$(LL$`E1ҾHD$ Ld$xHD$HD$8HD$HHD$PHD$@HD$XHD$0HD$-LLT$耑LT$HD$(LL$`E1ҾHD$ Ld$xHD$HD$8HD$HHD$PHD$@HD$XHD$0鮣H|$`LT$LL鷿HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$aI骲HbHD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$鎢LLT$IA؏LT$HD$0]L轏HD$(Ld$xE1ҾHD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$(E1E1Ld$xHD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$}HD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0ImMeEtEA$tA$IExHIE M13HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$`HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`E1THD$(Ld$xE11HD$ E1E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$IjMbEtEA$tA$Ix HI? M1HD$(E1E1Ld$xHD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$鷞HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$EHD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$֝HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`[LLT$變LT$ LLL$藊LL$LLD$0AzMLD$0E1еHD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$jLLLD$0LD$0̻HLD$@ʉLD$@ϼL踉ּH|$X詉LD$@阼H藉@HD$XE1E1L|$XLd$xE1E1HD$(1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0>H|$`E1 Ld$xE1E1HD$(HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`1LLT$0脈LT$0鋹Lr钹HeLXaHD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$`xHЇLL$@HLL$@蹇LL$@LLL$0袇LL$0HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$ƙHD$(Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$ZHD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HCLT$@HLT$@,LT$@m.H|$4LH$`HD$HHHt$@L-H|$(4LH$0HD$HH$Ht$PL-H|$84LH$HD$HHHt$0L.H$4LH$HD$HHE$$$$h$0$0L$L$pH$hH$H$H$0H0Hc脄HD$HH H|$h?H|$(fj?)$`H|$8fl?)$0fn?H$)$f)$H|$@hMQMaAtAA$tA$Ix HI] ME1A+HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$ HD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$(E1E1Ld$xHD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$wHD$(Ld$xE11HD$ E1E1HD$HD$8HD$HHD$PHD$@HD$XHD$0锨HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0飔MHIhAtAEtEIx HI2IE1AHD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$0Hl$LNM1LM41)HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$HD$(Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$(Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$釒HD$(E1E1Ld$xHD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$HD$@E11ML|$@Ld$xE1ɾE1E1HD$(HD$ HD$HD$8HD$HHD$PHD$@3HȳL~ϳHl$LL$0Hl$E1E1HD$(Ld$xHD$ HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$雤MzMbAtAA$tA$Ix HIM1AaL'~逳L~ @HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HgH HHHH QHEH'EH5 H81yLd$xE1E1HD$(HD$ HD$HD$8HD$HHD$PHD$@ҏH;DLzIH%IExHIEIGLHIHeHD$@LLD$@HHD$PLLD$@HH`LD$@+LD$@-IHLD$@IֱLp|ɱHD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@fHD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$X鯍IhM`EtEA$tA$IhHAILzݮHD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$X HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@HD$XHD$0HD$雌LyܱHD$0E1E1IʜLLT$E1AyLT$MII钡LLL$0E1AyLL$0I鹫E1鍭IH͗Ld$xE1E1E1tLd$xE1E1E11ZHD$(E1E1Ld$xHD$ E1HD$HD$8開LD$@JHD$(E1Ld$xE1HD$ HD$HD$8HD$HHD$PHD$@8IUHIUH2Ht$@D$HtHJ鞭LL$PLd$xE1E11GLD$@AIx HILD$)'LD$IHLLD$pH H5{HEHp?E1H81csLd$xE1E1HD$(LD$pHD$ HD$HD$8HD$HHD$PHD$@E1;LLD$ewLD$8HD$(E1E1Ld$xHD$ E1HD$HD$8HD$HHD$PHD$@sHD$(E1E1Ld$xHD$ HD$HD$8HD$HHD$PHD$@PH9>H5bH81#rLd$xE1E1HD$(HD$ HD$HD$8HD$HHD$PHD$@߈LA1vM1YLvHD$(E1E1Ld$xHD$ E1HD$HD$8~HD$(E1E1Ld$xHD$ E1HD$HD$8BHD$(E1E1Ld$xHD$ E1HD$HD$8HD$(E1E1Ld$xHD$ E1HD$HD$8ʇtHt$`Hl$`H$1HH=_UfHnD$h)$tHI}Ld$xME1E1E1\Ld$xE1E1E1DHl$`Ld$xE1E1*HtIHYHЌI齞Ld$xE1E1E1 Ld$xE1E1HD$(E1ĆyLT$($ pLT$($HOLd$xE1E1HD$(vH|$`s鼷Hl$`Ld$xE1E1E1JLLT$`sLT$`ҷHl$`Ld$xE1E1E11霙LlsLd$xE1E1E1HD$(E1E1Ld$xHD$ HD$HD$8鶅HD$(E1Ld$xE1HD$ HD$HD$8}HD$(E1E1Ld$xHD$ E1HD$HD$8AHD$(E1E1Ld$xHD$ E1HD$HD$8HD$(E1E1Ld$xHD$ E1HD$HD$8ɄHD$(E1E1Ld$xHD$ E1HD$HD$8鍄HD$(E1E1Ld$xHD$ E1HD$HD$8QE1E1E11HD$(Ld$xHD$ HD$HD$8雗HD$(E1E1Ld$xHD$ E1HD$HD$8׃Ld$xE1E1E1HD$(HD$ HD$餃Ld$xE1E1E1HD$(HD$ HD$qLd$xE1E1E1HD$(HD$ HD$>Ld$xE1E1E1HD$(HD$ HD$ H=|L8IHH=tLH9HD$HH@t H;J8Ht$HLD$iLD$HD$8H|$8Hh8I9@LE1ALL|$8HH?L)fInH H$fInflJ4)$LHD$4Ix HI/HEx HHEtkH|$L|$1LCIHItFHD$(E1E1Ld$xHD$ E1HD$HD$8飁HnH|$E1nLd$xE1E1HD$(HD$ HD$HD$8SHD$(E1E1Ld$xHD$ E1HD$HD$8Ld$xE1E1E1HD$(HD$ HD$8M`IhA$tA$EtEIxSHAI(LnLd$xE1E1E1HD$(HD$ HD$9E1HD$(E1E1Ld$xHD$ E1HD$HD$8&LLL$ymLL$[Ht$HLD$fLD$HD$8FH|$8GmLd$xE1E1HD$(HD$ HD$Ld$xE1E1HD$(HD$ HD$H={J&5IHmIHHL$XD$tHD$XHt$@I@D$tHD$@HL$PI@ D$tHD$PH|$xLD$ H5&MI@(;LD$ HHD$H4I9GLE1HD$fInHH)fInLD$(H$HflH?)$H H$H4 LHD$ cLD$(LL$ Ix HIHt$Hx HHHExHHEMH5GLLL$ ٽLL$ HHD$Ix HIHL$D$ tL|$H$1HH=8LHDŽ$L$jLHD$(zIx HIgH|$(H5{HH|$()IHkHLHD$ H$4LLT$ H$HHD$Ix HIkH5IH|$(軼IH[HLHD$ H$4LLT$ H$HHD$RIx HI1H5HH|$(MIH HLHD$ H$4LLT$ H$HHD$ Ix HIHt$0LH$4LH$p HD$HN $ $ $ $ $$H$L$PL$H$H$H$H0/AH$f1AH$)$f3AH$)$f5AH$)$Ht$fL)$p #H$4LH$@ HD$HHt$XLnH$4LH$ HD$HHt$@LH$4LH$ HD$HqHt$PLH$4LH$ HD$HH5MEH|$(IHHLHD$ H$4LLT$ H$ HHD$|Ix HIRH5EH|$(荹IHHLHD$ H$4LLT$ H$PHHD$Ix HIH5yEH|$(IHWHLHD$ SH$4LLT$ H$ HHD$Ix HIKHt$`L H$4LH$HD$HHt$LH$4LH$HD$H/Ht$8LH$4LH$HD$HH=lE-IHH5\DHHD$LT$HINIx HIHK-I9GLcf.vIx HIP$ $ $$$$$ $ $$$$$$$$$$$$$H$$$$P$`$ $ $ $ $ L$` L$ H$ H$ H$P H$H HKHH$AfAH$)$@ fAH$)$ fAH$)$ fAH$)$ fAH$)$ pfAH$)$PRfAH$)$ 4fAH$)$fAH$)$fHD$ HD$)$xD$^D$HjLd$x E1E1HD$ E1E11HD$鎈Ld$xE1E1HD$ E1HD$tAGLD$#bD$Ld$xE1E1 HD$ HD$tLd$xE1E1 HD$ HD$jtLd$xE1E1E1HD$ ItLd$xE1E1E1HD$ (tLd$xE1E1E1HD$ tL_aLd$xE1E1HD$ sLd$xE1E1HD$ HD$sLd$xE1E1HD$ sL`Ld$xE1E1HD$ HD$csL`Ld$xE1E1HD$ 8sLd$xE1E1HD$ HD$sLd$xE1E1E1HD$ rLd$xE1E1E1HD$ rLd$xE1E1E1HD$ rLd$xE1E1E1HD$ rLd$xE1E1E1HD$ lrL_Ld$xE1E1HD$ ArLd$xE1E1HD$ HD$rAB鼠LD$(a_D$(ŠLd$xE1ɾHD$(qLd$xE1E1ҾHD$(qLd$xE1E1E1qLd$xE1E1E1qLd$xE1E1E1uqLd$xE1E1E1]qLd$xE1E1E1EqLd$xE1E1E1-qLd$xE1E1E1qLd$xE1E1E1pLd$xE1E1E1pLd$xE1E1E1pHD$(1E1ILd$xHl$(E1HD$(E1E1HD$ LLT$(]LT$(H]_L]hH]qHD$ E11LT$ ILd$xE1HD$(E11HD$ HD$鏃L_]钚HR]雚HLT$ @]LT$ ٚH|$ ,]IMzIjAtAEtEIxGHIӚLHL$ \HL$ 鼚Ld$xE1E1HD$ [o1闚MOIoAtAEtEIxbHIݘLHL$(LL$k\LL$HL$(鼘Ld$xE1E1E1HD$(E11HD$U1醘Ld$xE1E1E1HD$(HD$ TLd$xE1E1E1HD$(HD$ rnLd$xE1E1E1HD$(HD$ HD$8E1E1E1HD$(E1Ld$xE1HD$ HD$HD$8mHD$(E1E1Ld$xHD$ HD$HD$8mHD$E1E11L|$MLd$xE1HD$(E1HD$ HD$HD$8MAMiAtAAEtAEIxMHI*LHL$8LD$(ZLD$(HL$8 HkZ鿕H^Z˕1Ld$xE1E1HD$(E1HD$ HD$lLZ阕L Z顕Ld$xE1E1E1HD$(HD$ HD$rlLYLd$xE1E1E1HD$(1HD$ HD$LYLL$ MoIoAEtAEEtEIx_HI'LHL$(LD$ 3YLD$ HL$(Ld$xE1E1E1HD$(1HD$ 1HLL$ XLL$ NHLL$XLL$MLd$xE1E1HD$(HD$ HD$3kLXTLd$xE1E1HD$(HD$ jH|$UXLd$xE1E1HD$ jLd$xE1E1HD$ HD$jLd$xE1E1E1HD$ HD$jLWLd$xE1E1HD$ HD$MjLWLd$xE1E1HD$ "jLzWDAWH_5fAVfHnAUATUHSHpHxfHnHH)D$@)D$PfHnHXflHD$`)D$pfHnflH$HDŽ$)$HLyIMH2H!HcHHV tHT$`HVtHT$XHVtHT$PHVtHT$HHtHT$@ID$L,LL$pO4)I1LT$@fDIM\HLfHPHHL;uITL)LЋ t HHI9uLL$HMHT$PHHL$XHzLD$`MOH|$@HcH|@aHEHtNH|@IHEHt8H|@3HEHt"H|@HHt H|@ LdH|$@IHtHx HHzH|$HHtHx HHRH|$PHtHx HH*H|$XHtHx HHH|$`HtHx HHHĨL[]A\A]A^A_HD$8HI9CLLHL$8LLzLT$LL$L\$EL\$LL$LT$lt"LHH8H5H81OH|$@HtHx HHH|$HHtHx HHH|$PHtHx HHH|$XHtHx HHH|$`HtHx HHtxWH=ػE1@HHHcHHHL ϿAUH HH5H5-H81NXZR~RZR2R RRRRRR|E1HNtHL$XHVtHT$PLNAtAH>LL$HH|$@MH`H:MH%0t0HD$`IE11zE111H>*E111E1LF AtALD$`,HD$8ITI ‹tHHHJH ;HNL NHLNHLUAHd0t0HD$`IHGtHD$XHiHtHT$PAL 0AtALL$HHtHD$XHH?tHT$PH|$@11E1L AtALL$HUH|$@KLLHL$8LLLT$LL$L\$葮LT$LL$L\$LLL$I2IE1LL$LHu3mtHIL)HD@HCHHtH;  ffA.FzH1H;HI\$@HD%M3HD$E1Ix HIHD$(E1E1E1HD$ HD$HtHExHHE{MtI$xHI$0MtIxHIMtIExHIEH$pHt$H9tP8HDŽ$xHDŽ$pMtIx HI?H$@Ht$H9tP8HDŽ$HHDŽ$@H$H9t$HtP8HDŽ$HDŽ$H$H9t$HtP8HDŽ$$HDŽ$H=L\$0L\$0HD$H9tHtHA8HD$H9tHtHA8HD$HtH9tHA8CHD$ HtH9tHA8^MtIx HIHD$(H9tHtHƸF8I9tMtAC8HX[]A\A]A^A_H5H$H5H5L5Lx5Hh5LLD$@t$8L\$0J5LD$@t$8L\$0BLLD$@t$8L\$05LD$@t$8L\$0LLD$@t$8L\$04LD$@t$8L\$0HLD$@t$8L\$04LD$@t$8L\$0\Lt$0E14t$0E1E1HD$(HD$ HD$Lljt$8L\$0O4t$8L\$0LL\$34L\$fH4HD$(E1E1HzHD$ E1E1HD$HD$HD$fD/I|HD$(H HD$ HD$HD$HD$HEx HHEtE1E1E1GHt$0E1A3t$0E1E1"fH$pHaHDŽ$pHJHH=LD$@t$8L\$02L\$0t$8LD$@9H$@HOHDŽ$@H8HH+t$8L\$02L\$0t$8kH$H4HDŽ$HHHt$8L\$0'2L\$0t$8fHL$HMHH@HL\$01L\$0)fDH$HHDŽ$HHHt$8L\$01L\$0t$8fHt$HHHHL\$@1L\$fDL$]HL$HHHHL\$0L\$fD3Ht$ HHHHL\$0L\$hfDH0H$pHD$vfD HL$(HjHH]HL\$P0L\$FfD IMHI@L03D ,HhHD$(E1HD$ HD$HD$HD$Q/LHHTHD$(E1E1E1HD$ E1HD$HD$HD$T@L,IH*HE1E11HD$HD$~@HD$(E1E1E1HD$ E1E1HD$HD$HD$lf*IL.RHD$(E1E1E1HD$ HD$HD$ifHD$(E1E1E1HD$ E1E1HD$HD$HD$f.HD$(E1E1E1HD$ E1HD$HD$HD$wDH$!L-DL-L-LLD$-LD$QLLD$s-LD$#fLLD$S-LD$fk-LSHHHD$(E1E1E1HD$ E1HD$HD$HD$@H,L,LLD$,LD$fLLD$,LD$ZfMt$Ml$AtAAEtAEI$xHI$HD$MAE1E1E11HD$(E1E1HD$ E1HD$HD$fDHD$HD$E1E1E1HD$(HD$ L+H$pHD$ fDHl$E1HD$(HD$ HD$HD$f.LH+LD$fDc+HKHrIwf.;+H#IH1ML*&HKHD$(E1E1E1HD$ E1E1侑HD$HD$%*LIH%HD$(E1E1E1HD$ HD$HD$LeLuA$tA$AtAHExHHEVHD$LAf)$LE1HD$(HD$ HD$&DH$0)HHi$E1E1E1HD$(HD$ HD$4@H8)H$@HD$fD$IE1E1侒1`fDE1E1E1HD$(HD$ HD$f.L(H$H$H踳H$H$H$H$H$ HD$(H$H$`H$H$H Dd$@EH=xIHH5]HH$zL$HIaIx HIH=!IH%H.E1HI9EH+ H$HDŽ$L$H$'IHHzH$HPtHD$0HLL$L$H4L LHyI$H PL$fHnxHI$Ix HIIExHIEHH|$01DŽ$HH9QLD$0H$IH$H$JHfHnfo$fo$fo$H$fo$)$@fo$fo$)$PIfo$fo$)$`HEfo$)$pfo$)$fo$ )$fo$0)$fo$@)$)$)$)$)$)$MfxHHEH$Hf)$@H$0H$PH$H$H$ H$H$x$@=uADH$H$HЋH$ H$ pHcHyH$H$HH$ H$$HIHhILMA?$HD$HD$(E1E1HD$ IlL#L#L#"f)$7E1E1E1HD$(E1E1HD$ orH=qU1rH=oqU1Hl$IOIoHL$D$ tEtEIx HIHD$ IpUH=p1OrH=pU19pUH=p1#rH=pU1 pUH=p1~pUH=p1~pUH=rp1~pUH=\p1~H]"H$pHD$ g$ aMDl$8DŽ$I9L$8H\$8E1 H$p D$$H$H$H$L$PMH$$$@$9AH$ LT$XL|$`LH$HH$ IcHt$HHHHHH$ HcH$` DKIMcLEIIH$h H$` HHۉ$HIÉ$H$h 4$(9WQHc)Ht$PHLHH9/HIHIHE9$uH$Hl$@H0H$HHH$<$p$pf.S$Lc$(H$$H$` L$XLELHH$` L$h L$X HHL$HIH\$P1E1H$h H$X H$$D)L$H$HDA9 H$ HcHHHHH$ H$ 0B; 0tAH$ D;$uH$H$ ~l$(HHHIH$H$ $)$,D$(Ld$HL$HL$D$XLl$hL$AHl$(fDH$` IcEzfo$McHH)$@HIHH$` LEIIH;l$8tM8E1E1LDŽ$jjjjjH$ IcPH$ HIcP$(H$PH$H$(H@H$PH=H1H$H$HHfHn~@H HH9uH$@Ht&H;D$8tP8HDŽ$HHDŽ$@L$@ HDŽ$HH$ HHHHH$H$ DAmD$(L$HD$XL$L$H$~4H$H$1H$HHH9u1H$H$~)H$H$fH HH9uH$`~D$D$(H$HH$$)$f(H$H$DH$ HD$ H$$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$h$x$p$$ $ $ $ $ $$$$` $H$XAWARL$L$H$H$H$L$ $H H`L$D$(fHni$H$h\$p$X f.%>A~t$(D$(DL$HD$X$L$pL$L|$h)$H$` LcDhTH$` H$Mco$LMIILE)$IIxHD$HE1E1H$h DŽ$H$h jjHjHjHcEjPHcP$(H$` H$ H$H$^H@jfo$H|$(T)$@wE1E1LDŽ$jjjjHcEjPHcP$(H$PH$H$(H@-$1Ҿ$$$$$$$$$$$$$$$$$$$$$$$$$$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$x$xHĠ TLsH|$pfɾT)$@sT$@H~f)$fHnH$` H$` Uo$p H$p LMIILE)$LHuH$h E1E1H$h DŽ$IH$X H$X jjjjHcjPHcEPL$(AVL$H$@ H$ H$ L>H@2H$8'UfHnH$0)$@tE1E1LDŽ$jjjjHcjPHcEPAVH$H$`H$XH@3 H4L1HHL$ HL4HĠ ;ULqfɾ=UL)$@qH|f)$fHnH$ LMLHH$L$ B =D$(L$HD$XL$pL$D;$ H$EfD$(9$H$XHHHH$HH,H$ L0HHIH$ HIHIcHHHHH$ E;u!HIHIH$H$ HH9u|$@H$H$ 9)HcэhH$ HJHL0f.HH$H H$@ HHHIH$P HcH$ HHHHH$ E;u(H$HHHIH$0H$  HH9uH$` H$` H$8HHHIfHnLELH$0$)$@uV8E1E1LDŽ$jjjjjL$ H$ MJcRH$ H$ HcP$(H$H$`H$XhH@*H$PH=y1H$H$HHfHn~fH HH9uSLnHyf)$@fHnL>dH1AHD$(E1HD$ LLD$ HD$ !H LD$ H E1E1E1HD$(HD$ LD$ IHLAHD$H$p H蕛H$L$H$0H$ MH$H$`H$ H$H$xHkxfHnE1E1HD$ .HLD$ HI(M}ImAtAEtEIExHIEIA1D$@$pH$` H$X LEIIH$h <H$` HHۉ$HIH$h Hc9H$H H$P D$HH$P H$@ D$XHHL$L$0HL$ HI5D;"uH$pIfA/$ HH$P 9HHyHH)F;$ uH$HH\$8 E1E1L$8L$PMHD$(E1f)$E1E1E1E1HD$(E1E1E1E1HD$(MiMaE1۾E1E1HD$(H$@HHDŽ$@HHH HufHnLIa HD$ :f)$H$E1E1E1L 8LLD$ IA 1LD$ ^D$HD$XL$^D$HD$XL$Hy H$HH$ H$0$0$pH\$8 E1E1L$8L$PUL] HtL$fHn[L< H}tfHnVL# HdtfHnSL=EH\$8L$8L$PAtADL\$8蕂L\$8HIDHD$@wL\$8LD$@HIHIPH|$0L\$@H$H;L$H$ID$LD$8HTL$lLD$8L\$@HH+Ix HII$xHI$H$LHL\$0HDŽ$H$$sL\$0IHExHHEIx HIM1LL\$0zI$L\$0xHI$E1E1O=H$8ʉ$ H. HorL$@fHnE1E1H\$81E1E1L$8L$P~$ H$ qTD$L$H$ $()$p iH$ 4H$PHDŽ$H$H$ L$xHH$HCHH$H4HH$HD$$$DHĠH3H|$xTfH'qfL$HD$)$pfHnLMIE1۾E1UE1E1E1۾sM}ImAtAEtEIExHIEI1ɽH\$82E1E1L$8L$P rH=VS1UdE1E1DyqSH=U1*dH\$85E1E1L$8L$Pf)$OE1E1H\$8E1E1L$8L$P_LI_1H\$86E1E1L$8L$P#LL\$0&L\$0rH=US1VcE1E1LL\$0L\$0HL\$0 LL\$0L\$0 LE1L\$0E1H$PHGP$rH\$HnfHnf.2H$x H$UH$ ~$ $ )$pzeH$ 4H$PL$ HDŽ$H$H$ L$xHH$HBHH$HHP$HHJH|$xUb$fH$x $H$$9$DHmH$)$pfHnXL$8L$PH\$87IHD$(E1E1E1HD$HD$HD$ iI鳼H\$8%E1E1L$8L$PL;=IL;=ۉ\$@ ӉHI9 A̅xHLI鑷IL鉷H\$8E1E1CL$8L$PH\$8=E1E1L$8L$PAW1AVAUATUSHHHL$H$H$HHt$8H$H$HH$HT$PH$HH$`LD$(H|$XHH$0L$H$HH$H|$ HH$H$HH$H|$0HH$pH|$`HH$@ H|$hHH$ H|$xHH$ H$HH$ H$HH$ H$HH$P H$HH$ H$HH$H|$pHtH-kH=HUHIH tAEL%H=IT$LVHHtEH)AE1HI9E fHnfInfHnտflHT$)$~D$(HDŽ$fl)$IHP H HT$HHtH@LLH$H$J48HD$HIMtI$xHI$ HExHHExIx HItIExHIE>M Hx HHIGH5NLHH IM IAH;H;HXpHzH{o1LL$LL$HHD$H6LHSLL$HIHEx HHL3MHD$8E1E11HD$(E1H/E1HD$0HD$ HD$@HD$HD$HD$@L`HP{L@IyIAL0AtAIx HIIFFOIFHhH)AFHHcЉH9Ix HIrH-sH=HUHIH<0tAI@LD$LH5HH'1LD$HHIx HI0HqffHnIHL-H=HD$IULtLD$HI0tA$HD$@H8E1IH9E1fInLL$D$L$LD$HDŽ$)$LD$LL$HIH zHHtHt$@LHt$HLHLL$LD$L$LL$LD$IMtIx HI.Ix HII$xHI$IExHIEHExHHEMH-gH=HUHIH1tAIBLT$LH5HH31LT$IMp-Ix HIL-HcHH$IH1HD$6LT$HIM1H\$D$t~D$fInLD$H=flA@H-HUH LD$HI1tAH1II9D$1fInfHnſHflLT$LD$LL$HDŽ$H$)$XLD$LT$HI-/HLL$HPtHD$HLLLLD$H4L$LT$pHLT$LD$HD$tHExHHEV/Ix HI:.Ix HI.IExHIE-I$xHI$-H|$V.HgH9$H5@H9$H@ H9$ш$uH$Z27L%H=IT$L/IH ItAIALL$LH5~HH+LL$IMZIIx HI7IGLT$LH5HH]JLT$IMtAHD$ H1II9@>HLL$0LD$(HDŽ$H$H$vLD$(LL$0HI4H9HPtHt$ LHt$HLLL$LL$(LD$ HLD$ LL$(HD$0tHExHHE%7Ix HIJ3IExHIEK3Ix HIN3H|$03L|$ H|$87Aă7H|$P7Ń7H|$H1DŽ$HH9\$LL$LD$HH$H$H(΄>fo$H$fo$fo$ )$ fo$)$ fo$)$0 fo$)$@ fo$)$P fo$0)$` fo$@)$p fo$P)$ fo$`)$ fo$p)$ fo$)$ )$ )$ H.IGH5LHHS<IM.H|$H1DŽ$HI9t,LD$HH$MH$H9_?fo$fo$fo$fo$ )$ fo$H$)$ fo$fo$`)$ fo$)$ fo$@)$ fo$0)$0 fo$P)$@ fo$p)$P fo$HD$()$` )$p )$ )$ )$ HS3IExHIE0IGH52LHHg;IM(-H|$H1DŽ$HI9,LD$HH$MH$HՁ?fo$fo$fo$H$fo$)$ fo$fo$)$ fo$ )$ fo$0)$ fo$@)$ fo$P)$ fo$`)$ fo$p)$ fo$HD$()$0 )$@ )$P )$` )$p H1IExHIE1H|$H1DŽ$HHD$0H9+LD$HIH$H$H̟r=fo$fo$fo$H$fo$)$ fo$fo$)$ fo$ )$ fo$0)$ fo$@)$ fo$P)$ fo$`)$ fo$p)$ fo$)$ )$ )$ )$0 )$@ H/H|$ H5OHGHH9IMU/H|$H1DŽ$HI9*,LD$HH$MH$H۞<fo$fo$fo$H$fo$)$P fo$fo$)$` fo$ )$p fo$0)$ fo$@)$ fo$P)$ fo$`)$ fo$p)$ fo$HD$()$ )$ )$ )$)$H:IExHIE%0H5ظH|$ ~,IH-HH$貁H$o$o$o$ o$0)$ o$Po$@)$0o$`)$@o$p)$Po$)$`o$)$po$)$o$)$o$)$)$)$)$)$H9IExHIE5H|$H1DŽ$HI9+LD$HH$MH$HLr|#=fo$fo$fo$H$fo$)$`fo$fo$)$pfo$ )$fo$0)$fo$@)$fo$P)$fo$`)$fo$p)$fo$)$)$)$)$)$ H4H|$H1HH?H$HD$H92,HL$HIH$H$H5u<fo$fo$fo$H$fo$)$fo$ fo$)$fo$)$fo$0)$ fo$@)$0fo$P)$@fo$`)$Pfo$p)$`fo$)$p)$)$)$)$Hy3$HD$H$$$P$$$$x$x$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $@ $ $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( $( L$ L$P H$ H$ 蔅H HH5H|$x6JP1f8JH$)$ 21f:JH$)$ 1fJH$)$ 0f@JH$)$P 0H|$XfBJ)$ 0H|$pfDJ)$`0$f)$H|$4Hl$Ht$PHIH4Ht$8HҧIH;HLHD$(LT$(HI;;IExHIE5Ix HIG6LLLD$8{LD$8HHD$( ;Ix HI'6Ix HI6Lt$(L-<AEtAEH:fHnHD$(HHp51HLIH6HExHHE3H$LHHDŽ$L$(:HD$8I$xHI$2IExHIE2H|$8K5H$IHM5HD$PLT$PHHD$(6HL$8D$Pt~D$8HD$(fInH$H; gfl@H; 5[.H9R.H6IVHjp.H8H}8Ht$8HHIHZ8HLUHI$xHI$7H;EtEIH:HL$8D$PtHD$8fIn1Ht$HH=fHnHID$fl)$HI"I$xHI$P5HExHHEG5M7HD$H@HhpH.7H}#7Ht$8HHmH:HD$PH|$HULL$PIIx HI 7M9A$tA$Ht$HH=fIn1HD$()$LH!I$xHI$7Hn9?HK9fInfHnIfl@@LHD$8E11H3HD$(HD$0HD$ HD$@HD$HD$HD$f.LXLD$QfDHD$nHVLD$H39HD$8E11DLME1\HD$8E11E1HD$(HD$0HD$ HD$@HD$VLL$I2MHE1E1HD$81E1HD$(HD$0HD$ HD$@HD$HD$HD$ LD$HfDLD$>L&LD$HI7HD$8HeE1ҾHD$(HD$0HD$ HD$@HD$HD$HD$?fH|$LL$@Lp)L`LPLLT$;LT$LMLmAtAAEtAEHExHHEHD$@LA2E1E11E1HD$8HEE1HD$(HD$0HD$ HD$@HD$HD$HD$fHD$H~LT$HIHLT$LD$.LT$LD$LT$IfDHD$8E1HD$(1HbE1HD$0HD$ HD$@HD$HD$HD$HD$8DLD$HD$H葐LD$LT$HHD$\5HD$81HǒE1HD$(HD$0HD$ HD$@HD$HD$t@HD$8E1E11HD$(E1E1HYHD$0E1HD$ HD$@HD$HD$Il$I\$EtEtI$xHI$IA1@‰$^IGH5LHHs&IM&AtAHt$H1H=3HL$LL$(HDŽ$LL$(HD$ IxHI%x HI(H|$ (($uH$Ņ4(g$vH5!H|$ IH*H$HH${qH$o$o$o$ o$`)$`o$po$0)$po$@)$o$P)$o$)$o$)$o$)$o$)$o$)$)$)$)$)$ H**IExHIE(H5H|$ IHF)H$HnH$o$o$o$ o$0)$o$@o$P)$o$`)$o$p)$o$)$o$)$o$)$o$)$o$)$ )$0)$@)$P)$`H(IExHIEL)H5H|$ eIH'H$HmH$o$o$o$ o$0)$po$@o$P)$o$`)$o$p)$o$)$o$)$o$)$o$)$o$)$)$ )$ )$ )$0 H-IExHIER)H|$&Ht$H$lH$o$o$o$ o$0)$@ o$@o$P)$P o$`)$` o$p)$p o$)$ o$)$ o$)$ o$)$ o$)$ )$ )$ )$ )$ H%$ $X $X $$$L$ L$H$H$H$H$J_H0H|$XIg H|$0fI)$`L H|$`fI)$1 H|$hfI)$p f)$@ H5H|$ YHD$0HbE1E11 HD$8HD$(MHD$8E11HD$(E1HD$0HD$ HD$@HD$HD$LLT$;LT$HD$H$9LL CHLLT$LT$ H=$IH"H5IHHD$4LT$HIIx HIH$LD$ LD$HIYH=%HD$@諉LD$LT$@HI2HE1HI9@#fInfInĿL$flLD$@LT$H$H$HDŽ$)$LT$LD$@HL$I H ϞH$H$HHtLHt$HLLD$@L$L$L$LHD$L$LD$@L$Ix HIIx HIIExHIEIx HIOH|$$H|$(H;=AH;=E H9DȈ$u)…M"H$Ht$H$HDž+gH$o$o$o$`)$o$ o$p)$o$0o$)$o$@)$ o$P)$0o$)$@o$)$Po$)$`o$)$p)$)$)$)$H"H5ELIH"H$H1fH$o$o$o$0)$o$ o$Po$`)$o$@)$o$p)$o$)$o$)$o$)$ o$)$0o$)$@)$P)$`)$p)$HT%IExHIE!H5&LIH<"H$HeH$o$o$o$ o$0)$o$@o$P)$o$`)$o$p)$o$)$o$)$o$)$o$)$o$)$)$ )$0)$@)$PH&IExHIE!Ht$H$leH$o$o$o$ o$0)$`o$@o$P)$po$`)$o$p)$o$)$o$)$o$)$o$)$o$)$)$)$)$)$ H( $$x$x$$$L$@L$H$H$pH$0H$(RH0HcSHD$@Hr$H$\Hf۾^HH$)$f۾`HH$)$H|$Xf۾bH)$lf)$`H5ɛH|$@ʷIH"H;OL;-%=I94Lq…"IExHIEH|$H1DŽ$HHD$H9zLD$HIH$H$H2|X]fo$fo$fo$H$fo$)$`fo$fo$)$pfo$ )$fo$0)$fo$@)$fo$P)$fo$`)$fo$p)$fo$)$)$)$)$)$ Hn IGH56LHHnIMB H|$H1DŽ$HI9LD$HH$MH$H{[Ifo$fo$fo$H$fo$)$fo$fo$)$fo$ )$fo$0)$fo$@)$fo$P)$fo$`)$fo$p)$fo$HD$ )$ )$0)$@)$P)$`H IExHIE IGH5LHHIMH|$H1DŽ$HI9{LD$HH$MH$H9z_Zfo$fo$fo$H$fo$)$pfo$fo$)$fo$ )$fo$0)$fo$@)$fo$P)$fo$`)$fo$p)$fo$HD$ )$)$ )$ )$ )$0 H_ IExHIEv Ht$H$]H$o$o$o$ o$0)$@ o$@o$P)$P o$`)$` o$p)$p o$)$ o$)$ o$)$ o$)$ o$)$ )$ )$ )$ )$ Hr$ $X $X $$$L$ L$H$H$H$H$OH0H|$XIH|$0fI)$`H|$`fI)$H|$hfI)$pfDŽ$)$@ HD$8HD$(E11HD$0HD$ HD$@HD$LALL$IL$H$LHLL$@LL$@HLL$LALD$۲LD$LL$HD$@rH=&K1rH='K1rH=}(K1rH=g)K1rH=Q+K1rH=;*K1rH=%,K1yrH=-K1crH=.K1MrH=/K17rH=0K1!rH=1K1 rH=2K1 rH=3K1 L$rH=h4K1 rH=R5K1 rH=<6K1 L8fL$&H$E1E11HD$8HD$(雺HD$8E11E1HD$(HD$0HD$ HD$@HD$HD$JI°LvIHHD$8E1HD$(E11HD$0HD$ HD$@HD$HD$ӹL$LLD$ LD$ H`HRH51H81GE1E1ML蟘HPHG`H51H81 E1E1LdE1E11H_HRH5S1H81迓E1E1šHD$8E11E1HD$(HD$0HD$ HD$@kHD$8E11HD$(E1HD$0HD$ 5HD$81HD$(HD$8E11LlUHD$8E11HD$(ѠHD$8E11E1HD$(HD$0HD$ 鶠E1E11 HD$8HD$(HD$0nHD$8E11E1HD$(HD$0HD$ HD$@/LLL$@LT$蒖LT$M1LL$@WHD$8E11E1HD$(HD$0HD$ HD$8E11E1HD$(HD$0HD$ 鳟E1E1L酟HD$8E11E1HD$(HD$0HD$ HD$@FIE1QE1E1&E1E1E1E11HD$8E11E1HD$(HD$0HD$ HD$@ŞE1E11HD$8HD$(HD$0鳞HEI%IpIsIIJE1E1sHt$@3IHD$8E1E1HD$(HD$0HD$ -LmLeAEtAEA$tA$HExAHHEHLL$(HL$ 8HL$ LL$(L!1uL H|$ fAWHtfAVfHnAUATUHSHhH-fHnHhfHnHH)D$@)D$P)D$`fHnHÈflHD$p)$fHnHflH$)$fHnHDŽ$fl)$HLyIMHAHHcHHVtHT$XHVtHT$PHVtHT$HHtHT$@ID$L,L$O4)I1LT$@fIM\H'Lf.HPHHL;uITL)LЋ t HHI9uLD$`MLL$hMHD$pHH|$@HH|@HUHtyH|@HUHtcH|@HUHtMH|@HUHt8H|@HUHt"H|@HHt H|@LT$HL\$PHL$X[fDHD$8HhYI9C(LLHL$8LLuLT$LL$L\$%L\$LL$LT$ut"LHXH3H5H81fH|$@HtHx HHH|$HHtHx HHH|$PHtHx HHH|$XHtHx HHrH|$`HtHx HHJH|$hHtHx HH"H|$pHtHx HHqH=0E1@HL[]A\A]A^A_HHHWHL UAH H5H810XZfHuH>tLVH|$@AtAL^LT$HAtAHNL\$PtLuWHL$XAtAH>WLD$`HD$hփtD։HD$pIHLLPH|$PYI^HtHx HH H|$HHtHx HHH|$PHtHx HHH|$XHtHx HHH|$`HtHx HHH|$hHtHx HHH|$pH71LH$H<$=Ix HI*L-cH=.]IULI9詂IH>tA$ID$H5_LHH?HH5?I$xHI$5L-^H=\IUL5IH@tA$HD$HJE1IH9EGAffIn޿LD$)$ fInHDŽ$0fl)$zLD$HIi6H"bH ]HPtH'`H$ IU tH+_L$(IU(tHJLLHHt$Ht$xLD$H$0Z{LD$IMtIx HI90I$xHI${5IExHIE5HExHHE_5Mv5Ix HI/D$E*OHD$H0H4$D$tHD$H $HH~*fD1E1E1L|$`E1E1HD$HH0IE1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$H$fMtIx HIGMtI$xHI$dHtHExHHEMtIExHIEMtIx HIMtIx HIH$@Ht$H9tP8HDŽ$H HDŽ$@H$H9t$HtP8HDŽ$ HDŽ$H$H9t$HtP8HDŽ$ HDŽ$H$Ht$H9tP8HDŽ$ HDŽ$H$H9t$HtP8HDŽ$ HDŽ$H$PH9t$HtP8HDŽ$X* HDŽ$PH$ Ht$H9tP8HDŽ$(= HDŽ$ H$H9t$HtP8HDŽ$P HDŽ$H$H9t$HtP8HDŽ$c HDŽ$H$ H9t$HtP8HDŽ$ v HDŽ$ H$` H9t$HtP8HDŽ$h  HDŽ$` H$0 Ht$H9tP8HDŽ$8  HDŽ$0 H$ Ht$H9tP8HDŽ$  HDŽ$ H$ Ht$H9tP8HDŽ$  HDŽ$ H$ H9t$HtP8HDŽ$  HDŽ$ H$pHt$H9tP8HDŽ$x!HDŽ$pH$@H9t$HtP8HDŽ$H#!HDŽ$@H$H9t$HtP8HDŽ$6!HDŽ$H$H9t$HtP8HDŽ$I!HDŽ$H$Ht$H9tP8HDŽ$\!HDŽ$H=)E1+H$HtHx HHtHt$HtHx HHfH\$ HtHx HHHt$HtHx HHH\$XHtHx HHHt$hHtHx HHH\$`HtHx HHHt$pHtHx HHrHL$0HtHx HHdHT$(HtHx HHVH\$PHtHx HHHt$8HtHx HHzHL$@HtHx HHlHT$HHtHx HH^HD$HxHt$HHMtIx HIHĈL[]A\A]A^A_fLlj$L$LL$xx$LL$xL$L牴$L$LL$x|x$LL$xL$gH$L$LL$xDx$LL$xL$JL$L$LL$x x$LL$xL$-Lω$LT$xw$LT$xL׉t$xwt$xHw;HwIHwWHxweHhwsHXwHHwH8wH(wHwHwLv HvkHvyHvHvHv\LvbLvvHE1`HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$L|$uL;H$HHD$HE1E1H >HD$@E1`HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$L|$ fLu=I(IGHH $D$@6H$@HrHDŽ$@H[HHNt$xtt$x<MD$I\$AtAtI$xHI$"Iܺ1Dz6H$HHDŽ$HHHt$xtt$x@6H$HHDŽ$HHHt$xst$x6H$HHDŽ$HHHt$xdst$x[6H$HHDŽ$HHHt$xst$x!6H$PHHDŽ$PHHHt$xrt$x5H$ HHDŽ$ HHHt$xtrt$x5H$HHDŽ$HHHt$x$rt$xos5H$HHDŽ$H{HHnt$xqt$x\95H$ HHDŽ$ HhHH[t$xqt$xI4H$` HlHDŽ$` HUHHHt$x4qt$x64H$0 HYHDŽ$0 HBHH5t$xpt$x#5H$ HFHDŽ$ H/HH"t$xpt$xpHH4tEHEH5:MHHH7IM6HExHHEuHLD$"pLD$L%KH=ILD$IT$L}oLD$HH,;tEHK8AE1HI9@tfInǿLD$$HT$HDŽ$ )$oLD$HIAH MHT$HHtHD$xLLLD$H$ J4 hMLD$H$(tIx HI,1HExHHE6.IExHIE@.Ix HIL.H$(Hx HH9.D$E'nHD$HJH4$D$tHD$H $L$(HHHD$0H5^6H9p$#Hl$(f(f.%:ff/$(:D$H=ME"Q6IHKH5LHfIHMIExHIE=H=MLL$6LL$HIOH5sLHLL$HIOIExHIE=H=%ILL$ 5LL$ HHD$qPHD$ H51II9A>QfHnſLL$0$L$ HDŽ$()$.mLL$0HIHHJHPtHD$LHt$ LHt$xLLL$0H$(OfHHD$ 2I$LL$0xHI$FHt$Hx HHFIExHIEFIx HIFHD$ HGHMLHiRH$H;=54@H;=4@ H9߉$4Ȉ$>uGf…*HD$PH^H*I9D$ME1HCHL$(HDŽ$ L$H$bHHdHP@HL$(HPtHȺLd$PLH)H?H HD$xL$ H4H[LHD$(~I$xHI$HExHHEIExHIEH|$($sH$@LH? H$4HH$@HD$PHHt$hH H$4HH$HD$PH@Ht$`HH$4HH$HD$PHۏHt$pHH$4HH$HD$PHHt$0HH$4HH$HD$PH1L|$(HL3H$4HH$PHD$PHɏLHH$4HH$ HD$PHfHt$ HK H$4HH$HD$PHGHt$HH$4HH$HD$PHHt$XHaH$4HH$ HD$PH}H4H$`HHH4H$($ $ $ $( $$h$0$0$$p$$$$8$$$HL$L$@H$8H$H$pH$h9.H TH$+*臻f-*H$)$@if/*H$)$Kf1*H$)$-f3*H$)$f5*H$)$f7*H$)$PӺf9*H$)$ 赺f;*H$)$藺f=*H$)$yfHD$HHD$@HD$8HD$P)$ $>uH$W$4)HL$ $$41$3tL|$ Ht$x1HH==fInD$)$|\LH$,L$M~Ht$$tHl$Ht$x1HH=<L$fHnD$)$ \HI迮ML$>~HL$X$tHl$XHt$x1HH=<<L$fHnD$)$[HIRML$LD$x[LD$xHHfInfInL`(Ifl@U H$ H HDŽ$ HHHt$x[t$x1 H$ HHDŽ$ HHHt$xZt$xH$pHHDŽ$pHHHt$x|Zt$xH$@HHDŽ$@HHHt$x,Zt$xmH$HHDŽ$HHHt$xYt$x3H$HHDŽ$HHHt$xYt$xvH$HHDŽ$HHHut$x DH-4EtEHS1H$HHHDŽ$H$譺HD$ HExHHEyJH|$ WL|$ 1LIIHI;HHD$HzE11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ fDLQQLL$I1gQL$fLHQ1E1E1HD$HE1E1ɾlHD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$DMwIlHI_L$L$L$LD$xkP$LD$xL$L$MxM`AtAA$tA$Ix HI}4ME1HHD$HE1E11HD$@E1MtHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ ]KIDHD$HE1HE1HD$@bHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$@LmLeAEtAEA$tA$HExHHE8Ht$xfInźL$)$նIIEHIE L`NHD$HE1E11HD$@HE1bHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$H$HD$HbE11HD$@E1E1E1HD$8E1HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$H$pHM*LMLL$HLHD$HE1E11HD$@E1gHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$H$RfD#HI1LHD$HHHL%GHH$HEDLKxHKLKn1E1E1HD$HE1E1ɾrHD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$x$(f(f[H'H5)HHD$nLD$HI)Ix HI LGHH*_KHHD$-JLD$HI~-H $L@D$tH$H=6*ID$ H-H5$)HHD$远LD$HH"0Ix HI%H=%^HD$H01HiE1HI9Ey2fInfInLL$ flHt$8HT$0HDŽ$(H$ )$ILL$ HI1H 'HT$0Ht$8HHtHD$Ht$xLLLL$0H$(BLL$0HD$ LכI$xHI$'HExHHE'HL$Hx HH'Ix HI}'IExHIE3'H|$ 2H=(IH2H5u%HHD$LT$HI4Ix HIp+LLD$.ELD$HH/LD$0HLD$0HHD$C4H51HI9pd=Ld$HL$xfHnLLD$0fInH4fl)$,HIqI$LD$0xHI$-Ix HI-Mx<GIH;LxAtAMp H(LH|$ LD$DLD$.I3HI&L*GDH$(H5'HGHHK$IMJ$%GIH&H4$D$tH$LLLD$I@DLD$HHD$'I$xHI$IL$( HIL_Ff.HD$HE1E11HD$@E1E1E1HD$8gHD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$EH H$HeHD$HE1E11HD$@E1cHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$ @CEL+ HD$HEeHD$HE1E11HD$@E1rHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ @LpDH`D3@LD$H$վDHD$HE1E11HD$@E1E1cHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$HD$HE1E1E1HD$@rHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$>H%HC HD$HE1E11HD$@E1cHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ H${L`HhA$tA$EtEH $Hx HHTH Ht$xHL$H$_HD$I$HI$LA BLHD$HiHD$HE1E1E1HD$@rHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ JfDL8AWLELmAtAAEtAEHExHHEHD$LAlHLD$@LD$fLLD$@LD$fL@Hx@Hh@H=) IH')H5H蹒HH)IExHIEDH4$L=HD$ HY*H5aE1HH9u*Ll$ HL$xfInHfInH4fl)$LI>IExHIEZ HExHHE7 M*L;=@L;=o@tI9kL9ŅIx HI8"kHl$H>HEL>HBhLLHHxI$H>ML>*H>`L>g>HHD$ HpfHD$HE1E11HD$@E1MwHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$L=LD$rH=ċ,1rH=,1rH=,1HD$HE1E11HD$@E1E1E1HD$8gHD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ H$]rH=,1GrH=݊,11rH=NJ,1rH=,1rH=,1rH=,1٘rH=o,1ØrH=Y,1識rH=C,1藘"8LD$HD$ 2HD$HE1E11HD$@E1E1MHD$8wHD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$酻;LHD$H[HD$HE1E1E1HD$@lHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ rH=,1UrH=,1?rH=Ո,1)rH=,1rH=,1rH=,1rH=},1іLLL$t:LL$rH=P,1褖HD$HE1E11HD$@E1MwHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$ ݹL`HhA$tA$EtEHL$ Hx HHfInHt$xfInHflź)$ȡHD$I$HI$LQ9HD$HE1E1E1HD$@lHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$ȸ4ImH8H8HD$HE1E11HD$@E1MwHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ $ UIHP3H5:HHD$eLT$HI2Ix HIz$H=HD$XHv7HAE1II9D$ 7H LD$HDŽ$ L$H$7HH.H\LD$HPtHt$XHD$xHLLH$ J4(0LHD$虉Ht$XHx HH7+HExHHE,I$xHI$,H|$8.H=qIHY7H5HIH6IExHIE+2H=8LT$0LT$0HHD$h?HAE1II9BU?HLT$0HDŽ$ L$H$%6LT$0HH?HHPtHt$hHD$xLHLLT$0H$ J4(G/LHD$X*Ht$hLT$0Hx HH2HExHHE0Ix HI 0H|$XTE1E1Ll$XE11HD$HHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$X髴fLD$4LLD$HHD$\HD$HE1E1E1HD$@E1lHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 0H H-EtEHDH$HHHDŽ$H$HD$ HExHHEH|$ 1)L|$ 1LxIHIHD$H~E11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$HE1E11HD$@E1xHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ rLf2HD$HE1E11HD$@MvHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$۱E1E11HD$HE1E1xHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$HE1E1MHD$@vHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$ϰE1E1LLL$0LL$L0HD$HE1E1MHD$@vHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ !xE1E1E1HD$HE1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ L/LD$L~/LL$/HHD$ HNWHD$HE11E1HD$@yHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$H.@HD$HE11yHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ W.*I{yE1E1E11"|IHd&H5a H葀IH'Ix HIL*HH@2.IHu1.IHR1H>LxtIT$ H=u HD$XH2HAE1II9E}1fInfInLT$flLD$0HDŽ$ )$h-LT$HH'H0 LD$0HPtHD$XHLLLT$0H$ HD$xJ48<$0HD$LcI$xHI$2'HL$XHx HHD&HExHHE;&IExHIE2&H|$&H=% HH<H5 H~IH:<HExHHE%L(HH<,HH49#,IH8H` HhtIT$ H=HD$XH8H I9G7ME1fInfInſLD$0flHL$8HDŽ$ )$+LD$0HH7<HZ HL$8HPtHD$XLLD$0H)H$ HH?H HD$xH4H$LI}I$LD$0xHI$+Ht$XHx HH+HExHHE+Ix HI0M 2L|$XIH#H5H|HH#Ix HIL&HH,*IH+D*IH+H $LxD$tH$H=IE HD$XH6+H*AE1IH9Es,fInfInLT$flLD$0HDŽ$ )$)LT$HI&HoLD$0HPtHD$XLLHLT$0H$ HD$xJ48"LT$0HD$L{IExHIE&Ht$XHx HH&I$xHI$&HExHHE&HL$H(&D$0tL|$H( 1HH=Ht$xL$H$3(LHHD$XzH6HL$XHx HH &H=eIH6H5JHzzIH6I$xHI$h+L$HH7n(IH7'IH7H% L`tIU H=]HD$XHy6HI9Gn2MA1fInfHnſLD$0HDŽ$ fl)$]'LD$0HI2H%HPtHD$XLLL)LD$0H$ LH?H HD$xJ4p HIUyIELD$0xHIE2Ht$XHx HH1Ix HI&?Ix HI)?Mb.Ld$XdHLD$LA0&LD$HD$馣HD$HE11E1HD$@yHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$鬥L%LL$0HLL$0%LL$0!LLL$r%LL$ L`%'MaIiA$tA$EtEIx HIHt$xfInĺHD$ )$SII$HI$L$HD$HE1E11HD$@E1yHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ \LP$1HD$E11E1Ll$E1HD$HHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 饣HD$HE1E11HD$@E1L$(nHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 7HD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 鶢IHD$HE1E11HD$@E1L$(pHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$HD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 陡L!L!ZHs!cHf!oLY!vE1E11E1HD$HHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 飠L HD$HE11HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ OHD$HE1E11HD$@E1L$(pHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$颟HD$HE11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ ?H3H|$ $I|HD$HE1E11HD$@E1L$(pHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ YHD$HE11HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HaHD$HE11HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 銝HD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ E1E11LLD$LD$yLHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$ KHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ ͛IiMiEtEAEtAEIx HIBHD$ MAwLME1ëHD$HE11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$ H5H|$xmHD$hHHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`鑚HD$H~E11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ E1E1HQH|$LD$0*L1H|$ E11~E1E1HD$HHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ LHD$HE11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$ԘHD$HE1E1ɾHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$ FHD$HE11HD$@E1E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$鲗LD$HD$HE1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 4MMM}AtAAtAIExHIEoM1DHD$HE11E1HD$@yHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 駖E1E11E1E1HD$HE1E1ɾyHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ HD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$飕HD$HE1E1E1HD$@yHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$-LeLmA$tA$AEtAEHExHHE(L1 HD$HE1E11HD$@E1yHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ eHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$HE1E11HD$@E1E1侇HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XJLrFLeoLXLKL>yǮHD$H|E11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ 鴒H?LHHH5H|$dHD$0HH#D$(tL|$0Ht$x1HH=uHDŽ$L$LHD$PdIx HIU#H|$P@H=p;IH:H=#HD$0H_:H.I9D$@ME1AfInHD$0LT$(D$PHDŽ$(H$ )$LT$(HIi"HH HPtLLLT$8H?L)H$(LH HD$xJ4 LT$8HD$(LcHt$0LD$(Hx HH"I$xHI$"IExHIE"M!I@H9q:IPH9IpHt$8D$(tIH HL$@D$(tIx HI|"$?uH|$H $8@9$8i-Ht$hD$(5Ht$HH$@$LH(豷H$4HH$@HD$0H/Ht$hHH$4HH$HD$0H!7Ht$`HGH$4HH$HD$0H6Ht$pHH$4HH$HD$0H{6Ht$HH]H$4HH$HD$0H(6Ht$8H訶H$4HH$PHD$0Hs4Ht$@HsH$4HH$ HD$0H 4Ht$ H辷H$4HH$HD$0H3Ht$H H$4HH$ HD$0Hz3Ht$XHԶH$4HH$HD$0H'3H4H$XHHH4H$0$ $ $ $( $$h$0$0$$p$$$$8$$$HL$L$@H$8H$H$pH$hH 2H$+if+H$)$@if+H$)$if+H$)$if+H$)$if+H$)$dif+H$)$PFif+H$)$ (if+H$)$ if+H$)$ hfHD$(HD$0)$逮H HD$HE1E11HD$@E1E1侇HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$qHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$魊IhM`EtEA$tA$Ix HInM1YHD$HE1E11HD$@E1~HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$H L H|$ E11 zE1E1HD$HHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ MHD$XE1E1LT$XE11E1HD$HE1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$ HLD$0nLLD$0LD$0mLLD$0LD$0lHu騞HD$XE1E1LT$XE1E11"HD$HzE11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$ ͇HzHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HE1E1E1HD$HE1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$THHH;L.H! E1E11E1HD$HE1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$HD$XE1E1E1L|$XE11SLsLA`MHD$ -HLT$0BLT$0L0L#HD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$魄HD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$8LLT$0'LT$0HD$HE11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$h黃HD$HE11HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$IHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$ԂHLT$0RHLT$0LT$0(HLT$0HLT$0LT$0Lv HD$XE1E11L|$XE1E1#LCRH6^L)gHpHHD$`1E1L|$`E1E1E1HD$HE1HD$@HD$8HD$PHD$(HD$0HD$pHD$`LIl$Ml$EtEAEtAEI$xHI$"M1A[HD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pـHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`闀H|$hL|&M|$Il$AtAEtEI$xHI$ IE1AHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$LLL$ MLL$ 1õHD$HE11HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$X;HD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$X~LLD$0HLD$0LD$0HLD$0LD$0HD$HE1E1ɾHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$%~E1E1HD$HE1E1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$}HD$HE1E1ɾHD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$.}LULeAtAA$tA$HExHHEk%LE1AFHHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$ht|LhE1E11EHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD${MUImAtAEtEIExHIE#IE1A>HD$HE11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$+{HD$HE1E11HD$@E1zHD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XHD$zHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$,zL;QHD$HE1E1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XyHL1ݹLM}ImAtAEtEIEx HIEt}IE1AOHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$xLE1IAʍHD$HE1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XyxHD$XE1E1Hl$XMME1E1HD$HE1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$X>E11E1MǾE1E1MjIjAEtAEEtEIx HIvIE1AZHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$X2wHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`vHD$hHD$XMbIjA$tA$EtEIx HIIIE1AfHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$XvHD$HE1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$huHD$HE1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$h\uHD$HE11E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$htLd$XIoMGEtEAtAIHAIaLLD$0LD$0JLLD$0HLD$0yLD$0LE1IaAռLmLeAEtAEA$tA$HEHAHELH ?LM1MoMGAEtAEAtAI5HI+LHL$8LD$0LD$0HL$8 HD$HE1E11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hyE1E1E1HD$HE1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$X E1E1E1E1HD$hHD$XHl$XE1HD$HHD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$X9rHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hqHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XIqHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XpHD$HE1E11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`HD$h؟E1E1HD$H1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XiE1E1E1댾E1E1E11E1HD$HE1E1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XoHD$HE1E1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`HD$hHD$XoE1E1iMHD$0E1E1Hl$0M쾷E1E1HD$HHD$@HD$8HD$(HD$0nH|$0HD$HE1E11HD$@E1HD$8HD$PHD$(anHD$HE11HD$@E1E1HD$8HD$PHD$(HD$0nLLD$(LD$(IHLD$( LLD$(LD$( LwH$@LH肕H$ 4HH$` HD$PHHt$hH͕H$4HH$0 HD$PHTHt$`HH$4HH$ HD$PHHt$pHH$4HH$ HD$PHHt$0H.H$4HH$ HD$PH%L|$(HLvH$4HH$pHD$PHLHCH$4HH$@HD$PHZHt$ H螏H$4HH$HD$PHHt$HH$4HH$HD$PHHt$XH贎H$4HH$HD$PH+Q$$$$$P$p$p$@$@$@$@$$$$$$$($$h$0$0$$p$$ $ $8 $ $ $(L$ L$@ H$8 H$ H$p H$h HH$ *Gf*H$)$` zGf*H$)$0 \Gf*H$)$ >Gf*H$)$ Gf*H$)$ Gf*H$)$pFf*H$)$@Ff*H$)$Ff*H$)$FfHD$HHD$@HD$8HD$P)$ H-|H' H HHSH ULD$xHEHH5|GH81rHD$HLD$xE11HD$@E1E1HD$8E1HD$PHD$(HD$0HD$pHD$`MhHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0HD$p-hHD$HE1E1HD$@HD$8HD$PHD$(HD$0HD$pHD$`gHD$(E11Ld$(IᆬE1HD$HE11E1HD$@HD$8HD$PHD$(HD$0H|$(f4LY=HLFLLD$0:LD$0L(H$ 4HH$` HD$0HHt$hH9H$4HH$0 HD$0H Ht$`H脎H$4HH$ HD$0Hu Ht$pHOH$4HH$ HD$0H" Ht$HH蚎H$4HH$ HD$0H Ht$8HH$4HH$pHD$0H| Ht$@H谍H$4HH$@HD$0H) Ht$ H H$4HH$HD$0H Ht$HVH$4HH$HD$0H Ht$XH!H$4HH$HD$0H0 R$@$@$$$P$@$@$$$$$$$$$$$($$h$0$0$$p$$ $ $8 $ $ $(L$ L$@ H$8 H$ H$p H$h GH H$ +Af+H$)$` @f+H$)$0 @f+H$)$ @f+H$)$ @f+H$)$ o@f+H$)$pQ@f+H$)$@3@f+H$)$@f+H$)$?fHD$(HD$0)$鋅H5uH|$P#5HD$HHE1E1E11HD$(HD$0rbLfH~H; LLD$0LD$0HIIx HI'IGLLAIHLAHD$pHLAHHIHLd$`I}L}IPHrIPH HL$`D$0tHr|HD$HE1E11HD$@E1HD$8HD$PHD$(HD$01aLT$pE1E11-=2AIx HIu1IHKLH MH5]?HEHRH81HHD$HE11HD$@E1E1HD$8HD$PHD$(HD$0HD$pHD$`D`E1MLKTHD$HE1E11HD$@E1HD$8HD$PHD$(HD$0_LE1E1E11HD$(_H[oHVIVI\I ZHD$HE1E11HD$@E1E1価HD$8HD$PHD$(HD$0HD$pHD$`_Ld$`zMWIoAtAEtEIxrHAI${LLT$0LT$0 {HD$HE1E11HD$@E1E1E1HD$8HD$PHD$0E1zE1E1E11HD$HHD$@HD$8s^LAM^1nxHD$HE11HD$@E1E1E1HD$8HD$PHD$(HD$0HD$pHD$`]HLD$xH5+H81eE1E1E11E1]E1E1E11]tHL$ L|$ H=1HHt$xfInD$)$DLH/HHt$$tL|$H=1HHt$xfInD$)$LI/M)IHfHnfInfl@bE1E1E1\tHL$ Hl$ H=1HHt$xfHnD$)$THI /MaE1E1E11O\E1E1E1!\E1E1E1)\HD$HE11HD$@E1E1HD$8HD$P[E1E1E11HD$HHD$@HD$8[E1E1E11HD$HHD$@HD$8[E1E1E11HD$HHD$@HD$8`[HD$HE1E1E1HD$@HD$8HD$PHD$( [HD$HE1E1E1HD$@HD$8HD$PHD$(ZE1E1E1HD$(1HD$0ZE1E1E11HD$(ZE1E1E11HD$(}ZE1E1E11HD$(_ZE1E1E11HD$(AZE1E1E11HD$(#ZHD$hHD$HE1E1E1HD$(1HD$0YE1E1E11HD$(YE1E1E11HD$(YE1E1E11HD$(YE1E1E11HD$(uYE1E1E11HD$(WYE1E1E11HD$(9YE1E1E11HD$(YE1E1E11HD$(XE1E1E11HD$(XE1E1E11HD$(XE1E1E11HD$(XE1E1E11HD$(XE1E1E11HD$(gXE1E1E11HD$(IXLE1A4ILE1AInH)hII]UIÁE1E1E10E1E1E11LLT$IE1LT$AJE1RILPE1p1HLT$LE1vLT$AɭHD$HE1E11HD$@E1HD$8HD$(WHD$HE1E11HD$@E1HD$8HD$(HD$0VE1E1E1HD$H1HD$(HD$0VHHHHuAH ECLD$xHEHH55H81HD$HLD$xE11HD$@E1E1HD$8E1HD$(HD$0UH;ԝLLD$(LD$(HHIx HIHEHLAIH]HAHD$@HHAHH贄xuHExcHLd$8HE7H}*HD$HE1E1E1HD$@E1侷HD$8HD$(HD$0ULd$8L|$@E1E1HD$HE1E1HD$@HD$8HD$(HD$0305AHEx HHEtT̃u1IH?LH RAH5,3HEH!H81E1E1E11E1HeIPHIPH2Ht$8D$(tHJL+:HD$HE11HD$@E1E1E1HD$8HD$(HD$0SHjLD$xH5!H81OEHD$HE11HD$@E1E1HD$8HD$PSE1E1E11HD$HHD$@HD$8USE1E1E11HD$HHD$@HD$8%SE1E1E11HD$HHD$@HD$8RE1E1E11HD$HHD$@HD$8RE1E1E11HD$HHD$@HD$8RE1E1E11HD$HHD$@HD$8eRE1E1E11HD$HHD$@HD$85RE1E1E11HD$HHD$@HD$8RE1E1E11HD$HHD$@HD$8QE1E1E11HD$HHD$@HD$8QMT$Ml$AtAAEtAEI$xmHAI$LLT$(VLT$(饿HD$HE1E11HD$@E1HD$8HD$(HD$0QE1[E1E1E11HD$HHD$@HD$8PE1E1E11HD$HHD$@HD$8PE1E1E11HD$HHD$@HD$8vPE1E1E11HD$HHD$@HD$8FPE1E1E11HD$HHD$@HD$8PE1E1E11HD$HHD$@HD$8OHD$PE1E1Hl$PM쾦E1HD$HE1E1E1HD$@HD$8HD$PHD$(~M|$Ml$AtAAEtAEI$xcHI$lLHL$(>HL$(lHD$HE1E11HD$@E1HD$8HD$(N1lH5mL>mE1E1E11NH|$PlfDAWHfAVfHnAUATUHSHpHxfHnH- fHnH@H)D$@)D$P)D$`fHnHXflH$HGx)$fHnHÈflH$)$fHnHD$pflHDŽ$)$HELyIM5H6HtJHcHHV0tHT$pHV(tHT$hHV tHT$`HVtHT$XHVtHT$PHVtHT$HHtHT$@IEL$L$O4"I1L\$@IMLHLf.HPHHgL; uIL)L؋ t HHI9uLd$HMLl$PMHL$XHLD$`MpH\$hHGLt$@HH|@iHEHtzH|@QHEHtdH|@;HEHtNH|@%HEHt8H|@HEHt"H|@HHt H|@H|$pHH;=@H;=Г@WH;=%JLD$H $H $LD$HLLIUL@H|$PYI^HtHx HHxH|$HHtHx HHdH|$PHtHx HHPH|$XHtHx HH<H|$`HtHx HH(H|$hHtHx HHH|$pHHHH~tfDHD$8HI9ALLHL$8LL;L\$LT$LL$E-LL$LT$L\$\HőLHS;H5"H81}H|$@HtHx HHKH|$HHtHx HH#H|$PHtHx HHAH|$XHtHx HHH|$`HtHx HHH|$hHtHx HHH|$pHtHx HHH=r2E1yHL[]A\A]A^A_HHL 5AUH 6HH:H5!H81JXZfDHH_EHcHuUk-aWM11E11LnAEtAELl$PLfA$tA$L6Ld$HA.ALt$@MMHMHH$HXtH\$h11E11E1z1H^(tH\$hLF AtALD$`HNtHL$X%1111E1@HD$8II ËtHjH$HXtH\$hH$tHD$`IsHtHD$XHHL-RAEtAELl$PL%A$tA$Ld$HHHU4H F4AHNȸL N1LNH3LNHUHntHD$XH_L-AEtAELl$P8Lt$@11E11E1L%BA$tA$Ld$HHtHD$`ILt$@~LLHL$8LL6L\$LT$LL$#L\$LT$LL$-H~0tH|$pL6A 11E11E1E11LLT$eEIE1LT$LHu8DtHIL)HD@HCHHt]M9H0LLT$rLT$HuLT$LT$HtzH $LD$HqM9HD$(Hl$0H\$(HD$0Ld$81HHLL$``IH|$0L$HtL@H98tHBHHuHD$8HH9GuSLL5LLL$&L$tH_HL$0H4H5H81LL4LLL$!L$+f.AWAVAUATUSHHLwL/LL)HH9%HI׺HHE1IHHL)HHuU1ALLM)L}K1H$HMSMukfHnH]$EH[]A\A]A^A_fDH9HGHHH$H$HH놐LLLHL$HL$MtLL)&LHLL$xLLL$L)MHLHL$ HL$PfDHpH=*ݺf.HAWH)IAVIAUIATLUSHxH $HHMEHuHD$(IKDD$fIHED$II)HI9LHuHHEHH)fHnIflLd$(D$H9tHHT$LHT$HE HHD$XHsHL$ D$0HCD$@fID$HI)HI9LHHCHsHH)fHnIflLd$XD$HH9tHHT$豾HT$HC HHt$H|$@HL$PD$`H$H|$HAHt Ht$XH)H|$Ht Ht$(H)Et,M)L{(IM`HxL[]A\A]A^A_fDMtM;1111&:5HHH|$HHt$XH)HtDH|$Ht$(H)Ht-HDH3333333AWAVAUIHATUSH(HoL7HL)HHH9DHIIHEHHHD$M)HHHD$IEAEIuLd$HA$fH)AD$ID$H|$HH9HIEIuII)HT$fHnflHAD$IT$H9tLHLD$蕼LD$HAE LIL$AD$ L9;HT$LoHH(H(JHHBHJHJH9uHCHt$L)HLd(I(H9tJLHHHH(H(oPHJHBRJH9uH)H(HMd(MtIwLL)/HD$fInfHnHD$flIGAH([]A\A]A^A_H9HFHHHD$H褾HD$>f.HHD$H@E11xfDLd$iH=$͵HսH|$tHt$H|$n I|$It$H)HtRHHAWIAVIAUATIUSHH(HOL+7H;O$H9HBHHrII)LHI9iL葽IwHKIIGHH)K<,H|$H9tLHL$HT$,HL$HT$IHQAoaHD$AG HQLyH(QAfafoȉQHHAAHKLH)D$HHHIH~[DAoWIOI(AOI0AIGIw@AW0IO@AG(HttH)AO IfAOHu,$H}fInHD$D$HumHEEHtH)D$L3ME H(L[]A\A]A^A_DAO AOHI>@HjfH+jHAAHH9HH $ϻL3LkH $HMfHnHflHiAIGIwHH)H9tHH $[H $HAG HHyA IE(HC*f1E1fDI11[L3M;f.AWAVAUATUSHH(LL'LL)HH9"HHIHEHL)HHHD$E1oA6L9t)HLLL)oHHJH9uI\L9tI)HHLL譺MtIuLL)HD$fInfHnflIEAEH([]A\A]A^A_fDH9HFHHHT$Ht$Ht$HT$IHHD$I^0DHH=j @KHHBuffer is not indirectly contiguous in dimension %d.Buffer and memoryview are not contiguous in the same dimension.C-contiguous buffer is not contiguous in dimension %dC-contiguous buffer is not indirect in dimension %dBuffer exposes suboffsets but no strides__int__ returned non-int (type %.200s). The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__int__ returned non-int (type %.200s)C function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sInterpreter change detected - this module can only be loaded into one interpreter per process.Shared Cython type %.200s is not a type objectShared Cython type %.200s has the wrong size, try recompilingvalue too large to convert to intunbound method %.200S() needs an argumentbase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base type%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjecttoo many values to unpack (expected %zd)Acquisition count is %d (line %d)Unexpected format string character: '%c'%.200s() keywords must be strings%s() got multiple values for keyword argument '%U'invalid vtable found for imported typejoin() result is too long for a Python string while calling a Python objectNULL result without error in PyObject_Callcan't convert negative value to size_t__annotations__ must be set to a dict object__name__ must be set to a string object__qualname__ must be set to a string object__defaults__ must be set to a tuple objectchanges to cyfunction.__defaults__ will not currently affect the values used in function calls__kwdefaults__ must be set to a dict objectchanges to cyfunction.__kwdefaults__ will not currently affect the values used in function callsfunction's dictionary may not be deletedsetting function's dictionary to a non-dictinstance exception may not have a separate valueraise: exception class must be a subclass of BaseExceptioncalling %R should have returned an instance of BaseException, not %RBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringDoes not understand character buffer dtype format string ('%c')Expected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Buffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zd byte%s) does not match size of '%s' (%zd byte%s)Cannot copy memoryview slice with indirect dimensions (axis %d)Out of bounds on buffer access (axis %d)scipy.sparse.csgraph._shortest_path._johnson_undirectedscipy.sparse.csgraph._shortest_path._johnson_directedscipy.sparse.csgraph._shortest_path._johnson_add_weightsItem size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)Buffer not compatible with direct access in dimension %d.Buffer is not indirectly accessible in dimension %d.memviewslice is already initialized!cannot fit '%.200s' into an index-sized integerscipy/sparse/csgraph/_shortest_path.pyxscipy.sparse.csgraph._shortest_path.__defaults__scipy.sparse.csgraph._shortest_path._YenCandidatePaths.min_distancescipy.sparse.csgraph._shortest_path._YenCandidatePaths.max_distance%s() got an unexpected keyword argument '%U'%.200s() takes %.8s %zd positional argument%.1s (%zd given)scipy.sparse.csgraph._shortest_path._YenCandidatePaths.__setstate_cython___ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule was compiled against NumPy C-API version 0x%x (NumPy 1.23) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtime../../tmp/build-env-99e64tom/lib/python3.12/site-packages/numpy/__init__.cython-30.pxdscipy.sparse.csgraph._shortest_path.NegativeCycleError.__init__scipy.sparse.csgraph._shortest_path._YenCandidatePaths.__reduce_cython__scipy.sparse.csgraph._shortest_path._YenCandidatePaths.pop_path_to_memory_view'%.200s' object is not subscriptableCannot convert %.200s to %.200sscipy.sparse.csgraph._shortest_path._floyd_warshallscipy.sparse.csgraph._shortest_path.floyd_warshallscipy.sparse.csgraph._shortest_path._YenCandidatePaths.__cinit__Argument '%.200s' has incorrect type (expected %.200s, got %.200s)need more than %zd value%.1s to unpackscipy.sparse.csgraph._shortest_path._bellman_ford_directedscipy.sparse.csgraph._shortest_path._bellman_ford_undirectedscipy.sparse.csgraph._shortest_path.bellman_fordscipy.sparse.csgraph._shortest_path.shortest_path../scipy/sparse/csgraph/parameters.pxiModule '_shortest_path' has already been imported. Re-initialisation is not supported.scipy.sparse.csgraph._shortest_pathcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%dmultiple bases have vtable conflict: '%.200s' and '%.200s'Unable to initialize pickling for %.200sint (struct __pyx_array_obj *)struct __pyx_array_obj *(PyObject *, Py_ssize_t, char *, char const *, char *)PyObject *(PyObject *, int, int, __Pyx_TypeInfo const *)struct __pyx_memoryview_obj *(struct __pyx_memoryview_obj *, PyObject *)int (__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int)char *(Py_buffer *, char *, Py_ssize_t, Py_ssize_t)PyObject *(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int)__Pyx_memviewslice *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)void (struct __pyx_memoryview_obj *, __Pyx_memviewslice *)PyObject *(struct __pyx_memoryview_obj *)PyObject *(struct __pyx_memoryview_obj *, __Pyx_memviewslice *)char (__Pyx_memviewslice *, int)Py_ssize_t (__Pyx_memviewslice *, int)Py_ssize_t (Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char)void *(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int)int (int, Py_ssize_t, Py_ssize_t)int (PyObject *, PyObject *, int)int (__Pyx_memviewslice, __Pyx_memviewslice, int, int, int)void (__Pyx_memviewslice *, int, int)void (__Pyx_memviewslice *, int, int, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, int)void (__Pyx_memviewslice *, int, size_t, void *, int)void (char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *)PyObject *(__Pyx_TypeInfo const *)__mro_entries__ must return a tuplemetaclass conflict: the metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its basesinit scipy.sparse.csgraph._shortest_pathscipy.sparse.csgraph._shortest_path._YenCandidatePaths.insert_pathscipy.sparse.csgraph._shortest_path._dijkstracarray.to_py.__Pyx_carray_to_py_Py_ssize_tscipy.sparse.csgraph._shortest_path._dijkstra_multi_separatescipy.sparse.csgraph._shortest_path.johnsonscipy.sparse.csgraph._shortest_path._yenlocal variable '%s' referenced before assignment'%.200s' object is unsliceablescipy.sparse.csgraph._shortest_path.yenscipy.sparse.csgraph._shortest_path.dijkstra_cython_3_1_6.cython_function_or_method_cython_3_1_6._common_types_metatypescipy.sparse.csgraph._shortest_path.__pyx_defaultsscipy.sparse.csgraph._shortest_path._YenCandidatePathstakes no arguments%.200s() %s (%zd given)takes exactly one argumentBad call flags for CyFunctiontakes no keyword arguments%.200s() %s_cython_3_1_6Unknown exceptioncannot import name %S__pyx_capi____loader__loader__file__origin__package__parent__path__submodule_search_locationsneeds an argumentan integer is requiredkeywords must be strings__pyx_fatalerrorendunparsable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'buffer dtype__setstate_cython__exactlynumpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy.import_arrayat mostat least__init__name '%U' is not defined__reduce_cython__Missing type objectfloyd_warshall__cinit__Kbellman_fordbuiltinscython_runtime__builtins__does not match__debug__numpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncscipy._cyutilitymemoryview_allocate_bufferarray_cwrappermemoryview_cwrappermemview_sliceslice_memviewslicepybuffer_indexint (__Pyx_memviewslice *)transpose_memslicememoryview_fromsliceget_slice_from_memviewslice_copymemoryview_copymemoryview_copy_from_sliceget_best_orderslice_get_sizefill_contig_strides_arraycopy_data_to_temp_err_extents_err_dimint (PyObject *, PyObject *)_errint (void)_err_no_memorymemoryview_copy_contentsbroadcast_leadingrefcount_copyingrefcount_objects_in_slice_slice_assign_scalarformat_from_typeinfo__orig_bases__(n)fortranjohnsonjohnson_dist_arrayyendijkstra__reduce____module____dictoffset____vectorcalloffset____weaklistoffset__func_doc__doc__func_name__name____qualname__func_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutine_shortest_pathconst doubleconst intITYPE_tDTYPE_tc͐9^͑44T44DT44   h t      4 N   Zfr~4N- VV- VVVVV- - VV- VVN N - VVVVVVVVVVVVVVVV 7 V7 7 VV VVV V        $  7    H@@H@@@@@ @@ @@ @@@@@@@@@@@@@@@@HH @0 @@ @@@H @H    6  a  q`N<*"БǑ, ` W M z r]D'*[#2###!*A-0-- -,,111101ucݵ˵ڻԻ00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 yen(csgraph, source, sink, K, *, directed=True, return_predecessors=False, unweighted=False) Yen's K-Shortest Paths algorithm on a directed or undirected graph. .. versionadded:: 1.14.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of distances representing the input graph. source : int The index of the starting node for the paths. sink : int The index of the ending node for the paths. K : int The number of shortest paths to find. directed : bool, optional If ``True`` (default), then find the shortest path on a directed graph: only move from point ``i`` to point ``j`` along paths ``csgraph[i, j]``. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along ``csgraph[i, j]`` or ``csgraph[j, i]``. return_predecessors : bool, optional If ``True``, return the size ``(M, N)`` predecessor matrix. Default: ``False``. unweighted : bool, optional If ``True``, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. Default: ``False``. Returns ------- dist_array : ndarray Array of size ``M`` of shortest distances between the source and sink nodes. ``dist_array[i]`` gives the i-th shortest distance from the source to the sink along the graph. ``M`` is the number of shortest paths found, which is less than or equal to `K`. predecessors : ndarray Returned only if ``return_predecessors == True``. The M x N matrix of predecessors, which can be used to reconstruct the shortest paths. ``M`` is the number of shortest paths found, which is less than or equal to `K`. Row ``i`` of the predecessor matrix contains information on the ``i``-th shortest path from the source to the sink: each entry ``predecessors[i, j]`` gives the index of the previous node in the path from the source to node ``j``. If the path does not pass via node ``j``, then ``predecessors[i, j] = -9999``. Raises ------ NegativeCycleError: If there are negative cycles in the graph Notes ----- Yen's algorithm is a graph search algorithm that finds single-source `K`-shortest loopless paths for a graph with nonnegative edge cost. The algorithm was published by Jin Y. Yen in 1971 and employs any shortest path algorithm to find the best path, then proceeds to find ``K - 1`` deviations of the best path. The algorithm is based on Dijsktra's algorithm for finding each shortest path. In case there are negative edges in the graph, Johnson's algorithm is applied. If multiple valid solutions are possible, output may vary with SciPy and Python version. References ---------- .. [1] https://en.wikipedia.org/wiki/Yen%27s_algorithm .. [2] https://www.ams.org/journals/qam/1970-27-04/S0033-569X-1970-0253822-7/ Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import yen >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [2, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 0) 2 (2, 3) 3 >>> dist_array, predecessors = yen(csgraph=graph, source=0, sink=3, K=2, ... directed=False, return_predecessors=True) >>> dist_array array([2., 5.]) >>> predecessors array([[-9999, 0, -9999, 1], [-9999, -9999, 0, 2]], dtype=int32) johnson(csgraph, directed=True, indices=None, return_predecessors=False, unweighted=False) Compute the shortest path lengths using Johnson's algorithm. Johnson's algorithm combines the Bellman-Ford algorithm and Dijkstra's algorithm to quickly find shortest paths in a way that is robust to the presence of negative cycles. If a negative cycle is detected, an error is raised. For graphs without negative edge weights, dijkstra may be faster. .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of distances representing the input graph. directed : bool, optional If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i] indices : array_like or int, optional if specified, only compute the paths from the points at the given indices. return_predecessors : bool, optional If True, return the size (N, N) predecessor matrix. unweighted : bool, optional If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. Returns ------- dist_matrix : ndarray The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph. predecessors : ndarray, shape (n_indices, n_nodes,) Returned only if return_predecessors == True. If `indices` is None then ``n_indices = n_nodes`` and the shape of the matrix becomes ``(n_nodes, n_nodes)``. The matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 Raises ------ NegativeCycleError: if there are negative cycles in the graph Notes ----- This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then Dijkstra's algorithm is a better choice. If multiple valid solutions are possible, output may vary with SciPy and Python version. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import johnson >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [2, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 0) 2 (2, 3) 3 >>> dist_matrix, predecessors = johnson(csgraph=graph, directed=False, indices=0, return_predecessors=True) >>> dist_matrix array([0., 1., 2., 2.]) >>> predecessors array([-9999, 0, 0, 1], dtype=int32) bellman_ford(csgraph, directed=True, indices=None, return_predecessors=False, unweighted=False) Compute the shortest path lengths using the Bellman-Ford algorithm. The Bellman-Ford algorithm can robustly deal with graphs with negative weights. If a negative cycle is detected, an error is raised. For graphs without negative edge weights, Dijkstra's algorithm may be faster. .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of distances representing the input graph. directed : bool, optional If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i] indices : array_like or int, optional if specified, only compute the paths from the points at the given indices. return_predecessors : bool, optional If True, return the size (N, N) predecessor matrix. unweighted : bool, optional If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. Returns ------- dist_matrix : ndarray The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph. predecessors : ndarray, shape (n_indices, n_nodes,) Returned only if ``return_predecessors=True``. If `indices` is None then ``n_indices = n_nodes`` and the shape of the matrix becomes ``(n_nodes, n_nodes)``. The matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 Raises ------ NegativeCycleError: if there are negative cycles in the graph Notes ----- This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then Dijkstra's algorithm is a better choice. If multiple valid solutions are possible, output may vary with SciPy and Python version. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import bellman_ford >>> graph = [ ... [0, 1 ,2, 0], ... [0, 0, 0, 1], ... [2, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 0) 2 (2, 3) 3 >>> dist_matrix, predecessors = bellman_ford(csgraph=graph, directed=False, indices=0, return_predecessors=True) >>> dist_matrix array([0., 1., 2., 2.]) >>> predecessors array([-9999, 0, 0, 1], dtype=int32) dijkstra(csgraph, directed=True, indices=None, return_predecessors=False, unweighted=False, limit=np.inf, min_only=False) Dijkstra algorithm using priority queue .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of non-negative distances representing the input graph. directed : bool, optional If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j] and from point j to i along paths csgraph[j, i]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j or j to i along either csgraph[i, j] or csgraph[j, i]. .. warning:: Refer the notes below while using with ``directed=False``. indices : array_like or int, optional if specified, only compute the paths from the points at the given indices. return_predecessors : bool, optional If True, return the size (N, N) predecessor matrix. unweighted : bool, optional If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. limit : float, optional The maximum distance to calculate, must be >= 0. Using a smaller limit will decrease computation time by aborting calculations between pairs that are separated by a distance > limit. For such pairs, the distance will be equal to np.inf (i.e., not connected). .. versionadded:: 0.14.0 min_only : bool, optional If False (default), for every node in the graph, find the shortest path from every node in indices. If True, for every node in the graph, find the shortest path from any of the nodes in indices (which can be substantially faster). .. versionadded:: 1.3.0 Returns ------- dist_matrix : ndarray, shape ([n_indices, ]n_nodes,) The matrix of distances between graph nodes. If min_only=False, dist_matrix has shape (n_indices, n_nodes) and dist_matrix[i, j] gives the shortest distance from point i to point j along the graph. If min_only=True, dist_matrix has shape (n_nodes,) and contains for a given node the shortest path to that node from any of the nodes in indices. predecessors : ndarray, shape ([n_indices, ]n_nodes,) If ``min_only=False``, this has shape ``(n_indices, n_nodes)``, otherwise it has shape ``(n_nodes,)``. If `indices` is None and ``min_only=False`` then ``n_indices = n_nodes`` and the shape of the matrix becomes ``(n_nodes, n_nodes)``. Returned only if return_predecessors == True. The matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 sources : ndarray, shape (n_nodes,) Returned only if min_only=True and return_predecessors=True. Contains the index of the source which had the shortest path to each target. If no path exists within the limit, this will contain -9999. The value at the indices passed will be equal to that index (i.e. the fastest way to reach node i, is to start on node i). Notes ----- As currently implemented, Dijkstra's algorithm does not work for graphs with direction-dependent distances when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are not equal and both are nonzero, setting directed=False will not yield the correct result. Also, this routine does not work for graphs with negative distances. Negative distances can lead to infinite cycles that must be handled by specialized algorithms such as Bellman-Ford's algorithm or Johnson's algorithm. If multiple valid solutions are possible, output may vary with SciPy and Python version. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import dijkstra >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 3) 3 >>> dist_matrix, predecessors = dijkstra(csgraph=graph, directed=False, indices=0, return_predecessors=True) >>> dist_matrix array([0., 1., 2., 2.]) >>> predecessors array([-9999, 0, 0, 1], dtype=int32) floyd_warshall(csgraph, directed=True, return_predecessors=False, unweighted=False, overwrite=False) Compute the shortest path lengths using the Floyd-Warshall algorithm .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of distances representing the input graph. directed : bool, optional If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i] return_predecessors : bool, optional If True, return the size (N, N) predecessor matrix. unweighted : bool, optional If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. overwrite : bool, optional If True, overwrite csgraph with the result. This applies only if csgraph is a dense, c-ordered array with dtype=float64. Returns ------- dist_matrix : ndarray The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph. predecessors : ndarray Returned only if return_predecessors == True. The N x N matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 Raises ------ NegativeCycleError: if there are negative cycles in the graph Notes ----- If multiple valid solutions are possible, output may vary with SciPy and Python version. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import floyd_warshall >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [2, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 0) 2 (2, 3) 3 >>> dist_matrix, predecessors = floyd_warshall(csgraph=graph, directed=False, return_predecessors=True) >>> dist_matrix array([[0., 1., 2., 2.], [1., 0., 3., 1.], [2., 3., 0., 3.], [2., 1., 3., 0.]]) >>> predecessors array([[-9999, 0, 0, 1], [ 1, -9999, 0, 1], [ 2, 0, -9999, 2], [ 1, 3, 3, -9999]], dtype=int32) shortest_path(csgraph, method='auto', directed=True, return_predecessors=False, unweighted=False, overwrite=False, indices=None) Perform a shortest-path graph search on a positive directed or undirected graph. .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of distances representing the input graph. method : string ['auto'|'FW'|'D'], optional Algorithm to use for shortest paths. Options are: 'auto' -- (default) select the best among 'FW', 'D', 'BF', or 'J' based on the input data. 'FW' -- Floyd-Warshall algorithm. Computational cost is approximately ``O[N^3]``. The input csgraph will be converted to a dense representation. 'D' -- Dijkstra's algorithm with priority queue. Computational cost is approximately ``O[I * (E + N) * log(N)]``, where ``E`` is the number of edges in the graph, and ``I = len(indices)`` if ``indices`` is passed. Otherwise, ``I = N``. The input csgraph will be converted to a csr representation. 'BF' -- Bellman-Ford algorithm. This algorithm can be used when weights are negative. If a negative cycle is encountered, an error will be raised. Computational cost is approximately ``O[N(N^2 k)]``, where ``k`` is the average number of connected edges per node. The input csgraph will be converted to a csr representation. 'J' -- Johnson's algorithm. Like the Bellman-Ford algorithm, Johnson's algorithm is designed for use when the weights are negative. It combines the Bellman-Ford algorithm with Dijkstra's algorithm for faster computation. directed : bool, optional If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i] return_predecessors : bool, optional If True, return the size (N, N) predecessor matrix. unweighted : bool, optional If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. overwrite : bool, optional If True, overwrite csgraph with the result. This applies only if method == 'FW' and csgraph is a dense, c-ordered array with dtype=float64. indices : array_like or int, optional If specified, only compute the paths from the points at the given indices. Incompatible with method == 'FW'. Returns ------- dist_matrix : ndarray The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph. predecessors : ndarray, shape (n_indices, n_nodes,) Returned only if return_predecessors == True. If `indices` is None then ``n_indices = n_nodes`` and the shape of the matrix becomes ``(n_nodes, n_nodes)``. The matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 Raises ------ NegativeCycleError: if there are negative cycles in the graph See Also -------- :ref:`word-ladders-example` : An illustratation of the ``shortest_path`` API with a meaninful example. It also reconstructs the shortest path by using predecessors matrix returned by this function. Notes ----- As currently implemented, Dijkstra's algorithm and Johnson's algorithm do not work for graphs with direction-dependent distances when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are non-equal edges, method='D' may yield an incorrect result. If multiple valid solutions are possible, output may vary with SciPy and Python version. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import shortest_path >>> graph = [ ... [0, 0, 7, 0], ... [0, 0, 8, 5], ... [7, 8, 0, 0], ... [0, 5, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 2) 7 (1, 2) 8 (1, 3) 5 (2, 0) 7 (2, 1) 8 (3, 1) 5 >>> sources = [0, 2] >>> dist_matrix, predecessors = shortest_path(csgraph=graph, directed=False, indices=sources, return_predecessors=True) >>> dist_matrix array([[ 0., 15., 7., 20.], [ 7., 8., 0., 13.]]) >>> predecessors array([[-9999, 2, 0, 1], [ 2, 2, -9999, 1]], dtype=int32) Reconstructing shortest paths from sources to all the nodes of the graph. >>> shortest_paths = {} >>> for idx in range(len(sources)): ... for node in range(4): ... curr_node = node # start from the destination node ... path = [] ... while curr_node != -9999: # no previous node available, exit the loop ... path = [curr_node] + path # prefix the previous node obtained from the last iteration ... curr_node = int(predecessors[idx][curr_node]) # set current node to previous node ... shortest_paths[(sources[idx], node)] = path ... Computing the length of the shortest path from node 0 to node 3 of the graph. It can be observed that computed length and the ``dist_matrix`` value are exactly same. >>> shortest_paths[(0, 3)] [0, 2, 1, 3] >>> path03 = shortest_paths[(0, 3)] >>> sum([graph[path03[0], path03[1]], graph[path03[1], path03[2]], graph[path03[2], path03[3]]]) np.int64(20) >>> dist_matrix[0][3] np.float64(20.0) Another example of computing shortest path length from node 2 to node 3. Here, ``dist_matrix[1][3]`` is used to get the length of the path returned by ``shortest_path``. This is because node 2 is the second source, so the lengths of the path from it to other nodes in the graph will be at index 1 in ``dist_matrix``. >>> shortest_paths[(2, 3)] [2, 1, 3] >>> path23 = shortest_paths[(2, 3)] >>> sum([graph[path23[0], path23[1]], graph[path23[1], path23[2]]]) np.int64(13) >>> dist_matrix[1][3] np.float64(13.0) scipy/sparse/csgraph/_shortest_path.pyxscipy.sparse.csgraph._validationscipy.sparse.csgraph._shortest_pathnumpy._core.umath failed to importnumpy._core.multiarray failed to importno default __reduce__ due to non-trivial __cinit__Note that Cython is deliberately stricter than PEP-484 and rejects subclasses of builtin types. If you need to pass subclasses then set the 'annotation_typing' directive to False.Not enough rows in sources matrix. Got Not enough rows in distances matrix. Got Invalid predecessors array shape Graph has negative weights: dijkstra will give inaccurate results if the graph contains negative cycles. Consider johnson or bellman_ford.Cannot specify indices with method == 'FW'. yen(csgraph, source, sink, K, *, directed=True, return_predecessors=False, unweighted=False) Yen's K-Shortest Paths algorithm on a directed or undirected graph. .. versionadded:: 1.14.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of distances representing the input graph. source : int The index of the starting node for the paths. sink : int The index of the ending node for the paths. K : int The number of shortest paths to find. directed : bool, optional If ``True`` (default), then find the shortest path on a directed graph: only move from point ``i`` to point ``j`` along paths ``csgraph[i, j]``. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along ``csgraph[i, j]`` or ``csgraph[j, i]``. return_predecessors : bool, optional If ``True``, return the size ``(M, N)`` predecessor matrix. Default: ``False``. unweighted : bool, optional If ``True``, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. Default: ``False``. Returns ------- dist_array : ndarray Array of size ``M`` of shortest distances between the source and sink nodes. ``dist_array[i]`` gives the i-th shortest distance from the source to the sink along the graph. ``M`` is the number of shortest paths found, which is less than or equal to `K`. predecessors : ndarray Returned only if ``return_predecessors == True``. The M x N matrix of predecessors, which can be used to reconstruct the shortest paths. ``M`` is the number of shortest paths found, which is less than or equal to `K`. Row ``i`` of the predecessor matrix contains information on the ``i``-th shortest path from the source to the sink: each entry ``predecessors[i, j]`` gives the index of the previous node in the path from the source to node ``j``. If the path does not pass via node ``j``, then ``predecessors[i, j] = -9999``. Raises ------ NegativeCycleError: If there are negative cycles in the graph Notes ----- Yen's algorithm is a graph search algorithm that finds single-source `K`-shortest loopless paths for a graph with nonnegative edge cost. The algorithm was published by Jin Y. Yen in 1971 and employs any shortest path algorithm to find the best path, then proceeds to find ``K - 1`` deviations of the best path. The algorithm is based on Dijsktra's algorithm for finding each shortest path. In case there are negative edges in the graph, Johnson's algorithm is applied. If multiple valid solutions are possible, output may vary with SciPy and Python version. References ---------- .. [1] https://en.wikipedia.org/wiki/Yen%27s_algorithm .. [2] https://www.ams.org/journals/qam/1970-27-04/S0033-569X-1970-0253822-7/ Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import yen >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [2, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 0) 2 (2, 3) 3 >>> dist_array, predecessors = yen(csgraph=graph, source=0, sink=3, K=2, ... directed=False, return_predecessors=True) >>> dist_array array([2., 5.]) >>> predecessors array([[-9999, 0, -9999, 1], [-9999, -9999, 0, 2]], dtype=int32) shortest_path(csgraph, method='auto', directed=True, return_predecessors=False, unweighted=False, overwrite=False, indices=None) Perform a shortest-path graph search on a positive directed or undirected graph. .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of distances representing the input graph. method : string ['auto'|'FW'|'D'], optional Algorithm to use for shortest paths. Options are: 'auto' -- (default) select the best among 'FW', 'D', 'BF', or 'J' based on the input data. 'FW' -- Floyd-Warshall algorithm. Computational cost is approximately ``O[N^3]``. The input csgraph will be converted to a dense representation. 'D' -- Dijkstra's algorithm with priority queue. Computational cost is approximately ``O[I * (E + N) * log(N)]``, where ``E`` is the number of edges in the graph, and ``I = len(indices)`` if ``indices`` is passed. Otherwise, ``I = N``. The input csgraph will be converted to a csr representation. 'BF' -- Bellman-Ford algorithm. This algorithm can be used when weights are negative. If a negative cycle is encountered, an error will be raised. Computational cost is approximately ``O[N(N^2 k)]``, where ``k`` is the average number of connected edges per node. The input csgraph will be converted to a csr representation. 'J' -- Johnson's algorithm. Like the Bellman-Ford algorithm, Johnson's algorithm is designed for use when the weights are negative. It combines the Bellman-Ford algorithm with Dijkstra's algorithm for faster computation. directed : bool, optional If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i] return_predecessors : bool, optional If True, return the size (N, N) predecessor matrix. unweighted : bool, optional If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. overwrite : bool, optional If True, overwrite csgraph with the result. This applies only if method == 'FW' and csgraph is a dense, c-ordered array with dtype=float64. indices : array_like or int, optional If specified, only compute the paths from the points at the given indices. Incompatible with method == 'FW'. Returns ------- dist_matrix : ndarray The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph. predecessors : ndarray, shape (n_indices, n_nodes,) Returned only if return_predecessors == True. If `indices` is None then ``n_indices = n_nodes`` and the shape of the matrix becomes ``(n_nodes, n_nodes)``. The matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 Raises ------ NegativeCycleError: if there are negative cycles in the graph See Also -------- :ref:`word-ladders-example` : An illustratation of the ``shortest_path`` API with a meaninful example. It also reconstructs the shortest path by using predecessors matrix returned by this function. Notes ----- As currently implemented, Dijkstra's algorithm and Johnson's algorithm do not work for graphs with direction-dependent distances when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are non-equal edges, method='D' may yield an incorrect result. If multiple valid solutions are possible, output may vary with SciPy and Python version. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import shortest_path >>> graph = [ ... [0, 0, 7, 0], ... [0, 0, 8, 5], ... [7, 8, 0, 0], ... [0, 5, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 2) 7 (1, 2) 8 (1, 3) 5 (2, 0) 7 (2, 1) 8 (3, 1) 5 >>> sources = [0, 2] >>> dist_matrix, predecessors = shortest_path(csgraph=graph, directed=False, indices=sources, return_predecessors=True) >>> dist_matrix array([[ 0., 15., 7., 20.], [ 7., 8., 0., 13.]]) >>> predecessors array([[-9999, 2, 0, 1], [ 2, 2, -9999, 1]], dtype=int32) Reconstructing shortest paths from sources to all the nodes of the graph. >>> shortest_paths = {} >>> for idx in range(len(sources)): ... for node in range(4): ... curr_node = node # start from the destination node ... path = [] ... while curr_node != -9999: # no previous node available, exit the loop ... path = [curr_node] + path # prefix the previous node obtained from the last iteration ... curr_node = int(predecessors[idx][curr_node]) # set current node to previous node ... shortest_paths[(sources[idx], node)] = path ... Computing the length of the shortest path from node 0 to node 3 of the graph. It can be observed that computed length and the ``dist_matrix`` value are exactly same. >>> shortest_paths[(0, 3)] [0, 2, 1, 3] >>> path03 = shortest_paths[(0, 3)] >>> sum([graph[path03[0], path03[1]], graph[path03[1], path03[2]], graph[path03[2], path03[3]]]) np.int64(20) >>> dist_matrix[0][3] np.float64(20.0) Another example of computing shortest path length from node 2 to node 3. Here, ``dist_matrix[1][3]`` is used to get the length of the path returned by ``shortest_path``. This is because node 2 is the second source, so the lengths of the path from it to other nodes in the graph will be at index 1 in ``dist_matrix``. >>> shortest_paths[(2, 3)] [2, 1, 3] >>> path23 = shortest_paths[(2, 3)] >>> sum([graph[path23[0], path23[1]], graph[path23[1], path23[2]]]) np.int64(13) >>> dist_matrix[1][3] np.float64(13.0) oQ  %Rq tnAYj}ArQgV2QQa vQaxs!"G1CvQ 1 A 7'A"F!9F%vWE 1 A 7'A"Kq!q& 2T("Cs"DA *AQ!wbjqbQc6q1KqbRs!:T6q1BgQc+[q 1 !64vQ e1A BfBd& aq !63azV1 e1A BfBc*Da 1 !6#V1 BfASa !63azV1 BfBc*Daq2U!7%q7!6ayt1qRvQcq"F!3fA 1 Qa Q**;1##7q $A Q**;1##7q wban$>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import johnson >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [2, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 0) 2 (2, 3) 3 >>> dist_matrix, predecessors = johnson(csgraph=graph, directed=False, indices=0, return_predecessors=True) >>> dist_matrix array([0., 1., 2., 2.]) >>> predecessors array([-9999, 0, 0, 1], dtype=int32) floyd_warshall(csgraph, directed=True, return_predecessors=False, unweighted=False, overwrite=False) Compute the shortest path lengths using the Floyd-Warshall algorithm .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of distances representing the input graph. directed : bool, optional If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i] return_predecessors : bool, optional If True, return the size (N, N) predecessor matrix. unweighted : bool, optional If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. overwrite : bool, optional If True, overwrite csgraph with the result. This applies only if csgraph is a dense, c-ordered array with dtype=float64. Returns ------- dist_matrix : ndarray The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph. predecessors : ndarray Returned only if return_predecessors == True. The N x N matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 Raises ------ NegativeCycleError: if there are negative cycles in the graph Notes ----- If multiple valid solutions are possible, output may vary with SciPy and Python version. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import floyd_warshall >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [2, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 0) 2 (2, 3) 3 >>> dist_matrix, predecessors = floyd_warshall(csgraph=graph, directed=False, return_predecessors=True) >>> dist_matrix array([[0., 1., 2., 2.], [1., 0., 3., 1.], [2., 3., 0., 3.], [2., 1., 3., 0.]]) >>> predecessors array([[-9999, 0, 0, 1], [ 1, -9999, 0, 1], [ 2, 0, -9999, 2], [ 1, 3, 3, -9999]], dtype=int32) bellman_ford(csgraph, directed=True, indices=None, return_predecessors=False, unweighted=False) Compute the shortest path lengths using the Bellman-Ford algorithm. The Bellman-Ford algorithm can robustly deal with graphs with negative weights. If a negative cycle is detected, an error is raised. For graphs without negative edge weights, Dijkstra's algorithm may be faster. .. versionadded:: 0.11.0 Parameters ---------- csgraph : array_like, or sparse array or matrix, 2 dimensions The N x N array of distances representing the input graph. directed : bool, optional If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i] indices : array_like or int, optional if specified, only compute the paths from the points at the given indices. return_predecessors : bool, optional If True, return the size (N, N) predecessor matrix. unweighted : bool, optional If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized. Returns ------- dist_matrix : ndarray The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph. predecessors : ndarray, shape (n_indices, n_nodes,) Returned only if ``return_predecessors=True``. If `indices` is None then ``n_indices = n_nodes`` and the shape of the matrix becomes ``(n_nodes, n_nodes)``. The matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 Raises ------ NegativeCycleError: if there are negative cycles in the graph Notes ----- This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then Dijkstra's algorithm is a better choice. If multiple valid solutions are possible, output may vary with SciPy and Python version. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import bellman_ford >>> graph = [ ... [0, 1 ,2, 0], ... [0, 0, 0, 1], ... [2, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 0) 2 (2, 3) 3 >>> dist_matrix, predecessors = bellman_ford(csgraph=graph, directed=False, indices=0, return_predecessors=True) >>> dist_matrix array([0., 1., 2., 2.]) >>> predecessors array([-9999, 0, 0, 1], dtype=int32) _YenCandidatePaths.__setstate_cython___YenCandidatePaths.__reduce_cython__ Routines for performing shortest-path graph searches The main interface is in the function :func:`shortest_path`. This calls cython routines that compute the shortest path using the Floyd-Warshall algorithm, Dijkstra's algorithm with priority queue, the Bellman-Ford algorithm, or Johnson's Algorithm. Yen's k-Shortest Path Algorithm is available for finding the k-shortest paths between two nodes in a graph. Not enough rows in predecessors matrix. Got Negative cycle detected on node %i1Z,AYjBfBa!9Ja"$a#4q wc G6!0HAQ 1  whd'qvRq s. a G;a G1Biq E&1 a 87%s#Rr2Rq rQfBa Qwc 87! *AQ~Qiq2!)( 1xq ,A#= 0. Using a smaller limit will decrease computation time by aborting calculations between pairs that are separated by a distance > limit. For such pairs, the distance will be equal to np.inf (i.e., not connected). .. versionadded:: 0.14.0 min_only : bool, optional If False (default), for every node in the graph, find the shortest path from every node in indices. If True, for every node in the graph, find the shortest path from any of the nodes in indices (which can be substantially faster). .. versionadded:: 1.3.0 Returns ------- dist_matrix : ndarray, shape ([n_indices, ]n_nodes,) The matrix of distances between graph nodes. If min_only=False, dist_matrix has shape (n_indices, n_nodes) and dist_matrix[i, j] gives the shortest distance from point i to point j along the graph. If min_only=True, dist_matrix has shape (n_nodes,) and contains for a given node the shortest path to that node from any of the nodes in indices. predecessors : ndarray, shape ([n_indices, ]n_nodes,) If ``min_only=False``, this has shape ``(n_indices, n_nodes)``, otherwise it has shape ``(n_nodes,)``. If `indices` is None and ``min_only=False`` then ``n_indices = n_nodes`` and the shape of the matrix becomes ``(n_nodes, n_nodes)``. Returned only if return_predecessors == True. The matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999 sources : ndarray, shape (n_nodes,) Returned only if min_only=True and return_predecessors=True. Contains the index of the source which had the shortest path to each target. If no path exists within the limit, this will contain -9999. The value at the indices passed will be equal to that index (i.e. the fastest way to reach node i, is to start on node i). Notes ----- As currently implemented, Dijkstra's algorithm does not work for graphs with direction-dependent distances when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are not equal and both are nonzero, setting directed=False will not yield the correct result. Also, this routine does not work for graphs with negative distances. Negative distances can lead to infinite cycles that must be handled by specialized algorithms such as Bellman-Ford's algorithm or Johnson's algorithm. If multiple valid solutions are possible, output may vary with SciPy and Python version. Examples -------- >>> from scipy.sparse import csr_array >>> from scipy.sparse.csgraph import dijkstra >>> graph = [ ... [0, 1, 2, 0], ... [0, 0, 0, 1], ... [0, 0, 0, 3], ... [0, 0, 0, 0] ... ] >>> graph = csr_array(graph) >>> print(graph) Coords Values (0, 1) 1 (0, 2) 2 (1, 3) 1 (2, 3) 3 >>> dist_matrix, predecessors = dijkstra(csgraph=graph, directed=False, indices=0, return_predecessors=True) >>> dist_matrix array([0., 1., 2., 2.]) >>> predecessors array([-9999, 0, 0, 1], dtype=int32) convert_pydata_sparse_to_scipy TnAYj}Aaq$A5JfA5#T6q2U!7%q7%uA 2T)2Q #1 !6#V1 q'q '(/y)*G1*1! t3a()NbPQqAZwjqq1BfASa7"F! 1  q$AXWHA%-Ya '7!8:XQAq(r1C1Ac+Rq%Qq ",HBa""$4HAQ :R'xrAr.*A!,A!/t1t81A1L5q1ARvQ.aqRvQk&,G6RvRs$fA1AqrQk#Rq !#2V1Ky2Rqq}Aq_A Bqxq 1-QnAYj*!vQaxs!"G1CvQwgS"F!9F%vQwgS"Kq!q& 2T("Cs"DA *AQ"F"Cq $fAuARqq'#QkAqRvRs!:Tq%qRvRs!:Tq6#V1we56ayt1 qq -|1!*MQt3a !Fb= A"F"Cq $fAqRvQcq"F!3fA  m1 1 --B"A9Bj Q&gRvQAXWHA%Ya  ]! G8:XQ -Q a1:Taqq 81A"(!1{(!1Invalid sources array shape Negative cycle in nodes %sNegativeCycleError.__init__safely_cast_index_arraysindices out of range 0...Nfloyd_warshall (line 290)unrecognized method '%s'shortest_path (line 47)scipy.sparse._sputilsbellman_ford (line 870)No edge between nodes has_negative_weightsreturn_predecessorsdummy_source_matrixpredecessor_matrixjohnson_dist_arraydummy_double_arraycline_in_tracebackasyncio.coroutinesNegativeCycleErrorjohnson (line 1111)dijkstra (line 483)_YenCandidatePaths__setstate_cython__num_paths_foundlimit must be >= 0dummy_int_arrayNo paths to popvalidate_graphfloyd_warshallcopy_if_sparseAssertionErroryen (line 1393)source_matrixshortest_path__reduce_cython__isMaskedArraycopy_if_dense__class_getitem__scipy.sparsereturn_shape_is_coroutine_initializingdense_outputcsrT_indicesbellman_fordRuntimeError__mro_entries__dist_matrixcsr_indicescsrT_indptrImportErrorunweighted__pyx_vtable__dist_arraycsr_outputcsr_indptrcompressedatleast_1dValueError__reduce_ex____pyx_stateoverwrite__metaclass__isenabledis_sparsecsr_arraycsrT_dataaccept_fvTypeErrorwarnings__setstate____set_name____qualname__min_onlyissparseisfinite__getstate__, expected directeddijkstradiagonalcsr_datacsgraphTadd_note. Expected reshape__prepare__messagejohnsonindicesfloat64disablecsgraphsource__reduce____module__methodlimitfindptrformatenablearangezeroswheretocsrtocooshaperangeordernumpylimitisinfint32emptyedgesdtypecountarrayITYPEDTYPEwarn__test____spec__sizesinkselfones__name____main____init____func__fullflatfilldatacsrTcopyautoyensumretq!6popnnznanmsginf__doc__csrcsccooany and npmagc?.NkFWBFT +QNKJDCvector::_M_realloc_insert@V瞯<?; / H\;,w .P  mP | h Gh (0X!|!D#,$, @PT@P DXlP`4H p 8 0 P , pH ` x  p `( h@p0H `     (p Tt@@<h|p` 0p"%((+\ /@35`0::0;0 ?? @@, AXD`F@HpKLLPMPpP0Ut[p]__`c`glHPl\p00 \ ^ d"g#~D$%?|'H'p,`. .0!p!0""\#p1zRx $x FJ w?;*3$"DXl!<BAA D0] DABD`0 $Ul h<Jd e$T W w B `H d D @|AGG0k GAF d DAG Z CAJ t p lbah G AG`A8DabTzPLRxi $$k*AT E %DBBE B(A0D8A@8D0A(B BBB( tBAD ] DBF LA@ G m K 4p?BEE A(D0k(D BBBxBEI K(D0A8GpxHADDDAABAABIp8D0A(B BBB$AB M w8DBEH A(A0m(D BBBH.BEL E(A0A8E@8A0A(B BBB8֗{BBE D(A0b(D BBB4lBDD  GBG AAB@ݘGAE X Dq K K E 4|BAD  DBI \ DBF |@BBE B(D0D8DZ 8I0A(B BBBM Z 8G0A(B BBBF E 8D0A(B BBBF 440BDD W DBE ABl8HԘBEB B(A0A8GPk8D0A(B BBB(QBAGCABH:BEE E(A0D8GP8D0A(B BBBDDBHE A(D08I@T8A0P(D BBB8GDv F lAG |iDbx'BBB E(A0A8D@_ 8A0A(B BBBF g 8A0A(B BBBG _8F0A(B BBBpGv\TKBB B(A0D8GP8A0A(B BBBJHP4נMBEE D(A0q(D BBB$ nBDA cABD HX BHB E(I0C8D`, 8D0A(B BBBF ` 0GBBB B(D0D8G` 8A0A(B BBBG  8C0A(B BBBH 4 JAD0 AAC P0@ e|hX ,dhpp wBHD I(D0 (I DBBD q (I DBBN  (D ABBA (I ABB8 BDA _ DBL { ABA DDo E C E D zPX \*BBE A(J0 (A BBBE  (A BBBE  8CtN pSDN< SAG D DH G AH J AM Z HF  DM G 8 LxD~ F oX xD~ F o(x ADD d AAA ( ADD d AAA  D~ F o I X -BKB A(A0D@ 0D(A BBBH _ 0A(A BBBE hL hBEA A BBK  EBL z BBJ A EBH Y EBH \ BBH ( BAD ] DBF  d \QBB B(A0D8DPHP? 8D0A(B BBBD H`BBB B(H0D8GP$ 8D0A(B BBBA l( BIG Jp  AABJ A  FABF _  AABE k  AABI ixHRxAp'BID A(D08H@HHHPHXH`HhHpHxHEEEEEEEEEEEEEEEDFFFFFFFFFFCCCCCCCCCCCCCCCBM0x (D ABBI ^ (D ABBA 4A  G H H X)Ac`tBEB A(A0S (A BBBK  (A BBBI Y (D BBBE LBBB B(A0A8D 8A0A(B BBBA L(lBBB B(A0A8DF 8A0A(B BBBB `x<OBKE B(A0A8D 8H0A(B BBBH d8A0A(B BBBt(BBE E(D0D8G9 8A0A(B BBBH  8C0A(B BBBD HUA(TP#{BQ0z EF H EK (#{BQ0z EF H EK t#BEE E(D0D8G 8C0A(B BBBD PHRAb 8A0A(B BBBA ($p'{BQ0{ EE H EK (P'{BQ0{ EE H EK (|({BQ0{ EE H EK (l({BQ0{ EE H EK \(BBD A(G@ (A ABBI g (G ABBE h (A ABBJ 84+BBA A(D0] (D ABBH pd-AZ E  A d /"BBB B(A0D8FP 8A0A(B BBBA * 8A0A(B BBBK L1BEA A(D0 (A ABBA g (C ABBA <L2\AAG c AAB L AAB UEA<2\AAG c AAB M AAA UEAd2BBB B(D0D8FP 8A0A(B BBBA " 8A0A(B BBBK l45BIE B(A0A8DCW_A\ 8C0A(B BBBF W_AHғBBB B(A0A8D`}8A0A(B BBBl9lBIB B(A0D8DHYAu 8A0A(B BBBA V_AH`?bBB B(A0A8D@S 8D0A(B BBBB $`LBDA AABHBEB A(A0 (D DBBE F(D BBBH @$BBB E(A0A8D@z 8D0A(B BBBH lB>Ae J ILBxBBA D@s  CBBE LHRP`HA@F  ABBF PxEBFB B(A0D8D 8D0A(B BBBG ,zPLRxR 4 AHxIBBB B(A0A8DPV 8D0A(B BBBG M=LM3BBB E(A0A8G 8D0A(B BBBH h(BMG B(A0D8_ 8D0A(B BBBH QNgA IE lw BBB B(A0D8Go 8D0A(B BBBH W_AOW_Ad vdBDE B(A0A8G 8D0A(B BBBK hl8BMG B(A0D8_ 8D0A(B BBBH QNgA IE h| >BMQ H(M0L8G 8D0A(B BBBC ?OgA| BE <D >BBB A(A0G (A BBBJ p+BBB B(A0A8GbHHK G[A &8A0A(B BBB9 H hcBBB B(A0A8NP 8A0A(B BBBG PkQLHE F(E0A8D 8D0A(B BBBG LH#LBB O(A0A8D` 8A0A(B BBBA H8BEE B(D0A8G` 8D0A(B BBBF H,ALKB A(C0G 0A(A BBBF (zPLRxmM 0}oH<`BBB B(A0A8N` 8A0A(B BBBG PPC?BEB E(A0D8G3 8D0A(B BBBF ,zPLRxL 4c%`DZq(BDB E(A0A8GFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G m> 8A0A(B BBBJ $!`˘BDB B(D0D8G%L 8D0A(B BBBF [%G%G%G%G%G%y%%G%G%G%G%G%y%C%G%G%G%G%G%G%G%G%G%G%G&G&G&G&G&G&G&G&G&G&G&G&G&G&G&G&G'G'G'G'G'|%#8%G%G%G%G%G%y%%G%G%G%G%G%y%%G%G%G%G%G%G%G%G%G%G%G&G&G&G&G&G&G&G&G&G&G&G&G&G&G&G&G'G'G'G'G'|%h"\BMG B(A0D8_ 8D0A(B BBBH QNgA IE d# JBDB B(A0A8GGGGGGGGGGGGGGGGGGGGGGGGGGMGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBABGGGGGGGGGGGGG| 8A0A(B BBBA iBBBBNQGbGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBBC(BEEFADGj~BBBFADGbOSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGMBBBEAEJmHBBBEAEBbOTnBBBBYVGb``yAm$(foBDB B(A0A8J! 8D0A(B BBBH k!L!G!G!G!A"G"G"G"G"G"G"G"G"G"G"G"G"G"G"G"G#G#G#G#G#G#G#G#G#G#G#G#G#G#G#G#G$G$G$G$G$G$G$G$G$G$G$G$G$G$G$G$G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%l!!G!G!G!G!G"y!/!G!G!G!G!G"y!e!G!G!G!G!G"y!!G!G!G!G!G"y!l*BMG B(A0D8j 8D0A(B BBBA GV_AGKDp*BGE B(A0A8G%W 8D0A(B BBBC n'W([(G(G(G)G)G)G)G)G)G)G)G)G)G)G)G)E%P'W([(G(G(G)G)G)G)G)G)G)G)G)G)G)G)G)E%J!%G%G%G%G%G%A%G&G&G&G&G&G&G&G&G&G&G&G&G&G&G&G&G'G'G'G'G'G'G'G'G'E%{%G%G%G%G%G%A%G&G&G&G&G&G&G&G&G&G&G&G&G&G&G&G&G'G'G'G'G'G'G'G'G'E%|l,S BMG B(A0D8hJNDZ 8D0A(B BBBA GNgAU AE ,TOu } } }}}}}}}}}>l>H>\>P>,>`><>(>\>`>'!)!1)^1) MWk\z !. p0d `I`b`O, ``K`@ F` O E`  `N" 0 ^`\`Z``p`# P C`p p N* - `N( M  `L`@ ` ``%`'`A ? 0 `0 0 ,``?`p` `` `@E P 0`P` ``(````9`$``  ` ``  ` ` ` ` ` `p `` `` ` ` `   ` P ` ``3`0````-`'`  ````!  `` `<  ``x` `` ``!``x` `  `` `p`` ` `@ `9` `h``` ` `` ` ` ```M3 6`0`` M( L# ` ` ```X ` `@` `` ```P```h ``X `0`L$` L( `L!`{`p `` ````_9  v`q```h `H `X ``` 0 ``Q`P ```P  `RRIIIRJYg ` o``  0((H &" o%oo$o9,6`F`V`f`v`````````aa&a6aFaVafavaaaaaaaaabb&b6bFbVbfbvbbbbbbbbbcc&c6cFcVcfcvcccccccccdd&d6dFdVdfdvdddddddddee&e6eFeVefeveeeeeeeeeff&f6fFfVfffvfffffffffgg&g6gFgVgfgvggggggggghh&h6hFhVhfhvhhhhhhhhhii&i6iFiVifiviiiM`54B2G3@6H@6I 760p @0(``'p1p:GS`l v @@ P@:I`:и @@;.q0p@p@h8 >0x=/kp kp =/` ~0`cpo#/0%GCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11)8``$% &(H ` ` i  ,.04@  C   " _ ! P @ * PUk J   ) и _ b P i `D  = /jV й % Hl@A  ? ;mw m p" woT p. .q{4J J rGs  н  r"  0I  s  muQ    @  F  {gs        P   {O     e  h}u  PG   p|  K  '  G  T  G~M ~nI p  `G & we  z @*M pC S S  S x x $ m p - @ @! @_   p `w5@@J@ p'JJxI? t )  G  @O  0 {+h {E*h` 0  {/+hP {*h { {O x  ` @" pL \ \ P p + IH jJ{I 0%l +4 La  p-$ /> /xT `3 0I3    7$! <=L! P<3! J!,h*",hz"8I" po" 0xw ]#J# vd$@I3$ .Z$Iz$ 0$  >)% +W% m% % : %@5 %(I%A(6& 4& =;';'J'J'I'I(I(IN(Io(I(I(I(I)I()IP)Ir)I)I)I)pI)hI*`IM*XIw*PI*HI* @ +@ b+? +? +? 5,? w,`? ,@? - ? z-:h- ɰ\. 7. %=/ Nq(/ w˘0 p0 J0 pco=1 `1 1 S H2`5h26@2@62 72@: 2`:P3 d3 83 IH3 bV3 O,3 `3 K3 @ 3 F3 O3 E 4  %4 N"S4 0|4 ^4 \4 Z4 4 p4 #5 PA5 CQ5 pt5 p5 N*5 -5 `N(6 MH6  b6 Lp6 @ 6  6 6 %6 '7 A(7 ?87 0 O7 0 e7 0v7 ,7 7 ?7 p7  7 7  8 @E ?8 Pb8 0}8 P8  8 8 (8 9 9 ;9 9N9 $_9 t9  9 9 9  9  9  9  :  $:  =: p U: ` m: :  :  :  : : ;  &; ;; P S;  l; }; 3; 0; `; ; -< '< (<  >< P< b< w< < ! < < <  =  = <-=  C= e= xz= = = =  = = !> > x9>  P>  g>  }> >  > p> ` > ? '? :? @W? k? 9{?  ? h? ? ?  ?  ? @ !@  3@ D@ U@ `M3@ 6@ 0@ @ M(@ L#A 1A DA  [A lA A X A  A @A  A A  B (B ?B PTB eB B h B B X B 0C L$1C L(aC `L!C {C p C ` C C C D _9ED hD vzD qD D D h D HD D X E E 0E SE 0 kE E QE P E E E PF F .F [F@ nF@;0F>`F G  WG `E G G #! 'H /9mHxH zH H 0H@HH pHmHII@+I II I cIJ0_J@Jx@JP@J`@J@J K@#Kp@BK@YK@@zKh@K `LX@ L LH@L pkM M@M,4 `MMMM"NMNbNvNNNNNNOO+O8OIOXOlOwOOO OOOOPP3PCPRPlPxPPPPPPPPPQQ8QPQsQQQQQQQQQR0RRRgRtR RRRRRRSS/S>SOScSsSS SSSSS"TT)T9T^TtTTTTTTTTUU.U;USUeUrU~UUUUUUU V!V2VEVVVbVxVVVVVVVVWW+WZJZVZgZuZZZZZZ [[+[L[][y[[[[[[ \\(\;\S\^\k\y\\\\\\]]*]@]K]_shortest_path.cpp_ZL70__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path__yen_compare_distance70__pyx_t_5scipy_6sparse_7csgraph_14_shortest_path_YenDistancePathStructS__ZL75__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_emptyP69__pyx_obj_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePaths_ZL73__pyx_tp_traverse_5scipy_6sparse_7csgraph_14_shortest_path___pyx_defaultsP7_objectPFiS0_PvES1__ZL29__Pyx_CyFunction_get_qualnameP22__pyx_CyFunctionObjectPv_ZL28__Pyx_CyFunction_get_globalsP22__pyx_CyFunctionObjectPv_ZL28__Pyx_CyFunction_get_closureP22__pyx_CyFunctionObjectPv_ZL25__Pyx_CyFunction_get_codeP22__pyx_CyFunctionObjectPv_ZL18__pyx_typeinfo_cmpPK14__Pyx_TypeInfoS1__ZL68__pyx_tp_new_5scipy_6sparse_7csgraph_14_shortest_path___pyx_defaultsP11_typeobjectP7_objectS2__ZL32__Pyx_CyFunction_get_annotationsP22__pyx_CyFunctionObjectPv_ZL25__Pyx_CyFunction_get_dictP22__pyx_CyFunctionObjectPv_ZL19__pyx_check_stridesP9Py_bufferiii_ZL27__Pyx_CyFunction_CallMethodP7_objectS0_S0_S0__ZL33__pyx_memview_get_double__const__PKc_ZL37__pyx_CommonTypesMetaclass_get_moduleP7_objectPv_ZL24__Pyx_CyFunction_get_docP22__pyx_CyFunctionObjectPv_ZL21__pyx_memview_get_intPKc_ZL17__Pyx_PyList_Packlz_ZL25__Pyx_CyFunction_get_nameP22__pyx_CyFunctionObjectPv_ZL21__Pyx_CyFunction_reprP22__pyx_CyFunctionObject_ZL18__Pyx_CppExn2PyErrv_ZL25__Pyx_PyObject_GetAttrStrP7_objectS0_Py_XDECREF_ZL16__Pyx_ImportFromP7_objectS0__ZL26__pyx_mstate_global_static_ZL31__Pyx_CyFunction_get_kwdefaultsP22__pyx_CyFunctionObjectPv_ZL34__Pyx_PyNumber_LongWrongResultTypeP7_object_ZL24__Pyx__SetItemOnTypeDictP11_typeobjectP7_objectS2__ZL16__Pyx_PyCode_New37__Pyx_PyCode_New_function_descriptionPKP7_objectS1_S1_PKcS1__ZL72__pyx_tp_dealloc_5scipy_6sparse_7csgraph_14_shortest_path___pyx_defaultsP7_object_ZL25__Pyx_copy_spec_to_moduleP7_objectS0_PKcS2_i_ZL26__Pyx_ImportFunction_3_1_6P7_objectPKcPPFvvES2__ZL18__pyx_pymod_createP7_objectP11PyModuleDef_ZZL30__Pyx_check_single_interpretervE19main_interpreter_id_ZL7__pyx_m_ZL25__Pyx_CyFunction_traverseP22__pyx_CyFunctionObjectPFiP7_objectPvES3__ZL22__Pyx_VerifyCachedTypeP7_objectPKcl_ZL29__Pyx_CyFunction_Vectorcall_OP7_objectPKS0_mS0__ZL19__Pyx_PyLong_As_intP7_object_ZL29__Pyx_CyFunction_CallAsMethodP7_objectS0_S0__ZL18__Pyx_PyType_ReadyP11_typeobject_ZL18__Pyx_PyMethod_NewP7_objectS0_S0__ZL29__Pyx_FetchCommonTypeFromSpecP11_typeobjectP7_objectP11PyType_SpecS2_.constprop.0_ZL23__Pyx_CreateCodeObjectsP16__pyx_mstatetype.constprop.0_ZL11__pyx_k_q_6_ZL39__pyx_k_1_Z_AYj_BfBa_9Ja_a_4q_wc_G6_0_H_ZL38__pyx_k_A_r_A_A_t1_t81A_1L_5_q_1ARvQ_a_ZL39__pyx_k_oQ_Rq_t_nAYj_A_r_QgV2Q_Qa_vQa_x_ZL38__pyx_k_nAYj_vQa_xs_G1CvQ_F_9F_vQ_q_2T_ZL38__pyx_k_A_B_q_xq_1_Q_nAYj_vQa_xs_G1CvQ_ZL38__pyx_k_T_nAYj_A_aq_A_5_JfA_5_T_6_q_2U_ZL9__pyx_k_Q_ZL20__Pyx_CyFunction_NewP11PyMethodDefiP7_objectS2_S2_S2_S2_.constprop.0_ZL34__Pyx_CyFunction_Vectorcall_NOARGSP7_objectPKS0_mS0__ZL52__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHODP7_objectPKS0_mS0__ZL45__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDSP7_objectPKS0_mS0__ZL22__Pyx_ImportType_3_1_6P7_objectPKcS2_mm32__Pyx_ImportType_CheckSize_3_1_6.constprop.0_ZL28__Pyx_IternextUnpackEndCheckP7_objectl.part.0.constprop.0_ZL16__pyx_fatalerrorPKcz.constprop.0_ZL20__Pyx_XCLEAR_MEMVIEWP18__Pyx_memviewsliceii.constprop.0_ZL32__Pyx_BufFmt_TypeCharToAlignmentci.constprop.0_ZL27__Pyx_MatchKeywordArg_nostrP7_objectPKPS0_S3_PmPKc.constprop.0_ZL17__Pyx_INC_MEMVIEWP18__Pyx_memviewsliceii.constprop.0.isra.0_ZNSt6vectorIiSaIiEEaSERKS1_.isra.0_ZL12__Pyx_ImportP7_objectS0_i.constprop.0_ZL15__Pyx_GetVtableP11_typeobject.isra.0_ZL23__Pyx_CyFunction_reduceP22__pyx_CyFunctionObjectP7_object_ZL20__Pyx_PyUnicode_JoinPP7_objectllj_ZL25__Pyx_MatchKeywordArg_strP7_objectPKPS0_S3_PmPKc.constprop.0_ZL22__Pyx_PyUnicode_EqualsP7_objectS0_i.constprop.0_ZL27__Pyx_PyObject_FastCallDictP7_objectPKS0_mS0_.constprop.0_ZL76__pyx_tp_dealloc_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePathsP7_object_ZL33__Pyx_PyErr_GivenExceptionMatchesP7_objectS0_.part.0_ZL25__pyx__insert_code_objectP21__Pyx_CodeObjectCacheiP12PyCodeObject.constprop.0_ZL70__pyx_tp_clear_5scipy_6sparse_7csgraph_14_shortest_path___pyx_defaultsP7_object_ZL24__Pyx_CyFunction_set_docP22__pyx_CyFunctionObjectP7_objectPv_ZL22__Pyx_PyLong_As_size_tP7_object_ZL32__Pyx_CyFunction_set_annotationsP22__pyx_CyFunctionObjectP7_objectPv_ZL25__Pyx_CyFunction_set_nameP22__pyx_CyFunctionObjectP7_objectPv_ZL29__Pyx_CyFunction_set_qualnameP22__pyx_CyFunctionObjectP7_objectPv_ZL29__Pyx_CyFunction_set_defaultsP22__pyx_CyFunctionObjectP7_objectPv_ZL31__Pyx_CyFunction_set_kwdefaultsP22__pyx_CyFunctionObjectP7_objectPv_ZL25__Pyx_CyFunction_set_dictP22__pyx_CyFunctionObjectP7_objectPv_ZL24__Pyx_PyUnicode_From_intilcc.constprop.0_ZL14DIGIT_PAIRS_10_ZL11__Pyx_RaiseP7_objectS0_S0_S0_.constprop.0_ZL29__Pyx_CyFunction_get_defaultsP22__pyx_CyFunctionObjectPv_ZL26__Pyx_BufFmt_RaiseExpectedP20__Pyx_BufFmt_Context_ZL29__Pyx_BufFmt_ProcessTypeChunkP20__Pyx_BufFmt_Context_ZL24__Pyx_BufFmt_CheckStringP20__Pyx_BufFmt_ContextPKc_ZL27__Pyx__GetBufferAndValidateP9Py_bufferP7_objectPK14__Pyx_TypeInfoiiiP22__Pyx_BufFmt_StackElem.constprop.0_ZL15__Pyx_minusones_ZL11__Pyx_zeros_ZL32__pyx_memoryview_copy_new_contigPK18__Pyx_memviewslicePKcimii.constprop.0_ZL15__pyx_array_new_ZL20__pyx_memoryview_new_ZL30__pyx_memoryview_copy_contents_ZL22__Pyx_CyFunction_clearP22__pyx_CyFunctionObject_ZL24__Pyx_CyFunction_deallocP22__pyx_CyFunctionObject_ZL21__Pyx_WriteUnraisablePKciiS0_ii.constprop.0_ZL68__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path__johnson_undirected18__Pyx_memviewsliceS_S_S_.isra.0_ZL66__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path__johnson_directed18__Pyx_memviewsliceS_S_S_.isra.0_ZL69__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path__johnson_add_weights18__Pyx_memviewsliceS_S_S_.isra.0_ZL34__Pyx_ValidateAndInit_memviewslicePiiiiPK14__Pyx_TypeInfoP22__Pyx_BufFmt_StackElemP18__Pyx_memviewsliceP7_object.constprop.1_ZL42__Pyx_PyObject_to_MemoryviewSlice_dsds_intP7_objecti.constprop.0_ZL18__Pyx_TypeInfo_int_ZL45__Pyx_PyObject_to_MemoryviewSlice_dsds_doubleP7_objecti.constprop.0_ZL21__Pyx_TypeInfo_double_ZL34__Pyx_ValidateAndInit_memviewslicePiiiiPK14__Pyx_TypeInfoP22__Pyx_BufFmt_StackElemP18__Pyx_memviewsliceP7_object.constprop.0_ZL49__Pyx_PyObject_to_MemoryviewSlice_ds_int__const__P7_objecti.constprop.0_ZL27__Pyx_TypeInfo_int__const___ZL52__Pyx_PyObject_to_MemoryviewSlice_ds_double__const__P7_objecti.constprop.0_ZL30__Pyx_TypeInfo_double__const___ZL40__Pyx_PyObject_to_MemoryviewSlice_ds_intP7_objecti.constprop.0_ZL43__Pyx_PyObject_to_MemoryviewSlice_ds_doubleP7_objecti.constprop.0_ZL23__Pyx_PyObject_GetIndexP7_objectS0__ZL33__Pyx_CyFunction_get_is_coroutineP22__pyx_CyFunctionObjectPv_ZL16__Pyx_IterFinishv_ZL18__Pyx_AddTracebackPKciiS0_.constprop.0_ZL64__pyx_pf_5scipy_6sparse_7csgraph_14_shortest_path_12__defaults__P7_object_ZL82__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_min_distanceP69__pyx_obj_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePaths_ZL82__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_max_distanceP69__pyx_obj_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePaths_ZL18__Pyx_AddTracebackPKciiS0_.constprop.1_ZL91__pyx_pw_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_5__setstate_cython__P7_objectPKS0_lS0__ZL23__pyx_builtin_TypeError_ZL27__pyx_f_5numpy_import_arrayv_ZL11PyArray_API_ZL25__pyx_builtin_ImportError_ZL80__pyx_pw_5scipy_6sparse_7csgraph_14_shortest_path_18NegativeCycleError_1__init__P7_objectPKS0_lS0__ZL32__Pyx_PyObject_GetAttrStrNoErrorP7_objectS0__ZL27__Pyx_setup_reduce_is_namedP7_objectS0__ZL24__Pyx_ImportDottedModuleP7_objectS0_.constprop.0_ZL20__Pyx_GetBuiltinNameP7_object_ZL26__Pyx__GetModuleGlobalNameP7_object_ZL89__pyx_pw_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_3__reduce_cython__P7_objectPKS0_lS0__ZL93__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_pop_path_to_memory_viewP69__pyx_obj_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePaths18__Pyx_memviewslice_ZL26__pyx_builtin_RuntimeError_ZL93__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_pop_path_to_memory_viewP69__pyx_obj_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePaths18__Pyx_memviewslice.cold_ZL27__Pyx_PyObject_GetItem_SlowP7_objectS0__ZL22__Pyx_PyObject_GetItemP7_objectS0__ZL65__pyx_pf_5scipy_6sparse_7csgraph_14_shortest_path_2floyd_warshallP7_objectS0_S0_S0_S0_S0_.constprop.0_ZL29__pyx_assertions_enabled_flag_ZL74__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_14_shortest_path_DTYPE_t_ZL74__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_14_shortest_path_ITYPE_t_ZL28__pyx_builtin_AssertionError_ZL65__pyx_pw_5scipy_6sparse_7csgraph_14_shortest_path_3floyd_warshallP7_objectPKS0_lS0__ZL72__pyx_tp_new_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePathsP11_typeobjectP7_objectS2__ZL73__pyx_vtabptr_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePaths_ZL63__pyx_pf_5scipy_6sparse_7csgraph_14_shortest_path_6bellman_fordP7_objectS0_S0_S0_S0_S0_.constprop.0_ZL24__pyx_builtin_ValueError_ZL21__pyx_memview_set_intPKcP7_object_ZL26__pyx_memoryview_fromslice_ZL63__pyx_pw_5scipy_6sparse_7csgraph_14_shortest_path_7bellman_fordP7_objectPKS0_lS0__ZL64__pyx_pw_5scipy_6sparse_7csgraph_14_shortest_path_1shortest_pathP7_objectPKS0_lS0__ZL31__pyx_pymod_exec__shortest_pathP7_object_ZL16__pyx_string_tab_ZL26__pyx_string_tab_encodings_ZL31__pyx_CommonTypesMetaclass_spec_ZL25__pyx_CyFunctionType_spec_ZL17__pyx_builtin_sum_ZL72__pyx_vtable_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePaths_ZL81__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_insert_pathP69__pyx_obj_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePathsd18__Pyx_memviewsliceS1_ii_ZL70__pyx_type_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePaths_ZL66__pyx_type_5scipy_6sparse_7csgraph_14_shortest_path___pyx_defaults_ZL27__pyx_array_allocate_buffer_ZL19__pyx_memview_slice_ZL35__pyx_memoryview_slice_memviewslice_ZL20__pyx_pybuffer_index_ZL24__pyx_memslice_transpose_ZL42__pyx_memoryview_get_slice_from_memoryview_ZL27__pyx_memoryview_slice_copy_ZL28__pyx_memoryview_copy_object_ZL39__pyx_memoryview_copy_object_from_slice_ZL26__pyx_get_best_slice_order_ZL31__pyx_memoryview_slice_get_size_ZL31__pyx_fill_contig_strides_array_ZL34__pyx_memoryview_copy_data_to_temp_ZL28__pyx_memoryview_err_extents_ZL24__pyx_memoryview_err_dim_ZL20__pyx_memoryview_err_ZL30__pyx_memoryview_err_no_memory_ZL34__pyx_memoryview_broadcast_leading_ZL33__pyx_memoryview_refcount_copying_ZL42__pyx_memoryview_refcount_objects_in_slice_ZL36__pyx_memoryview_slice_assign_scalar_ZL37__pyx_memoryview__slice_assign_scalar_ZL26__pyx_format_from_typeinfo_ZL82__pyx_mdef_5scipy_6sparse_7csgraph_14_shortest_path_18NegativeCycleError_1__init___ZL66__pyx_mdef_5scipy_6sparse_7csgraph_14_shortest_path_1shortest_path_ZL67__pyx_mdef_5scipy_6sparse_7csgraph_14_shortest_path_3floyd_warshall_ZL61__pyx_mdef_5scipy_6sparse_7csgraph_14_shortest_path_5dijkstra_ZL65__pyx_mdef_5scipy_6sparse_7csgraph_14_shortest_path_7bellman_ford_ZL60__pyx_mdef_5scipy_6sparse_7csgraph_14_shortest_path_9johnson_ZL57__pyx_mdef_5scipy_6sparse_7csgraph_14_shortest_path_11yen_ZL91__pyx_mdef_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_3__reduce_cython___ZL93__pyx_mdef_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_5__setstate_cython___ZN12_GLOBAL__N_115__pyx_moduledefE_ZL81__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path_18_YenCandidatePaths_insert_pathP69__pyx_obj_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePathsd18__Pyx_memviewsliceS1_ii.cold_ZL58__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path__dijkstra18__Pyx_memviewsliceS_S_S_S_S_S_S_S_S_d.isra.0_ZL58__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path__dijkstra18__Pyx_memviewsliceS_S_S_S_S_S_S_S_S_d.isra.0.cold_ZL73__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path__dijkstra_multi_separate18__Pyx_memviewsliceS_S_S_S_S_S_S_S_S_d.isra.0_ZL58__pyx_pf_5scipy_6sparse_7csgraph_14_shortest_path_8johnsonP7_objectS0_S0_S0_S0_S0_.constprop.0_ZL58__pyx_pw_5scipy_6sparse_7csgraph_14_shortest_path_9johnsonP7_objectPKS0_lS0__ZL53__pyx_f_5scipy_6sparse_7csgraph_14_shortest_path__yenii18__Pyx_memviewsliceS_S_S_S_S_S_S_.isra.0_ZL55__pyx_pf_5scipy_6sparse_7csgraph_14_shortest_path_10yenP7_objectS0_S0_S0_S0_S0_S0_S0_.constprop.0_ZL55__pyx_pw_5scipy_6sparse_7csgraph_14_shortest_path_11yenP7_objectPKS0_lS0__ZL59__pyx_pf_5scipy_6sparse_7csgraph_14_shortest_path_4dijkstraP7_objectS0_S0_S0_S0_S0_S0_i.constprop.0_ZL59__pyx_pw_5scipy_6sparse_7csgraph_14_shortest_path_5dijkstraP7_objectPKS0_lS0__ZL26__pyx_CyFunctionType_slots_ZL24__pyx_CyFunction_methods_ZL24__pyx_CyFunction_members_ZL24__pyx_CyFunction_getsets_ZL32__pyx_CommonTypesMetaclass_slots_ZL33__pyx_CommonTypesMetaclass_getset_ZL8__pyx_k__ZL22__pyx_k_AssertionError_ZL10__pyx_k_BF_ZL9__pyx_k_C_ZL40__pyx_k_Cannot_specify_indices_with_meth_ZL9__pyx_k_D_ZL13__pyx_k_DTYPE_ZL16__pyx_k_Expected_ZL10__pyx_k_FW_ZL40__pyx_k_Graph_has_negative_weights_dijks_ZL13__pyx_k_ITYPE_ZL19__pyx_k_ImportError_ZL40__pyx_k_Invalid_predecessors_array_shape_ZL35__pyx_k_Invalid_sources_array_shape_ZL9__pyx_k_J_ZL9__pyx_k_K_ZL9__pyx_k_N_ZL26__pyx_k_NegativeCycleError_ZL33__pyx_k_NegativeCycleError___init_ZL39__pyx_k_Negative_cycle_detected_on_node_ZL33__pyx_k_Negative_cycle_in_nodes_s_ZL10__pyx_k_Nk_ZL29__pyx_k_No_edge_between_nodes_ZL23__pyx_k_No_paths_to_pop_ZL40__pyx_k_Not_enough_rows_in_distances_mat_ZL39__pyx_k_Not_enough_rows_in_predecessors_ZL40__pyx_k_Not_enough_rows_in_sources_matri_ZL40__pyx_k_Note_that_Cython_is_deliberately_ZL20__pyx_k_RuntimeError_ZL9__pyx_k_T_ZL17__pyx_k_TypeError_ZL18__pyx_k_ValueError_ZL25__pyx_k_YenCandidatePaths_ZL39__pyx_k_YenCandidatePaths___reduce_cyth_ZL39__pyx_k_YenCandidatePaths___setstate_cy_ZL10__pyx_k__2_ZL10__pyx_k__3_ZL17__pyx_k_accept_fv_ZL16__pyx_k_add_note_ZL11__pyx_k_and_ZL11__pyx_k_any_ZL14__pyx_k_arange_ZL13__pyx_k_array_ZL26__pyx_k_asyncio_coroutines_ZL18__pyx_k_atleast_1d_ZL12__pyx_k_auto_ZL20__pyx_k_bellman_ford_ZL39__pyx_k_bellman_ford_csgraph_directed_T_ZL29__pyx_k_bellman_ford_line_870_ZL21__pyx_k_class_getitem_ZL26__pyx_k_cline_in_traceback_ZL18__pyx_k_compressed_ZL38__pyx_k_convert_pydata_sparse_to_scipy_ZL11__pyx_k_coo_ZL12__pyx_k_copy_ZL21__pyx_k_copy_if_dense_ZL22__pyx_k_copy_if_sparse_ZL13__pyx_k_count_ZL11__pyx_k_csc_ZL15__pyx_k_csgraph_ZL16__pyx_k_csgraphT_ZL11__pyx_k_csr_ZL12__pyx_k_csrT_ZL17__pyx_k_csrT_data_ZL20__pyx_k_csrT_indices_ZL19__pyx_k_csrT_indptr_ZL17__pyx_k_csr_array_ZL16__pyx_k_csr_data_ZL19__pyx_k_csr_indices_ZL18__pyx_k_csr_indptr_ZL18__pyx_k_csr_output_ZL12__pyx_k_data_ZL20__pyx_k_dense_output_ZL16__pyx_k_diagonal_ZL16__pyx_k_dijkstra_ZL38__pyx_k_dijkstra_csgraph_directed_True_ZL25__pyx_k_dijkstra_line_483_ZL16__pyx_k_directed_ZL15__pyx_k_disable_ZL18__pyx_k_dist_array_ZL19__pyx_k_dist_matrix_ZL11__pyx_k_doc_ZL13__pyx_k_dtype_ZL26__pyx_k_dummy_double_array_ZL23__pyx_k_dummy_int_array_ZL27__pyx_k_dummy_source_matrix_ZL13__pyx_k_edges_ZL13__pyx_k_empty_ZL14__pyx_k_enable_ZL16__pyx_k_expected_ZL12__pyx_k_fill_ZL12__pyx_k_flat_ZL15__pyx_k_float64_ZL22__pyx_k_floyd_warshall_ZL39__pyx_k_floyd_warshall_csgraph_directed_ZL31__pyx_k_floyd_warshall_line_290_ZL14__pyx_k_format_ZL12__pyx_k_full_ZL12__pyx_k_func_ZL10__pyx_k_gc_ZL16__pyx_k_getstate_ZL28__pyx_k_has_negative_weights_ZL15__pyx_k_indices_ZL32__pyx_k_indices_out_of_range_0_N_ZL14__pyx_k_indptr_ZL11__pyx_k_inf_ZL12__pyx_k_init_ZL20__pyx_k_initializing_ZL13__pyx_k_int32_ZL21__pyx_k_isMaskedArray_ZL20__pyx_k_is_coroutine_ZL17__pyx_k_is_sparse_ZL17__pyx_k_isenabled_ZL16__pyx_k_isfinite_ZL13__pyx_k_isinf_ZL16__pyx_k_issparse_ZL15__pyx_k_johnson_ZL39__pyx_k_johnson_csgraph_directed_True_i_ZL26__pyx_k_johnson_dist_array_ZL25__pyx_k_johnson_line_1111_ZL13__pyx_k_limit_ZL23__pyx_k_limit_must_be_0_ZL14__pyx_k_limitf_ZL10__pyx_k_ma_ZL12__pyx_k_main_ZL15__pyx_k_message_ZL17__pyx_k_metaclass_ZL14__pyx_k_method_ZL16__pyx_k_min_only_ZL14__pyx_k_module_ZL19__pyx_k_mro_entries_ZL11__pyx_k_msg_ZL12__pyx_k_name_ZL11__pyx_k_nan_ZL11__pyx_k_nnz_ZL40__pyx_k_no_default___reduce___due_to_non_ZL10__pyx_k_np_ZL23__pyx_k_num_paths_found_ZL13__pyx_k_numpy_ZL40__pyx_k_numpy__core_multiarray_failed_to_ZL40__pyx_k_numpy__core_umath_failed_to_impo_ZL12__pyx_k_ones_ZL13__pyx_k_order_ZL17__pyx_k_overwrite_ZL11__pyx_k_pop_ZL26__pyx_k_predecessor_matrix_ZL15__pyx_k_prepare_ZL17__pyx_k_pyx_state_ZL18__pyx_k_pyx_vtable_ZL16__pyx_k_qualname_ZL13__pyx_k_range_ZL14__pyx_k_reduce_ZL21__pyx_k_reduce_cython_ZL17__pyx_k_reduce_ex_ZL15__pyx_k_reshape_ZL11__pyx_k_ret_ZL27__pyx_k_return_predecessors_ZL20__pyx_k_return_shape_ZL32__pyx_k_safely_cast_index_arrays_ZL20__pyx_k_scipy_sparse_ZL29__pyx_k_scipy_sparse__sputils_ZL40__pyx_k_scipy_sparse_csgraph__shortest_p_ZL42__pyx_k_scipy_sparse_csgraph__shortest_p_2_ZL40__pyx_k_scipy_sparse_csgraph__validation_ZL12__pyx_k_self_ZL16__pyx_k_set_name_ZL16__pyx_k_setstate_ZL23__pyx_k_setstate_cython_ZL13__pyx_k_shape_ZL21__pyx_k_shortest_path_ZL39__pyx_k_shortest_path_csgraph_method_au_ZL29__pyx_k_shortest_path_line_47_ZL12__pyx_k_sink_ZL12__pyx_k_size_ZL14__pyx_k_source_ZL21__pyx_k_source_matrix_ZL12__pyx_k_spec_ZL20__pyx_k_stringsource_ZL11__pyx_k_sum_ZL12__pyx_k_test_ZL13__pyx_k_tocoo_ZL13__pyx_k_tocsr_ZL29__pyx_k_unrecognized_method_s_ZL18__pyx_k_unweighted_ZL22__pyx_k_validate_graph_ZL12__pyx_k_warn_ZL16__pyx_k_warnings_ZL13__pyx_k_where_ZL11__pyx_k_yen_ZL39__pyx_k_yen_csgraph_source_sink_K_direc_ZL21__pyx_k_yen_line_1393_ZL13__pyx_k_zeros_ZL39__pyx_k_Routines_for_performing_shortes_ZL13__pyx_methods_ZL21__pyx_moduledef_slots_ZL73__pyx_methods_5scipy_6sparse_7csgraph_14_shortest_path__YenCandidatePaths_ZL56__pyx_doc_5scipy_6sparse_7csgraph_14_shortest_path_10yen_ZL59__pyx_doc_5scipy_6sparse_7csgraph_14_shortest_path_8johnson_ZL64__pyx_doc_5scipy_6sparse_7csgraph_14_shortest_path_6bellman_ford_ZL60__pyx_doc_5scipy_6sparse_7csgraph_14_shortest_path_4dijkstra_ZL66__pyx_doc_5scipy_6sparse_7csgraph_14_shortest_path_2floyd_warshall_ZL64__pyx_doc_5scipy_6sparse_7csgraph_14_shortest_path_shortest_pathcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END__DW.ref.__gxx_personality_v0_ZNSt6vectorI70__pyx_t_5scipy_6sparse_7csgraph_14_shortest_path_YenDistancePathStructSaIS0_EE17_M_realloc_insertIJRKS0_EEEvN9__gnu_cxx17__normal_iteratorIPS0_S2_EEDpOT___GNU_EH_FRAME_HDR_fini_ZNSt6vectorIiSaIiEE17_M_realloc_insertIJRKiEEEvN9__gnu_cxx17__normal_iteratorIPiS1_EEDpOT__GLOBAL_OFFSET_TABLE___pyx_module_is_main_scipy__sparse__csgraph___shortest_pathDW.ref._ZTISt16invalid_argumentDW.ref._ZTISt11range_errorDW.ref._ZTISt12out_of_range__TMC_END____dso_handleDW.ref._ZTISt9exceptionDW.ref._ZTISt15underflow_errorDW.ref._ZTISt8bad_castDW.ref._ZTINSt8ios_base7failureEDW.ref._ZTISt14overflow_error_ZNSt6vectorISt4pairIdjESaIS1_EE17_M_realloc_insertIJRKS1_EEEvN9__gnu_cxx17__normal_iteratorIPS1_S3_EEDpOT_DW.ref._ZTISt12domain_error_ZNSt6vectorI70__pyx_t_5scipy_6sparse_7csgraph_14_shortest_path_YenDistancePathStructSaIS0_EE6insertEN9__gnu_cxx17__normal_iteratorIPKS0_S2_EERS5_DW.ref._ZTISt10bad_typeid_ZSt13__lower_boundIN9__gnu_cxx17__normal_iteratorIP70__pyx_t_5scipy_6sparse_7csgraph_14_shortest_path_YenDistancePathStructSt6vectorIS2_SaIS2_EEEES2_NS0_5__ops14_Iter_comp_valIPFiS2_S2_EEEET_SD_SD_RKT0_T1__ZdlPvmDW.ref._ZTISt9bad_alloc_DYNAMICPy_VersionPyExc_ImportErrorPyInterpreterState_GetID_ZTINSt8ios_base7failureE@@GLIBCXX_3.4_ZSt20__throw_length_errorPKc@@GLIBCXX_3.4PyDict_SetItemStringPyExc_StopIterationPyFrame_New_PyUnicode_FastCopyCharactersPyModule_NewObjectmemset@@GLIBC_2.2.5_PyObject_GenericGetAttrWithDictPyArg_ValidateKeywordArgumentsPyNumber_RemainderPyExc_ValueErrorPyType_ReadyPyUnicode_FormatPyList_AsTuplePyObject_VectorcallPyMem_FreePyExc_SystemErrorPyObject_CallMethodObjArgs__gmon_start__PyGILState_Release_ZdlPv@@GLIBCXX_3.4_ZTISt8bad_cast@@GLIBCXX_3.4PyObject_VectorcallDictPyCapsule_TypePyUnicode_FromStringPyObject_GC_DelPyErr_NoMemory__cxa_rethrow@@CXXABI_1.3PyList_TypePyObject_GC_UnTrackPyNumber_InvertPyObject_IsTruePyGC_EnablePyExc_TypeErrorPyList_SetSlicePyMem_ReallocPyExc_ExceptionPyExc_ModuleNotFoundErrorPyDict_TypePyErr_GivenExceptionMatchesPyDict_GetItemWithErrorPyUnstable_Code_NewWithPosOnlyArgsPyObject_HasAttrPyOS_snprintfPyObject_GetItemPyUnicode_FromFormat_Py_FatalErrorFuncPyDict_NextPyImport_AddModulePyLong_AsLong_ZTISt12out_of_range@@GLIBCXX_3.4Py_EnterRecursiveCallPyObject_CallFinalizerFromDeallocPyExc_RuntimeWarningPyErr_Format_ITM_deregisterTMCloneTablePyFloat_FromDouble_PyDict_SetItem_KnownHashPyBaseObject_TypePyNumber_LongPyNumber_InPlaceAddPyExc_ArithmeticErrorPyObject_GetAttrPyErr_ExceptionMatchesPyErr_OccurredPyTuple_GetSlicePyObject_IsSubclassPyType_ModifiedPyObject_GetBuffer_ITM_registerTMCloneTablePyCapsule_NewPyFloat_TypePyErr_GetRaisedExceptionPyObject_GC_IsFinalized__cxa_finalize@@GLIBC_2.2.5PyExc_IndexError_Py_FalseStructPyErr_SetObject_ZTISt15underflow_error@@GLIBCXX_3.4PyErr_WriteUnraisablePyBytes_AsStringPyUnicode_InternFromStringPyUnicode_TypePyExc_MemoryErrorPyExc_DeprecationWarningPyObject_SizePyUnicode_Concatstrrchr@@GLIBC_2.2.5_Py_TrueStruct_PyObject_GC_NewPyTuple_PackPyExc_UnboundLocalErrorPyThreadState_GetPyTuple_TypePyDict_SizePyModule_GetDictPyCode_NewEmptyPyImport_ImportModuleLevelObjectPyCapsule_GetNamePyObject_SetItemPyObject_GenericGetAttrPyLong_AsSsize_tPyObject_RichComparePyObject_GetIterPyExc_RuntimeErrorPyType_IsSubtypePyType_TypePy_LeaveRecursiveCall_ZTISt12domain_error@@GLIBCXX_3.4PyExc_IOErrorPyUnicode_DecodePyNumber_AddPyGILState_EnsurePyDict_DelItemPyErr_WarnExPyMethod_TypePyObject_CallObjectmemmove@@GLIBC_2.2.5PyModule_GetNamePyFloat_AsDoublevsnprintf@@GLIBC_2.2.5PyObject_Format_ZTISt9exception@@GLIBCXX_3.4PyObject_HashPyObject_ClearWeakRefsPyInit__shortest_pathPyNumber_SubtractPySlice_NewPyObject_GetAttrStringPyLong_TypePyUnicode_FromOrdinalPyObject_SetAttrString_Py_NoneStructPyExc_OverflowErrorPyList_AppendPyObject_SetAttrPyEval_GetBuiltinsPyImport_GetModulePyDict_SetDefaultPyBytes_FromStringAndSizePyDict_GetItemStringPyObject_Call_PyDict_GetItem_KnownHashPyExc_AttributeErrorPyLong_FromLongPyTraceBack_Here_ZTISt14overflow_error@@GLIBCXX_3.4PyNumber_InPlaceSubtractPyExc_NameError_ZTISt10bad_typeid@@GLIBCXX_3.4PyMethod_Newmemcmp@@GLIBC_2.2.5PyObject_VectorcallMethodPyException_SetTraceback_Py_DeallocPyErr_SetRaisedExceptionPyImport_ImportModulePyErr_ClearPyTuple_NewPyCFunction_TypePyUnicode_NewPyImport_GetModuleDict__cxa_end_catch@@CXXABI_1.3_ZSt17__throw_bad_allocv@@GLIBCXX_3.4PyTuple_GetItemPyObject_RichCompareBoolPyLong_FromSsize_tPyErr_WarnFormatPyErr_SetString_ZTISt11range_error@@GLIBCXX_3.4PyModuleDef_Init_PyThreadState_UncheckedGet__cxa_begin_catch@@CXXABI_1.3PyUnicode_FromStringAndSizePyCapsule_IsValid__gxx_personality_v0@@CXXABI_1.3PyType_FromMetaclassPyBuffer_ReleasePyGC_Disable_PyType_Lookup_Znwm@@GLIBCXX_3.4_Unwind_Resume@@GCC_3.0PyList_NewPyMem_MallocPyErr_PrintExmemcpy@@GLIBC_2.14_ZTISt16invalid_argument@@GLIBCXX_3.4PyCapsule_GetPointerPyObject_GC_TrackPyNumber_Index_ZTISt9bad_alloc@@GLIBCXX_3.4PyDict_SetItem_Py_BuildValue_SizeTPyLong_AsUnsignedLongPyDict_NewPyException_GetTraceback.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.gcc_except_table.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``$8 @``Ho$$Uo%%d & &"nB(H(H(x``s ` ` ~iieE   -   ( ,.00 4$ @0 00/0? pd]